JP2570742B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2570742B2
JP2570742B2 JP62130929A JP13092987A JP2570742B2 JP 2570742 B2 JP2570742 B2 JP 2570742B2 JP 62130929 A JP62130929 A JP 62130929A JP 13092987 A JP13092987 A JP 13092987A JP 2570742 B2 JP2570742 B2 JP 2570742B2
Authority
JP
Japan
Prior art keywords
region
gate electrode
gate
drain
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62130929A
Other languages
Japanese (ja)
Other versions
JPS63296282A (en
Inventor
孝二 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62130929A priority Critical patent/JP2570742B2/en
Publication of JPS63296282A publication Critical patent/JPS63296282A/en
Application granted granted Critical
Publication of JP2570742B2 publication Critical patent/JP2570742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置、特にデュアルゲートの電界効
果トランジスタに関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, particularly to a dual-gate field-effect transistor.

〔発明の概要〕[Summary of the Invention]

本発明は、デュアルゲートのパワーMOSトランジスタ
であり、半導体基板のトレンチに絶縁膜を介して積層し
て形成した第1のゲート電極は、ドレイン領域に対応し
て形成し、また第2のゲート電極は、チャネル領域に対
応して形成することにより、高耐圧化と高出力化を図る
ことができるようにしたものである。
The present invention relates to a dual-gate power MOS transistor, wherein a first gate electrode formed by laminating in a trench of a semiconductor substrate via an insulating film is formed corresponding to a drain region, and a second gate electrode is formed. Are formed so as to correspond to the channel region, so that high breakdown voltage and high output can be achieved.

〔従来の技術〕 従来安定で高利得の高周波増幅を行なうことができる
MOS FETとして、ソース領域とドレイン領域の間に縦続
的に2つのゲートを形成した、デュアルゲートMOS FET
が提案されている。
[Prior art] Conventionally stable, high-gain high-frequency amplification can be performed
Dual gate MOS FET with two gates cascaded between source and drain regions as MOS FET
Has been proposed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

近年、従来のデュアルゲートMOS FETを更に高耐圧、
且つ高出力とすることが要請されている。本発明は斯る
点に鑑みて、このような要請を実現させることができる
新規な構造を有するデュアルゲートMOS FETを提供する
ものである。
In recent years, conventional dual-gate MOS FETs have higher breakdown voltage,
In addition, high output is required. In view of the above, the present invention provides a dual gate MOS FET having a novel structure capable of realizing such a demand.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明に係る半導体装置においては、半導体基板
(1)に形成されたトレンチ(8)の側壁にソース領域
(18)、チャネル領域(13)及びドレイン領域(11)を
形成し、チャネル領域(13)はトレンチ(8)の深さ方
向において、ソース領域(18)と接する側を高濃度領域
(5)とし、ドレイン領域(11)は高濃度領域(1)と
低濃度領域(2)を有し、低濃度領域(2)がトレンチ
(8)の側壁に対応してチャネル領域(13)に接してな
り、トレンチ(8)内にはゲート絶縁膜(9)を介して
第1と第2のゲート電極(10),(12)を積層して形成
し、第1のゲート電極(10)はドレイン領域(11)の低
濃度領域(2)に対応して形成し、この第1のゲート電
極(10)でドレイン抵抗を制御し、第2のゲート電極
(12)はチャネル領域(13)に対応して形成し、第2の
ゲート電極(12)でスイッチング動作をすることを特徴
とする。
In the semiconductor device according to the present invention, the source region (18), the channel region (13), and the drain region (11) are formed on the side wall of the trench (8) formed in the semiconductor substrate (1), and the channel region (13) is formed. ) Is a high-concentration region (5) on the side in contact with the source region (18) in the depth direction of the trench (8), and the drain region (11) has a high-concentration region (1) and a low-concentration region (2). The low-concentration region (2) is in contact with the channel region (13) corresponding to the side wall of the trench (8), and the first and second regions are formed in the trench (8) via the gate insulating film (9). The first gate electrode (10) is formed corresponding to the low concentration region (2) of the drain region (11), and the first gate electrode (10) is formed by laminating the first gate electrode (10) and (12). The drain resistance is controlled by the electrode (10), and the second gate electrode (12) corresponds to the channel region (13). And a switching operation is performed by the second gate electrode (12).

〔作用〕[Action]

本発明によれば、トランジスタを縦型に形成するた
め、高密度化が図られ、高出力を得ることができる。ま
た、第2のゲート電極(12)とドレイン領域(11)間の
容量Cdgが、第1のゲート電極(10)があることによ
り、ない場合と比べて小さくすることができるため、高
周波特性が良くなる。
According to the present invention, since the transistor is formed in a vertical type, high density can be achieved and high output can be obtained. In addition, since the capacitance Cdg between the second gate electrode (12) and the drain region (11) can be reduced by the presence of the first gate electrode (10) as compared with the case without the first gate electrode (10), high-frequency characteristics are reduced. Get better.

〔実施例〕〔Example〕

図面を参照して本発明の実施例をその製法例と共に説
明する。
An embodiment of the present invention will be described with reference to the drawings together with an example of its manufacturing method.

先ず第1図Aに示すように、0.01〜0.1ΩcmのN+型(1
00)Si基板(1)に1017〜1018atom/ccのN型Si層
(2)と1015〜1017atom/ccのP-型Si層(3)をエピタ
キシャル成長により形成する。
First, as shown in FIG. 1A, an N + type (1 to 0.01 Ωcm)
00) An N-type Si layer (2) of 10 17 to 10 18 atom / cc and a P - type Si layer (3) of 10 15 to 10 17 atom / cc are formed on the Si substrate (1) by epitaxial growth.

次に第1図Bに示すように、SiO2層(4)又はホトレ
ジスト層等をマスクにしてP型不純物を拡散して1016
1018atom/ccのP領域(5)を形成し、次に連続してN
型不純物を拡散して1020atom/cc以上のN+領域(6)を
形成する。このようにP-層(3)とN+領域(6)の間に
P領域(5)を形成し、またN層(2)の下の基板
(1)をN+とすることにより空乏層の拡がりを抑えるこ
とができ、N+領域(6)(ソース領域)とN+基板(1)
(ドレイン領域)とが短い距離で高耐圧(30〜200V)に
することが可能になる。
Next, as shown in FIG. 1 B, SiO 2 layer (4) or the photoresist layer or the like as a mask by diffusing P-type impurity 10 16 -
A P region (5) of 10 18 atom / cc is formed, and then N
The N + region (6) of 10 20 atom / cc or more is formed by diffusing the type impurity. Thus P - layer (3) and a depletion layer by forming a P region (5) between the N + region (6), and also N layer substrate (1) under (2) and N + Of the N + region (6) (source region) and the N + substrate (1).
(Drain region) and a high withstand voltage (30 to 200 V) at a short distance.

次に第1図Cに示すように、N+領域(6)を分離する
ように、そして高耐圧を得るためにN+基板(1)に達す
るようにSiO2層(7)をマスクしてRIEによりSiの穴掘
りを行ってトレンチ(8)を形成する。
Next, as shown in FIG. 1C, the SiO 2 layer (7) is masked so as to separate the N + region (6) and reach the N + substrate (1) in order to obtain a high breakdown voltage. A trench (8) is formed by digging a hole in Si by RIE.

次に第1図Eに示すように、トレンチ(8)内壁のダ
メージ層を除去した後、ゲート酸化膜(9)(またはSi
O2/Si3N4/SiO2等でもよい)を形成する。次にこのトレ
ンチ(8)内に多結晶シリコンより成る第1のゲート電
極(10)をドレイン領域(11)に対応するように形成
し、またこの第1のゲート電極(10)の上にゲート酸化
膜(9)を介して同じく多結晶シリコンより成る第2の
ゲート電極(12)をチャネル領域(13)及びソース領域
(18)の一部分に対応するように形成する。この第1の
ゲート電極(10)は、数ボルトの正の電圧を印加し、MO
Sトランジスタのオン抵抗及び第2のゲート電極(12)
とドレイン領域(11)間の容量を小さくする機能を持
つ。即ち、第1のゲート電極(10)をドレイン領域(1
1)に対し正にバイアスすることによってドレイン領域
(11)のN層(2)の表面、つまりトレンチ(8)の側
壁側の表面がアキュミレーション状態となり、ドレイン
抵抗が低減し、MOSトランジスタのオン抵抗が下がる。
また、第1のゲート電極(10)があることによって、第
2のゲート電極(12)とドレイン領域(11)とのオーバ
ーラップ容量が小さくなる。そして、第2のゲート電極
(12)により、トランジスタのスイッチング動作をす
る。この後、PSG(リン・シリケート・ガラス)層(1
4)を形成し、窓明けを行った後、A1より成るソース電
極(15)を形成し、また裏面側にはドレイン電極(16)
を形成して、本実施例に係るデュアルゲートのMOSトラ
ンジスタ(17)を作製する。なお、第1図Dにおいて両
ソース領域(18)の間にP-層(3)の一部が表面に露出
してソース電極(15)と接続しているが、第1図Bに示
す工程でSiO2層(4)の幅とP型不純物の拡散を制御す
ることにより、P領域(5)のみを表面に露出させてソ
ース電極(15)と接続させることができる。
Next, as shown in FIG. 1E, after removing the damaged layer on the inner wall of the trench (8), the gate oxide film (9) (or Si) is removed.
O 2 / Si 3 N 4 / SiO 2 or the like). Next, a first gate electrode (10) made of polysilicon is formed in the trench (8) so as to correspond to the drain region (11), and a gate is formed on the first gate electrode (10). A second gate electrode (12) also made of polycrystalline silicon is formed via an oxide film (9) so as to correspond to a part of the channel region (13) and a part of the source region (18). The first gate electrode (10) applies a positive voltage of several volts and
ON resistance of S transistor and second gate electrode (12)
It has the function of reducing the capacitance between the gate electrode and the drain region (11). That is, the first gate electrode (10) is connected to the drain region (1).
By applying a positive bias to 1), the surface of the N layer (2) of the drain region (11), that is, the surface of the trench (8) on the side wall side is in an accumulation state, the drain resistance is reduced, and the MOS transistor ON resistance decreases.
In addition, the presence of the first gate electrode (10) reduces the overlap capacitance between the second gate electrode (12) and the drain region (11). Then, the switching operation of the transistor is performed by the second gate electrode (12). After this, the PSG (phosphorus silicate glass) layer (1
After forming 4) and opening the window, a source electrode (15) made of A1 is formed, and a drain electrode (16) is formed on the back side.
Is formed to manufacture the dual-gate MOS transistor (17) according to the present embodiment. In FIG. 1D, a part of the P layer (3) is exposed on the surface between the two source regions (18) and connected to the source electrode (15). By controlling the width of the SiO 2 layer (4) and the diffusion of the P-type impurity, only the P region (5) can be exposed to the surface and connected to the source electrode (15).

第2図はこのトランジスタ(17)の平面図を示す。同
図で(19)は、第1のゲート電極(10)のコンタクト
部、(20)は第2のゲート電極(12)のコンタクト部で
ある。トレンチ(8)による縦型構造によって、高密度
化が図れ、且つ四面にチャネル領域(13)が形成される
ので、平面的にみて単位面積当りの出力が大きくでき
る。
FIG. 2 shows a plan view of the transistor (17). In the figure, (19) is a contact portion of the first gate electrode (10), and (20) is a contact portion of the second gate electrode (12). The vertical structure with the trenches (8) can increase the density and form the channel regions (13) on all four sides, so that the output per unit area can be increased in plan view.

第3図は本発明に係るトランジスタの等価回路図を示
す。同図で、(31)はドレイン、(32)はソース、(3
3)は第1のゲート、(34)は第2のゲートである。
FIG. 3 shows an equivalent circuit diagram of the transistor according to the present invention. In the figure, (31) is the drain, (32) is the source, (3
3) is a first gate, and (34) is a second gate.

〔発明の効果〕〔The invention's effect〕

本発明によれば、2重拡散法によってN+ソース領域
(18)の周囲にP領域(5)を形成し、更にP-層(3)
に続くドレイン領域(11)をN層(2)及びN+基板
(1)として形成することにより、ソース領域(18)と
N+ドレイン領域(11)とを短い距離で高耐圧化すること
ができる。また、P-層(3)とN層(2)との接合面が
平面であり、曲面ではないので、高耐圧が得られる。ト
ランジスタの高密度化を図ることができるため、単位面
積当たりの出力を大きくすることが可能になる。Nドレ
イン領域(11)と第1のゲート電極(10)により、耐圧
を劣化させないでトランジスタのオン抵抗を改善するこ
とができる。gm∝W/L(W:チャネル幅、L:チャネル長)
の関係があるが、本発明によれば4面のチャネル領域が
形成されることになるので、gmが大きくなる。そして、
f∝gm/Cdgの関係があることにより、第2のゲート電極
(12)とドレイン領域(11)間の容量が、第1のゲート
電極(10)の存在により、これがない場合と比べて小さ
くすることができるため、高周波特性が良くなる。
According to the present invention, a P region (5) is formed around an N + source region (18) by a double diffusion method, and a P layer (3) is formed.
The source region (18) is formed by forming the drain region (11) following the above as an N layer (2) and an N + substrate (1).
The breakdown voltage can be increased with the N + drain region (11) over a short distance. In addition, since the joining surface between the P layer (3) and the N layer (2) is flat and not curved, a high breakdown voltage can be obtained. Since the density of the transistor can be increased, the output per unit area can be increased. With the N drain region (11) and the first gate electrode (10), the on-resistance of the transistor can be improved without deteriorating the breakdown voltage. gm∝W / L (W: channel width, L: channel length)
However, according to the present invention, since four channel regions are formed, gm increases. And
Due to the relationship of f∝gm / Cdg, the capacitance between the second gate electrode (12) and the drain region (11) is smaller than that without the first gate electrode (10) due to the presence of the first gate electrode (10). Therefore, the high frequency characteristics are improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例の工程図、第2図は実施例の平面図、第
3図は実施例の回路図である。 (1)はSi基板、(2)はN層、(3)はP-層、(5)
はP領域、(6)はN+領域、(8)はトレンチ、(9)
はゲート酸化膜、(10)は第1のゲート電極、(11)は
ドレイン領域、(12)は第2のゲート電極、(13)はチ
ャネル領域、(18)はソース領域である。
FIG. 1 is a process diagram of the embodiment, FIG. 2 is a plan view of the embodiment, and FIG. 3 is a circuit diagram of the embodiment. (1) Si substrate, (2) N layer, (3) P - layer, (5)
Is a P region, (6) is an N + region, (8) is a trench, (9)
Is a gate oxide film, (10) is a first gate electrode, (11) is a drain region, (12) is a second gate electrode, (13) is a channel region, and (18) is a source region.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板に形成されたトレンチの側壁に
ソース領域、チャネル領域及びドレイン領域が形成さ
れ、 上記チャネル領域は上記トレンチの深さ方向において、
ソース領域と接する側を高濃度領域とし、 上記ドレイン領域は高濃度領域と低濃度領域を有し、該
低濃度領域が上記トレンチの側壁に対応して上記チャネ
ル領域に接してなり、 上記トレンチ内にはゲート絶縁膜を介して第1と第2の
ゲート電極が積層して形成され、 上記第1のゲート電極は、上記ドレイン領域の低濃度領
域に対応して形成され、該第1のゲート電極でドレイン
抵抗を制御し、 上記第2のゲート電極は、上記チャネル領域に対応して
形成され、該第2のゲート電極でスイッチング動作をす
る ことを特徴とする半導体装置。
A source region, a channel region, and a drain region are formed on sidewalls of a trench formed in the semiconductor substrate, wherein the channel region is formed in a depth direction of the trench.
The side in contact with the source region is a high-concentration region, the drain region has a high-concentration region and a low-concentration region, and the low-concentration region is in contact with the channel region corresponding to a side wall of the trench. First and second gate electrodes are formed by laminating via a gate insulating film. The first gate electrode is formed corresponding to the low-concentration region of the drain region. A semiconductor device, wherein a drain resistance is controlled by an electrode, and the second gate electrode is formed corresponding to the channel region, and performs a switching operation with the second gate electrode.
JP62130929A 1987-05-27 1987-05-27 Semiconductor device Expired - Fee Related JP2570742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62130929A JP2570742B2 (en) 1987-05-27 1987-05-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62130929A JP2570742B2 (en) 1987-05-27 1987-05-27 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS63296282A JPS63296282A (en) 1988-12-02
JP2570742B2 true JP2570742B2 (en) 1997-01-16

Family

ID=15046018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62130929A Expired - Fee Related JP2570742B2 (en) 1987-05-27 1987-05-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2570742B2 (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689606B2 (en) * 1989-05-24 1997-12-10 富士電機株式会社 Method for manufacturing insulated gate field effect transistor
US5396085A (en) * 1993-12-28 1995-03-07 North Carolina State University Silicon carbide switching device with rectifying-gate
US5488236A (en) * 1994-05-26 1996-01-30 North Carolina State University Latch-up resistant bipolar transistor with trench IGFET and buried collector
WO2000005767A1 (en) * 1998-07-23 2000-02-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method for fabricating the same
US5998833A (en) * 1998-10-26 1999-12-07 North Carolina State University Power semiconductor devices having improved high frequency switching and breakdown characteristics
US6545316B1 (en) 2000-06-23 2003-04-08 Silicon Wireless Corporation MOSFET devices having linear transfer characteristics when operating in velocity saturation mode and methods of forming and operating same
US6621121B2 (en) 1998-10-26 2003-09-16 Silicon Semiconductor Corporation Vertical MOSFETs having trench-based gate electrodes within deeper trench-based source electrodes
US6191447B1 (en) 1999-05-28 2001-02-20 Micro-Ohm Corporation Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same
US6781194B2 (en) 2001-04-11 2004-08-24 Silicon Semiconductor Corporation Vertical power devices having retrograded-doped transition regions and insulated trench-based electrodes therein
US6784486B2 (en) 2000-06-23 2004-08-31 Silicon Semiconductor Corporation Vertical power devices having retrograded-doped transition regions therein
JP4528460B2 (en) * 2000-06-30 2010-08-18 株式会社東芝 Semiconductor element
US6677641B2 (en) * 2001-10-17 2004-01-13 Fairchild Semiconductor Corporation Semiconductor structure with improved smaller forward voltage loss and higher blocking capability
EP1396030B1 (en) 2001-04-11 2011-06-29 Silicon Semiconductor Corporation Vertical power semiconductor device and method of making the same
US6838722B2 (en) 2002-03-22 2005-01-04 Siliconix Incorporated Structures of and methods of fabricating trench-gated MIS devices
FR2850791B1 (en) 2003-01-30 2006-01-21 St Microelectronics Sa VERTICAL UNIPOLAR COMPONENT
JP4903055B2 (en) * 2003-12-30 2012-03-21 フェアチャイルド・セミコンダクター・コーポレーション Power semiconductor device and manufacturing method thereof
US7368777B2 (en) 2003-12-30 2008-05-06 Fairchild Semiconductor Corporation Accumulation device with charge balance structure and method of forming the same
JP2006093506A (en) * 2004-09-27 2006-04-06 Sanyo Electric Co Ltd Insulation gate type semiconductor device and its manufacturing method
US7494876B1 (en) 2005-04-21 2009-02-24 Vishay Siliconix Trench-gated MIS device having thick polysilicon insulation layer at trench bottom and method of fabricating the same
JP4955222B2 (en) 2005-05-20 2012-06-20 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
US7768064B2 (en) 2006-01-05 2010-08-03 Fairchild Semiconductor Corporation Structure and method for improving shielded gate field effect transistors
US8080848B2 (en) 2006-05-11 2011-12-20 Fairchild Semiconductor Corporation High voltage semiconductor device with lateral series capacitive structure
JP4728210B2 (en) * 2006-12-12 2011-07-20 Okiセミコンダクタ株式会社 High voltage vertical MOS transistor
US7521332B2 (en) 2007-03-23 2009-04-21 Alpha & Omega Semiconductor, Ltd Resistance-based etch depth determination for SGT technology
US8021563B2 (en) 2007-03-23 2011-09-20 Alpha & Omega Semiconductor, Ltd Etch depth determination for SGT technology
US8193565B2 (en) 2008-04-18 2012-06-05 Fairchild Semiconductor Corporation Multi-level lateral floating coupled capacitor transistor structures
JP4918063B2 (en) * 2008-05-12 2012-04-18 株式会社日立製作所 Semiconductor device
US7807576B2 (en) 2008-06-20 2010-10-05 Fairchild Semiconductor Corporation Structure and method for forming a thick bottom dielectric (TBD) for trench-gate devices
US8829624B2 (en) 2008-06-30 2014-09-09 Fairchild Semiconductor Corporation Power device with monolithically integrated RC snubber
US9425305B2 (en) 2009-10-20 2016-08-23 Vishay-Siliconix Structures of and methods of fabricating split gate MIS devices
US9419129B2 (en) 2009-10-21 2016-08-16 Vishay-Siliconix Split gate semiconductor device with curved gate oxide profile
US8624302B2 (en) 2010-02-05 2014-01-07 Fairchild Semiconductor Corporation Structure and method for post oxidation silicon trench bottom shaping
KR101728363B1 (en) 2010-03-02 2017-05-02 비쉐이-실리코닉스 Structures and methods of fabricating dual gate devices
DE102011079747A1 (en) 2010-07-27 2012-02-02 Denso Corporation Semiconductor device with switching element and freewheeling diode, and control method therefor
CN107482054B (en) 2011-05-18 2021-07-20 威世硅尼克斯公司 Semiconductor device with a plurality of transistors
US8704296B2 (en) 2012-02-29 2014-04-22 Fairchild Semiconductor Corporation Trench junction field-effect transistor
JP2013258327A (en) * 2012-06-13 2013-12-26 Toshiba Corp Semiconductor device and method of manufacturing the same
JP6271440B2 (en) 2014-01-31 2018-01-31 ルネサスエレクトロニクス株式会社 Semiconductor device
WO2015114802A1 (en) * 2014-01-31 2015-08-06 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device and power supply system
US10234486B2 (en) 2014-08-19 2019-03-19 Vishay/Siliconix Vertical sense devices in vertical trench MOSFET
US9443973B2 (en) 2014-11-26 2016-09-13 Infineon Technologies Austria Ag Semiconductor device with charge compensation region underneath gate trench
JP6416056B2 (en) * 2015-08-26 2018-10-31 株式会社東芝 Semiconductor device
JP6317727B2 (en) * 2015-12-28 2018-04-25 株式会社東芝 Semiconductor device
US11217541B2 (en) 2019-05-08 2022-01-04 Vishay-Siliconix, LLC Transistors with electrically active chip seal ring and methods of manufacture
US11218144B2 (en) 2019-09-12 2022-01-04 Vishay-Siliconix, LLC Semiconductor device with multiple independent gates

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142189A (en) * 1977-05-17 1978-12-11 Matsushita Electronics Corp Insulating gate type field effect transistor
JPS61234066A (en) * 1985-04-10 1986-10-18 Hitachi Ltd Semiconductor device

Also Published As

Publication number Publication date
JPS63296282A (en) 1988-12-02

Similar Documents

Publication Publication Date Title
JP2570742B2 (en) Semiconductor device
JP3291957B2 (en) Vertical trench MISFET and method of manufacturing the same
US5474943A (en) Method for fabricating a short channel trenched DMOS transistor
JP3221766B2 (en) Method for manufacturing field effect transistor
JPH09219512A (en) Mos field-effect transistor and manufacture thereof
US20030057478A1 (en) Mos-gated power semiconductor device
JPH0629532A (en) Mosfet and its manufacture
JPH03232276A (en) Semiconductor device and manufacture thereof
US6777745B2 (en) Symmetric trench MOSFET device and method of making same
JP3087674B2 (en) Manufacturing method of vertical MOSFET
JPS62229976A (en) Semiconductor device and manufacture thereof
JP2003518748A (en) Self-aligned silicon carbide LMOSFET
JPH0621468A (en) Insulated gate semiconductor device
US4408384A (en) Method of manufacturing an insulated-gate field-effect transistor
US6268626B1 (en) DMOS field effect transistor with improved electrical characteristics and method for manufacturing the same
JPH0237777A (en) Vertical type field-effect transistor
JP2519284B2 (en) Method of manufacturing embedded gate type MOSFET
JP3097608B2 (en) Depletion type semiconductor device and method of manufacturing the same
JP2849923B2 (en) Semiconductor device
JPH051083Y2 (en)
JP2672184B2 (en) Method for manufacturing semiconductor device
JPH03132077A (en) Manufacture of semiconductor device
JPH0548104A (en) Semiconductor device and its manufacture
JPH051084Y2 (en)
JPH03793B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees