WO2005022962A1 - 化合物、電荷輸送材料および有機電界発光素子 - Google Patents

化合物、電荷輸送材料および有機電界発光素子 Download PDF

Info

Publication number
WO2005022962A1
WO2005022962A1 PCT/JP2004/011211 JP2004011211W WO2005022962A1 WO 2005022962 A1 WO2005022962 A1 WO 2005022962A1 JP 2004011211 W JP2004011211 W JP 2004011211W WO 2005022962 A1 WO2005022962 A1 WO 2005022962A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
ring
substituent
charge transport
Prior art date
Application number
PCT/JP2004/011211
Other languages
English (en)
French (fr)
Inventor
Masayoshi Yabe
Hideki Sato
Masayo Fugono
Takeshi Shioya
Masako Takeuchi
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP04771238.5A priority Critical patent/EP1672961B1/en
Publication of WO2005022962A1 publication Critical patent/WO2005022962A1/ja
Priority to US11/342,730 priority patent/US7777043B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene

Definitions

  • the present invention relates to a novel charge transporting material and a novel compound. More specifically, the present invention relates to a charge transporting material that is stable even after repeated electrical oxidation and reduction, and a highly efficient and long-life organic electric field using the same. It relates to a light emitting element.
  • thin-film electroluminescent (EL) devices include inorganic materials such as ZnS, CaS, and SrS, which are group II-VI compound semiconductors, as well as Mn and rare-earth elements (E u, Ce, Tb, Sm, etc.) are commonly used, but EL devices made from the above inorganic materials are
  • EL devices using organic thin films have been developed to improve the above problems.
  • the type of electrode was optimized to improve the efficiency of carrier injection from the electrode in order to increase the luminous efficiency, and it consisted of a hole transport layer composed of aromatic diamine and an aluminum complex of 8-hydroxyquinoline.
  • development of the organic electroluminescent device and a light emitting layer digits set (see non-Patent Document 1:... Appl Phys Lett, 51 Certificates, 913 pp., 1 9 87 years) by, EL using a single crystal, such as a conventional anthracene The luminous efficiency has been greatly improved compared to the device.
  • Non-Patent Document 2 J. Appl. Phys., 65, 3610, 1989
  • the luminous efficiency has been improved and the luminescence wavelength has been converted.
  • Non-Patent Document 4 Nature, 395, 151, 1998.
  • the iridium complex (T-2) shown below is doped into the light-emitting layer to further improve green light emission efficiency (Non-Patent Document 5: Appl. Phys. Lett., 75 vol. , P. 4, 1999).
  • Non-Patent Document 6 Jpn. J. Appl. Phys., 38, L1502, 1999, and it is difficult to realize highly efficient display elements.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-123983 proposes a pyridine compound represented by the following compounds as a material for an electron transport layer or a light emitting layer of an organic electroluminescent device.
  • a compound having a unit having strong coordination ability such as a biviridyl group
  • a compound having a unit having strong coordination ability such as a biviridyl group
  • Non-Patent Document 7 (Collect. Czech. Chem. Commun. (Vol. 57) (1992) proposes a fluorescent material represented by the following general formula.
  • the organic electroluminescent devices reported so far basically emit light by a combination of a hole transport layer and an electron transport layer.
  • the holes injected from the anode move through the hole transport layer, and the electrons injected from the cathode move through the electron transport layer,
  • the principle is that recombination occurs near the interface between the two layers to excite the hole transport layer and / or the electron transport layer to emit light.
  • An element having improved luminous efficiency is generally used.
  • a hole blocking layer in contact with the cathode side interface of the light-emitting layer may be provided for the purpose of promoting exciton generation in the light-emitting layer to increase the efficiency of light emission and the purity of the emission color.
  • the hole mobility tends to exceed the electron mobility.
  • the holes do not contribute to light emission and pass through to the cathode side.
  • the electron transport layer such as a (aluminum complex of 8-hydrin p Kishikinorin)
  • a blue light emitting device and phosphorescence hole confinement into the light emitting layer is difficult
  • the need for a hole blocking layer is high.
  • Patent Document 2 Japanese Patent Laid-Open No. 2-195683 discloses that a hole blocking layer having an ionization potential higher than that of the light emitting layer is provided.
  • Patent Document 3 Japanese Patent Laid-Open No. 9-876166 proposes the use of silacyclopentadiene. However, none of them had sufficient driving stability.
  • Factors of this drive deterioration include thermal degradation caused by the low glass transition temperature (Tg) of the hole blocking material, and electrochemical degradation in which the hole blocking material is reduced and oxidized by injection of electrons and holes. Factors are pointed out.
  • High-efficiency phosphorescent devices using iridium complexes as luminescent dyes include Balq (aluminum (III) Dis (2-methyl-8-qumolinato) 4-phenylphenolate) and oAlq (aluminum (III) bis (2-methyl Anoremidium complex-based hole blocking materials such as -8-quinolinato) triphenylsilanolate) have been actively used, and have achieved a certain life extension (see Non-Patent Document 8: Appl. Phys. Lett., 81). Vol., P. 162, 2002).
  • the above compounds have insufficient hole-blocking ability, so that the luminous efficiency of the device is insufficient or some of the holes pass through the hole-blocking material and escape to the electron transport layer. Therefore, there is a problem that the oxidative deterioration of the electron transport layer material occurs.
  • rapid recombination of charges in the light-emitting layer and realization of high luminous efficiency of the dopant, or prevention of holes passing through the light-emitting layer from escaping to the electron transport layer and
  • the hole-blocking material itself must have electrical oxidation-reduction durability, and further improvements in materials and device structures for fabricating devices with high luminous efficiency and stability are desired. I was
  • the present inventor has provided a charge transporting material having excellent electron transporting properties, excellent electrical oxidation-reduction durability, and a wide oxidation-reduction potential difference, and an organic electric field having high luminous efficiency and high driving stability.
  • An object is to provide a light-emitting element.
  • the present invention relates to a compound containing two or more pyridine rings substituted in the 2, 4, 6-position in the molecule, wherein the pyridine rings are not substantially conjugated to each other.
  • a charge transport material comprising a compound (provided that the 3,5-position of the pyridine ring may be substituted) and an organic electroluminescent device using the charge transport material.
  • a compound that does not become a planar structure when it adopts the most stabilized structure means that the compound has a structure that cannot take a substantially single planar structure as the most stabilized structure of the molecule.
  • the ⁇ - ⁇ stacking interaction between them is suppressed, and it is excellent in amorphousness, solubility and sublimation.
  • the absorption maximum wavelength and the fluorescence emission maximum wavelength are lower than in the solution state (the state in which molecules are dispersed). Can be suppressed from increasing.
  • the phenomenon that the triplet excitation level decreases and the phenomenon that the electro-oxidation-reduction potential difference decreases can be suppressed.
  • the fact that a planar structure is obtained when the most stabilized structure is adopted means that the molecule has a substantially single planar structure as the most stabilized structure of the molecule.
  • the pyridine ring when the pyridine rings are connected to each other via an m-phenylene group, the pyridine ring has a structure in which lone pairs of electrons on the nitrogen atom cannot be directly conjugated to each other. Since a conjugated structure can be formed between the ren group and the pyridine ring, the redox potential difference is large and the reversibility is particularly excellent. In addition, the pyridine ring has excellent amorphous properties by breaking the symmetry, and has excellent solubility in organic solvents. Therefore, it exhibits stable film formation without crystallization when the film is formed.
  • the organic electroluminescent device using the charge transport material of the present invention it is possible to emit light with high luminance and high efficiency, and the stability of the device is improved.
  • the charge transport material of the present invention has excellent heat resistance, film forming property, charge transport property, and light emitting property. It is also applicable as a hole blocking material or the like.
  • the organic electroluminescent device according to the present invention can be used as a flat panel display (for example, a wall-mounted television for an OA computer), a vehicle-mounted display device, a mobile phone display, or a light source utilizing the features of a surface light emitter (for example, a light source of a copier). It can be applied to liquid crystal displays and backlight sources for instruments, display boards, and sign lights, and its technical value is great.
  • the compounds of the present invention have essentially excellent oxidation-reduction stability, they are useful not only for organic electroluminescent devices but also for electrophotographic photoreceptors.
  • the compound of the present invention is excellent in amorphous property, solubility, heat resistance and durability in addition to the high performance of the charge transport material of the present invention. Therefore, not only for charge transport materials and _L, but also for light emitting materials, solar cell materials, battery materials (electrolytes, electrodes, separators, stabilizers, etc.), medical, coating materials, coating materials It is also useful for organic semiconductor materials, toiletry materials, antistatic materials, and thermoelectric element materials.
  • FIG. 1 is a schematic sectional view showing an example of the organic electroluminescent device.
  • FIG. 2 is a schematic sectional view showing another example of the organic electroluminescent device.
  • FIG. 3 is a schematic sectional view showing another example of the organic electroluminescent device.
  • the symbols in the figure are 1 for the substrate, 2 for the anode, 3 for the anode buffer layer, 4 for the hole transport layer, 5 for the light emitting layer, 6 for the hole blocking layer, 7 for the electron transport layer, and ⁇ 8 indicates a cathode.
  • the charge transport material of the present invention is a compound containing two or more pyridin rings substituted in the 2, 4, 6-position in the molecule, and the pyridine rings are not substantially conjugated to each other. And a charge transport material comprising a compound characterized by the following. However, the 3, 5-position of the pyridine ring may be substituted.
  • the charge transporting material of the present invention is very electrically stable because it contains a pyridin ring substituted in the 2, 4, 6-position in the molecule. Therefore, when the charge transport material of the present invention is used for an organic electroluminescent device or the like, a device with improved stability can be obtained. Further, as will be described later, since the pyridine rings in the molecule are not conjugated to each other, it becomes difficult to reduce the oxidation-reduction potential difference of the compound. The fact that the pyridine rings in the molecule are not conjugated to each other is as described in detail in the example of linking group Q below.
  • the pyridine ring has two or more pyridine rings in the molecule.However, since there is a possibility that sublimability and solubility may be reduced, and a high purification may be difficult, eight pyridine rings may be used. The following is preferred.
  • the molecular weight of such a charge transporting material is usually 400 or less, preferably 300 or less, more preferably 200 or less, and usually 200 or more, preferably 300 or more. It is more preferably at least 400.
  • the molecular weight exceeds the upper limit, the sublimation property is remarkably reduced, which hinders the use of a vapor deposition method when manufacturing an electroluminescent device, or lowers the solubility in an organic solvent or a synthesis process.
  • Purification of the material may become difficult with the increase in the impurity components generated in the process, and when the molecular weight falls below the lower limit, the glass transition temperature, the melting point, the vaporization temperature, Heat resistance may be significantly impaired due to a decrease in film forming properties and the like.
  • the hole blocking property which is one of the important properties, is determined by the diarylamine skeleton in the molecule. Because it tends to be impaired. Preferably do not contain the skeleton. Further, although not as good as the diarylamine skeleton, it has a strong hole transporting property and, because it has a reduced hole blocking property, the aryloxy skeleton and the arylsulfide skeleton that do not include the arylsulfide skeleton are more likely to be used. preferable.
  • the diarylamine skeleton has at least an arbitrary aromatic ring as a substituent on a nitrogen atom (in the present invention, an aromatic hydrocarbon and an aromatic heterocycle are sometimes collectively referred to as an “aromatic ring”).
  • an aromatic hydrocarbon and an aromatic heterocycle are sometimes collectively referred to as an “aromatic ring”.
  • a 2-substituted amine skeleton such as a diphenylamine skeleton, a phenylnaphthyl skeleton, and a triphenylamine skeleton.
  • substituents are bonded to each other to form a ring, such as a carbazole skeleton, an N-phenylcarbazole skeleton, an N-phenylindole skeleton, and the like.
  • a heavy bond eg, athalidine, phenazine, etc.
  • the aryloxide skeleton refers to an oxoxide skeleton in which an aromatic ring is substituted as a substituent on an oxygen atom, and examples thereof include a phenyloxide skeleton and a diphenyloxide skeleton.
  • substituents are bonded to each other to form a ring, and examples thereof include a benzofuran skeleton, a dibenzofuran skeleton, and a dibenzo [1,4] dioxin skeleton. Both are one of the skeletons with strong hole transport properties.
  • the aryl sulfide skeleton refers to a sulfide skeleton in which at least one aromatic ring is substituted as a substituent on a sulfur atom, such as a phenyl sulfide skeleton and a diphenyl sulfide skeleton.
  • substituents are bonded to each other to form a ring, and examples thereof include a benzothiophene skeleton, a dibenzothiophene skeleton, and a thianthrene skeleton. Both are one of the skeletons with strong hole transport properties.
  • the charge transporting material of the present invention when used as a host material constituting a light emitting layer, it is considered that a compound having both electron transporting performance and hole transporting performance is suitable. . In that case, a hole transporting substituent is necessary. Therefore, it is preferable that the compound has a diarylamine skeleton or a carbazole ring as a substituent that imparts hole transport performance in the molecule of the compound.
  • the compound in order to balance the electron transporting performance of the pyridine ring, which is the main skeleton of the compound used in the charge transporting material of the present invention, the compound preferably has at least one carbazole ring, and preferably has at least two pyridine rings.
  • the number is more preferably 6 or less, more preferably 4 or less, and particularly preferably 3 or less.
  • the carbazole rings may be conjugated to each other, but the pyridine ring and the carbazole ring in the molecule are preferably not conjugated to each other.
  • the charge transport material of the present invention contains, in the molecule, 2 to 8 pyridyl groups selected from the group consisting of an optionally substituted 2-pyridyl group and a 4-pyridyl group, It is preferable that the pyridyl group is a charge transport material composed of a compound characterized in that all of the pyridyl groups are bonded to the linking group Q, and the pyridyl groups are not substantially conjugated to each other via the linking group Q. .
  • the substituents possessed by each may be the same or different.
  • one molecule contains a plurality of 4-pyridyl groups
  • the substituents on each may be the same or different.
  • the 2, 4, and 6-positions of all pyridine rings contained in one molecule are bonded to the linking group Q or any substituent.
  • the linking group Q is defined as ⁇ all of the pyridyl groups in the molecule are bonded to the linking group Q, and any two of the pyridyl groups are linked together. It is not substantially conjugated via the group Q ”, and may be divalent to octavalent, and is not particularly limited as long as this is satisfied.
  • pyridyl groups are conjugated via the linking group Q means, for example, that two or more pyridyl groups in the molecule are directly bonded,
  • G to G 3 each independently represent a hydrogen atom or a force representing an arbitrary substituent, or a part of an aromatic hydrocarbon ring or an aromatic heterocyclic ring. That is, the present invention relates to This does not apply to the case of conjugate.
  • the linking group Q and the two or more pyridyl groups bonded via the linking group Q are substantially on the same plane. If the structure cannot exist above (for example, when the linking group Q ′ is an “o-phenylene group and two pyridyl groups are bonded to it, etc.),“ (pyridyl group , Through the linking group Q) are not substantially conjugated ”and are included in the present invention.
  • linking groups Q one in the general formula (I) described below Z 1 _ Q 0 - Z t -, one - Q 0 _ Z 2 -, and one Z 2 - Q 0 - Z 2 - and the like
  • the present invention is not limited to these.
  • the redox potential difference of the compound is reduced, and the hole acceptability on the pyridine ring is improved. Therefore, it is considered that oxidation deterioration is promoted.
  • the charge transport material of the present invention includes a compound represented by the following general formula (I).
  • R 5 and R 8 each independently represent a hydrogen atom or an optional substituent
  • R 2 , R 4 , R 6 and R 7 each independently represent an arbitrary substituent Represents a group.
  • Z T represents a direct bond or a divalent linking group having an electron which can be conjugated to ring A.
  • Z 2 represents a direct bond or a divalent linking group having an electron which can be conjugated to ring B.
  • Linking group Q. represents an (m + n) -valent linking group that can render any two selected from the group consisting of ring A and ring B contained in one molecule substantially non-conjugateable.
  • m is an integer from 0 to 8
  • n is an integer from 0 to 8
  • the sum of m and n is an integer from 2 to 8.
  • a plurality of 1 ⁇ to R 8 contained in one molecule may be the same or different, and a plurality of 1 ⁇ to R 8 may be contained in one molecule.
  • Z 2 may be the same or different.
  • any two pyridyl groups selected from the group consisting of ring A and ring B contained in one molecule are 1-Q.
  • One Z 2 _ or one Z 2 — Q. are not conjugated to each other via one Z 2 —
  • Z 2 in the general formula (I) is a direct bond or a linking group Q. Any group can be applied as long as it is a linking group having a conjugated electron that binds to the ring A or the ring B.
  • alkene group optionally having a substituent (alkene-derived group)
  • An aromatic hydrocarbon group which may have a substituent An aromatic heterocyclic group which may have a substituent,
  • Z 1 and Z 2 are preferably a direct bond, an alkene group which may have a substituent, an alkyne group which may have a substituent, or a substituent, from the viewpoint of electrical reduction durability.
  • An aromatic hydrocarbon group which may have a direct bond or a substituent in view of a high triplet excitation level and a large oxidation-reduction potential difference. It is.
  • the molecular weight of each of Z 1 and Z 2 , including its substituent, is preferably 400 or less, more preferably 250 or less. More preferred examples of the linking group or Z 2 are shown below.
  • L 6 to L 8 each independently represent an alkyl group, an aromatic hydrocarbon group, or an alkyl-substituted aromatic hydrocarbon group.
  • alkyl groups having about 1 to 6 carbon atoms, such as methyl group, ethyl group, isopropyl group, and tert-butyl group; and about 6 to 18 carbon atoms, such as phenyl group, naphthyl group, and fluorenyl group.
  • any of the above structures may have a substituent other than L 6 to L 8 , but if it strongly affects the electronic state of the pyridine ring or the like to which it is bonded, the redox potential difference Therefore, it is preferable to select a group that has both a small electron donating property and a small electron withdrawing property and that does not easily spread the intramolecular conjugate length.
  • Specific examples of such a group also include an alkyl group, an aromatic hydrocarbon group, an alkyl-substituted aromatic hydrocarbon group, and the like.
  • Specific examples include the groups described above as L 6 to L 8. And the same groups as mentioned above.
  • two or more L 6 to L 8 in one molecule may be the same or different.
  • Z-1 direct bonding
  • Z-2 to 21, 28, 29, 31 to 35, 48 ⁇ 52, 56 ⁇ 60
  • Z_1 direct bonding
  • Z—2 3, 4, 5, 8, 10, 12, 12, 15, 16, 17, 17, 19, 28, 29, 3, 1, 3, 34, 52, 56 to 58 are more preferable
  • Z-1 direct bonding
  • Z-2, 5, 8, 12, 19, 28, 29 are more preferable
  • Z-1 Direct coupling
  • Linking group Q Represents an (m + n) -valent linking group that renders any two selected from the group consisting of ring A and ring B contained in one molecule substantially incapable of conjugation.
  • alkane-derived groups An alkene group which may have a substituent,
  • a boryl group which may have a substituent which may have a substituent
  • a phosphino group which may have a substituent
  • Examples thereof include an aromatic hydrocarbon group or a pyridylene group (a divalent group derived from a pyridine ring), and particularly preferably an aromatic hydrocarbon group which may have a substituent.
  • the molecular weight of the compound, including its substituents, is preferably 400 or less, more preferably 250 or less.
  • Q When is a pyridylene group, it is preferable that and and / or Z 2 have a group that cannot conjugate pyridine rings.
  • Ra also include the same groups as those described below as 1 ⁇ to 18 and preferred groups are also the same. Below, the linking group Q. Preferred specific examples are shown below, but are not limited thereto. 2Z
  • Lu each independently represent an alkyl group, an aromatic hydrocarbon group, or an alkyl-substituted aromatic hydrocarbon group.
  • an alkyl group having about 1 to 6 carbon atoms such as a methyl group, an ethyl group, an isopropyl group, and a tert-butyl group; about 6 to 18 carbon atoms, such as a phenyl group, a naphthyl group, and a fluore) group
  • an alkyl-substituted aromatic hydrocarbon group having about 7 to 30 carbon atoms in total such as a tolyl group, a mesityl group, and a 2,6-dimethylphenyl group.
  • the above structure may have in addition to the substituents of either L 1 () to L u, but when itself will exert a strong influence on the electron state of the pyridine ring or the like for coupling, oxidation Since the reduction potential difference may be narrowed, it is preferable to select a group that has low electron-donating and electron-withdrawing properties, and that does not easily spread the intramolecular conjugate length.
  • Specific examples of such a group also include an alkyl group, an aromatic hydrocarbon group, an alkyl-substituted aromatic hydrocarbon group, and the like. It includes the same groups as mentioned above as you and L u. In the case of a compound having two or more of the above structures in one molecule, two or more 1 ⁇ contained in one molecule. And Lu may be the same or different.
  • Q-1 to 4 7 to 13, 19 to 23, 29, 3: ⁇ 43, 45, 51 ⁇ 61 are preferred, and Q-1, 8 ⁇ 13, 19, 20, 21, 23, 34, 35 to 42, 45, 55 to 61 are more preferable, and Q-1,8 to 12,20,21,23,34,35,45,58 , 61 are more preferred, and Q_l, 11, 12, 23, 35 are most preferred.
  • I ⁇ , R 3 , R 5 and R 8 each independently represent a hydrogen atom or an arbitrary substituent
  • R 2 , R 4 , R 6 and R 7 each independently represent Represents an optional substituent.
  • an optional group that can be used for 1 ⁇ to R 8 specifically, for example, an alkyl group which may have a substituent (preferably a linear or branched alkyl group having 1 to 8 carbon atoms, Examples include methyl, ethyl, n-propyl, 2-pro, pill, n-butyl, isoptyl, and tert-butyl groups.)
  • alkenyl group which may have a substituent (preferably an alkenyl group having 2 to 9 carbon atoms, for example, butyl, aryl, 1-butenyl group, etc.), and a substituent
  • a good alkynyl group preferably an alkynyl group having 2 to 9 carbon atoms, such as ethynyl and propargyl groups
  • an aralkyl group which may have a substituent (preferably having 7 carbon atoms).
  • aralkyl groups such as a benzyl group.
  • amino group which may have a substituent preferably an alkylamino group which has one or more alkyl groups having 1 to 8 carbon atoms which may have a substituent (for example, methylamino, dimethylamino, getylamino, dibenzylamino); Groups).
  • An arylamino group having an aromatic hydrocarbon group having 6 to 12 carbon atoms which may have a substituent for example, phenylamino, diphenylamino, ditolylamino group, etc.
  • a heteroarylamino group having a 5- or 6-membered aromatic heterocyclic ring which may have a substituent including, for example, a pyridylamino, chenylamino, dichenylamino group and the like;
  • An acylamino group which may have a substituent and has an acyl group having 2 to 10 carbon atoms (for example, acetylamino, benzoylamino and the like are included)]
  • An alkoxy group which may have a substituent preferably an alkoxy group having 1 to 8 carbon atoms which may have a substituent, for example, methoxy, ethoxy, butoxy group, etc.
  • An aryloxy group which may have a substituent preferably one having an aromatic hydrocarbon group having 6 to 12 carbon atoms, for example, phenyloxy, 11-naphthyloxy, 2-naphthyloxy group and the like).
  • a heteroaryloxy group which may have a substituent (preferably one having a 5- or 6-membered aromatic heterocyclic group, and includes, for example, a pyridyloxy group, a cheloxy group, etc.),
  • An optionally substituted acyl group (preferably an optionally substituted acryl group having 2 to 10 carbon atoms, for example, formyl, acetyl, benzoyl, etc.),
  • Optionally substituted alkoxycarbonyl group preferably, optionally substituted alkoxycarbonyl group having 2 to 10 carbon atoms, for example, methoxycarbonyl, ethoxycarbonyl group, etc.
  • An aryloxycarbonyl group which may have a substituent preferably an aryloxycarbonyl group having 7 to 13 carbon atoms which may have a substituent, for example, a phenoxyl carbonyl group; Etc.
  • alkylcarbonyloxy group which may have a substituent preferably an alkylcanolepoloxy group having 2 to 10 carbon atoms which may have a substituent, and includes, for example, an acetoxy group and the like;
  • Halogen atoms especially fluorine or chlorine atoms
  • alkylthio group which may have a substituent preferably an alkylthio group having 1 to 8 carbon atoms, for example, a methylthio group, an ethylthio group, etc.
  • An arylthio group which may have a substituent preferably an arylthio group having 6 to 12 carbon atoms, for example, a phenylthio group, an 11-naphthylthio group and the like
  • a sulfol group which may have a substituent (for example, including a mesyl group and a tosyl group),
  • a silyl group which may have a substituent for example, trimethylsilyl group, triphenylsilyl group and the like;
  • a boryl group which may have a substituent for example, a dimesitylpolyl group or the like is included,
  • a phosphino group which may have a substituent for example, a diphenylphosphino group and the like are included
  • An aromatic hydrocarbon group which may have a substituent for example, a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetrasedi ring, a pyrene ring, a benzopyrene ring, a tarisene ring, a triphenylene ring, a fluoranthene ring
  • a substituent for example, a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetrasedi ring, a pyrene ring, a benzopyrene ring, a tarisene ring, a triphenylene ring, a fluoranthene ring
  • an optionally substituted aromatic heterocyclic group e.g., a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, an oxaziazole ring, an indole ring, a sorbazole ring, Piro mouth imidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, chenopyrole ring, chenothofen ring, floppyrrole ring, furofuran ring, thienofuran ring, benzoisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine 5- or 6-membered monocyclic or 2- to 5-ring such as ring, pyridazine ring, pyrimidine ring
  • the molecular weight of R i R s, including its substituents, is preferably at most 400, more preferably at most 250, respectively. (Substituent of R ⁇ Rs)
  • the substituents which these may have are not particularly limited as long as the performance of the charge transporting material of the present invention is not impaired, but are preferably an alkyl group, an aromatic hydrocarbon group, or an alkyl-substituted aromatic hydrocarbon group. . Specific examples thereof include an alkyl group having about 1 to 6 carbon atoms such as a methyl group, an ethyl group, an isopropyl group, and a tert-butyl group; and a carbon group having 6 to 6 carbon atoms such as a phenyl group, a naphthyl group, and a fluorenyl group. About 18 aromatic hydrocarbon groups; alkyl-substituted aromatic hydrocarbon groups having a total carbon number of about 7 to 30, such as a tolyl group, a mesityl group, and a 2,6-dimethylphenyl group.
  • R 2, R 4, R 6 Oyopi 1 7, because the may be any group improves the viewpoint and heat resistance improving ,, electro-oxidation - reducing durability, Hajime Tamaki (
  • the aromatic hydrocarbon group and the aromatic heterocyclic group may be collectively referred to as “aromatic ring group”.).
  • R 8 is an aromatic ring group
  • 1 ⁇ to L 3 each independently represent an alkyl group, an aromatic hydrocarbon group, or an alkyl-substituted aromatic hydrocarbon group.
  • L 4 and L 5 each independently represent a hydrogen atom , An alkyl group, an aromatic hydrocarbon group, or an alkyl-substituted aromatic hydrocarbon group.
  • aromatic hydrocarbon group or alkyl-substituted aromatic hydrocarbon group specifically, an alkyl group having about 1 to 6 carbon atoms such as a methyl group, an ethyl group, an isopropyl group and a tert-butyl group; An aromatic hydrocarbon group having about 6 to 18 carbon atoms, such as a phenyl group, a naphthyl group, and a fluorenyl group; a total of 7 to 3 carbon atoms, such as a tolyl group, a mesityl group, and a 2,6-dimethylphenyl group And about 0 alkyl-substituted aromatic hydrocarbon groups.
  • the both structures may have in addition to the substituents L 5, but when thus exerts a strong influence on the electron state of the pyridine ring to which it is bound, the redox potential Therefore, it is preferable to select a group that has both a small electron donating property and a small electron withdrawing property and that hardly causes the extension of the intramolecular conjugation length.
  • a group that has both a small electron donating property and a small electron withdrawing property and that hardly causes the extension of the intramolecular conjugation length.
  • Specific examples of such a group also include an alkyl group, an aromatic hydrocarbon group, an alkyl-substituted aromatic hydrocarbon group, and the like.
  • two or more 1 ⁇ to 5 in one molecule may be the same or different.
  • R—: L to 6, 10 to 13, 33, 34, 38, 45, and 48 are preferable, and R— :! -6,48 are more preferable, and R_l, 4-6,48 are most preferable.
  • R 3 , R 5 and R 8 are, for example, when the charge transport material of the present invention is applied to a light emitting layer material of an organic electroluminescent element, from the viewpoint of limiting molecular vibration and not impairing luminous efficiency,
  • An alkyl group which may have a substituent, or an aromatic hydrocarbon group which may have a substituent is preferable, and a large oxidation potential or a long From the viewpoint of increasing the life (excellent oxidation-reduction resistance), a hydrogen atom or an aromatic hydrocarbon group is more preferable, and a hydrogen atom or a phenyl group is particularly preferable.
  • the compound represented by the general formula (I) is most characterized in that it has two or more pyridine rings at positions that cannot be substantially conjugated to each other in a molecule. It exhibits an electron transporting property and a wide redox potential difference.
  • the pyridine ring is too large, the basicity of the compound becomes too strong, and if the pyridine ring is contained in the light-emitting layer or a layer in contact with the light-emitting layer, there is a risk that ligand exchange may occur due to a long-time application of an electric field.
  • Q from such a viewpoint.
  • M and Q represent the number of rings A bonded to and bonded to and.
  • Bound sum of the n representing the number of bound ring B in Z 2 and Z 2 are laid like an integer of 2 ⁇ .8 and from 2 to 6, still more preferably 2 to 4, is 2-3 Most preferred.
  • m is an integer of 0 to 8, preferably 0 to 4.
  • n is an integer of 0 to 8, preferably an integer of 0 to 4.
  • n is an integer of 1 or more from the viewpoint of increasing the oxidation-reduction potential difference and the durability of repeated oxidation-reduction.
  • a 2-pyridyl group (g
  • n or m is 0.
  • a pyridin ring having a different substituent is used dare (that is, m And n are both integers greater than or equal to 1).
  • n or m is 0 and only one of ring A and ring B is present, only the substituent (1 ⁇ to 4 or R 5 to R 8 ) on ring A or ring B is different for each ring.
  • the selection of the substituent may be devised so that a substituted pyridine ring having slightly different electrochemical characteristics may coexist in the molecule. This is effective as a fine adjustment means.
  • the charge transporting material of the present invention is used for an organic electroluminescent device, 1) when used as a host material constituting a light emitting layer, it must have both an excellent hole transporting property and an electron transporting property.
  • the compound has an electron-donating substituent (eg, an alkyl group, an amino group, an alkoxy group, etc.) in the molecule, and more preferably contains an aromatic amino group.
  • an aromatic amino group that is, a diarylamine skeleton.
  • the pyridine ring and the electron-donating heteroatom have a structure that cannot be substantially conjugated. When these are conjugated, the charge polarization phenomenon in the molecule becomes remarkable, and the redox potential difference may be reduced, and the triplet excitation level may be reduced.
  • the dopant is usually capable of accepting and transporting holes by itself, and the host material dare to transport holes. In some cases, it is not necessary to grant the ability. In this case, it is preferable to adopt a structure that is considered to enhance electron transportability, as described below as 2).
  • an electron transporting material and / or a hole blocking material When used as an electron transporting material and / or a hole blocking material, it is desirable to suppress the hole transporting property and enhance the electron transporting property, and to use an electron donating substituent (eg, an alkyl group, an amino group, an alkoxy group) , An aryloxy group, an alkylthio group, an arylthio group, etc.) in the molecule are preferred, and those having no group containing a diarylamine skeleton are more preferred.
  • an electron donating substituent eg, an alkyl group, an amino group, an alkoxy group
  • Q for the purpose of giving the compound represented by the general formula (I) a moderately wide redox potential difference.
  • Is preferably unsubstituted or substituted with a hydrocarbon group, and from the viewpoint of limiting molecular vibration, is more preferably unsubstituted (hydrogen atom), a methyl group, or a phenyl group. Preferably it is unsubstituted (hydrogen atom).
  • the molecular weight of the compound represented by the general formula (I) is usually 400,000 or less, preferably 300,000 or less, more preferably 200,000 or less, and usually 200 or more. It is preferably at least 300, more preferably at least 400.
  • the molecular weight exceeds the upper limit, the sublimability will be significantly reduced, which may hinder the use of the vapor deposition method when manufacturing an electroluminescent device. If the molecular weight is below the lower limit, the glass transition will occur. Temperature, melting point, vaporization temperature, etc. decrease, so heat resistance may be significantly impaired.
  • the compound used for the charge transport material of the present invention can be synthesized by selecting a raw material according to the structure of the target compound and using a known method.
  • a pyridine having an aromatic ring group at the 2,6-position is synthesized, and this is synthesized using a halogenating agent such as N-promosuccinimide.
  • a halogenated compound is obtained by halogenating the 4-position of the pyridine ring, and the halogen atom is converted into one B (OH) 2 group, one ZnC1 group or one MgBr group, and the halogen atom described above.
  • halogenated compounds ( Ra -X) or hydrocarbon compounds having active hydrogen atoms ( Ra -H) can be converted to strong bases such as alkyllithium such as butyllithium, sodium hydride, triethylamine, tert-butoxycalidium, sodium hydroxide (Preferably alkyllithium such as butyllithium), followed by treatment with N, N-dimethylformamide (Organic & Biomolecular Chemistry (2003) 1, 7 1577-1170; Tetrahedron Lett. 42 (2001) ) 37, 6589-6592),
  • I C0 2 R group (R is hydrogen atom, chlorine atom, alkyl group, aromatic ring group, amino group) is reduced with lithium aluminum hydride, sodium borohydride, etc., and after alcohol conversion, pyridinium chromate chromate , Manganese dioxide, iodoxybenzoic acid, peroxodisinolephate, 2,3-dichloro-5,6-dicyano-1,4,1 Benzoquinone, etc. to oxidize to CHO (J. Med. Chem. (1990) 33, 2408-2412; Angew. Chem., Int. Ed. 40 (2001) 23, 4395-4397; J. Am. Chem. Soc. (2002) 124, 10, 2245-58.
  • Ar-CH3 S (Ar is an aromatic ring group) is treated with o-Ioaylbenzoic acid, Dess-Martin periodinane, Acetoxyiodosylbenzoic acid, etc., and converted directly into Ar_CHO (Am. Chem. Soc. (2002) 124, 10 , 2245-58),
  • Ar_CH 3 group (Ar is an aromatic ring group) is converted to Ar—CH 2 OH via Ar—CH 2 Br and Ar—CH 2 OAcO, and then pyridinum chromate chromate, manganese dioxide, iodoxybenzoic acid, etc. (J. Org. Chem. (1993) 58, 3582-3585),
  • Ar—C3 ⁇ 4 group Ar is an aromatic ring group
  • Ar—CH2Br is brominated with bromine or N-bromosuccinic acid imide to form Ar—CH2Br, and then reacted with 2-nitropropane carboanion reagent, Hexamethylenetetramine, etc.
  • Method for converting to Ar_CHO Collect-Czech. Chem. Commun. (1996) 61, 1464-1472; Chem. Eur. J pertain(1996) 2, 12, 1585-1595; J. Chem. Research (S), (1999) 210-211
  • Ar—CHBr 2 group (Ar is an aromatic ring group) is converted to Ar—CHO using dialkylamine (Bulletin de La Societe Chmique De France (1966) 9, 2966-2971)
  • Rc—C0 2 R group (R is hydrogen atom, chlorine atom, alkyl group, aromatic ring group, amino group) is treated with various alkylating agents (alkyl lithium, dimethyl sulfate, dimethyl sulfoxide, etc.) R c -CO-CH 2 RM method (J. Am. Chem. Soc. (1959), 81, 935-939; J. Am. Chem. So (1961) 83, 4668S Tetrahedron Lett. (1967) 1073-; J. Chem. So (i960) 360 J. Chem. Soc. 'Perkin Trans. 1 (1977) 680 ;
  • the compound can be easily synthesized by a method in which an acylating agent such as acid chloride is allowed to act in the presence of a Lewis acid catalyst such as aluminum chloride (a very common Friedel-Crafts reaction).
  • an acylating agent such as acid chloride
  • a Lewis acid catalyst such as aluminum chloride
  • the desired product is filtered or extracted from the reaction product according to a conventional method, and then separated from the solvent by concentration, and then, if necessary, purified by a method such as recrystallization or column chromatography to obtain the compound of the present invention. Can be obtained.
  • the linking group ZZ 2 , Qo, Ri to R 8 is a heterocyclic ring
  • its precursor may be used as a commonly available reagent or “Heterocyclic Chemistry—Basics of Pharmaceuticals” (Kunieda et al., 2002) And “: Eeterocyclic Chemistry J (4th edition, 2000, JA Joule and K. Mills, Blackwell Science)".
  • the precursors are synthesized by the above-mentioned synthesis method, or “Pajladium in Heterocyclic Chemistry: A guide lor the Synthetic Chemist;” (second edition (2002), Jie Jack Li and Gordon W.
  • the charge transporting material of the present invention When the charge transporting material of the present invention is applied to an organic electroluminescent device, particularly excellent luminous efficiency and driving life are obtained when an organometallic complex which is a phosphorescent dye is used as a dopant in a light emitting layer.
  • an organometallic complex which is a phosphorescent dye is used as a dopant in a light emitting layer.
  • the organometallic complex is one in which a 2-arylpyridine-based ligand and a metal element are linked by a carbon-metal sigma bond and a nitrogen-metal coordination bond, the effect is obtained.
  • the organometallic complex preferably has a 2-arylpyridine-based ligand.
  • the light emission mechanism of the resulting complex includes at least a substance accompanied by charge transfer from a ligand orbital to a metal atomic orbital.
  • the charge transport material of the present invention is applied to the same layer as the dopant (light emitting layer) and to Z or a layer adjacent thereto (hole blocking layer and / or electron transport layer), the charge transport material becomes The physicochemical similarity with the pyridine-pyridine ligand, the electrochemical similarity, the similarity of the triplet excited level, etc.
  • the host This improves the efficiency of energy transfer from the molecule to the dopant and reduces the probability of exciton deactivation between the light-emitting layer and the hole-blocking layer.
  • the charge transporting material of the present invention has high charge transporting properties, it can be suitably used as a charge transporting material in electrophotographic photoreceptors, organic electroluminescent devices, photoelectric conversion devices, organic solar cells, organic rectifiers, and the like. In particular, since it has excellent electron transport properties, it is suitable as an electron transport compound.
  • an organic electroluminescent element which has excellent heat resistance and can be driven (emitted) stably for a long period of time can be obtained, and thus is suitable as an organic electroluminescent element material.
  • the organic electroluminescent device of the present invention will be described.
  • the organic electroluminescent device of the present invention has an anode, a cathode, and an organic light-emitting layer (hereinafter sometimes simply referred to as a “light-emitting layer”) provided between these two electrodes. It is characterized by having a layer containing.
  • the device of the present invention may have at least an anode, a cathode, and a light emitting layer provided between these two electrodes.
  • the charge transporting material of the present invention has a wide optical band gap and an appropriate electron transporting property, and is therefore used particularly as a layer provided in contact with the light emitting layer on the cathode side (hereinafter referred to as “hole blocking layer”). Then it is effective.
  • the charge transport material of the present invention can be used for any of the layers constituting the organic electroluminescent device.
  • the organic light-emitting layer hereinafter, may be simply referred to as a light-emitting layer
  • an electron-transporting layer provided between the light-emitting layer and the cathode.
  • it is not necessary to be in contact with the light emitting layer it is preferable to use it as a material for the hole blocking layer in order to effectively utilize the characteristics of the compound used for the charge transport material of the present invention.
  • the layer in contact with the light-emitting layer on the cathode side is positive. It is called a hole blocking layer.
  • an organic electroluminescent element when used as a material of a light emitting layer, particularly as a host material, an organic electroluminescent element exhibiting high luminous efficiency can be obtained, which is preferable.
  • the charge transport material of the present invention when used in a light-emitting layer, it has an appropriate LUMO level derived from a pyridine ring, so that electrons are appropriately injected into the light-emitting layer, and from the hole transport layer. Effective recombination occurs in the light emitting layer with the injected holes. Therefore, it can be used also as a light emitting layer of an organic electroluminescent element having no hole blocking layer. .
  • the charge transporting material of the present invention may be used for a plurality of layers, and it is particularly preferable to use the charge transporting material for both the light emitting layer and the hole blocking layer. By using the charge transport material of the present invention for both the light emitting layer and the hole blocking layer, the life of the device can be further extended. Further, a plurality of types of the charge transporting material of the present invention may be used in each layer, and may be used in combination with a charge transporting material other than the charge transporting material of the present invention.
  • the charge transport material of the present invention when the charge transport material of the present invention is contained in two or more layers, the charge transport materials contained in these layers may be the same or different.
  • one layer between the cathode and the light-emitting layer is referred to as an “electron transport layer”.
  • the layer in contact with the cathode is referred to as an “electron injection layer” and the other layers are collectively referred to. This is referred to as “electron transport layer”.
  • a layer in contact with the light emitting layer may be particularly referred to as a “hole blocking layer”.
  • FIG. 1 is a cross-sectional view schematically showing a structural example of a general organic electroluminescent element used in the present invention, wherein 1 is a substrate, 2 is an anode, 4 is a hole transport layer, 5 is a light emitting layer, and 6 is A hole blocking layer and 8 each represent a cathode.
  • the substrate 1 serves as a support for the organic electroluminescent device, and may be a quartz or glass plate, a metal plate or metal foil, a plastic film or sheet, or the like.
  • a glass plate or a plate or film of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties.
  • the organic electroluminescent device will be degraded by the outside air passing through the substrate. It is not preferable because it may be performed. Therefore, a method of providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate to secure gas barrier properties is also one of the preferable methods.
  • the anode 2 is provided on the substrate 1, and the anode 2 plays a role of injecting holes into the hole transport layer 4.
  • the anode 2 is usually made of a metal such as aluminum, gold, silver, nickel, palladium, and platinum; a metal oxide such as an oxide of indium and / or tin; a metal halide such as copper iodide; a car pump rack; or It is composed of conductive polymers such as poly (3-methylthiophene), polypyrrole, and polyayulin.
  • the anode 2 is often formed by a sputtering method, a vacuum evaporation method, or the like.
  • the anode 2 is formed of silver or other metal fine particles, copper iodide or other fine particles, carbon black, conductive metal oxide fine particles, or conductive polymer fine powder, a suitable binder resin solution is used. It can also be formed by dispersing it inside and applying it on the substrate 1. Further, when the anode 2 is formed of a conductive polymer, a polymerized thin film can be formed directly on the substrate 1 by electrolytic polymerization, or can be formed by applying a conductive polymer on the substrate 1 ( Ap pl. Phys. Lett., 60, 2711, 1992).
  • the anode 2 usually has a single-layer structure, but may have a laminated structure composed of a plurality of materials if desired.
  • the thickness of the anode 2 depends on the required transparency. When transparency is required, it is desirable that the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably about 500 nm or less. If it is opaque, the thickness of the anode 2 is arbitrary, and the anode 2 may be formed of a metal and serve as the substrate 1 if desired.
  • a hole transport layer 4 is provided on the anode 2.
  • the material of the hole transport layer it is necessary that the material has a high hole injection efficiency from the anode and can efficiently transport the injected holes.
  • the ionization potential is small and transparent to visible light It is required that the material has high hole mobility, high hole mobility, excellent stability, and hardly generate trapping impurities at the time of production or use. Further, it is required that the light emitted from the light emitting layer is not quenched in order to come into contact with the light emitting layer 5 or that an exciplex is formed between the light emitting layer and the light emitting layer so that the efficiency is not reduced.
  • the elements are required to have further heat resistance. Therefore, a material having a glass transition temperature T g of 85 ° C. or more is desirable.
  • Examples of such a hole transport material include, for example, two or more tertiary amines including two or more tertiary amines represented by 4,4′-bis [N— (1-naphthyl) -1-N-phenylamino] biphenyl.
  • Aromatic diamines in which a condensed aromatic ring is substituted with a nitrogen atom JP-A-5-234681), 4,4,, 4,4'-tris (1-naphthylphenylamino) triphenylamine
  • Aromatic amine compounds having a starburst structure J. Lum inn., Vol. 72-74, pp.
  • aromatic amine compounds composed of tetramers of triphenylamine (Chem. Commu) ⁇ '., 21 p. 75, 1996), 2, 2', 7 '7,-spiro compounds such as spirobifluorene (Synth. Metals, 9) 1 volume, 209 pages, 1997). These compounds may be used alone or, if necessary, as a mixture of two or more.
  • the hole transport layer 4 is formed by a usual coating method such as a spray method, a printing method, a spin coating method, a dip coating method, a die coating method, or a wet film forming method such as an ink jet method or a screen printing method. Alternatively, it can be formed by a dry film forming method such as a vacuum evaporation method.
  • one or more hole transport materials are added, and if necessary, additives such as a binder resin which does not trap holes and a coating improver are added and dissolved in an appropriate solvent.
  • a coating solution is prepared by spin coating, applied onto the anode 2 by a method such as spin coating, and dried to form the hole transport layer 4.
  • the hole transporting material is put into a crucible placed in a vacuum vessel, the inside of the vacuum vessel is evacuated to about 10 to 4 Pa with a suitable vacuum pump, and then the crucible is heated. Then, the hole transporting material is evaporated to form a hole transporting layer 4 on the substrate 1 on which the anode 2 is formed, which is placed facing the rutupo.
  • the thickness of the hole transport layer 4 is usually at least 5 nm, preferably at least 100 nm, and usually at most 300 nm, preferably at most 100 nm. In order to uniformly form such a thin film, generally, a vacuum deposition method is often used.
  • a light emitting layer 5 is provided on the hole transport layer 4.
  • the light-emitting layer 5 recombines, between the electrodes to which an electric field is applied, the holes injected from the anode and moving through the hole transport layer and the electrons injected from the cathode and moving through the hole blocking layer 6. It is formed from a light-emitting compound that emits strong light when excited by the compound.
  • the light-emitting compound used in the light-emitting layer 5 has a stable thin film shape, exhibits a high luminescence (fluorescence or phosphorescence) quantum yield in a solid state, and transports holes and / or electrons efficiently.
  • the compound must be capable of In addition, it is required that the compound be electrochemically and chemically stable, and that the impurities serving as traps hardly occur during production or use.
  • Materials satisfying such conditions and forming an organic light emitting layer that emits fluorescence include metal complexes such as an aluminum complex of 8-hydroxyquinoline (Japanese Patent Application Laid-Open No. 59-194393). — Metal complexes of hydroxybenzo [h] quinoline (Japanese
  • the charge transport material of the present invention can also be used as this light emitting layer material.
  • the charge transport of the present invention may be selected from other electron transporting materials ⁇ hole blocking materials typified by the above-mentioned known materials as materials that can be used for the hole blocking layer 6 or the electron transporting layer 7. It is preferable to select and use a material having an ionization potential greater than the material by 1 eV or more.
  • the electron transporting material of the present invention is used for both an organic light emitting layer (sometimes simply referred to as a light emitting layer) and a layer in contact with the cathode side interface of the organic light emitting layer. This is particularly preferable from the viewpoint of driving life.
  • the layer in contact with the cathode-side interface is usually a hole blocking layer.
  • a material having a difference in ionization potential of 0.1 eV or more is selected from the charge transporting materials defined in the present invention, and each of the light emitting layer and the hole blocking layer is selected.
  • a compound having a potential larger than the ionization potential of the dopant by 0.1 eV or more is selected from the charge transporting materials defined in the present invention. Just use it.
  • a fluorescent dye for laser such as tamarin with an aluminum complex of 8-hydroxyquinoline as a host material
  • This doping method can also be applied to the light emitting layer 5, and as the doping material, various fluorescent dyes other than coumarin can be used.
  • Examples of the fluorescent dye that emits blue light include perylene, pyrene, anthracene, coumarin and derivatives thereof.
  • Examples of the green fluorescent dye include quinataridone derivatives and coumarin derivatives.
  • Yellow fluorescent dyes include rubrene, perimidone derivatives and the like.
  • Examples of red fluorescent dyes include DCM compounds, benzopyran derivatives, rhodamine derivatives, benzothioxanthene derivatives, and azabenzothioxanthenes.
  • the listed fluorescent dyes and the like can be used as doping materials for the light emitting layer.
  • the amount of the fluorescent dye is doped into the host material, 10-3 wt. / 0 or more is preferred, 0.1 weight. / 0 or more is more preferable. Also 10 weight. / 0 or less, more preferably 3% by weight or less. If the value is below the lower limit, it may not be possible to contribute to the improvement of the luminous efficiency of the device. If the value exceeds the upper limit, the concentration may be quenched, and the luminous efficiency may be reduced. ,
  • a phosphorescent light-emitting layer is usually formed containing a phosphorescent dopant and a host material.
  • the phosphorescent dopant include an organometallic complex containing a metal selected from Groups 7 to 11 of the periodic table.
  • the charge transporting property having a T 1 higher than T 1 (the lowest excited triplet level) of the metal complex is exemplified. It is preferable to use an organic compound as the host material.
  • the metal preferably includes ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, iridium, platinum, and gold.
  • Preferred examples of these organometallic complexes include compounds represented by the following general formula (X) or general formula (VI).
  • M represents a metal
  • q represents a valence of the metal
  • L and L ′ represent a bidentate ligand
  • j represents 0 or 1 or 2.
  • R 94 and R 95 represent a hydrogen atom, a halogen atom, or ' Alkyl group, aralkyl group, alkenyl group, cyano group, amino group, acyl group, alkoxyl group, alkoxyl group, alkoxyl group, alkylamino group, aralkylamino group, haloalkyl group, hydroxyl group, aryloxy group, substituent Represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have
  • R 92 and R 93 represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, a carboxyl group, an alkoxy group, an alkylamino group, an aralkylamino group, a haloalkyl group, It represents a hydroxyl group, an aryloxy group, an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group, and may be linked to each other to form a ring. )
  • the bidentate ligands L and L ′ in the general formula (X) each represent a ligand having the following partial structure.
  • Ring A 2 and ring A 2 are nitrogen-containing R,, R,, and R '"" each represents a halogen atom; an alkyl group; an alkenyl group; an alkoxyl group; a methoxy group; A aryloxy group; a dialkylamino group; a diarylamino group; a carbazolyl group; an acyl group; a haloalkyl group or a cyano group.
  • M 4 represents a metal
  • w represents a valence of the metal
  • ring A 1 ′′ represents an aromatic hydrocarbon group which may have a substituent
  • ring A 2 has a substituent. Represents a nitrogen-containing aromatic heterocyclic group which may be substituted.
  • M 5 represents a metal
  • w represents a valency of the metal
  • ring Al ⁇ represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent
  • Ring A 1 ′′ and ring Al each independently have a substituent.
  • Ring A 2 and ring A 2 ′ each independently represent a nitrogen-containing aromatic heterocyclic group which may have a substituent. .
  • phenyl As the ring A 1 and the ring A 1 ′ of the compounds represented by the general formulas (Va), (Vb) and (Vc), phenyl, biphenyl, naphthyl, anthryl, Examples thereof include a phenyl group, a furyl group, a benzophenyl group, a benzofuryl group, a pyridyl group, a quinolyl group, an isoquinolyl group, and a carbazolyl group.
  • a pyridyl group, a pyrimidyl group, a pyrazyl group, a triazyl group, a benzothiazole group, a benzoxazole group, and a benzoyl group are preferable.
  • Examples include a midazole group, a quinolyl group, an isoquinolyl group, a quinoxalyl group, or a phenanthridyl group.
  • the substituents which the compounds represented by the general formulas (Va), (Vb) and (Vc) may have are, for example, a halogen atom such as a fluorine atom; and a carbon atom having 1 to 6 carbon atoms such as a methyl group and an ethyl group.
  • An alkyl group having 2 to 6 carbon atoms such as a Bier group; an alkoxyl group having 2 to 6 carbon atoms such as a methoxycarbonyl group or an ethoxycarbon group; a methoxy group or an ethoxy group; An alkoxy group having 1 to 6 carbon atoms; an aryloxy group such as a phenoxy group or a benzyloxy group; a dialkylamino group such as a dimethylamino group or a tert-amino group; a diarylamino group such as a diphenylamino group; a carbazolyl group; A haloalkyl group such as an orthomethyl group; a cyano group; and the like, which may be linked to each other to form a ring.
  • the substituent of the ring A 1 ′′ is bonded to the substituent of the ring A 2, or the substituent of the ring A 1 ′ is bonded to the substituent of the ring A 2 ′ to form one condensed ring.
  • a condensed ring may be a 7,8-benzoquinoline group or the like.
  • the substituent for ring Al ", ring A1 ', ring A2 and ring A2' more preferably an alkyl group, an alkoxy group, an aromatic hydrocarbon group, a cyano group, a halogen atom, a haloalkyl group, a diarylamino group Or a carbazolyl group.
  • M 7 is preferably ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum or gold, and particularly preferably a divalent metal such as platinum or palladium.
  • organometallic complex represented by the general formulas (X), (Va), (Vb) and (Vc) are shown below, but are not limited to the following compounds. 18
  • the ligand L and / or L in particular, 2-arylpyridine-based ligand ( A compound having 2-arylpyridine, a compound having an arbitrary substituent bonded thereto, or a compound obtained by condensing an arbitrary group with the compound is preferable.
  • organometallic complex represented by the general formula (VI) are shown below, but are not limited to the following compounds.
  • Examples of the host material used for the light emitting layer that emits phosphorescent light include the materials described above as the host material (including the electron transport material of the present invention) used for the light emitting layer that emits fluorescent light, and 4,4 ′.
  • -N, N canolebazonole derivatives such as zikarenovazorebifuenoren (WO 00/70655), tris (8-hydroxyquinoline) aluminum (US Pat. No. 6,303,238), 2, 2 ', 2''1 (1,3,5-benzenetolinole) Tris [1-1-Heninole 1H-Benzi Midazonole] (Appl. Phys. Lett., Vol. 78, No. 1622, 2001) JP-A-2001-257076).
  • the charge transporting material of the present invention can be used as a host material.
  • the light emitting layer in the organic electroluminescent device of the present invention may contain the above-mentioned fluorescent dye together with the host material and the phosphorescent dopant.
  • the amount of the organometallic complex contained as a dopant in the light emitting layer is preferably at least 0.1% by weight, more preferably at most 30% by weight. If it is below the lower limit, it may not be possible to contribute to the improvement of the luminous efficiency of the device. There is. It is preferable that the amount of the phosphorescent dopant in the light emitting layer that emits phosphorescence is slightly larger than the amount of the fluorescent dye (dopant) contained in the light emitting layer in a device using conventional fluorescence (singlet). There is. When a fluorescent dye is contained in the light emitting layer together with the phosphorescent dopant, the amount of the fluorescent dye is preferably 0.05% by weight or more, more preferably 0.1% by weight or more. Further, it is preferably at most 10% by weight, more preferably at most 3% by weight.
  • the thickness of the light emitting layer 5 is usually at least 3 nm, preferably at least 5 nm, and usually at most 200 nm, preferably at most 100 nm.
  • the light emitting layer can be formed in the same manner as the hole transport layer.
  • a method of doping the above-described fluorescent dye and phosphorescent dye (phosphorescent dopant) into the host material of the light emitting layer will be described below.
  • the light-emitting layer host material a doping dye, and, if necessary, additives such as a binder resin which does not act as an electron trap or a quencher of light emission, and a coating property improving agent such as a leveling agent are added.
  • the dissolved coating solution is prepared, applied to the hole transport layer 4 by a method such as spin coating, and dried to form the light emitting layer 5.
  • the binder resin include polycarbonate, polyarylate, and polyester. If the amount of the binder resin added is large, the hole electron mobility is decreased.
  • the host material is placed in a crucible placed in a vacuum vessel, the dye to be doped is placed in another crucible, and the inside of the vacuum vessel is placed in an appropriate vacuum pump for 1.
  • 0 X 1 0 _ 4 T was evacuated to about orr, evaporated by heating each of the crucibles simultaneously to form a layer on a substrate placed facing the crucible.
  • a mixture of the above materials at a predetermined ratio may be evaporated using the same crucible.
  • dopants are doped in the light emitting layer, they are uniformly doped in the thickness direction of the light emitting layer, but may have a concentration distribution in the film thickness direction. For example, doping may be performed only near the interface with the hole transport layer, or conversely, may be doped near the interface with the hole blocking layer.
  • the light emitting layer can be formed in the same manner as the hole transport layer, but usually, a vacuum evaporation method is used.
  • the light-emitting layer 5 may contain components other than those described above as long as the performance of the present invention is not impaired.
  • the hole blocking layer 6 is laminated on the light emitting layer 5 so as to be in contact with the interface of the light emitting layer 5 on the cathode side.
  • the hole blocking layer serves to prevent holes moving from the hole transport layer from reaching the cathode, and can efficiently transport electrons injected from the cathode toward the light emitting layer. It is preferably formed from a compound. The physical properties required of the material constituting the hole blocking layer require high electron mobility and low hole mobility.
  • the hole blocking layer 6 has a function of confining holes and electrons in the light emitting layer and improving luminous efficiency.
  • the hole blocking layer uses the charge transport material of the present invention.
  • the charge transport material of the present invention may be used alone or in combination of two or more in the hole blocking layer. Further, a known compound having a hole blocking function may be used in combination as long as the performance of the charge transport material of the present invention is not impaired.
  • the ionization potential of the hole blocking layer used in the present invention should be 0.1 eV or more larger than the ionization potential of the light-emitting layer (when the light-emitting layer contains a host material and a dopant, the ionization potential of the dopant). (Force S, more preferably 0.1 eV or more than the ionization potential of the host material).
  • the ionization potential is defined as the energy required to emit an electron at the HOMO (highest occupied molecular orbital) level of a substance to a vacuum level.
  • the ionization potential can be defined directly by photoelectron spectroscopy or by correcting the electrochemically measured oxidation potential against a reference electrode.
  • the ionization potential is equal to the oxidation potential (Vs. SCE) +4.3 eV. (Molecular S em iconduct, ors, Springer—Verlag, 1985, p. 98).
  • the electron affinity (EA) of the hole blocking layer used in the present invention is compared with the electron affinity of the light emitting layer (or the electron affinity of the host material when the light emitting layer contains a host material and a dopant). It is preferable that they are equal to or more than each other.
  • Electron affinity is defined as the energy at which electrons in a vacuum level fall to the LUMO (lowest unoccupied molecular orbital) level of a substance and stabilize, based on the vacuum level, similarly to the ionization potential.
  • the electron affinity is similarly obtained from the force obtained by subtracting the optical band gap from the above-mentioned ionization potential ⁇ electrochemical reduction potential by the following equation.
  • Electron affinity reduction potential (V s. SCE) + 4.3 e V Therefore, the hole blocking layer used in the present invention uses the oxidation potential and the reduction potential to obtain (oxidation potential of the hole blocking material) 1 ( Oxidation potential of luminescent material) 0. IV,
  • the electron affinity of the hole blocking layer is preferably equal to or less than the electron affinity of the electron transport layer.
  • the thickness of the hole-blocking layer 6 is usually 0.3 or more, preferably 0.5 nm or more. Yes, it is usually 100 nm or less, preferably 50 nm or less.
  • the hole blocking layer can be formed by the same method as the hole transporting layer, but usually, a vacuum evaporation method is used.
  • the cathode 8 plays a role of injecting electrons into the light emitting layer 5 via the hole blocking layer 6.
  • the material used for the cathode 8 can be used.
  • a metal having a low work function is preferable, and tin, magnesium, indium, and calcium are used.
  • a suitable metal such as aluminum, silver, or the like, or an alloy thereof is used.
  • Specific examples include a low work function alloy electrode such as a magnesium-silver alloy, a magnesium alloy alloy, and an aluminum-lithium alloy. It is also, effective element for ⁇ the L i F, M g F 2 , L i 2 ⁇ such ultrathin insulating film (0. l ⁇ 5 nm) to interface between the cathode and the light-emitting layer or an electron transport layer It is an effective method for improving the rate (App 1.
  • the thickness of the cathode 8 is usually the same as that of the anode 2.
  • An additional layer of high work function, air-stable metal on top of this to protect the cathode made of a low work function metal increases the stability of the device.
  • metals such as aluminum, silver, copper, nickel, chromium, gold and platinum are used.
  • an electron transporting layer 7 may be provided between the hole blocking layer 6 and the cathode 8 for the purpose of further improving the luminous efficiency of the device.
  • the electron transport layer 7 is formed of a compound capable of efficiently transporting electrons injected from the cathode between the electrodes to which an electric field is applied, in the direction of the hole blocking layer 6.
  • 'Materials satisfying such conditions include metal complexes such as an anolemminium complex of 8-hydroxyquinoline (Japanese Patent Laid-Open No. 59-94393) and 10-hydroxybenzo [h] quinoline.
  • Metal complex oxadiazole derivative, distyrylbiphene Derivatives, silole derivatives, 3- or 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzenes (US Pat. No. 5,645,948), Quinoxaline compounds (JP-A-6-207169), phenanthroline derivatives (JP-A-5-331549), 2-t-butyl-9,10-N, N'- Disciananthraquinone dimine, n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, n-type zinc selenide and the like. .
  • the above-described electron transporting material is doped with an alkali metal (Japanese Patent Application Laid-Open No. Hei 10-27071, Japanese Patent Application No. 2000-285856, Japanese Patent Application No. 0 0 — 2 856 757 etc.) is preferable because electron transportability is improved.
  • the electron transport layer 7 is formed by laminating on the hole blocking layer 6 by a coating method or a vacuum evaporation method in the same manner as the hole transport layer 4. Usually, a vacuum evaporation method is used. '>
  • the charge transport material of the present invention may be used for the electron transport layer 7.
  • the electron transport layer 7 may be formed using only the compound of the present invention, or may be used in combination with the various known materials described above.
  • the charge transport material of the present invention when used for the electron transport layer 7, the charge transport material of the present invention may be used for the above-described hole blocking layer 6, or the charge transport material of the present invention may be used only for the electron transport layer 7.
  • a transport material may be used, and other known hole blocking materials may be used for the hole blocking layer 6.
  • the thickness of the electron transport layer 6 is usually at least 5 nm, preferably at least 100 nm, and usually at most 200 nm, preferably at most 100 nm.
  • the electron transport layer 7 is formed by laminating on the hole blocking layer 6 by a coating method or a vacuum evaporation method in the same manner as the hole transport layer 4. Usually, a vacuum evaporation method is used.
  • An anode buffer layer 3 may be inserted between the hole transport layer 4 and the anode 2 for the purpose of further improving the efficiency of hole injection and improving the adhesion of the entire organic layer to the anode. (See Figure 3).
  • the initial device At the same time as the drive voltage decreases, the voltage rise when the device is continuously driven with a constant current is suppressed.
  • the conditions required for the material used for the anode buffer layer are that it has good contact with the anode, can form a uniform thin film, and is thermally stable, that is, has a high melting point and glass transition temperature, and a melting point of 300 ° C.
  • the glass transition temperature is preferably 100 ° C or higher.
  • the ionization potential is low, holes can be easily injected from the anode, and the hole mobility is high.
  • porphyrin derivatives phthalocyanine compounds (JP-A-63-295695), hydrazone compounds, alkoxy-substituted aromatic diamine derivatives, ⁇ - (9 Anthryl) - ⁇ , ⁇ , '-di-p-tolylaniline, polycfflelenvinylene, poly-p-phenylenevinylene, polyaniline (Appl. Phys. Lett., 64, 1245, 1994), polythiophene (Optical Materials, Vol. 9, p.
  • organic compounds such as starburst type aromatic triamine (Japanese Patent Application Laid-Open No. 4-308688), and sputtered carbon films (Synth. Met., Vol. 91, p. 73).
  • metal oxides such as vanadium oxide, ruthenium oxide, and molybdenum oxide (J. Phys. D, vol. 29, p. 2750, 1996).
  • a layer containing a low-molecular-weight organic compound capable of injecting and transporting holes and a compound containing an electron-accepting compound (described in JP-A-11-1251067, JP-A-2000-159221, etc.), A layer obtained by doping a non-conjugated polymer compound containing a group or the like with an electron-accepting compound as necessary (Japanese Patent Application Laid-Open Nos. 11-135262, 11-283750, 2000 — 36390, JP 2000-150168, JP 2001-223084, WO 97/33193, etc.) or a layer containing a conductive polymer such as polythiophene (Japanese Patent Laid-Open No. 10-92584). And the like, but are not limited to these.
  • the material of the anode buffer layer it is possible to use any compound of low molecular weight and high molecular weight.
  • porphine compounds or phthalocyanine compounds are often used. These compounds may have a central metal. And it can be non-metallic. Preferred examples of these compounds include the following compounds:
  • Titanium lid mouth cyanine oxide ''
  • a thin film can be formed in the same manner as the hole transport layer.
  • a sputtering method, an electron beam evaporation method, and a plasma CVD method are used.
  • the lower limit is usually about 3 nm, preferably about 10 nm, and the upper limit is usually about 100 nm. nm, preferably about 50 nm.
  • the polymer compound and the electron-accepting compound and, if necessary, additives such as a coating resin improving agent such as a binder resin and a leveling agent which do not trap holes are added and dissolved.
  • a coating solution is prepared, coated on the anode 2 by a usual coating method such as a spraying method, a printing method, a spin coating method, a dip coating method, a die coating method, or an ink jet method, and dried to dry.
  • the pole buffer layer 3 can be formed as a thin film. Poly power as binder resin -Ponate, polyarylate, polyester and the like. If the content of the binder resin in the layer is large, the hole mobility may be lowered. Therefore, it is preferable that the content of the binder resin is small, and the content in the anode buffer layer 3 is preferably 50% by weight or less.
  • a thin film may be formed in advance on a medium such as a film, a support substrate, or a roll by the thin film forming method described above, and the thin film on the medium may be thermally or pressure-transferred onto the anode 2. it can.
  • the lower limit of the film thickness of the anode buffer layer 3 formed using the polymer compound is usually 5 nm, preferably about 10 nm, and the upper limit is usually 100 nm, preferably Is about 500 nm.
  • the organic electroluminescent device of the present invention can have a structure reverse to that of FIG. 1, that is, a cathode 8, a hole blocking layer 6, a light emitting layer 5, a hole transport layer 4, and an anode 2 stacked on a substrate in this order.
  • a cathode 8 a hole blocking layer 6, a light emitting layer 5, a hole transport layer 4, and an anode 2 stacked on a substrate in this order.
  • the organic electroluminescent element of the present invention between two substrates, at least one of which has high transparency.
  • the layers can be stacked in the reverse order of the above-described respective layer configurations shown in FIG. 2 or FIG.
  • any of the layer configurations shown in FIGS. 1 to 3 may have any layer other than those described above without departing from the spirit of the present invention. It is possible to make an appropriate modification such as simplifying the layer configuration by providing the layer.
  • the top emission structure and the cathode / anode can be made transmissive by using transparent electrodes.
  • a structure in which the layers shown in FIG. 1 are stacked in multiple stages a structure in which a plurality of light emitting units are stacked
  • the interface layer between stages between emission Interview knit) (anode ITO, the second layer when the cathode is A 1) in place of, for example, V 2 0 5 and the like as a charge generating layer (CGL)
  • the barrier between steps is reduced, which is more preferable from the viewpoint of luminous efficiency and driving voltage.
  • the present invention can be applied to any one of an organic electroluminescent element, a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix. it can.
  • the organic electroluminescent device of the present invention by including a compound having a specific skeleton as a charge transport material, high luminous efficiency, good color purity, and driving stability are obtained. In this case, a greatly improved device can be obtained.
  • blue (fluorescent) light-emitting devices and phosphorescent light-emitting devices for which it has been difficult to form a hole-blocking layer because of the difficulty in selecting materials, have been developed to have excellent light-emitting efficiency, emission color purity, and driving stability. As a result, excellent performance can be achieved when applied to full-color or multi-color panels.
  • R u , R 13 , R 15 and R 18 each independently represent a hydrogen atom or an arbitrary substituent.
  • R 12 , R 14 , R 16 and R 17 each independently represent an arbitrary substituent.
  • Z tl represents a divalent linking group having a direct bond or a ring A t is conjugate an electronic.
  • Z 12 represents a direct bond or a divalent linking group having an electron which can be conjugated to a ring.
  • Q 01 is a (p + k) -valent aromatic hydrocarbon group that makes any two selected from the group consisting of ring A 1 and ring contained in one molecule substantially non-conjugateable. Alternatively, it represents a heterocyclic group.
  • p is an integer of 0-8.
  • k is an integer from 0 to 8.
  • p and k are integer from 2 to 8. If p and Z or k are 2 or more,
  • a plurality of R U to R 18 contained in one molecule may be the same or different,
  • a plurality of z u and z 12 in one molecule may be each independently selected from the same.
  • the molecular weight of the compound represented by the general formula (II) is usually 4000 or less, preferably 3000 or less, more preferably 2000 or less, and is usually 200 or more, preferably 300 or more, more preferably 400 or more. . .
  • the molecular weight exceeds the upper limit, the sublimation property is significantly reduced, which may hinder the use of the vapor deposition method when manufacturing an electroluminescent device, may cause a decrease in solubility in an organic solvent, or may cause a problem. Purification of a material (that is, removal of a substance causing deterioration) may become difficult with an increase in impurity components generated in the process. If the molecular weight is below the lower limit, the glass transition temperature, the melting point, the vaporization temperature, etc. decrease, so that the heat resistance may be significantly impaired. '
  • the melting point of the compound represented by the above general formula (II) is usually at least 100 ° C, preferably at least 120 ° C, usually at most 600 ° C, preferably at most 500 ° C. Exceeding the upper limit is not preferred because sublimability and solubility may be reduced, and lowering the lower limit may undesirably lower the heat resistance of the device.
  • the glass transition point of the compound represented by the above general formula (II) is usually 50 ° C or higher, preferably 60 ° C or higher. If the value is below the lower limit, the heat resistance of the element may be reduced, which is not preferable.
  • the oxidation potential of the compound represented by the above general formula (II) is usually +1.3 V or more, preferably +1.5 or more, usually +2.5 V or less, preferably +2.0 V or less. .
  • Exceeding the upper limit is not preferred because the driving voltage of the device may be increased, and lowering the lower limit is not preferred because the hole blocking property may be reduced and the luminous efficiency may be reduced.
  • the reversibility in the electrode oxidation reaction is not particularly required, and may be irreversible or reversible.However, when applied to the use of transporting a positive charge, the reversibility standard described in the present invention must be satisfied. Is desirable.
  • the reduction potential of the compound represented by the general formula (II) is usually from 1.1 to 1.6 V, preferably from -1.8 to 2.4 V. Exceeding the upper limit is not preferable because the electron transportability is reduced, and lowering the lower limit is not preferred because it may hinder the transfer of electrons to the luminescent material (phosphorescent dye).
  • the reversibility in the electrode reduction reaction is an important factor, and it is important that the reversibility criteria described in the present invention be satisfied.
  • Z u may be a direct bond or a divalent linking group having an electron capable of conjugation with the ring
  • Z 12 may be a direct bond or a divalent linking group having an electron capable of conjugating with the ring.
  • the ring A 1 and the ring have the property of partially accepting a charge that tends to be localized, or having a property of appropriately delocalizing the charge in the molecule by transferring the charge to another substituent. preferable.
  • Z u and Z 12 are the same as the those described in the description of (Z l Z 2) '.
  • the Z u and Z 12 are used in the compounds of the present invention, a direct bond or be a substituent which is closed by may divalent aromatic hydrocarbon group, high triplet excitation level ⁇ beauty redox potential In particular, Z-1 (direct bond) is preferred.
  • the molecular weight of Z u and Z 12, the substituent including, preferably 400 or less, more preferably 250 or less.
  • Q 01 is a (p + k) -valent linking group that makes any two selected from the group consisting of ring At and ring ⁇ contained in one molecule substantially non-conjugateable.
  • those having a property of accepting a part of the charge which tends to be localized on the ring and the ring and reducing the charge separation are preferable.
  • Specific examples are the same as those described in the description of (Q.) above.
  • the Q 01 used in the compound of the present invention, Q-1, 35 is preferred.
  • substituents that may have power are also Q. Is the same as the substituent which may have It is like.
  • the molecular weight of Q 01 is preferably 400 or less, more preferably 250 or less.
  • R u, R 13, R 15 and R 18 each independently represent a hydrogen atom or any substituent
  • R 12, R l4, R 16 and R 17 each independently represent any substituent .
  • Ru ⁇ R 18 also is similar to that described in (1 ⁇ to 1 ⁇ ), and preferred examples are also the same.
  • the molecular weight of each of R U to R 18 is preferably 400 or less, more preferably 250 or less.
  • R 12 , R 14 , R 16 and R 17 are substituted.
  • An aromatic hydrocarbon group or an aromatic heterocyclic group which may have a group is preferable from the viewpoint of improving the oxidation-reduction durability and improving the heat resistance.
  • the film when the film is an aggregate of molecules, it is possible to suppress the phenomenon that the absorption maximum wavelength and the fluorescence emission maximum wavelength increase as compared with the solution state (the state in which the molecules are scattered). . Further, it is possible to suppress the phenomenon that the triplet excitation level is reduced and the phenomenon that the electric oxidation-reduction potential difference is reduced. 'Therefore, it is a compound that can store large energy (light, electricity, heat, etc.) and efficiently release the stored energy (as light, electricity, heat, etc.).
  • the compounds are used not only for electron transport materials, but also for light-emitting materials, solar cell materials, battery materials (electrolytes, electrodes, separation membranes, stabilizers, etc.), medical materials, paint materials, coating materials It is also useful for organic semiconductor materials, toiletry materials, antistatic materials, and thermoelectric element materials.
  • the following describes a compound food that does not have a planar structure when the compound has the most stabilized structure, that is, a structure that cannot have a substantially single planar structure when the compound has the most stabilized structure.
  • a compound in which any two adjacent aromatic rings constituting a molecule are non-planar at the same level as 2-methylbiphenyl is a compound that does not have a planar structure.
  • the plane angle between any two adjacent aromatic rings constituting a molecule is strictly 15 degrees or more, more strictly 20 degrees or more, more strictly 30 degrees or more. It can be said that anything higher than a degree does not have a planar structure.
  • Ar 2 an arbitrary aromatic ring (referred to as Ar 2) bonded to at least one aromatic ring (referred to as Ar 1) in the molecule and an optional substituent (referred to as R r) of Ar 1 are It is desirable that substitution be made at adjacent substitution positions. However, R r may be bonded to Ar l or another substituent to form a ring.
  • Such examples include the following:
  • the plurality of skeletons be substantially coplanar with the linking group from the viewpoint of not impairing excellent electrical oxidation reduction durability and excellent charge transportability.
  • Examples of such a ring and a ring which are substantially on the same plane as the linking group 001 include the following. ⁇
  • R 31 , R 33 to R 35 are any aromatic ring groups, and R 32 is a hydrogen atom or any substituent.
  • Preferred Z U and Z 12 at this time are as described below.
  • Preferred examples 2 For example, in the compound represented by the formula (II), any ring AL (or ring BJ, ring (or a linking group Z U (or Z 12 linked with the ring BJ) and Z or linked not on group Q 01 substantially the same plane, the viewpoint of a wide electric redox potential, preferred from the viewpoint of high triplet excitation level.
  • Such a ring (or ring B or ring B or a linking group Z U (or Z 12 ) linked to the ring (or ring B) and not substantially coplanar with Z or the linking group) The following are listed.
  • R 41 , R 43 , R 45 and R 46 are any aromatic ring groups, and R 42 , R 44 , R 47 and R 48 are hydrogen atoms or any substituents).
  • Preferred Z U and Z 12 at this time are as described below.
  • Z U and Z 12 the above Z- 1 (direct bond) Z- 3, 1 2, 1 6, 1 9, 2 0 ⁇ 3 0, 37 to 39, 41, 42, 45, 46, 48, 49, 52, 53, 58 to 60 are preferred,
  • Z-1 (direct bond) Z-3,12,16,19,20,21 is more preferable
  • Z ⁇ l (direct bond) Z-3 is more preferable
  • Z-1 (direct bond) is most preferred.
  • ⁇ 60 is preferred
  • Z-1 direct connection
  • Z-2 3, 4, 5, 8, 10, 12, 15, 16, 17, 19, 28, 29, 31, 33, 34, 52, 56 to 58 are more preferable
  • Z-1 direct bonding
  • Z-2 5, 8, 12, 19, 28, 29 are more preferable
  • Z-1 Direct bonding
  • they are Q-1, 23, 29, 34, 35, 45, 58 to 61, and more preferably, Q-1, 23, 29, 35, 45, 58, 61, more preferably Q—1, 35, 45,
  • they are Q-1,2,19-23,35-42,45, and most preferably Q-1,2,23,35. .
  • the fact that the compound has a planar structure may be considered to be the opposite, although the description has been made on the case where the compound does not have the planar structure.
  • a molecule in which any two adjacent aromatic rings constituting a molecule have the same degree of planarity as biphenyl is said to have a planar structure.
  • the pyridine ring has excellent amorphous properties by breaking the symmetry, and has excellent solubility in organic solvents and the like. Therefore, it exhibits stable film-forming properties without crystallization when the film is formed.
  • R 15 to R 18 have the same meaning as in the above general formula (II). Ring C ′ may have a substituent. In the general formula (III), two R 15 to R 18 may be the same or different.
  • the molecular weight of the compound represented by the above general formula (III) is usually 200 or more, preferably 400 or more, usually 4000 or less, and preferably 1,000 or less. If the molecular weight is too large, the purification operation will be reduced. If the molecular weight is lower than the lower limit, stable film formation will be obtained due to factors such as a lower glass transition temperature, a lower vaporization temperature, and higher crystallinity. And the durability may be insufficient.
  • the glass transition temperature (Tg) of the compound represented by the above general formula (II) is preferably 70 ° C or higher, more preferably 100 ° C or higher.
  • the oxidation potential electrochemically measured with respect to the reference electrode is usually 1.3 VvsSCE or more, the reduction potential is in the range of -1.7 VvsSCE or less, and the oxidation potential is The reduction potential is preferably not less than 1.5 V vs SCE and the reduction potential is not more than -1.9 V 'vs SCE, and particularly preferably the oxidation potential is not less than 1.7 V vs SCE and the reduction potential is not more than 2,0 V vs SCE.
  • the compound has a structure in which non-covalent electron pairs on the nitrogen atom of the pyridine ring cannot be directly conjugated, and a conjugated structure is formed between the 1,3,5-substituted phenylene group and the pyridine ring. Therefore, it has a large redox potential difference and is particularly excellent in reversibility.
  • the electron transporting property and heat resistance are further improved.
  • it since it has excellent amorphous properties and excellent solubility in organic solvents, it exhibits stable film-forming properties without crystallization when a film is formed, and has a high glass transition temperature (Tg). It has excellent heat resistance and durability. .
  • R 23 and R 24 each independently represent an arbitrary substituent.
  • Ring E t to ring E 3 may have a substituent in addition to R 23 and R 24 .
  • a plurality of R 23 and R 24 may be the same or different.
  • Ring D may have a substituent.
  • R 23 ⁇ Pi R 24, the same ones as exemplified as (R i ⁇ R 8) can be applied.
  • R 23 and R 24 may have a substituent, and examples of the substituent include those exemplified as the substituent (1 (to R 8 ).
  • R 23 and R 24 are preferably an aromatic hydrocarbon group which may have a substituent, from the viewpoint of improving the electrical oxidation-reduction durability and increasing the oxidation-reduction potential difference. '
  • a furyl group which may have a substituent (in the case where a substituent is present, an alkyl group such as a methyl group, a phenyl group, a tolyl group, a substituted aryl group such as a mesityl group is preferred ).
  • a hydrogen atom, an alkyl group, or an aryl group is preferred from the viewpoint of limiting molecular vibration and not impairing luminous efficiency, and more preferably a phenyl group which may have a hydrogen atom or a substituent (here, When it has a substituent, it is preferably a substituted aryl group such as an alkyl group such as a methyl group, a phenyl group, a trinole group, and a mesityl group.
  • R 23 and R 24 are the same as the R u R.
  • the molecular weight of the compound represented by the above general formula (IV) is usually at least 300, preferably at least 400, usually at most 400, preferably at most 150. If the molecular weight exceeds the upper limit, purification operation will be reduced. If the molecular weight is below the lower limit, stable film formation will occur due to factors such as a lower glass transition temperature, vaporization temperature, and higher crystallinity. The durability may not be obtained and the durability may be insufficient.
  • the glass transition temperature (Tg) of the compound represented by the above general formula (IV) is preferably at least 90 ° C, more preferably at least 100 ° C.
  • the oxidation potential electrochemically measured with respect to the reference electrode is 1.3 VvsSCE or more, the reduction potential is 1.7 VvsSCE or less, and the oxidation potential is 1
  • the reduction potential is preferably 5 V vs SCE or more and the reduction potential is less than or equal to 1.9 V vs SCE, particularly preferably the oxidation potential is greater than or equal to 1.7 V vs SCE and the reduction potential is less than 2.0 V vs SCE.
  • the method for synthesizing the compound of the present invention is as described above.
  • the compounds of the present invention are useful as charge transport materials. Further, since the compound of the present invention has essentially excellent oxidation-reduction stability, it can be usefully applied to not only organic electroluminescent devices but also electrophotographic photoreceptors.
  • the compound of the present invention is excellent in amorphousness, solubility, heat resistance and durability, in addition to the high performance of the charge transport material of the present invention. Therefore, not only for charge transport materials, but also for luminescent materials, solar cell materials, battery materials (electrolytes, electrodes, separation membranes, stabilizers, etc.), medical materials, paint materials, coating materials, organic materials It is also useful for semiconductor materials, toiletry materials, antistatic materials, and thermoelectric element materials. Examples>
  • Synthesis examples of the compound of the present invention and the compound that can be used as the charge transport material of the present invention are shown below in Synthesis Examples 1 to 26.
  • the glass transition temperature was determined by DSC measurement
  • the vaporization temperature was determined by Tg-DTA measurement
  • the melting point was determined by DSC measurement or Tg-DTA measurement.
  • This compound had a glass transition temperature of 79 ° C, a melting point of 205 ° C, and a vaporization temperature of 414 ° C.
  • This compound had a melting point of 384 ° C, a vaporization temperature of 523 ° C, and a glass transition temperature T g of 225 ° C.
  • the target substance 12 (1.4 g), 1-phenacinolepiridinium bromide 2.5 g), ammonium acetate (11.6 g), acetic acid (46 m 1), N, N-Dimethylformamide (46 ml) was stirred under reflux with heating for 8 hours, and water (5 ⁇ ) and methanol (50 ml) were added to the obtained solution and stirred.
  • the deposited precipitate was filtered, washed with water, and then suspended and washed in methanol (80 ml). Further, after recrystallization from methanol and methanol, a part thereof was purified by GPC to obtain 13.1 (0.1 g) of the desired product.
  • target substance 14 (12.2 g), 1-phenacylpyridinium bromide (29.9 g), ammonium acetate (166 g), acetic acid (280 ml), N, N — Dimethylformamide (25 Om 1) and benzene (7 Oml) were stirred for 10.5 hours while heating under reflux, and the resulting solution was added with water (20 OmI) and ethanol (100 ml). Was added and stirred. The precipitated precipitate is filtered and washed with ethanol. The precipitate is washed by suspension in ethanol (500 ml) for 2 hours, and heated in chloroform (200 ml) -toluene (250 ml).
  • Target 16 (10 g), 1-phenacylpyridinium bromide (16.8 g), ammonium acetate (77.8 g), acetic acid (280 ml), N, N-dimethylformamide (430 ml) was stirred under reflux for 8 hours, and the resulting solution was poured into water (300 ml) and ethanol (80 ml), and the deposited precipitate was filtered and washed with methanol (300 ml). Thereafter, the residue was dissolved in methylene chloride (50 ml), and methanol (250 mU) was reprecipitated to obtain the desired product 17 (11.34 g).
  • the target compound 17 (5 g), phenylphosphonic acid (2.25 g), potassium carbonate (3.97 g), ethylene glycolic acid methyl alcohol (70 ml), water (23 ml) Heat to 80 ° C under a nitrogen stream. Tetrakis (triphenylphosphine) c.
  • Target substance 22 In a nitrogen stream, Target substance 21 (10. Og), 1-phenacylpyridinium bromide (16.9 g), ammonium acetate (77.8 g), acetic acid (23 Om 1), N, N
  • Target substance 23 In a nitrogen stream, Target substance 22 (10.5 g), fluorporonic acid (5.5 g), tetrax (triphenylphosphine) palladium (1.4 g), phosphoric acid A mixture of 12.8 g of water (12.8 g), toluene (200 ml) and ion-exchanged water (30 ml) was stirred for 5.5 hours under heating and reflux, and then toluene (50 ml) and water (120 ml) were stirred. ) was added and mixed well. The organic layer alone was separated, washed with water (100 m), dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated and purified by silica gel column chromatography to obtain the desired product 23 (2.9 g). DE I
  • the target compound 1 of Example 1 (3. Og), the target compound 24 obtained from the above (9.45 g), ammonium acetate (34.2 g), acetic acid (1 277 m 1), Ethanol (80 ml) was added to a solution obtained by stirring N, N-dimethylformamide (100 ml) under reflux with heating for 7 hours, followed by stirring, and then water (160 ml). )), And the resulting precipitate was filtered and the resulting crystals were washed with ethanol (150 ml) under reflux. Furthermore, recrystallization was performed with toluene (5 Om1) and methanol (2 Om1), and the obtained crystal was further recrystallized with chloroform (4 Om1) and methanol (20 ml). The desired product 25 (1.5 g) was obtained.
  • Object 26 Object 27 Object 28 In a nitrogen stream, under ice-cooling, in a mixed solution of lithium aluminum hydride in tetrahydrofuran (1 mo 1 ZL) 10 Om1 and 100 m1 of tetrahydrofuran (dehydrated) , a solution of a trimethinecyanine chic acid 5. 8 g to as tetrahydrofuran (dehydrated) 1 0 O m 1, while stirring, was added dropwise over 1 7 minute, 27 minutes at room temperature, under heating reflux for 20 For 3.5 minutes at room temperature.
  • Target substance 29 In air, target substance 28 (0.47 g), 1-phenacylpyridinium bromide (1.26 g), ammonium acetate (7.1 g), acetic acid (25 m 1) and N, N-dimethinoleformamide (25 ml) were stirred for 6.5 hours while heating under reflux. Methanol and water were added to the obtained mixture to precipitate a precipitate, which was filtered, the filtrate was concentrated, and the obtained residue was purified by silica gel column chromatography to obtain the desired product 29 (0.17 g) Got.
  • the melting point was 344 ° C, the glass transition temperature was 299 ° C, and the vaporization temperature was 524 ° C.
  • target substance 32 (1.8 1 g), 1-phenacylpyridinium bromide (3.00 g), ammonium acetate (14.0 g), acetic acid (62 ml), N , N-Dimethylformamide (62 ml) was stirred for 5 hours while heating under reflux, then methanol (20 ml) and water (100 ml) were added, and the deposited precipitate was filtered and washed with methanol. The obtained solid was purified by silica gel column chromatography to obtain the desired product 33 (0.26 g).
  • target compound 5 (0.70 g), target compound 24 (2.39 g), ammonium acetate (8.78 g), acetic acid (43 ml), N, N-dimethylformamide (43 ml) ) was stirred under reflux with heating for 10 hours, and methanol (20 ml) was added to the resulting solution, followed by stirring. The deposited precipitate was filtered, washed with methanol, and purified by silica gel column chromatography to obtain the desired product 34 (0.52 g).
  • Target compound 35 (9.92 g), 1-phenacylpyridinium bromide (16.7 ammonium acetate (78 g), acetic acid (35 Om 1), N, N-dimethylform
  • the amide 350 ml was stirred under reflux with heating for 7.5 hours, then poured into water (700 ml), and the deposited precipitate was filtered, purified by washing with methanol, and purified to obtain the desired compound 36 ( 1 1.3 g) was obtained.
  • Concentrated sulfuric acid (1.6 ml) was added to a mixed solution of the target compound 4 1 (1.80 g), acetofenone (l., 25 g), and acetic acid (20 ml) in dry air. 9.After stirring for 5 hours, methanol (10 ml) and water (40 ml) were added, and the solid obtained by distilling off the supernatant by decantation was purified by recrystallization from chloroform-methanol. The desired product 42 (1.78 g) was obtained.
  • Target compound 42 (1.78 g), 1-phenacylpyridinium bromide (2.62 gk ammonium acetate (12.1 g), acetic acid (75 ml), N, N-dimethylform Muamide (75 ml) was stirred for 8.5 hours while heating and refluxing while publishing dry air, and then 50 ml of methanol and 50 ml of water were added, and the precipitated precipitate was filtered off, and a silica gel column was used. The residue was purified by chromatography and recrystallization from form-methanol to give the desired product 43 (0.87 g).
  • the gas transition temperature was 111 ° C, the melting point was 266 ° C, and the vaporization temperature was 528 ° C.
  • Target 44 to Target 46 In a stream of nitrogen, a mixture of the target substance 31 (4.01 g), 3-force lipoxyphenylporonic acid (3.90 g), and dimethoxetane (100 ml) was added to tetrakis (triphenylphosphine) palladium (0. 92 g) and a 2M aqueous carbon dioxide solution (20 ml) were sequentially added thereto, and the mixture was stirred for 7.5 hours under reflux with heating. The solid obtained by distilling off the supernatant liquid by decantation was purified by silica gel column chromatography to obtain the desired product 44 (3.70 g).
  • 1,3,5-Tribromobenzene 1 After cooling 1.6 g of dehydrated ethynoleate solution (24 OmL) to 1 78 ° C under a nitrogen atmosphere, a 1.6 M hexane solution of n-butyllithium was added. 23 mL was added dropwise. The mixture was stirred at 78 ° C. for 1 hour, and then 2.9 mL of dimethylformamide was added with care not to raise the temperature, and the mixture was stirred for 1 hour. Furthermore, slowly add 25 mL of 1.6 M hexane solution of n-butyllithium, stir for 1 hour, add 9.1 mL of dimethylformamide, and stir at _ 78 ° C for another 2 hours did.
  • Object 47 Object 48 3.3 g of acetophenone and 3.5 mL of sulfuric acid were added to a 3 OmL solution of the target compound 47 (2.4 g) in acetic acid, and the mixture was stirred at 40 ° C in the air for 9.5 h. Thereafter, 100 mL of water and 3 OmL of methanol were added to the reaction system, stirred, and then filtered. The obtained crude product was washed with methanol to obtain 4.5 g of an ocher solid. The mass measurement result of the obtained compound confirmed that it was the target compound 48.
  • the desired product 49 (468 mg), 9-phenanthryl poronic acid (444 mg), 2 OmL of toluene and 1.5 mL of ethanol 1.5 mL of 2N aqueous sodium carbonate solution were added, and the mixture was stirred at room temperature under nitrogen for 30 minutes. Then, 40 tng of tetrakistriphenylphosphine palladium (0) was added, and the mixture was heated under reflux for another 7 hours. Thereafter, 5 OmL of water was added to the reaction solution, and extraction was performed several times with methylene chloride. After adding potassium carbonate to the extract and drying, the solution was distilled off under reduced pressure. The resulting precipitate was purified by column chromatography to obtain a yellow-white solid (462 mg).
  • the mass measurement result of the obtained compound confirmed that the target compound was 50.
  • Target substance 51 Target substance 52 Target substance 51
  • a solution (25 mL) of 1 (3.04 g ) in dehydrated tetrahydrofuran to _78 ° C in a nitrogen atmosphere a 1.6 M hexane solution of n-butyllithium 13. 8 mL was slowly added dropwise, and the mixture was stirred at 178 ° C for 45 minutes. Thereafter, triisopropoxy porane (4.1 g) was added all at once, and the mixture was stirred at 178 ° C for 30 minutes, then the reaction solution was heated to room temperature, and further stirred for 1 hour.
  • 3 O hydrochloric acid (10 OmL) was added, and extraction was performed with getileruthere (20 OmL).
  • the organic layer was washed with 5 OmL of water, treated with sodium sulfate, and the solvent was distilled off.
  • the resulting crude product was reprecipitated by adding geethylether to obtain 1.97 g of a white solid (the target product 52).
  • the desired product 36 (3.0 g), canolebazonole (1.73 g), t-butoxy sodium (1.8 g), and toluene (80 ml) were heated to 60 ° C and stirred, and tris (dibenziene) was added.
  • Tris (dibenzylidene) was obtained by heating the target compound 17 (3.0 g), sodium hydroxide (1.73 g), sodium t-butoxide (1.8 g), and toluene (80 ml) to 60 ° C and stirring. Acetone) A solution in which dipalladium (0.16 g) and tri-t-butylphosphine (0.2 g) were dissolved in 5 ml of toluene was added.
  • the oxidation-reduction potential of the target product 2 (HB-1), the target product 6 (HB-.3) and the target product 15 (HB-5) obtained in the above synthesis examples was measured.
  • the measurement conditions are as follows.
  • the obtained potential was converted using the saturated sweet copper electrode (SCE) as a reference electrode, and the result is shown in Table 1-1.
  • Reference electrode Silver wire (uses fuguchi as internal standard substance)
  • Measurement solvent 0.1 lm l / L tetra (normal butyl) ammonium chloride methylene chloride solution (acetonitrile solution)
  • Example 1-1 In the same manner as in Example 1-1, as a comparative compound, the oxidation-reduction potential of the following structural compound (HB-6) in which nitrogen atoms of a pyridine ring were conjugated to each other was measured. The results are shown in Table 1-1.
  • Table 11 shows that the compound of the present invention has a non-conjugated structure, so that the oxidation-reduction potential difference is larger than that of the conjugated structure (comparative). . .
  • Object 18 and a compound which corresponds to the compound of the general formula (II) of the present invention and which does not have a planar structure when the compound assumes the most stabilized structure hereinafter, referred to as compound II.
  • a thin film (film thickness 50 nm) of the target substance 15 was formed on a glass substrate by a vacuum evaporation method.
  • the obtained thin film was a transparent amorphous film.
  • Tables 11 and 12 show the maximum emission peak wavelengths in the fluorescence emission spectrum of the obtained thin film when excited at the maximum absorption wavelength.
  • a thin film of the target compound 6 and the target compound 25 (HB-8), which corresponds to the compound of the general formula (II) of the present invention and is not a compound that does not have a planar structure when the compound has the most stabilized structure. was prepared in the same manner as in (Example 1-2).
  • the obtained thin film was a transparent amorphous film.
  • the maximum emission peak wavelength in the fluorescence spectrum of the obtained thin film when excited at the maximum absorption wavelength is shown in Table 1-12. Table 1 1-2
  • An organic electroluminescent device having the structure shown in FIG. 3 was manufactured by the following method.
  • a transparent conductive film 2 of indium tin oxide (ITO) 150 nm deposited on a glass substrate 1 was subjected to ordinary photolithography and hydrochloric acid etching.
  • a 2 mm wide stripe was used to pattern the anode to form an anode.
  • the patterned ITO substrate was cleaned in the following order: ultrasonic cleaning with acetone, water cleaning with pure water, ultrasonic cleaning with isopropyl alcohol, dried with nitrogen blow, and finally cleaned with ultraviolet rays.
  • the substrate on which one layer of the anode buffer was formed was placed in a vacuum evaporation apparatus.
  • the degree of vacuum inside the equipment is 1.1 ⁇ 1 ( ⁇ 6 ⁇ ⁇ rr is evacuated with the (about 1. 5 X 10- 4 P a) an oil diffusion pump until below.
  • the following compounds were placed in separate ceramic crucibles, with the following main component (host material) of the light-emitting layer 5: a levazole derivative- (E-1) shown below and an organic iridium complex (D-1) as a subcomponent (dopant).
  • a film was formed by a binary simultaneous evaporation method.
  • the crucible temperature of compound (E-1) is controlled at 184 to 196 ° C, the deposition rate is controlled at 0.1 ll nm Z seconds, and the crucible temperature of compound (D-1) is controlled at 245 to 246 ° C.
  • a light-emitting layer 5 having a thickness of 30 nm and containing 6% by weight of the compound (D-1) was laminated on the hole transport layer 4.
  • the degree of vacuum during deposition was 1. 0 X 10- 6 To rr (about 1. 3 X 10 one 4 P a).
  • the hole blocking layer 6 the target substance 2 (HB-1) synthesized in Synthesis Example 1 above
  • the crucible temperature was set at 190 to 196 ° C, and the layers were laminated at a deposition rate of 0.13 nm / sec to a film thickness of 10 nm.
  • the degree of vacuum during deposition was 0. 7 X 10_ 6 T orr (about 0. 9 X 1 0- 4 P a ).
  • an electron-transporting layer 7 As shown below, aluminum 8-hydroxyquinoline complex (ET-1)
  • the crucible temperature of the aluminum 8-hydroxyquinoline complex was controlled in the range of 250 to 262 ° C, and the degree of vacuum during evaporation was 0.7 X 10 — 6 Torr (about 0.9 X 10 — 4 Pa), deposition rate is 0.2 1 It was 35 nm.
  • the substrate temperature during vacuum deposition of the above-described hole transport layer, light emitting layer and electron transport layer was kept at room temperature.
  • the element on which the electron transport layer 6 was deposited was once taken out of the vacuum deposition apparatus into the atmosphere, and a 2 mm-wide striped shadow mask was used as a cathode deposition mask.
  • the stripes are closely attached to the element so as to be perpendicular to the stripes, and placed in a separate vacuum deposition apparatus, and the degree of vacuum in the apparatus is set to 2.7 X 10 " 6 Torr (about 2.0 X 1 0- 4 P a) and evacuated to below.. as a cathode 8, first, lithium fluoride (L i F) using a molybdenum boat, deposition rate 0. 0 I NMZ seconds, the vacuum degree of 3. in 0 X 10 "6 T orr (about 4.
  • Table 12 shows the emission characteristics of this device. .
  • the maximum emission luminance indicates a value at a current density of 0.25 A / cm 2
  • the luminous efficiency-luminance / current / voltage indicates a value at a luminance of 100 cdZm 2 .
  • the maximum wavelength of the emission spectrum of device 1 was 510 nm, and it was identified as being derived from an organic iridium complex (D_1).
  • Table 2 shows emission characteristics of the element 2.
  • Table 2 shows emission characteristics of the element 3.
  • Example 2-1 Example 2-1 except that the target substance 6 (HB-3) obtained in Synthesis Example 3 shown below was used instead of the target substance 2 (HB-1) of the hole blocking layer.
  • Element 4 was produced in the same manner as described above.
  • Table 2 shows emission characteristics of the device 4.
  • the light emission characteristics in the early stage were higher than those of the device 1.
  • Example 2-1 except that instead of target 2 (HB-1) of the hole blocking layer, target 10 (HB-4) obtained in Synthesis Example 5 shown below was used. Element 5 was produced in the same manner as described above.
  • Table 12 shows emission characteristics of the element 5.
  • the initial light emission characteristics were almost equal to those of the element 1.
  • Example 2-1 except that the target substance 15 (HB-5) obtained in Synthesis Example 7 shown below was used instead of the target substance 2 (HB-1) of the hole blocking layer.
  • Element 6 was produced in the same manner as in (6).
  • Table 12 shows the emission characteristics of Element 6.
  • the initial light emission characteristics were higher in efficiency than the device 1.
  • Example 2-1 Example 2-1 except that the target substance 18 (HB-6) obtained in Synthesis Example 8 shown below was used instead of the target substance 2 (HB-1) of the hole blocking layer. In the same manner as in the above, Device 7 was produced.
  • Table 12 shows emission characteristics of the device 7.
  • the initial light emission characteristics were higher in efficiency than the device 1.
  • Device 8 was fabricated in the same manner as in Example 2-1 except that target 25 (HB-8) shown below was used instead of target 2 (HB-1) of the hole blocking layer. did.
  • Table 12 shows emission characteristics of the element 8.
  • Example 2-1 except that instead of the target substance 2 (HB-1) of the hole blocking layer, the target substance 4 (HB-9) obtained in Synthesis Example 2 shown below was used. Element 11 was produced in the same manner as described above.
  • Table 12 shows emission characteristics of the element 11.
  • a device was prepared in the same manner as in (Example 2-1) except that the target substance 50 (obtained in Synthesis Example 19) shown below was used instead of the target substance 2 (HB-1) of the hole blocking layer. 12 were produced.
  • Table 12 shows emission characteristics of the element 12.
  • the light emission characteristics in the early stage were higher than those of the device 1.
  • a material composed of a non-conjugated polymer compound having an aromatic amino group (PB-1) and an electron-accepting compound (A-2) having an aromatic amino group represented by the following formula is used as the material of the anode buffer layer 3.
  • a device 13 was produced in the same manner as in (Example 2-1), except that the thicknesses of the layers (the layers from the hole transport layer 4 to the electron transport layer 7) were changed as described below.
  • Weight average molecular weight 29400.
  • Electron-accepting compound (A_2) No. A-1 ionic compound described in column 0059 of Japanese Patent Application No. 2004-68958 Spin coating conditions
  • a uniform thin film having a thickness of 30 nm was formed by the spin coating described above.
  • Hole transport layer 4 arylamine compound (H-1) 40 nm
  • Emitting layer 5 Host material: sorbazole derivative (E-1) 30 nm
  • Dopant Organic iridium complex (D-1) 6% by weight 'Hole blocking layer 6
  • Target 2 synthesized in Synthesis Example 1 (HB-1 )
  • 5 nm electron transport layer 7 A1 8-hydroxyquinoline complex (ET-1) 30 nm
  • the emission characteristics of the device 13 are shown in Table 1-2.
  • Table 12 shows the emission characteristics of the device 14.
  • a comparative element was prepared in the same manner as in Example 2-1 except that the mixed ligand complex (HB-2) shown below was used instead of the target substance 2 (HB-1) of the hole blocking layer. 1 was produced.
  • Table 1 shows the emission characteristics of Comparative Element 1.
  • the initial light emission characteristics were almost equal to those of the element 1.
  • Comparative element 2 was prepared in the same manner as in (Example 2-2) except that the mixed ligand complex (HB-2) was used instead of the target substance 2 (HB-1) of the hole blocking layer. did.
  • Table 12 shows the emission characteristics of Comparative Element 2.
  • the initial light emission characteristics were almost the same as those of the element 2.
  • Comparative Example 2-3 Preparation of Comparative Element 3
  • Comparative element 3 was prepared in the same manner as in (Example 2-3) except that the mixed ligand complex (HB-2) was used instead of the target substance 2 (HB-1) of the hole blocking layer. did.
  • Table 12 shows the emission characteristics of Comparative Element 3.
  • the initial light emission characteristics were lower in luminous efficiency and luminance per current than element 3. .
  • Example 2 ⁇ (Element 1) Object 2 D- 1 A-.1 41 36,100 "16.1 31.5 6.2Example 2—2 (Element 2) Object 2 D-2 A—1 4.1 13,400 3.8 8.0 6.8
  • Example 2 -Example 2-3 (Element 3) Target 2 D-3 A-1.. 5.1 14,500 5.9 13.8 7.4
  • Example 2-4 (Element 4) Object 6 D-1 A-1 13.49,500 24.8 38.7 4.9
  • Example 2—5 (Element 5) Object 1 0 D—1 A—1 4.1 38,900 17.1 31.5 5.8'Example 2—6 (Element 6) Object 15 D—1 A—1 3.1 41; 000. 27. 40 : 4.4.7
  • Example 2—7 (Abstract 7) Object 18 D- 1 A- 1.3.5 43,600 30.4 48.5 5.0
  • Example 2—8 (Element 8) Object 25 D—1 A—1 '1 31,500 16.4 29.8 5.8
  • Example 2-9 (Element!
  • Example 2-10 (Element 1 2) Object 50 D—1 A- 1 4.1. 36,060 17.0 • 32.8 6.1
  • Example 2-1 1 (element ⁇ 3) Target 2 D—1 A—2 3.0 38,620 27.9 36.6 4.3
  • Example 2-1 2 (element “! 4”) Object 38 D— 1 A 2 3.1 39,520 24.1. 32.4 4.3
  • Example 2-1 3 (element 1.5)-target 39 D— 1 A— 2 3.4.
  • Element 1 element 6, element 7, element 8, and element 12 were subjected to a drive life test under the following conditions.
  • Table 3-1 shows the results of a drive life test performed on Comparative Element 1 in the same manner as in Example 3-1.
  • Table— 3— 1
  • the driving life test was performed on the element 4 and the element 5 under the following conditions.
  • the driving characteristics of this device are shown in Table 1-2.
  • the elements 4 and 5 have larger LZL 0 after 100 hours and a longer life than the comparative element 1.
  • a driving life test was performed on the element 1, the element 8, and the element 11 under the following conditions.
  • Comparative Example 3_3 shows the relative time of the example when the time of one element was 1.00. It can be seen that element 1, element 8 and element 11 have a longer lifetime than comparative element 1.
  • the comparative element 1 was subjected to a drive life test in the same manner as in Example 3-3, and the result is shown in -3-3.
  • Element 13 and element 14 were subjected to a drive life test under the following conditions.
  • the device 9 was fabricated in the same manner as in Example 2-1 except that the target compound 2 (HB-1) was used as the main component (host material) of the light emitting layer 5 instead of the carbazole derivative (E-1). Produced.
  • Table 5 shows emission characteristics of the device 9.
  • the target compound 6 (HB-3) is used as the main component (host material) of the light-emitting layer 5 instead of the carbazole derivative (E-1), and the hole-blocking layer is used instead of target compound 2 (HB-1).
  • a device 10 was produced in the same manner as in Example 2-1 except that the target product 6 (HB-3) was used.
  • Table 15 shows emission characteristics of the device 10.
  • the target substance 57 is used instead of the sorbazole derivative (E-1), and the target substance 2 (HB-1) is used as the hole blocking layer instead of the target substance 2 (HB-1).
  • Element 16 was made in the same manner as in Example 2-11 except that target 38 was used.
  • Table 14 shows emission characteristics of the device 16.
  • the maximum wavelength of the emission spectrum of device 16 was 513 nm, which was identified as being from the organic iridium complex (D-1).
  • the target product 57 synthesized in Synthesis Example 23 described below was used as the main component (host material) of the light emitting layer 5, instead of the carbazole derivative (E-1), the target product 57 synthesized in Synthesis Example 23 described below was used; A device 17 was produced in the same manner as in Example 2--11, except that the electron transporting layer was laminated as it was without laminating the hole blocking layer thereon.
  • Table 15 shows emission characteristics of the device 17.
  • the maximum emission luminance is a value at a current density of 0.25 A / cm 2
  • the luminous efficiency-luminance current / voltage is a value at a luminance of 100 cdZm 2 .
  • the maximum wavelength of the emission spectrum of the device 17 was 513 nm, which was identified as being from the organic iridium complex (D-1).
  • Comparative device 4 was produced in the same manner as in (Example 5-1) except that the luminazole derivative (E-1) was used in place of the target product 57 of the light emitting layer.
  • Table 5 shows the emission characteristics of Comparative Element 4.
  • the initial light emission characteristics of the device 17 were higher than that of the comparative device 4.
  • Element 17 was subjected to a drive life test under the following conditions. Temperature Room temperature
  • Table 6 shows the drive characteristics of the element 17.
  • LZL 0 is luminance / initial luminance after 150 hours.
  • Table 16 shows the results of a drive life test performed on the comparative element 4 in the same manner as in Example 6-1.
  • the organic electroluminescent device using the charge transport material of the present invention it is possible to emit light with high luminance and high efficiency, and the stability of the device is improved.
  • the charge transport material of the present invention has excellent heat resistance, film forming property, charge transport property, and light emitting property, and therefore, according to the layer structure of the device, a light emitting material, a host material, an electron injection material, an electron transport material, It is also applicable as a hole blocking material or the like.
  • the organic electroluminescent device according to the present invention can be used as a flat panel display (for example, a wall-mounted television for an OA computer), a vehicle-mounted display device, a mobile phone display, or a light source utilizing the features of a surface light emitter (for example, a light source of a copier). It can be applied to liquid crystal displays and backlight sources for instruments, display boards, and sign lights, and its technical value is great.
  • the compound of the present invention has essentially excellent oxidation-reduction stability, it is also useful to use not only organic electroluminescent devices but also electrophotographic photoreceptors.
  • the compound of the present invention is excellent in amorphousness, solubility, heat resistance and durability, in addition to the high performance of the charge transport material of the present invention. Therefore, not only for charge transport materials, but also for luminescent materials, solar cell materials, battery materials (electrolytes, electrodes, separation membranes, stabilizers, etc.), medical materials, paint materials, coating materials, organic materials It is also useful for semiconductor materials, toiletry materials, antistatic materials, and thermoelectric element materials. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)

Abstract

本発明の課題は、優れた耐熱性、製膜性、電荷輸送性及び発光特性を有する電荷輪送材料を提供する。また、高輝度、高発光、及び長寿命な有機電界発光素子を提供することである。本発明は、分子内に、2,4,6-位が置換されているピリジン環を2個以上含む化合物であって、該ピリジン環は互いに実質的に共役していないことを特徴とする化合物からなる電荷輪送材料(但し、ピリジン環の3,5-位は置換されていてもよい。)及び該電荷輸送材料を用いた有機電界発光素子に関する。

Description

明 細 書 化合物、 電荷輸送材料および有機電界発光素子 <技術分野 >
本発明は新規な電荷輸送材料及び新規な化合物に関するものであり、 詳しくは 電気的な酸化や還元を繰返し受けても安定な電荷輸送材料と、 それを用いた高効 率かつ長寿命の有機電界発光素子に関するものである。
ぐ背景技術 >
従来、 薄膜型の電界発光 (EL) 素子としては、 無機材料の II一 VI族化合物半 導体である Z n S、 C a S、 S r S等に、 発光中心である Mnや希土類元素 (E u、 C e、 Tb、 Sm等) をドープしたものが一般的であるが、 '上記の無機材料 から作製した EL素子は、
4) 交流駆動が必要 (50〜1000Hz)、
2) 駆動電圧が高い (:〜 200V)、
3) 3) フルカラー化が困難 (特に青色)、
4) 周辺駆動回路のコストが高い、 という問題点を有している。
しかし、 近年、 上記問題点の改良のため、 有機薄膜を用いた EL素子の開発が 行われるようになった。 特に、 発光効率を高めるため、 電極からのキャリアー注 入の効率向上を目的として電極の種類の最適化を行い、 芳香族ジァミンから成る 正孔輸送層と 8—ヒ ドロキシキノリンのアルミニウム錯体から成る発光層とを設 けた有機電界発光素子の開発 (非特許文献 1参照: Appl. Phys. Lett. , 51卷, 913 頁, 1987年) により、 従来のアントラセン等の単結晶を用いた E L素子と比較し て発光効率の大幅な改善がなされている。 また、 例えば、 8—ヒドロキシキノリ ンのアルミニウム錯体をホスト材料として、 クマリン等のレーザー用蛍光色素を ドープすること (非特許文献 2参照: J. Appl. Phys., 65卷, 3610頁, 1989年) で、 発光効率の向上や発光波長の変換等も行われており、 実用特性に近づいてい る。
上記の様な低分子材料を用いた電界発光素子の他にも、 発光層の材料として、 ポリ (p—フエエレンビニレン)、 ポリ [2—メ トキシ一 5—(2—ェチルへキシルォ キシ)_ 1,4一フエ二レンビニレン]、 ポリ (3—アルキルチオフェン) 等の高分子 材料を用いた電界発光素子の開発や、 ポリビニルカルバゾール等の高分子に低分 子の発光材料と電子移動材料を混合した素子の開発も行われている。
素子の発光効率を上げる試みとして、 蛍光ではなく燐光を用いることも検討さ れている。 燐光を用いる、 即ち、 三重項励起状態からの発光を利用すれば、 従来 の蛍光 (一重項) を用いた素子と比べて、 3倍程度の効率向上が,期待される。 こ の目的のためにタマリン誘導体やべンゾフエノン誘導体を発光層とすることが検 討されたが (非特許文献 3参照:第 51回応用物理学会連合講演会、 28a-PB-7、 1990年)、 極めて低い輝度しか得られなかった。 その後、 三重項状態を利用する 試みとして、 ユーロピウム錯体を用いることが検討されてきた 、 これも高効率 の発光には至らなかった。
最近、 以下に示す白金錯体 (T— 1 ) を用いることで、 高効率の赤色発光が可 能なことが報告された (非特許文献 4 : Nature, 395卷, 151頁, 1998年)。 そ の後、 以下に示すイリジウム錯体 (T— 2 ) を発光層にドープすることで、 さら に緑色発光で効率が大きく改善されている (非特許文献 5: Appl. Phys. Lett., 75 卷, 4頁, 1999年)。
Figure imgf000004_0001
Figure imgf000004_0002
有機電界発光素子をフラットパネル ·ディスプレイ等の表示素子に応用するた めには、 素子の発光効率を改善すると同時に駆動時の安定性を十^に確保する必 要がある。
しかしながら、 前述の文献に記載の燐光分子 (T一 2) を用いた有機電界発光 素子は、 高効率発光ではあるが、 駆動安定性が実用には不十分であり (非特許文 献 6参照: Jpn. J. Appl. Phys., 38卷, L1502頁, 1999年)、 高効率な表示素子 の実現は困難な状況である。
新しい材料系として、特許文献 1 (特開 2003— 123983号公報)では、 有機電界発光素子の電子輸送層または発光層の材料として、 下記化合物に代表さ れるピリジン系化合物が提案されている。
Figure imgf000004_0003
しかしながら、 これらはピリジン環上の窒素原子同士が共役可能な構造を有し ているため、 酸化還元電位差が比較的小さい。
一般に、 青色蛍光発光や、 燐光緑色〜青色発光を示す有機電界発光素子を作成 するには、 非常に大きな酸価還元電位差を有する発色性色素を使用し、 該色素に 効率よく電荷を供給■集約させるためには、 それを取りまく材料 (発光層のホス ト材料や、 発光層隣接層を構成する電荷輸送材料) は、 該色素以上に大きな酸化 還元電位差を有する必要がある。 よって、 特許文献 1に記載されたピリジン系化 合物は、 青色蛍光素子や燐光素子への適用は、 困難であると考えられる。
また、 ピリジン環上の活性部位である 2, 4 , 6—位のいずれかに水素原子を 有しているために、 電気化学的安定性に課題を有するため、 有機電界発光素子な どにおける電荷輸送材料として使用するには、 更なる改善が必要であった。
さらに、 ビビリジル基のように強い配位能を持つュニットを有する化合物を、 発光層またはこれに接する層などに含有させると、 発光色素が金'属錯体である場 合、 長時間の電界印加により配位子交換を生じる危険性を有する。
また、非特許文献 7 (Collect. Czech. Chem. Commun.(Vol. 57)(l992» には、 下記一般式で示される蛍光材料が提案されている。
Figure imgf000005_0001
上記化合物は、 主として青色発光を持つ蛍光色素としての提案があるのみで、 それ以外の具体的な適用方法にっき開示はない。
ところで、 これまでに報告されている有機電界発光素子では、 基本的には正孔 輸送層と電子輸送層の組み合わせにより発光を得ている。 陽極から注入された正 孔は正孔輸送層を移動し、陰極から注入されて電子輸送層を移動してくる電子と、 両層の界面近傍で再結合をし、 正孔輸送層及び/または電子輸送層を励起させて 発光させるのが原理であり、 正孔輸送層と電子輸送層の間に発光層を設けること により、 発光効率を向上させている素子が一般的である。
さらに、 発光層中での励起子生成を促進させ、 発光の高効率化 ·発光色の高純 度化を目的に、 発光層の陰極側界面に接する正孔阻止層を設ける場合がある。 特 に、 正孔注入/輸送層にトリァリールァミン系化合物を、 電子注入/輸送層にァ ルミユウム錯体を用いた素子では、 正孔の移動度が電子の移動度を上回る傾向に あり、 正孔が発光に寄与せず陰極側へ通り抜けてしまうという問題があった。 特 に発光層の酸化電位が大きく、通常用いられる A 1 q 3 ( 8—ヒド pキシキノリン のアルミニウム錯体)などの電子輸送層では、発光 層へのホール封じ込めが困難 である青色発光素子や燐光発光素子では、 正孔阻止層の必要性が高い。
正孔阻止層に関しては、例えば、特許文献 2 (特開平 2- 195683号公報) には、 発光層のイオン化ポテンシャルよりも大きなイオン化ポテンシャルを有する正孔 阻止層を設ける旨記載されており、その例として、 トリス (5, 7 -ジクロル- 8-ヒド 口キシキノリノ) アルミ 二ゥムの使用が提案されている。 また、特許文献 3 (特 開平 9- 87616号公報) では、 シラシクロペンタジェンの使用が提案されている。 しかし、 これらはいずれも、 駆動安定性が十分ではなかった。
この駆動劣化の要因としては、 正孔阻止材料のガラス転移温度 (Tg) が低い事 に由来する熱劣化や、 電子や正孔の注入により正孔阻止材料が還元■酸化されて しまう電気化学的要因などが指摘されている。
発光性色素としてィリジゥム錯体などを用いる、 高効率燐光発光素子には、 Balq ( aluminum (III) Dis(2-methyl-8-qumolinato)4-phenylphenolate) や oAlq (aluminum (III) bis(2-methyl-8-quinolinato)triphenylsilanolate)などのァノレミ 二ゥム錯体系正孔阻止材料が盛んに用いられ、一定の長寿命化に成功している(非 特許文献 8参照: Appl. Phys. Lett., 81卷, 162頁, 2002年)。
しかし、 上記化合物では正孔阻止能が十分でないために、 素子の発光効率が不 十分であったり、 正孔の一部が正孔阻止材料を通過して電子輸送層へ抜けてしま うことによつて電子輸送層材料の酸化劣化が起こつたりする問題があつた。 上述の理由から、 発光層中での速やかな電荷の再結合とドーパントの高発光効 率の実現、 あるいは発光層を通過する正孔が電子輸送層へ抜けるのを阻止するこ と、 およぴ正孔阻止材料自体が電気的酸化還元耐久性を有していることが必要で あり、高発光効率かつ安定な素子を作製するための材料および素子構造に対して、 更なる改良検討が望まれていた。
[特許文献 1]
特開 2003— 1 23987号公報
[特許文献 2]
特開平 2— 1 95683号公報 ,
[特許文献 3]
特開平 9一 876 1 6号公報
[非特許文献 1 ]
Appl. Phys. Lett., 51卷, 913頁, 1987年
[非特許文献 2]
J. Appl. Phys., 65巻, 3610頁, 1989年
[非特許文献 3]
第 51回応用物理学会連合講演会、 28a_PB-7、 1990年
[非特許文献 4]
Nature, 395卷, 151頁, 1998年
[非特許文献 5]
Appl. Phys. Lett., 75巻, 4頁, 1999年
[非特許文献 6]
Jpn. J.Appl. Phys., 38卷, L1502頁, 1999年
[非特許文献 7]
Collect. Czech. Chem. Commun. (Vol.57) (1992)
[非特許文献 8]
Appl. Phys. Lett., 81巻, 162頁, 2002年 <発明の開示 >
本発明者は上記実状に鑑み、 電子輸送性に優れ、 優れた電気的酸化還元耐久性 と広い酸化還元電位差を有する電荷輸送材料の提供、 更には高発光効率かつ高い 駆動安定性を有する有機電界発光素子を提供することを目的とする。
また、 高い非晶質性、 耐熱性、 溶解性に優れた化合物を提供することを目的と する。
即ち本発明は、 分子内に、 2, 4, 6—位が置換されているビリジン環を 2個 以上含む化合物であって、 該ピリジン環は互いに実質的に共役していないことを 特徴とする化合物からなる電荷輸送材料、 (但し、 ピリジン環の 3 , 5—位は置換 されていてもよい。)および該電荷輸送材料を用いてなる有機電界発光素子に存す る。
また、 本発明は、 下記一般式 (I I ) で表される化合物であって、 該化合物が 最安定化構造をとつた時に、 平面構造とならない化合物、 及び、 '上記一般式 (I I ) で表される化合物であって、 該化合物が最安定化構造をとつた時に、 平面構 造-となる化合物であり、 かつ、 = 0である化合物に存する。
Figure imgf000008_0001
最安定化構造をとつた時に、 平面構造とならない化合物とは、 分子の最安定化 構造として、実質的に単一平面構造を取りえない構造を有していることを意味し、 これにより分子間での π— π スタツキング相互作用が抑制され、非晶質性、溶解 性、 昇華性に優れる。 また、 ひいては分子の集合体である膜としたとき、 溶液状 態 (分子同士が散らばつている状態) に比べ、 吸収極大波長や蛍光発光極大波長 が増大してしまう現象を抑制することができる。 更には、 三重項励起準位が低下 してしまう現象や電気酸化還元電位差が低下してしまう現象をも抑制することが できると考えられる。
そのため、 (光、 電気、熱などの) 大きなエネルギーを蓄積し、 そして効率よく 蓄積したエネルギーを (光、 電気、 熱などとして) 放出することが可能となる化 合物である。
また、 最安定化構造をとつた時に平面構造となるとは、 分子の最安定化構造と して、実質的に単一平面構造をとる構造を有することを意味する。上記一般式( I I ) で表される化合物であって、 該化合物が最安定化構造をとつた時に、 平面構 造となる化合物の中でも、 p = 0である化合物、 即ち、 4 _ピリジル基からなる 化合物は、 繰り返し酸化耐久性が非常に高い。
特に、 ピリジン環同士が m—フエ二レン基を介して連結されると、 ピリジン環 の窒素原子上の非共有電子対同士が直接的に共役し得ない構造であり、 かつ該 m 一フエ二レン基とピリジン環の間では、 共役構造をとり得るため、 酸化還元電位 差が大きく、 かつ可逆性にもとりわけ優れている。 また、 ピリジン環の、 対称性 をくずすことにより非晶質性に優れ、 有機溶媒などへの溶解性にも優れている。 そのため、 膜を形成したときに結晶化することなく安定な成膜性を示す。
また、 ピリジン環が、 1, 3, 5—置換フエ二レン基 (ベンゼン環由来の基) を介して連結されると、 ピリジン環の窒素原子上の非共有電子対同士が直接的に 共役し得ない構造となり、 かつ該 1 , 3 , 5—置換フエ二レン基とピリジン環の 間では、 共役構造をとり得るため、 酸化還元電位差が大きく、 かつ可逆性にもと りわけ優れている。
また、電子輸送性のあるへテロ環を 3環以上有する事によりさらに電子輸送性、 耐熱性が向上する。 また、 非晶質性に優れ、 有機溶媒などへの溶解性にも優れて いるため、 膜を形成したときに結晶化することなく安定な成膜性を示し、 ガラス 転移温度 (Tg) が高いことにより耐熱性、 耐久性に優れている。 本発明の電荷輸送材料を用いた有機電界発光素子によれば、 高輝度 ·高効率で 発光させることが可能となり、 かつ素子の安定性が向上する。
また、 本発明の電荷輸送材料は、 優れた耐熱性、 製膜性、 電荷輸送性、 発光特 性から、 素子の層構成に合わせて、 発光材料、 ホスト材料、 電子注入材料、 電子 輸送材料、 正孔阻止材料などとしても適用可能である。
従って、 本発明による有機電界発光素子はフラットパネル ·ディスプレイ (例 えば O Aコンビユータ用ゃ壁掛けテレビ)、車載表示素子、携帯電話表示や面発光 体としての特徴を生かした光源 (例えば、 複写機の光源、 液晶ディスプレイや計 器類のバックライト光源)、表示板、標識灯への応用が考えられ、その技術的価値 は大きいものである。
本発明の化合物は、 本質的に優れた酸化還元安定性を有することから、 有機電 界発光素子に限らず、 電子写真感光体に利用することも有用である。
更に、 本発明の化合物は、 上記本発明の電荷輸送材料が有する'高い性能に加え て、 非晶質性、 溶解性、 耐熱性、 耐久性に優れている。 従って、 電荷輸送材料用 と _Lてだけでなく、 発光材料用、 太陽電池材料用、 バッテリー材料 (電解液、 電 極、 分離膜、 安定剤など) 用、 医療用、.塗料材料用、 コーティング材料用、 有機 半導体材料用、 トイレタリー材料用、 帯電防止材料用、 熱電素子材料用などにお いても有用である。
<図面の簡単な説明 >
図 1は、 有機電界発光素子の一例を示した模式断面図である。
図 2は、 有機電界発光素子の別の例を示した模式断面図である。
図 3は、 有機電界発光素子の別の例を示した模式断面図である。 なお、 図中の符号は、 それぞれ、 1は基板、 2は陽極、 3は陽極バッファ層、 4は正孔輸送層、 5は発光層、 6は正孔阻止層、 7は電子輸送層、 及ぴ 8は陰極 を示している。 <発明を実施するための最良の形態 >
以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、 これらの内容に特定されない。
本発明の電荷輸送材料は、 分子内に、 2 , 4, 6—位が置換されているピリジ ン環を 2個以上含む化合物であって、 該ピリジン環は互いに実質的に共役してい ないことを特徴とする化合物からなる電荷輸送材料に関する。 但し、 ピリジン環 の 3 , 5—位は置換されていてもよい。
本発明の電荷輸送材料は、 分子内に、 2, 4, 6—位が置換されているピリジ ン環を含有することにより、 電気的に非常に安定である。 従って、 本発明の電荷 輸送材料を有機電界発光素子等に使用すると、 安定性の向上した素子を得ること が出来る。 また、 後述の通り、 分子内のピリジン環が互いに共役していないこと により、 化合物の酸化還元電位差が縮小しにくくなる。.分子内のピリジン環が互 いに共役していないとは、 下記連結基 Qの例で詳述する通りであ'る。
該ピリジン環は、 分子内に 2個以上有していればよいが、 昇華性や溶解性が下 がりやすくなる恐れがあることや、 高純度化が困難となる恐れがあることから、 8個以下であることが好ましい。
このような電荷輸送材料の分子量は、 通常、 4 0 0 0以下、 好ましくは 3 0 0 0以下、 より好ましくは 2 0 0 0以下であり、 また通常 2 0 0以上、 好ましくは 3 0 0以上、 より好ましくは 4 0 0以上である。 分子量が上限値を越えると、 昇 華性が著しく低下して電界発光素子を制作する際に蒸着法を用いる場合において 支障を来したり、 あるいは有機溶媒などへの溶解性の低下や、 合成工程で生じる 不純物成分の増加に伴って、 材料の高純度化 (すなわち劣化原因物質の除去) が 困難になる場合があり、また分子量が下限値を下回ると、ガラス転移温度および、 融点、 気化温度、 製膜性などが低下するため、 耐熱性が著しく損なわれるおそれ がある。
また、 本発明の電荷輸送材料を、 例えば有機電界発光素子における正孔阻止層 兼電子輸送層に使用する場合の、 重要な特性の一つである正孔阻止性は、 分子内 のジァリールァミン骨格により損なわれる傾向があるので、 正孔阻止性の観点か らは、 該骨格を含んでいない場合が好ましい。 更に、 ジァリールァミン骨格ほど ではないが、 強い正孔輸送性を有し、 正孔阻止性を低下させてしまうとの理由か ら、 ァリールォキシド骨格ゃァリールスルフィ ド骨格をも含んでいない場合が、 より好ましい。
本発明において、 ジァリールァミン骨格とは、 窒素原子上に置換基として任意 の芳香環 (本発明では、 芳香族炭化水素と芳香族複素環を総称して 「芳香環」 と 呼ぶことがある) が少なくとも 2つ置換されたァミン骨格を指し、 例えばジフエ ニルァミン骨格、 フエ-ルナフチル骨格、 トリフエニルァミン骨格などが挙げら れる。 また、 置換基同士が結合して環を成しているものも含み、,例えばカルバゾ ール骨格、 N—フエ二ルカルバゾール骨格、 N—フエュルインドール骨格などが 挙げられる (伹し、 二重結合によって窒素原子と置換基が結合している骨格を除 く (例:アタリジン、 フエナジンなど))。 いずれも、 強い正孔輸送性を有する骨 格の一つである。 '
本発明において、 ァリールォキシド骨格とは、 酸素原子上に置換基として芳香 環 · ^少なくとも 1つ置換されたォキシド骨格を指し、 例えばフエ二ルォキシド骨 格、 ジフエニルォキシド骨格等が挙げられる。 また、 置換基同士が結合して環を 成しているものも含み、 例えばべンゾフラン骨格、 ジベンゾフラン骨格、 ジベン ゾ [ 1, 4 ] ジォキシン骨格などが挙げられる。 いずれも、 強い正孔輸送性を有 する骨格の一つである。
本発明において、 ァリールスルフイ ド骨格とは、 硫黄原子上に置換基として芳 香環が少なくとも 1つ置換されたスルフィ ド骨格を指し、 例えばフエ-ルスルフ ィ ド骨格、 ジフエニルスルフィ ド骨格等が挙げられる。 また、 置換基同士が結合 して環を成しているものも含み、 例えばベンゾチォフェン骨格、 ジベンゾチオフ ェン骨格、 チアントレン骨格などが挙げられる。 いすれも、 強い正孔輸送性を有 する骨格の一つである。
しかしながら、 本発明の電荷輸送材料を、 発光層を構成するホス ト材料として 使用する場合には、 電子輸送性能およぴ正孔輸送性能の両性能を有する化合物か らなる事が適すると考えられる。 その際においては正孔輸送性置換基が必要であ るため、 該化合物の分子内に正孔輸送性能を付与する置換基としてジァリールァ ミン骨格や力ルバゾール環を有していることが好ましい。 特に、 本発明の電荷輸 送材料に使用される化合物の主骨格であるピリジン環の電子輸送性能とのバラン スを取るため、 力ルバゾール環を少なくとも 1個有することが好ましく、 2個以 上がより好ましく、 6個以下が好ましく、 4個以下がより好ましく、 3個以下が 特に好ましい。分子内で、該カルバゾール環同士は互いに共役していてもよいが、 分子内のピリジン環と該カルバゾール環は互いに共役していないことが好ましい。 本発明の電荷輸送材料は、 分子内に、 置換基を有していてもよい 2—ピリジル 基および 4—ピリジル基からなる群より選択された、 2〜8個の,ピリジル基を含 み、 該ピリジル基が、 すべて連結基 Qに結合しており、 該ピリジル基は互いに、 連結基 Qを介して実質的に共役していないことを特徴とする化合物からなる電荷 輸送材料であることが好ましい。
但し、 該化合物は、 1分子中に複数の 2—ピリジル基が含まれ'る場合、 各々が 有する置換基は同一であってもよいし、 異なっていてもよい。 また、 1分子中に 複数の 4一ピリジル基が含まれる場合、 各々が有する置換基は同一であってもよ いし、異なっていてもよい。さらに、 1分子中に含まれる全てのピリジン環の 2, 4 , 6—位は、 連結基 Qまたは任意の置換基と結合している。
本発明の電荷輸送材料において、 連結基 Qとは 「分子中のピリジル基が、 すべ て連結基 Qに結合しており、 該ピリジル基のうち、 任意の 2個のピリジル基がい ずれも、連結基 Qを介して実質的に共役していない」、 2〜 8価のものであればよ く、 これを満たす限り、 特に制限はない。
ピリジル基同士が、 連結基 Qを介して共役している場合とは、 例えば、 分子中 の 2以上のピリジル基が、 直接結合、
Figure imgf000014_0001
(c ! s-i trans-のいずれで.も可)
— ΰ≡ '
、またはこれらを組み合わせてなる部分構造で連結されている場合が挙げられる。
( G ないし G 3は各々独立に、水素原子または任意の置換基を表す力 \あるいは、 芳香族炭化 水素環や芳香族複素環の一部を構成する。) すなわち,、 本発明は、 前 記共役している場合に該当しないものである。
但し、 上記構造を含む連結基 Qを介して、 2以上のピリジル基が結合している 場合でも、 該連結基 Qと、 これを介して結合した 2以上のピリジル基が、 実質的 に同一平面上に存在し得ない構造である場合 (例えば、 連結基 Q'が ' o—フエニレ ン基であり、 これに 2つのピリジル基が結合している場合など) は、 「 (ピリジル 基词士が、 連結基 Qを介して) 実質的に共役していない」 場合に相当し、 本発明 に含まれる。
(Q)
この様な連結基 Qとしては、後述する一般式( I )における一 Z 1 _ Q0— Z t—、 一 — Q0_ Z 2—、 および一 Z 2— Q0— Z 2—等が挙げられるが、 これらに限定さ れるものではない。
本発明の電荷輸送材料において、 化合物の分子中に含まれるピリジン環同士が 共役可能であると、 該化合物の酸化還元電位差が縮小してしまったり、 ピリジン 環上への正孔受容性が改善されてしまうため、 酸化劣化を助長してしまうと考え られる。
本発明の電荷輸送材料として、 より好ましくは、 下記一般式 (I ) で表される 化合物が挙げられる。
Figure imgf000015_0001
(式中、 I^、 R3) R5および R8は、 各々独立に、 水素原子または任意の置換基 を表し、 R2、 R4、 R6および R7は、 各々独立に任意の置換基を表す。
ZTは、 直接結合または環 Aと共役可能な電子を有する 2価の連結基を表す。
Z2は、直接結合または環 Bと共役可能な電子を有する 2価の連結基を表す。連 結基 Q。は 1分子中に含まれる、環 Aおよび環 Bからなる群より選ばれた任意の 2 つを、実質的に共役不可能とすることができる、 (m+ n)価の連結基を表す。 m は 0〜 8の整数であり、 nは 0〜8の整数であり、 mと nの総和は 2〜8の整数 である。
なお、 mおよび Zまたは nが 2以上の場合、 1分子中に含まれる複数個の 1^ ないし R8は、各々、 同一であっても異なっていてもよく、 1分子中に含まれる複 数個の および Z2は、 各々、 同一であっても異なっていてもよい。)
一般式 (I ) において、 1分子中に含まれる環 Aおよび環 Bからなる群より選 ばれた任意の 2つのピリジル基は、 一 — Q。一 ―、 一 ZL—Q。一 Z2_、 また は一 Z 2— Q。一 Z 2—を介して、 互いに共役していない。
(Z1( Z2)
一般式 (I ) における および Z2は、 直接結合であるか、 連結基 Q。と、 環 A または 環 Bとを結合する、共役可能な電子を有する連結基であれば任意のものを 適用可能である。
具体的には、
置換基を有してもよいアルケン基 (アルケン由来の基)、
置換基を有してもよいアルキン基 (アルキン由来の基)、
置換基を有していてもよい芳香族炭化水素基、 置換基を有していてもよい芳香族複素環基、
或いはこれらが 2以上結合してなる基等が挙げられる。
各々の具体例としては、 1^〜1 8の例として後述する 1価の基に、 対応する 2 価の基が挙げられる。 これらが有しうる置換基としても、 1^〜1 8におけると同 様の基が挙げられる。
Z 1および Z 2として、 電気的還元耐久性の観点から好ましくは直接結合、 置換 基を有していてもよいアルケン基、 置換基を有していてもよいアルキン基、 また は置換基を有していてもよい芳香族炭化水素基であり、 高い三重項励起準位およ び大きな酸化還元電位差の点から特に好ましくは、 直接結合または置換基を有し ていてもよい芳香族炭化水素基である。 Z 1及び Z 2それぞれの分子量は、 その置 換基も含めて、 好ましくは 4 0 0以下、 更に好ましくは 2 5 0以下である。 連結基 または Z 2として、 より好ましい例を以下に示す。
Figure imgf000017_0001
im請 oozdf/ェ:) d LI
Figure imgf000018_0001
im請 oozdf/ェ:) d
Figure imgf000019_0001
im請 oozdf/ェ:) d 61
Figure imgf000020_0001
oozdf/ェ:) d oz
Figure imgf000021_0001
im請 oozdf/ェ:) d 上記各構造中、 L6ないし L8は各々独立に、 アルキル基、 芳香族炭化水素基、 またはアルキル置換芳香族炭化水素基を表す。
具体的には、 メチル基、 ェチル基、 イソプロピル基、 tert-プチル基などの、 炭 素数 1〜 6程度のアルキル基;フエニル基、ナフチル基、フルォレニル基などの、 炭素数 6〜1 8程度の芳香族炭化水素基; トリル基、 メシチル基、 2, 6—ジメ チルフエニル基などの、総炭素数 7〜 30程度のアルキル置換芳香族炭化水素基、 などが挙げられる。 .
なお、上記構造はいずれも L6ないし L8の他にも置換基を有していてもよいが、 自身が結合するピリジン環等の電子状態に強く影響を及ぼしてしまうと、 酸化還 元電位差が狭くなってしまうおそれがあるため、 電子供与性■電子吸引性が共に 小さく、 かつ、 分子内共役長の広がりをもたらしにくい基を選択することが好ま しい。 このような基の具体例としても、 やはりアルキル基、 芳香族炭化水素基、 アルキル置換芳香族炭化水素基等が挙げられ、 具体例としては、 '上記 L6~L8と して挙げた基と同様の基が挙げられる。 なお、 1分子中に上記構造を 2個以上有 する化合物の場合、 1分子中に含まれる 2個以上の L6〜L8は、 同一であっても 異なっていてもよい。
上記例示構造のうち、 酸化還元電位差を十分に広くする観点と繰返し電気酸化 還元耐久性の観点から、 Z— 1 (直接結合), Z— 2〜21, 28, 29, 3 1〜 35, 48〜52, 56〜60が好ましく、 Z _ 1 (直接結合) , Z— 2, 3, 4, 5, 8, 10, 1 2, 1 5, 1 6, 1 7, 1 9, 28, 29, 3 1, 3 3, 34, 52, 56〜 58がより好ましく、 Z— 1. (直接結合), Z— 2, 5, 8, 1 2, 1 9, 28, 29が更に好ましく、 Z— 1 (直接結合), Z— 2, 1 9が最も好ま しい。
(Q0)
連結基 Q。は 1分子中に含まれる、環 Aおよび環 Bからなる群より選ばれた任意 の 2つ を、 実質的に共役不可能とする、 (m+n) 価の連結基を表す。 具体的に は、
置換基を有していてもよいアルカン基 (アルカン由来の基)、 置換基を有していてもよいアルケン基、
置換基を有していてもよいアルキン基、
一 N R a— (伹し、 R aは任意の置換基)、 一 O—、 —C O—、 一 C O O—、 一 s o— 、 - s o2- 置換基を有していてもよいアミ ド基、
置換基を有していてもよいシリル基、
置換基を有していてもよいボリル基、 .
置換基を有していてもよいホスフイノ基、
置換基を有していてもよい芳香族炭化水素基、 ,
置換基を有していてもよい芳香族複素環基、
またはこれらが 2以上結合してなる基などが挙げられる。
これらのうち、 酸化還元電位差を十分に広くする観点と繰返し電気酸化還元耐 久性の観点から、 Q。として好ましくは、 置換基を有していてもよいアルカン基、 一 N R a—、置 換基を有していてもよいシリル基、置換基を有していてもよい芳 香族炭化水素基、 または置換基を有していてもよい芳香族複素環基が挙げられ、 更には、 高い電子輸送性及び正孔阻止性を望めることからも、 より好ましくは、 置換基を有していてもよい芳香族炭化水素基或いはピリジレン基 (ピリジン環由 来の 2価の基) が挙げられ、 特に好ましくは、 置換基を有していてもよい芳香族 炭化水素基が挙げられる。 Q。の分子量としては、 その置換 基も含めて、 好まし くは 4 0 0以下、 更に好ましくは 2 5 0以下である。
尚、 Q。がピリジレン基の場合は、 及び 又は Z 2として、 ピリジン環どうし を共役 させ得ない基を有することが好ましい。
各々の具体例としては、 1^〜1 8の例として後述する 1価の基に対応する、 (m + n ) 価の基が挙げられる。 これらが有しうる置換基、 およぴ該置換基のうち好 ましいものも、 1^〜1 8におけるものと同様である。
また R aとしても、 1^〜1 8 として後述する基と同様の基が挙げられ、 好まし いものも同様である。 以下に、 連結基 Q。の好ましい具体例を示すが、 これらに限 定されるものではない。 2Z
Figure imgf000024_0001
im請 oozdf/ェ:) d
Figure imgf000025_0001
Figure imgf000025_0002
llZUO/tOOZdT/lDd SOO OAV Z
Figure imgf000026_0001
im請 oozdf/ェ:) d 9Ζ
Figure imgf000027_0001
im請 oozdf/ェ:) d
Figure imgf000028_0001
Q— 58 Q— 5 ί» Q— 60 Q— 61 _
(上記各構造中、 。および Luは各々独立に、 アルキル基、芳香族炭化水素基、 またはアルキル置換芳香族炭化水素基を表す。
具体的には、 メチル基、 ェチル基、 イソプロピル基、 tert-ブチル基などの、 炭 素数 1〜 6程度のアルキル基;フエニル基、ナフチル基、フルォレ )レ基などの、 炭素数 6〜18程度の芳香族炭化水素基; トリル基、 メシチル基、 2, 6—ジメ チルフエニル基などの、総炭素数 7〜 30程度のアルキル置換芳香族炭化水素基、 などが挙げられる。
なお、 上記構造はいずれも L1()ないし Luの他にも置換基を有していてもよい が、 自身が結合するピリジン環等の電子状態に強く影響を及ぼしてしまうと、 酸 化還元電位差が狭くなってしまうおそれがあるため、 電子供与性 ·電子吸引性が 共に小さく、 かつ、 分子内共役長の広がりをもたらしにくい基を選択することが 好ましい。 このような基の具体例としても、 やはりアルキル基、 芳香族炭化水素 基、 アルキル置換芳香族炭化水素基等が挙げられ、 具体例としては、 上記 1^。お よび Luとして挙げた基と同様の基が挙げられる。 なお、 1分子中に上記構造を 2個以上有する化合物の場合、 1分子中に含まれる 2個以上の 1^。および Luは、 同一であっても異なっていてもよい。)
中でも、 十分に広い酸化還元電位差を得る観点、 優れた電気酸化還元耐久性を 発現する観点、 および適度な電子輸送性の観点から、 Q— 1~4, 7〜1 3, 1 9〜23, 29, 3 :〜 43, 45, 5 1〜 6 1が好ましく、 Q— 1, 8〜1 3, 1 9, 20, 21, 23, 34, 3 5〜42, 45, 5 5〜 6 1がより好ましく、 Q- 1 , 8〜1 2, 20, 2 1, 23, 34, 35, 45, 58, 6 1が更に好 ましく、 Q_ l, 1 1, 1 2, 23, 35が最も好ましい。 一般式 ( I ) における I^、 R3, R5および R8は、 各々独立に、 水素原子また は任意の置換基を表し、 R2、 R4、 R6および R7は、 各々独立に任意の置換基を 表す。 1^ないし R8に用いうる任意の基として、 具体的には、 例えば 置換基を 有していてもよいアルキル基 (好ましくは炭素数 1から 8の直鎖または分岐のァ ルキル基であり、 例えばメチル、 ェチル、 n—プロピル、 2—プロ,ピル、 n—プチ ル、 イソプチル、 tert—ブチル基などが挙げら れる。)
置換基を有していてもよいアルケニル基 (好ましくは、 炭素数 2から 9のアル ケニル基であり、 例えばビュル、 ァリル、 1ープテニル基などが挙げられる。)、 置換基を有していてもよいアルキニル基 (好ましくは、 炭素数' 2から 9のアル キニル基であり、 例えばェチニル、 プロパルギル基などが挙げられる。)、 置換基を有していてもよいァラルキル基 (好ましくは、 炭素数 7から 1 5のァ ラルキル基であり、 例えばべンジル基などが挙げられる。)、
置換基を有していてもよいアミノ基 [好ましくは、 置換基を有していてもよい 炭素数 1から 8のアルキル基を 1つ以上有するアルキルアミノ基 (例えばメチル ァミノ、 ジメチルァミノ、 ジェチルァミノ、 ジベンジルァミノ基などが挙げられ る。)、
置換基を有していてもよい炭素数 6〜 1 2の芳香族炭化水素基を有するァリ一 ルァミノ基 (例えばフエニルァミノ、 ジフエニルァミノ、 ジトリルアミノ基など が挙げられる。)、
置換基を有していてもよい、 5または 6員環の芳香族複素環を有するヘテロァ リールアミノ基 (例えばピリジルァミノ、 チェニルァミノ、 ジチェニルァミノ基 などが含まれる。)、
置換基を有していてもよい、 炭素数 2〜 10のァシル基を有するァシルァミノ 基 (例えばァセチルァミノ、 ベンゾィルァミノ基などが含まれる。)]、 置換基を有していてもよいアルコキシ基 (好ましくは置換基を有していてもよ い炭素数 1〜8のアルコキシ基であり、 たとえばメ トキシ、 エトキシ、 ブトキシ 基などが含まれる)、
置換基を有していてもよいァリールォキシ基 (好ましくは炭素数 6〜1 2の芳 香族炭化水素基を有するものであり、 例えばフエニルォキシ、 1一ナフチルォキ シ、 2—ナフチルォキシ基などが含まれる。)、
置換基を有していてもよいへテロァリールォキシ基 (好ましくは 5または 6員 環の芳香族複素環基を有するものであり、 例えばピリジルォキシ、 チェ-ルォキ シ基などが含まれる)、 ,
置換基を有していてもよいァシル基 (好ましくは、 置換基を有していてもよい 炭素数 2〜 1 0のァシル基であり、 例えばホルミル、 ァセチル、 ベンゾィル基な どが含まれる)、
置換基を有していてもよいアルコキシカルボニル基 (好ましく 'は置換基を有し ていてもよい炭素数 2〜 1 0のアルコキシカルポニル基であり、 例えばメ トキシ カルボエル、 ェトキシカルボニル基などが含まれる)、
置換基を有していてもよいァリールォキシカルボニル基 (好ましくは置換基を 有していてもよい炭素数 7〜 1 3のァリールォキシカルボ-ル基であり、 例えば フエノキシ力ルポニル基などが含まれる)、
置換基を有していてもよいアルキルカルボニルォキシ基 (好ましくは置換基を 有していてもよい炭素数 2〜 1 0のアルキルカノレポ-ルォキシ基であり、 例えば ァセトキシ基などが含まれる。)、
ハロゲン原子 (特に、 フッ素原子または塩素原子)、
カスレボキシノレ基、
シァノ基、
水酸基、
メルカプト基、
置換基を有していてもよいアルキルチオ基 (好ましくは炭素数 1〜8までのァ ルキルチオ基であり、 例えば、 メチルチオ基、 ェチルチオ基などが含まれる。)、 置換基を有していてもよいァリールチオ基 (好ましくは炭素数 6〜1 2までの ァリールチオ基であり、 例えば、 フエ二ルチオ基、 1一ナフチルチオ基などが含 まれる。)、
置換基を有していてもよいスルホ -ル基 (例えばメシル基、 トシル基などが含 まれる)、
置換基を有していてもよいシリル基 (例えばトリメチルシリル基、 トリフエ二 ルシリル基などが含まれる)、 .
置換基を有していてもよいボリル基 (例えばジメシチルポリル基などが含まれ る)、 ,
置換基を有していてもよいホスフイノ基 (例えばジフエニルホスフイノ基など が含まれる)、
置換基を有していてもよい芳香族炭化水素基 (例えばベンゼン環、 ナフタレン 環、 アントラセン環、 フエナントレン環、ペリ レン環、 テトラセジ環、 ピレン環、 ベンズピレン環、 タリセン環、 トリフエ二レン環、 フルオランテン環などの、 5 ま こは 6員環の単環または 2〜 5縮合環由来の 1価の基が含まれる)
または置換基を有していてもよい芳香族複素環基 (例えばフラン環、 ベンゾフ ラン環、 チォフェン環、 ベンゾチォフェン環、 ピロール環、 ピラゾール環、 イミ ダゾール環、 ォキサジァゾール環、 インドール環、 力ルバゾール環、 ピロ口イミ ダゾール環、 ピロロピラゾール環、 ピロロピロール環、 チェノビロール環、 チェ ノチォフェン環、 フロピロール環、 フロフラン環、 チエノフラン環、 ベンゾイソ ォキサゾール環、ベンゾィソチアゾール環、ベンゾィミダゾール環、ピリジン環、 ピラジン環、 ピリダジン環、 ピリ ミジン環、 トリアジン環、 キノリン環、 イソキ ノリン環、シノリン環、キノキサリン環、ベンゾィミダゾール環、ペリミジン環、 キナゾリン環などの、 5または 6員環の単環または 2〜4縮合環由来の 1価の基 が含まれる)
などが挙げられる。
R i R sの分子量は、その置換基も含めて、それぞれ、好ましくは 4 0 0以下、 更に好ましくは 2 5 0以下である。 ( R ^ Rsの置換基)
これらが有しうる置換基としては、 本発明の電荷輸送材料の性能を損なわない 限り特に制限はないが、 好ましくはアルキル基、 芳香族炭化水素基、 またはアル キル置換芳香族炭化水素基である。各々の具体例としては、メチル基、ェチル基、 イソプロピル基、 tert—プチル基などの、 炭素数 1〜 6程度のアルキル基; フエ -ル基、 ナフチル基、 フルォレニル基などの、 炭素数 6〜1 8程度の芳香族炭化 水素基; トリル基、 メシチル基、 2 , 6—ジメチルフエニル基などの、 総炭素数 7〜3 0程度のアルキル置換芳香族炭化水素基、 などが挙げられる。
R2、 R4、 R6およぴ1 7は、 上記いずれの基であってもよいが、, 電気的酸化還 元耐久性を向上させる観点および耐熱性を向上させるから、 芳香環基 (本発明で は、 芳香族炭化水素基と芳香族複素環基を総称して 「芳香環基」 と呼ぶことがあ る。) であるのが好ましい。
以下に、 ないし R8が芳香環基である場合の具体例を示す。 '
/vu O ΠίΠΟさ oifcldAV
Figure imgf000033_0001
Figure imgf000033_0002
εε
Figure imgf000034_0001
im請 oozdf/ェ:) d
Figure imgf000035_0001
Ϊ96 SOOZ OAV (上記各構造中、 1^ないし L 3は各々独立に、 アルキル基、 芳香族炭化水素基、 またはアルキル置換芳香族炭化水素基を表す。 L 4および L 5は、 各々独立に、 水 素原子、 アルキル基、 芳香族炭化水素基、 またはアルキル置換芳香族炭化水素基 を表す。
アルキル基、芳香族炭化水素基、またはアルキル置換芳香族炭化水素基として、 具体的には、 メチル基、 ェチル基、 イソプロピル基、 tert-ブチル基などの、 炭素 数 1〜6程度 のアルキル基; フエ-ル基、 ナフチル基、 フルォレニル基などの、 炭素数 6〜1 8程度の芳香族炭化水素基; トリル基、 メシチル基、 2, 6—ジメ チルフ エル基などの、総炭素数 7〜 3 0程度のアルキル置換芳香族炭化水素基、 などが挙げられる。
なお、 上記構造はいずれも、 ないし L 5の他にも置換基を有していてもよい が、自身が結合しているピリジン環上の電子状態に強く影響を及ぼしてしまうと、 酸化還元電位差が狭くなってしまうおそれがあるため、 電子供与 '性 ·電子吸引性 が共に小さく、 かつ、 分子内共役長の広がりをもたらしにくい基を選択すること が好ましい。 このような基の具体例としても、 やはりアルキル基、 芳香族炭化水 素基、 アルキル置換芳香族炭化水素基等が挙げられる。
なお、 1分子中に上記構造を 2個以上有する化合物の場合、 1分子中に含まれ る 2個以上の 1^〜し5は、 同一であっても異なっていてもよい。)
前記例示構造のうち、 広い酸化還元電位差を与える観点から、 R—: L〜6、 1 0〜1 3、 3 3、 3 4、 3 8、 4 5、 4 8が好ましく、 R—:!〜 6、 4 8がより 好ましく、 R _ l、 4〜6、 4 8が最も好ましい。
R 3、 R5および R8は、 例えば本発明の電荷輸送材料を有機電界発光素子 の発光層材料に適用する場合、 分子振動を制限して発光効率を損なわないように する観点から、 置換基を有していてもよいアルキル基、 または置換基を有してい てもよい芳香族炭化水素基 (中でも炭素数 6〜1 2程度の芳香族炭化水素基) が 好ましく、 大きな酸化電位あるいは、 長寿命化 (優れた酸化還元耐性) を持たせ る観点からは、 水素原子または芳香族炭化水素基がより好ましく、 水素原子また はフエ-ル基が特に好ましい。 前記一般式 (I ) で表される化合物は、 分子内の互いに実質的に共役し得ない 位置にピリジン環を 2つ以上有している点に最大の特徴があり、 これによつて優 れた電子輸送性と広い酸化還元電位差を発現する。 他方、 ピリジン環が多すぎる と化合物としての塩基性が強くなりすぎ、 発光層やこれに接する層などに含まれ る場合、 長時間の電界印加により配位子交換を生じる危険性がある。 そうした観 点から、 Q。と結合した および に結合した環 Aの数を表す mと、 Q。と結合 した Z 2および Z 2に結合した環 Bの数を表す nと の総和は 2〜.8の整数が好ま しく、 2〜 6がより好ましく、 2〜4が更に好ましく、 2〜 3が最も好ましい。 尚、 前記 mは 0〜 8の整数であり、 好ましくは 0〜4の整数である。 また、 前 記 nは 0〜 8の整数であり、 好ましくは 0〜4の整数である。
また、 酸化還元電位差を大きくする点、 及ぴ、 繰り返しの酸化還元耐久性の点 から、 mは 0または 1、 及び、 nは 1以上の整数であることが好ましい。
酸化還元電位差を大きくする観点からは、 2—ピリジル基 (g|l'ち、 環 A) の方 が好ましい。 よって nが 0である場合が好ましい。 また、 繰り返しの酸化還元耐 久性あるいは耐熱性の観点からは、 4—ピリジル基 (即ち、 環 B ) の方が好まし い。 すなわち、 mが 0である場合が好ましい。
また、 本発明の電荷輸送材料は、 同一の電気化学的特性を持つピリジン環のみ で構成される方が、 基本的には酸化還元電位差を大きくしたり、 電気的応力の集 中による電気劣化の進行を抑制することができるため、 nまたは mが 0である場 合が好ましい。 伹し、 湿式製膜法などを適用して本発明の有機化合物の薄膜を形 成する際に溶解性を向上させたい場合には、 敢えて異なる置換基を有するピリジ ン環を用いる (即ち、 mおよび nを、 いずれも 1以上の整数とする) ことも有効 な手段である。
また、 nまたは mが 0であり、 環 Aまたは環 Bの一方のみ有する化合物におい て、 環 Aまたは環 B上の置換基 (1^~ 4または R 5〜R8) だけが、 環毎に異なる 場合などは、 置換基の選択を工夫して、 多少異なる電気化学的特性を有する置換 ピリジン環を分子内に共存させることも、 有機 E L素子としての素子構成最適化 を行う際には材料特性の微調整手段として有効である。 尚、 本発明の電荷輸送材料を有機電界発光素子に使用する場合、 1 ) 発光層を 構成するホスト材料として用いるときは、 適度に優れた正孔輸送性および電子輸 送性を兼ね備えていることが望ましく、電子供与性置換基(例えば、アルキル基、 アミノ基、 アルコキシ基など) を分子内に持ち合わせているものが好ましく、 と りわけ芳香族アミノ基を含んでいるのが更に好ましい。 芳香族ァミノ基、 すなわ ちジァリールァミン骨格を有することが好ましいことは、 前述の通りである。 伹 し、 このとき、 ピリジン環と電子供与性のへテロ原子とが、 実質的に共役し得な い構造であることが好ましい。 これらが共役することにより、 分子内での電荷の 分極現象が顕著になり、 酸化還元電位差が小さくなつたり、 三重項励起準位が低 下するおそれがある。 なお、 ィリジゥム錯体などに代表される金属錯体をドーパ ントとして含んだ系においては、 通常、 ドーパントが自ら正孔を受け入れ、 かつ 輸送することが可能なものがあり、 ホスト材料に、 敢えて正孔輸送能を付与する 必要がないケースもある。この場合はむしろ、 2 ) として以下に説'明するように、 電子輸送性を高めると考えられる構造とすることが好ましい。
2 \ 電子輸送材料および/または正孔阻止材料として用いるときは、 正孔輸送性 を抑え、 電子輸送性を強めるのが望ましく、 電子供与性置換基 (例えば、 アルキ ル基、 アミノ基、 アルコキシ基、 ァリールォキシ基、 アルキルチオ基、 ァリール チォ基など) を分子内に持ち合わせていないものが好ましく、 とりわけジァリー ルァミン骨格を含む基を有さないものが更に好ましい。
( Q。の置換基)
—般式 (I ) における連結基 Q。は、 任意の基で置換されていてもよい。
該置換基としては、 例えば、 1^〜1¾8として前述した基と同様の基が挙げられ る。
一般式 (I ) で表される化合物に、 適度に広い酸化還元電位差を持たせる目的 においては、 Q。は無置換であるか、 もしくは炭化水素基で置換されている場合が 好ましく、分子 振動を制限する観点から、 より好ましくは、無置換(水素原子)、 メチル基、 フエ-ル基であり、 最も好ましくは無置換 (水素原子) である。 前記一般式 (I ) で表される化合物の分子量は、 通常、 4 0 0 0以下、 好まし くは 3 0 0 0以下、 より好ましくは 2 0 0 0以下であり、 また通常 2 0 0以上、 好ましくは 3 0 0以上、 より好ましくは 4 0 0以上である。 分子量が上限値を越 えると、 昇華性が著しく低下して電界発光素子を制作する際に蒸着法を用いる場 合において支障を来す場合があり、 また分子量が下限値を下回ると、 ガラス転移 温度および、 融点、 気化温度などが低下するため、 耐熱性が著しく損なわれるお それがある。
以下に、 本発明の電荷輸送材料として好ましい具体的な例を示すが、 本発明は これらに限定されるものではない。 ,
Figure imgf000040_0001
llZU0/P00Zd£/L3d Ζ96而 SOO OAV
Figure imgf000041_0001
40 If
Figure imgf000042_0001
iiriio/ ooz<ir/x3<i Zf
Figure imgf000043_0001
llZllO/1OOZdf/X3d 
Figure imgf000044_0001
Figure imgf000045_0001
ππ爵 oo df/i
Figure imgf000046_0001
llZlT0/1-00Zdf/X3d 
Figure imgf000047_0001
Lf
Figure imgf000048_0001
im請 oozdf/ェ:) d
Figure imgf000049_0001
llZUO/POOZd£/lDd
Figure imgf000050_0001
Figure imgf000050_0002
im請 oozdf/ェ:) d OS
Figure imgf000051_0001
TlZllO/1-OOZdf/X3d £96 SOOZ ΟΛ\
Figure imgf000052_0001
51
Figure imgf000053_0001
im請 oozdf/ェ:) d Π/ΖΠΟさ oifcvuld S/6∑sS O:00∑A:V
Figure imgf000054_0001
Figure imgf000055_0001
im請 oozdf/ェ:) d
Figure imgf000056_0001
im請 oozdf/ェ:) d
Figure imgf000057_0001
差替え用紙 (規則 26)
Figure imgf000058_0001
Figure imgf000058_0002
Figure imgf000058_0003
差替え用紙 (規則 26)
Figure imgf000059_0001
差替え用紙 (規則 26)
Figure imgf000060_0001
Figure imgf000060_0002
im請 oozdf/ェ:) d
Figure imgf000061_0001
im請 oozdf/ェ:) d T9
Figure imgf000062_0001
i秦 oozdf/iDd Z9
Figure imgf000063_0001
iizuo/ oozdr/i3d 本発明の電荷輸送材料に用いられる化合物は、 目的とする化合物の構造に応じ て原料を選択し、 公知の手法を用いて合成することができる。
例えば、
A) 原料として Z— (CHO) を用いた場合、
1 ) Angew. Chem. Int. Ed. Engl. (1962) 1, 626 や Synthesis (1976), 1-24や J. Heterocyclic Chem. (1977) 14, 147 や Collect. Czech. Chem. Cominun. 57(1992) 2, 385-392 や C S— 262585号公報などで開示されている、 1当 量のアルデヒドと 0. 5 〜 2当量のァセチリ ドとを、硫酸などの強酸存在下で酢 酸、 ァレコーノレ、 ニトロベンゼン、 トノレェン、 クロ口ベンゼン、 クロロべンゼ ン、シクロへキサンなどの単独または混合溶媒中、室温で 1〜 10時間撹拌して、 あるいは水酸化ナトリゥムなどの強塩基存在下、 アルコールおよび/または水溶 媒中、 加熱条件下で 1〜10時間撹拌して、 中間体 (一 CH=CR— CO_) を 得、 これを酢酸溶媒中、 加熱条件下、 酸素存在下、 ァシルピリジ ゥム塩と酢酸 アンモニゥムを作用させて合成する方法、
Figure imgf000064_0001
2) Liebigs Ann. Chem. (1974), 1415-1422 や J. Org. Chem. 38, (2002) 6,830-832 ゃ特開 2000— 1 86066号公報などで開示されている、 ボロン トリフノレオリ ドゃ過塩素酸などの酸化剤存在下、 加熱条件でトルエン溶媒中、 了 ルデヒドとァセチリ ドとを反応させ、 ピリリウム塩を生成し、 それを水やアルコ ール溶媒中でアンモニアと反応させる方法、
Figure imgf000065_0001
3 ) J. Am. Chem. Soc. (1952) 74, 200などに開示されている、 酢酸、 アルコー ノレ、 二 ト ロベンゼン、 トノレェン、 クロ口ベンゼン、 ジクロ ロべンゼン、 シクロへ キサンなどの単独または混合溶媒中、 加熱条件下、 酢酸アンモニゥムとアルデヒ ドとァセチリ ドから一段階で合成する方法、
Figure imgf000065_0002
4 Chem. Commun. (Cambridge) (2000) 22, 2199-2200などに開示されている 水酸化 ナトリゥムなどの強塩基存在下、.無溶媒でアルデヒドと 2当量のァセチリ ドを室温で、 乳鉢を用いてすり混ぜて中間体 (ジケトン) を生成した後、 酢酸、 ァノレコーノレ、 ニトロべンでン、 トノレエン、 クロ口べンゼン、 ジクロロベンゼン、 シク口へキサンなどの単独または混合溶媒中、 加熱条件下で酢酸ァンモ-ゥムを 作用させて合成する方法、
へ A
Ra-CHO +
Figure imgf000065_0003
5 ) J. Org. Chem. (1988), 53, 5960 などに開示されている、 アルデヒ ドとェチ リデンビニルァミンから一段階で合成する方法、
Figure imgf000066_0001
などが適用可能である。
B ) 2, 4 , 6—位の少なくとも一力所に塩素や臭素やヨウ素などのハロゲン 原子が置換されたピリジン環を原料に用いると、 前記ハロゲン元素を任意の置換 基に変換が可能である。
例えば、 Org. Lett. 3 (2001) 26, 4263-4265 などに開示されている、 パラジゥ ム触媒存在下、 加熱条件でジンクプロマイドゃボロン酸を作用させることによつ て合成する方法が挙げられる。 '
Figure imgf000066_0002
C ) その他、 各種置換基の導入、 連結基 Zの形成において、 必要に応じ、 任意 に公知の手法を適用することができる。 例えば、 Zが直接結合の場合、
1 ) アルデヒドとしてパラホルムアルデヒ ド、ァセチリ ドとして芳香族ァシル化 合物を 用い、 2, 6—位に芳香環基を有するピリジンを合成し、 これを N—プロ モスクシンィミドなどのハロゲン化剤を用いてピリジン環の 4—位をハロゲン化 してハロゲン体を得、 そのハロゲン原子を一 B ( O H) 2基や一 Z n C 1基や一 M g B r基に変換したものと、前 記ハロゲン体とをカツプリング反応させて合成す る方法、
2 ) 前記ハロゲン体を、 n—プチルリチウムなどでリチォ化後、 N , N—ジメチ ルホル ムアミ ドで処理することで、 2, 6 _位に芳香環基を有し、 4一位に一 C H O基を有するピリジンを合成した後、 ァセチリ ドと反応させて第二のピリジン 環を合成する方法、
3 ) 前記 B ) の出発原料として挙げた 2, 6—ジクロロー 4一ョードピリジンを 塩基存 在下、銅粉末などの銅触媒を用いて、 1 5 0〜2 5 0 °Cで加熱撹拌するこ とにより、 2, 6 , 2 ' , 6 ' ーテトラクロロー [ 4, 4 ' ] ビビリジルを合成 し、 これを前記 Bと同様に処理することで合成する方法などが挙げられる。
尚、 合成する際に用いられるアルデヒ ド (R a _ C H O ) は、 通常入手可能な 試薬を適宜利用可能であるが、 必要があれば、 ,
1)
例えばハロゲン化物 ( R a— X) や活性水素原子を有する炭化水素化合物 ( R a - H) をブチルリチウムなどのアルキルリチウム、 水素化ナトリゥム、 トリェチル ァミン、 t e r t—ブトキシカリゥム、 水酸化ナトリゥムなどの強塩基 (好まし くはブチルリチウムなどのアルキルリチウム) を作用させた後、 N , N—ジメチ ルホルムァミ ドで処理する方法(Organic & Biomolecular Chemistry (2003) 1, 7 1157- 1170; Tetrahedron Lett. 42 (2001) 37, 6589-6592)、
2)
一 C02R基 (Rは水素原子、 塩素原子、 アルキル基、 芳香環基、 アミノ基)をリチウ ムアルミニウムハイ ドライ ド、 水素化硼素ナトリゥム等で還元して、 アルコール' 化後、 ピリジニゥムクロ口クロメート、 二酸化マンガン、 アイォドキシベンゾィ ックアシッド、 パーォキソジスノレフェート、 2, 3—ジク口ロー 5,6—ジシァノ一 1,4 一べンゾキノン等で酸化して一 CHO 化する方法 (J. Med. Chem. (1990) 33, 2408-2412; Angew. Chem., Int. Ed. 40 (2001) 23, 4395-4397; J. Am.Chem. Soc. (2002) 124, 10, 2245-58; J. Am. Chem. Soc. (1993) 115, 9, 3752-3759; J. Chem. Res., Synop. (2001) 7, 274-276; Synthesis (2001) 15, 2273-2276; Bull. Korean Chem. Soc. 20 (1999) 11, 1373- 1374; Arzneim.-Forsch. 47 (1997) 1, 13- 18; J. Org. Chem. 63 (1998) 16, 5658-5661; J. Chem. Soc. Sec. C; Organic (1968) 6, 630-632)、 3)
一 C02R基 (Rは水素原子、 塩素原子、 アルキル基、 芳香環基、 アミノ基)をリチウ ムトリス (ジアルキルァミノ)アルミニウムハイ ドライ ド、 ソディウムトリス (ジ アルキルァミノ) アルミニウムハイ ドライ ドなどで還元し、 一段階で一 CHO 化 する方法 (Bull. Korean Chem.Soc, 13 (1992) 6, 670-676; Bull. Korean Chem. So , 12 (1991) 1, 7-8; Org. Prep. Proced. Int. 24 (1992) 3,335-337)、
4)
一 CO2R基 (Rは水素原子、 塩素原子、 アルキル基、 芳香環基、 アミノ基)を水素と パラジウム触媒の存在下、 一段階で- CHO 化する方法 (Chem. Ber. (1959) 92, 2532-2542; WO 00/12457; Bull. Chem. Soc. Jpn. (2001) 74, 1803- 1815)、
5)
- CN 基をリチウムトリス (ジアルキルァミノ) アルミニウムハイドライ ドなど で還元し、 一段階で一 CHO化する方法 (Bull. Korean Chem. Soc" 13 (1992) 6,670-676;
6)
Ar— CH3 S (Arは芳香環基) に o-Ioaylbenzoic acid, Dess-Martin periodinane, Acetoxyiodosylbenzoic acidなどを作用させて、 直接、 Ar_ CHO化する方法 ( Am. Chem. Soc. (2002) 124, 10, 2245-58)、
7)
Ar_ CH3基 (Arは芳香環基) を Ar— CH2Br、 Ar— CH2OAcO を経由して Ar— CH2OH に変換後、 ピリジニゥムクロ口クロメート、 二酸化マンガン、 アイォド キシベンゾィックァシッド等で酸化して- CHO化する方法(J. Org. Chem. (1993) 58, 3582-3585) ,
8)
1-ェチノレ- 1-ァリールァリルアルコールに Vilsmeier試薬を作用させて、 了リール カルボキシアルデヒ ドを合成する方法 (Indian Journal of Chemistry (1988) 27B, 213-216)、 9)
1,4- Cyclohexadiene類に Vilsmeier試薬を作用させて、 ァリールカルボキシァ ルデヒ ドを 合成する方法 ( Synthesis (1987), 197- 199; Synthesis (1985), 779-781)
10)
Ar— C¾基 (Arは芳香環基) を臭素、 N—ブロモ琥珀酸イミ ドなどを用いて臭 素イ匕 して Ar— CH2Br と した後、 2— Nitropropane carboanion 試薬、 Hexamethylenetetramine 等を作用させ て Ar _ CHO 化する方法 (Collect- Czech. Chem. Commun. (1996) 61, 1464-1472; Chem. Eur. J„ (1996) 2, 12, 1585- 1595; J. Chem. Research (S), (1999) 210-211)、
11)
ポリメチュウム塩 (ヘプタメチュウム塩など) からァリールアルデヒ ド (1,3,5_ トリホルミルベンゼンなど)を得る方法(Collect. Czech. Chem. Commun. (1965) 30, 53-60)、
12)
ト リホノレミノレメタンの self-condensationにより、 1,3,5_ ト リホルミルベンゼンを 得る方 法 (Collect. Czech. Chem. Commun. (1962) 27, 2464-2467)、
13)
Ar— CHBr2基 (Arは芳香環基) をジアルキルアミンを用いて Ar— CHO化する 方法 (Bulletin de La Societe Chmique De France (1966) 9, 2966-2971)
などにより、 容易に合成することが可能である。 該化合物を合成する際に用いられるケトン(R c— C O— C H2— R b )は、通 常 入手可能な試薬を適宜利用可能であるが、 必要があれば、
1) " Rc— C02R基 (Rは水素原子、 塩素原子、 アルキル基、 芳香環基、 アミノ基)を各種 アルキル化剤 (アルキルリチウム、 ジメチル硫酸、 ジメチルスルホキシドなど) で処理することにより、 Rc-CO-CH2RM匕する方法(J. Am. Chem. Soc. (1959), 81, 935-939; J. Am. Chem. So (1961) 83, 4668S Tetrahedron Lett. (1967) 1073-; J. Chem. So (i960) 360 J. Chem. Soc.' Perkin Trans. 1 (1977) 680;
JP5-5062039) ,
2)
塩化アルミニウムなどのルイス酸触媒存在下、 酸クロライドなどのァシル化剤を 作用させて合成する方法 (極めて一般的な、 フリーデルクラフツ反応) などによ り、 容易に合成することが可能である。
また、 反応生成物から、 目的物を常法に従って、 ろ過または抽出後、 濃縮する ことにより溶媒から分離し、 適宜、 再結晶化、 カラムクロマトグラフィー等の手 法により、 精製して本発明の化合物を得ることができる。
連結基 Z Z 2, Qo, R i〜R8がへテロ環である場合、 その前駆体を通常入手 可能な 試薬として、 あるいは、 「ヘテロ環の化学—医薬品の基礎」 (2002年、 國 枝ら、化学同仁社)や「: Eeterocyclic ChemistryJ (第 4版、 2000年、 J.A.Jouleand K.Mills, Blackwell Science社) に記載または引用されている合成方法を用いて 合成するなどして入手し、 得られた該前駆体らを、上述の合成方法や、 あるいは 「Pajladium in Heterocyclic Chemistry: A guide lor the Synthetic Chemist;」 (第 二版 (2002)、 Jie Jack Li and Gordon W. Gribble, Pergamon社) や 「遷移 金属が拓く有機合成 その多彩な反応形式と最新の成果」 (1997年、辻ニ郞、化 学同仁社) などに記載または引用されている環同士の結合 (カップリング) 反応 を行うことで、 目的物を合成することも可能である。
本発明の電荷輸送材料を有機電界発光素子に適用した場合、 発光層にドーパン トとして燐光発光性色素である有機金属錯体を用いるときに、 特に優れた発光効 率と駆動寿命をもたらす。 中でも、 前記有機金属錯体が、 2—ァリールピリジン 系配位子と金属元素とが、 炭素一金属シグマ結合および窒素一金属配位結合によ つて連結されているものであるときに、 効果が顕著である。 従って、 有機金属錯 体としては、 2—ァリールピリジン系配位子を有することが好ましい。
中心金属としては、 生成する錯体の発光機構が少なくとも配位子軌道から金属 原子軌道への電荷移動を伴うものを含んでいるものであるのが好ましい。 本発明の電荷輸送材料をドーパントと同一の層 (発光層) および Zまたはそれ に隣接した層 (正孔阻止層および _/または電子輸送層) に適用すると、 前記電荷 輸送材料は、 2—ァリールピリジン系配位子との物理化学的な類似性、 電気化学 的な類似性、 三重項励起準位の類似性などが効果を発揮して、 ドーパント上での 電荷の再結合効率向上、ホスト分子からドーパントへのエネルギー移動効率向上、 発光層一正孔阻止層間での励起子失活確率低減などがもたらされるのである。 本発明の電荷輸送材料は、 高い電荷輸送性を有するため、 電荷輸送性材料とし て電子写真感光体、 有機電界発光素子、 光電変換素子、 有機太陽電池、 有機整流 素子等に好適に使用できる。 特に電子輸送性に優れることから電子輸送性の化合 物として好適である。
また本発明の電荷輸送材料を用いることにより、 耐熱性に優れ、 長期間安定に 駆動 (発光) する有機電界発光素子が得られるため、 有機電界発光素子材料とし て好適である。 ' 次に、 本発明の有機電界発光素子について説明する。
本発明の有機電界発光素子は、 陽極、 .陰極、 およびこれら両極間に設けられた 有機発光層 (以下、 単に 「発光層」 と称する場合がある) を有し、 本発明の電荷 輸送材料を含む層を有することを特徴とする。本発明の素子は少なくとも、陽極、 陰極、 およびこれら両極間に設けられた発光層を有していればよい。
本発明の電荷輸送材料は、 光学的バンドギャップが広く、 また適度な電子輸送 性を有するため、特に発光層の陰極側に接して設ける層 (以下、 「正孔阻止層」 と 称す) に使用すると有効である。
尚、 本発明の電荷輸送材料は、 有機電界発光素子を構成するいずれの層にも使 用することができる。 特に、 前述の通り、 有機発光層 (以下、 単に、 発光層と言 うことがある) 及ぴ努光層と陰極との間に設けられる電子輸送性の層に使用する ことが好ましい。 また、 発光層に必ずしも接している必要はないが、 本発明の電 荷輸送材料に用いられる化合物の特性を有効に生かすには、 正孔阻止層の材料と して使用することが好ましい。 尚、 通常は、 発光層の陰極側界面に接する層を正 孔阻止層と言う。
また、 発光層の材料、 特にホス ト材料として使用する場合には、 高い発光効率 を示す有機電界発光素子を得ることが出来るため好ましい。 特に、 本発明の電荷 輸送材料を、 発光層に使用した場合、 ピリジン環に由来する適度な L UM Oレべ ルを有する為、 発光層内に適度に電子が注入され、 正孔輸送層から注入された正 孔と発光層内で効果的に再結合が起こる。 それ故、 正孔阻止層を有さない有機電 界発光素子の発光層としても使用することができる。 .
更には、 複数の層に本発明の電荷輸送材料を使用してもよく、 特に発光層と正 孔阻止層の両層に使用することが好ましい。 発光層と正孔阻止層の両層に、 本発 明の電荷輸送材料を使用することにより、 更に素子の寿命を長くすることが出来 る。 また、 各層に本発明の電荷輸送材料を複数種使用してもよく、 本発明の電荷 輸送材料以外の電荷輸送材料と組み合わせて使用してもよい。
また、 2以上の層に本発明の電荷輸送材料が含有されている場 、 これらの層 に含有される電荷輸送材料は同一のものであっても異なるものであってもよい。 なお、 本発明の有機電界発光素子において、 陰極一発光層間を 「電子輸送層」 と称し、 2つ以上の場合は陰極に接している層を「電子注入層」、それ以外の層を 総称して 「電子輸送層」 と称す。 また、 陰極一発光層間に設けられた層のうち、 発光層に接している層を、 特に 「正孔阻止層」 と称する場合がある。
以下に、 添付図面を参照して、 本発明の電荷輸送材料を正孔阻止層に含有する 場合を例に、 本発明の有機電界発光素子の実施の形態を詳細に説明する。
図 1は本発明に用いられる一般的な有機電界発光素子の構造例を模式的に示す 断面図であり、 1は基板、 2は陽極、 4は正孔輸送層、 5は発光層、 6は正孔阻 止層、 8は陰極を各々表わす。 基板 1は有機電界発光素子の支持体となるもので あり、 石英やガラスの板、 金属板や金属箔、 プラスチックフィルムやシートなど が用いられる。 特にガラス板や、 ポリエステル、 ポリメタタリレート、 ポリカー ボネート、 ポリスルホンなどの透明な合成樹脂の板またはフィルムが好ましい。 合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。 基板のガ スバリア性が小さすぎると、 基板を通過した外気により有機電界発光素子が劣化 することがあるので好ましくない。 このため、 合成樹脂基板の少なくとも片面に 緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の 一つである。
基板 1上には陽極 2が設けられるが、 陽極 2は正孔輸送層 4への正孔注入の役 割を果たすものである。 陽極 2は、 通常、 アルミニウム、 金、 銀、 ニッケル、 パ ラジウム、 白金等の金属、 インジウム及び/またはスズの酸化物などの金属酸化 物、 ヨウ化銅などのハロゲン化金属、 カーポンプラック、 あるいは、 ポリ (3— メチルチオフェン)、ポリピロール、ポリアユリン等の導電性高分子などにより構 成される。 陽極 2は通常、 スパッタリング法、 真空蒸着法などに,より形成される ことが多い。 また、 銀などの金属微粒子、 ヨウ化銅などの微粒子、 カーボンブラ ック、 導電性の金属酸化物微粒子、 導電性高分子微粉末などで陽極 2を形成する 場合には、 適当なバインダー樹脂溶液中に分散させて、 基板 1上に塗布すること により形成することもできる。 さらに、 導電性高分子で陽極 2を'形成する場合に は、 電解重合により基板 1上に直接重合薄膜を形成したり、 基板 1上に導電性高 分子を塗布して形成することもできる(Ap p l . P h y s . L e t t., 60卷, 271 1頁, 1 99 2年)。
陽極 2は通常は単層構造であるが、 所望により複数の材料からなる積層構造と することも可能である。
陽極 2の厚みは、 必要とする透明性により異なる。 透明性が必要とされる場合 は、 可視光の透過率を、 通常 60%以上、 好ましくは 80%以上とすることが望 ましい。 この場合、 陽極の厚みは通常 5 nm以上、 好ましくは 10 nm以上であ り、 また通常 1000 nm以下、 好ましくは 500 nm以下程度である。 不透明 でよい場合は陽極 2の厚みは任意であり、 所望により金属で形成して基板 1を兼 ねてもよい。
図 1に示す構成の素子において、 陽極 2の上には正孔輸送層 4が設けられる。 正孔輸送層の材料に要求される条件としては、 陽極からの正孔注入効率が高く、 かつ、 注入された正孔を効率よく輸送することができる材料であることが必要で ある。 そのためには、 イオン化ポテンシャルが小さく、 可視光の光に対して透明 性が高く、 しかも正孔移動度が大きく、 さらに安定性に優れ、 トラップとなる不 純物が製造時や使用時に発生しにくいことが要求される。 また、 発光層 5に接す るために発光層からの発光を消光したり、 発光層との間でェキサイプレックスを 形成して効率を低下させないことが求められる。 上記の一般的要求以外に、 車載 表示用の応用を考えた場合、 素子にはさらに耐熱性が要求される。 従って、 ガラ ス転移温度 T gとして 85 °C以上の値を有する材料が望ましい。
このような正孔輸送材料としては、 例えば、 4, 4' —ビス [N— (1一ナフ チル) 一 N—フエニルァミノ] ビフエニルで代表される 2個以上の 3級ァミンを 含み 2個以上の縮合芳香族環が窒素原子に置換した芳香族ジァミ ,ン (特開平 5— 23468 1号公報)、 4, 4, , 4, 'ー トリス ( 1一ナフチルフエニルァミノ) トリフエ-ルァミン等のスターバースト構造を有する芳香族ァミン化合物 (J . Lum i n., 72— 74卷、 985頁、 1 997年)、 トリフエ二ルァミンの 四量体から成る芳香族ァミン化合物 (C h e m. C ommu η'. , 21 75頁、 1 996年)、 2, 2 ' , 7 ' 7, —テトラキス一 (ジフエニルァミノ) - 9, 9 ' —スピロビフルオレン等のスピロ化合物 (S y n t h. Me t a l s , 9 1 卷、 209頁、 1 9 97年) 等が挙げられる。 これらの化合物は、 単独で用いて もよいし、 必要に応じて、 複数種混合して用いてもよい。
上記の化合物 外に、 正孔輸送層 4の材料として、 ポリビニルカルバゾール、 ポリ ビュルトリフエニルァミン(特開平 7— 53953号公報)、テトラフェニル ベンジジンを含有するポリァリーレンエーテルサルホン(P o 1 y m. Ad v. T e c h., 7巻、 33頁、 1 996年) 等の高分子材料が挙げられる。 正孔 輸送層 4は、 スプレー法、 印刷法、 スピンコート法、 ディップコート法、 ダイコ 一ト法などの通常の塗布法や、 ィンクジェット法、 スクリーン印刷法など各種印 刷法等の湿式成膜法や、 真空蒸着法などの乾式成膜法で形成することができる。 塗布法の場合は、 正孔輸送材料を 1種または 2種以上を、 必要により正孔のト ラップにならないバインダ一樹脂や塗布性改良剤などの添加剤を添加し、 適当な 溶剤に溶解して塗布溶液を調製し、 スピンコート法などの方法により陽極 2上に 塗布し、 乾燥して正孔輸送層 4を形成する。 バインダー樹脂としては、 ポリカー ポネート、 ポリアリレート、 ポリエステル等が挙げられる。 バインダー樹脂は添 加量が多いと正孔移動度を低下させるので、 少ない方が望ましく、 通常、 5 0重 量%以下が好ましい。
真空蒸着法の場合には、正孔輸送材料を真空容器内に設置されたルツボに入れ、 真空容器内を適当な真空ポンプで 1 0—4 P a程度にまで排気した後、 ルツボを加 熱して、 正孔輸送材料を蒸発させ、 ルツポと向かい合って置かれた、 陽極 2が形 成された基板 1上に正孔輸送層 4を形成させる。
正孔輸送層 4の膜厚は、 通常 5 n m以上、 好ましくは 1 0 n m以上であり、 ま た通常 3 0 0 n m以下、 好ましくは 1 0 0 n m以下である。 この様に薄い膜を一 様に形成するためには、 一般に真空蒸着法がよく用いられる。
図 1に示す素子において、 正孔輸送層 4の上には発光層 5が設けられる。 発光 層 5は、 電界を与えられた電極間において、 陽極から注入されて正孔輸送層を移 動する正孔と、 陰極から注入されて正孔阻止層 6を移動する電子 'との再結合によ り励起されて強い発光を示す発光性化合物より形成される。
発光層 5に用いられる発光性化合物としては、 安定な薄膜形状を有し、 固体状 態で高い発光 (蛍光または燐光) 量子収率を示し、 正孔および/または電子を効 率よく輸送することができる化合物であることが必要である。 さらに電気化学的 かつ化学的に安定であり、 トラップとなる不純物が製造時や使用時に発生しにく い化合物であることが要求される。
このような条件を満たし、 蛍光を発する有機発光層を形成する材料としては、 8 —ヒドロキシキノリンのアルミニウム錯体などの金属錯体 (特開昭 5 9 - 1 9 4 3 9 3号公報)、 1 0—ヒ ドロキシベンゾ [ h ] キノ リンの金属錯体 (特開平 6
- 3 2 2 3 6 2号公報)、 ビススチリルベンゼン誘導体(特開平 1— 2 4 5 0 8 7 号公報、 同 2— 2 2 2 4 8 4号公報)、 ビススチリルァリーレン誘導体(特開平 2
- 2 4 7 2 7 8号公報)、 ( 2 —ヒ ドロキシフエニル) ベンゾチアゾールの金属錯 体 (特開平 8 _ 3 1 5 9 8 3号公報)、 シロール誘導体、 等が挙げられる。 これら の発光層材料は、 通常は真空蒸着法により正孔輸送層上に積層される。 また、 前 述の正孔輸送層材料のうち、 発光性を有する芳香族ァミン系化合物も発光層材料 として用いることが出来る。
なお、 本発明の電荷輸送材料は、 この発光層材料として使用することも可能で ある。 その場合には、 正孔阻止層 6または電子輸送層 7に使用できる材料として 前述した公知材料に代表される、 その他の電子輸送性材料ゃ正孔阻止材料の中か ら、 本発明の電荷輸送材料よりも◦ . 1 e V以上大きなイオン化ポテンシャルを 有する材料を選択して使用することが好ましい。
更に本発明の有機電界発光素子において、 有機発光層 (単に、 発光層と呼ぶこ ともある) 及び、 有機発光層の陰極側界面に接する層の両層に、 本発明の電子輸 送材料を使用しても良く、 駆動寿命の観点から、 特に好ましい。 ,陰極側界面に接 する層は、 通常、 正孔阻止層であることが多い。
発光層にドーパントを含まない場合は、 本発明で規定される電荷輸送材料の中 から、 イオン化ポテンシャルの差が 0 . 1 e V以上となる材料を選択し、 発光層 と正孔阻止層の各々に使用すればよい。 発光層にドーパントを含む場合は、 ドー パントのイオン化ポテンシャルより、 0 . 1 e V以上大きい化合物を、 本発明で 規定される電荷輸送材料の中から選択し、 発光層と正孔阻止層に各々使用すれば よい。
素子の発光効率を向上させるとともに発光色を変える目的で、 例えば、 8—ヒ ドロキシキノリンのアルミニウム錯体をホスト材料として、 タマリン等のレーザ 一用蛍光色素をドープすること ( J . A p 1 . P h y s . , 6 5巻, 3 6 1 0頁, 1 9 8 9年) 等が行われている。 このドーピング手法は、 発光層 5 にも適用でき、 ドープ用材料としては、 クマリン以外にも各種の蛍光色素が使用 できる。
青色発光を与える蛍光色素としては、 ペリレン、 ピレン、 アントラセン、 クマ リンおよびそれらの誘導体等が挙げられる。 緑色蛍光色素としては、 キナタリ ド ン誘導体、 クマリン誘導体等が挙げられる。 黄色蛍光色素としては、 ルブレン、 ペリミ ドン誘導体等が挙げられる。 赤色蛍光色素としては、 D C M系化合物、 ベ ンゾピラン誘導体、 ローダミン誘導体、 ベンゾチォキサンテン誘導体、 ァザベン ゾチォキサンテン等が挙げられる。 上記のドープ用蛍光色素以外にも、ホスト材料に応じて、レーザー研究, 8卷, 694頁, 803頁, 958頁 (1 980年) ;同 9卷, 85頁 (1 98 1年)、 に列挙されている蛍光色素などが発光層用のドープ材料として使用することがで さる。
ホスト材料に対して上記蛍光色素がドープされる量は、 10— 3重量。 /0以上が好 ましく、 0. 1重量。 /0以上がより好ましい。 また 10重量。 /0以下が好ましく、 3 重量%以下がより好ましい。 下限値を下回ると、 素子の発光効率向上に寄与でき ない場合があり、 上限値を越えると濃度消光が起き、 発光効率の低下に至る可能 性がある。 ,
一方、 燐光発光を示す努光層は、 通常、 燐光性ドーパントとホス ト材料を含ん で形成される。 燐光性ドーパントとしては、 例えば周期表 7ないし 1 1族から選 ばれる金属を含む有機金属錯体が挙げられ、 該金属錯体の T 1 (最低励起三重項 準位) より高い T 1を有する電荷輸送性有機化合物をホスト材料として使用する ことが好ましい。
周期表 7ないし 1 1族から選ばれる金属を含む燐光性有機金属錯体における、 該金属として好ましくは、 ルテニウム、 ロジウム、 パラジウム、 銀、 レニウム、 オスミウム、 イリジウム、 白金、 および金が挙げられる。 これらの有機金属錯体 として、 好ましくは下記一般式 (X) または一般式 (VI) で表される化合物が挙 げられる。
M L q- j L ' j (X)
(式中、 Mは金属、 qは該金属の価数を表す。 Lおよび L' は二座配位子を表す。 jは 0または 1または 2を表す。) R
2
Figure imgf000078_0001
9 3
(式中、 M7は金属、 Tは炭素または窒素を表わす。 Τが窒素の場合は R94、 R95 は無く、 Tが炭素の場合は R94、 R95は水素原子、 ハロゲン原子、'アルキル基、 ァ ラルキル基、 アルケニル基、 シァノ基、 アミノ基、 ァシル基、 アルコキシ力ルポ 二ノレ基、 力ルポキシル基、 アルコキシ基、 アルキルアミノ基、 ァラルキルァミノ 基、 ハロアルキル基、 水酸基、 ァリールォキシ基、 置換基を有していてもよい芳 香族炭化水素基または芳香族複素環基を表わす。
R92、 R93は水素原子、 ハロゲン原子、 アルキル基、 ァラルキル基、 アルケニル 基、 シァノ基、 アミノ基、 ァシル基、 アルコキシカルボニル基、 カルボキシル基、 アルコキシ基、 アルキルアミノ基、 ァラルキルアミノ基、 ハロアルキル基、 水酸 基、 ァリールォキシ基、 置換基を有していてもよい芳香族炭化水素基または芳香 族複素環基を表わし、 互いに連結して環を形成しても良い。)
一般式 (X ) 中の二座配位子 Lおよび L ' はそれぞれ以下の部分構造を有する 配位子を示す。
Figure imgf000079_0001
(環 Al" および環 A 1, は爷々独立に、 芳香族炭化水素基または芳香族複素環 基を表わし、 置換基を有していてもよい。 環 A 2および環 A 2, は含窒素芳香族 複素環基を表わし、 置換基を有していてもよい。 R, 、 R, , および R' ' ' は それぞれハロゲン原子;アルキル基;アルケニル基;アルコキシ力ルポニル基; メ トキシ基;アルコキシ基;ァリールォキシ基; ジアルキルァミノ基;ジァリー ルァミノ基;力ルバゾリル基;ァシル基;ハロアルキル基またはシァノ基を表す。 ) 一般式 (X) で表される化合物として、 さらに好ましくは下記一般式 (V a)、
(Vb) (V c) で表される化合物が挙げられる。
Figure imgf000079_0002
(式中、 M4は金属、 wは該金属の価数を表す。 環 A 1" は置換基を有していて もよい 芳香族炭化水素基を表わし、環 A 2は置換基を有していてもよい含窒素芳 香族複素環基を表わす。)
78 差替え用紙 (規則 26)
Figure imgf000080_0001
(式中、 M5は金属、 wは該金属の価数を表す。 環 A l〃 は置換基を有していて もよい 芳香族炭化水素基または芳香族複素環基を表わし、環 A 2,は置換基を有し ていてもよい含窒素芳香族複素環基を表わす。)
Figure imgf000080_0002
(式中、 M6は金属、 wは該金属の価数を表し、 j は 0または 1または 2を表す。 環 A 1" および環 A l, は各々独立に、置換基を有していてもよい芳香族炭化水 素基または芳香族複素環基を表わし、 環 A 2およぴ環 A 2' は各々独立に、 置換 基を有していてもよい含窒素芳香族複素環基を表わす。)
一般式 (V a)、 (Vb)、 (V c) で表される化合物の環 A 1および環 A 1 ' と して、 好ましくは、 フエニル基、 ビフエ二ル基、 ナフチル基、 アントリル基、 チ ェニル基、 フリル基、 ベンゾチェ二ル基、 ベンゾフリル基、 ピリジル基、 キノリ ル基、 イソキノリル基、 またはカルバゾリル基が挙げられる。
環 A 2および環 A 2 ' として、 好ましくは、 ピリジル基、 ピリミジル基、 ピラ ジル基、 トリアジル基、 ベンゾチアゾール基、 ベンゾォキサゾール基、 ベンゾィ ミダゾール基、 キノリル基、 イソキノリル基、 キノキサリル基、 またはフエナン トリジル基が挙げられる。
一般式 (Va)、 (Vb) および (V c) で表される化合物が有していてもよい 置換基としては、 フッ素原子等のハロゲン原子; メチル基、 ェチル基等の炭素数 1〜6のアルキル基; ビエル基等の炭素数 2〜 6のアルケニル基;メ トキシカル ボニル基、 ェトキシカルボエル基等の炭素数 2〜6のアルコキシ力ルポ-ル基; メ トキシ基、 エトキシ基等の炭素数 1〜6のアルコキシ基; フエノキシ基、 ベン ジルォキシ基などのァリールォキシ基;ジメチルァミノ基、 ジェチルァミノ基等 のジアルキルアミノ基;ジフエニルァミノ基等のジァリールアミノ基;カルバゾ リル基;ァセチル基等のァシル基; トリフルォロメチル基等のハロアルキル基; シァノ基等が挙げられ、 これらは互いに連結して環を形成しても良い。
なお、環 A 1 ' 'が有する置換基と環 A 2が有する置換基が結合、または環 A 1 ' が有する置換基と環 A 2' が有する置換基が結合して、 一つの縮 環を形成して もよく、 このような縮合環としては 7, 8—べンゾキノリン基等が挙げられる。 環 Al"、 環 A 1 ' 、 環 A 2および環 A 2 ' の置換基として、 より好ましくはァ ルキル基、 アルコキシ基、 芳香族炭化水素基、 シァノ基、 ハロゲン原子、 ハロア ルキル基、 ジァリールアミノ基、 またはカルバゾリル基が挙げられる。
式 (Va;)、 (Vb) における M4ないし M5として好ましくは、 ルテニウム、 口 ジゥム、 パラジウム、 銀、 レニウム、 オスミウム、 イリジウム、 白金または金が 挙げられる。 式 (VI) における M7として好ましくは、 ルテニウム、 ロジウム、 パラジウム、銀、 レニウム、 オスミウム、 イリジウム、 白金または金が挙げられ、 特に好ましくは、 白金、 パラジウム等の 2価の金属が挙げられる。
前記一般式 (X)、 (Va), (Vb) および (Vc) で示される有機金属錯体の 具体例を以下に示すが、 下記の化合物に限定されるわけではない。 18
Figure imgf000082_0001
i請 oo df/ェ: Μ
Figure imgf000083_0001
前記一般式 (X)、 (Va)、 (Vb) および (Vc) で表される有機金属錯体の 中でも、 特に配位子 Lおよび/または L, として 2—ァリ一ルビリジン系配位子 (2—ァリールピリジン、 これに任意の置換基が結合したもの、 またはこれに任 意の気が縮合してなるもの) を有する化合物が好ましい。
前記一般式 (VI) で表わされる有機金属錯体の具体例を以下に示すが、 下言の 化合物に限定されるわけではない。
Figure imgf000084_0001
燐光発光を示す発光層に使用されるホスト材料としては、 蛍光発光を示す発光 層に使用されるホス ト材料 (本発明の電子輸送材料も含む) として前述した材料 の他に、 4, 4' -N, N,ージカノレバゾ一レビフエ二ノレなどのカノレバゾーノレ誘導 体 (WO 00/706 55号公報)、 トリス (8—ヒ ドロキシキノリ ン) アル ミニゥム (US P 6, 303, 238号公報)、 2, 2', 2 ' ' 一 (1, 3, 5一ベンゼント リノレ) トリス [ 1一フエ ニノレー 1 H—ベンズィ ミダゾーノレ] (Appl. Phys. Lett., 78巻, 1622項, 2001)、 ポリ ビエル力ルバゾール (特開 2 001-257076号公報) 等が挙げられる。 本発明の電荷輸送材料がホスト材料として使用できることは、 前述の通りであ る。
さらに本発明の有機電界発光素子における発光層は、 ホスト材料および燐光性 ドーパントと共に、 前述の蛍光色素を含有していてもよい。
発光層中にドーパントとして含有される有機金属錯体の量は、 0 . 1重量%以 上が好ましく、 また 3 0重量%以下が好ましい。 下限値を下回ると素子の発光効 率向上に寄与できない場合があり、 上限値を上回ると有機金属錯体同士が 2量体 を形成する等の理由で濃度消光が起き、 発光効率の低下に至る可能性がある。 燐光発光を示す発光層における燐光性ドーパントの量は、従来の蛍光( 1重項) を用いた素子において、発光層に含有される蛍光性色素(ドーパント)の量より、 若干多い方が好ましい傾向がある。 また燐光性ドーパントと共に蛍光色素が発光 層中に含有される場合、該蛍光色素の量は、 0 . 0 5重量%以上が好ましく、 0 . 1重量%以上がより好ましい。 また 1 0重量%以下が好ましく、 '3重量%以下が より好ましい。
発光層 5の膜厚は、 通常 3 n m以上、 好ましくは 5 n m以上であり、 また通常 2 0 0 n m以下、 好ましくは 1 0 0 n m以下である。
発光層も正孔輸送層と同様の方法で形成することができる。 上述の蛍光色素お よびノまたは燐光色素 (燐光性ドーパント) を発光層のホス ト材料にドープする 方法を以下に説明する。
塗布の場合は、 前記発光層ホス ト材料と、 ドープ用色素、 さらに必要により、 電子のトラップや発光の消光剤とならないバインダ一樹脂や、 レベリング剤等の 塗布性改良剤などの添加剤を添加し溶解した塗布溶液を調整し、 スピンコート法 などの方法により正孔輸送層 4上に塗布し、 乾燥して発光層 5を形成する。 バイ ンダ一樹脂としては、 ポリカーボネート、 ポリアリレート、 ポリエステル等が挙 げられる。バインダー樹脂は添加量が多いと正孔 電子移動度を低下させるので、 少ない方が望ましく、 5 0重量%以下が好ましい。
真空蒸着法の場合には、 前記ホスト材料を真空容器内に設置されたるつぼに入 れ、 ドープする色素を別のるつぼに入れ、 真空容器内を適当な真空ポンプで 1 . 0 X 1 0 _4T o r r程度にまで排気した後、 各々のるつぼを同時に加熱して蒸発 させ、 るつぼと向かい合って置かれた基板上に層を形成する。 また、 他の方法と して、 上記の材料を予め所定比で混合したものを同一のるつぼを用いて蒸発させ てもよい。
上記各ドーパントが発光層中にドープされる場合、 発光層の膜厚方向において 均一にドープされるが、膜厚方向において濃度分布があっても構わない。例えば、 正孔輸送層との界面近傍にのみドープしたり、 逆に、 正孔阻止層界面近傍にドー プしてもよい。
発光層も正孔輸送層と同様の方法で形成することができるが、 通常は真空蒸着 法が用いられる。
なお発光層 5は、 本発明の性能を損なわない範囲で上記以外の成分を含んでい てもよい。
図 1に示す素子において、 正孔阻止層 6は発光層 5の上に、 発'光層 5の陰極側 の界面に接するように積層される。
正孔阻止層は、 正孔輸送層から移動してくる正孔を陰極に到達するのを阻止す る役割と、 陰極から注入された電子を効率よく発光層の方向に輸送することがで きる化合物より形成されることが好ましい。 正孔阻止層を構成する材料に求めら れる物性としては、 電子移動度が高く正孔移動度が低いことが必要とされる。 正 孔阻止層 6は正孔と電子を発光層内に閉じこめて、 発光効率を向上させる機能を 有する。
この例においては、 正孔阻止層は本発明の電荷輸送材料を用いる。
本発明の電荷輸送材料は正孔阻止層中に、 単独で用いてもよいし、 複数種併用 してもよい。 更に、 本発明の電荷輸送材料の性能を損なわない範囲で、 公知の正 孔阻止機能を有する化合物を併用してもよレ、。
本発明で用いられる正孔阻止層のイオン化ポテンシャルは発光層のイオン化ポ テンシャル (発光層がホスト材料と ドーパントを含んでいる場合には、 ドーパン トのイオン化ポテンシャル) より 0 . 1 e V以上大きいことが好ましい (ホスト 材料のイオン化ポテンシャルより、 0 . 1 e V以上大きいこと力 S、より好ましい)。 イオン化ポテンシャルは物質の HOMO (最高被占分子軌道) レベルにある電子 を真空準位に放出するのに必要なエネルギーで定義される。 イオン化ポテンシャ ルは光電子分光法で直接定義されるか、 電気化学的に測定した酸化電位を基準電 極に対して補正しても求められる。後者の方法の場合、例えば飽和甘コゥ電極( S CE) を基準電極として用いたとき、 イオン化ポテンシャル =酸化電位 (V s . S CE) +4. 3 e V で、 £ される。 ( Mo l e c u l a r S em i c o n d u c t,o r s , S p r i n g e r—V e r l a g, 1 985年、 98頁)。
さらに、 本発明で用いられる正孔阻止層の電子親和力 (EA) は、 発光層の電 子親和力 (発光層がホスト材料とドーパントを含んでいる場合にはホスト材料の 電子親和力) と比較して同等以上であることが好ましい。 電子親和力もイオン化 ポテンシャルと同様に真空準位を基準として、 真空準位にある電子が物質の LU MO (最低空分子軌道) レベルに落ちて安定化するエネルギーで定義される。 電 子親和力は、 上述のイオン化ポテンシャルから光学的バンドギヤップを差し引い て求められる力 \ 電気化学的な還元電位から下記の式で同様に求められる。 電子親和力 =還元電位 (V s . SCE) +4. 3 e V 従って、 本発明で用いられる正孔阻止層は、 酸化電位と還元電位をもちいて、 (正孔阻止材料の酸化電位) 一 (発光材料の酸化電位) 0. I V、
(正孔阻止材料の還元電位) ≥ (発光材料の還元電位)
と表現することも出来る。 さらに後述の電子輸送層を有する素子の場合には、 正孔阻止層の電子親和力は 電子輸送層の電子親和力と比較して同等以下であることが好ましい。 (電子輸送材料の還元電位) ≥ (正孔阻止材料の還元電位) ≥ (発光材料の還元 電位) 正孔阻止層 6の膜厚は、 通常 0. 3以上、 好ましくは 0. 5 nm以上であり、 また通常 100 nm以下、 好ましくは 50 nm以下である。 正孔阻止層も正孔輸 送層と同様の方法で形成することができるが、 通常は真空蒸着法が用いられる。 陰極 8は、 正孔阻止層 6を介して発光層 5に電子を注入する役割を果たす。 陰 極 8として用いられる材料は、 前記陽極 2に使用される材料を用いることが可能 であるが、 効率よく電子注入を行なうには、 仕事関数の低い金属 好ましく、 ス ズ、 マグネシウム、 インジウム、 カルシウム、 アルミニウム、 銀等の適当な金属 またはそれらの合金が用いられる。 具体例としては、 マグネシウム一銀合金、 マ グネシゥム—ィンジゥム合金、 アルミユウムーリチウム合金等の低仕事関数合金 電極が挙げられる。 さらに、 陰極と発光層または電子輸送層の界面に L i F、 M g F2、 L i2〇等の極薄絶縁膜 (0. l〜5 nm) を揷入することも、 素子の効 率を向上させる有効な方法である(Ap p 1. P h y s. L e t t., 70卷, 1 5 2頁, 1 997年;特開平 1 0— 74586号公報; I E E E T r a n s . E l e c t r o n. D e v i c e s , 44巻, 1 245頁, 1 99 7年)。 陰極 8の膜厚は通常、 陽極 2と同様である。 低仕事関数金属から成る陰極を保護する 目的で、 この上にさらに、 仕事関数が高く大気に対して安定な金属層を積層する ことは素子の安定性を増す。 この目的のために、 アルミニウム、 銀、 銅、 ニッケ ル、 クロム、 金、 白金等の金属が使われる。
素子の発光効率をさらに向上させることを目的として、 図 2および図 3に示す ように、 正孔阻止層 6と陰極 8の間に電子輸送層 7が設けられていてもよい。 電 子輸送層 7は、 電界を与えられた電極間において陰極から注入された電子を効率 よく正孔阻止層 6の方向に輸送することができる化合物より形成される。 ' このような条件を満たす材料としては、 8—ヒ ドロキシキノリンのァノレミニゥ ム錯体などの金属錯体(特開昭 5 9 - 1 943 93号公報)、 1 0—ヒドロキシべ ンゾ [h] キノリンの金属錯体、 ォキサジァゾール誘導体、 ジスチリルビフエ二 ル誘導体、 シロール誘導体、 3—または 5—ヒ ドロキシフラボン金属錯体、 ベン ズォキサゾール金属錯体、 ベンゾチアゾール金属錯体、 トリスベンズィミダゾリ ルベンゼン (米国特許第 5, 6 4 5, 9 4 8号)、 キノキサリン化合物 (特開平 6 - 2 0 7 1 6 9号公報)、フエナントロリン誘導体(特開平 5— 3 3 1 4 5 9号 公報)、 2 - tーブチルー 9, 1 0 - N , N ' ージシァノアントラキノンジィミン、 n型水素化非晶質炭化シリコン、 n型硫化亜鉛、 n型セレン化亜鉛などが挙げら れる。 .
また、 上述のような電子輸送材料に、 アルカリ金属をドープする (特開平 1 0 - 2 7 0 1 7 1号公報、 特願 2 0 0 0— 2 8 5 6 5 6号、 特願 2 , 0 0 0— 2 8 5 6 5 7号などに記載) ことにより、 電子輸送性が向上するため好ましい。
電子輸送層 7は、 正孔輸送層 4と同様にして塗布法あるいは真空蒸着法により 正孔阻止層 6上に積層することにより形成される。 通常は、 真空蒸着法が用いら れる。 ' >
なお、 本発明の電荷輸送材料を、 この電子輸送層 7に使用しても良い。 その場 合 本発明の化合物のみを使用して電子輸送層 7を形成しても良いし、 前述した 各種公知の材料と併用しても良い。
電子輸送層 7に本発明の電荷輸送材料を使用した場合、 前述の正孔阻止層 6に も本発明の電荷輸送材料を使用しても良いし、 また電子輸送層 7のみに本発明の 電荷輸送材料を使用し、 正孔阻止層 6には、 それ以外の、 公知の正孔阻止材料を 使用しても良い。
電子輸送層 6の膜厚は、 通常 5 n m以上、 好ましくは 1 0 n m以上であり、 ま た、 通常 2 0 0 n m以下、 好ましくは 1 0 0 n m以下である。
電子輸送層 7は、 正孔輸送層 4と同様にして塗布法あるいは真空蒸着法により 正孔阻止層 6上に積層することにより形成される。 通常は、 真空蒸着法が用いら れる。
正孔注入の効率をさらに向上させ、 かつ、 有機層全体の陽極への付着力を改善 させる目的で、 正孔輸送層 4と陽極 2との間に陽極バッファ層 3を揷入すること も行われている (図 3参照)。 陽極バッファ層 3を挿入することで、初期の素子の 駆動電圧が下がると同時に、 素子を定電流で連続駆動した時の電圧上昇も抑制さ れる効果がある。 陽極バッファ層に用いられる材料に要求される条件としては、 陽極とのコンタク トがよく均一な薄膜が形成でき、 熱的に安定、 すなわち、 融点 及びガラス転移温度が高く、 融点としては 300°C以上、 ガラス転移温度とし ては 100°C以上であることが好ましい。 さらに、 イオン化ポテンシャルが低 く陽極からの正孔注入が容易なこと、 正孔移動度が大きいことが挙げられる。 この目的のために、 陽極バッファ層 3の材料として、 これまでにポルフィリ ン 誘導体やフタロシアニン化合物(特開昭 63-295695号公報)、ヒドラゾン化合物、 アルコキシ置換 の芳香族ジァミン誘導体、 ρ-(9·アントリル) -Ν,Ν,'-ジ -p-トリルァ 二リン、 ポリチェユレ ンビニレンやポリ- p-フエ二レンビニレン、 ポリア二リン (Appl. Phys. Lett., 64卷、 1245頁, 1994年)、ポリチォフエン(OpticalMaterials, 9卷、 125頁、 1998年)、 スターバ スト型芳香族トリアミン (特開平 4-308688 号公報) 等の有機化合物や、 スパッタ ·カーボン膜(Synth. Met.,' 91卷、 73頁、 1997年) や、 バナジウム.酸化物、 ルテニウム酸化物、 モリブデン酸化物等の金 属酸化物 (J.Phys. D, 29巻、 2750頁、 1996年) が報告されている。
また、 正孔注入 ·輸送性の低分子有機化合物と電子受容性化合物を含有する層 (特開平 1 1一 25 1067号公報、 特開 2000— 159221号公報等に記 載) や、 芳香族アミノ基等を含有する非共役系高分子化合物に、 必要に応じて電 子受容性化合物をドープしてなる層 (特開平 1 1一 135262号公報、 特開平 1 1 -283750号公報、 特開 2000— 36390号公報、 特開 2000— 150168号公報、 特開平 2001 -223084号公報、 および WO 97/ 33193号公報など)、またはポリチォフェン等の導電性ポリマーを含む層(特 開平 10— 92584号公報) なども挙げられるが、 これらに限定されるもので はない。
上記陽極バッファ層材料としては、 低分子■高分子いずれの化合物を用いる'こ とも可能である。
低分子化合物のうち、 よく使用されるものとしては、 ポルフィン化合物又はフ タロシアニン化合物が挙げられる。 これらの化合物は中心金属を有していても良 いし、 無金属のものでも良い。 これらの化合物の好ましい例としては、 以下の化 合物が挙げられる :
ポノレフィン、
5, 10,15,20—テ トラフエニル一 21H,23H—ポルフィン、
5,10,15,20—テトラフエ二ルー 21H,23H—ポルフィンコバルト (11)、
5,10,15,20—テトラフエ二ルー 21H,23H—ポルフィン銅 (11)、
5,10,15,20—テトラフエ二ルー 21H,23H—ポルフィン亜鉛 (11)、 .
5, 10,15,20—テトラフエニル一 21H,23H—ボルフィンバナジゥム (IV)ォキシド、
5,10,15,20—テトラ(4-ピリジル )一2lH,23H—ポルフィン、 ,
29H,31H-フタロシアニン、
銅 (II) フタロシアニン、
亜鉛 (II) フタロシアニン、
チタンフタ口シァニンォキシド、 '
マグネシゥムフタ口シァニン、
鉛フタロシアニン、
銅 (II) 4,4'4",4'"ーテトラァザ一 29H,31H—フタロシアニン
陽極バッファ層の場合も、 正孔輸送層と同様にして薄膜形成可能であるが、 無 機物の場合には、 さらに、 スパッタ法ゃ電子ビーム蒸着法、 プラズマ C V D法が 用いられる。
以上の様にして形成される陽極バッファ層 3の膜厚は、 低分子化合物を用いて 形成される場合、 下限は通常 3 n m、 好ましくは 1 0 n m程度であり、 上限は通 常 1 0 0 n m、 好ましくは 5 0 n m程度である。
高分子化合物を用いる場合は、例えば、前記高分子化合物や電子受容性化合物、 更に必要により正孔のトラップとならない、 バインダー樹脂ゃレベリング剤等の 塗布性改良剤などの添加剤を添加し溶解した塗布溶液を調製し、 スプレー法、'印 刷法、 スピンコート法、 ディップコート法、 ダイコート法などの通常のコーティ ング法や、 インクジェッ ト法等により陽極 2上に塗布し、 乾燥することにより陽 極バッファ層 3を薄膜形成することができる。 バインダー樹脂としては、 ポリ力 ーポネート、 ポリアリレート、 ポリエステル等が挙げられる。 バインダー榭脂は 該層中の含有量が多いと正孔移動度を低下させる虞があるので、 少ない方が望ま しく、 陽極バッファ層 3中の含有量で 50重量%以下が好ましい。
また、 フィルム、 支持基板、 ロール等の媒体に、 前述の薄膜形成方法によって 予め薄膜を形成しておき、 媒体上の薄膜を、 陽極 2上に熱転写又は圧力転写する ことにより、 薄膜形成することもできる。
以上のようにして、 高分子化合物を用いて形成される陽極バッファ層 3の、 膜 厚の下限は通常 5 n m、 好ましくは 1 0 n m程度であり、 上限は通常 1 0 0 0 n ι 、 好ましくは 5 0 0 n m程度である。 ,
本発明の有機電界発光素子は、図 1とは逆の構造、すなわち、基板上に陰極 8、 正孔阻止層 6、 発光層 5、 正孔輸送層 4、 陽極 2の順に積層することも可能であ り、 既述したように少なくとも一方が透明性の高い 2枚の基板の間に本発明の有 機電界発光素子を設けることも可能である。 同様に、 図 2またば図 3に示した前 記各層構成とは逆の順に積層することも可能である。 また、 図 1〜3のいずれの 層構成においても、 本発明の趣旨を逸脱しない範囲で、 上述以外の任意の層を有 していてもよく、 また上記複数の層の榉能を併有する層を設けること等により、 層構成を簡略化する等、 適宜変形を加えることが可能である。
或いはまた、 トップエミッシヨン構造や陰極■陽極共に透明電極を用いて透過 型とすることや、 さらには、 図 1に示す層構成を複数段重ねた構造 (発光ュニッ トを複数積層させた構造) とすることも可能である。 その際には、 段間 (発光ュ ニット間) の界面層(陽極が I T O、陰極が A 1の場合はその 2層)の代わりに、 例えば V205等を電荷発生層 (C G L ) として用いると、 段間の障壁が少なくな り、 発光効率 ·駆動電圧の観点からより好ましい。
本発明は、 有機電界発光素子が、 単一の素子、 アレイ状に配置された構造から なる素子、 陽極と陰極が X— Yマトリックス状に配置された構造のいずれに い ても適用することができる。
本発明の有機電界発光素子によれば、 電荷輸送材料として、 特定の骨格を有す る化合物を含有させることにより、 発光効率が高く、 色純度の良好で駆動安定性 においても大きく改善された素子が得られる。 特に、 これまで材料選択の難しさ 故に正孔阻止層の形成が困難であった青色 (蛍光) 発光素子や燐光発光素子にお いて、 発光効率、 発光色純度及び駆動安定性に優れた素子が得られることから、 フルカラーあるいはマルチカラーのパネルへの応用において優れた性能を発揮で きる。
次に本発明の電荷輸送材料の中で、 新規の化合物に相当するものについて説明 する。 本発明の電荷輸送材料のうち、 下記一般式 (I I ) で表される化合物であ つて、該化合物が最安定化構造をとった時に、平面構造とならない化合物、及び、 一般式 (I I ) で表される化合物であって、 該化合物が最安定化搆造をとつた時 に、 平面構造となる化合物であり、 かつ、 p = 0である化合物は、 新規の化合物 である。
Figure imgf000093_0001
ただし、 式中、
R u, R 13, R 15および R 18は、各々独立に、水素原子或いは任意の置換基を表す。 R 12, R 14, R 16および R 17は、 各々独立に、 任意の置換基を表す。
Z tlは、 直接結合、 または環 Atと共役可能な電子を有する 2価の連結基を表す。 Z 12は、 直接結合、 または環 と共役可能な電子を有する 2価の連結基を表す。 Q01は、 1分子中に含まれる、 環 A1及び環 からなる群より選ばれた任意の 2 つを、実質的に共役不可能とする、 (p + k )価の芳香族炭化水素基或いは芳畚族 複素環基を表す。
pは 0〜8の整数である。 kは 0〜8の整数である。
pと kの総和は、 2〜8の整数である。 尚、 p及び Zまたは kが 2以上の場合、
1分子中に含まれる複数個の RU〜R18は、各々同一であっても異なっていてもよ く、
1分子中に含まれる複数個の zu及び z12は、 各々同一であっても異なっていて もよい。 上記一般式(I I ) で表される化合物の分子量は、通常、 4000以下、 好ましくは 3000以下、 より好ましくは 2000以下であり、 また通常 200 以上、 好ましくは 300以上、 より好ましくは 400以上である。.
分子量が上限値を越えると、 昇華性が著しく低下して電界発光素子を制作する 際に蒸着法を用いる場合において支障を来したり、 あるいは有機瑢媒などへの溶 解性の低下や、合成工程で生じる不純物成分の増加に伴って、材料の高純度化(す なわち劣化原因物質の除去) が困難になる場合がある。 また分子量が下限値を下 回ると、 ガラス転移温度および、 融点、 気化温度などが低下するため、 耐熱性が 著しく損なわれるおそれがある。 '
上記一般式 ( I I ) で表される化合物の融点は、 通常 100°C以上、 好ましく は 1 20°C以上、 通常 600°C以下、 好ましくは 500°C以下である。 上限を超 えると、 昇華性の低下や溶解性の低下を招く恐れがあり好ましくなく、 下限を下 回ると素子としての耐熱性を低下させる恐れがあり好ましくない。
上記一般式 (I I) で表される化合物のガラス転移点は、 通常 50°C以上、 好 ましくは 60°C以上である。 下限を下回ると、 素子としての耐熱性を低下させる 恐れがあり好ましくない。
上記一般式 ( I I ) で表される化合物の酸化電位は、 通常 + 1. 3V以上、 好 ましくは + 1. 5以上、通常 + 2. 5 V以下、好ましくは + 2. 0V以下である。 上限を超えると、 素子としての駆動電圧上昇を招く恐れがあり好ましくなく、 下 限を下回ると正孔阻止性が低下し、発光効率が低下する恐れがあり好ましくない。 尚、 電極酸化反応における可逆性は、 特に要求されず、 不可逆でも可逆で よ いが、 正電荷を輸送する用途に適用する場合、 本発明に記載の可逆性に関する基 準をクリアしていることが望ましい。 上記一般式 (I I ) で表される化合物の還元電位は、 通常一 1. 6〜一 2. 6 V、 好ましくは— 1. 8〜一 2. 4Vである。 上限を超えると、 電子輸送性が低 下するため好ましくなく、 下限を下回ると発光材料 (燐光色素) への電子の受け 渡しに支障がでる恐れがあり好ましくない。
尚、 電極還元反応における可逆性は、 重要な要素であり、 本発明に記載の可逆 性に関する基準をクリアしていることが重要である。
、Znヽ ん 12
Zuは、 直接結合、 または環 と共役可能な電子を有する 2価の連結基、 Z12 は、 直接結合、 または環 と共役可能な電子を有する 2価の連結基であればよ く、特に、環 A1及び環 上に、局在化しがちな電荷を、一部受け入れ、或いは、 更に他の置換基へ移送 することで分子内の電荷を適度に非局在化させる性質を 有するものが好ましい。
Zu及び Z12の具体例は、前記(Zl Z2)の説明で記載したもの'と同様である。 本発明の化合物に用いられる Zu及び Z12としては、 直接結合或いは置換基を 有 ていてもよい 2価の芳香族炭化水素基であることが、 高い三重項励起準位及 び酸化還元電位差の点で好ましく、 特に Z— 1 (直接結合) が好ましい。
また、 Zuおよび Z12が、有していてもよい置換基は、 '前記 及び Z2が有して いてもよい置換基と同様である。
Zu及び Z12の分子量としては、その置換基も含めて、好ましくは 400以下、 更に好ましくは 250以下である。
Q01は、 1分子中に含まれる、 環 At及び環 ^からなる群より選ばれた任意の 2つを、 実質的に共役不可能とする、 (p + k) 価の連結基であればよく、 特に、 環 及び環 ^上に局在化しがちな電荷を一部受け入れ、 電荷の隔たりを緩和で きる性質を有するものが好ましい。 ' 具体例は、 前記 (Q。) の説明で記載したものと同様である。 具体例の中で、 本 発明の化合物に用いられる Q01としては、 Q— 1, 35が好ましい。
また、 力 有していてもよい置換基も、 Q。が有していてもよい置換基と同 様であ る。
Q01の分子量としては、 その置換基も含めて、 好ましくは 400以下、 更に好 ましくは 250以下である。
(Ru〜R18)
Ru, R13, R15および R18は、各々独立に、水素原子或いは任意の置換基を表し、 R12, Rl4, R16および R17は、 各々独立に、 任意の置換基を表す。
Ru〜R18に使用し得る任意の置換基としては、 前記 (1^〜1 8の置換基) に記 载したものと同様であり、 好ましい具体例も同様である。
また、 Ru〜R18の具体例も、 前記 (1^〜1^) に記載したものと同様であり、 好ましい具体例も同様である。
RU〜R18のそれぞれの分子量としては、 その置換基も含めて、好ましくは 40 0以下、 更に好ましくは 250以下である。
上記一般式 (I I ) で表される化合物であって、 該化合物が最安定化構造をと つた時に、 平面構造とならない化合物の場合、 R12, R14, R16および R17が、 置 換基を有していてもよい、芳香族炭化水素基或いは芳香族複素環基であることが、 酸化還元耐久性を向上させる観点及び耐熱性を向上させるため、 好ましい。
(平面構造をとらない場合)
上記一般式 (I I ) で表される化合物であって、 該化合物が最安定化構造をと つた時に、 平面構造とならない化合物は、 分子構造として、 実質的に単一平面構 造を取りえない構造を有しているため、分子間での π— π スタツキング相互作用 が抑制され、 非晶質性、 溶解性、 昇華性に優れる。
また、 ひいては分子の集合体である膜としたとき、 溶液状態 (分子同士が散ら ばっている状態) に比べ、 吸収極大波長や蛍光発光極大波長が増大してしまう現 象を抑制することができる。 更には、 三重項励起準位が低下してしまう現象ゃ電 気酸化還元電位差が低下してしまう現象をも抑制することができる。 ' そのため、 (光、 電気、 熱などの) 大きなエネルギーを蓄積し、 そして効率よく 蓄積したエネルギーを (光、 電気、 熱などとして) 放出することが可能となる化 合物である。 また該化合物は、 電子輸送材料用としてだけでなく、 発光材料用、 太陽電池材 料用、 バッテリー材料 (電解液、 電極、 分離膜、 安定剤など) 用、 医療用、 塗料 材料用、 コーティング材料用、 有機半導体材料用、 トイレタリー材料用、 帯電防 止材料用、 熱電素子材料用などにおいても有用である。
ここで、本発明で言う、化合物の最安定化構造とは、通常の MM 2計算手法(例 えば、 M. J. Du d e k, J . W. P o n d e r共著、 「 J . C o m p u t . C h e m. J (1 6, 79 1— 8 1 6 ( 1 995)) 参照)) を用いて、 本発明 の化合物の最安定構造を導くことによって得られる構造を指す。
最安定化構造を取ったときに、化合物が平面構造をとらない化食物、すなわち、 化合物が最安定化構造をとつた時に、 実質的に単一平面構造を取りえない構造に ついて説明する。
例を挙げて説明すると、 分子を構成する任意の隣り合う 2つの芳香環同士が、 2—メチルビフ ニル (図 D) と同等程度の非平面性である化合物は、 平面構造 をとらない化合物である。
Figure imgf000097_0001
更に詳しくは、 最安定化構造において、 分子を構成する任意の隣り合う 2つの 芳香環同士のなす面角が、 厳密には 1 5度以上、 より厳密には 20度以上、 更に 厳密には 30度以上となるものは、 平面構造とならないと言える。
更には、 分子内の少なくとも 1つの芳香環 (A r 1とする) に結合する任意の 芳香環 (Ar 2とする) と、 A r 1の任意の置換基 (R rとする) とが、 隣り合 う置換位置に、 置換されていることが望ましい。 但し、 R rは、 Ar lもしくは 他の置換基と結合し、 環を形成していてもよい。
Figure imgf000098_0001
このような例としては、 以下の様なものが挙げられる
86
Figure imgf000099_0001
UZllO/tOOZd£/L3d 好ましい例 1 ) 例えば、 上記一般式 (I I ) で表される化合物において、 環 とそれに結合した Z1L (=骨格 A、 とする)、
環 とそれに結合した Z12 (==骨格 B、 とする) のうち、
複数の骨格が、 連結基 と実質的に同一平面上にあった方が、 優れた電気的酸 化還元耐久性と優れた電荷輸送性を損なわない観点から、 好ましい。
このような、 連結基 001と実質的に同一平面上にある、 環 および環 とし ては、 以下のものが挙げられる。 ·
Figure imgf000100_0001
(ここで、 R31, R33〜R35は任意の芳香環基であり、 R32は水素原子または任意 の置換基) である。 この際の好ましい ZU及び Z12は、以下に記載の通りである。 好ましい例 2) 例えば、 上記一般式 ( I I ) で表される化合物において、 任意の 環 AL ( または環 B J 、 該環 (または環 B J と連結した連結基 ZU (または Z12) および Zまたは連結基 Q01と実質的に同一平面上にないことが、 広い電気 酸化還元電位差の観点、 高い三重項励起準位の観点からは好ましい。
このような、 「任意の環 (または環 B 力 該環 (または環 B と連結 した連結基 ZU (または Z12) および Zまたは連結基 と実質的に同一平面上に ない」 環 および環 としては、 以下のものが挙げられる。
Figure imgf000101_0001
(ここで、 R41, R43, R45および R46は、 任意の芳香環基であり、 R42,R44,R47お よび R48は水素原子または任意の置換基) である。 この際の好ましい ZU及び Z12 は、 以下に記載の通りである。 ,
(好ましい例 1, 2の ZU, Z12及び Q01)
上記、 好ましい例 1 ) の様な構造とするためには、 ZU及び Z12は、 上記の、 Z— 1 (直接結合) Z— 3 , 1 2, 1 6, 1 9, 2 0〜3 0 , 3 7〜3 9, 4 1, 4 2, 4 5 , 4 6, 4 8, 4 9 , 5 2 , 5 3, 5 8〜6 0が好ましく、
Z— 1 (直接結合) Z— 3, 1 2, 1 6, 1 9 , 2 0, 2 1がより好ましく、 Z ^ l (直接結合) Z— 3が更に好ましく、
Z - 1 (直接結合) が最も好ましい。 .
また、 好ましい例 2) の場合には、 ^及び ^は、 上記の、
Z - 1 (直接結合), Z— 2〜2 1 , 2 8 , 2 9 , 3 1〜3 5, 4 8〜5 2, 5 6
〜 6 0が好ましく、
Z - 1 (直接結合), Z - 2, 3 , 4, 5, 8 , 1 0 , 1 2 , 1 5 , 1 6 , 1 7 , 1 9, 2 8, 2 9, 3 1, 3 3, 3 4, 5 2, 5 6〜 5 8がより好ましく、 Z— 1 (直接結合), Z— 2, 5 , 8, 1 2, 1 9 , 2 8 , 2 9が更に好ましく、 Z - 1 (直接結合), Z— 2が最も好ましい。
好ましい例 1 ) の場合には、 Q<Hは、 上記の、
好ましくは、 Q— 1 , 2 3, 2 9, 3 4, 3 5, 4 5 , 5 8〜 6 1であり、 より好ましくは、 Q— 1 , 2 3, 2 9, 3 5, 4 5、 5 8, 6 1であり、 更に好ましくは、 Q— 1, 3 5, 4 5であり、
最も好ましくは、 Q— 1 , 3 5である。 好ましい例 2) の場合には、 は、 上記の、
好ましくは、 Q— 1 , 2, 1 9〜23, 2 9-43, 45, 5 1〜5 3, 58- 6 1であり、
より好ましくは、 Q— 1, 2, 1 9〜23, 29, 33, 35〜42, 45であ り、
更に好ましくは、 Q— 1 , 2, 1 9〜23, 3 5〜42, 45であり、 最も好ましくは、 Q— 1, 2, 23, 3 5である。 .
具体例を挙げるが、 以下の具体例に限定されるものではない。
Figure imgf000103_0001
差替え用紙 (規則 26)
Figure imgf000104_0001
差替え用紙 (規則 26) 2004/011211
Figure imgf000105_0001
差替え用紙 (規則 26)
Figure imgf000106_0001
Figure imgf000106_0002
105
Figure imgf000107_0001
差替え用紙 (規則 26) LOT
Figure imgf000108_0001
im請 oozdf/ェ:) d
Figure imgf000109_0001
差替え用紙 (規則 26)
Figure imgf000110_0001
差替え用紙 (規則 26)
Figure imgf000111_0001
差替え用紙 (規則 26) Ill
Figure imgf000112_0001
96ZZ0/S00i OAV
Figure imgf000113_0001
l TT0/tO0Zdf/X3d Z96 SOOZ O εττ
Figure imgf000114_0001
llZllO/^OOJdf/X3<I
Figure imgf000115_0001
(平面構造をとる場合)
また、 上記一般式 (I I ) で表される化合物であって、 該化合物が最安定化構 造をとつた時に、 平面構造となる化合物の中でも、 p = 0である化合物、 即ち、 4—ピリジル基からなる化合物は、 繰り返し酸化耐久性が非常に'高い。
ここで、 化合物が最安定化構造をとつた時に、 平面構造となるとは、 上記平面 構造とならないものに関して説明したものの、 反対と考えればよい。
例を挙げて説明するならば、
分子を構成する任意の隣り合う 2つの芳香環同士が、 ビフエ二ル (図 C ) と同 等程度の平面性を有するものは、 平面構造をとつているという。
Figure imgf000115_0002
上記一般式 (I I ) で表される化合物であって、 該化合物が最安定化構造をと つた時に、 平面構造となり、 かつ p = 0である化合物のなかでも、 特に、 以下の 一般式 (I I I ) で表される、 ピリジン環同士が m—フエ二レン基を介して連結 されると、 ピリジン環の窒素原子上の非共有電子対同士が直接的に共役し得ない 構造となり、 かつ該 m—フエ二レン基とピリジン環の間では、 共役構造をとり得 るため、 酸化還元電位差が大きく、 かつ可逆性にもとりわけ優れている。
また、 ピリジン環の、 対称性をくずすことにより非晶質性に優れ、 有機溶媒な どへの溶解性にも優れている。 そのため、 膜を形成したときに結晶化することな く安定な成膜性を示す。
Figure imgf000116_0001
ここで、 R15~R18は、 上記一般式 (I I ) と同義である。 環 C'は置換基を有し ていてもよい。 また、 一般式 (I I I ) 中の、 2つの R15~R18は、 各々同一であ つても異なっていてもよい。
尚、 上記一般式 ( I I I) で表される化合物の分子量は、 通常 200以上、 好 ましくは 400以上、 通常 4000以下、 好ましく 1000以下である。 分子量 が大きすぎると精製操作の容易性の低下をまねき、 分子量が下限値を下回るとガ ラス転移温度、 気化温度が低下、 結晶性が高くなる等の要因により、 安定した成 膜性が得られず、 耐久性が不十分となるおそれがある。
上記一般式 (I I I) で表される化合物のガラス転移温度 (Tg) は 70°C以上 が好ましく、 より好ましくは 100°C以上である。
上記一般式 (I I I) の酸化還元電位差については電気化学的に酸化電位を基 準電極に対して測定した酸化電位は、 通常 1.3VvsSCE以上,還元電位は— 1.7VvsSCE以下の範囲で、 酸化電位が 1.5VvsSCE以上、 還元電位が— 1.9V' vsSCE以下が好ましく、 特に好ましくは酸化電位 1.7VvsSCE以上、 還元電位一 2,0VvsSCE以下である。 また、 上記一般式 (I I ) で表される化合物であって、 該化合物が最安定化構 造をとつた時に、 平面構造となる化合物の中でも、 p = 0である化合物であり、 かつ、 が、 1—、 3—、及び 5—位がすべて、 Z u或いは Z 12と結合している、 以下の一般式 (V) で表されるベンゼン環由来の基 (1 , 3, 5 _置換フエニレ ン基) であることが好ましい。 該化合物は、 ピリジン環の窒素原子上の非共有電 子対同士が直接的に共役し得ない構造となり、 かつ該 1 , 3, 5—置換フエユレ ン基とピリジン環の間では、共役構造をとり得るため、酸化還元電位差が大きく、 かつ可逆性にもとりわけ優れている。
また、 電子輸送性のあるへテロ環を 3環を有する事によりさら 電子輸送性、 耐熱性が向上する。 また、 非晶質性に優れ、 有機溶媒などへの溶解性にも優れて いるため、 膜を形成したときに結晶化することなく安定な成膜性を示し、 ガラス 転移温度 (Tg) が高いことにより耐熱性、 耐久性に優れている。 .
Figure imgf000117_0001
中でも好ましくは、 下記一般式 ( I V) で表される化合物である。
Figure imgf000117_0002
但し、 一般式 (I V) 中、
X及び Yは、 それぞれ、 一 C H = 或いは —N = を表す。
R23及び R 24は、 各々独立に任意の置換基を表す。
環 E t〜環 E 3は、 R23及び R 24の他に、 置換基を有していてもよい。
—般式 (I V) 中に、 複数個有する R23及び R24は、 各々同一であっても異なつ ていてもよい。 環 Dは、 置換基を有していてもよい。
( R23及び R24)
R 23及ぴ R24としては、 上記 (R i〜R8) として例示したものと同様のものが適 用できる。 R23及び R24は、 置換基を有していてもよく、 該置換基としては (1^ 〜R8) の置換基として例示したものが挙げられる。
R23及び R24として、 好ましくは、 電気的酸化還元耐久性を向上させる観点お よび酸化還元電位差が大きくなるという観点から、 置換基を有していてもよい芳 香族炭化水素基である。 '
特に好ましくは置換基を有していてもよいフユ-ル基 (ここで、 置換基を有す る場合は、 メチル基等のアルキル基、 フエニル基、 トリル基、 メシチル基等置換 ァリール基が好ましい) である。
R23及び R24の他に、環 〜環 E 3が有していてもよい置換基としては、上記(R 1〜 R8) として例示したものと同様のものが適用できる。
好ましくは、 分子振動を制限して発光効率を損なわない観点より、 好ましくは 水素原子、 アルキル基、 ァリール基であり、 より好ましくは水素原子または置換 基を有していてもよいフエニル基 (ここで置換基を有する場合は、 メチル基等ァ ルキル基、 フエ-ル基、 トリノレ基、 メシチル基等の置換ァリール基が好ましい) である。
R 23及び R24の好ましい分子量としては、 上記 R u R と同様である。
上記一般式 (I V ) で表される化合物の分子量は、 通常 3 0 0以上、 好まじく は 4 0 0以上、 通常 4 0 0 0以下、 好ましくは 1 5 0 0以下である。 分子量が上 限を超えると精製操作の容易性の低下をまねき、 分子量が下限値を下回るとガラ ス転移温度、 気化温度が低下、 結晶性が高くなる等の要因により、 安定した成膜 性が得られず、 耐久性が不十分となるおそれがある。
上記一般式 (I V ) で表される化合物のガラス転移温度 (Tg) は 90°C以上が 好ましく、 より好ましくは 100°C以上である。
上記一般式 (I V ) の酸化還元電位差については電気化学的に酸化電位を基準 電極に対して測定した酸化電位は 1. 3VvsSCE以上,還元電位は一 1. 7VvsSCE以下の 範囲で、 酸化電位が 1. 5VvsSCE以上、 還元電位が一 1. 9V vsSCE以下が好ましく、 特に好ましくは酸化電位 1. 7VvsSCE以上、 還元電位一 2. 0V vsSCE.以下である。 具体例を挙げるが、 以下の具体例に限定されるものではない。
6TT
Figure imgf000120_0001
im請 oozdf/ェ:) d
Figure imgf000121_0001
llZll0/1-00idf/X3d 196110/^001 OfA
Figure imgf000122_0001
Figure imgf000122_0002
im請 oozdf/ェ:) d Z96而 SOOZ OAV
Figure imgf000123_0001
UZllO/tOOZd£/∑3d 本発明の化合物の合成法は前記の通りである。 本発明の化合物は電荷輸送材料 として有用である。 また、 本発明の化合物は、 本質的に優れた酸化還元安定性を 有することから、 有機電界発光素子に限らず、 電子写真感光体に利用することも 有用でめる。
更に、 本発明の化合物は、 上記本発明の電荷輸送材料が有する高い性能に加え て、 非晶質性、 溶解性、 耐熱性、 耐久性に優れている。 従って、 電荷輸送材料用 としてだけでなく、 発光材料用、 太陽電池材料用、 バッテリー材料 (電解液、 電 極、 分離膜、 安定剤など) 用、 医療用、 塗料材料用、 コーティング材料用、 有機 半導体材料用、 トイレタリー材料用、 帯電防止材料用、 熱電素子材料用などにお いても有用である。 ぐ実施例 >
次に、 本発明を実施例によって更に具体的に説明するが、 本発明はその要旨を 越えない限り、 以下の実施例の記載に限定されるものではない。
<合成例 >
本発明の化合物及び本発明の電荷輸送材料として使用可能な化合物の合成例を、 以下、 合成例 1〜26に示す。 以下、 ガラス転移温度は DSC測定、 気化温度は T g—DTA測定、 融点は D S C測定または T g— DTA測定により求めた。 (合成例 1) 目的物 1〜目的物 2
Figure imgf000124_0001
ィソフタルアルデヒ ド (2. 7 g)、 ァセ トフエノン (9. 6 g)、 酢酸 (5 7 m l ) の混合物に、 大気中、 室温で濃硫酸 (8. Om l ) を加え、 室温で 6時間 撹拌した。 得られた溶液にメタノール (50m l ) を加えて撹拌した後、 沈殿を 濾過、 メタノール洗浄し、 目的物 1 (2. 6 g) を得た。
Figure imgf000125_0001
目的物 2 窒素気流中、 目的物 1 ( 2. 6 g)、 1—フエナシルピリジニゥムブロマイ ド ( 6. 3 g)、 酢酸アンモニゥム (2 9 g)、 酢酸 (1 3 Om 1 )、 N, N—ジメ チルホルムアミ ド ( 1 3 0m l ) を加熱還流下、 8. 5時間撹拌し、 得られた溶 液に水 (8.0 m 1 )、 メタノール (8 0m l ) を加えて撹拌した。 析出した沈殿を 濾過、 メタノール洗浄した後、 トルエン一エタノールからの再結晶にて精製し、 目的物 2 ( 1. 7 g) を得た。 E I — MS (m/ z = 5 3 6 (M + )) および 1H 一 NMRから目的物 2であることを確認した。
1H-NMR(270MHz, CDC13), 8.25-8.2l(m, 8H), 8.06(t, 1H), 7.96(s, 4H), 7.87-7.83(dd, 2H), 7.73-7.68(dd, 1H), 7.56-7.43(m, 12H)
この化合物のガラス転移温度は 7 9°C、 融点は 2 0 5°C、 気化温度は 4 1 4°C であった。
(合成例 2) 目的物 3〜目的物 4'
Figure imgf000125_0002
目的物 3
1 , 3—ジァセチルベンゼン (3. 2 g)、 ベンズアルデヒ ド (9. 6 g )、 酢 酸 (5 7 m l ) の混合物に、 大気中、 室温で濃硫酸 (8. O m l ) を加え、 室温 で 7時間撹拌した。 得られた溶液に水 (1 O m 1 )、 メタノール (5 O m 1 ) を加 えて撹拌した後、 沈殿を濾過、 メタノールで洗浄し、 目的物 3 (6. 0 g) を得 た。
124 差替え用紙 (規則 26)
Figure imgf000126_0001
目的物 4 窒素気流中、目的物 3 (3.4 g)、 1—フエナシルピリジユウムブロマイ ド(8.
3 g)、 酢酸アンモニゥム (39 g)、 酢酸 ( 1 50m 1 )、 N, N—ジメチルホル ムアミ ド (1 5 Om 1 ) を加熱還流下、 5. 7時間撹拌し、 得られた溶液に水 (2 00m l ), メタノール (100m l ) を加えて撹拌した。 析出した沈殿を濾過、 メタノール洗浄した後、 トルエン一エタノールからの再結晶にて精製し、 目的物
4 (3. 9 g) を得た。 DE I— MS (m/ z = 536 (M + )) および IH— N MRから目的物 4であることを確認 した。
JH-NMR(270MHz, CDC ), 9.0 l(s, IH), 8.32-8.25(m, 6H), 8.019-8.015(d, 2H), 7.95-7.94(d, 2H), 7.81-7.78(m, 4H), 7.71-7.65(t, IH), 7.59-7.46(m, 12H) この化合物のガラス転移温度は 71°C、 融点は 233°C、 気化温度は 449 °C であった。
(合成例 3) 目的物 5〜目的物 6
Figure imgf000126_0002
目的物 5
1 , 3 , 5— ト リァセチルベンゼン( 3. 1 g)、ベンズアルデヒ ド(8. 0 g)、 酢酸 (43m l ) の混合物に、 大気中、 室温で濃硫酸 (6. Om l ) を加え、 室 温で 21時間撹拌した。 得られた溶液に水 (1 00m l ) を加えて撹拌した後、
125 差替え用紙 (規則 26) 沈殿を濾過、 水、 メタノールで洗浄し、 更'に、 シリカゲルカラムクロマトグラフ ィ一で精製し、 目的物 5 (3. 5 g) を得た。
Figure imgf000127_0001
目的物 6 窒素気流中、 目的物 5 (0. 47 g)、 1—フエナシルピリジニゥムブロマイ ド 1. 3 g)、 酢酸アンモニゥム (5. 8 g)、 酢酸 (37m 1 )、 N, N—ジメ チ ルホルムァミ ド( 37 ra 1 )を加熱還流下、 6時間撹拌し、得られた溶液に水 ( 1 O Om l) を加えて撹拌した。 析出した沈殿を濾過、 水で洗浄した後、 クロロ ホ ルムーエタノール中での加熱懸濁洗浄にて精製し、 目的物 6 (0. 38 g) を得 た。 DE I -MS (m/ z = 765 (M+)) および 1H— NMRから目的物 6で あることを確認した。
-ΝΜΙΙ(270MHz, CDC13), 9.1l(s, 3H), 8.34-8.3l(d, 6H), 8.133.8.128(d, 3H) 7.993-7.988(d, 3H), 7.84-7.82(d, 6H), 7.57-7.48(m, 18H)
この化合物の融点は 384°C, 気化温度は 523°C、 ガラス転移温度 T gは 22 5°Cであった。
(合成例 4) 目的物 7〜目的物 8
Figure imgf000127_0002
126 差替え用紙 (規則 26) LZl
Οΐ ^目 6(%¾目
Figure imgf000128_0001
(H8 '«ι)68·2-30·ε ' ΆΖ '∞)9Γ乙- W '(腹 ∞ Ζ ' L '(Η 'P)T9'L- 97, (RZ 's)99'ム '(H 'Ρ¾8Ι·8-ΐδ·8 '(HZ 'PP)ん S'8-09'8 '(STOaO ΗΙΑ[0Δ2)¾[ΙΑ[Ν-Ηι
。 つ ? ^ 9" ¾、 8呦 ½目 ΉΙΛίΝ-Ηΐ ill (( + ) 889 = z /tu) SM- I 3 。? , (§ 0 'Ζ) 8 呦¾目 漪 ¾ 】 , エーべ fi。3—ベエ^ 4 、:?1≥
W 、nt — ,4ェ O 丄璲 、¾ ェ 鎩 凝 ffi^ェ つ 逖缀 n lfL¾ s8 τ 、丄 ( ι ^ο Ζ) 、 マ.
Λί^-Λί-ί: ^ί^-Ν 'Ν 、( Ι∞0 S) 魏¾ 、(3 S 9) ' ζ -^ Μ^ 、(3 τ) 、
Figure imgf000128_0002
- τ 、(s s · 9) 呦 ¾目、ΐ¾^^肇墓
8ί ^目
Figure imgf000128_0003
。 (§ 9 ·9) ^呦^目 、 ^ ¾ ,一 ェ、 f j ^ 、¾ ^lf ^ ( ϊ 0 I) 一, 4ェ ΐ 0 τ ) ^ -^^ 。 つ ! ¾ #a
9 '9' ^軍 、 .( i ·9) 邈¾譏、 ¾軍 、Ψ^¥
Figure imgf000128_0004
L 9 )
Figure imgf000128_0005
(
im請 ooidf/ェ:) d イソフタルアルデヒ ド (4. 0 g)、 1 ァセ トナフ トン ( 1 5. 3 g)、 濃硫 酸 (9. 6m 1 )、 酢酸'(86m ] ) を大気中、 室温で、 6時間攪拌して得られた 溶液に、 攪拌しながら水 (100m l )、 メタノール (50m l ) を加え、 析出し た油状物をトルエンを加えて溶解し、 抽出後、 トルエン層を炭酸水素ナトリウム 水溶液、 塩化ナトリウム水溶液、 水で洗浄した。 トルエン層を濃縮後、 シリカゲ ルカラムクロマトグラフィーにて精製後、 油状の目的物 9 (1 3 g) を得た。
目的物 9 (5. O g)、 1—フエナシルピリジニゥムブロマイ ド (9. 5 g)、 酢酸アンモニゥム (43. 9 g)、 酢酸 ( 1 1 Om 1 )、 N, N—ジメチルホルム アミ ド (1 10m l ) を、 加熱環流下、 8時間攪拌して得られた溶液を、 水 (2 50m l ) に注ぎ、析出した沈殿物を濾過、 メタノ ~ル(300m l) で.洗浄後、 シリカゲルカラムクロマトグラフィーにて精製し、 目的物 10 (1. 75 g) を 得た。
DE I -MS (m/z = 636 (M + ))から目的物 10であることを確認した。 この化合物の気化温度は 486°C、 ガラス転移温度 T gは 106°Cであった。
(合成例 6) 目的物 11〜目的物 13
Figure imgf000129_0001
目的物 11 目的物 12 目的物 13
窒素雰囲気下、 一 78。Cで、 トリス (4—ブロモフエニル) ァミン (4. 8 g) を無水テトラヒ 'ドロフラン (160m l ) に溶解させた溶液に、 ノルマルブチル リチウム ( 1. 58 Mノルマルへキサン溶液; 21m l ) の無水テトラヒ ドロフ ラン (1 5m l ) 溶液を 15分かけて滴下した後、 70分間撹拌した。 ついで、
128 差替え用紙 (規則 26) W
無水 N, N—ジメチルホルムアミ ド (7. '7m l ) を 5分かけて滴下し、 更に一 78 °Cで 30分間、 室温で 3. 3時間撹拌した。 得られた溶液に酢酸ェチル (1 Om l )、 メタノール (100m】) を加えた後、 溶媒を留去し、 これを塩化メチ レン (1 5 Om】) で抽出、 水 (1 50m l ) で洗浄した。 得られた混合物をシ リカゲルカラムクロマトグラフィーで精製し、 目的物 1 1 (1. 3 g) を得た。 F AB-MS (m/z = 329 (M+)、 330 (M+H+) から目的物 1 1である ことを確認、した。
目的物 1 1 (1. 3 g)、 ひ一テ トラロン (2. 6 g)、 酢酸 (22m l ) の混 合物に、 大気中、 室温で濃硫酸 (1. 9m l ) を加え、 室温で 7時間撹拌した。 得られた溶液に水 (150m l)、 メタノール (50m l ) を加えて撹拌した後、 沈殿を濾過、 メタノール洗浄し、 目的物 1 2 (2. 5 g) を得た。
窒素気流中、 目的物 12 (1. 4 g)、 1一フエナシノレピリジニゥムブロマイ ド 2 · 5 g)、 酢酸アンモニゥム (1 1. 6 g )、 酢酸 (46 m 1 )、 N, N—ジメチ ルホルムァミ ド (46 m 1 ) を加熱還流下、 8時間撹拌し、得られた溶液に水 ( 5 Οηι】)、 メタノール (50m l ) を加えて撹拌した。 析出した沈殿を濾過、 水で 洗浄した後、 メタノール (80m l ) 中で懸濁洗浄した。 更に、 クロ口ホルム一 メタノールからの再結晶後、 その一部を G P Cにて精製し、 目的物 13 .(0. 1 g) を得た。 DE I -MS (m/ z = 1010 (M+)) 及び 1H -删 Rから目的物 1 3であることを確認した。
iH-NMR(270MHz, CDC ), 8.60-8.57(d, 3H), 8.22-8.19(d, 6H), 7.68-7.65(m, 3H), 7.56-7.25(m, 30H)
Figure imgf000130_0001
差替え用紙 (規則 26) 1, 3, 5— トリァセチルベンゼン (5.. 2 g)、 o— トルアルデヒ ド ( 1 8. 5 g)、酢酸(7 1 m I ) の混合物に、大気中、室温で濃硫酸(1 6m l ) を加え、 室温で 6. 7時間撹拌した。 得られた溶液に水 ( 1 00m l )、 メタノール (50 m l ) を加えて撹拌した後、 沈殿を濾過、 メタノールで洗浄し、 更に、 メタノー ル (1 50m l ) 中での懸濁洗浄、 濾過、 メタノール洗浄し、 目的物 14を含む 混合物を得た。 該混合物と、 o—トルアルデヒ ド (9. 0 g)、 酢酸 (7 Om 1 )、 ニトロベンゼン (20m l ) の混合物に、 大気中、 室温で濃硫酸 (8. Om l ) を加え、室温で 5時間撹拌した。得られた溶液に水(1 0 Om 1 )、エタノール(8 Om l ) を加えてから 10分間超音波照射した後、 沈殿を濾過し、 該沈殿をエタ ノール (200m l ) ーメタノール (100m l )' の混合溶媒中で懸濁洗浄、 濾 過、 エタノール洗浄し、 目的物 14 (1 2. 2 g) を得た。
Figure imgf000131_0001
目的物 15
窒素気流中、 目的物 14 (1 2. 2 g)、 1一フエナシルピリジニゥムブロマイ ド (29. 9 g)、 酢酸アンモニゥム (1 66 g)、 酢酸 (280m l )、 N, N— ジメチルホルムアミ ド(25 Om 1 )、ニト口ベンゼン(7 Om l )を加熱還流下、 1 0. 5時間撹拌し、 得られた溶液に水 (20 Om I )、 エタノール (1 00m l ) を加えて撹拌した。 析出した沈殿を濾過、 エタノールで洗浄した後、 該沈殿をェ タノール (500m l ) 中での加熱懸濁洗浄 (2時間)、 クロロホルム (200m 1 ) 一 トルエン (2 5 0m l ) 中での加熱懸濁洗浄 (1. 5時間) にて精製し、 目的物 1 5 (8. 9 g ) を得た。 DE I— MS (m/ z = 807 (M + )) より 目 的物 1 5であることを確認した。 このもののガラス転移温度は 105°C、 融点は 280°Cであった。 また、 気化温度は 50 7°Cであった。
130 差替え用紙 (規則 26) (合成例 8) 目的物 16〜目的物 18
0HC、
+
Figure imgf000132_0001
目的物 16 目的物 17
ィソフタルアルデヒ ド (4. 0 g)、 4一フ、' 口モアセ トフエノン (17.9g)、 濃硫酸 (9. 6m 1 )、 酢酸 (86xn 1 ) を大気中、 室温で、 6. 5時間攪拌し て得られた溶液に、 攪拌しながら水 (1 0 Om 1 )、, メタノール (50m l ) を加 え、 析出した結晶を濾過した。 その後その結晶をメタノール 1 0 Οπα 1にて懸洗 し、 目的物 1 6 (1 3. 04 g) を得た。
目的物 16 (1 0 g)、 1—フエナシルピリジニゥムプロマイ ド (16. 8 g)、 酢酸アンモユウム (7 7. 8 g)、 酢酸 (280m l )、 N, N—ジメチルホルム アミ ド (430m l ) を、 加熱環流下、 8時間攪拌して得られた溶液を、 水 (3 00m l ) ェタノール (80m l ) に注ぎ、 析出した沈殿物を濾過、 メタノール (300m l ) で洗浄後、 塩化メチレン 50m lに溶解し、 メタノール 250 m Uこ再沈し、 目的物 1 7 (1 1. 34 g) を得た。
Figure imgf000132_0002
目的物 1 7 (5 g)、 フエ二ルホ" ロン酸 (2. 25 g)、 炭酸カリゥム (3. 9 7g)、 エチレンク" リ コールシ-' メチルエーテル (70m l )、 水 (23m l ) を窒素気流下、 80°Cまで加熱、 テトラキス (トリフエニルフォスフィン) ハ。
131 差替え用紙 (規則 26) ラシ" ゥム (0.416 g) 添加し、 80°C'4時間反応した。 反応後、 水/クロ口 ホルムにて抽出し、 有機層を得た。 シリカケ-、 ノレカラムクロマトク" ラフィ一に て精製し、 目的物 1 8 ( 2.97 g) を得た。 DE I - MS (m/Z= 7 1 9) から目 的物 1 8であることを確認した。 この化合物の気化温度は 495度、 ガラス転移 温度 T gは 109 °Cであった。
(合成例 9) 目的物 19〜目的物 20
Figure imgf000133_0001
目的物 19
1, 3, 5—トリァセチノレベンゼン ( 1 · 03 g)、 : m—トルァノレデヒ ド ( 3. 63 g)、 酢酸 (14m l )、 ニトロベンゼン (8m l ) の混合物に、 空気中、 室 温で濃硫酸 (3. 2m l ) を加え、 43〜45。Cで 6時間撹拌した。 得られた溶 液に 0°Cでメタノ一ル (70m l ) を入れ、 次いで水 (30m l ) を加えて撹拌、 超音波照射した後、 沈殿を濾過、 メタノールふりかけ洗浄をした。 得られた残渣 をメタノール (50m l ) 中での懸濁洗浄およびエタノール (100m l) 中、 加熱環流条件での懸濁洗浄で精製し、 目的物 1 9 (2. 23 g) を得た。
132 差替え用紙 (規則 26)
Figure imgf000134_0001
目的物 20 窒素気流中、 目的物 1 9 (2. 2 1 g)、 1—フエナシルピリジニゥムプロマイ ド (5. 4 1 g)、 酢酸アンモニゥム (30. 0 g)、 酢酸 (49 m 1 )、 N, N— ジメチルホルムアミ ド (40ni l)、 ニトロベンゼン (20m l ) を加熱還流下、 7. 5時間撹拌し、 得られた溶液にメタノール( 70 m 1 ) を入れ、 次いで水 ( 3 Om l ) を加えて撹拌、 超音波照射した後、 析出した沈殿を濾過、 エタノールで 洗浄した後、クロ口ホルム一メタノールからの再結晶にて精製し、目的物 20 (2. 00 g) を得た。 DE I— MS (m/ z = 807 (M + )) から目的物 20であ ることを確認した。 このもののガラス転移温度は 2 16°C、 融点は 304°Cであ つた。
(合成例 10) 目的物 21〜目的物 23 '
Figure imgf000134_0002
目的物 21 ィソフタルアルデヒ ド(4. 0 g)、 2'—ブロモアセトフエノン(1 7. 9 g)、 酢酸 (86m l ) の混合物に、 空気中、 室温で濃硫酸 ( 14. 7m l ) を加え、 室温で 6. 5時間撹拌した。 得られた溶液に水 (5 Om 1 )、 エタノール (1 50 m l ) を加えて撹拌した後、 沈殿を濾過、 エタノール洗浄およびエタノール (3 50m l ) 中での懸濁洗浄で精製し、 目的物 2 1 (10. 0 g) を得た。
133 差替え用紙 (規則 26)
Figure imgf000135_0001
目的物 22 窒素気流中、 目的物 2 1 (1 0. O g)、 1—フエナシルピリジニゥムブロマイ ド (1 6. 9 g)、 酢酸アンモニゥム (77. 8 g)、 酢酸 (23 Om 1 )、 N, N
—ジメチルホルムァミ ド (20 Om 1 )、 二 トロベンゼン (70m l ) を加熱還流 下、 6. ' 5時間撹拌し、 得られた溶液に水 ( 1 5 O m 1 )、 メタノール (1 00m 1 ) を加えて撹拌した。 析出した沈殿を濾過、 メタノール洗浄した後、 メタノー ル( 100 m 1 ) —エタノール( 1 00m l )混合溶媒中での懸濁洗浄で精製し、 目的物 2 2 (1 0. 5 g) を得た。
Figure imgf000135_0002
目的物 23 窒素気流中、 目的物 22 (1 0. 5 g)、 フ 二ルポロン酸 (5. 5 g)、 テ ト ラキス (トリフエニルフォスフィン) パラジウム ( 1. 4 g)、燐酸三力リ ウム ( 1 2. 8 g)、 トルエン (200m l )、 イオン交換水 (30m l ) の混合物を、 加 熱還流下、 5. 5時間攪拌した後、 トルエン (50m l ) および水 (1 20m l ) を加え、 よく混合した。 有機層のみを分取し、 これを水 (1 00m】) で更に洗 つた後、 無水硫酸マグネシウムにて乾燥、 濾過した。 ろ液を濃縮後、 シリカゲル カラムクロマトグラフィーにて精製し、 目的物 23 (2. 9 g) を得た。 DE I
134 差替え用紙 (規則 26) -MS (m/ z = 6 8 8 (M + )) から目的物 2 3 であることを確認した。 この もののガラス転移温度は 1 0 2° (:、 融点は検出されず気化温度は 4 6 6°Cであつ た。
(合成例 11) 目的物 24〜目的物 25
Figure imgf000136_0001
目的物 24
2—ブロモー 4'一フエ二ルァセ トフェノン (1 '3. 7 g)、 をトルエン ( 8 5 m l ) に 7 0°Cで加熱溶解し、 次にピリジン (7. 9 g ) を添加する。 滴下と同 時に結晶が析出してくる。 滴下終了後、 昇温し環流温度で攪拌、 1時間後放冷す る。 濾過後、 結晶をトルエン (2 5 0 m l ) で懸洗洗浄し、 さらに n—へキサン ( 2 5 0 m l ) で懸洗洗浄し、 乾燥後、 目的物 2 4 ( 1 7. 3 g) を得た。
Figure imgf000136_0002
実施例 1の目的物 1 ( 3. O g)、 上記より得られた目的物 2 4 ( 9. 4 5 g)、 酢酸アンモニゥム ( 3 4. 2 g)、 酢酸 (1 2 7 m 1 )、 N, N—ジメチルホルム アミ ド (1 0 0 m l ) を、 加熱環流下、 7時間攪拌して得られた溶液に、 ェタノ ール (8 0 m l ) 添加し攪拌、 その後水 (1 6 0m l ) に注ぎ析出した沈殿物を 濾過、 得られた結晶をエタノール ( 1 5 0 m l ) で加熱環流洗浄する。 さらにト ルェン (5 O m 1 )、 メタノール (2 O m 1 ) で再結晶を行い、 さらに得られた結 晶をクロロホルム (4 O m 1 )、 メタノール (2 0 m l ) で再結晶を行い、 目的物 2 5 ( 1. 5 g ) を得た。
135 差替え用紙 (規則 26) D E I -MS (m/ z = 688 (M + ))かち目的物 25であることを確認した。 このものの気化温度は 5 15. 5。C、 ガラス転移温度 T gは 11 1°Cであった。
(合成例 12) 目的物 26〜目的物 29
Figure imgf000137_0001
目的物 26 目的物 27 目的物 28 窒素気流中、 氷冷下、 リチウムアルミニウムハイ ドライ ドのテトラヒ ドロフラ ン溶液 ( 1 mo 1 ZL) 10 Om 1 とテトラヒ ドロフラン (脱水) 100 m 1の 混合溶液中に、 トリメシックアシッド 5. 8 gをテトラヒ ドロフラン (脱水) 1 0 Om 1に溶解させた溶液を、 撹拌させながら、 1 7分間かけて滴下した後、 室 温で 27分間、 加熱還流下で 20分間、 更に室温で 3. 5時間撹拌した。 得られ た溶液に酢酸ェチル、 永水を加えて過剰のリチウ アルミニウムハイ ドライ ドを 潰した後、 濾過、 エタノール振りかけ洗浄して得られた固形分を 25 Om 1.の塩 化メチレンに分散させ、 有機物を抽出し、 滤過した。 得られた濾液を濃縮し、 目 的物 26 ( 1 - 8 g ) を得た。
乾燥空気中、 目的物 26 (1. 8 g)、 二酸化マンガン (活性化済み、 1 1. 3 g )、 クロ口ホルム ( 100 m】) を、 加熱還流下、 8. 3時間撹拌した後、 濾過 し、 得られた濾液を濃縮後、 シリカゲルカラムクロマトグラフィーにて精製し、 目的物 27 (0. 6 g) を得た。 E I— MS (m/ z = 162 (M+)》 より、 目 的物 27の生成を確認した。
乾燥空気中、 目的物 27 (0. 53 g)、 ァセ トフエノン (1. 8 g)、酢酸 (1 4m】) に、 濃硫酸 (1. 6m l ) を滴下した後、 35 °Cで 1 1時間撹拌した。 これにエタノール、 水を加えて沈殿を析出させ、 濾過し、 得られた固形分をエタ
136 差替え用紙 (規則 26) ノール中で懸濁洗浄して精製し、 目的物 2.8 (0. 6 3 g) を得た。
Figure imgf000138_0001
目的物 29 空気中、目的物 2 8 (0. 4 7 g)、 1—フエナシルピリジニゥムブロマイ ド(1. 2 6 g)、 酢酸アンモニゥム (7. 1 g)、 酢酸 (2 5 m 1 )、 N, N—ジメチノレホ ルムアミ ド (2 5 m l ) を、 加熱還流下、 6. 5時間撹拌した。 得られた混合物 にメタノール、 水を加え、 沈殿を析出させ、 濾過し、 濾液を濃縮して得られた残 さをシリカゲルカラムクロマトグラフィ一にて精製し、 目的物 2 9 (0. 1 7 g) を得た。 MALD I —TOF—MS (m/ z = 7 6 6 (MH+)) より、 目的物 2 9であることを確認した。 このものの 融点は 3 4 4°C、 ガラス転移温度は 2 9 9°C、 気化温度は 5 2 4°Cであった。
(合成例 13) 目的物 30〜目的物 33
Figure imgf000138_0002
窒素気流中、 氷冷下、 N—フエ二ルカ^/バゾール ( 1 0. 2 g) の N, N—シ メチルホルムァミ ド (8 0m l ) 溶液に、 N—ブロモスクシンィミ ド ( 1 5. 3 g ) の N, N—ジメチルホルムアミ ド (7 0 m l ) 溶液を滴下し、 室温で 7時間 撹拌した。 得られた溶液に水 5 O m 1、 メタノール 1 0 O m 1 を加えて沈殿を析
137 差替え用紙 (規則 26) 出させ、 沈殿を濾過、 メタノール洗浄により精製し、 目的物 30 (14. 8 g) を得た。
Figure imgf000139_0001
窒素気流中、 一 70°Cで、 目的物 30 (8. 0 g) のテトラヒ ドロフラン (1 O Om l ) 溶液へ、 1. 6 Mノルマルプチルリチウ -キサン溶液 (30. 2 m l ) を 1 5分間かけて滴下し、 1時間撹拌した。 - 60°Cで、 N, N—ジメチ ルホルムアミド (1 5. 5m l ) を滴下した後、 室温で 2時間撹 した。 析出し た沈殿を濾過、 ジクロロメタンで抽出し、 濃縮して得た固形分をメタノール中で 懸濁洗浄し、 濾過し、 目的物 3 1 (2. 28 g) を得た。 最後に得た濾液に水を 加え、 析出した固体を濾別することにより、 更に目的物 3 1 (1. O l g ;合計 3. 29 g) を得た。
Figure imgf000139_0002
乾燥空気中、 目的物 3 1 (1. 20 g)、 ァセ トフエノン (1. 44 g)、 酢酸 (23 m 1 ) の混合溶液に、 濃硫酸 (1. 3m l ) を加え、 3 5~40°Cで 8. 5時間撹拌した後、 メタノール ( 20 m 1 )、 水 (50m l ) を加え、 析出した沈 殿を濾過、 メタノール洗浄した。 これをメタノール中で超音波洗浄し、 目的物 3 2 (1. 90 g) を得た。
乾燥空気中、 目的物 32 (1. 8 1 g)、 1一フエナシルピリジニゥムブロマイ ド (3. 00 g)、 酢酸アンモニゥム (14. 0 g)、 酢酸 (6 2m 1 )、 N, N— ジメチルホルムアミ ド (62m l ) を、 加熱還流下、 5時間撹拌した後、 メタノ ール (20m l )、 水 (100m l ) を加え、 析出した沈殿を濾過、 メタノール洗 浄した。 得られた固形分をシリカゲルカラムクロマトグラフィーで精製し、 目的 物 33 (0. 26 g) を得た。
DE I—MS (m/z = 701 (M + )) より、 目的物 33であることを確認し た。 このものの融点は 285°C、 気化温度は 523°Cであった。 ,
(合成例 14) 目的物 34
Figure imgf000140_0001
大気中、 目的物 5 (0. 70 g)、 目的物 24 (2. 39 g)、 酢酸アンモニゥ ム (8. 78 g)、 酢酸 (43m 1 )、 N, N—ジメチルホルムアミ ド (43m l ) を加熱還流下、 10時間撹拌し、 得られた溶液にメタノール (20m l ) を加え て撹拌した。 析出した沈殿を濾過、 メタノールで洗浄した後、 シリカゲルカラム クロマトグラフィーで精製し、 目的物 34 (0. 5 2 g) を得た。
MALD I -TO F-MS (m/ z = 9 94 ([M+H] +)) から、 目的物 34 であることを確認した。このもののガラス転移温度は 1 38°C、融点は 340°C、 気化温度は 5 7 1°Cであった。 (合成例 1 5) 目的物 3 5
Figure imgf000141_0001
乾燥空気中、 イソフタルアルデヒ ド (6. 7 1 g)、 3 '—プロ,モアセトフエノ ン ( 20. 9 g )、 酢酸 (2 1 5m l ) の混合溶液に、 濃硫酸 (1 6. lm l ) を 加え、 3 5。Cで 9時間撹拌した後、 ェタノール (70m l )、 水 (1 5 0m l ) を 加え、 析出した沈殿を濾過、 メタノール洗浄した。 これをメタノール中で超音波 洗浄して精製し、 目的物 3 5 (1 5. 5 g) を得た。 '
目的物 3 5 (9. 9 2 g)、 1—フエナシルピリジニゥムプロマイ ド (1 6. 7 酢酸アンモニゥム (7 8 g)、 酢酸 (3 5 Om 1 )、 N, N—ジメチルホルム アミ ド (3 5 0m l ) を、 加熱還流下、 7. 5時間撹拌した後、 水 (70 0m l ) 中に投入し、析出した沈殿を濾過、 メタノール洗浄で精製し、 目的物 3 6 ( 1 1. 3 g) を得た。
Figure imgf000141_0002
窒素気流中、 6 0°C条件下、 9—ブロモフエナントレン ( 1 8. 4 g)、 ビス (ピ ナコラート) ジボロン (2 0. 0 g)、 酢酸力リウム (2 3. 9 g)、 ジメチルス ルホキシド (4 2 0m l ) の混合溶液に、 [1, 1'-ビス (ジフエニルフォスフィノ) フエ口セン]ジクロロパラジウム (II) , ジクロロメタン錯体 ( 1 : 1) ( 1. 7 5 g) を加え、 80°Cで 8. 2時間撹拌し、 得られた溶液を、 1 Lの水中に投入 し、 沈殿を析出させた後、 上澄みを除去して得られた残留固形物を、 シリカゲル カラムクロマトグラフィーで精製し、 目的物 3 7 (1 3. 3 g) を得た。
Figure imgf000142_0001
窒素気流中、 目的物 36 (3. 47 g)、 目的物 37 (4. 26 g)、 ジメ トキ シェタン (50m l ) の混合物に、 テトラキス (トリフエエルフォスフィン) パ ラジウム (0. 46 g)、 2M炭酸カリウム水溶液 (1 Om 1 ) を'順次投入し、 加 熱還流下、 5. 5時間撹拌した。 これをジクロロメタン ( 10 Om 1 ) で抽出後、 塩水 (50m l) で洗浄、 硫酸マグネシウム乾燥、 濾過、 濃縮して得られた固形 分を、 シリカゲルカラムクロマトグラフィーで精製し、 目的物 38 (3. 59 g) を得た。
DE I— MS (m/ z = 888 (M + )) より、 目的物 38であることを確認し た。 このもののガラス転移温度は 148°C、 融点は検出されず、 気化温度は 5 5 8°Cであった。
Figure imgf000142_0002
窒素気流中、 目的物 36 (2. 78 g)、 1—ナフチルボロン酸( 1. 79 g)、 ジメ トキシエタン (40m l ) の混合物に、 テトラキス (トリフエニルフォスフ イン) パラジウム (0. 37 g)、 2M炭酸カリウム水溶液 (8m l ) を順次投入 し、加熱還流下、 6. 3時間撹拌した。 これをジクロロメタンで抽出後、塩水(5 Om l ) で洗浄、 硫酸マグネシウム乾燥、 濾過、 濾液を濃縮して得られた固形分 を、 シリカゲルカラムクロマトグラフィーで精製し、 目的物 3 9 (2. 66 g) を得た。
DE I— MS (m/z = 788 (M + )) より、 目的物 39であることを確認し た。 このもののガラス転移温度は 1 1 3°C、 融点は検出されず、 気化温度は 5 3 0°Cであった。
(合成例 1 7 ) 目的物 40〜 43
Figure imgf000143_0001
3 '—プロモアセトフエノン ( 1 1. 9 g)、ベンズァノレデヒ ド (3. 18 g)、 酢酸アンモニゥム (30. 0 g)、 酢酸 (7 5m l ) の混合溶液を、 乾燥空気をバ プリングさせながら、 加熱環流下、 5 5分間撹拌し、 得られた溶液を放冷後、 析 出物を濾過、 酢酸ノ水 (7/3 ; 1 00m l ) で洗浄、 更に、 メタノール懸洗、 トルエン一エタノールからの再結晶により精製し、 目的物 40 (3. 20 g) を 得た。
窒素気流中、一 77°C条件下、 目的物 40 (3. 1 9 g)、ジェチルエーテル( 1 60m l )、 テトラヒ ドロフラン (1 1 5m l ) の混合溶液に、 1. 58 Mノルマ ルブチルリチウム一へキサン溶液 (1 5. Om l ) を 10分間かけて滴下し、 さ らに 4. 7時間撹拌した後、 N, N—ジメチルホルムアミ ド (5. 3m l ) を加 えて、 室温で 2. 8時間撹拌した。 得られた溶液に 1 N塩酸水溶液 (24m l ) を加えて中和後、 有機溶媒を減圧留去し、 これにメタノール (100m l ) を加 え、 析出物を濾過、 メタノール洗浄して精製し、 目的物 41 (1. 80 g) を得 た。
Figure imgf000144_0001
乾燥空気中、 目的物 4 1 (1. 80 g)、 ァセトフェノン (l . , 25 g)、 酢酸 (20m l ) の混合溶液に、 濃硫酸 (1. 6m l ) を加え、 3 5°Cで 9. 5時間 撹拌した後、 メタノール (10m l )、 水 (40m l ) を加え、 デカンテーション により上澄み液を留去することによって得られた固形分を、 クロロホルムーメタ ノールからの再結晶により精製し、 目的物 42 (1. 78 g) を た。
目的物 42 ( 1. 78 g)、 1—フエナシルピリジニゥムブロマイ ド (2. 62 gk 酢酸アンモ-ゥム (1 2. 1 g)、 酢酸 (75m 1)、 N, N—ジメチルホル ムアミ ド (75m l ) を、 乾燥空気をパブリングさせながら、 加熱還流下、 8. 5時間撹拌した後、 メタノール 50 m 1、 水 50 m 1を加え、 析出した沈殿を濾 過、 シリ力ゲルカラムクロマトグラフィーおよびク口口ホルム一メタノールから の再結晶で精製し、 目的物 43 (0. 87 g) を得た。
DE I— MS (m/ z = 765 (M + )) より、 目的物 43であることを確認し た。
このもののガス転移温度は 1 1 1°C、 融点は 266°C、 気化温度は 528°Cで あった。
(合成例 1 8 ) 目的物 44〜目的物 46
Figure imgf000145_0001
窒素気流中、 目的物 3 1 (4. 0 1 g)、 3—力ルポキシフエ二ルポロン酸(3. 90 g)、 ジメ トキシェタン (100m l ) の混合物に、 テトラキス (トリフエ二 ルフォスフィン) パラジウム (0. 92 g)、 2M炭酸力リゥム水溶液 (20m l ) を順次投入し、 加熱還流下、 7. 5時間撹拌した。 デカンテーシヨンにより上澄 み液を留去することによって得られた固形分を、 シリカゲル力ラムクロマトダラ フィ一で精製し、 目的物 44 (3. 70 g) を得た。
Figure imgf000145_0002
乾燥空気中、 目的物 44 (3. 70 g)、 ァセトフエノン (2. 07 g)、 酢酸 (5 2m l ) の混合溶液に、 濃硫酸 (2. 6m l ) を加え、 3 5 °Cで 9時間撹拌 した後、 メタノール (30m l ) を加え、 デカンテーシヨンにより上澄み液を留 去することによって得られた固形分を、 シリカゲルカラムクロマ 1、グラフィ一で 精製し、 目的物 45 (1. 56 g) を得た。
目的物 45 (1. 56 g)、 1一フエナシルピリジニゥムブロマイ ド ( 1. 99 g)、 酢酸アンモ-ゥム (9. 2 g)、 酢酸 (5 7m 1 )、 N, N—ジメチルホルム アミ ド (57m l ) を、 乾燥空気中、 加熱還流下、 6. 9時間撹拌した後、 メタ ノール 5 Om 1、 水 5 Om 1を加え、 析出した沈殿を濾過、 シリカゲルカラムク 口マトグラフィ一で精製し、 目的物 46 (0. 6 5 g) を得た。 DE I— MS (m/z = 853 (M + )) より、 目的物 46であることを確認し た。 このものの融点は検出されず、 ガラス転移温度は 140°C、 気化温度は 55 3°Cであった。
(合成例 19) 目的物 47〜目的物 50
Figure imgf000146_0001
目的物 47
1, 3, 5 -トリブロモベンゼン 1 1. 6 gの脱水ジェチノレエーテノレ溶液 (24 OmL) を窒素雰囲気下一 78 °Cに冷却後、 n—ブチルリチウムの 1. 6Mへキ サン溶液 23 mLを滴下した。 1時間一 78°Cで攪拌し、 つづいてジメチルホルム アミド 2. 9mLを温度が上がらないよう注意して加え、 1時間'攪拌を行った。 さらに n—プチルリチウムの 1. 6 Mへキサン溶液 25 mLをゆつくりと加え、 1時間攪袢後、 ジメチルホルムァミ ド 9. 1 m Lを加え、 _ 78 °Cでさらに 2時 間攪拌した。 その後反応溶液を 0°Cまで昇温し、 3 N塩酸 20 OmLを加え、 ジ ェチルェテール 40 OmLで抽出をおこなった。 有機層を硫酸マグネシウムで処 理し、 溶媒を減圧留去した。 得られた粗生成物にへキサンを加え再結晶を行うこ とにより、 4.9gの白色の固体として得た。 得られた化合物のマス測定結果により 目的物 47であることを確認した。
M/e: 212(M+:EI-MS)
Figure imgf000146_0002
目的物 47 目的物 48 目的物 47 (2. 4 g)の酢酸 3 OmL溶液にァセトフ ノン 3.3 g、硫酸 3. 5mLを加え、 空気中 40 °Cで 9. 5 h攪拌した。 その後反応系内に水 100 m L、 メタノール 3 OmLを加え攪拌した後、 濾過を行なった。 得られた粗生成物 をメタノールで洗浄することにより、 4. 5 gの黄土色の固体として得た。 得られた化合物のマス測定結果により目的物 48であることを確認した。
M/e: 416(M+:EI-MS)
9
Figure imgf000147_0001
目的物 48 (4. 16 g)、 1—フエナンシルピリジニゥムブロマイド (8. 3 4 g)、無水酢酸アンモニゥム (46 g) に酢酸 12 OmL、 ジメチルホルムアミ ド ·60ιηίを加え、 空気中 8. 5時間、 加熱環流をおこなった。 その後、 反応溶 液に水 l O OmLを加え、 沈殿を炉別し、 メタノールで洗浄をおこなった。 得ら れた粗生成物をカラムクロマトグラフィーにより精製し、 4. 5 gの黄土色の固 体として得た。 得られた化合物のマス測定結果により目的物 49であることを確 認した。
M/e: 614(M+:EI-MS)
Figure imgf000147_0002
目的物 49 (468mg)、 9一フエナントリルポロン酸 (444m g) にトル ェン 2 OmL、 エタノール 1. 5mL 2 N炭酸ナトリウム水溶液 1. 5mLを入 れ、 窒素下、 室温で 30分攪拌後、 テトラキストリフエニルホスフィンパラジゥ ム (0) 40tngを加え、 さらに 7時間加熱環流をおこなった。 その後、 反応溶 液に水 5 OmLを加え、 塩化メチレンで数回抽出をおこなった。 抽出液に炭酸力 リウムを加え乾燥後、 溶液を減圧留去したのち、 得られた沈殿物をカラムクロマ トグラフィ一により精製をおこない、 黄白色の固体 (462mg) を得た。
得られた化合物のマス測定結果により目的物 50であることを確認した。
M/e: 712(M+DEI-MS) ,
このもののガラス転移温度は 1 36°C、 融点は 278°C、 気化温度は 50 7 °C であった。
(合成例 20 ) 目的物 5 1〜目的物 5 3
Figure imgf000148_0001
1 , 3 , 5— トリブロモベンゼン (1 5. 7 g)、 フエ二ノレボロン酸 (1 2. 1 g) にトルエン 75 OmL、 エタノール 1 5 OmL、 2 N炭酸ナトリウム水溶液 10 OmLを入れ、 窒素下、 室温で 30分攪拌後、 テトラキストリフエニルホス フィンパラジウム (0) 40mgを加え、 さらに 4時間加熱環流をおこなった。 室温に冷ました後、 反応溶液に水 5 OmLを加え、 塩化メチレンで数回抽出をお こなった。 抽出液に炭酸カリウムを加え乾燥後、 溶液を減圧留去したのち、 ネ ら れた沈殿物をカラムクロマトグラフィーにより精製をおこない、白色の固体(7. 3 g) を得た。 得られた化合物のマス測定結果により目的物 5 1であることを確 nf&し 7 M/e: 308(M+:EI-MS)
Figure imgf000149_0001
目的物 51 目的物 52 目的物 5 1 (3. 04 g) の脱水テトラヒドロフラン溶液(2 5mL)を窒素雰 囲気下 _78°Cに冷却後、 n—ブチルリチウムの 1. 6Mへキサン溶液 1 3. 8m Lをゆっくりと滴下し、 45分間一 78°Cで攪拌した。 その後、 トリイソプロポキ シポラン (4. 1 g) を一気に加え、 30分間一 78°Cで攪拌したのち、 反応溶 液を室温まで昇温し、 さらに 1時間攪拌をおこなった。 得られた反応溶液に 3 N 塩酸 10 OmLを加え、ジェチルェテール 20 OmLで抽出をおこなった。有機層 を水 5 OmLで洗浄した後、 硫酸ナトリゥムで処理し、 溶媒を減 留去した。 得られた粗生成物にジェチルェ一テルを加え再沈を行うことにより、 1.97gの 白色の固体 (目的物 52) を得た。
Figure imgf000149_0002
目的物 49 (936mg)、 目的物 5 2 ( 68 5 m g ) にトルエン 40mレ ェ タノール 3. OmL、 2 N炭酸ナトリウム水溶液 3. OmLを入れ、 窒素下、 室 温で 30分攪拌後、 テトラキストリフエニルホスフィンパラジウム (0) 40m gを加え、 4時間加熱環流をおこなった。 さらに目的物 52を 40 Omg加えた 後、 1. 5時間加熱環流をおこなった。 その後、 反応溶液に水 5 OmLを加え、 酢酸ェチルで数回抽出をおこなった。 抽出液に炭酸カリウムを加え乾燥後、 溶液 を減圧留去したのち、 得られた沈殿物をカラムクロマトグラフィーにより精製を おこない、 黄白色の固体 (685mg) を得た。 得られた化合物のマス測定結果 により目的物 53であることを確認した。
M/e: 764(M+:顧- MS)
このもののガラス転移温度は検出されず、融点は 284°C、気化温度は 524°C であった。
(合成例 21) 目的物 54
Figure imgf000150_0001
目的物 49 (936mg) の脱水テトラヒドロフラン溶液( 25 m L)を窒素雰 囲気下一 78°Cに冷却後、 n—プチルリチウムの 1. 6 Mへキサン溶液 2. 6 m L をゆっくりと滴下し、 15分間一 78°Cで攪拌した。 その後、 トリフエニルクロ ロシラン (885mg) を一気に加え、 室温まで昇温し、 3時間攪拌をおこなつ た。 溶媒を減圧留去した後、 カラムクロマトグラフィー、 G PC精製を行うこと により、 70 Omgの白色の固体を得た。 得られた化合物のマス測定結果により 目的物 54であることを確認した。
M/e: 794(M+:DEI-MS)
このもののガラス転移温度は 1 10°C、 融点は 228°C、 気化温度は 494°C であった。
(合成例 22 ) 目的物 55〜目的物 56
Figure imgf000151_0001
目的物 24 目的物 55
目的物 48 (1. 07 g)、 目的物 24 (2. 7 g)、 無水酢酸アンモニゥム (1 1. 8g)に酢酸 3 OmL、ジメチルホルムアミ ド 15 m Lを加え、空気中 8時間、 加熱環流をおこなった。 その後、 反応溶液に水 50mL、 メタノ,ール 2 OmLを 加え、 沈殿を炉別し、 メタノールで洗浄をおこない、 1. 4 gの黄土色の固体と して得た。 得られた化合物のマス測定結果により目的物 55であることを確認し た。
M/e: 766(M+:DEI-MS)
Figure imgf000151_0002
目的物 55 (977mg)、 フエニノレボ口ン酸 (242mg) にトノレエン 30 m L、 エタノール 2. OmL、 2 N炭酸ナトリウム水溶液 2. OmLを加え、 窒素 下、 室温で 30分攪拌後、 テトラキストリフエニルホスフィンパラジウム (0) 40 m gを加え、 さらに 5時間加熱環流をおこなった。 その後、 反応溶液に水 5 OmLを加え、 クロ口ホルムで数回抽出をおこなった。 抽出液に炭酸カリウムを 加え乾燥後、 溶液を減圧留去したのち、 得られた沈殿物をカラムクロマトグラフ ィ一により精製をおこない、 黄白色の固体 (823mg) を得た。 得られた化合 物のマス測定結果により目的物 56であることを確認、した。
M/e: 764(M+:DEI-MS)
このもののガラス転移温度は 125°C、 融点は 268°C、 気化温度は 528 °C であった。
(合成例 23) 目的物 57
Figure imgf000152_0001
目的物 36 目的物 57
目的物 36 (3. 0 g)、カノレバゾーノレ(1. 73g)、t一ブトキシナトリゥム(1. 8 g)、 トルエン (80m l) を 60°Cまで昇温攪拌した中に、 トリス (ジベンジ リデンァセトン)ジパラジウム(0. 16 g)、 トリ _t一ブチルフォスフィン (0. 16g) をトルエン 5 m 1に溶解した溶液を添加した。 その後加熱環流下、 8. 5 時間攪拌し、 冷却後メタノール (400m l ) に注ぎ、 粗結晶を得た。 次にメタ ノール (400m l ) で加熱攪袢し、 シリカゲルカラムクロマトグラフィーにて 精製し、 目的物 3. 43gを得た。
DE I -MS (m/ z = 866) から目的物 57であることを確認した。 この ものの気化温度は 554°C、 ガラス転移温度は 142°Cであった。 (合成例 24) 目的物 58
(合成例 24) 目的物 58'
Figure imgf000153_0001
目的物 17 (3.0 g)、力ノレノ ゾ一ノレ(1. 73g)、t—ブトキシナトリウム(1. 8g)、 トルエン (80m l ) を 60°Cまで昇温攪拌した中に、 トリス (ジベンジ リデンアセトン) ジパラジウム(0.16g)、 トリー t—プチルフォスフィン(0. 2g) をトルエン 5 m 1に溶解した溶液を添加した。
そめ後加熱環流下、 5. 5時間攪拌し、 冷却後析出結晶を濾別し、 メタノール (400m l ) にて加熱攪拌し粗結晶を得た。 次にシリカゲルカラムクロマ トグ ラフィ一にて精製し、 目的物 2. 27gを得た。
DE I -MS (m/ z = 866) から目的物 58であることを確認した。 このも のの気化温度は 556°C、 融点 31 7°C.、 ガラス転移温度は 1 54°Cであった。
(合成例 25) 目的物 59
Figure imgf000153_0002
目的物 49 (2.0 §)、カルバゾール(0. 65g)、t一ブトキシナトリウム(0. 68g)、 トルエン (30m l ) を 60°Cまで昇温攪拌した中に、 トリス (ジベン ジリデンァセ トン)ジパラジウム(0.06 g)、 ト リ _t—プチルフォスフィン(0 · 03g) をトルエン 5m 1に溶解した溶液を添加した。 その後加熱環流下、 7. 5 時間攪拌し、 冷却後析出結晶を濾別し、 クロ口ホルム攪拌洗浄、 メタノール (4 O Om l ) 加熱攪拌し結晶を得た。 再結晶することにより、 目的物 0. 45gを 得た。
DE I—MS (m/ z = 70 1 ) 力 ら目的物 59であることを確認した。 この ものの気化温度は 507°C、融点 3 60°C、ガラス転移温度は 1 30°Cであった。
(合成例 26 ) 目的物 60〜 62
Figure imgf000154_0001
ィソフタルアルデヒ ド (2. 73g)、 4—ァセチルビフエニル (7. 98g)、 濃硫酸(6. 54m 1 )、 酢酸 (58m 1 ) を大気中、 50°Cで、 6. 5時間攪拌 した後、 エタノール (60m l )、 水 (60m l ) を加え、 析出した結晶を濾過し た。 その後、 その結晶をエタノール 1 5.0m 1で加熱環流攪拌し、 濾別後、 カラ ムクロマトグラフィーにて精製し、 目的物 60を 1. 8 g得た。
Figure imgf000154_0002
目的物 60 (1. 2g)、 目的物 24 (2. 5g)、 酢酸アンモニゥム(9. 4 g)、 酢酸 (36. 63g) N, N—ジメチルホルムアミ ド (40m l ) を加熱環流下、 7. 5時間攪拌して得られた溶液に、 エタノール 5 Om l添加、 得られた結晶を 濾別した。その結晶をメタノール 5 Om 1加熱攪拌を 2回行い、 目的物 6 2 (0. 97g) を得た。 DE I -MS (mZ z = 840) から目的物 62であることを確 認、した。 このものの融点は 3 1 9°C、 ガラス転移温度は 142°Cであった。
[実施例]
(実施例 1) 化合物の評価
(実施例 1一 1 ) 化合物の酸化 ·還元電位測定
上記合成例で得られた目的物 2 (HB— 1)、 目的物 6 (HB—.3) 及び目的物 1 5 (HB- 5) の酸化 ·還元電位測定を行った。 測定条件は、 以下の通りであ る。得られた電位を飽和甘コゥ電極(SCE) を基準電極として換算,した結果を表一 1 - 1に示す。
参照電極:銀線 (内部標準物質としてフユ口セン使用)
作用電極:グラシックカーボン
対極: 白金線
測定溶媒: 0. lm l /L 過塩素酸テトラ(ノルマルプチル)アンモニゥム塩化 メチレン溶液 (ァセトニトリル溶液)
掃引速度: 10 Om 1 / s e c
試料濃度: 1 mmo 1 /L
(比較例 1一 1 ) 比較化合物の酸化 ·還元電位測定
実施例 1— 1と同様にして、 比較化合物として、 以下に示す、 ピリジン環の窒 素原子同志が共役連結している下記構造化合物 (HB— 6) の酸化■還元電位測 定を行った。 結果を表— 1一 1に示す。
Figure imgf000155_0001
表一 1一 1
Figure imgf000156_0001
表 _ 1一 1より、 本発明の化合物は、 非共役に連結している構造であることに より、 酸化還元電位差が、 共役連結している構造 (比較) に比べて大きいことを 示している。 .
(実施例 1一 2) 化合物の最大発光ピーク波長
本発明の一般式 ( I I) の化合物に該当し、 かつ、 該化合物が最安定化構造を' とった時に、 平面構造とならない化合物 (以下、 化合物 I Iという) である、 目 的物 1 8及び目的物 1 5の薄膜 (膜厚 50 nm) を、 真空蒸着法によりガラス基 板上に作成した。
得られた薄膜は透明なァモルファス膜であつた。 得られた薄膜の最大吸光波長 で励起したときの蛍光発光スぺク トルにおける最大発光ピーク波長を、 表一 1一 2に示した。
(比較例 1一 2) 比較化合物の最大発光ピーク波長
本発明の一般式 ( I I) の化合物に該当し、 かつ、 該化合物が最安定化構造を とった時に、 平面構造とならない化合物ではない、 目的物 6及び目的物 25 (H B— 8) の薄膜を、 (実施例 1— 2) と同様にして、 作成した。 得られた薄膜は透 明なァモルファス膜であつた。 得られた薄膜の最大吸光波長で励起したときの蛍 光発光スぺク トルにおける最大発光ピーク波長を、 表一 1一 2に示した。 表一 1—2
Figure imgf000157_0001
これらの結果から、 一般式 (π) の化合物 (化合物 II) は、 薄膜状態での分子 間相互作用が抑制されていることが明確である。
(実施例 2) 素子 1〜8の作成と発光特性
(実施例 2— 1) 素子 1の作成
図 3に示す構造を有する有機電界発光素子を以下の方法で作製した。
ガラス基板 1の上にインジウム · スズ酸化物 (I TO) 透明導電膜2を 1 50 nm堆積したもの (スパッター成膜品;.シート抵抗 1 5 Ω) を通常のフォ トリソ グラフィ技術と塩酸エッチングを用いて 2 mm幅のストライプにパターエングし て陽極を形成した。パターン形成した I TO基板を、ァセトンによる超音波洗浄、 純水による水洗、 イソプロピルアルコールによる超音波洗浄の順で洗浄後、 窒素 ブローで乾燥させ、 最後に紫外線ォゾン洗浄を行った。
陽極バッファ層 3の材料として、 下記に示す構造式の芳香族アミノ基を有する 非共役系高分子化合物 (PB— 1)
Figure imgf000158_0001
重量平均分子量 : 29400
数平均分子量 : 1 2600
を電子受容性化合物 (A— l)
Figure imgf000158_0002
と共に以下の条件でスピンコートした。
溶媒安息香酸ェチル
塗布液濃度 2 [w t%]
P B - 1 : A- 1 10 : 1
スピナ回転数 1 500 [ r p m]
スピナ回転時間 30 [秒]
乾燥条件 100°C 1時間 ― 上記のスピンコートにより膜厚 30 nmの均一な薄膜が形成された。
次に陽極バッファ一層を成膜した基板を真空蒸着装置内に設置した。 上記装置 の粗排気を油回転ポンプにより行った後、 装置内の真空度が 1. 1 Χ 1 (Τ6Τ ο r r (約 1. 5 X 10—4P a) 以下になるまで油拡散ポンプを用いて排気した。 上記装置内に配置されたセラミックるつぼに入れた、 下記に示すァリールアミ ン化合物 (H- 1)
Figure imgf000159_0001
をるつぼの周囲のタンタル線ヒーターで加熱して蒸着を行った。 この時のるつぼ の温度は、 3 1 8〜 334 °Cの範囲で制御した。 蒸着時の真空度 1. 1 X 1 0—6 T o r r (約 1. 4 X 10— 4P a )、 蒸着速度は 0. 1 5 n mZ秒で膜厚 60 n m の正孔輸送層 4を得た。 '
引続き、 発光層 5の主成分 (ホスト材料) として下記に示す力ルバゾール誘導 体- (E— 1) を、 副成分 (ドーパント) として有機イリジウム錯体 (D— 1) を 別々のセラミックるつぼに設置し、 2元同時蒸着法により成膜を行った。
Figure imgf000159_0002
Figure imgf000159_0003
化合物 (E— 1) のるつぼ温度は 1 84〜 1 96°C、 蒸着速度は 0. l l nm Z秒に、 化合物 (D— 1) のるつぼ温度は 245〜 246°Cにそれぞれ制御し、 膜厚 30 nmで化合物 (D— 1) が 6重量%含有された発光層 5を正孔輸送層 4 の上に積層した。 蒸着時の真空度は 1. 0 X 10— 6To r r (約 1. 3 X 10一4 P a ) であった。
さらに、正孔阻止層 6として、上記合成例 1で合成された目的物 2 (HB- 1)
Figure imgf000160_0001
をるつぼ温度を 1 90〜1 96°〇として、 蒸着速度 0. 1 3 nm/秒で 10 nm の膜厚で積層した。 蒸着時の真空度は 0. 7 X 10_6T o r r (約 0. 9 X 1 0— 4 P a ) であった。
正孔阻止層 6の上に、 電子輸送層 7として下記に示すアルミニウムの 8—ヒ ド 口キシキノリン錯体 (ET- 1)
Figure imgf000160_0002
を同様にして蒸着した。 この時のアルミニウムの 8—ヒ ドロキシキノリン錯体の るつぼ温度は 250〜262 °Cの範囲で制御し、 蒸着時の真空度は 0. 7 X 1 0 —6T o r r (約 0. 9 X 10— 4P a)、 蒸着速度は 0. 2 1
Figure imgf000160_0003
3 5 n mとした。 上記の正孔輸送層、 発光層及び電子輸送層を真空蒸着する時の基板温度は室温 に保持した。
ここで、 電子輸送層 6までの蒸着を行った素子を一度前記真空蒸着装置内より 大気中に取り出して、 陰極蒸着用のマスクとして 2 mm幅のストライプ状シャド 一マスクを、 陽極 2の I TOストライプとは直交するように素子に密着させて、 別の真空蒸着装置内に設置して有機層と同様にして装置内の真空度が 2. 7 X 1 0"6T o r r (約 2. 0 X 1 0— 4P a ) 以下になるまで排気した。 .陰極 8として、 先ず、 フッ化リチウム (L i F) をモリブデンボートを用いて、 蒸着速度 0. 0 I nmZ秒、 真空度 3. 0 X 10"6T o r r (約 4. 0 X 10— 4P,a ) で、 ◦ . 5 nmの膜厚で電子輸送層 7の上に成膜した。 次に、 アルミニウムを同様にモリプ デンボートにより加熱して、 蒸着速度 0. 48 n mZ秒、 真空度 8. 5 X 10一6 To r r (約 1. 1 X 10—3P a ) で膜厚 80 nmのアルミニウム層を形成して 陰極 8を完成させた。以上の 2層型陰極 8の蒸着時の基板温度は室温に保持した。 以上の様にして、 2mmX 2 mmのサイズの発光面積部分を有する有機電界発 光素子 (素子 1) が得られた。
この素子の発光特性を表一 2に示す。 .
表 _ 2において、最大発光輝度は電流密度 0. 25 A/ cm2での値、発光効率- 輝度/電流■電圧は 輝度 1 00 c dZm2での値を各々示す。
素子 1の発光スペク トルの極大波長は 510nmであり、 有機イリジウム錯体 (D _ 1) からのものと同定された。 色度は C I E(x, y) = (0. 28, 0. 6 2)で あった。
(実施例 2— 2 ) 素子 2の作成
発光層 5の副成分 (ドーパント) として有機イリジウム錯体 (D— 1) の代わ りに下記に示す混合配位子錯体 (D— 2) を用いた他は、 (実施例 2_ 1) と同様 にして、 素子 2を作製した。
素子 2の発光特性を表一 2に示す。
素子 2の発光スぺク トルの極大波長は 6 2611111、色度は〇 I E (x, y) = (0. 68, 0. 32)であり、有機イリジゥム錯体(D— 2)からのものと同定された。
Figure imgf000162_0001
(実施例 2— 3) 素子 3の作成
発光層 5の副成分 (ドーパント) として有機イリジウム錯体 (D— 1) の代わ りに下記に示す混合配位子錯体(D— 3) を用いた他は、 (実施例 2— 1) と同様 にして素子 3を作製した。
素子 3の発光特性を表一 2に示す。素子の発光スぺクトルの極大波長は 471ntn、 色度は C I E (x, y) = (0. 1 6, 0. 35 )であり、 有機イリジウム錯体 (D— 3) からのものと同定された。
Figure imgf000162_0002
(実施例 2— 4) 素子 4の作成
正孔阻止層の目的物 2 (HB— 1) の代わりに、 下記に示す、 合成例 3で得ら れた目的物 6 (HB- 3) を用いた他は、 (実施例 2— 1) と同様にして素子 4を 作製した。
素子 4の発光特性を表一 2に示す。 素子の発光スぺク トルの極大波長は 5 1 2 nm、 色度は C I E (x, y) = (0. 28, 0. 63 )であり、 有機イリジウム錯体 (D- 1) からのものと同定された。 初期の発光特性は、 素子 1よりも高効率であった。
Figure imgf000163_0001
(実施例 2— 5) 素子 5の作成
正孔阻止層の目的物 2 (HB- 1) の代わりに、 下記に示す、 合成例 5で得ら れた目的物 10 (HB— 4) を用いた他は、 (実施例 2— 1) と同様にして素子 5 を作製した。
素子 5の発光特性を表一 2に示す。素子の発光スぺク トルの極大波長は 512mn、 色度は C I E (x, y) = (0. 28, 0. 62 )であり、 有機イリジウム錯体 (D— 1 ) からのものと同定された。
初期の発光特性は、 素子 1とほぼ同等であった。
Figure imgf000163_0002
(実施例 2— 6 ) 素子 6の作成
正孔阻止層の目的物 2 (HB- 1) の代わりに、 下記に示す、 合成例 7で得ら れた目的物 1 5 (HB- 5) を用いた他は、 (実施例 2— 1) と同様にして素子 6 を作製した。 素子 6の発光特性を表一 2に示す。素子の発光スぺク トルの極大波長は 512nm、 色度は C I E (x, y) = (0. 29, 0. 6 1 )であり、 有機イリジウム錯体 (D— 1)からのものと同定された。 初期の発光特性は、素子 1よりも高効率であった。
Figure imgf000164_0001
(実施例 2— 7) 素子 7の作成
正孔阻止層の目的物 2 (HB- 1 ) の代わりに、 下記に示す、 合成例 8で得ら れた目的物 18 (HB-6) を用いた他は、 (実施例 2— 1) と同様にして素子 7 を作製した。
素子 7の発光特性を表一 2に示す。素子の発光スぺク トルの極大波長は 512nm、 色度は C I E ( X , y) = (0. 29, 0. 62 )であり、 有機イリジウム錯体 (D— 1)からのものと同定された。 初期の発光特性は、素子 1よりも高効率であった。
Figure imgf000164_0002
(実施例 2— 8) 素子 8の作成
正孔阻止層の目的物 2 (HB- 1) の代わりに、 下記に示す、 目的物 25 (H B— 8) を用いた他は、 (実施例 2— 1) と同様にして素子 8を作製した。
素子 8の発光特性を表一 2に示す。 素子の発光スぺク トルの極大波長は 5 1 0 nm、 色度は C I E(x, y) = (0. 28, 0. 60 )であり、 有機イリジウム錯体 (D- 1) からのものと同定された。
Figure imgf000165_0001
(実施例 2— 9) 素子 1 1の作成
正孔阻止層の目的物 2 (HB- 1) の代わりに、 下記に示す、 合成例 2で得ら れた目的物 4 (HB- 9) を用いた他は、 (実施例 2— 1) と同様にして素子 1 1 を作製した。
素子 1 1の発光特性を表一 2に示す。 素子の発光スぺクトルの極大波長は 50 9 nm、 色度は C I E(x, y) = (0. 27, 0. 58 )であり、 有機イリジウム錯 体 (D— 1) からのものと同定された。
Figure imgf000165_0002
(実施例 2— 1 0 ) 素子 1 2の作成
正孔阻止層の目的物 2 (HB- 1) の代わりに、 下記に示す、 合成例 1 9で得 られた目的物 50を用いた他は、 (実施例 2— 1)と同様にして素子 1 2を作製し た。
素子 1 2の発光特性を表一 2に示す。 素子の発光スぺクトルの極大波長は 5 1 2 nm、 色度は C I E ( X , y) = (0. 29, 0. 6 1 )であり、 有機イリジウム錯 体 (D— 1) からのものと同定された。 .
初期の発光特性は、 素子 1よりも高効率であった。
Figure imgf000166_0001
(実施例 2— 1 1 ) 素子 1 3の作成
陽極バッファ層 3の材料として、 下記に示す構造式の芳香族アミノ基を有する 非共役系高分子化合物 (PB— 1) および電子受容性化合物 (A— 2) からなる 材料を用い、 有機低分子層 (正孔輸送層 4ないし電子輸送層 7までの層) の膜厚 を下記の通り変更した他は、 (実施例 2— 1) と同様にして素子 1 3を作製した。 芳香族アミノ基を有する非共役系高分子化合物 (PB— 1)
Figure imgf000167_0001
(P B- 1 )
重量平均分子量 : 29400 .
数平均分子量 : 1 2600
電子受容性化合物(A_2):特願 2004-68958号の 0059欄の表中に 記載されている、 番号 A— 1のイオン化合物 スピンコート条件
- 溶媒安息香酸ェチル
塗布液濃度 2 [w t %]
P B— 1 : A- 2 10 : 2
スピナ回転数 1 500 [ r p m]
スピナ回転時間 30 少]
乾燥条件 230°C 1 5分
上記のスピンコートにより膜厚 30 nmの均一な薄膜が形成された。
有機低分子層
正孔輸送層 4 ァリールァミン化合物 (H— 1) 40 nm
発光層 5 ホス ト材料:力ルバゾール誘導体 (E— 1) 30 nm ドーパント :有機イリジウム錯体 (D— 1) 6重量% ' 正孔阻止層 6 合成例 1で合成された目的物 2 (HB- 1) 5 nm 電子輸送層 7 A 1の 8—ヒ ドロキシキノ リン錯体 (ET— 1) 30 nm 素子 1 3の発光特性を表一 2に示す。 素子の発光スぺク トルの極大波長は 5 1 2 nm、 色度は C I E (x, y) = (0. 30, 0. 59 )であり、 有機イリジウム錯体 (D- 1) からのものと同定された。
(実施例 2— 1 2) 素子 14の作成
正孔阻止層の目的物 2 (HB- 1) の代わりに、 下記に示す、 合成例 1 5で得 られた目的物 38を用いた他は、 (実施例 2— 1 1)と同様にして素子 14を作製 した。 .
素子 14の発光特性を表一 2に示す。 素子の発光スぺクトルの極大波長は 5 1 3 nm、 色度は C I E(x, y) = (0. 30, 0. 59 )であり、 有機イリジウム錯 体 (D— 1) からのものと同定された。
Figure imgf000168_0001
(実施例 2— 1 3 ) 素子 1 5の作成
正孔阻止層の目的物 2 (HB- 1) の代わりに、 下記に示す、 合成例 1 6で得 られた目的物 3 9を用いた他は、 (実施例 2_ 1 1)と同様にして素子 1 5を作製 した。 素子 1 5の発光特性を表一 2に示す。 素子の発光スペク トルの極大波長は 5 1 2 、 色度は C I E (x, y) = (0. 29, 0. 58 )であり、 有機イリジゥ ム錯体 (D— 1) からのものと同定された。
Figure imgf000169_0001
(比較例 2 ) 比較素子 1〜 3の作成と発光特性
(比較例 2— 1) 比較素子 1の作成 .
正孔阻止層の目的物 2 (HB- 1) の代わりに、 下記に示す、 混合配位子錯体 (HB- 2)を用いた他は、 (実施例 2— 1 )と同様にして比較素子 1を作製した。 比較素子 1の発光特性を表一 2に示す。 素子の発光スぺク トルの極大波長は 5 10 nm、 色 度は C I E (x, y) = (0. 28, 0. 62 )であり、 有機イリジウム 錯体 (D— 1) からのものと同定された。 初期の発光特性は、 素子 1とほぼ同等 であった。
Figure imgf000169_0002
(比較例 2— 2) 比較素子 2の作成
正孔阻止層の目的物 2 (HB— 1) の代わりに、 上記混合配位子錯体 (HB— 2) を用いた他は、 (実施例 2— 2) と同様にして比較素子 2を作製した。
比較素子 2の発光特性を表一 2に示す。 素子の発光スぺクトルの極大波長は 6 26 nm、 色度は C I E (x, y) = (0. 6 7, 0. 32 )であり、 有機イリジウム 錯体 (D— 1) からのものと同定された。 初期の発光特性は、 素子 2とほぼ同等 であった。 (比較例 2— 3) 比較素子 3の作成
正孔阻止層の目的物 2 (HB- 1 ) の代わりに、 上記混合配位子錯体 (HB— 2) を用いた他は、 (実施例 2— 3) と同様にして比較素子 3を作製した。
比較素子 3の発光特性を表一 2に示す。 素子の発光スぺクトルの極大波長は 4 72 nm、 色度は C I E(x, y) = (0. 1 7, 0. 37 )であり、 有機イリジウム 錯体(D— 3)からのものと同定された。初期の発光特性は、素子 3と比較して、 発光効率および電流あたりの輝度が低かった。 .
表一 2
正孔阻止層 発光層 陽極 . 発光開
ドーパ バッファ層 始電圧 鳥大発光輝度 発光効率 輝度 Z電流 電圧
[cd/rn]
ン卜 電子受容性 [VI hnIW] [cdA] [V] .
lcd/rri ©0.25A/C m @100cd/rri @100cd/m @100cd/m 化合物 ©
実施例 2— Ί (素子 1) 目的物 2 D- 1 A-.1 41 36,100 " 16.1 31.5 6.2 実施例 2— 2 (素子 2) 目的物 2 D-2 A— 1 4.1 13,400 3.8 8.0 6.8
- 実施例 2— 3 (素子 3) 目的物 2 D— 3 A - 1 . 5.1 14,500 5.9 13.8 7.4 実施例 2— 4 (素子 4) 目的物 6 D - 1 A— 1 3.1 49,500 24.8 38.7 4.9 実施例 2— 5 (素子 5) 目的物 1 0 D— 1 A— 1 4.1 38,900 17.1 31.5 5.8 ' 実施例 2— 6 (素子 6) 目的物 1 5 D— 1 A— 1 3.1 41;000. 27. 40:4 . 4.7 実施例 2— 7 (棄子 7) 目的物 1 8 D- 1 A- 1 . 3.5 43,600 30.4 48.5 5.0 実施例 2— 8 (素子 8) 目的物 25 D— 1 A— 1 ' 1 31,500 16.4 29.8 5.8 実施例 2— 9 (素子! 1) 目的物 4 D— 1 . A- 1 3.5 31,880 - 17.3 .28.4 5.2 実施例 2-1 0 (素子 1 2 ) 目的物 50 D— 1 A- 1 4.1 . 36,060 17.0 • 32.8 6.1 実施例 2— 1 1 (素子 Γ3) 目的物 2 D— 1 A— 2 3.0 38,620 27.9 36.6 4.3 実施例 2—1 2 (素子"! 4) 目的物 38 D— 1 A 2 3.1 39,520 24.1 . 32.4 4.3 実施例 2—1 3 (素子 1.5) -目的物 39 D— 1 A— 2 3.4. 3¾030 15.9 25.4 5.0 比較例 2—1 (比較素子 1 ) H B-2 P- 1 A— 1 41 . 40,200 . 16.1 29.3 5.7 比較例 2— 2 (比較素子 2) H B-2 . D— 2 A— 1 3.8 12,700 4.0 •7.6 6.1 比較例 2— 3 (比較素子 3 ) H B— .2 D— 3 · A一 5.0 13,100 3.6 • 8.2 7.1
(実施例 3) 素子の評価
(実施例 3— 1) 駆動寿命試験 1
素子 1、 素子 6、 素子 7、 素子 8及び素子 1 2を、 下記条件の下、 駆動寿命試 験を行った。
温度 室温
初期輝度 5, 000 c d /m2
駆動方式 直流駆動 (DC駆動) · 素子 1の駆動特性を表一 3一 1に示す。 寿命おょぴ電圧上昇は輝度 Z初期輝度 = 0. 8となつた時点の比較素子 1の駆動時間を 1. 0とした場合の相対時間を 示す。 素子 1、 素子 6、 素子 7、 素子 8及び 1 2の方が、 比較素子 1に比べて、 寿命が長いことがわかる。
(比較例 3— 1 )
比較素子 1を、 実施例 3— 1と同様にして、 駆動寿命試験を行った結果を、 表 - 3- 1に示す。 表— 3— 1
Figure imgf000172_0001
(実施例 3— 2) 駆動寿命試験 2
素子 4及び素子 5を、 下記条件の下、 駆動寿命試験を行った。
温度 室温
初期輝度 1, 000 c d/m2
駆動方式 直流駆動 (DC駆動) 駆動時間 100時間
この素子の駆動特性を表一 3— 2に示す。 100時間後の輝度ノ初期輝度 (L /し 0) および電圧上昇値 (=電圧一初期駆動電圧) を示す。
(比較例 3— 2 )
比較素子 1を、 実施例 3— 2と同様にして、 駆動寿命試験を行った。 結果を表 -3-2に示す。
素子 4及び素子 5の方が、 比較素子 1に比べて、 100時間後の LZL 0が大 きく寿命が長い。
表一 3-2
Figure imgf000173_0001
(実施例 3— 3) 駆動寿命試験 3
素子 1、 素子 8および素子 1 1を、 下記条件の下、 駆動寿命試験を行った。
温度 室温
初期輝度 2 , 000 c d/m2
駆動方式 直流駆動 (DC駆動)
定電流で連続発光させ、 輝度が 4割減少する (L/L0 = 0. 6) までの時間 を比較した。 比較例 1素子の時間をを 1. 00とした場合の実施例の相対時間を 表一 3_3に示す。 素子 1、 素子 8および素子 1 1の方が比較素子 1に比べて、 寿命が長いことがわかる。 (比較例 3— 3 )
比較素子 1を、 実施例 3— 3と同様にして、 駆動寿命試験を行った結果 - 3- 3に示す。 表一 3— 3
Figure imgf000174_0001
(実施例 3— 4) 駆動寿命試験 4
素子 1 3および素子 14を、 下記条件の下、 駆動寿命試験を行った。
¾m./¾. 至 iniL
初期輝度 5, O O O c d/m2
- 駆動方式 直流駆動 (DC駆動)
定電流で連続発光させ、 輝度が半減する (L/L 0 = 0. 5) までの時間を比 較した。 表— 3— 4に示す。 素子 1 3および素子 14の駆動寿命は同等である。 表一 3— 4
Figure imgf000174_0002
(実施例 4)
発光層及ぴ正孔阻止層の両層に、 本発明の電荷輸送材料を使用した素子の作成 (実施例 4一 1) 素子 9の作成
発光層 5の主成分 (ホス ト材料) として、 力ルバゾール誘導体 (E— 1) の代 わりに目的物 2 (HB- 1 ) を用いた他は、 実施例 2— 1と同様にして素子 9を 作製した。 素子 9の発光特性を表一 5に示す。
素子 9の発光スぺク トルの極大波長は 5 1 21 111、色度はじ I E (x, y ) = (0. 2 9, 0. 6 2)であり、有機イリジゥム錯体(D— 1 )からのものと同定された。
(実施例 4一 2 ) 素子 1 0の作成
発光層 5の主成分 (ホス ト材料) として、 力ルバゾール誘導体 (E— 1) の代 わりに目的物 6 (HB- 3) を用い、 正孔阻止層として目的物 2 (HB- 1) の 代わりに目的物 6 (HB— 3) を用いた他は、 実施例 2— 1と同様にして素子 1 0を作製した。 ,
素子 1 0の発光特性を表一 5に示す。
素子 1 0の発光スぺク トルの極大波長は 5 1 4 nm、 色度は C I E (x , y) = (0. 3 0, 0. 6 2)であり、 有機イリジウム錯体 (D— 1) からのものと同定さ れた。 '
(実施例 4一 3) 素子 1 6の作成
発光層 5の主成分 (ホス ト材料) とレて、 力ルバゾール誘導体 (E— 1) の代 わりに目的物 5 7を用い、 正孔阻止層として目的物 2 (HB- 1) の代わりに目 的物 3 8を用いた他は、 実施例 2 _ 1 1と同様にして素子 1 6を作成した。
素子 1 6の発光特性を表一 4に示す。 素子 1 6の発光スぺク トルの極大波長は 5 1 3 nmであり、 有機ィリジゥム錯体 (D— 1) からのものと同定された。 色 度は C I E (X , y) = (0. 3 1, 0. 6 1)であった。
表一 4
Figure imgf000176_0001
(実施例 4 _ 4 ) 素子 9の駆動寿命試験
素子 9および実施例 2— 1で作成した素子 1を、 下記条件の下、 駆動寿命試験 を行った。 >
温度 室温
初期輝度 1, 0 0 0 c d /m2
駆動方式 直流駆動 (D C駆動)
定電流で連続発光させ、 輝度が 2割減少する (L/L0=0. 8) までの時間を比較し た。 素子 1の時間を 1 . 0 0とした場合、 素子 9の相対時間は 1 . 8 2であり、 有機発光層および正孔阻止層の両層に目的物 2 (H B - 1 ) を用いた素子 9の方 が、 正孔阻止層のみに目的物 2 (H B - 1 ) を用いた素子 1よりも、 さらに寿命 が長いことがわかった。
(実施例 5 ) 本発明の電荷輸送材料を発光層に使用した素子の作成 (正孔阻止層 なし)
(実施例 5— 1 ) 素子 1 7の作成
発光層 5の主成分 (ホス ト材料) として、 力ルバゾール誘導体 (E— 1 ) の代 わりに、下記に示す上記合成例 2 3で合成された目的物 5 7を用いたこと、及び、 発光層の上に正孔阻止層を積層せずに、 そのまま電子輸送層を積層したこと以外 は、 実施例 2— 1 1と同様にして、 素子 1 7を作成した。
素子 1 7の発光特性を表一 5に示す。
表一 5において、最大発光輝度は電流密度 0. 25 A/ cm2での値、発光効率- 輝度ノ電流 ·電圧は 輝度 100 c dZm2での値を各々示す。
素子 1 7の発光スぺクトルの極大波長は 5 1 3 nmであり、 有機ィリジゥム錯 体 (D— 1) からのものと同定された。 色度は C I E ( X , y) = (0. 30, 0. 5 9)であった。
(比較例 5- 1) 比較素子 4の作成 '
発光層の目的物 5 7の代わりに、 前記力ルバゾール誘導体 (E— 1) を用いた 他は、 (実施例 5— 1) と同様にして比較素子 4を作製した。
比較素子 4の発光特性を表一 5に示す.。 素子の発光スぺクトルの極大波長は 5 1 3 nm、 色度は C I E ( X , y) = (0. 30, 0. 60 )であり、 有機イリジウム 錯体 (D— 1) からのものと同定された。 素子 1 7の初期の発光特性は、 比較素 子 4よりも高効率であった。 表一 5
Figure imgf000177_0001
(実施例 6) 素子の評価
(実施例 6— 1 ) 駆動寿命試験
素子 1 7を、 下記条件の下、 駆動寿命試験を行った。 温度 室温
初期輝度 1 , 000 c d/m2
駆動方式 直流駆動 (DC駆動)
素子 17の駆動特性を表— 6に示す。 LZL 0は 150時間後の輝度/初期輝度 である。
(比較例 6— 1 ) .
比較素子 4を、 実施例 6— 1と同様にして、 駆動寿命試験を行った結果を、 表 一 6に示す。 ,
素子 17の方が、 比較素子 4に比べて、 寿命が長いことがわかる。 表一 6
Figure imgf000178_0001
本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の精神と範 囲を逸脱することなく様々な変更や修正を加えることができることは当業者にと つて明らかである。
なお本出願は、 2003年 7月 31日付で出願された 3本特許出願 (特願 20 03— 204947) 、 2003年 1 1月 4日付で出願された日本特許出願 (特 願 2003— 374430) 、 2004年 2月 20日付で出願された日本特許出 願 (特願 2004— 4521 9) に基づいており、 その全体の内容が、 引用によ り援用される。 ぐ産業上の利用可能性 >
本発明の電荷輸送材料を用いた有機電界発光素子によれば、 高輝度■高効率で 発光させることが可能となり、 かつ素子の安定性が向上する。 また、 本発明の電荷輸送材料は、 優れた耐熱性、 製膜性、 電荷輸送性、 発光特 性から、 素子の層構成に合わせて、 発光材料、 ホスト材料、 電子注入材料、 電子 輸送材料、 正孔阻止材料などとしても適用可能である。
従って、 本発明による有機電界発光素子はフラットパネル ·ディスプレイ (例 えば O Aコンビユータ用ゃ壁掛けテレビ)、車載表示素子、携帯電話表示や面発光 体としての特徴を生かした光源 (例えば、 複写機の光源、 液晶ディスプレイや計 器類のバックライト光源)、表示板、標識灯への応用が考えられ、その技術的価値 は大きいものである。
本発明の化合物は、 本質的に優れた酸化還元安定性を有するこ,とから、 有機電 界発光素子に限らず、 電子写真感光体に利用することも有用である。
更に、 本発明の化合物は、 上記本発明の電荷輸送材料が有する高い性能に加え て、 非晶質性、 溶解性、 耐熱性、 耐久性に優れている。 従って、 電荷輸送材料用 としてだけでなく、 発光材料用、 太陽電池材料用、 バッテリー材料 (電解液、 電 極、 分離膜、 安定剤など) 用、 医療用、 塗料材料用、 コーティング材料用、 有機 半導体材料用、 トイレタリー材料用、 帯電防止材料用、 熱電素子材料用などにお いても有用である。 .

Claims

請 求 の 範 囲
1 . 分子内に、 2, 4 , 6—位が置換されているピリジン環を 2個以上含 む化合物であって、 該ピリジン環は互いに実質的に共役していないことを特徴と する化合物からなる電荷輸送材料。 (但し、 ピリジン環の 3, 5—位は置換されて いてもよい。)
2 . 分子内に、 置換基を有していてもよい 2—ピリジル基および 4一ピリ ジル基からなる群より選択された、 2〜 8個のピリジル基を含み、 該ピリジル基 が、 すべて連結基 Qに結合しており、 該ピリジル基は互いに、 連結基 Qを介して 実質的に共役していないことを特徴とする化合物からなる、 請求の範囲第 1項に 記載の電荷輸送材料。
(伹し、 1分子中に複数の 2 _ピリジル基が含まれる場合、 各々が有する置換基 は同一であってもよいし、 異なっていてもよい。 また、 1分子中に複数の 4ーピ リジル基が含まれる場合、 各々が有する置換基は同一であってもよいし、 異なつ ていてもよい。 さらに、 1分子中に含まれる全てのピリジン環の 2 , 4, 6—位 は、 連結基 Qまたは任意の置換基と結合している。)
3 . 分子量が 2 0 0〜4 0 0 0である、 請求の範囲第 1項または第 2項に 記載の電荷輸送材料。
4 . 該化合物が、 下記一般式 (I ) で表わされる、 請求の範囲第 1項〜第 3項のいずれかに記載の電荷輸送材料。
Figure imgf000180_0001
(式中、 I^、 R3、 R5および R8は、 各々独立に、 水素原子または任意の置換基 を表し、 R2、 R4、 R6および R7は、 各々独立に任意の置換基を表す。
は、 直接結合または環 Aと共役可能な電子を有する 2価の連結基を表す。
Z2は、 直接結合または環 Bと共役可能な電子を有する 2価の連結基を表す。 連結基 Q。は 1分子中に含まれる、環 Aおよび環 Bからなる群より選ばれた任意の 2つを、 実質的に共役不可能とすることができる、 (m+n) 価の連結基を表す。 mは 0〜8の整数であり、 nは 0~8の整数であり、 mと nの総和は 2〜 8の整 数である。
なお、 mおよび Zまたは nが 2以上の場合、 1分子中に含まれる複数個の 1^ ないし R8は、各々、 同一であっても異なっていてもよく、 1分子中に含まれる複 数個の およぴ∑2は、 各々、 同一であっても異なっていてもよい。)
5. —般式( I )において、 mは 0または 1及び nは 1以上の整数である、 請求の範囲第 4項に記載の電荷輸送材料。
6. —般式 (I ) において、 mが 0である、 請求の範囲第 4項に記載の電 荷輸送材料。
7. 一般式 (I ) において、 nが 0である、 請求の範囲第 4項に記載の電 荷輸送材料。
8. 一般式 (I ) において、 および Z2が各々独立に、 直接結合を表す か、 または置換基を有していてもよい 2価の芳香族炭化水素基を表す、 請求の範 囲第 4項〜第 7項のいずれかに記載の電荷輸送材料。
9. 一般式 (I ) において、 Q。が置換基を有してもよい芳香族炭化水素基 を表す、 請求の範囲第 4項〜第 8項のいずれかに記載の電荷輸送材料。
1 0 . 該化合物が、 分子内にジァリールァミン骨格を有さない、 請求の範 囲第 1項〜第 9項のいずれかに記載の電荷輸送材料。
1 1 . 該化合物が、 分子内に力ルバゾール環を少なくとも 1個含むことを 特徴とする請求の範囲第 1項〜第 9項のいずれかに記載の電荷輸送材料。
1 2 . 電子輸送材料である、 請求の範囲第 1項〜第 1 1項のいずれかに記 载の電荷輸送材料。
1 3 . 基板上に、 陽極、 陰極、 およびこれら両極間に設けられた有機発光 層を有し、 請求の範囲第 1項〜第 1 2項のいずれかに記載の電荷輸送材料を含有 してなる層を有することを特徴とする、 有機電界発光素子。
1 4 . 請求の範囲第 1項〜第 1 2項のいずれかに記載の電荷輸送材料を含 有する層が有機発光層である、 請求の範囲第 1 3項に記載の有機電界発光素子。
1 5 . 有機発光層が、 請求の範囲第 1項〜第 1 2項のいずれかに記載の電 荷輸送材料をホスト材料とし、 該ホスト材料に対して、 有機金属錯体がドープさ れてなる、 請求の範囲第 1 4項に記載の有機電界発光素子。
1 6 . 有機発光層が、 発光色素として有機金属錯体を含有し、 かつ請求の 範囲第 1項〜第 1 2項のいずれかに記載の電荷輸送材料を含む層が、 有機発光層 の陰極側界面に接する正孔阻止層である、 請求の範囲第 1 3項に記載の有機電界 発光素子。
1 7 . 有機金属錯体が、 2—ァリールピリジン系配位子を有することを特 徴とする、 請求の範囲第 1 5項または第 1 6項に記載の有機電界発光素子。
1 8. 請求の範囲第 1項〜第 1 2項のいずれかに記載の電荷輸送材料を、 有機発光層及び該有機発光層の陰極側界面に接する層の両層に含有する事を特徴 とする、 請求の範囲第 1 3項〜第 1 7項のいずれかに記載の有機電界発光素子。
1 9. 下記一般式 (I I) で表される化合物であって、 該化合物が最安定 化構造をとつた時に、 平面構造とならない化合物。
Figure imgf000183_0001
(ただし、 式中、
Rn, R13, R15および R18は、各々独立に、水素原子或いは任意の置換基を表す。
R!2J R14, R16および R17は、 各々独立に、 任意の置換基を表す。
Zuは、 直接結合、 または環 と共役可能な電子を有する 2価の連結基を表す。 Z12は、 直接結合、 または環 と共役可能な電子を有する 2価の連結基を表す。
Q01は、 1分子中に含まれる、 環 及び環 からなる群より選ばれた任意の 2 つを、実質的に共役不可能とする、 (p + k)価の、芳香族炭化水素基或いは芳香 族複素環基を表す。
pは 0〜8の整数である。 kは 0〜8の整数である。
pと kの総和は、 2〜 8の整数である。
尚、 p及び Zまたは kが 2以上の場合、
1分子中に含まれる複数個の Ru〜R18は、各々同一であっても異なっていてもよ
1分子中に含まれる複数個の zu及び z12は、 各々同一であっても異なっていて もよい。)
20. R12, Rl4, R16および R17力 S、 置換基を有していてもよい、 芳香族 炭化水素基或いは芳香族複素環基である、 請求の範囲第 1 9項に記載の化合物。
2 1. Zu及び Z12力 各々独立に、 直接結合或いは置換基を有していて もよい 2価の芳香族炭化水素基である、 請求の範囲第 1 9項または第 20項に記 載の化合物。
22. 上記一般式 (I I) で表される化合物であって、 該化合物が最安定 化構造をとつた時に、平面構造となる化合物であり、かつ、 p = 0である化合物。
23. 上記一般式 (I I) で表される化合物が、 下記一般式 (I I I) で ある、 請求の範囲第 22項に記載の化合物。
(但し、 一般式 (I I I ) 中、 環 Cは置換基を有していてもよい R15〜R18は、 上記一般式 (I I ) と同義である。 また、 一般式 ( I I I ) 中の、 2つの R15〜 Rは、 各々同一であっても異なっていてもよい。)
Figure imgf000184_0001
24. 上記一般式 (I I ) で表される化合物であって、
Q01が、 1一、 3—、 及び 5—位がすべて、 Zu或いは Z12と結合している、 一 般式 (V) で表されるベンゼン環由来の基である、 請求の範囲第 22項に記 の 化合物。
Figure imgf000185_0001
(伹し、 環 dは、 置換基を有していてもよい。 また、 及び Z12が直接結合の 場合は、 該ベンゼン環由来の基は、 直接、 環 A1或いは環 B1と結合する。)
25. 上記一般式 (I I) で表される化合物が、 下記一般式 (I V) で表さ れる化合物である、 請求の範囲第 24項に記載の化合物。 、
Figure imgf000185_0002
(伹し、 一般式 (I V) 中、
X及び Yは、 一 CH= 或いは 一 N= を表す。
R23及び R24は、 各々独立に任意の置換基を表す。
環 〜環 E3は、 R2a及び R24の他に、 置換基を有していてもよい。
一般式 ( I V) 中に、 複数個有する R23及び R24は、 各々同一であっても異な つていてもよレ、。
環 Dは、 置換基を有していてもよい。)
26. 請求の範囲第 22項〜第 25項のいずれかに記載の化合物からなる、 電荷輸送材料。
27. 電子輸送材料である、 請求の範囲第 26項に記載の電荷輸送材料。
PCT/JP2004/011211 2003-07-31 2004-07-29 化合物、電荷輸送材料および有機電界発光素子 WO2005022962A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04771238.5A EP1672961B1 (en) 2003-07-31 2004-07-29 Compound, charge transport material and organic electroluminescent device
US11/342,730 US7777043B2 (en) 2003-07-31 2006-01-31 Compound, charge transporting material and organic electroluminescent element

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003204947 2003-07-31
JP2003-204947 2003-07-31
JP2003-374430 2003-11-04
JP2003374430 2003-11-04
JP2004045219 2004-02-20
JP2004-045219 2004-02-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/342,730 Continuation US7777043B2 (en) 2003-07-31 2006-01-31 Compound, charge transporting material and organic electroluminescent element

Publications (1)

Publication Number Publication Date
WO2005022962A1 true WO2005022962A1 (ja) 2005-03-10

Family

ID=34279526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011211 WO2005022962A1 (ja) 2003-07-31 2004-07-29 化合物、電荷輸送材料および有機電界発光素子

Country Status (4)

Country Link
US (1) US7777043B2 (ja)
EP (2) EP2592905B1 (ja)
KR (2) KR20060096980A (ja)
WO (1) WO2005022962A1 (ja)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062062A1 (ja) * 2004-12-10 2006-06-15 Pioneer Corporation 有機化合物、電荷輸送材料および有機電界発光素子
WO2006111886A1 (en) * 2005-04-20 2006-10-26 Philips Intellectual Property & Standards Gmbh Matrix material for organic electroluminescent devices
JP2007067383A (ja) * 2005-08-04 2007-03-15 Mitsubishi Chemicals Corp 電荷輸送材料、有機電界発光素子用組成物及び有機電界発光素子
WO2008108430A1 (ja) 2007-03-07 2008-09-12 Mitsubishi Chemical Corporation 有機デバイス用組成物、高分子膜および有機電界発光素子
US20090066223A1 (en) * 2005-02-21 2009-03-12 Mitsubishi Chemical Corporation Organic electric field light emitting element and production therefor
WO2009102027A1 (ja) 2008-02-15 2009-08-20 Mitsubishi Chemical Corporation 共役ポリマー、不溶化ポリマー、有機電界発光素子材料、有機電界発光素子用組成物、ポリマーの製造方法、有機電界発光素子、有機elディスプレイ、及び有機el照明
WO2009123269A1 (ja) 2008-04-02 2009-10-08 三菱化学株式会社 高分子化合物、該高分子化合物を架橋させてなる網目状高分子化合物、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
EP1829871A4 (en) * 2004-12-24 2009-12-16 Pioneer Corp ORGANIC COMPOUND, CHARGE TRANSPORT MATERIAL, AND ORGANIC ELECTROLUMINESCENT ELEMENT
WO2010013780A1 (ja) 2008-07-31 2010-02-04 三菱化学株式会社 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
WO2010018851A1 (ja) 2008-08-13 2010-02-18 三菱化学株式会社 有機電界発光素子、有機el表示装置及び有機el照明
WO2010018813A1 (ja) 2008-08-11 2010-02-18 三菱化学株式会社 電荷輸送性ポリマー、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP2010183072A (ja) * 2009-01-09 2010-08-19 Mitsubishi Chemicals Corp 有機el素子及び有機発光デバイス
EP1956008A4 (en) * 2005-11-30 2010-12-01 Mitsubishi Chem Corp ORGANIC CONNECTION, CHARGE-TRANSPORTING MATERIAL, COMPOSITION FOR LOAD-TRANSPORTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE
WO2011024922A1 (ja) 2009-08-27 2011-03-03 三菱化学株式会社 モノアミン化合物、電荷輸送材料、電荷輸送膜用組成物、有機電界発光素子、有機el表示装置及び有機el照明
US7914910B2 (en) 2007-11-27 2011-03-29 Fujifilm Corporation Organic electroluminescence device and novel organic compound containing silicon substituent
WO2011083588A1 (ja) * 2010-01-08 2011-07-14 三菱化学株式会社 有機el素子及び有機発光デバイス
JP2011522800A (ja) * 2008-05-22 2011-08-04 ゼネラル・エレクトリック・カンパニイ フェニルピリジン単位を含む化合物
WO2011099531A1 (ja) 2010-02-10 2011-08-18 三菱化学株式会社 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP2011523644A (ja) * 2008-05-22 2011-08-18 ゼネラル・エレクトリック・カンパニイ フェニルピリジン単位を含む化合物
WO2011115075A1 (ja) 2010-03-15 2011-09-22 三菱化学株式会社 有機電界発光素子及びその製造方法、有機el表示装置、有機el照明、並びに有機電界発光素子の製造装置
WO2012096352A1 (ja) 2011-01-14 2012-07-19 三菱化学株式会社 有機電界発光素子、有機電界発光素子用組成物、及び有機電界発光装置
WO2012137958A1 (ja) 2011-04-07 2012-10-11 三菱化学株式会社 有機化合物、電荷輸送材料、該化合物を含有する組成物、有機電界発光素子、表示装置及び照明装置
JP2013514348A (ja) * 2009-12-16 2013-04-25 チェイル インダストリーズ インコーポレイテッド 有機光電素子用化合物およびこれを含む有機光電素子
WO2013069338A1 (ja) 2011-11-11 2013-05-16 三菱化学株式会社 有機電界発光素子及び有機電界発光デバイス
JP2013131767A (ja) * 2013-01-24 2013-07-04 Konica Minolta Inc 有機エレクトロルミネッセンス素子
WO2013105615A1 (ja) 2012-01-13 2013-07-18 三菱化学株式会社 イリジウム錯体化合物並びに該化合物を含む溶液組成物、有機電界発光素子、表示装置及び照明装置
WO2013105556A1 (ja) 2012-01-10 2013-07-18 三菱化学株式会社 コーティング用組成物、多孔質膜、光散乱膜及び有機電界発光素子
WO2013108787A1 (ja) 2012-01-17 2013-07-25 三菱化学株式会社 有機電界発光素子、有機el照明および有機el表示装置
WO2013125662A1 (ja) 2012-02-23 2013-08-29 三菱化学株式会社 重合体及び有機電界発光素子
WO2013154076A1 (ja) 2012-04-09 2013-10-17 三菱化学株式会社 有機電界発光素子用組成物及び有機電界発光素子
WO2013168660A1 (ja) 2012-05-09 2013-11-14 三菱化学株式会社 有機el発光装置
US8586205B2 (en) 2009-09-16 2013-11-19 Nitto Denko Corporation Compounds for organic light emitting diode emissive layers
US8592052B2 (en) * 2005-12-16 2013-11-26 Mitsubishi Chemical Corporation Organic electroluminescence device
WO2013176194A1 (ja) 2012-05-24 2013-11-28 三菱化学株式会社 有機電界発光素子、有機電界発光照明装置及び有機電界発光表示装置
WO2013191137A1 (ja) 2012-06-18 2013-12-27 三菱化学株式会社 高分子化合物、電荷輸送性ポリマー、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
TWI422273B (zh) * 2005-12-16 2014-01-01 Pioneer Corp 有機電場發光元件
WO2014024889A1 (ja) 2012-08-08 2014-02-13 三菱化学株式会社 イリジウム錯体化合物、並びに該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
WO2014038559A1 (ja) 2012-09-04 2014-03-13 三菱化学株式会社 有機電界発光素子及びその製造方法
US8933622B2 (en) 2005-05-24 2015-01-13 Pioneer Corporation Organic electroluminescence element
WO2015087961A1 (ja) 2013-12-12 2015-06-18 三菱化学株式会社 イリジウム錯体化合物、該化合物の製造方法、該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
KR101566530B1 (ko) 2012-12-31 2015-11-05 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
CN105742519A (zh) * 2013-01-31 2016-07-06 王金海 一种电致发光器件
EP3389110A1 (en) 2009-07-31 2018-10-17 UDC Ireland Limited Organic electroluminescent element
WO2019093369A1 (ja) 2017-11-07 2019-05-16 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物及び溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
WO2019107467A1 (ja) 2017-11-29 2019-06-06 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物および溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置および照明装置
WO2019177175A1 (ja) 2018-03-16 2019-09-19 三菱ケミカル株式会社 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法
WO2020145294A1 (ja) 2019-01-10 2020-07-16 三菱ケミカル株式会社 イリジウム錯体化合物
WO2020230811A1 (ja) 2019-05-15 2020-11-19 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物および溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置および照明装置
WO2021161974A1 (ja) 2020-02-12 2021-08-19 三菱ケミカル株式会社 イリジウム錯体化合物、イリジウム錯体化合物含有組成物、有機電界発光素子とその製造方法、有機el表示装置、及び有機el照明装置
WO2022250044A1 (ja) 2021-05-25 2022-12-01 三菱ケミカル株式会社 イリジウム錯体化合物、イリジウム錯体化合物含有組成物及び有機電界発光素子とその製造方法
WO2023136252A1 (ja) 2022-01-13 2023-07-20 三菱ケミカル株式会社 イリジウム錯体化合物、有機電界発光素子用組成物、有機電界発光素子とその製造方法、及び表示装置

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020036291A1 (en) * 2000-06-20 2002-03-28 Parker Ian D. Multilayer structures as stable hole-injecting electrodes for use in high efficiency organic electronic devices
US20050025993A1 (en) * 2003-07-25 2005-02-03 Thompson Mark E. Materials and structures for enhancing the performance of organic light emitting devices
KR101127572B1 (ko) * 2005-02-05 2012-03-26 삼성모바일디스플레이주식회사 유기전계발광소자 및 그 제조방법
TWI382080B (zh) * 2005-02-15 2013-01-11 Tosoh Corp 具有懸掛結構之π-共軛化合物、其製造方法及使用方法
JP5175099B2 (ja) * 2005-08-31 2013-04-03 保土谷化学工業株式会社 ピリジル基で置換されたトリアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
CN101931056B (zh) * 2006-06-01 2014-07-09 株式会社半导体能源研究所 发光元件、发光器件和电子器件
US9397308B2 (en) 2006-12-04 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
KR100957620B1 (ko) * 2007-11-01 2010-05-13 제일모직주식회사 유기광전소자용 재료, 및 이를 이용한 유기광전소자
KR100901887B1 (ko) * 2008-03-14 2009-06-09 (주)그라쎌 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 발광소자
WO2009119163A1 (ja) * 2008-03-24 2009-10-01 新日鐵化学株式会社 有機電界発光素子用化合物及びこれを用いた有機電界発光素子
EP2275458A4 (en) * 2008-04-24 2013-04-17 Showa Denko Kk LOADING TRANSPORTING POLYMER COMPOUND AND ORGANIC ELECTROLUMINESCENE ELEMENT THEREWITH
EP2479234B1 (en) * 2008-05-13 2017-06-21 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
CN101684093A (zh) * 2008-09-26 2010-03-31 通用电气公司 电子传输材料
EP2345096B1 (en) 2008-10-28 2018-10-17 The Regents of the University of Michigan Stacked white oled having separate red, green and blue sub-elements
KR101233377B1 (ko) 2008-12-30 2013-02-18 제일모직주식회사 신규한 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
US7989476B2 (en) * 2009-01-08 2011-08-02 General Electric Company Electron-transporting materials and processes for making the same
US8691399B2 (en) 2009-01-08 2014-04-08 General Electric Company Electron-transporting materials and processes for making the same
US8178682B2 (en) 2009-06-26 2012-05-15 General Electric Company Process for making organic compounds and the organic compounds made therefrom
JP4523992B1 (ja) * 2009-07-31 2010-08-11 富士フイルム株式会社 有機電界発光素子
DE102009053382A1 (de) 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
KR101212669B1 (ko) * 2009-12-28 2012-12-14 제일모직주식회사 신규한 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
KR101196142B1 (ko) * 2009-12-30 2012-10-30 주식회사 두산 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20110079197A (ko) * 2009-12-31 2011-07-07 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
KR101252033B1 (ko) * 2010-08-18 2013-04-15 연세대학교 산학협력단 4-하이드록시-3-메톡시페닐-2-프로페논 유도체, 이의 제조방법 및 이를 포함하는 항산화용 조성물
EP2618420B1 (en) * 2010-09-16 2016-12-07 Adeka Corporation Additive for use in dye-sensitized solar cell
KR101432600B1 (ko) 2010-12-31 2014-08-21 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
KR101971198B1 (ko) 2011-10-19 2019-04-23 삼성디스플레이 주식회사 헤테로시클릭 화합물, 이를 포함하는 유기 발광 소자 및 평판 표시 장치
JP6071569B2 (ja) * 2013-01-17 2017-02-01 キヤノン株式会社 有機発光素子
CN103664909B (zh) * 2013-12-10 2015-02-25 京东方科技集团股份有限公司 联咔唑类衍生物及制备方法、应用和有机发光器件
US9666822B2 (en) 2013-12-17 2017-05-30 The Regents Of The University Of Michigan Extended OLED operational lifetime through phosphorescent dopant profile management
KR101670056B1 (ko) * 2014-02-20 2016-10-28 삼성디스플레이 주식회사 유기 발광 소자
JP6563303B2 (ja) * 2015-10-16 2019-08-21 株式会社東芝 光電変換素子及び撮像装置
WO2017120249A1 (en) * 2016-01-04 2017-07-13 Sandia Corporation Poly (phenylene)-based anion exchange polymers and methods thereof
KR102661473B1 (ko) * 2016-04-29 2024-04-29 삼성디스플레이 주식회사 유기 발광 소자
US10479866B1 (en) 2018-02-28 2019-11-19 National Technology & Engineering Solutions Of Sandia, Llc Block copolymers including poly(phenylene) and methods thereof
KR102628848B1 (ko) 2018-08-10 2024-01-25 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함하는 유기 발광 소자
CN110305110B (zh) * 2019-06-27 2021-09-21 上海天马有机发光显示技术有限公司 一种化合物、oled显示面板以及电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS262585B1 (cs) 1987-12-17 1989-03-14 Urst Antonin Doc Ing Csc Kurf Luminofomí bis(4,6 diarylpyridin-2yl)-areny a způsob jejich přípravy
JPH0266556A (ja) * 1988-09-01 1990-03-06 Canon Inc 電子写真感光体
JPH04146442A (ja) * 1990-10-09 1992-05-20 Canon Inc 電子写真感光体、該電子写真感光体を備えた電子写真装置並びにファクシミリ
JPH05331459A (ja) 1992-04-03 1993-12-14 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06207169A (ja) 1992-11-17 1994-07-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
JP2000186066A (ja) 1998-12-22 2000-07-04 Minolta Co Ltd 新規アミノ化合物とその製造方法、及び用途
US20020055014A1 (en) 2000-08-24 2002-05-09 Fuji Photo Film Co., Ltd. Light-emitting device and material therefor
JP2002302671A (ja) 2000-02-10 2002-10-18 Fuji Photo Film Co Ltd イリジウム錯体からなる発光素子材料及び発光素子
JP2004022334A (ja) * 2002-06-17 2004-01-22 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811414B2 (ja) 1978-10-31 1983-03-02 全薬工業株式会社 置換アセトフエノンの製造方法
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US4882247A (en) * 1986-11-18 1989-11-21 Fuji Xerox Co., Ltd. Electrophotographic image recording method
US4937629A (en) * 1986-11-18 1990-06-26 Fuji Xerox Co., Ltd. Composite image recording apparatus
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
JPH01245087A (ja) 1987-12-11 1989-09-29 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2673261B2 (ja) 1989-01-23 1997-11-05 旭化成工業株式会社 有機のエレクトロルミネセンス素子
JP2731216B2 (ja) 1989-02-23 1998-03-25 パイオニア株式会社 電界発光素子
JPH07119407B2 (ja) 1989-03-20 1995-12-20 出光興産株式会社 エレクトロルミネッセンス素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JP3016896B2 (ja) 1991-04-08 2000-03-06 パイオニア株式会社 有機エレクトロルミネッセンス素子
JP3071091B2 (ja) 1993-03-17 2000-07-31 三洋電機株式会社 電界発光素子
JPH0753953A (ja) 1993-08-19 1995-02-28 Mitsubishi Chem Corp 有機電界発光素子
JP3553689B2 (ja) 1995-05-16 2004-08-11 三洋電機株式会社 有機エレクトロルミネッセンス素子
EP0754691B1 (en) * 1995-07-17 2003-11-19 Chisso Corporation Silacyclopentadiene derivatives and an organic electroluminescent element obtained by using the silacyclopentadiene derivative
JP2918150B2 (ja) 1995-07-17 1999-07-12 チッソ株式会社 シラシクロペンタジエン誘導体を用いた有機電界発光素子
WO1997033193A2 (en) 1996-02-23 1997-09-12 The Dow Chemical Company Cross-linkable or chain extendable polyarylpolyamines and films thereof
DE19627069A1 (de) 1996-07-05 1998-01-08 Bayer Ag Elektrolumineszierende Anordnungen unter Verwendung von lamellaren Elektroden
US5776622A (en) 1996-07-29 1998-07-07 Eastman Kodak Company Bilayer eletron-injeting electrode for use in an electroluminescent device
JPH10270171A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
US6303238B1 (en) 1997-12-01 2001-10-16 The Trustees Of Princeton University OLEDs doped with phosphorescent compounds
JP3750315B2 (ja) 1997-10-27 2006-03-01 三菱化学株式会社 有機電界発光素子
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP3748491B2 (ja) 1998-03-27 2006-02-22 出光興産株式会社 有機エレクトロルミネッセンス素子
JP4058842B2 (ja) 1998-05-13 2008-03-12 三菱化学株式会社 有機電界発光素子
WO2000012457A1 (fr) 1998-08-27 2000-03-09 Japan Science And Technology Corporation Synthese catalytique d'aldehydes par hydrogenation directe d'acides carboxyliques
JP2000150168A (ja) 1998-11-13 2000-05-30 Toppan Printing Co Ltd 耐熱性低抵抗正孔輸送材料および有機薄膜発光素子
JP2000159221A (ja) 1998-11-25 2000-06-13 Kanebo Ltd 一個箱
EP1009043A3 (en) * 1998-12-09 2002-07-03 Eastman Kodak Company Electroluminescent device with polyphenyl hydrocarbon hole transport layer
JP3951497B2 (ja) 1999-03-30 2007-08-01 ソニー株式会社 情報再生装置及び情報再生装置の再生方法
JP2000285657A (ja) 1999-04-01 2000-10-13 Nippon Columbia Co Ltd データ記録再生装置及び情報記録媒体
KR100913568B1 (ko) 1999-05-13 2009-08-26 더 트러스티즈 오브 프린스턴 유니버시티 전계인광에 기초한 고 효율의 유기 발광장치
JP2001223084A (ja) 2000-02-07 2001-08-17 Junji Kido 有機電界発光素子
US6565994B2 (en) * 2000-02-10 2003-05-20 Fuji Photo Film Co., Ltd. Light emitting device material comprising iridium complex and light emitting device using same material
JP4890669B2 (ja) 2000-03-13 2012-03-07 Tdk株式会社 有機el素子
JP4729776B2 (ja) * 2000-08-04 2011-07-20 東レ株式会社 発光素子
JP3870102B2 (ja) * 2001-02-22 2007-01-17 キヤノン株式会社 有機発光素子
KR100917347B1 (ko) * 2001-08-29 2009-09-16 더 트러스티즈 오브 프린스턴 유니버시티 금속 착물들을 포함하는 캐리어 블로킹층들을 갖는 유기발광 디바이스들
JP4871464B2 (ja) * 2001-09-28 2012-02-08 キヤノン株式会社 有機発光素子
JP4172172B2 (ja) 2001-10-10 2008-10-29 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP2003123987A (ja) 2001-10-11 2003-04-25 Toyota Central Res & Dev Lab Inc 光共振器
CN1246417C (zh) 2002-04-03 2006-03-22 清华大学 一种有机电致发光材料及其应用
JP2004068958A (ja) 2002-08-07 2004-03-04 Komatsu Ltd ピンの固定構造
JP4146442B2 (ja) 2005-03-04 2008-09-10 株式会社計測技術研究所 負荷装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS262585B1 (cs) 1987-12-17 1989-03-14 Urst Antonin Doc Ing Csc Kurf Luminofomí bis(4,6 diarylpyridin-2yl)-areny a způsob jejich přípravy
JPH0266556A (ja) * 1988-09-01 1990-03-06 Canon Inc 電子写真感光体
JPH04146442A (ja) * 1990-10-09 1992-05-20 Canon Inc 電子写真感光体、該電子写真感光体を備えた電子写真装置並びにファクシミリ
JPH05331459A (ja) 1992-04-03 1993-12-14 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06207169A (ja) 1992-11-17 1994-07-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
JP2000186066A (ja) 1998-12-22 2000-07-04 Minolta Co Ltd 新規アミノ化合物とその製造方法、及び用途
JP2002302671A (ja) 2000-02-10 2002-10-18 Fuji Photo Film Co Ltd イリジウム錯体からなる発光素子材料及び発光素子
US20020055014A1 (en) 2000-08-24 2002-05-09 Fuji Photo Film Co., Ltd. Light-emitting device and material therefor
JP2004022334A (ja) * 2002-06-17 2004-01-22 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"Angew. Chem. Int. Ed. Engl.", SYNTHESIS, 1962, pages 1 - 24
51TH OYO BUTSURIGAKUKAI RENGO KOENKAI, vol. 28A, 1990, pages 7
BULLETIN DE LA SOCIETE CHMIQUE DE FRANCE, vol. 9, 1966, pages 2966 - 2971
CHEM. EUR. J., vol. 2, no. 12, 1996, pages 1585 - 1595
COLLECT. CZECH. CHEM. COMMUN., vol. 27, 1962, pages 2464 - 2467
COLLECT. CZECH. CHEM. COMMUN., vol. 30, 1965, pages 53 - 60
COLLECT. CZECH. CHEM. COMMUN., vol. 57, no. 2, 1992, pages 385 - 392
COLLECT. CZECH. CHEM. COMMUN., vol. 61, 1996, pages 1464 - 1472
J. CHEM. RESEARCH (S, 1999, pages 210 - 211
J. HETEROCYCLIC CHEM., vol. 14, 1977, pages 147
LHOTAK, P. ET AL.: "Preparation of new organic Luminophores based on 3,5-Diacetypyridines", COLLECT.CZECH.CHEM.COMMUN., vol. 57, 1992, pages 1937 - 1946, XP008107497 *
M. J. DUDEK; J. W. PONDER, J. COMPUT. CHEM., vol. 16, 1995, pages 791 - 816
NATURE, vol. 395, 1998, pages 151
See also references of EP1672961A4

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1820801A4 (en) * 2004-12-10 2009-12-23 Pioneer Corp ORGANIC COMPOUND, CHARGE TRANSPORT MATERIAL, AND ORGANIC ELECTROLUMINESCENT ELEMENT
WO2006062062A1 (ja) * 2004-12-10 2006-06-15 Pioneer Corporation 有機化合物、電荷輸送材料および有機電界発光素子
US8178215B2 (en) 2004-12-10 2012-05-15 Pioneer Corporation Organic compound containing at least two carbazolyl-substituted phenyl structures; charge-transporting material and organic el element containing the compound
US8324403B2 (en) * 2004-12-24 2012-12-04 Pioneer Corporation Organic compound, charge-transporting material, and organic electroluminescent element
EP1829871A4 (en) * 2004-12-24 2009-12-16 Pioneer Corp ORGANIC COMPOUND, CHARGE TRANSPORT MATERIAL, AND ORGANIC ELECTROLUMINESCENT ELEMENT
US9640769B2 (en) 2005-02-21 2017-05-02 Mitsubishi Chemical Corporation Organic electric field light emitting element and production therefor
US9365767B2 (en) * 2005-02-21 2016-06-14 Mitsubishi Chemical Corporation Organic electric field light emitting element and production therefor
US20090066223A1 (en) * 2005-02-21 2009-03-12 Mitsubishi Chemical Corporation Organic electric field light emitting element and production therefor
WO2006111886A1 (en) * 2005-04-20 2006-10-26 Philips Intellectual Property & Standards Gmbh Matrix material for organic electroluminescent devices
US8933622B2 (en) 2005-05-24 2015-01-13 Pioneer Corporation Organic electroluminescence element
JP2007067383A (ja) * 2005-08-04 2007-03-15 Mitsubishi Chemicals Corp 電荷輸送材料、有機電界発光素子用組成物及び有機電界発光素子
EP1956008A4 (en) * 2005-11-30 2010-12-01 Mitsubishi Chem Corp ORGANIC CONNECTION, CHARGE-TRANSPORTING MATERIAL, COMPOSITION FOR LOAD-TRANSPORTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE
US9012035B2 (en) * 2005-12-16 2015-04-21 Pioneer Corporation Organic electroluminescence device
TWI422273B (zh) * 2005-12-16 2014-01-01 Pioneer Corp 有機電場發光元件
US8592052B2 (en) * 2005-12-16 2013-11-26 Mitsubishi Chemical Corporation Organic electroluminescence device
EP3173456A1 (en) 2007-03-07 2017-05-31 Mitsubishi Chemical Corporation Composition for use in organic device, polymer film, and organic electroluminescent element
WO2008108430A1 (ja) 2007-03-07 2008-09-12 Mitsubishi Chemical Corporation 有機デバイス用組成物、高分子膜および有機電界発光素子
US7914910B2 (en) 2007-11-27 2011-03-29 Fujifilm Corporation Organic electroluminescence device and novel organic compound containing silicon substituent
WO2009102027A1 (ja) 2008-02-15 2009-08-20 Mitsubishi Chemical Corporation 共役ポリマー、不溶化ポリマー、有機電界発光素子材料、有機電界発光素子用組成物、ポリマーの製造方法、有機電界発光素子、有機elディスプレイ、及び有機el照明
EP3182479A1 (en) 2008-02-15 2017-06-21 Mitsubishi Chemical Corporation Conjugated polymer for organic electroluminescence element
WO2009123269A1 (ja) 2008-04-02 2009-10-08 三菱化学株式会社 高分子化合物、該高分子化合物を架橋させてなる網目状高分子化合物、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP2011523644A (ja) * 2008-05-22 2011-08-18 ゼネラル・エレクトリック・カンパニイ フェニルピリジン単位を含む化合物
JP2011522800A (ja) * 2008-05-22 2011-08-04 ゼネラル・エレクトリック・カンパニイ フェニルピリジン単位を含む化合物
WO2010013780A1 (ja) 2008-07-31 2010-02-04 三菱化学株式会社 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
WO2010018813A1 (ja) 2008-08-11 2010-02-18 三菱化学株式会社 電荷輸送性ポリマー、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
WO2010018851A1 (ja) 2008-08-13 2010-02-18 三菱化学株式会社 有機電界発光素子、有機el表示装置及び有機el照明
JP2010183072A (ja) * 2009-01-09 2010-08-19 Mitsubishi Chemicals Corp 有機el素子及び有機発光デバイス
EP4326036A2 (en) 2009-07-31 2024-02-21 UDC Ireland Limited Organic electroluminescent element
EP3389110A1 (en) 2009-07-31 2018-10-17 UDC Ireland Limited Organic electroluminescent element
EP3121165A1 (en) 2009-08-27 2017-01-25 Mitsubishi Chemical Corporation Monoamine compound, charge transport material, composition for charge transport film, organic electroluminescent element, organic el display device, and organic el lighting
WO2011024922A1 (ja) 2009-08-27 2011-03-03 三菱化学株式会社 モノアミン化合物、電荷輸送材料、電荷輸送膜用組成物、有機電界発光素子、有機el表示装置及び有機el照明
US8586205B2 (en) 2009-09-16 2013-11-19 Nitto Denko Corporation Compounds for organic light emitting diode emissive layers
US9093652B2 (en) 2009-12-16 2015-07-28 Cheil Industries, Inc. Compound for an organic photoelectric device, organic photoelectric device including the same, and display device including the organic photoelectric device
JP2013514348A (ja) * 2009-12-16 2013-04-25 チェイル インダストリーズ インコーポレイテッド 有機光電素子用化合物およびこれを含む有機光電素子
WO2011083588A1 (ja) * 2010-01-08 2011-07-14 三菱化学株式会社 有機el素子及び有機発光デバイス
WO2011099531A1 (ja) 2010-02-10 2011-08-18 三菱化学株式会社 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
WO2011115075A1 (ja) 2010-03-15 2011-09-22 三菱化学株式会社 有機電界発光素子及びその製造方法、有機el表示装置、有機el照明、並びに有機電界発光素子の製造装置
WO2012096352A1 (ja) 2011-01-14 2012-07-19 三菱化学株式会社 有機電界発光素子、有機電界発光素子用組成物、及び有機電界発光装置
WO2012137958A1 (ja) 2011-04-07 2012-10-11 三菱化学株式会社 有機化合物、電荷輸送材料、該化合物を含有する組成物、有機電界発光素子、表示装置及び照明装置
WO2013069338A1 (ja) 2011-11-11 2013-05-16 三菱化学株式会社 有機電界発光素子及び有機電界発光デバイス
WO2013105556A1 (ja) 2012-01-10 2013-07-18 三菱化学株式会社 コーティング用組成物、多孔質膜、光散乱膜及び有機電界発光素子
WO2013105615A1 (ja) 2012-01-13 2013-07-18 三菱化学株式会社 イリジウム錯体化合物並びに該化合物を含む溶液組成物、有機電界発光素子、表示装置及び照明装置
WO2013108787A1 (ja) 2012-01-17 2013-07-25 三菱化学株式会社 有機電界発光素子、有機el照明および有機el表示装置
WO2013125662A1 (ja) 2012-02-23 2013-08-29 三菱化学株式会社 重合体及び有機電界発光素子
WO2013154076A1 (ja) 2012-04-09 2013-10-17 三菱化学株式会社 有機電界発光素子用組成物及び有機電界発光素子
WO2013168660A1 (ja) 2012-05-09 2013-11-14 三菱化学株式会社 有機el発光装置
WO2013176194A1 (ja) 2012-05-24 2013-11-28 三菱化学株式会社 有機電界発光素子、有機電界発光照明装置及び有機電界発光表示装置
WO2013191137A1 (ja) 2012-06-18 2013-12-27 三菱化学株式会社 高分子化合物、電荷輸送性ポリマー、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
WO2014024889A1 (ja) 2012-08-08 2014-02-13 三菱化学株式会社 イリジウム錯体化合物、並びに該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
WO2014038559A1 (ja) 2012-09-04 2014-03-13 三菱化学株式会社 有機電界発光素子及びその製造方法
KR101566530B1 (ko) 2012-12-31 2015-11-05 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
JP2013131767A (ja) * 2013-01-24 2013-07-04 Konica Minolta Inc 有機エレクトロルミネッセンス素子
CN105742519A (zh) * 2013-01-31 2016-07-06 王金海 一种电致发光器件
WO2015087961A1 (ja) 2013-12-12 2015-06-18 三菱化学株式会社 イリジウム錯体化合物、該化合物の製造方法、該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
WO2019093369A1 (ja) 2017-11-07 2019-05-16 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物及び溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
WO2019107467A1 (ja) 2017-11-29 2019-06-06 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物および溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置および照明装置
EP4383238A2 (en) 2017-11-29 2024-06-12 Mitsubishi Chemical Corporation Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device, and illumination device
WO2019177175A1 (ja) 2018-03-16 2019-09-19 三菱ケミカル株式会社 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法
WO2020145294A1 (ja) 2019-01-10 2020-07-16 三菱ケミカル株式会社 イリジウム錯体化合物
WO2020230811A1 (ja) 2019-05-15 2020-11-19 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物および溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置および照明装置
WO2021161974A1 (ja) 2020-02-12 2021-08-19 三菱ケミカル株式会社 イリジウム錯体化合物、イリジウム錯体化合物含有組成物、有機電界発光素子とその製造方法、有機el表示装置、及び有機el照明装置
WO2022250044A1 (ja) 2021-05-25 2022-12-01 三菱ケミカル株式会社 イリジウム錯体化合物、イリジウム錯体化合物含有組成物及び有機電界発光素子とその製造方法
WO2023136252A1 (ja) 2022-01-13 2023-07-20 三菱ケミカル株式会社 イリジウム錯体化合物、有機電界発光素子用組成物、有機電界発光素子とその製造方法、及び表示装置

Also Published As

Publication number Publication date
US7777043B2 (en) 2010-08-17
EP2592905B1 (en) 2014-11-12
US20060186796A1 (en) 2006-08-24
EP1672961A1 (en) 2006-06-21
KR20060096980A (ko) 2006-09-13
KR20100012005A (ko) 2010-02-03
KR100994083B1 (ko) 2010-11-12
EP2592905A1 (en) 2013-05-15
EP1672961A4 (en) 2008-10-08
EP1672961B1 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
WO2005022962A1 (ja) 化合物、電荷輸送材料および有機電界発光素子
JP4561221B2 (ja) 化合物、電荷輸送材料および有機電界発光素子
JP5082230B2 (ja) 有機化合物、電荷輸送材料および有機電界発光素子
JP5050344B2 (ja) 有機化合物、電荷輸送材料および有機電界発光素子
TWI444375B (zh) Organic compounds, charge transport materials and organic field light-emitting elements
KR102005723B1 (ko) 유기 전계 발광 소자
KR101838675B1 (ko) 유기 전계 발광 소자
TWI409316B (zh) Organic compounds, charge transport materials and organic field light-emitting elements
KR100957620B1 (ko) 유기광전소자용 재료, 및 이를 이용한 유기광전소자
JP5098177B2 (ja) 有機化合物、電荷輸送材料及び有機電界発光素子
US7597955B2 (en) Light-emitting device, organic compound and display
JP4622433B2 (ja) 化合物、電子輸送材料および有機電界発光素子
JP2004131463A (ja) 有機金属錯体、発光色素、有機電界発光素子材料および有機電界発光素子
JP2007169268A (ja) 有機化合物、電荷輸送材料、電荷輸送材料組成物および有機電界発光素子
JP2005047811A (ja) 有機化合物、電荷輸送材料、有機電界発光素子材料および有機電界発光素子
KR20190111687A (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
JP2005170809A (ja) 化合物、電荷輸送材料、有機電界発光素子材料および有機電界発光素子
JP2004131464A (ja) 有機金属錯体、発光色素、有機電界発光素子材料、および有機電界発光素子
JP2008024698A (ja) 有機化合物、電荷輸送材料、電荷輸送材料組成物及び有機電界発光素子
JP4930361B2 (ja) 有機電界発光素子材料及びこれを用いた有機電界発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480022397.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11342730

Country of ref document: US

Ref document number: 1020067002102

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004771238

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004771238

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11342730

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020107000793

Country of ref document: KR