WO2005026585A1 - ダイアフラムダンパ、その製造方法および製造装置 - Google Patents

ダイアフラムダンパ、その製造方法および製造装置 Download PDF

Info

Publication number
WO2005026585A1
WO2005026585A1 PCT/JP2004/013212 JP2004013212W WO2005026585A1 WO 2005026585 A1 WO2005026585 A1 WO 2005026585A1 JP 2004013212 W JP2004013212 W JP 2004013212W WO 2005026585 A1 WO2005026585 A1 WO 2005026585A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
pressure
gas
diaphragms
flange
Prior art date
Application number
PCT/JP2004/013212
Other languages
English (en)
French (fr)
Inventor
Takuji Matsuki
Masahide Shimada
Original Assignee
Eagle Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co., Ltd. filed Critical Eagle Industry Co., Ltd.
Priority to US10/571,312 priority Critical patent/US20060272144A1/en
Priority to EP04787852A priority patent/EP1666774B1/en
Priority to JP2005513908A priority patent/JP4824408B2/ja
Publication of WO2005026585A1 publication Critical patent/WO2005026585A1/ja
Priority to US12/719,447 priority patent/US8402656B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • B23K26/125Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases of mixed gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/206Laser sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0426Fixtures for other work
    • B23K37/0435Clamps
    • B23K37/0443Jigs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J3/00Diaphragms; Bellows; Bellows pistons
    • F16J3/02Diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49405Valve or choke making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49405Valve or choke making
    • Y10T29/49412Valve or choke making with assembly, disassembly or composite article making
    • Y10T29/49414Joining plural semi-circular components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49405Valve or choke making
    • Y10T29/49412Valve or choke making with assembly, disassembly or composite article making
    • Y10T29/49425Valve or choke making with assembly, disassembly or composite article making including metallurgical bonding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49893Peripheral joining of opposed mirror image parts to form a hollow body

Definitions

  • the present invention relates to a pulsation-absorbing diaphragm damper used in a place where pulsation occurs, such as a high-pressure fuel pump, and a method and an apparatus for manufacturing the same.
  • a device disclosed in JP-A-11-280904 As a conventional device for absorbing this kind of pulsation, for example, a device disclosed in JP-A-11-280904 is known.
  • a high-pressure accumulator is assembled to a fuel pump body. This high-pressure accumulator force absorbs the pulsation of the fuel pressure discharged from the fuel pump, and reduces the pulsation width of the fuel pressure to stabilize the fuel injection amount.
  • the high-pressure accumulator disclosed in this publication includes a case, which is a thick disk-shaped high-pressure container, and a flexible thin metal, which is sealed and supported by the case at a peripheral portion and cooperates to form a high-pressure chamber. It has a disk-shaped diaphragm and a disk-shaped plate for defining the deformation limit of the diaphragm. Only one diaphragm is used in a flat sheet shape.
  • the case and the outer peripheral edge of the diaphragm are sealed and welded, and then welded to the plate.
  • high-pressure gas is sealed through a gas inlet provided in the case.
  • the gas filling port has a structure in which the gas filling port is double-sealed by, for example, a steel ball press-fitted into the gas filling port and a plug member welded and sealed to the steel ball on a low pressure side.
  • the high-pressure accumulator described in this publication has a large number of parts and a complicated structure, and in manufacturing, the assembling and welding process of the case, the plate and the diaphragm, and the high-pressure gas sealing process are separate processes. Therefore, the number of processes and welded parts are large, and the production efficiency is poor.
  • Japanese Patent Publication No. 7-45114 discloses a method of sealing a sealed relay in which pressurized nitrogen gas is sealed.
  • the sealing device of this sealed relay includes a chamber for accommodating a work, a work support for supporting a work arranged in the chamber, and a chamber for accommodating the work.
  • a laser emitting unit which is disposed outside and irradiates a laser beam to a work in the chamber.
  • the work support has a recess for accommodating the metal case of the work, a metal base is placed on the flange provided at the opening of the metal case mounted in the recess, and the sealed gas pressurized in the chamber.
  • the work support is rotated to irradiate the laser beam of the laser emitting unit onto the contact portion between the flange and the metal base over the entire circumference to perform welding.
  • high-pressure gas can be sealed and welded at the same time, and a hole for gas sealing is not required.
  • the present invention has been made in view of such circumstances, and a first object of the present invention is to provide a method of manufacturing a diaphragm damper that can perform welding and a gas filling step at the same time, and can uniformly perform welding of a seal portion. And a manufacturing apparatus therefor.
  • a second object of the present invention is to provide a diaphragm damper which is easy to inspect for leakage of gas enclosed therein and has excellent reliability in which the enclosed gas is protected from leakage for a long period of time. That is.
  • a method of manufacturing a diaphragm damper according to the present invention includes:
  • Each of the diaphragms is made of a magnetically attractable thin metal steel plate, A step of holding each diaphragm by magnetic force on a pair of jigs provided so as to face each other;
  • the outer peripheral end of the flange of the diaphragm is irradiated with laser light from a direction substantially orthogonal to the rotation axis of the diaphragm. And welding the flange all around.
  • the diaphragm is rotated and welded inside the pressure vessel under the atmosphere of the gas to be sealed. Welding (sealing and sealing of gas) becomes possible.
  • the pair of diaphragms are held by a magnetic force with a jig and the flanges are welded together with the flanges in close contact with each other, the flanges to be welded can be accurately positioned, and the welded portion can be circumferentially positioned. It can be formed uniformly.
  • the outer peripheral end portions of the flanges of the respective diaphragms can be brought into close contact with each other accurately so as not to be displaced. Welding can be performed uniformly. As a result, it is possible to provide a diaphragm damper that is excellent in reliability, in which the sealed gas leaks for a long time.
  • the laser beam can be applied almost equally to both the upper and lower flanges by welding the outer peripheral ends of the flanges with the lateral force of the flanges of the diaphragm.
  • the outer peripheral edge portions of both flanges can be almost uniformly melted to form a welded portion, and the welded portion can reliably seal between the joining surfaces of the flanges.
  • each diaphragm is a single diaphragm
  • a thin disk-shaped flexible portion in which a repetitive pattern of concentric annular concave portions and annular convex portions is formed,
  • a positioning portion formed continuously on the outer periphery of the flexible portion and bent into an arc-shaped cross section so as to form a half space for a high-pressure chamber therein in combination with the flexible portion;
  • the diaphragm has the flange integrally formed on the outer periphery of the positioning portion in the shape of a flat plate, and these diaphragms are formed in the same shape.
  • the flexible portion deforms radially in accordance with the pressure variation of the fluid flowing in contact with the flexible portion, and the pressure variation of the fluid can be prevented.
  • the positioning portion By forming the positioning portion on the outer periphery of the flexible portion, it is easy to position and attach to the jig by magnetic force, and the positioning accuracy is improved. As a result, laser welding can be performed with high accuracy, and the occurrence of defective products can be reduced.
  • the diaphragm positioning portion is a portion that is combined with the flexible portion and bent into an arcuate cross-section so as to form a half space for the high-pressure chamber inside.
  • the diaphragm positioning portion has a simple structure, and the manufacturing process of the diaphragm is simple. There is no complication.
  • each jig is formed with a positioning recess for holding each diaphragm so as to be positioned by the positioning section, and each diaphragm is formed at a central portion of the positioning recess by magnetic force.
  • the magnet which detachably attaches is arranged. According to this method, the structure of the jig is simple, and the positioning force of the diaphragm is improved.
  • the helium gas in the mixed gas force 15 25 volume 0/0 containing the helium gas, a mixed gas of 75- 85 volume 0/0 of the argon gas.
  • This mixed gas is a gas that is sealed inside the high-pressure chamber when the flanges of the diaphragm are welded and the high-pressure chamber halves of each diaphragm are combined to form a high-pressure chamber.
  • the volume percentage of helium gas in this mixed gas is too low, the detection sensitivity of a gas leak test performed after welding tends to decrease, and the accuracy of detecting gas leak tends to decrease. If the volume percentage of helium gas is too high, even if the diaphragm damper has passed the gas leak test, the gas sealed in the high-pressure chamber will leak due to long-term use, causing a pressure drop. Function tends to decrease. Therefore, by using the mixed gas in the above ratio, it is easy to inspect the leakage of the gas sealed therein, and the diaphragm provides a highly reliable diaphragm damper that can prevent the sealed gas from leaking for a long time. Can do it can.
  • the inside of the pressure vessel is at a pressure of 0.1 to 0.5 MPa, which is a pressure force gauge pressure of the mixed gas.
  • the pressure of the mixed gas becomes the initial gas pressure of the mixed gas sealed in the high-pressure chamber of the diaphragm damper. If the pressure is too low, the function as a diaphragm damper (for example, prevention of fluid pulsation) tends to decrease, and if it is too high, gas tends to leak from the diaphragm damper.
  • a diaphragm damper according to the present invention is manufactured by one of the methods described above.
  • the manufacturing apparatus for a diaphragm damper according to the present invention includes:
  • a pressure vessel capable of guiding a laser beam at least partially therein
  • a laser device arranged outside the pressure vessel and arranged so as to be able to irradiate the outer peripheral end of the flange with laser light from a direction substantially perpendicular to the rotation axis of the jig,
  • Each jig has a concave portion which is positioned and held by a positioning portion provided on the inner peripheral side of the flange of each diaphragm,
  • the manufacturing method of the present invention can be easily realized, and the effects of the manufacturing method of the present invention can be easily realized.
  • FIG. 1A is a cross-sectional view of a diaphragm damper according to one embodiment of the present invention.
  • FIG. 1B is a plan view of the diaphragm damper shown in FIG. 1A.
  • FIG. 1C is an enlarged sectional view of a main part of the diaphragm damper shown in FIG. 1A.
  • FIG. 2 is a schematic view showing an example of use of the diaphragm damper shown in FIGS. 1A to 1C.
  • FIG. 3A is a manufacturing apparatus for manufacturing the diaphragm damper shown in FIGS. 1A to 1C.
  • FIG. 3A is a manufacturing apparatus for manufacturing the diaphragm damper shown in FIGS. 1A to 1C.
  • FIG. 3B is an enlarged sectional view of a main part of FIG. 3A.
  • FIG. 4 is a graph showing the relationship between the volume percentage of helium gas in the mixed gas sealed in the diaphragm damper, the change over time in the sealed pressure, and the leak gas detection sensitivity.
  • a diaphragm damper 1 As shown in FIG. 1A, a diaphragm damper 1 according to this embodiment has a pair of diaphragms 2 and 2. These diaphragms 2 are formed into the same shape by a thin and flexible metal plate, and as shown in FIG. 1B, a repetition of concentric annular concave portions and annular convex portions is seen from the plan view side. It has a thin disk-shaped flexible portion 4 on which a pattern 7 is formed.
  • a positioning portion bent in an arc-shaped cross section so as to be combined with the flexible portion 4 to form a half space 3a for a high-pressure chamber therein. 5 are formed physically.
  • a flat ring-shaped flange 6 is formed on the outer periphery of the positioning portion 5 so as to protrude in the radial direction.
  • FIG. 1C shows that the flanges 6, 6 of the pair of diaphragms 2, 2 abut against each other, and the half space 3 a is combined between the flexible portions 4, 4 to form the high-pressure chamber 3.
  • the outer peripheral edges 6a, 6a of the flanges 6, 6 are welded all around to form a weld bead 8.
  • the diaphragm damper 1 of the present embodiment is installed and used, for example, as shown in FIG. That is, the concave portion 12 formed in the case 11 is sealed by the lid 13 fitted to the inner periphery of the opening of the concave portion 12, and the diaphragm damper 1 is mounted in the closed space, and the closed space is divided into the first chamber. It is divided into A1 and 2nd room A2.
  • the flange 6 of the diaphragm damper 1 is fixed by being sandwiched between a lid 13 and a step 12 a provided on the inner peripheral wall of the recess 12.
  • the lid 13 is held down by a plate 16 fixed to the upper surface of the case 11.
  • the case 11 is provided with an inlet passage 14 and an outlet passage 15 communicating with the first chamber A1, and the inlet passage 14 generates a pulsating pressure of the flowing fluid by deformation of the flexible portion 4 in the diaphragm damper 1.
  • the diaphragm damper 1 is arranged so as to absorb the pressure pulsation of the fluid flowing from the inlet passage 14 to the outlet passage 15. Has been placed.
  • a mixed gas of helium (He) gas and argon (Ar) gas is sealed in the high-pressure chamber 3 of the diaphragm damper 1 according to the present embodiment at a predetermined pressure.
  • the initial pressure PO at the time of filling the mixed gas into the high-pressure chamber 3 is not particularly limited, but is a gauge pressure, preferably 0.1 to 0.5 MPa.
  • the volume% of the helium gas in the mixed gas is 15-25 volume 0 /.
  • the volume percentage of argon gas is 75-85 volume 0 /. It is. If the volume percentage of helium gas in this mixed gas is too low, for example, less than 15% by volume, as shown in Fig. 4, the helium detection sensitivity of the gas leak test performed after welding the welding bead shown in Fig. And the accuracy of detecting a gas leak tends to decrease.
  • the reference sensitivity Sx is 80% or more of the maximum sensitivity Smax. Below this reference sensitivity Sx, the accuracy of the gas leak test after welding is reduced, and it is difficult to judge a defective product.
  • a method for manufacturing the diaphragm damper 1 shown in FIG. 1A will be described.
  • a pair of diaphragms 2 and 2 are prepared.
  • a metal plate for manufacturing each diaphragm 2 a thin metal plate having a thickness of 0.1 to 0.4 mm is used.
  • the material of the thin metal plate is not particularly limited as long as it is a material that can be attracted by a magnet, but is preferably made of magnetic stainless steel (precipitation hardened stainless steel, etc.) or austenitic stainless steel (after hardening).
  • the thin metal plate is subjected to press working or the like to form a flexible portion 4 in which a repetitive pattern 7 of concentric annular concave portions and annular convex portions is formed, and a half space 3a.
  • the positioning portion 5 and the flange 6 are formed.
  • the pair of diaphragms 2 prepared as described above is attached to the manufacturing apparatus 10 shown in FIG. 3A.
  • the manufacturing apparatus 10 includes a pressure vessel 20 that is capable of transmitting a laser beam, and a pair of upper and lower first (upper) sections provided in the pressure vessel 20 so as to be rotatable and relatively movable relative to each other along the rotation axis direction. It has a jig 30 and a second (lower) jig 40. Outside the pressure vessel 20, a laser device 70 for irradiating the pressure vessel 20 with laser light is arranged.
  • the pressure vessel 20 includes a cylindrical vessel body 23 surrounding the pressure chamber 22, an upper wall 24 attached above and below the vessel body 23 and sealing the upper and lower sides of the pressure chamber 22, and a bottom wall 25.
  • a window 21 is provided at one point of the container body 23.
  • the window 21 is provided with an inner inner glass plate 21 a facing the pressure chamber 22 and an outer glass plate 21 b fixed as a part of the container body 23.
  • the laser light L is transmitted through the outer and inner glass plates 21b and 21a.
  • the inner glass plate 21a is detachable, and enables cleaning of welding fumes and the like.
  • Each of the first and second jigs 30 and 40 has a cylindrical shape, and concave portions 31 and 41 for positioning and holding the diaphragm 2 are formed on the end surfaces of the butting tips.
  • Magnets 32 and 42 are arranged at the center bottoms of the concave portions 31 and 41, respectively.
  • the magnets 32 and 42 may be permanent magnets or electromagnets.
  • the magnets 32 and 42 are embedded in both the first and second jigs 30 and 40, respectively. It is set stronger than the magnetic force of the magnet 42 of the second jig 40.
  • the outer peripheries of the magnets 32 and 42 are covered with yokes 32a and 42a for guiding the lines of magnetic force, respectively, and fitted into fitting recesses 31a and 41a provided at the center of the bottom of the recesses 31 and 41, respectively.
  • Screw holes 31b and 41b are provided on the bottom surfaces of the fitting recesses 31a and 41a, and screw shafts 32b and 42b provided with the projections 32a and 42a are screwed and fixed.
  • the flexible portions 4 and the positioning portions 5 of the diaphragms 2 and 2 are positioned and enter the respective concave portions 31 and 41 of the first and second jigs 30 and 40, and are attracted and held by the magnets 32 and 42. You.
  • the flexible portion 4 and the positioning portion 5 of the diaphragms 2 and 2 are positioned in the recesses 31 and 41 respectively so that the outer peripheral edge of the flange 6 in each diaphragm 2 protrudes from the outer circumference of each jig 30 and 40. Being held.
  • the upper first jig 30 is fixed to the lower end of the rotating shaft 51.
  • the rotating shaft 51 is rotatably inserted into a shaft hole 24a formed in the upper wall 24 of the pressure vessel 20 and slidably inserted in the vertical direction.
  • the rotating shaft 51 is driven by a motor or a vertical driving mechanism (not shown).
  • the lower second jig 40 is attached to the lower end of a rotating shaft 61 rotatably inserted into a shaft hole (not shown) formed in the bottom wall 25 of the pressure vessel 20.
  • the rotating shaft 61 is driven by a motor or the like (not shown).
  • the laser device 70 is arranged to face the window 21, and the optical axis of the emitted laser light L is vertically moved.
  • the flange 6 of the diaphragm 2 is held by the lower second jig 40.
  • the outer peripheral end 6a is positioned so as to come into contact with a horizontal direction (substantially perpendicular to the rotation axis of the diaphragm).
  • the laser device 70 can be applied to various laser devices such as a YAG laser.
  • the pressure vessel 20 is opened, and the diaphragms 2 and 2 are set on the upper and lower first and second jigs 30 and 40 provided in the pressure vessel 20, respectively.
  • the diaphragms 2 and 2 are magnetically attracted to the first and second jigs 30 and 40, respectively.
  • the pressure vessel 20 is sealed, and vacuum replacement is performed.
  • the diaphragms 2, 2 held by the first jig 30 and the second jig 40 are vertically separated from each other!
  • a mixed gas containing a helium gas and an argon gas is sealed in the pressure vessel 20 and pressurized.
  • the mixing ratio of the helium gas and the argon gas in this mixed gas is the same as the mixing ratio of the mixed gas sealed in the high-pressure chamber 3.
  • the pressure of the mixed gas in the pressure vessel 20 is the same as the initial pressure PO of the mixed gas sealed in the high-pressure chamber 3.
  • the rotating shaft 51 is lowered by a vertical driving mechanism (not shown), and the first jig 30 is pressed toward the second jig 40, and the flanges 6, 6 of the diaphragm 2, 2 are pressed. Adhere each other closely.
  • the amount of helium gas leaked is measured by a helium leak tester (not shown), and a pass / fail judgment is made.
  • Helium gas leakage is measured rather than argon gas leakage because helium has a smaller molecular weight than argon and is more likely to leak.
  • criteria for quality determination for example, is set to 1 X 10- 8 [Pa'm 3 Zsec ] The following very small leakage amount.
  • the entire width of the manufactured diaphragm damper 1 is measured, and if it is within a preset numerical value, the result is judged as pass.
  • the mixed gas containing helium is not limited to the above-mentioned mixed gas, but includes helium and argon (He + Ar), carbon dioxide and helium (CO + He), and argon.
  • He helium
  • the content of helium (He) is, for the reasons described above, preferably 20 ⁇ 5 volume 0/0, more preferably 20 mechanic 3 volumes 0/0, more preferably at 20 mechanic 1 volume 0/0 is there.
  • the vacuum displacement was set to about 2 [kPa]
  • a mixed gas of 80% argon (Ar) and 20% helium (He) was filled, and the pressure was increased to 0.3 [MPa].
  • LD laser diode
  • continuous output was performed in the range of 220 to 240W as mass production conditions.
  • the output is adjusted according to the welding speed and the jig structure because the conditions are set with the penetration condition being positive.
  • pulse output (PW) may be used instead of continuous output.
  • the welding speed was 1.2-1.8 [mZmin].
  • the diaphragm bumper obtained by the manufacturing method and the manufacturing apparatus of the present invention is excellent in reliability in which the sealed gas leaks for a long period of time, and is favorably used in places where pulsation such as a high-pressure fuel pump occurs. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

 2枚のダイアフラム2の各フランジ6が相互に溶接されて内部に高圧ガスが封入される高圧室3を有するダイアフラムダンパ1を製造する方法である。それぞれのダイアフラム2を、磁気吸着可能な薄肉金属鋼板で構成し、圧力容器20内に相互に向き合うように設けられた一対の治具30,40に、各ダイアフラム2を磁力によって保持させる。圧力容器20を密封して真空置換した後に、圧力容器20内に、ヘリウムを含む混合ガスを封入して加圧し、その後、一対の治具30,40を近づけて、一対のダイアフラム2の各フランジ6を密接させる。圧力容器20内で治具30,40を同時に回転させて一対のダイアフラム2を回転させながら、ダイアフラム2のフランジ6にレーザ光を照射して当該フランジ6を全周溶接する。

Description

明 細 書
ダイアフラムダンバ、その製造方法および製造装置
技術分野
[0001] 本発明は、たとえば高圧燃料ポンプなどの脈動が生じる箇所に用いられる脈動吸 収用のダイアフラムダンバ、その製造方法および製造装置に関する。
背景技術
[0002] 従来のこの種の脈動を吸収する装置としては、たとえば特開平 11— 280904号公 報に示す装置が知られている。この公報に示す装置では、燃料ポンプ体に高圧アキ ュムレータが組み付けられている。この高圧アキュムレータ力 燃料ポンプから吐出さ れる燃料圧の脈動を吸収し、燃料圧の脈動幅を小さくして燃料の噴射量を安定化さ せている。
[0003] この公報に示す高圧アキュムレータは、厚肉円板状の高圧容器であるケースと、周 縁部でケースに封止支持されて協働して高圧室を形成する可撓性の薄い金属円板 状のダイァフラムと、ダイァフラムの変形限界を定める円板状のプレートとを備えて ヽ る。ダイアフラムはフラットなシート形状で一枚のみ使用されている。
[0004] この高圧アキュムレータを組み立てるには、ケースとダイァフラムの外周縁とを封止 溶接し、その後プレートと溶接する。この組立後、ケースに設けられた気体封入口か ら高圧気体が封入される。気体封入口は、たとえば、気体封入口に圧入される鋼球と 、鋼球に対して低圧側に溶接シールされる栓部材によって 2重にシールする構造と なっている。
[0005] しかし、この公報に記載の高圧アキュムレータは、部品点数が多ぐ構造も複雑であ り、製造にあたっても、ケース、プレートおよびダイァフラムの組立溶接工程と、高圧 ガスの封入工程とが別工程となっているので、工程数および溶接部分が多く生産効 率が悪い。
[0006] 一方、特公平 7— 45114号公報には、加圧した窒素ガスを封入した密封リレーのシ ール方法が記載されている。この密封リレーのシール装置は、ワークを収納するチヤ ンバーと、チャンバ一内に配置されたワークを支持するワーク支持体と、チャンバ一 外に配置されチャンバ一内のワークに対してレーザ光を照射するレーザ出射ユニット とを備えている。ワーク支持体は、ワークの金属ケースを収納する凹部を有し、凹部 内に装着した金属ケースの開口部に設けられたフランジに金属ベースを載置し、チ ヤンバー内に加圧した封入ガスを充填した後、ワーク支持体を回転させることにより、 レーザ出射ユニットのレーザ光をフランジと金属ベースとの接触部に全周にわたって 照射して溶接するようになっている。このようなレーザ溶接方法を用いれば、高圧ガス の封入と溶接が同時にできて気体封入する穴も不要となる。
[0007] し力し、この公報に示す密封リレーのシール方法では、金属ケースのフランジに金 属ベースを載置するだけなので、シールすべきフランジと金属ベースの接触部にず れが生じるおそれがある。ずれが生じると、溶接部が円周方向に不均一となり、場合 によっては溶け込み不足によってシール不良の原因ともなる。特に、レーザ出射ュ- ットがシール部位となる金属ケースのフランジよりも下方に位置し、下方力 フランジ に向けて斜めにレーザ光を照射しているので、金属ベースより金属ケースが張り出し ているような部分では、金属ベース側に十分にレーザ光が届かず、溶け込み不足が 生じやすい。その結果、内部に封入したガスが漏れやすいなどの問題がある。
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、このような実状に鑑みてなされ、その第 1の目的は、溶接とガス封入ェ 程を同時にでき、しかもシール部位の溶接を均一に行 、得るダイアフラムダンバの製 造方法およびその製造装置を提供することにある。
[0009] また、本発明の第 2の目的は、内部に封入したガスの漏れ検査が容易であり、しか も、封入したガスが長期間漏れにくぐ信頼性に優れたダイアフラムダンバを提供す ることである。
課題を解決するための手段
[0010] 上記目的を達成するために、本発明に係るダイアフラムダンバの製造方法は、
2枚のダイァフラムの各フランジが相互に溶接されて内部に高圧ガスが封入される 高圧室を有するダイアフラムダンバを製造する方法であって、
それぞれの前記ダイアフラムを、磁気吸着可能な薄肉金属鋼板で構成し、圧力容器 内に相互に向き合うように設けられた一対の治具に、各ダイアフラムを磁力によって 保持させる工程と、
前記圧力容器を密封して真空置換した後に、前記圧力容器内に、ヘリウムを含む混 合ガスを封入して加圧し、その後、一対の前記治具を近づけて、一対の前記ダイァフ ラムの各フランジを密接させる工程と、
前記圧力容器内で前記治具を同時に回転させて一対の前記ダイアフラムを回転さ せながら、前記ダイァフラムのフランジの外周端部に前記ダイァフラムの回転軸に対 してほぼ直交する方向からレーザ光を照射して当該フランジを全周溶接する工程と を有する。
[0011] 本発明に係る製造方法では、封入すべきガスの雰囲気下の圧力容器の内部でダ ィァフラムを回転させて溶接するため、レーザ光の一回の照射で、ダイアフラムダン パの組立および密封溶接 (ガスの封入封止)が可能となる。また、一対のダイアフラム を、それぞれ治具で磁力により保持し、フランジを密接させてカゝら溶接するので、溶 接されるフランジ同士の位置決めを正確に行うことができ、溶接部を円周方向に均一 に形成することができる。
[0012] すなわち、本発明では、各ダイァフラムのフランジの外周端部同士を、ズレないよう に正確に密接させることができ、しカゝも、溶接とガス封入工程を同時にでき、シール部 位の溶接を均一に行い得る。その結果、封入したガスが長期間漏れにくぐ信頼性に 優れたダイアフラムダンバを提供することができる。
[0013] さらに、本発明では、ダイァフラムのフランジの真横力もフランジ外周端部を溶接す ることにより、上下両フランジに対してほぼ均等にレーザ光を照射することができる。 その結果、両フランジ外周端部をほぼ均等に溶力して溶接部を形成することができ、 溶接部によってフランジの接合面間を確実に封止することができる。
[0014] 好ましくは、各ダイァフラムは、
同心円状の環状凹部および環状凸部の繰り返しパターンが形成された薄板円板状 の可撓部と、
この可撓部の外周に連続して形成され、前記可撓部と組み合わされて内部に高圧室 用半割空間を形成するように断面円弧状に折り曲げられた位置決め部と、 この位置決め部の外周に一体的に平板リング状に形成してある前記フランジとを有し これらのダイアフラムカ 相互に同一形状に成形されている。
[0015] ダイアフラムダンバでは、可撓部に接触して流れる流体の圧力変動に応じて、可撓 部が橈み変形し、流体の圧力変動を防止することができる。その可撓部の外周に位 置決め部を形成することで、治具に対して磁力により位置決めして取り付けることが 容易になり、位置決め精度が向上する。その結果、高精度にレーザ溶接することがで き、不良品の発生を低減できる。なお、ダイァフラムの位置決め部は、可撓部と組み 合わされて内部に高圧室用半割空間を形成するように断面円弧状に折り曲げられた 部分であり、単純な構造であり、ダイァフラムの製造工程が煩雑になることもない。
[0016] また、この方法では、同一形状のダイアフラム同士を溶接して成形するので、従来 の高圧アキュムータに比べて構造が格段に簡素化できる。また、従来では必要として いた封止部品が不要で部品点数も少なぐ小型化を図ることができる。
[0017] 好ましくは、各治具には、各ダイアフラムを、前記位置決め部で位置決めするように 保持する位置決め用凹部が形成してあり、前記位置決め用凹部の中央部に、各ダイ ァフラムを磁力により着脱可能に吸着する磁石が配置してある。この方法では、治具 の構造もシンプルであり、し力も、ダイァフラムの位置決め精度が向上する。
[0018] 好ましくは、前記ヘリウムガスを含む混合ガス力 15— 25容積0 /0のヘリウムガスと、 75— 85容積0 /0のアルゴンガスとの混合ガスである。この混合ガスは、ダイァフラムの フランジ部が溶接されて各ダイァフラムの高圧室用半割空間が組み合わされて高圧 室になる時に、その高圧室の内部に封入されるガスである。
[0019] この混合ガスにおけるヘリウムガスの容積%が低すぎると、溶接後に行うガス漏れ 試験の検出感度が低下し、ガス漏れの検出精度が低下する傾向にある。また、へリウ ムガスの容積%が高すぎると、ガス漏れ試験に合格したダイアフラムダンバであった としても、高圧室に封入してあるガスが長期間の使用により漏れて圧力低下が生じ、 ダイアフラムダンバとしての機能が低下する傾向にある。したがって、上記の割合の 混合ガスとすることにより、内部に封入したガスの漏れ検査が容易であり、しカゝも、封 入したガスが長期間漏れにくぐ信頼性に優れたダイアフラムダンバを提供することが できる。
[0020] 好ましくは、前記フランジを全周溶接する際には、前記圧力容器の内部は、前記混 合ガスの圧力力 ゲージ圧力で、 0. 1—0. 5MPaの圧力である。この混合ガスの圧 力が、ダイアフラムダンバの高圧室に封入される混合ガスの初期ガス圧力となる。こ の圧力が低すぎると、ダイアフラムダンバとしての機能 (たとえば流体の脈動防止)が 低下する傾向にあり、高すぎると、ダイアフラムダンバからガスが漏れやすくなる傾向 にある。
[0021] 本発明に係るダイアフラムダンパは、上記のいずれかに記載の方法により製造され る。
[0022] 本発明に係るダイアフラムダンバの製造装置は、
少なくとも一部でレーザ光を内部に導くことが可能な圧力容器と、
前記圧力容器内に回転自在でかつ回転軸方向に沿って相対的に接近および離反 移動自在に設けられて!/、る一対の治具と、
前記圧力容器の外に配置され、前記治具の回転軸に対してほぼ直交する方向から レーザ光を前記フランジの外周端部に照射可能に配置してあるレーザ装置と、を備 え、
各治具は、各ダイァフラムのフランジの内周側に設けられた位置決め部が当接して 位置決め保持する凹部と、
各ダイァフラムを前記凹部に対して磁気吸着する磁石とを備えていることを特徴とす る。
[0023] 本発明に係る製造装置によれば、本発明の製造方法を容易に実現することが可能 になり、本発明に係る製造方法の作用効果を容易に実現することができる。
図面の簡単な説明
[0024] [図 1A]図 1Aは本発明の一実施形態に係るダイアフラムダンバの横断面図である。
[図 1B]図 1Bは図 1Aに示すダイアフラムダンバの平面図である。
[図 1C]図 1Cは図 1 Aに示すダイアフラムダンバの要部拡大断面図である。
[図 2]図 2は図 1A—図 1Cに示すダイァフラムダンバの使用例を示す概略図である。
[図 3A]図 3Aは図 1A—図 1Cに示すダイアフラムダンバを製造するための製造装置 の一部断面図である。
[図 3B]図 3Bは図 3Aの要部拡大断面図である。
[図 4]図 4はダイアフラムダンバに封入される混合ガスにおけるヘリウムガスの容積% と、封入圧力の経時変化と、漏れガス検出感度との関係を示すグラフである。
発明を実施するための最良の形態
[0025] 以下、本発明を、図面に示す実施形態に基づき説明する。
図 1Aに示すように、この実施形態に係るダイアフラムダンバ 1は、一対のダイアフラム 2, 2を有する。これらのダイアフラム 2は、薄肉で可撓性の金属板によって相互に同 一形状に成形され、図 1Bに示すように、平面図側から見て、同心円状の環状凹部お よび環状凸部の繰り返しパターン 7が形成された薄板円板状の可撓部 4を有する。
[0026] 可撓部 4の外周には、図 1Aに示すように、可撓部 4と組み合わされて内部に高圧 室用半割空間 3aを形成するように断面円弧状に折り曲げられた位置決め部 5がー体 的に形成してある。そして、この位置決め部 5の外周には、半径方向に張り出すよう に、平板リング状のフランジ 6がー体的に形成してある。
[0027] 一対のダイアフラム 2、 2の各フランジ 6, 6が相互に突き合わされ、可撓部 4, 4の間 で半割空間 3aが組み合わされて高圧室 3が形成されるように、図 1Cに示すように、フ ランジ 6, 6の外周縁部 6a, 6aが全周的に溶接され溶接ビード 8が形成されている。
[0028] 本実施形態のダイアフラムダンバ 1は、たとえば図 2に示すように設置されて使用さ れる。すなわち、ケース 11に形成された凹部 12が、凹部 12の開口部内周に嵌着さ れる蓋体 13によって密閉されており、この密閉空間内にダイアフラムダンバ 1が装着 され、密閉空間を第 1室 A1と第 2室 A2に区分している。
[0029] ダイアフラムダンバ 1は、そのフランジ 6が、蓋体 13と、凹部 12の内周壁に設けられ た段部 12aとの間で挟まれて固定されている。また、蓋体 13はケース 11の上面に固 定されるプレート 16によって押さえられている。
[0030] ケース 11には、第 1室 A1に通じる入口通路 14と出口通路 15とが設けられ、入口通 路 14力も流入する流体の脈動圧をダイアフラムダンバ 1における可撓部 4の変形によ つて吸収し、出口通路 15に送るようになつている。すなわち、ダイアフラムダンバ 1は 、入口通路 14から出口通路 15を通して流れる流体の圧力脈動を吸収するように配 置してある。
[0031] このような目的のために、本実施形態に係るダイアフラムダンバ 1の高圧室 3には、 ヘリウム (He)ガスとアルゴン (Ar)ガスとの混合ガスが所定圧力で封入してある。高 圧室 3への混合ガスの封入時の初期圧力 POは、特に限定されないが、ゲージ圧で、 好ましくは 0. 1-0. 5MPaである。
[0032] また、高圧室 3への封入初期において、この混合ガスにおけるヘリウムガスの容積 %は、 15— 25容積0/。であり、アルゴンガスの容積%は、 75— 85容積0/。である。この 混合ガスにおけるヘリウムガスの容積%力 たとえば 15容積%よりも低すぎると、図 4 に示すように、図 1Cに示す溶接ビードの溶接後に行うガス漏れ試験のヘリウム検出 感度が基準感度 Sxがよりも低下し、ガス漏れの検出精度が低下する傾向にある。基 準感度 Sxは、最大感度 Smaxに対して、 80%以上の値である。この基準感度 Sx以 下では、溶接後のガス漏れ試験の精度が低下し、不良品を判断しに《なる。
[0033] また、図 4に示すように、ヘリウムガスの容積%が 25容積%よりも高すぎると、溶接 後のガス漏れ試験に合格したダイアフラムダンバであったとしても、高圧室に封入し てあるガスが 10年間程度の長期間の使用により経時的に漏れて混合ガスの圧力 Px が封入初期圧 POに対して基準圧 Px以下に低下してしまう傾向にある。基準圧 Pxは 、初期圧 P0に対して、 75%以上の値である。この基準圧 Px以下では、ダイアフラム ダンバ 1を、たとえば図 2に示すように配置したとしても、圧力脈動防止効果が少なつ てしまう。
[0034] したがって、高圧室 3に封入すべき混合ガスを、上記の割合の混合ガスとすることに より、内部に封入したガスの漏れ検査が容易であり、しカゝも、封入したガスが長期間 漏れにくぐ信頼性に優れたダイアフラムダンバを提供することができる。
[0035] 次に、図 1Aに示すダイアフラムダンバ 1の製造方法について説明する。まず、一対 のダイアフラム 2, 2を準備する。各ダイアフラム 2を製造するための金属板としては、 厚さ 0. 1-0. 4mmの金属薄板が用いられる。この金属薄板の材質は、磁石により 吸着可能な材質であれば特に限定されないが、好ましくは磁性ステンレス (析出硬化 系ステンレス鋼等)、オーステナイト系ステンレス鋼 (力卩工硬化後)により構成してある [0036] この金属薄板に対して、プレス加工などを施すことにより、同心円状の環状凹部お よび環状凸部の繰り返しパターン 7が形成された可撓部 4と、半割空間 3aを形成する ための位置決め部 5と、フランジ 6とが形成される。
[0037] 次に、このようにして準備された一対のダイアフラム 2を、図 3Aに示す製造装置 10 に取り付ける。
この製造装置 10は、レーザ光を透過可能な圧力容器 20と、この圧力容器 20内に回 転自在でかつ回転軸方向に沿って相互に相対移動自在に設けられる上下一対の第 1 (上側)治具 30および第 2 (下側)治具 40とを有する。また、圧力容器 20の外には、 圧力容器 20内にレーザ光を照射するレーザ装置 70が配置してある。
[0038] 圧力容器 20は、圧力室 22を取り囲む筒状の容器本体 23と、この容器本体 23の上 下に取り付けられ圧力室 22の上下を密閉する上部壁 24と、底部壁 25とを備えており 、容器本体 23の 1力所に窓 21が設けられている。この窓 21には、圧力室 22に面す る内側の内側ガラス板 21aと、容器本体 23の一部として固定された外側ガラス板 21b とが設けられている。これら外側および内側ガラス板 21b, 21aをレーザ光 Lが透過す るようになっている。内側ガラス板 21aは着脱自在で、溶接ヒューム等の清掃を可能と している。
[0039] 第 1および第 2治具 30, 40は共に円柱形状であり、それぞれの突き合わせ用先端 側端面にダイアフラム 2を位置決め保持する凹部 31, 41が形成してある。凹部 31 , 4 1の中央底部には、それぞれ磁石 32, 42が配置してある。磁石 32, 42は、永久磁石 でも電磁石でも良い。
[0040] 磁石 32, 42は、図 3Bに示すように、第 1,第 2治具 30, 40の両方にそれぞれ埋め 込まれており、上部の第 1治具 30の磁石 32の磁力は、第 2治具 40の磁石 42の磁力 よりも強く設定されている。磁石 32, 42の外周は磁力線を案内するヨーク 32a, 42a でそれぞれ覆われ、凹部 31, 41の底面中央部に各々設けられた嵌合凹部 31a, 41 aに嵌合されている。嵌合凹部 31a, 41aの底面にはねじ穴 31b, 41b力設けられ、ョ ーク 32a, 42a〖こ突設されたねじ軸 32b, 42bがねじ込み固定されている。
[0041] 第 1,第 2治具 30, 40の各凹部 31, 41には、それぞれダイアフラム 2, 2の可撓部 4 および位置決め部 5が位置決めされて入り込み、磁石 32, 42により吸着保持される。 各ダイアフラム 2におけるフランジ 6の外周縁部は、各治具 30, 40の外周からはみ出 すように、各凹部 31, 41には、それぞれダイアフラム 2, 2の可撓部 4および位置決め 部 5が位置決めされて保持される。
[0042] 図 3Aに示すように、上部の第 1治具 30は、回転軸 51の下端部に固定してある。回 転軸 51は、圧力容器 20の上部壁 24に形成された軸孔 24aに対して回転自在でか つ上下方向に摺動自在に挿入してある。回転軸 51は、不図示のモータや上下駆動 機構によって駆動される。
[0043] 下部の第 2治具 40は、圧力容器 20の底部壁 25に形成された不図示の軸孔に回 転自在に挿入される回転軸 61の下端部に装着されている。この回転軸 61は不図示 のモータ等によって駆動される。
[0044] レーザ装置 70は、窓 21に対向して配置されており、出射されるレーザ光 Lの光軸 が上下に不動の下側の第 2治具 40に保持されるダイアフラム 2のフランジ 6の外周端 部 6aに対して水平 (ダイァフラムの回転軸に対してほぼ直交する)方向から当たるよう に位置合わせされている。レーザ装置 70としては、 YAGレーザ等種々のレーザ装置 に適用可能である。
[0045] 次に、製造装置 10の動きについて説明する。まず、圧力容器 20を開き、圧力容器 20内に設けられた上下の第 1、第 2治具 30, 40にそれぞれダイアフラム 2, 2をセット する。各ダイアフラム 2, 2は、それぞれ第 1,第 2治具 30, 40に磁気吸着される。
[0046] 次に、圧力容器 20を密封し、真空置換を行う。この状態では第 1治具 30と第 2治具 40に保持されたダイアフラム 2, 2は互いに上下に離れて!/、る。
[0047] その後、圧力容器 20内に、ヘリウムガスおよびアルゴンガスを含む混合ガスを封入 して加圧する。この混合ガスにおけるヘリウムガスおよびアルゴンガスの混合割合は 、高圧室 3の内部に封入される混合ガスの混合割合と同じである。また、この圧力容 器 20の内部における混合ガスの圧力は、高圧室 3の内部に封入される混合ガスの初 期圧 POと同じである。
[0048] この加圧ガス雰囲気下で、回転軸 51を不図示の上下駆動機構によって下降させ、 第 1治具 30を第 2治具 40に向けて押しつけ、ダイアフラム 2, 2のフランジ 6, 6同士を 密着させる。 [0049] 次に、不図示の駆動装置によって第 1、第 2治具 30, 40に保持されたダイアフラム 2, 2を回転させながら、レーザ装置 70からレーザ光 Lを密接したダイアフラム 2, 2の フランジ 6, 6の外周端部 6a, 6aに照射し、フランジ 6, 6を全周溶接して溶接ビード 8 を形成し、高圧室 3の内部を密封する。
[0050] 次 、で、圧力容器 20内のガスを大気解放し、圧力容器 20を開 ヽて密封溶接され たダイアフラムダンバ 1を取り出す。
[0051] 取り出したダイアフラムダンバ 1について、不図示のヘリウムリーク試験機によってへ リウムガスの漏れ量を測定し、良否判定を行う。アルゴンガスの漏れ量ではなぐヘリ ゥムガスの漏れ量を測定するのは、ヘリウムの方がアルゴンに比較して分子量が小さ ぐ漏れやすいからである。
[0052] 良否判定の基準は、たとえば、 1 X 10— 8[Pa'm3Zsec]以下の極めて微量な漏れ 量に設定される。
[0053] 最後に、製造されたダイアフラムダンバ 1の全幅を計測し、予め設定されている数値 に入っていれば合格とする。
[0054] なお、本発明にお 、て、ヘリウムを含む混合ガスとしては、上記の混合ガスに限定 されず、ヘリウムとアルゴン(He +Ar)、二酸化炭素とヘリウム(CO +He)、アルゴン
2
と二酸ィ匕炭素とヘリウム (Ar+CO +He)等、種々の混合ガスが適用可能である。ま
2
た、ヘリウム (He)の含有量は、上述したような理由により、好ましくは 20± 5容積0 /0、 さらに好ましくは 20士 3容積0 /0、さらに好ましくは 20士 1容積0 /0である。
[0055] 実験では、真空置換を 2 [kPa]程度としし、アルゴン (Ar) 80%、ヘリウム (He) 20 %の混合ガスを封入し、 0. 3 [MPa]まで加圧した。また、レーザ装置 70の設備とし ては、 LD (レーザダイオード)励起を使用し、量産条件として 220から 240Wの範囲 で連続出力とした。ただし、溶け込みの状態を正にして条件を設定しているために、 溶接速度および治具構造により出力を調整する。また、連続出力ではなぐパルス出 力(PW)としてもよい。溶接速度としては、 1. 2-1. 8 [mZmin]で実施した。
[0056] なお、本発明は、上述した実施形態に限定されるものではなぐ本発明の範囲内で 種々に改変することができる。
産業上の利用可能性 以上のように、本発明の製造方法および製造装置により得られるダイアフラムバン パは、封入したガスが長期間漏れにくぐ信頼性に優れており、高圧燃料ポンプなど の脈動が生じる箇所に良好に用いることができる。

Claims

請求の範囲
[1] 2枚のダイァフラムの各フランジが相互に溶接されて内部に高圧ガスが封入される 高圧室を有するダイアフラムダンバを製造する方法であって、
それぞれの前記ダイアフラムを、磁気吸着可能な薄肉金属鋼板で構成し、圧力容器 内に相互に向き合うように設けられた一対の治具に、各ダイアフラムを磁力によって 保持させる工程と、
前記圧力容器を密封して真空置換した後に、前記圧力容器内に、ヘリウムを含む混 合ガスを封入して加圧し、その後、一対の前記治具を近づけて、一対の前記ダイァフ ラムの各フランジを密接させる工程と、
前記圧力容器内で前記治具を同時に回転させて一対の前記ダイアフラムを回転さ せながら、前記ダイァフラムのフランジの外周端部に前記ダイァフラムの回転軸に対 してほぼ直交する方向からレーザ光を照射して当該フランジを全周溶接する工程と を有する
ダイアフラムダンバの製造方法。
[2] 各ダイァフラムは、
同心円状の環状凹部および環状凸部の繰り返しパターンが形成された薄板円板状 の可撓部と、
この可撓部の外周に連続して形成され、前記可撓部と組み合わされて内部に高圧室 用半割空間を形成するように断面円弧状に折り曲げられた位置決め部と、 この位置決め部の外周に一体的に平板リング状に形成してある前記フランジとを有し これらのダイァフラムが、相互に同一形状に成形されていることを特徴とする請求項 1 に記載のダイアフラムダンバの製造方法。
[3] 各治具には、各ダイアフラムを、前記位置決め部で位置決めするように保持する位 置決め用凹部が形成してあり、前記位置決め用凹部の中央部に、各ダイアフラムを 磁力により着脱可能に吸着する磁石が配置してある請求項 2に記載のダイアフラムダ ンパの製造方法。
[4] 前記ヘリウムガスを含む混合ガス力 15— 25容積0 /0のヘリウムガスと、 75— 85容 積0 /0のアルゴンガスとの混合ガスである請求項 1一 3のいずれかに記載のダイアフラ ムダンバの製造方法。
[5] 前記フランジを全周溶接する際には、前記圧力容器の内部は、前記混合ガスの圧 力が、ゲージ圧力で、 0. 1-0. 5MPaの圧力である請求項 1一 4のいずれかに記載 のダイアフラムダンバの製造方法。
[6] 請求項 1一 5のいずれかに記載の方法により製造されるダイアフラムダンバ。
[7] 少なくとも一部でレーザ光を内部に導くことが可能な圧力容器と、
前記圧力容器内に回転自在でかつ回転軸方向に沿って相対的に接近および離反 移動自在に設けられて!/、る一対の治具と、
前記圧力容器の外に配置され、前記治具の回転軸に対してほぼ直交する方向から レーザ光を前記フランジの外周端部に照射可能に配置してあるレーザ装置と、を備 え、
各治具は、各ダイァフラムのフランジの内周側に設けられた位置決め部が当接して 位置決め保持する凹部と、
各ダイァフラムを前記凹部に対して磁気吸着する磁石とを備えていることを特徴とす るダイアフラムダンバの製造装置。
PCT/JP2004/013212 2003-09-12 2004-09-10 ダイアフラムダンパ、その製造方法および製造装置 WO2005026585A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/571,312 US20060272144A1 (en) 2003-09-12 2004-09-10 Diaphragm damper, and method and device for producing the same
EP04787852A EP1666774B1 (en) 2003-09-12 2004-09-10 Diaphragm damper, and method and device for producing the same
JP2005513908A JP4824408B2 (ja) 2003-09-12 2004-09-10 ダイアフラムダンパ、その製造方法および製造装置
US12/719,447 US8402656B2 (en) 2003-09-12 2010-03-08 Diaphragm damper and method of production and production apparatus of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003321626 2003-09-12
JP2003-321626 2003-09-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10571312 A-371-Of-International 2004-09-10
US12/719,447 Division US8402656B2 (en) 2003-09-12 2010-03-08 Diaphragm damper and method of production and production apparatus of same

Publications (1)

Publication Number Publication Date
WO2005026585A1 true WO2005026585A1 (ja) 2005-03-24

Family

ID=34308644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013212 WO2005026585A1 (ja) 2003-09-12 2004-09-10 ダイアフラムダンパ、その製造方法および製造装置

Country Status (4)

Country Link
US (2) US20060272144A1 (ja)
EP (1) EP1666774B1 (ja)
JP (1) JP4824408B2 (ja)
WO (1) WO2005026585A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106470A (ja) * 2009-02-18 2011-06-02 Denso Corp 高圧ポンプ
JP2016515683A (ja) * 2013-04-17 2016-05-30 リム ナグボクLIM, Nag−Bok 遮蔽流体トラブルを改善した低ノイズギアポンプまたはモーター
WO2017022603A1 (ja) * 2015-07-31 2017-02-09 イーグル工業株式会社 ダイアフラムダンパ
CN106925892A (zh) * 2017-04-14 2017-07-07 无锡职业技术学院 压力波动衰减器的加工装置及方法
WO2019102983A1 (ja) * 2017-11-24 2019-05-31 イーグル工業株式会社 メタルダイアフラムダンパ及びその製造方法
JPWO2020166440A1 (ja) * 2019-02-13 2021-10-07 日立Astemo株式会社 金属ダイアフラム、金属ダンパ、及びこれらを備えた燃料ポンプ

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666774B1 (en) * 2003-09-12 2012-12-19 Eagle Industry Co., Ltd. Diaphragm damper, and method and device for producing the same
DE102008001156A1 (de) * 2008-04-14 2009-10-15 Robert Bosch Gmbh Membran, Membrananordnung sowie Vorrichtung
CN109070866B (zh) * 2016-05-13 2020-12-11 日立汽车系统株式会社 液压系统的压力脉动降低装置及脉动衰减构件
WO2019102982A1 (ja) * 2017-11-24 2019-05-31 イーグル工業株式会社 メタルダイアフラムダンパ
JP7074563B2 (ja) 2018-05-18 2022-05-24 イーグル工業株式会社 ダンパ装置
JP7237952B2 (ja) 2018-05-18 2023-03-13 イーグル工業株式会社 ダンパユニット
WO2019221260A1 (ja) 2018-05-18 2019-11-21 イーグル工業株式会社 ダンパ装置
KR20200140902A (ko) 2018-05-25 2020-12-16 이구루코교 가부시기가이샤 댐퍼 장치
CN109365979B (zh) * 2018-10-25 2021-05-14 六安一六八航空航天精密器件有限公司 一种膜片膜盒环缝焊接工艺
US11536233B2 (en) * 2020-09-15 2022-12-27 Delphi Technologies Ip Limited Fuel system for an internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745114B2 (ja) 1990-11-15 1995-05-17 松下電工株式会社 密封リレーのシール方法
JPH09216054A (ja) * 1996-02-06 1997-08-19 Sigma Kikaku:Kk ベローズの製造方法及びその装置
JP2002307185A (ja) * 2001-03-02 2002-10-22 Como Spa 重ねられた金属シートをレーザ溶接する方法および装置、ならびに、この方法で使用されるシートをクランプする装置。
JP2003254191A (ja) * 2002-03-04 2003-09-10 Hitachi Ltd 燃料供給システム及び燃料供給装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745114A (ja) 1993-07-27 1995-02-14 Mitsubishi Electric Corp バックライト装置
JPH11280904A (ja) * 1998-03-31 1999-10-15 Mitsubishi Electric Corp 高圧容器のシール装置
WO1999065540A2 (en) * 1998-06-18 1999-12-23 Medical Research Group, Inc. Medical infusion device with a source of controlled compliance
JP3959198B2 (ja) * 1999-03-09 2007-08-15 株式会社東芝 超電導キャビティ、その製造方法、及び超電導加速器
US6818857B1 (en) * 2000-11-28 2004-11-16 Heung Ki Cho Method and apparatus for welding
JP2003001490A (ja) * 2001-06-13 2003-01-08 Denso Corp 突合わせ溶接方法
EP1666774B1 (en) * 2003-09-12 2012-12-19 Eagle Industry Co., Ltd. Diaphragm damper, and method and device for producing the same
JP2010184273A (ja) * 2009-02-13 2010-08-26 Mazda Motor Corp レーザー溶接方法及びレーザー溶接装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745114B2 (ja) 1990-11-15 1995-05-17 松下電工株式会社 密封リレーのシール方法
JPH09216054A (ja) * 1996-02-06 1997-08-19 Sigma Kikaku:Kk ベローズの製造方法及びその装置
JP2002307185A (ja) * 2001-03-02 2002-10-22 Como Spa 重ねられた金属シートをレーザ溶接する方法および装置、ならびに、この方法で使用されるシートをクランプする装置。
JP2003254191A (ja) * 2002-03-04 2003-09-10 Hitachi Ltd 燃料供給システム及び燃料供給装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1666774A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106470A (ja) * 2009-02-18 2011-06-02 Denso Corp 高圧ポンプ
JP2016515683A (ja) * 2013-04-17 2016-05-30 リム ナグボクLIM, Nag−Bok 遮蔽流体トラブルを改善した低ノイズギアポンプまたはモーター
US10495042B2 (en) 2015-07-31 2019-12-03 Eagle Industry Co., Ltd. Diaphragm damper
WO2017022603A1 (ja) * 2015-07-31 2017-02-09 イーグル工業株式会社 ダイアフラムダンパ
JPWO2017022603A1 (ja) * 2015-07-31 2018-05-31 イーグル工業株式会社 ダイアフラムダンパ
CN106925892A (zh) * 2017-04-14 2017-07-07 无锡职业技术学院 压力波动衰减器的加工装置及方法
WO2019102983A1 (ja) * 2017-11-24 2019-05-31 イーグル工業株式会社 メタルダイアフラムダンパ及びその製造方法
CN111356833A (zh) * 2017-11-24 2020-06-30 伊格尔工业股份有限公司 金属膜片阻尼器及其制造方法
JPWO2019102983A1 (ja) * 2017-11-24 2020-11-19 イーグル工業株式会社 メタルダイアフラムダンパ及びその製造方法
US11181220B2 (en) 2017-11-24 2021-11-23 Eagle Industry Co., Ltd. Metal diaphragm damper and manufacturing method for the same
CN111356833B (zh) * 2017-11-24 2022-01-25 伊格尔工业股份有限公司 金属膜片阻尼器及其制造方法
JPWO2020166440A1 (ja) * 2019-02-13 2021-10-07 日立Astemo株式会社 金属ダイアフラム、金属ダンパ、及びこれらを備えた燃料ポンプ
JP7118183B2 (ja) 2019-02-13 2022-08-15 日立Astemo株式会社 金属ダイアフラム、金属ダンパ、及びこれらを備えた燃料ポンプ

Also Published As

Publication number Publication date
US20100162553A1 (en) 2010-07-01
JP4824408B2 (ja) 2011-11-30
EP1666774A4 (en) 2009-01-28
EP1666774A1 (en) 2006-06-07
JPWO2005026585A1 (ja) 2007-11-08
US20060272144A1 (en) 2006-12-07
US8402656B2 (en) 2013-03-26
EP1666774B1 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
WO2005026585A1 (ja) ダイアフラムダンパ、その製造方法および製造装置
CN101283214B (zh) 具有磁性夹具的管道测试工具
US8449843B2 (en) Fluid-containing pouches with reduced gas exchange and methods for making same
EP1955841A1 (en) Sealing/pump-up device
JP2016061760A (ja) 超音波探傷装置および超音波探傷方法
JP5351599B2 (ja) スイッチ、およびスイッチにおける気密検査方法
JPH05172690A (ja) 車輪リムの気密テスト用機械
JP2007327850A (ja) 配管溶接部のヘリウムリーク検査用検査治具
JPH0942578A (ja) パイプ封止装置
JP2018114586A (ja) マウントフランジ端面状態確認治具
JPH11108789A (ja) ホイールリムの空気洩れ検査方法
JP2002303559A (ja) 注出口のリークテスト方法、装置及び注出口セット機
JP2007016853A (ja) 微小孔封止方法、軸受機構、記録ディスク駆動装置および封止剤塗布装置
JP3387577B2 (ja) ビール樽の漏れ検査装置
JPH0777477A (ja) リーク検出装置及び方法
RU191570U1 (ru) Герметизатор малых вакуумных объемов
CN221037874U (zh) 密封性检测装置
CN216669156U (zh) 一种电极座检漏装置
JP2623650B2 (ja) 薄肉パイプの浴接方法
JP2001027574A (ja) 漏洩試験方法および漏洩試験装置
JPS61139738A (ja) 鋼管継手漏れ試験装置
KR101999784B1 (ko) 차량용 디젤 미립자 필터 커버의 용접 리크 검사장치
JP4478907B2 (ja) 弁装置の製造方法
JP2022123670A (ja) 圧力検出装置および圧力検出装置の製造方法
JP2007261199A (ja) 樹脂管の溶接方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513908

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004787852

Country of ref document: EP

Ref document number: 2006272144

Country of ref document: US

Ref document number: 10571312

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004787852

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10571312

Country of ref document: US