WO2004069772A1 - ヨウ素化合物の製造方法および高純度5-ヨード-2-メチル安息香酸の製造方法 - Google Patents

ヨウ素化合物の製造方法および高純度5-ヨード-2-メチル安息香酸の製造方法 Download PDF

Info

Publication number
WO2004069772A1
WO2004069772A1 PCT/JP2004/001367 JP2004001367W WO2004069772A1 WO 2004069772 A1 WO2004069772 A1 WO 2004069772A1 JP 2004001367 W JP2004001367 W JP 2004001367W WO 2004069772 A1 WO2004069772 A1 WO 2004069772A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
iodine
group
compound
methylbenzoic acid
Prior art date
Application number
PCT/JP2004/001367
Other languages
English (en)
French (fr)
Inventor
Toshio Hidaka
Takafumi Yoshimura
Yoshifumi Sato
Norio Fushimi
Masaharu Doya
Original Assignee
Mitsubishi Gas Chemical Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003032671A external-priority patent/JP4293515B2/ja
Priority claimed from JP2003032187A external-priority patent/JP4332702B2/ja
Application filed by Mitsubishi Gas Chemical Company, Inc. filed Critical Mitsubishi Gas Chemical Company, Inc.
Priority to US10/545,005 priority Critical patent/US7750182B2/en
Priority to EP04709714A priority patent/EP1595862B1/en
Priority to DE602004030095T priority patent/DE602004030095D1/de
Publication of WO2004069772A1 publication Critical patent/WO2004069772A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • C07C17/12Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms in the ring of aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B39/00Halogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination
    • C07C17/152Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons
    • C07C17/156Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons of unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination
    • C07C17/158Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/42Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/363Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/68Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings containing halogen

Definitions

  • the present invention relates to a method for directly and selectively producing an iodine compound using iodine and a method for producing a high-purity 5-iodo-2-methylbenzoic acid.
  • Iodine compounds are used as pharmaceuticals such as contrast agents and thyroid diseases, sanitary materials for antibacterial and antifungal purposes, electronic materials, optically functional materials, etching agents, catalysts, chemical reaction raw materials, etc. It is an important compound widely used in the fields of information and communication, environment and energy, and high purity 5-odo-2-methylbenzoic acid is a compound useful as a raw material for various chemical products in addition to pharmaceuticals, agricultural chemicals, and so on. . Background art
  • a fluorine atom is small in size and has a high electronegativity, so it is used in various fields such as pharmaceuticals and electronic materials due to the stability of the bond derived from it and the manifestation of bioactive effects. I have.
  • iodine atoms are large in size, are amphoteric elements, take many oxidation states, and have low oxidation potentials compared to fluorine, chlorine, and bromine, so that a variety of reactivity and functional expression derived from them can be expected.
  • ionic iodine has low toxicity and is widely used in many fields related to medicine, electronics and information, environment and energy.
  • Well-known and well-known iodination techniques include, for example, direct iodination with iodine-iodine monochloride, gas-phase oxidation, and halogen atom A method of exchanging halogen-iodine using compounds such as HI and KI, such as HI and KI, is recommended. (Keiichiro Matsuoka, “Iodine Review”, Second revised edition, Heisei 4 Year, Kasumigaseki Publishing).
  • the above “Iodine Review” describes the direct iodination method by a substitution reaction, in which a substrate is dissolved in sulfuric acid and iodine is added, and the substrate is dissolved in sulfuric acid and alkali iodide and alkaline iodate are used.
  • a substitution reaction in which a substrate is dissolved in sulfuric acid and iodine is added, and the substrate is dissolved in sulfuric acid and alkali iodide and alkaline iodate are used.
  • To generate iodine in the system by adding iodine and a method of iodinating an aromatic ring using sulfur iodide and nitric acid.
  • these methods are not necessarily sufficient in the selectivity and yield of the reaction, and the “Iodine Review” does not describe any applicable and effective iodination method for various substrates.
  • the method using manganese dioxide, potassium permanganate, nitric acid, etc. as an oxidizing agent together with iodine in acetic acid can be carried out relatively easily without using expensive silver sulfate in an acetic acid solvent. Both the selectivity and the yield are not satisfactory.
  • zeolite not only for the iodination reaction but also for selectively proceeding the halogenation, particularly the halogenation reaction of an aromatic compound.
  • a method of chlorinating benzene and monochlorobenzene with chlorine gas and using zeolite to produce paradichlorobenzene Japanese Patent Application Laid-Open No. 2001-2183815), Vapor-phase oxy Chlorination Method for producing methyl chloride by chlorination using Y, L, etc.
  • benzene is converted to molecular oxygen using L-type zeolite.
  • a method for producing benzene having a paradiclochloride which is chlorinated in the coexistence of benzene Japanese Patent Application Laid-Open No. 4-253929.
  • the selectivity can be improved by using zeolite, but it is not always satisfactory. Moreover, when the halogen atom is changed from chlorine to bromine, similar selectivity can hardly be expected. At present, it can be said that there is no versatile selective halogenation technology yet.
  • a method for improving selectivity using zeolite has been proposed.
  • a method in which toluene is reacted with iodine monochloride in the presence of zeolite is a method in which naphthalene is oxidized in the gas phase.
  • a method for producing naphthalenes Journalof Catalysis, Vol. 47, 1994, p. 186
  • a method for producing p-jodobenzene from benzene or benzene Japanese Patent Laid-Open No. 59-1984
  • the reaction product is a mixture of chloride and iodide because iodine monochloride is used in the reaction.
  • the method for producing eodonaphthalenes by gas-phase oxyiodination of naphthalene and the method for producing P-jodobenzene from benzene or eodobenzene are related to the gas-phase oxidation, but the conversion is less than 50%.
  • the selectivity is relatively improved when zeolite is used in the direct iodination in the liquid phase, the oxyiodination in the gas phase, and the isomerization reaction of the aromatic iodide.
  • zeolite is used in the direct iodination in the liquid phase, the oxyiodination in the gas phase, and the isomerization reaction of the aromatic iodide.
  • iodine introduction methods there are very few effective iodine introduction methods, and in particular, a highly selective iodination method applicable to aromatic compounds having a functional group has been found. There is no actual situation.
  • a first object of the present invention is to provide an industrially practicable iodination method which is capable of allowing a desired iodination reaction to proceed with high selectivity and efficiency and which is excellent in versatility.
  • a method for synthesizing 5-iod-2-methylbenzoic acid is to react iodine with 2-methylbenzoic acid in the presence of sodium nitrite and fuming sulfuric acid. Society, 1930, pp. 53-504) and a method of reacting potassium iodide with 2-methylbenzoic acid in the presence of thallium (III) trifluoroacetate (J 0 urna 1 ofthe Chemical Society .Perkin Tran sactions I., 1979, 2405-5240).
  • the former method has a very low yield of 18%, and the latter method has a problem that the yield is as low as 33% and the use of highly toxic potassium salt. It is not suitable as an industrial method for producing 5-methyl-2-methylbenzoic acid.
  • a method for producing 5-iodo-2-methylbenzoic acid includes the so-called Sandmeyer method (O) for dediazioiodinating aromatic amines, which is generally known as an iodination technique for aromatic compounds.
  • O Sandmeyer method
  • a chlorogen or bromination reaction followed by an iodine exchange reaction (Organic Syntheses).
  • Method of applying iodine monochloride (Russian Journa 1 of Organic Chemistry, 347), 19 1998, 997—9999).
  • the Sandmeyer method and the halogen exchange method require multi-step steps, which complicates the process and has many problems as an industrial production method.
  • the method using iodine monochloride can be expected to be carried out as a simple one-step reaction.However, in the reaction with an aromatic compound having an electron-withdrawing group such as benzoic acid, the reaction activity is low. Low and no high response results. For example, in the above-mentioned Russian Journalof 0 rganic Chemistry, the iodination reaction of benzoic acid is carried out, but the yield of the product 3-ododobenzoic acid is only about 43%. —High yield is unlikely to be expected even when applied to iodination of methylbenzoic acid.
  • a second object of the present invention is to facilitate the selective iodination in the production of high-purity 5-methyl-2-methylbenzoic acid by iodinating 2-methylbenzoic acid. It is an object of the present invention to provide an industrial production method that can obtain a high-purity product and has a simple process. Disclosure of the invention
  • a porous compound having a regular pore structure for example, a microporous compound such as an iS-type zeolite, is allowed to coexist.
  • a specific oxygen acid such as iodic acid or periodic acid is used as an oxidizing agent as appropriate, not only aromatic hydrocarbons but also a wide range of substrates such as halides and carboxylic acids can be selectively iodinated.
  • an iodination reaction is carried out using 2-methylbenzoic acid as a raw material in the presence of a microporous compound such as iS-type zeolite, iodine, and iodic acid and / or periodic acid. He learned that the reaction proceeds with high selectivity, and that simple purification steps such as crystallization by addition of water and cooling can easily yield high-purity 5-hydroxy-2-methylbenzoic acid. Departure It has been reached.
  • the present invention provides a method for producing an iodine compound and a high purity 5-
  • the present invention relates to a method for producing 2-methylbenzoic acid.
  • a method for producing an iodine compound which comprises reacting iodine with a substrate in the presence of a porous compound having a pore size of 500 nm or less, or in the presence of the porous compound and an oxidizing agent. .
  • the oxidizing agent is at least one compound selected from iodic acid, periodic acid, persulfuric acid, persulfate and nitric acid, and one or more compounds selected from molecular oxygen. Production method.
  • the substrate is selected from an aromatic hydrocarbon represented by the following chemical formula (1), a ring condensed aromatic hydrocarbon, a ring aggregated aromatic hydrocarbon, a hydrocarbon having a heterocyclic ring, or a derivative thereof.
  • the method for producing an iodine compound according to (1) which is one or more compounds.
  • R represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, or an aryl group which may have a substituent.
  • Ar is an aromatic monocyclic, polycyclic, condensed ring, or ring assembly.
  • X represents a hydrogen atom, a halogen atom, a carboxyl group, a formyl group, a hydroxyl group, a nitro group, a hydroxymethyl group, a cyano group, an amino group, an alkyloxy group, Represents a functional group selected from an alkyloxycarbonyl group, an acyl group, an acyloxy group, an alkylsulfonyl group and an alkylsulfonyloxy group, wherein R and X may be the same or plural Good).
  • the substrate is benzene, fluorobenzene, chlorobenzene, bromobenzene, benzonitrile, phthalonitrile, isophthalonitrile, toluene, xylene, cumene, biphenyl, naphthalene, anthracene, methylnaphthalene, dimethylnaphthalene, methylbenzoate.
  • the method for producing an iodine compound of (6) which is at least one compound selected from the group consisting of acid, dimethylbenzoic acid, biphenylcarboxylic acid, biphenyldicarboxylic acid, naphthalene diluent acid and naphthalene diluent acid.
  • a process for producing high-purity 5-odo-2-methylbenzoic acid comprising:
  • the solvent used for recrystallization is selected from acetic acid, a mixed solvent of acetic acid and water, 2-propanol, and a mixed solvent of 2-propanol and water.
  • Method for producing odo-2-methylbenzoic acid is selected from acetic acid, a mixed solvent of acetic acid and water, 2-propanol, and a mixed solvent of 2-propanol and water.
  • the method for producing an iodine compound of the present invention comprises reacting iodine with a substrate in the presence of a porous compound having a pore diameter of 500 nm or less, or in the presence of the porous compound and an oxidizing agent. It is a feature.
  • the substrate used in the method for producing an iodine compound of the present invention has the following chemical formula
  • the aromatic hydrocarbon represented by (1), a ring condensed aromatic hydrocarbon, a ring-assembled aromatic hydrocarbon, a hydrocarbon having a heterocyclic ring, or a derivative thereof is preferably used.
  • R represents a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, a cycloalkyl group, or an aryl group.
  • alkyl group, cycloalkyl group, or aryl group include methyl, ethyl, n-propyl, is0-propyl, butyl, pentyl, hexyl, heptyl, octyl, and 2-ethyl.
  • a saturated, unsaturated, aliphatic or alicyclic alkyl having 1 to 32 carbon atoms such as hexyl, decyl, cyclohexyl, bicyclohexyl, norponyl, decaryl, etc.
  • These may have a functional group such as a halogen, a hydroxyl group, a nitro group, an amino group, and a sulfonic acid group.
  • the halogen atom is fluorine, chlorine, bromine or iodine.
  • X represents a hydrogen atom, a halogen atom, a carboxyl group, a hydroxyl group, a nitro group, a hydroxymethyl group, a cyano group, an amino group, an alkyloxy group, an alkyloxycarbonyl group, an acyl group, or an acyloxy group.
  • R and X may be the same or plural.
  • Ar represents an aromatic monocyclic, polycyclic, or condensed ring, or an aromatic or heterocyclic group having a ring assembly structure.
  • the substrate represented by the chemical formula (1) includes an aromatic or heterocyclic hydrocarbon, a halogenated hydrocarbon, a carboxylic acid, a nitrile, an alcohol, and the like, which may have a substituent. More specifically, benzene, full-year benzene, benzene d, ⁇ benzene, benzene, ⁇ mobensen, benzonitrile, phthalonitrile, isophthalonitrile, toluene, ki Silene, cumene, biphenyl, naphthalene, anthracene, methyl naphthalene, dimethyl naphthalene, methyl benzoic acid, dimethyl benzoic acid, biphenyl carboxylic acid, biphenyl dicarboxylic acid, naphthalene rubonic acid, naphthalene rubonic acid, etc. Is mentioned.
  • an unsaturated double bond such as cyclohexenethiophene may be included in a part of the molecular structure of the substrate, or an unsaturated triple bond may be included.
  • an unsaturated double bond such as cyclohexenethiophene may be included in a part of the molecular structure of the substrate, or an unsaturated triple bond may be included.
  • the present invention is not limited to only these specific examples.
  • a porous compound having a pore diameter of 500 nm or less is used together with a substrate.
  • This porous compound has a pore size on the order of nanometers among so-called microporous compounds, mesobolic compounds, and macroporous compounds having a regular pore structure.
  • Zeolite which is a well-known microvolume compound.
  • IUPAC's structural code is ABW, AEI, AFX, APC, ATN, ATT, AT V. AWW, CHA, DD R. EAB, ERI, GISJ BW, KFI , LE V. LTA, MER, MON, PAU, PHI, RHO, RTE, RTH, VN 9-membered ring CHI, LOV, RSN, VSV, 10-membered ring DAC, EPI, FER, LAU, MEL MFI, MFS, MTT, NES, TO N.
  • WEI 12-membered ring AFS, AFY, AT., CA. GME, MAZ, MEI, MTW, OFF. RON. VET, etc. More specifically, examples include Chabazite, zeolite A, X, Y, L, mordenite, and zeolite, but those having a pore diameter of 0.5 nm to 2 nm are preferred, and zeolite 3 is particularly preferred. .
  • the ⁇ -type zeolite preferably has a ratio of Si atom to A1 atom constituting the skeleton of 5 or more, particularly preferably 10 to 30. A Even if the ratio of Si atoms to one atom exceeds 30, it can be used without any problem. Further, a skeleton atom is replaced by another atom, or an atom other than the skeleton atom by means of ion exchange or impregnation, for example, Na, K, Cs, Ca, Mg, Ti, Sn, Those containing Fe, Ni, Zn, Pd, Ag and the like are also preferably used.
  • mesoporous compound having a larger pore diameter and a pore diameter exceeding 2 nm.
  • mesoporous silica such as FS M_16, K SW-1, K SW-2, etc., MCM-41, MC M-48, MC M-50, generically referred to as MS41S, Mesopolar Examples thereof include alumina, mesoporous titania, mesoporous organic silica hybrid, and the like.
  • the oxidizing agent is used for the purpose of increasing the reactivity of iodine.
  • Preferred oxidizing agents are iodic acid, periodic acid, nitric acid, or persulfates such as persulfuric acid, sodium persulfate, persulfuric acid rim, and ammonium persulfate, and peroxidation. Oxyacid salts composed of hydrogen, molecular oxygen, etc., with iodic acid or periodic acid being particularly preferred.
  • the iodination of the substrate can be carried out using a system consisting of iS-type zeolite and iodic acid or periodic acid and, if necessary, a system in which a mineral acid such as sulfuric acid or nitric acid is added. preferable.
  • the iodination reaction can be carried out in a batch system, a semi-batch system, or a continuous system, and can be carried out in any of a liquid phase and a gas phase. However, for iodination other than ox iodination, it is usually preferable to carry out the reaction in the liquid phase from the viewpoint of efficient use of the reactor.
  • the amount of iodine used in the iodination reaction is preferably 0.5 mol or more with respect to 1 mol of the target substrate, but the reaction may be carried out in excess or stoichiometrically insufficient.
  • Microporous compounds such as zeolite, which is a porous compound with a regular pore structure, and the amount of mesoporous compound used is 1 part by weight of the substrate.
  • the range is preferably 0.05 to 0.5 part by weight with respect to the weight. However, even if it is used in an amount of 0.5 parts by weight or more, there is no particular problem except for economy.
  • the oxidizing agent is preferably used in the range of 0.01 to 1 mol, particularly preferably in the range of 0.1 to 0.5 mol, based on the substrate.
  • Mineral acids can be used in combination with iodic acid and periodic acid, which are preferred oxidizing agents, for the purpose of improving the conversion of the substrate. If the amount of the mineral acid used increases, the selectivity of the reaction decreases.
  • a mineral acid such as sulfuric acid or nitric acid is used together with iodic acid and periodic acid, the content is preferably 10% by weight or less, particularly preferably 1 to 2% by weight, based on the substrate.
  • solvents include aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, aromatic halogenated hydrocarbons, nitriles, ethers, carboxylic acids, and water which are inert to the iodination reaction. Which can be appropriately selected from these.
  • a particularly preferred solvent is acetic acid.
  • the solvent is used in a volume of 2 to 10 times the volume of the substrate, but it does not matter if the amount of the solvent used is outside this range.
  • the raw material such as a substrate, iodine and an oxidizing agent and the zeolite catalyst which is a regular porous compound can be charged at once and the reaction can be carried out.
  • Raw materials such as iodine and oxidizing agent may be added in portions or sequentially.
  • the reaction temperature is usually preferably 250 ° C. or lower, particularly preferably 80 ° C. to 200 ° C.
  • a temperature range of 200 to 400 ° C. is preferred.
  • the desired purified product can be obtained by performing ordinary separation and purification operations such as filtration, solvent removal, or crystallization.
  • 2-methylbenzoic acid is used as a substrate to produce high-purity 5-methyl-2-methyl useful for pharmaceuticals, electronic materials, functional materials, etc.
  • the iodination reaction step is combined with the step of adding the water or cooling to precipitate the product, and the purification step by recrystallization using water and an organic solvent such as 2-propanol. It can be manufactured efficiently.
  • a substrate used as a raw material for methyl benzoic acid is not particularly limited as long as it is industrially available. It is preferable to use one having 8% or more.
  • the above-mentioned method for producing an iodine compound is used.
  • the porous compound the above-mentioned microporous compound, particularly 3 Type zeolite is preferred.
  • iodic acid and / or periodic acid are allowed to coexist with iodine in the presence of a microporous compound.
  • compounds having an electron withdrawing group such as 2-methylbenzoic acid have low reactivity, and the reactivity is reduced by the coexistence of iodic acid and / or periodic acid. Need to increase.
  • the reactivity can be further increased by appropriately adding a mineral acid such as sulfuric acid or nitric acid.
  • iodine, iodic acid, and periodic acid are all solids at room temperature, but may be solids when subjected to the reaction, and may be dissolved or suspended using an appropriate solvent. You may use it.
  • reaction systems such as a batch system, a semi-batch system, a completely mixed circulation system, and a fixed bed circulation system can be adopted.
  • the reaction method may be selected according to the production scale of the product.A batch method is appropriate for small-quantity production, and a complete mixed flow method or fixed-bed distribution method for mass production. More efficient to run the reaction continuously Production method.
  • the reaction temperature in the iodination reaction of 2-methylbenzoic acid is 50 to 2
  • the range is 70 to 150. If the temperature is lower than this, the reaction proceeds, but a sufficient reaction rate cannot be obtained. If the temperature is higher than this, side reactions such as generation of high-boiling substances increase, which is not preferable.
  • the reaction pressure is in the range of 0.05 to 20 atm in absolute pressure, preferably in the range of 0.1 to 10 atm.
  • 2-Methylbenzoic acid has a melting point of 105 ° C, and when performing the reaction at a temperature higher than the melting point, a reaction solvent is not necessarily required, but usually, an organic solvent inert to iodination is used.
  • a reaction solvent is not necessarily required, but usually, an organic solvent inert to iodination is used.
  • acetic acid, trifluoroacetic acid, dichloromethane, carbon tetrachloride, dichlorobenzene, and chlorobenzene are used.
  • the amount of the solvent to be used is preferably 0.5 to 100 parts by weight, more preferably 1 to 50 parts by weight, per 1 part by weight of 2-methylbenzoic acid.
  • iodine used in the iodination reaction of 2-methylbenzoic acid.However, in order to increase the conversion of 2-methylbenzoic acid, 0.5 mol per 1 mol of 2-methylbenzoic acid is used. The amount is preferably at least 1 mol.
  • the use amount of iodic acid and / or periodic acid is preferably in the range of 0.01 to 1 mol, more preferably in the range of 0.05 to 0.5 mol, per 1 mol of iodine.
  • the amount of the microporous compound to be used is 0.05 part by weight or more, preferably 0.1 part by weight or more, based on 1 part by weight of the raw material 2-methylbenzoic acid. If the amount of the microporous compound used is smaller than this, sufficient reaction activity cannot be obtained, and 5-odo-2-methylbenzoic acid cannot be obtained with high selectivity.
  • the reaction solution after the reaction and the microporous compound can be easily separated by a general method such as sedimentation, centrifugation, or filtration.
  • the separated microporous compound may be circulated to the reaction system. It may be circulated after performing necessary treatments such as removal of attached organic substances by combustion in air and washing with an appropriate solvent.
  • the reaction can be further promoted by adding a mineral acid such as sulfuric acid to the above reaction system.
  • a mineral acid such as sulfuric acid
  • the amount of the mineral acid to be added is appropriately 0.05 to 0.05 part by weight based on 1 part by weight of 2-methylbenzoic acid. If the amount of the mineral acid is less than this range, there is almost no effect of promoting the reaction, and if the amount is too large, a side reaction is likely to occur, impairing the selectivity to the desired 5-hydroxy-2-methylbenzoic acid. Not preferred.
  • reaction methods such as a batch system, a semi-batch system, and a complete mixed circulation system are employed, but usually, a batch system and a half-batch system are used.
  • reaction time or the residence time in the completely mixed flow system 1 to 20 hours is employed.
  • 0.05-1 h- 1 is usually adopted as the LHSV (liquid hourly space velocity) of 2-methylbenzoic acid.
  • the process for producing high-purity 5-methyl-2-methylbenzoic acid according to the present invention comprises the above-mentioned iodination reaction step, a crystal precipitation / separation step in which a product is precipitated and separated by adding or cooling water, and an organic solvent. It consists of a purification step of recrystallizing the separated crystals. That is, after performing the reaction according to the above method, 5-methyl-2-methylbenzoic acid can be isolated by adding water to the product solution or cooling the product solution. High purity 5-ododo 2-methylbenzoic acid can be obtained by performing purification operation using crystals.
  • the crystal recovery step 1 to 10 parts by weight of water is added to 1 part by weight of the reaction solution to precipitate crystals of 5-hydroxy-2-methylbenzoic acid, which is recovered by filtration.
  • iodine crystals may precipitate and be mixed with 5-methyl-1-methylbenzoic acid, but sodium sulfite or sodium thiosulfate is added to the reaction solution in advance. By that, of iodine Precipitation can be prevented.
  • the addition amount of sodium sulfite or sodium thiosulfate is sufficient to be 0.05 part by weight or less based on 1 part by weight of iodine used in the reaction.
  • Crystal recovery can be performed by cooling the reaction product solution to 90 t or less, in addition to the method by adding water. After cooling to 90 ° C or less, the precipitated crystals are collected by filtration.
  • the organic solvent used for recrystallization may be any solvent that can dissolve 5-node_2-methylbenzoic acid, such as acetic acid, mixed solvent of acetic acid and water, mixed solvent of 2-propanol and mixed water of 2-propanol, etc. Is preferred.
  • the amount of the solvent used is 1 to 30 parts by weight, preferably 5 to 20 parts by weight, per 1 part by weight of the recovered crystals.
  • the recrystallization operation is performed by heating and mixing the recovered crystals and these solvents at 40 ° C or more to completely dissolve them, and then cooling to precipitate the crystals.
  • the cooling temperature is set to be 20 ° C or lower than the temperature at which the crystals were completely dissolved during heating and mixing.
  • the precipitated crystals are collected by filtration and dried to obtain a product.
  • the purity of 5-iodo-1-methylbenzoic acid obtained by the above method is 9.9% or more, and the total amount of iodine, iodine compounds, inorganic salts and transition metal compounds contained as impurities is 500 ppm or less. And extremely high purity.
  • iodine in the method for producing an iodine compound of the present invention, iodine can be introduced with high selectivity for various substrates, and the same applies to other substrates other than 2-methylbenzoic acid. By the operation described above, an iodine compound with few impurities can be obtained.
  • Example 1 (1 monomethylbenzoic acid) Acetic acid (100 g), H— / 3 zeolite (4.6 g), iodine (20.2 g, 0.1 g) were placed in a 20-OmL three-necked flask equipped with a reflux condenser and a stirrer. 6 m 0 1). 2-Methylbenzoic acid (20 g, 0.15 mo 1), periodic acid dihydrate (7.3 g, 0.03 m 0 1), sulfuric acid ( 0.2 g), and mixed and stirred well at room temperature. After raising the temperature of the solution to 110 using Mantlehi overnight, the reaction was carried out for 1 hour, and further, the reaction was carried out at the acetic acid reflux temperature (about 118 ° C) for 5 hours.
  • reaction solution was filtered to recover HS zeolite, and a 10% by weight aqueous solution of sodium sulfite (100 mL) was added to the filtrate to treat residual boron. Then, water (800 g) was added to precipitate crystals, which were collected by filtration.
  • Example 1 was the same as Example 1 except that 3-methylbenzoic acid (20 g, 0.15 m 01) was used as a raw material. 3-Methyl repose The conversion rate of perfumed acid is 50%, and the yield is 1 6 —odo 3 —methyl benzoic acid 40%, 2The yield of regioisomers of other iodides is 8%, and 1 / 2 The formation ratio was 5. Comparative example
  • Example 1 was repeated except that 5 g, 0.15 m 0 1) was used.
  • the conversion of 2,4-dimethylbenzoic acid is 98% and the yield is 15-
  • Example 3 was the same as Example 3 except that H-iS zeolite was not used.
  • the conversion rate of 2,4-dimethylbenzoic acid is 96%, and the yield is 15-ododo-2,4-dimethylbenzoic acid 81%, 2the positional isomer of the other iodide 8%, 1 /
  • the production ratio of 2 was 10.
  • Example 1 Toluene (13.8 g, 0.15 m o Same as Example 1 except that 1) was used. The conversion of toluene was 98%, and the yield was 141% toluene 8 2 2 2 The other positional isomer of iodide was 9%, and the production ratio of 2 / 2 was 9.1. Comparative Example 4 (Toluene: H-iS zeolite was not used)
  • Example 4 was the same as Example 4 except that H-3 zeolite was not used.
  • the conversion rate of toluene was 100%, the yield was 56% of 14 ⁇ -toluene, 2 39% of the other isomer of iodide, and the production ratio of 1 / 2 was 1.
  • Example 5 (0-xylene)
  • Example 1 was the same as Example 1 except that 0-xylene (15.9 g, 0.15 m 01) was used as a raw material.
  • the conversion of 0-xylene is 9.9% ', and the yield is ⁇ 41-_1,2-dimethylpentene 92%, 2 other positional isomer of iodide 6%, 1 formation of Z2
  • the ratio was 15. Comparative Example 5 (when o-xylene: H—) 8 zeolite was not used In Example 5, the same procedures were performed as in Example 5 except that H-zeolite was not used.
  • Example 1 was the same as Example 1 except that biphenyl (23.lg, 0.15 m 01) was used as a raw material.
  • the conversion of biphenyl was 99%, the yield was 141-dobiphenyl 92%, 2the regioisomer of other iodide was 5 Q / o, and the production ratio of 1 / 2 was 18.4. there were.
  • Example 1 it was the same as Example 1 except that fluorobenzene (14.4 g, 0-15m01) was used as a raw material.
  • the conversion of fluorene benzene is 65%, the yield is 52% of 14-fluorofluorobenzene, 2 3% of the other isomer of iodide, and the formation ratio of 2 / 2 is 1 ⁇ . Comparative Example 6
  • Example 7 Fluorobenzene: when H_Zeolite was not used
  • Example 7 the same procedures were performed as in Example 7 except that H-3 zeolite was not used.
  • the conversion of fluorobenzene is 63% and the yield is 1
  • Example 8 was the same as Example 8 except that zeolite3) was not used. 2—The conversion of methylcyanobenzene is 92%, The yield was 1 5-odo-2-methyl cyanobenzene yield 61 1 o / o, 2 3-odo _2-methyl cyanobenzene yield 14%, and the production ratio of 1 / 2 was 2.5. there were.
  • Example 1 was the same as Example 1 except that iodic acid (5.3 g, 0.03 m 01) was used instead of periodic acid as the oxidizing agent.
  • the conversion of 2-methylbenzoic acid is 78%, and the yield is 15_odo-2-9% benzoic acid 69%, 2The other positional isomer of iodide 3%, The formation ratio was 3. Comparative Example 8
  • Example 10 (Oxidation with iodic acid: when H-3 zeolite was not used) In Example 9, the same procedures as in Example 9 were carried out except that H-3 zeolite was not used. The conversion of 1-methylbenzoic acid is 79% and the yield is 15-ododo 2-methylbenzoic acid 53%, 2The regioisomers of other iodides are 23%, and 1 / 2 is formed. The ratio was 2.3.
  • Example 10 (Oxidation with sodium persulfate)
  • Example 1 was the same as Example 1 except that mordenite, Y, L, and ZSM-5, which are microporous compounds, were used instead of H-zeolite, respectively. Using each zeolite, the production ratio of 5 _ ode / 3-ode was as follows.
  • Example 1 8.8 g of iodic acid was used instead of periodic acid without using sulfuric acid, and reacted at the reflux temperature of acetic acid (at 115) for 3 hours.
  • iodic acid instead of periodic acid without using sulfuric acid, and reacted at the reflux temperature of acetic acid (at 115) for 3 hours.
  • Example 16 The reaction was carried out under the same conditions as in Example 16 except that the amount of acetic acid was changed to 40 g. After the H-zeolite was separated, the filtrate was cooled to room temperature. The precipitated crystals were collected by filtration to obtain 10 g of a product. As a result of the analysis, the following response results were obtained.
  • Example 16 The same procedure as in Example 16 was carried out except that H_) 8 zeolite was not used, to obtain 15 g of a product. As a result of the analysis, the following reaction results were obtained.
  • Example 16 The same procedure as in Example 16 was carried out except that periodate was not used, to obtain 0.8 g of a product. As a result of the analysis, the following reaction results were obtained.
  • the free iodine was found to be 10 ppm.
  • Industrial applicability Li, Na, K, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Nb, Cr, Mo , W, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pi :, Cu, Ag, Au, Zn, Cd, Al, In, Si , Sn, Pb, P, Sb, and S were not detected, and the elements of Groups 1 and 2 of the Periodic Table were all 1 ppm
  • iodine can be introduced with high selectivity for various substrates.
  • metals or special reagents since it is not necessary to use expensive metals or special reagents, it is easy to carry out industrially, and a highly pure product can be obtained.
  • the method of the present invention comprising the iodination reaction, separation and purification steps,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

ヨウ素と基質を、細孔径が500nm以下の多孔質化合物の存在下、又は該多孔質化合物と酸化剤の存在下に反応させるヨウ素化合物の製造方法および該方法によるヨウ素反応工程、水添加又は冷却により生成物を析出、分離させる結晶析出・分離工程、および有機溶媒を用いて分離した結晶を再結晶する精製工程を有する高純度5−ヨード−2−メチル安息香酸の製造方法を提供する。上記のヨウ素化合物の製造方法によれば種々の基質に対して高い選択性をもってヨウ素を導入することができ、高価な金属や特殊な試薬を用いる必要が無いので、工業的に実施することが容易であり、高純度の製品を得ることが出来る。また、上記のヨウ素化反応、分離、精製工程からなる方法により、医薬品等の機能化学品用途に於いて有用な5−ヨード−2−メチル安息香酸を、高純度、高収率、かつ容易に得ることができる。本製造方法はプロセス的に簡便であり、精製負荷が小さい等の特長を有しており、工業的に実施する上で非常に有利である。

Description

明細 ヨウ素化合物の製造方法および
5 —ョ一ドー 2—メチル安息香酸の製造方法
技術分野
本発明はヨウ素を用いる直接かつ選択的なヨウ素化合物の製造方法 および高純度 5 —ョード— 2 —メチル安息香酸の製造方法に関する。 ヨウ素化合物は、 造影剤や甲状腺疾患治療薬等の医薬品、 防菌 · 防黴 を目的とした衛生材料、 電子材料、 光機能材料、 エッチング剤、 触媒 、 化学反応原料等として、 ライフサイエンス、 電子 ·情報通信、 環境 、 エネルギー分野に於いて広範に用いられる重要な化合物であり、 高 純度 5 —ョードー 2 —メチル安息香酸は、 医薬、 農薬の他、 種々の化 学品原料として有用な化合物である。 背景技術
フッ素ゃョゥ素原子を含有する化合物は、 他の含ハロゲン化合物に は見られない特徴を有する。 例えばフッ素原子はサイズが小さ く、 電 気陰性度が大きいため、 それに由来する結合の安定性や生理活性作用 の発現等によって、 医薬、 電子材料を始めとする様々な分野に於いて 用いられている。 一方、 ヨウ素原子はサイズが大きく、 両性元素であ り、 多くの酸化状態を取り、 フッ素、 塩素、 臭素に比べて酸化電位が 低いため、 それに由来する多様な反応性や機能発現が期待できる。 し かも、 イオン性ヨウ素は低毒性であることから、 医薬、 電子 ·情報、 環境、 エネルギー関連の多くの分野に於いて広く利用されている。 良く知られた公知のョゥ素化技術として、 例えばョゥ素ゃ一塩化ョ ゥ素による直接ヨウ素化、 気相ォキショード化、 ハロゲン原子を持つ 化合物に H Iや K I等のヨウ化物ゃョゥ素のアル力 リ金属塩類を用い てハロゲン一ヨウ素交換を行う方法が挙げられる (松岡敬一郎著 「ョ ゥ素総説」 増補改訂第 2版、 平成 4年、 霞ヶ関出版) 。
例えば、 上記の 「ヨウ素総説」 には、 置換反応による直接ヨウ素化 法として、 基質を硫酸に溶解してョゥ素を加える方法、 基質を硫酸に 溶解してヨウ化アルカ リ とヨウ素酸アルカ リを加えて系内でヨウ素を 発生させる方法、 ヨウ化硫黄と硝酸を用いて芳香環をヨウ素化する方 法等の記載がある。 しかし、 これらの方法は反応の選択性や収率は必 ずしも充分とは言えず、 「ヨウ素総説」 には種々の基質に対して適用 可能かつ有効なヨウ素化法は記載されていない。
芳香族カルボン酸をヨウ素化する場合を例に挙げると、 硫酸中、 一 塩化ヨウ素と硫酸銀を用いる安息香酸の直接ヨウ素化法 ( S y n t h e s i s, 1 9 9 9年, N o . 5, 7 4 8頁) 、 同様に硫酸と一塩化 ヨウ素を用いる直接ョゥ素化法 (R u s s i a n J o u r n a l o f O r g . C h e m. , 3 4 ( 7 ) , 1 9 8 8年) 、 酢酸中でョ ゥ素と共に酸化剤と して二酸化マンガン、 過マンガン酸カ リ ウム、 硝 酸等を用いる方法 (M n 02 , K M n 0 を用いる方法 : B u 1 1 C h e m. S o c . J a p a n , 1 9 9 9年, 7 2卷, 1 1 5頁、 H N 0 を用いる方法: Z h . 0 b s h c h . K h i m . O b s h c h e s t , 1 9 7 2年, 1 7巻, 4 6 4頁、 H2 S 04 用いる方法 : J . Am. C h e m. S o c . , 1 9 6 8年, 9 0卷, 6 1 8 7頁 ) がある。
しかし、 上記の硫酸を用いる方法の中、 一塩化ヨウ素と硫酸銀を用 いる安息香酸の直接ヨウ素化法では、 0 °C近辺の低温で反応を行って も選択率性が低く収率は 5 7 %にしか過ぎない上に高価な硫酸銀を用 いる必要がある等の実用上の問題がある。
また、 硫酸と一塩化ヨウ素を用いる直接ヨウ素化法では、 比較的安 価な一塩化ヨウ素を用いるが反応の収率は 4 3 %程度にしか過ぎず、 しかもヨウ化物以外に塩化物が生成することが多く、 選択的にヨウ素 化反応を行うのは困難である。
更に、 酢酸中でヨウ素と共に酸化剤として二酸化マンガン、 過マン ガン酸カ リウム、 硝酸等を用いる方法では、 酢酸溶媒中で高価な硫酸 銀は使わず、 比較的簡便に実施可能であるが、 反応の選択性、 収率と もに満足できるものではない。
ヨウ素化反応に限らず、 ハロゲン化、 特に芳香族化合物のハロゲン 化反応を選択的に進行させるためにゼォライ トを用いることが提案さ れている。 例えば、 ベンゼン、 モノ クロ口ベンゼンを塩素ガスで塩素 化して、 パラジクロロベンゼンを製造する際にゼォライ トを用いる方 法 (特開 2 0 0 1 — 2 1 3 8 1 5号公報) 、 またメタンの気相ォキシ 塩素化による塩化メチルの製造にゼォライ b Y、 L等を用いる方法 ( 特開平 4一 2 2 7 8 5 0号公報) 、 更には、 L型ゼォライ トを用いて ベンゼンを分子状酸素の共存下に塩素化するパラジクロ口ベンゼンの 製造方法に関する提案がなされている (特開平 4 _ 2 5 3 9 2 9号公 報) 。
上記方法ではゼォライ トを用いることで選択性の向上は認められる が、 必ずしも満足できる水準とは言えない。 しかも、 ハロゲン原子が 塩素から臭素に変わった場合、 同様な選択性は殆ど期待できない。 現 状、 汎用性の高い選択的ハロゲン化技術は未だ存在しないと言える。
また、 ヨウ素化反応に於いても、 ゼォライ トを用いて選択性を改善 する方法が提案されている。 例えば、 トルエンをゼォライ 卜存在下に 一塩化ヨウ素と反応させる方法 (C a t a l y s i s L e t t e r s, 4 0卷, 1 9 9 6年, 2 5 7頁) 、 ナフタレンを気相ォキショウ 素化してョ一.ドナフタレン類を製造する方法 ( J o u r n a l o f C a t a l y s i s l 4 7卷, 1 9 9 4年, 1 8 6頁) 、 ベンゼン或 いはョ一ドベンゼンから p—ジョードベンゼンを製造する方法 (特開 昭 5 9— 2 1 9 2 4 1号公報) 等がある。 しかし、 上記のトルエンをゼォライ ト存在下に一塩化ヨウ素と反応 させる方法は、 反応に一塩化ヨウ素を用いる為に、 反応生成物は塩化 物とヨウ化物の混合物であり、 必ずしも選択性が高いとは言えない。 ナフタレンを気相ォキシヨウ素化してョードナフタレン類を製造する 方法、 およびベンゼン或いはョードベンゼンから P—ジョードべンゼ ンを製造する方法は気相法ォキショウ素化に関するが転化率が 5 0 % にも満たない。
更に、 ゼォライ ト X、 Y、 L等を用いて芳香族ヨウ素化合物を異性 化させる方法も提案されている (日本特許第 2 5 5 9 4 8 3号公報お よび第 2 5 5 9 4 8 4号公報) 。 これらの方法では異性化により目的 物を得ているが、 目的物以外の異性体の種類、 量ともにかなり多く、 選択性が優れているとは言い難い水準である。
この様に、 従来技術では、 液相による直接ヨウ素化や気相によるォ キシヨウ素化や芳香族ョゥ化物の異性化反応に於いてゼォライ トを用 いると比較的選択性が改善されることが知られているものの、 効果的 なヨウ素の導入方法は殊の外少なく、 特に、 官能基を有する芳香族化 合物に対しても適用可能な高い選択的を有するヨウ素化方法は見当た らないのが実状である。
本発明の第一目的は所望するヨウ素化反応を高選択的かつ効率的に 進行させ得る、 汎用性に優れた工業的に実施可能なヨウ素化方法を提 供することである。
次に、 5—ョード _ 2—メチル安息香酸の合成法としては、 亜硝酸 ナト リ ウムと発煙硫酸の共存下でヨウ素と 2—メチル安息香酸を反応 ' せる方法 ^ J o u r n a l o f t h e I n d i a n C h e m i c a 1 S o c i e t y , 1 9 3 0年, 5 0 3— 5 0 4頁) およ び、 タリ ウム (III ) ト リフルォロ酢酸塩の共存下でヨウ化カ リ ウム と 2—メチル安息香酸を反応させる方法 ( J 0 u r n a 1 o f t h e C h e m i c a l S o c i e t y . P e r k i n T r a n s a c t i o n s I . , 1 9 7 4年, 2 4 0 5— 2 4 0 9頁) 等が 知られている。 しかしながら、 前者の方法では収率が 1 8 %と極めて 低く、 また、 後者の方法では収率が 3 3 %と低い上に毒性の強いタ リ ゥム塩を使用するという問題があり、 何れも工業的な 5—ョ一ドー 2 ーメチル安息香酸の製造方法としては不適当である。
5—ョードー 2—メチル安息香酸の製造方法としては、 上記の他、 一般に芳香族化合物のヨウ素化技術として知られている、 芳香族ァミ ンを脱ジァゾ一ヨウ素化させる所謂ザン ドマイヤー法 ( O r g a n i c S y n t h e s e s , C o l l e c t i v e V o l um e . 丄 I , 1 9 4 3年, 3 5 1頁) 、 一旦、 塩素化又は臭素化した後にヨウ 素交換反応を行うノヽロゲン交換法 (O r g a n i c S y n t h e s e s, C o l l e c t i v e V o um e . V, 1 9 7 3年, 4 7 8頁) 、 一塩化ョゥ素を作用させる方法 (R u s s i a n J o u r n a 1 o f O r g a n i c C h e m i s t r y , 3 4 7 ) , 1 9 9 8年, 9 9 7— 9 9 9頁) などの適用が考えられる。 これらの 内、 ザンドマイヤー法やハロゲン交換法については多段階の工程を必 要とするためプロセスが複雑となり、 工業的製造法としては問題が多 い。 一塩化ョゥ素を用いる方法は反応が一段階の簡便なプロセスとし てでの実施が期待できるが、 安息香酸類の様な電子吸引基のついた芳 香族化合物との反応では、 反応活性が低く、 高い反応成績が得られて いない。 例えば、 上記の R u s s i a n J o u r n a l o f 0 r g a n i c C h e m i s t r yでは安息香酸のョゥ素化反応を行 つているが、 生成物の 3—ョードー安息香酸の収率は 4 3 %程度に止 まっており、 2—メチル安息香酸のョゥ素化に適用しても高収率は考 え難い。
5—ョードー 2—メチル安息香酸製造に際しては、 異性体である 3 ーョードー 2—メチル安息香酸が副生し、 5—ョードー 2—メチル安 息香酸との分離 ·精製が難しいため、 製品純度および単離収率を損な うという問題があるが、 上記に示した従来技術の何れにおいても異性 体の副生を低減する方法は示されていない。 芳香族化合物を位置選択 的にョゥ素化する技術としては、 ゼォライ ト共存下に一塩化ョゥ素を 作用させる方法 ( C a t a 1 y s i s L e t t e r s , 4 0卷, 1 9 9 6年, 5 7頁) ゃゼォライ ト共存下でォキショウ素化する方法 等 (特開昭 5 9 - 2 1 9 2 4 1号公報およぴ特表平 1 — 5 0 2 8 1 9 号公報) が知られているが、 何れも反応の選択性については必ずしも 満足できる水準とは言えず、 また、 置換基が複数あり、 しかも電子吸 引基を有する 2—メチル安息香酸の様な化合物についての反応例は殆 ど知られていない。
本発明の第二目的は、 2—メチル安息香酸をヨウ素化して高純度 5 —ョ一ドー 2 _メチル安息香酸を製造するにあたり、 選択的なョゥ素 化を行うことによ り、 容易に高純度の製品が取得可能で、 しかも簡略 なプロセスからなる工業的製造手段を提供することにある。 発明の開示
本発明者等は、 上記課題を解決する為に鋭意検討を重ねた結果、 規 則的な細孔構造を持つ多孔質化合物、 例えば、 iS型ゼォライ ト等のマ ィク口ポーラス化合物を共存させて、 ヨウ素酸や過ヨウ素酸等の特定 の酸素酸類を、 適宜、 酸化剤として用いると芳香族炭化水素だけでな く、 ハロゲン化物やカルボン酸等の広範な基質を選択的にヨウ素化で きること、 また、 2—メチル安息香酸を原料として、 マイクロポーラ ス化合物、 例えば、 iS型ゼオライ トと、 ヨウ素、 並びにヨウ素酸およ び/又は過ヨウ素酸の共存下でヨウ素化反応を行うことにより反応が 高選択的に進行すること、 更に、 水添加や冷却による晶折等の簡単な 精製工程を組み合わせると高純度の 5—ョ一ドー 2 —メチル安息香酸 が容易に得られることを知り、 本発明に到達した。
即ち本発明は、 以下のヨウ素化合物の製造方法および高純度の 5— ョードー 2—メチル安息香酸の製造方法に関する。
( 1 ) . ヨウ素と基質を、 細孔径が 5 0 0 n m以下の多孔質化合物の 存在下、 又は該多孔質化合物と酸化剤の存在下に反応させることを特 徴とするヨウ素化合物の製造方法。
( 2 ) . 多孔質化合物が、 細孔径 0 . 5 n m〜 2 n mのマイ クロポー ラス化合物である ( 1 ) のヨウ素化合物の製造方法。
( 3 ) . 多孔質化合物が iS型ゼォライ ト、 又は骨格を構成する S i、 A 1、 0以外の元素を含むことのある 型ゼオライ トである ( 1 ) の ヨウ素化合物の製造方法。
( 4 ) . 多孔質化合物が、 細孔径 2 n mを超えるメ ソポーラス化合物 である ( 1 ) のヨウ素化合物の製造方法。
( 5 ) . 酸化剤が、 ヨウ素酸, 過ヨウ素酸、 過硫酸、 過硫酸塩および 硝酸からなる酸素酸類、 並びに分子状酸素から選ばれる一種以上の化 合物である ( 1 ) のヨウ素化合物の製造方法。
( 6 ) . 基質が、 下記の化学式 ( 1 ) で表される芳香族炭化水素、 環 縮合芳香族炭化水素、 環集合芳香族炭化水素、 複素環を有する炭化水 素、 又はそれらの誘導体から選ばれる一種以上の化合物である ( 1 ) のヨウ素化合物の製造方法。
R - A r - X (1)
(但し、 Rは水素原子、 ハロゲン原子、 置換基を持つことのあるアル キル基、 シクロアルキル基、 又はァリール基を表わす。 A rは芳香族 単環、 多環、 或いは縮合環、 又は環集合構造である芳香族基、 又は複 素環基を表す。 Xは水素原子、 ハロゲン原子、 カルボキシル基、 ホル ミル基、 水酸基、 ニトロ基、 ヒ ドロキシメチル基、 シァノ基、 ァミ ノ 基、 アルキルォキシ基、 アルキルォキシカルボニル基、 ァシル基、 ァ シルォキシ基、 アルキルスルホニル基おょぴアルキルスルホ二ルォキ シ基から選ばれた官能基を表す。 Rおよび Xは同一であっても良く、 複数存在しても良い) 。 ( 7 ) . 基質が、 ベンゼン、 フルォロベンゼン、 クロ口ベンゼン、 ブ ロモベンゼン、 ベンゾニト リル、 フタロニト リル、 イソフタロニト リ ル、 トルエン、 キシレン、 キュメ ン、 ビフエニル、 ナフタレン、 アン トラセン、 メチルナフタレン、 ジメチルナフタレン、 メチル安息香酸 、 ジメチル安息香酸、 ビフエ二ルカルボン酸、 ビフエ二ルジカルボン 酸、 ナフタレン力ルポン酸およびナフタレンジ力ルポン酸から選ばれ る一種以上の化合物である ( 6 ) のヨウ素化合物の製造方法。
( 8 ) . ヨウ素と 2 —メチル安息香酸を、 細孔径が 0 . 5 n m ~ 2 n mのマイクロポ一ラス化合物および、 ョゥ素酸および/又は過ョゥ素 酸の存在下に反応させる ( 2 ) のヨウ素化合物の製造方法。
( 9 ) . ( 8 ) の方法によるョゥ素反応工程、 水添加又は冷却により 生成物を析出させ、 分離する結晶析出 · 分離工程および、 有機溶媒を 用いて分離した結晶を再結晶する精製工程を有することを特徴とする 高純度 5—ョードー 2 —メチル安息香酸の製造方法。
( 1 0 ) . 再結晶に使用する溶媒が、 酢酸、 酢酸一水混合溶媒、 2— プロパノール、 2—プロパノール一水混合溶媒の何れかから選ばれた ものである ( 9 ) の高純度 5—ョードー 2 _メチル安息香酸の製造方 法。
( 1 1 ) . ( 9 ) の方法により製造され、 純度が 9 9 %以上で、 不純 物として含まれるヨウ素、 ヨウ素化合物、 無機塩および遷移金属化合 物の総量が 5 0 0 p p m以下であることを特徴とする高純度 5 —ョ一 ドー 2—メチル安息香酸。 発明を実施するための最良の形態
まず、 本発明のヨウ素化合物の製造方法は、 ヨウ素と基質を、 細孔 径が 5 0 0 n m以下の多孔質化合物の存在下、 又は該多孔質化合物と 酸化剤の存在下に反応させることを特徴とするものである。
本発明のョゥ素化合物の製造方法に用いる基質は、 下記の化学式 ( 1 ) で表される芳香族炭化水素、 環縮合芳香族炭化水素、 環集合芳 香族炭化水素、 複素環を有する炭化水素、 又はそれらの誘導体が好適 に用いられる。
R - A r - X (1)
化学式 ( 1 ) において、 Rは水素原子、 ハロゲン原子、 置換基を持 つことのあるアルキル基、 シク口アルキル基、 又はァリ一ル基を表わ す。 このアルキル基、 シクロアルキル基、 又はァリール基としてはメ チル基、 ェチル基、 n—プロピル基、 i s 0—プロピル基、 ブチル基 、 ペンチル基、 へキシル基、 ヘプチル基、 ォクチル基、 2—ェチルへ キシル基、 デシル基、 シクロへキシル基、 ビシクロへキシル基、 ノル ポニル基、 デカ リル基等の好ましくは炭素数 1 から 3 2までの飽和、 不飽和、 脂肪族又は脂環族アルキル等である。 これらは、 ハロゲン、 水酸基、 ニトロ基、 アミ ノ基、 スルホン酸基等の官能基を有すること があっても良い。 ハロゲン原子はフッ素、 塩素、 臭素又はヨウ素であ る。
また、 化学式 ( 1 ) において Xは、 水素原子、 ハロゲン原子、 カル ボキシル基、 水酸基、 ニトロ基、 ヒ ドロキシメチル基、 シァノ基、 ァ ミ ノ基、 アルキルォキシ基、 ァルキルォキシ力ルボニル基、 ァシル基 、 ァシルォキシ基、 了ルキルスルホニル基、 又はアルキルスルホ二ル ォキシ基を表す。 Rおよび Xは同一であっても良く、 複数存在しても 良い。
A rは芳香族単環、 多環、 或いは縮合環、 又は環集合構造である芳 香族基、 又は複素環基を表わす。
即ち、 化学式 ( 1 ) で表わされる基質として、 置換基を有すること のある芳香族、 又は複素環を有する炭化水素、 ハロゲン化炭化水素、 カルボン酸、 二ト リル、 アルコール等が該当する。 よ り具体的には、 ベンゼン、 フル才□ベンゼン、 ク d πベンゼン、 プ、 πモべンゼン、 ベ ンゾニト リル、 フタロニト リル、 イソフタロニト リル、 トルェン、 キ シレン、 キュメ ン、 ビフエ二ル、 ナフタレン、 アン トラセン、 メチル ナフタレン、 ジメチルナフタレン、 メチル安息香酸、 ジメチル安息香 酸、 ビフエ二ルカルボン酸、 ビフエニルジカルボン酸、 ナフタ レン力 ルボン酸、 ナフタレンジ力ルボン酸等が挙げられる。
また、 基質の分子構造の一部に、 シクロへキセンゃチオフヱンの様 に不飽和二重結合が含まれていても良く、 不飽和三重結合が含まれる ことがあっても良い。 当然ながら、 これらの具体例のみに本発明を限 定するものでは無い。
本発明のヨウ素化合物の製造方法おいて基質と共に細孔径が 5 0 0 n m以下の多孔質化合物が用いられる。 この多孔質化合物は、 所謂、 規則的な細孔構造を持つマイ ク口ポーラス化合物、 メ ソボーラス化合 物およびマクロポーラス化合物の中、 細孔径がナノメートルオーダ一 のものである。
このような構造体として、 従来からよく知られているマイ クロボ一 ラス化合物であるゼォライ 卜がある。 具体例を挙げると、 I U P A C の構造コ一ドで、 8員環構造の A B W、 A E I 、 A F X、 A P C、 A T N、 A T T、 AT V. AWW、 C HA、 D D R. E A B、 E R I、 G I S J BW、 K F I、 L E V. L TA、 M E R、 M O N、 P A U 、 P H I、 R H O、 R T E、 R T H、 V N 9員環構造の C H I 、 L O V、 R S N、 V S V、 1 0員環構造の D A C、 E P I、 F E R、 L A U、 M E L . M F I、 M F S、 M T T、 N E S、 T O N. WE I 、 1 2員環構造の A F S、 A F Y、 AT〇、 C A . GM E、 MA Z 、 M E I 、 M TW、 O F F . R O N . V E T等があり、 よ り詳しく は 、 C h a b a z i t e、 ゼォライ ト A、 X、 Y, L、 モルデナィ ト、 型ゼォライ 卜が挙げられるが細孔径が 0 . 5 n m〜 2 n mのものが 好ましく、 3型ゼォライ 卜が特に好ましい。
β型ゼォライ トは、 骨格を構成する A 1原子に対する S i原子の比 が 5以上のものが好ましく、 特に 1 0から 3 0のものが好ましい。 A 1原子に対する S i原子の比が 3 0を超えるものであっても問題なく 用いることが出来る。 また骨格原子を他の原子で置換したもの、 或い はイオン交換や含浸等の手段によって骨格原子以外の原子、 例えば N a、 K、 C s、 C a、 M g、 T i 、 S n、 F e、 N i 、 Z n、 P d 、 A g等を含むものも好適に用いられる。
基質のサイズによっては、 更に細孔径の大きな細孔径 2 nmを超え るメ ソポーラス化合物を用いることが好ましい。 例えば、 F S M_ 1 6、 K SW— 1、 K SW— 2等のメ ソポ一ラスシリカ、 M S 4 1 Sと 総称される M C M— 4 1、 M C M- 4 8、 MC M— 5 0、 メソポーラ スアルミナ、 メ ソボーラスチタニア、 メ ソポーラス有機シリカハイブ リ ッ ド等が例示される。
本発明のョゥ素化合物の製造方法おいて、 酸化剤はヨウ素の反応性 を高める目的で用いる。 酸化剤と して好ましいのはヨウ素酸、 過ヨウ 素酸、 硝酸、 或いは過硫酸、 過硫酸ナ ト リ ウム、 過硫酸力 リ ゥム、 お よび過硫酸ァンモニゥム等の過硫酸塩類、 および過酸化水素からなる 酸素酸塩類、 並びに分子状酸素等であるが、 ヨウ素酸又は過ヨウ素酸 が特に好ましい。 これらの中で取り分け、 iS型ゼオライ トとヨウ素酸 又は過ョゥ素酸からなる系、 および必要に応じてこれらに硫酸又は硝 酸等の鉱酸を加えた系で基質をヨウ素化することが好ましい。
ヨウ素化反応は、 回分式、 半回分式、 或いは連続式での実施が可能 であって、 液相、 又は気相何れの方式でも実施できる。 しかし、 ォキ ショウ素化以外のヨウ素化は、 通常、 液相で反応を行なう ことが反応 器の効率的な利用の点から好ましい。
ョゥ素化反応に用いるヨウ素の使用量は、 対象となる基質 1 モルに 対して 0. 5モル以上用いることが好ましいが、 過剰、 或いは化学量 論的に不足のまま反応させても良い。
規則的な細孔構造を持つ多孔質化合物である、 ゼォライ ト等のマイ クロポーラス化合物ゃメ ソポーラス化合物の使用量は、 基質 1重量部 に対して 0 . 0 5から 0 . 5重量部の範囲が好ましい。 しかし、 0 . 5重量部以上用いても、 経済性を除いて特に支障は無い。
酸化剤は基質に対して 0 . 0 1 から 1 モルの範囲で用いることが好 ましく、 特に 0 . 1 から 0 . 5モルの範囲が好ましい。 酸化剤として 好ましいヨウ素酸、 過ョゥ素酸と共に基質の転化率を改善する目的で 鉱酸を併用することが出来る。 鉱酸の使用量が増加すると反応の選択 性が低下するので過剰に用いることは好ましくない。 硫酸、 硝酸等の 鉱酸をヨウ素酸、 過ヨウ素酸と共に用いる場合、 基質に対して 1 0重 量%以下であることが好ましく、 特に 1から 2重量%が好ましい。
ョゥ素化反応を進行させる上で溶媒は必ずしも用いる必要は無いが 、 反応成績、 攪拌効果、 温度上昇の抑制等のために溶媒を用いること が好ましい。 好ましい溶媒としては、 本ヨウ素化反応に対して不活性 な脂肪族炭化水素、 芳香族炭化水素、 ハロゲン化炭化水素、 芳香族ハ ロゲン化炭化水素、 ニト リル、 エーテル類、 カルボン酸類、 或いは水 等であり、 適宜これらから選択して用いることができる。 酸化剤とし てヨウ素酸又は過ヨウ素酸を用いた場合、 特に好ましい溶媒は酢酸で ある。 通常、 溶媒は基質に対して 2から 1 0倍容量を用いるが、 溶媒 の使用量はこの範囲外であつても支障は無い。
本発明のヨウ素化合物の製造方法は、 基質、 ヨウ素、 酸化剤等の原 料や規則的な多孔質化合物であるゼォライ ト触媒は一括して仕込みを 行なって反応を実施することが出来るが、 基質、 ヨウ素、 酸化剤等の 原料は分割、 或いは逐次的に添加しても良い。 反応温度は、 液相反応 の場合、 通常 2 5 0 °C以下が好ましく、 8 0から 2 0 0 °Cが特に好ま しい。 気相反応の場合、 2 0 0から 4 0 0 °Cの温度範囲が好ましい。 ヨウ素化反応が終了した後、 濾過、 溶媒除去、 或いは晶析する等の 通常の分離 ·精製操作を施して目的精製物を得ることができる。
本発明に於いて、 基質として 2—メチル安息香酸を用いて、 医薬、 電子材料、 機能材料等の用途に有用な高純度 5—ョードー 2—メチル 安息香酸を製造する場合には、 ヨウ素化反応工程に、 水添加又は冷却 により生成物を析出させる工程、, 水と 2—プロパノール等の有機溶媒 を用いた再結晶による精製工程を組合せることによって、 効率よく製 造することができる。
5 —ョ一ドー 2 —メチル安息香酸の原料として使用する基質の 2— メチル安息香酸は工業的に入手可能なものであれば特に制限は無いが 、 最終製品の純度を高めるためには純度 9 8 %以上のものを使用する のが好ましい。
高純度 5 —ョード— 2 —メチル安息香酸を製造する際のヨウ素化反 応工程は、 上記のヨウ素化合物の製造方法が用いられるが、 多孔質化 合物としては前述のマイクロポーラス化合物、 特に 3型ゼォライ 卜が 好ましい。
2—メチル安息香酸のョゥ素化反応を行う際には、 マイクロポーラ ス化合物の存在下、 ヨウ素と共に、 ヨウ素酸および/又は過ヨウ素酸 を共存させて行う。 ヨウ素のみでもヨウ素化反応は進行するが、 2— メチル安息香酸の様な電子吸引基を持つ化合物は反応性が低いため、 ョゥ素酸および/又は過ヨウ素酸を共存させることで反応性を高める 必要がある。 また、 硫酸、 硝酸等の鉱酸を適宜加えることで更に反応 性を上げることができる。
このヨウ素化反応工程において、 ヨウ素、 ヨウ素酸、 過ヨウ素酸は いずれも常温で固体であるが、 反応に供する際には固体のままで良く 、 また適当な溶媒を用いてこれらを溶解あるいは懸濁させて使用して も良い。
ヨウ素化反応を実施するに際しては、 回分方式、 半回分方式、 完全 混合流通方式、 固定床流通方式等、 種々の反応方式が採用できる。 反 応方式は製品の生産規模によつて選択すれば良く、 少量生産の場合に は回分方式が適当であり、 また、 大量生産を行う場合には完全混合流 通方式や固定床流通方式等で反応を連続的に実施するのがより効率的 な生産方法である。
2ーメチル安息香酸のヨウ素化反応における反応温度は、 5 0〜 2
0 0 t . 好ましくは 7 0〜 1 5 0での範囲である。 これより低い場合 にも反応は進行するが充分な反応速度が得られず、 これより温度が高 い場合には高沸物の生成等の副反応が多くなり好ましくない。 反応圧 力は、 絶対圧で 0 . 0 5〜 2 0気圧、 好ましく は 0 . 1 〜 1 0気圧の 範囲である。
2—メチル安息香酸の融点は 1 0 5 °Cであり、 融点以上の温度で反 応を行う場合には必ずしも反応溶媒を必要としないが、 通常、 ヨウ素 化に不活性な有機溶媒を使用するのが好ましく、 酢酸、 ト リフルォロ 酢酸、 ジクロロメ タン、 四塩化炭素、 ジクロロベンゼン、 クロ口ベン ゼン等が用いられる。 溶媒の使用量は 2—メチル安息香酸 1重量部に 対して 0 . 5〜 1 0 0重量部での使用が好ましく、 更に好ましくは 1 〜 5 0重量部の範囲である。
2ーメチル安息香酸のヨウ素化反応におけるヨウ素の使用量には特 に制限は無いが、 2 _メチル安息香酸の転化率を高めるためには、 2 -メチル安息香酸 1 モルに対して 0 . 5モル以上、 好ましくは 1 モル 以上である。 ヨウ素酸および/又は過ヨウ素酸の使用量は、 ヨウ素 1 モルに対して 0 . 0 1 ~ 1 モルでの使用が好ましく、 更に好ましく は 0 . 0 5〜 0 . 5モルの範囲である。
マイク口ポーラス化合物の使用量は原料の 2—メチル安息香酸 1重 量部に対して 0 . 0 5重量部以上、 好ましくは 0 . 1重量部以上であ る。 マイクロポーラス化合物の使用量がこれより少ない場合には充分 な反応活性が得られず、 5—ョードー 2 —メチル安息香酸を高選択的 に得ることができない。 マイクロボ一ラス化合物を懸濁させて反応を 行う場合には、 反応後の反応液とマイク口ポーラス化合物の分離は沈 降、 遠心分離、 濾過等の一般的な方法で容易に行うことができる。 分 離されたマイクロポーラス化合物は反応系に循環してもよく、 その際 、 空気中での燃焼による付着有機物の除去や適当な溶媒による洗浄等 の必要な処理を行った後に循環してもよい。
2ーメチル安息香酸のヨウ素化反応において、 上記の反応系に硫酸 等の鉱酸を添加することで、 より反応を促進することもできる。 この 際、 添加する鉱酸の量としては 2—メチル安息香酸 1重量部に対して 0 . 0 0 5 〜 0 . 0 5重量部が適当である。 鉱酸の添加量がこの範囲 より も少ない場合には反応促進効果がほとんどなく、 多い場合には副 反応が起こりやすくなり、 目的とする 5 —ョードー 2—メチル安息香 酸への選択率を損なうため好ましくない。
2 一メチル安息香酸のヨウ素化反応を実施するに当っては、 回分方 式、 半回分方式、 完全混合流通方式等の反応方式が採用されるが、 通 常、 回分方式、 半回分方式での反応時間又は完全混合流通方式での滞 留時間としては 1 〜 2 0時間が採用される。 固定床流通方式の場合に は、 通常、 2—メチル安息香酸の L H S V (液空間速度) として、 0 . 0 5 - 1 h—1が採用される。
本発明による高純度 5 —ョードー 2 —メチル安息香酸の製造方法は 、 上記のヨウ素化反応工程、 水添加又は冷却により生成物を析出、 分 離させる結晶析出 · 分離工程、 および有機溶媒を用いて分離した結晶 を再結晶する精製工程からなるものである。 すなわち上記方法によつ て反応を行った後、 生成液への水添加又は生成液の冷却により 5 —ョ 一ドー 2—メチル安息香酸を単離することができ、 更に単離した結晶 の再結晶による精製操作を行うことで高純度 5—ョードー 2 —メチル 安息香酸を得ることができる。
結晶回収工程では反応生成液 1重量部に対して 1 〜 1 0重量部の水 を添加して 5 —ョードー 2—メチル安息香酸の結晶を析出させ、 濾過 により回収する。 水を添加した際にョゥ素結晶が析出して 5—ョ一ド 一 2 一メチル安息香酸に混じることがあるが、 亜硫酸ナト リゥム又は チォ硫酸ナト リムを予め反応生成液に添加しておく ことで、 ヨウ素の 析出を防ぐことができる。 亜硫酸ナト リ ウム又はチォ硫酸ナト リ ウム の添加量は反応に使用したヨウ素 1重量部に対し、 0 . 0 5重量部以 下で充分である。 結晶の回収は、 水添加による方法の他に、 反応生成 液を 9 0 t以下に冷却することによつても行うことができる。 9 0 °C 以下に冷却後、 析出した結晶を濾過により回収する。
回収した結晶の精製は有機溶媒を用いて再結晶することで行う。 再 結晶に使用する有機溶媒は 5—ョード _ 2 —メチル安息香酸を溶解す るものであれば何でも良いが、 酢酸、 酢酸一水混合溶媒、 2—プロパ ノール、 2—プロパノール一水混合溶媒等の使用が好適である。 溶媒 の使用量は回収結晶 1重量部に対して 1 〜 3 0重量部、 好ましくは 5 〜 2 0重量部が適当である。 再結晶操作は回収結晶とこれらの溶媒と を 4 0 °C以上で加熱 ·混合して完全に溶解させた後、 冷却して結晶を 析出させることにより行う。 冷却温度は加熱 ·混合時に結晶が完全に 溶解した時の温度よりも 2 0 °C以上低い温度に設定する。 析出した結 晶を濾過により回収し、 乾燥後製品とする。
以上の方法により得られる 5 —ョード一 2—メチル安息香酸は、 純 度が 9 9 %以上で、 不純物として含まれるヨウ素、 ヨウ素化合物、 無 機塩および遷移金属化合物の総量が 5 0 0 p p m以下と極めて高純度 なものとすることができる。
なお、 本発明のヨウ素化合物の製造方法においては、 種々の基質に 対して高い選択性をもつてヨウ素を導入することができ 2—メチル安 息香酸以外の他の基質の場合でも、 ほぼ同様の操作による不純物の少 ないヨウ素化合物を得ることができる。
次に、 実施例によって本発明を更に具体的に説明する。 但し本発明 は以下の実施例により何ら制限されるものではない。
A . 芳香族カルボン酸のヨウ素化
実施例 1 ( 1 一メチル安息香酸) 還流冷却器と攪拌器を装備した 2 0 O mLの三口フラスコに、 酢酸 ( 1 0 0 g ) 、 H— /3ゼォライ ト ( 4. 6 g ) 、 ヨウ素 ( 2 0. 2 g 、 0. 1 6 m 0 1 ) . 2—メチル安息香酸 ( 2 0 g、 0. 1 5 m o 1 ) 、 過ョゥ素酸二水和物 ( 7. 3 g、 0. 0 3 m 0 1 ) 、 硫酸 ( 0. 2 4 g ) を仕込み、 室温で充分に混合 ·攪拌した。 マン トルヒ一夕一 を用いて液温を 1 1 0でに昇温した後、 1時間反応を行い、 更に酢酸 還流温度 (約 1 1 8 °C ) で 5時間反応を行なった。
反応終了後、 反応液を濾過して H— Sゼォライ トを回収し、 濾液に 1 0重量%亜硫酸ナト リ ゥム水溶液 ( 1 0 0 mL ) を加え残留するョ ゥ素を処理した。 次いで、 水 ( 8 0 0 g ) を添加して結晶を析出させ た後、 濾別して回収した。
得られた結晶、 および濾液を H P L C (高速液体クロマトグラフ) で分析して反応成績を調べた結果、 2—メチル安息香酸の転化率は 8 8 %であり、 生成物の収率は 5—ョ一ドー 2—メチル安息香酸 7 2 % 、 3 _ョード _ 2—メチルー安息香酸 6 %で、 位置異性体である 5 - ョード体 / 3 _ョード体の生成比は 1 2であった。 比較例 1
( 2—メチル安息香酸: H— iSゼォライ トを用いなかった場合) 実施例 1 において H— 3ゼォライ トを用いなかった以外は実施例 1 と同様とした。 1—メチル安息香酸の転化率は 9 8 %であり、 収率は
5—ョー ドー 2—メチル安息香酸 6 6 %、 3—ョードー 2—メチル一 安息香酸 2 5 %で、 位置異性体である 5—ョ一ド体/ 3ーョード体の 生成比は 2. 6であった。 実施例 2 ( 3一メチル安息香酸)
実施例 1 において、 原料として 3—メチル安息香酸 ( 2 0 g、 0. 1 5 m 0 1 ) を用いた以外は実施例 1 と同様とした。 3—メチル安息 香酸の転化率は 5 0 %であり、 収率は① 6 —ョ一ドー 3 —メチル安息 香酸 4 0 %、 ②他のヨウ化物の位置異性体収率 8 %で、 ① /②の生成 比は 5であった。 比較例
( 3—メチル安息香酸: H— iSゼォライ トを用いなかった場合) 実施例 1において H— ゼォライ トを用いなかった以外は実施例 2 と同様とした。 3—メチル安息香酸の転化率は 5 6 %であり、 収率は ① 6—ョードー 3—メチル安息香酸 3 3 %、 ②他のヨウ化物の位置異 性体収率 1 6 %で、 ① /②の生成比は 2 . 1であつた。 実施例 3 ( 2、 4 ージメチル安息香酸)
実施例 1 において、 原料として 2, 4 ージメチル安息香酸 ( 2 2 .
5 g、 0 . 1 5 m 0 1 ) を用いた以外は実施例 1 同様とした。 2, 4 ージメチル安息香酸の転化率は 9 8 %であり、 収率は① 5—ョードー
2、 4 一メチル安息香酸 8 8 %、 ②他のヨウ化物の位置異性体 7 %で 、 ① /②の生成比は 1 2 . 6であった。 比較例 3 ( 2, 4ージメチル安息香酸: H _ iSゼォライ トを用いなか つた場合)
実施例 3において、 H— iSゼォライ トを用いなかった以外は実施例 3 と同様とした。 2, 4—ジメチル安息香酸の転化率は 9 6 %であり 、 収率は① 5—ョードー 2、 4ージメチル安息香酸 8 1 %、 ②他のョ ゥ化物の位置異性体 8 %で、 ① /②の生成比は 1 0であった。
B . 芳香族炭化水素のヨウ素化
実施例 4 ( トルエン)
実施例 1 において、 原料としてトルエン ( 1 3 . 8 g、 0 . 1 5 m o 1 ) を用いた以外は実施例 1 と同様とした。 トルエンの転化率は 9 8 %であり、 収率は① 4 一ョード トルエン 8 2 ②他のヨウ化物の 位置異性体 9 %で、 ① /②の生成比は 9 . 1であつた。 比較例 4 ( トルエン : H— iSゼォライ トを用いなかった場合)
実施例 4において H— 3ゼォライ トを用いなつた以外は実施例 4同 様とした。 トルェンの転化率は 1 0 0 %であり、 収率は① 4 一ョ一ド トルェン 5 6 %、 ②他のヨウ化物の位置異性体 3 9 %で、 ① /②の生 成比は 1 . 4であった。 実施例 5 ( 0—キシレン)
実施例 1 に於いて、 原料として 0 —キシレン ( 1 5 . 9 g、 0 . 1 5 m 0 1 ) を用いた以外は実施例 1 と同様とした。 0—キシレンの転 化率は 9 9 %'であり、 収率は① 4 一ョード _ 1 , 2 _ジメチルペンゼ ン 9 2 %、 ②他のヨウ化物の位置異性体 6 %で、 ① Z②の生成比は 1 5であった。 比較例 5 ( o —キシレン : H—) 8ゼォライ トを用いなかった場合) 実施例 5に於いて、 H— ゼォライ トを用いなつた以外は実施例 5 と同様とした。 0—キシレンの転化率は 1 0 0 %であり、 収率は① 4 —ョ一ドー 1 , 2—ジメチルベンゼン 7 8 %、 ②他のヨウ化物の位置 異性体 1 6 %で、 ① /②の生成比は 4 . 9であつた。 実施例 6 (ビフニニル)
実施例 1 に於いて、 原料としてビフヱニル ( 2 3 . l g、 0 . 1 5 m 0 1 ) を用いた以外は実施例 1 と同様とした。 ビフエニルの転化率 は 9 9 %であり、 収率は① 4 ーョ一ドビフヱニル 9 2 %、 ②他のヨウ 化物の位置異性体 5 Q/oで、 ① /②の生成比は 1 8 . 4であった。 C . 芳香族ハロゲン化炭化水素のヨウ素化
実施例 7 (フルォ口べンゼン)
実施例 1 に於いて、 原料としてフルォロベンゼン ( 1 4 . 4 g、 0 - 1 5 m 0 1 ) を用いた以外は実施例 1 と同様とした。 フルォロベン ゼンの転化率は 6 5 %であり、 収率は① 4—ョ一ドフルォロベンゼン 5 2 %、 ②他のヨウ化物の位置異性体 3 %で、 ① /②の生成比は 1 Ί . 3であった。 比較例 6
(フルォロベンゼン : H _ ゼォライ トを用いなかった場合) 実施例 7に於いて、 H— 3ゼォライ トを用いなかった以外は実施例 7同様とした。 フルォロベンゼンの転化率は 6 3 %であり、 収率は①
4 _ョ一ドフルォロベンゼン 4 2 %、 ②他のヨウ化物の位置異性体 6 %で、 ① /②の生成比は 7であつた。
D . 二ト リルのョゥ素化
実施例 8 ( 2 —メチルシアノベンゼン)
実施例 1 に於いて、 原料として 2 —メチルシアノベンゼン ( 1 5 .
5 g、 0 . 1 5 m 0 1 ) を用いた以外は実施例 1 と同様とした。 2— メチルシアノベンゼンの転化率は 8 2 %であり、 収率は① 5 —ョ一ド 一 2 —メチルシアノベンゼン 6 9 %、 ② 3 —ョード _ 2—メチルシア ノベンゼン 6 %で、 ① /②の生成比は 1 1 · 5であつた。 比較例 7 ( 2—メチルシアノベンゼン : H — βゼォライ 卜を用いなか つた場合)
実施例 8に於いて、 Η— )3ゼォライ トを用いなつた以外は実施例 8 と同様とした。 2 —メチルシアノベンゼンの転化率は 9 2 %であり、 収率は① 5—ョードー 2 —メチルシアノベンゼン収率 6 1 o/o、 ② 3 — ョ一ド _ 2—メチルシアノベンゼン収率 1 4 %で、 ① /②の生成比は 2. 5であった。
E . 過ヨウ素酸以外の酸化剤を用いた場合のヨウ素化
実施例 9 (ヨウ素酸による酸化)
実施例 1 に於いて、 酸化剤として過ヨウ素酸に変えてヨウ素酸 ( 5 . 3 g、 0. 0 3 m 0 1 ) を用いた以外は実施例 1 と同様とした。 2 ーメチル安息香酸の転化率は 7 8 %であり、 収率は① 5 _ョ一ド— 2 一メチル安息香酸 6 9 %、 ②他のヨウ化物の位置異性体 3 %で、 ① / ②の生成比は 3であった。 比較例 8
(ョゥ素酸による酸化 : H— /3ゼォライ トを用いなかった場合) 実施例 9に於いて、 H— 3ゼォライ トを用いなかった以外は実施例 9 と同様とした。 1ーメチル安息香酸の転化率は 7 9 %であり、 収率 は① 5—ョードー 2—メチル安息香酸 5 3 %、 ②他のョゥ化物の位置 異性体 2 3 %で、 ① /②の生成比は 2. 3であった。 実施例 1 0 (過硫酸ナ ト リ ウムによる酸化)
実施例 1 と同じ装置を用いて、 酢酸 ( 9 0 g ) 、 水 ( 1 0 g ) 、 H 一 Sゼォライ ト ( 2. 3 g ) 、 ヨウ素 ( 1 0. 3 g、 0. 0 8 m 0 1 ) 、 2—メチル安息香酸 ( 1 0 g、 0. 0 7 4 m o l ) 、 過硫酸ナト リ ゥム ( 1 1 . 8 §、 0 . 0 51110 1 ) 、 硫酸 ( 0 . 1 2 g ) を仕込 んだ。 室温で充分に混合 ·攪拌した後、 液温を 9 0 °Cまで昇温した後 、 5時間反応を行なった。 更に、 1 1 0 °Cで 8時間反応を行なった後 、 反応を終了し、 濾過によって H— βゼォライ トを分離し、 残留する ヨウ素を 1 0重量%亜硫酸ナト リ ウム水溶液で処理した。 次いで、 8 0 0 m Lの水を添加して、 析出した結晶を濾別した。
2 一メチル安息香酸の転化率は 8 6 Q/ύであり、 収率は① 5 —ョード 一 2 —メチル安息香酸 6 4 %、 ② 3—ョードー 2—メチル安息香酸 1 2 %で、 ① /②の生成比は 5 . 3であつた。
F . H— iSゼォライ ト以外のゼォライ トを用いた場合のョゥ素化 実施例 1 1〜 1 4
実施例 1 に於いて、 H— ゼォライ 卜に代えてマイクロポーラス化 合物であるモルデナイ ト、 Y、 L、 Z S M— 5を、 其々、 用いた以外 は実施例 1 と同様とした。 各ゼオライ トを用いた場合の、 5 _ョード 体/ 3—ョ一ド体の生成比は以下の通りであった。
モルデナィ ト (実施例 1 1 )
ゼォライ ト Y (実施例 1 2 )
ゼォライ ト L (実施例 1 3 )
Z S M - 5 (実施例 1 4 )
なお、 H— ゼォライ トの場合 (実施例 1 ) の 5 _ョード体 / 3— ョ一ド体の生成比は 1 2、 ゼォライ トを用いない場合 (比較例 1 ) は 2 . 6であり、 H— iSゼォライ ト以外のゼォライ トを用いた場合でも 選択率が高いことが分かる。
G . 高純度 5—ョードー 2—メチル安息香酸の製造
実施例 1 5
実施例 1 に於いて硫酸を使用せず、 過ヨウ素酸に代えて、 ヨウ素酸 8 . 8 g、 を用い、 酢酸の還流温度 ( 1 1 5で) で 3時間反応させた 以外は同様に行った。
反応成績は以下の通りであった。
2 一メチル安息香酸の転化率 7 0 %
5ーョードー 2 _メチル安息香酸の収率 6 5 % 3 ーョ—ド— 2 —メチル安息香酸の収率 2 %
5—ョード体 / 3 —ョード体の生成比 = 3 3
結晶中の 5—ョード _ 2—メチル安息香酸の純度 9 7 % 上記の 5—ョ一ドー 2—メチル安息香酸の純度 9 7 Q/oの結晶を、 水: 2 _プロパノール = 1 : 1 (重量比) の溶媒を用いて再結晶させ て得られた 5—ョード一 2—メチル安息香酸純度は 9 9 %以上であつ た。
また、 上記の 5—ョードー 2—メチル安息香酸再結晶品の遊離ヨウ 素は 4 p p mであった。 この結晶の I C F全元素分析をした結果、 L i 、 N a、 K、 M g、 C a、 S r、 B a、 S c、 Y T i 、 Z r、 V、 N b、 C r、 M o、 W、 M n、 F e、 R u、 C o、 R h、 N i 、 P d、 P i:、 C u、 A g、 A u、 Z n、 C d、 A l 、 I n、 S i 、 S n、 P b、 P、 S b、 Sは検出されず、 周期律表第 1族、 および第 2族の元素は何れも 1 p p m以下であった。 実施例 1 6
冷却還流管を備えた 1 0 0 mL三つ口フラスコに酢酸 5 0 g、 1 — メチル安息香酸 1 0 g、 ヨウ素 1 0. 4 g、 過ョゥ素酸 3 . 7 g、 H 一 i3ゼォライ ト 2. 2 §、 硫酸 0. 1 2 gを仕込み、 酢酸の還流温度 ( 1 1 5 t ) で 6時間反応させた。 反応終了後 H_ 3ゼォライ トを濾 過により分離し、 濾液に 1 0重量%チォ硫酸ナト リ ゥム水溶液 2 0 g と水 2 5 0 mLを加えて室温まで冷却した。 析出した結晶を濾過によ つて回収して生成物 1 5 g (乾燥後重量) を得た。 回収結晶および母 液を H P L C (高速液体クロマトグラフ) により分析した結果、 以下 の反応成績が得られた。
2 一メチル安息香酸の転化率 8 5 % 5 _ョード _ 2—メチル安息香酸の収率 7 00/6
3 _ョード _ 2—メチル安息香酸の収率 7 % 5 _ョード体 / 3 —ョード体の生成比 = 1 0
結晶中の 5 —ョ一ドー 2 —メチル安息香酸の純度 実施例 1 7
過ヨウ素酸の代わりにヨウ素酸 4 . 3 gを使用する以外は実施例 1 6 と同様な方法により回収生成物 1 3 gを得た。 分析の結果、 以下の 反応成績が得られた。
2 —メチル安息香酸の転化率 8 0 % 5—ョードー 2 _メ チル安息香酸の収率 7 2 %
3 _ョード _ 2 —メチル安息香酸の収率 3 % 5 —ョード体/ 3 —ョード体の生成比 = 2 4
結晶中の 5 —ョードー 2—メチル安息香酸の純度 9 5 % 実施例 1 8 (冷却晶析)
酢酸を 4 0 gとする以外は実施例 1 6 と同様の条件で反応させ、 H 一 ゼォライ トを分離した後、 濾液を室温まで冷却した。 析出した結 晶を濾過により回収し、 生成物 1 0 gを得た。 分析の結果、 以下の反 応成績が得られた。
2 一メチル安息香酸の転化率 8 8 %
5 —ョードー 2 —メチル安息香酸の収率 7 2 %
3—ョ一ドー 2 —メチル安息香酸の収率 8 %
5 —ョ一ド体/ 3 —ョ一ド体の生成比 = 9
結晶中の 5—ョ一ドー 2 —メチル安息香酸の純度 9 5 % 比較例 9 (一塩化ヨウ素 ( I C 1 ) 法)
還流冷却管を備えた 1 0 O m L三つ口フラスコに 3
5 m L、 2 —メチル安息香酸 1 . 3 6 g ( 1 0 m m o
、 酢酸 5 gに溶解した一塩化ヨウ素 2 . 4 g ( 1 5 m 分かけて滴下した。 9 0 °Cで 5時間反応を行い、 水 9 0 m Lの中へ注 いだ。 沈殿物を濾過し、 亜硫酸ナト リウム水溶液で洗浄し、 反応生成 物として結晶性固体を得た (収量 1 . 6 g ) 。 この固体を分析したと ころ、 生成物の分布は以下の割合であった。
2 一メチル安息香酸
5 _クロ口一 2 —メチル安息香酸
3 —クロ口一 2 —メチル安息香酸
5 —ョード一 2 —メチル安息香酸
3 _ョード一 2 —メチル安息香酸
その他
この混合物を酢酸、 或いはィソプロピルアルコール等を用いて再結 晶による精製を行い、 5 —ョードー 2 —メチル安息香酸の単離を試み た。 しかし、 混合物純度は殆ど向上せず、 5—ョ一ドー 2 —メチル安 息香酸の取得は困難であった。 比較例 1 0 ( N a I — N a I 0 4 /硫酸法)
実施例 1 6 と同じ装置を用いて、 酢酸 9 m Lに 2—メチル安息香酸 1 . 3 6 gを溶解した。 液の温度を 8 5 °Cに保って濃硫酸 1 1 m Lを 2 5分かけて滴下した。 更に、 過ョゥ素酸ナト リ ウム 0 . 6 gを加え た後、 ヨウ化ナト リウム 1 . 1 gを酢酸 5 m Lに溶解したものを 1 0 分かけて滴下した。 その後、 2時間反応を行い、 冷却後 9 O m Lの水 の中に注いで泥状の混合液を濾過し、 亜硫酸ナト リ ウム 1 gを加えて 未反応のヨウ素を除いた。 乾燥後、 得られた生成物の分析結果は以下 の通りであった。
2 —メチル安息香酸 3 5 %
5—ョ一ド一 2 —メチル安息香酸 3 7 %
3 —ョ一ドー 2 —メチル安息香酸 1 8 % その他 5 % この混合物から比較例 1 1 と同様に 5 —ョード _ 2 —メチル安息香 酸の取得を試みたが純度は殆ど向上せず、 5—ョードー 2—メチル安 息香酸の取得は困難であった。 比較例 1 1 (ゼオライ ト無し)
H _ )8ゼォライ トを使用しない以外は実施例 1 6 と同様な方法で行 い、 生成物 1 5 gを得た。 分析の結果、 以下の反応成績が得られた。
2 —メチル安息香酸の転化率 8 5 %
5 —ョード _ 2 —メチル安息香酸の収率 5 6 %
3—ョ一ドー 2 —メチル安息香酸の収率 2 0 %
5 —ョード体 / 3 —ョード体の生成比 = 2 . 8
結晶中の 5—ョードー 2 —メチル安息香酸の純度 8 0 % 比較例 1 2 (酸化剤無し)
過ヨウ素酸を使用しない以外は実施例 1 6 と同様な方法で行い、 生 成物 0 . 8 gを得た。 分析の結果、 以下の反応成績が得られた。
2—メチル安息香酸の転化率 5 %
5—ョ一ドー 2 —メチル安息香酸の収率 3 % 3—ョードー 2 —メチル安息香酸の収率 0 . 9 %
5—ョード体 / 3 _ョ一ド体の生成比 = 3 . 3
結晶中の 5—ョードー 2 —メチル安息香酸の純度 Ί 5 % 実施例 1 9 (結晶精製/ 水一 I P A )
実施例 1 6で得られた 5 —ョードー 2 —メチル安息香酸の純度 9 5 %の結晶 1 5 gを水: 2—プロパノール = 1 : 1 (重量比) の溶媒 1 1 0 gに 7 0 °Cで溶解し、 室温で一晚放冷した。 濾過により析出した 結晶 1 0 gを回収し、 H P L Cにより分析した結果、 5—ョードー 2 一メチル安息香酸の純度は 9 9 %であった。 上記で得られた純度 9 9 %の結晶 1 gをメタノール 2 5 mLに溶解 し、 4 %K I水溶液 2 5 mL、 1 7 %硫酸 5 mLを加えた後、 0. 0 2 Mチォ硫酸ナト リ ゥム水溶液で滴定した結果、 遊離ヨウ素は 5 p p mであった。 また I C P全元素分析によれば、 L i 、 N a、 K、 M g 、 C a、 S r、 B a、 S c、 Y、 T i 、 Z r、 V、 N b、 C r、 M o 、 W、 M n、 F e、 R u、 C o、 R h、 N i、 P d、 P t、 C u、 A g、 Au、 Z n、 C d、 A l 、 I n、 S i 、 S n、 P b、 P、 S b、 Sは検出されず、 周期律表第 1族、 および第 2族の元素は何れも 1 p p m以 fでめつ 7こ。 実施例 2 0 (結晶精製/酢酸)
実施例 1 8で得られた 5—ョードー 2—メチル安息香酸純度 9 5 % の結晶 1 0 gを酢酸 2 1 0 gに 7 0 °Cで溶解し室温で一晩放冷した。 濾過により析出した結晶 6 gを回収し、 H P L Cにより分析した結果 、 5—ョ一ドー 2—メチル安息香酸純度は 9 9 %であつた。
上記で得られた純度 9 9 %の結晶 1 gを実施例 1 9 と同様な方法で 分析した結果、 遊離ヨウ素は 1 0 p p mであった。 また I C P全元素 分析によれば、 L i 、 N a、 K、 M g、 C a、 S r、 B a、 S c、 Y 、 T i 、 Z r、 V、 N b、 C r、 M o、 W、 M n、 F e、 R u , C o , R h、 N i 、 P d、 P i:、 C u、 A g、 Au、 Z n、 C d、 A l 、 I n、 S i、 S n、 P b、 P、 S b、 Sは検出されず、 周期律表第 1 族、 および第 2族の元素は何れも 1 p p m以下であった。 産業上の利用可能性
本発明のョゥ素化合物の製造方法によれば種々の基質に対して高い 選択性をもってヨウ素を導入することができる。 また、 高価な金属や 特殊な試薬を用いる必要が無いので、 工業的に実施することが容易で あり、 高純度の製品を得ることが出来る。 また、 本発明のヨウ素化反応、 分離、 精製工程からなる方法により
、 医薬品等の機能化学品用途に於いて有用な 5—ョ一ドー 2 _メチル 安息香酸を、 高純度、 高収率、 かつ容易に得ることができる。 この製 造方法に於ける、 ヨウ素化反応、 分離、 精製からなる工程はプロセス 的に簡便であり、 精製負荷が小さい等の特長を有しており、 工業的に 実施する上で非常に有利である。

Claims

1 . ヨウ素と基質を、 細孔径が 5 0 0 n m以下の多孔質化合物の存在 下、 又は該多孔質化合物と酸化剤の存在下に反応させることを特徴と するヨウ素化合物の製造方法。
2 . 多孔質化合物が、 細孔径 0 . 5 n m〜 2 n mのマイクロポーラス 化合物である請求項 1 に記載のヨウ素化合物の製造方法。
3 . 多孔質化合物が 型ゼォライ ト、 又は骨格を構成する S i 、 A 1 、 0以外の元素を含むことのある S型ゼォライ トである請求項 1 に記 載のヨウ素化合物の製造方法。
4 . 多孔質化合物が、 細孔径 2 n mを超えるメソポーラス化合物であ る請求項 1 に記載のヨウ素化合物の製造方法。
5 . 酸化剤が、 ヨウ素酸, 過ヨウ素酸、 過硫酸、 過硫酸塩および硝酸 からなる酸素酸類、 並びに分子状酸素から選ばれる一種以上の化合物 である請求項 1 に記載のヨウ素化合物の製造方法。
6 . 基質が、 下記の化学式 ( 1 ) で表される芳香族炭化水素、 環縮合 芳香族炭化水素、 環集合芳香族炭化水素、 複素環を有する炭化水素、 又はそれらの誘導体から選ばれる一種以上の化合物である請求項 1 に 記載のヨウ素化合物の製造方法。
R - A r - X (1)
(但し、 Rは水素原子、 ハロゲン原子、 置換基を持つことのあるアル キル基、 シクロアルキル基、 又はァリール基を表わす。 A rは芳香族 単環、 多環、 或いは縮合環、 又は環集合構造である芳香族基、 又は複 素環基を表す。 Xは水素原子、 ハロゲン原子、 カルボキシル基、 ホル ミル基、 水酸基、 ニトロ基、 ヒ ドロキシメチル基、 シァノ基、 ァミ ノ 基、 アルキルォキシ基、 アルキルォキシカルボニル基、 ァシル基、 ァ シルォキシ基、 アルキルスルホニル基およびアルキルスルホ二ルォキ シ基から選ばれた官能基を表す。 Rおよび Xは同一であっても良く、 複数存在しても良い) 。
7 . 基質が、 ベンゼン、 フルォロベンゼン、 クロ口ベンゼン、 ブロモ ベンゼン、 ベンゾニト リル、 フタロニト リル、 イ ソフタロニト リル、 トルエン、 キシレン、 キュメ ン、 ビフエニル、 ナフタレン、 アン トラ セン、 メチルナフタ レン、 ジメチルナフタレン、 メチル安息香酸、 ジ メチル安息香酸、 ビフヱ二ルカルボン酸、 ビフエニルジカルボン酸、 ナフタ レンカルボン酸およびナフ夕 レンジカルボン酸から選ばれる一 種以上の化合物である請求項 6に記載のヨウ素化合物の製造方法。
8 . ヨウ素と 2 —メチル安息香酸を、 細孔径 0 . 5 n m〜 2 n mのマ イク口ポーラス化合物および、 ョゥ素酸および/又は過ョゥ素酸の存 在下に反応させる請求項 2に記載のョゥ素化合物の製造方法。
9 . 請求項 8に記載の方法によるヨウ素反応工程、 水添加又は冷却に より生成物を析出、 分離させる結晶析出 · 分離工程および、 有機溶媒 を用いて分離された結晶を再結晶する精製工程を有することを特徴と する高純度 5 —ョードー 2 —メチル安息香酸の製造方法。
1 0 . 再結晶に使用する溶媒が、 酢酸、 酢酸—水混合溶媒、 2 _プロ パノール、 2—プロパノール一水混合溶媒の何れかより選ばれたもの である、 請求項 9に記載の高純度 5—ョ一ドー 2 —メチル安息香酸の 製造方法。
1 1 . 請求項 9に記載の方法により製造され、 純度が 9 9 %以上で、 不純物として含まれるヨウ素、 ヨウ素化合物、 無機塩および遷移金属 化合物の総量が 5 0 0 p p m以下であることを特徴とする高純度 5 — ョードー 2—メチル安息香酸。
PCT/JP2004/001367 2003-02-10 2004-02-10 ヨウ素化合物の製造方法および高純度5-ヨード-2-メチル安息香酸の製造方法 WO2004069772A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/545,005 US7750182B2 (en) 2003-02-10 2004-02-10 Process for production of iodine compounds and process for production of high-purity 5-iodo-2-methylbenzoic acid
EP04709714A EP1595862B1 (en) 2003-02-10 2004-02-10 Process for production of iodine compounds and process for production of high-purity 5-iodo-2-methylbenzoic acid
DE602004030095T DE602004030095D1 (de) 2003-02-10 2004-02-10 Verfahren zur herstellung von iodverbindungen und verfahren zur herstellung von hochreiner 5-iod-2-methylbenzoesäure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003032671A JP4293515B2 (ja) 2003-02-10 2003-02-10 5−ヨード−2−メチル安息香酸の製造方法
JP2003032187A JP4332702B2 (ja) 2003-02-10 2003-02-10 ヨウ素化合物の製造方法
JP2003-032187 2003-02-10
JP2003-032671 2003-02-10

Publications (1)

Publication Number Publication Date
WO2004069772A1 true WO2004069772A1 (ja) 2004-08-19

Family

ID=32852700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001367 WO2004069772A1 (ja) 2003-02-10 2004-02-10 ヨウ素化合物の製造方法および高純度5-ヨード-2-メチル安息香酸の製造方法

Country Status (5)

Country Link
US (1) US7750182B2 (ja)
EP (1) EP1595862B1 (ja)
KR (1) KR101031721B1 (ja)
DE (1) DE602004030095D1 (ja)
WO (1) WO2004069772A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105669357A (zh) * 2016-03-08 2016-06-15 武汉工程大学 一种1,4-二碘苯的绿色制备工艺

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004029787D1 (de) 2003-07-03 2010-12-09 Mitsubishi Gas Chemical Co Verfahren zur herstellung von 5-iodo-2-methylbenzoesäure
JP4726806B2 (ja) 2005-01-06 2011-07-20 日宝化学株式会社 芳香族ヨウ素化合物の製造方法
US8674148B2 (en) 2007-10-23 2014-03-18 Sk Chemicals Co., Ltd. Manufacturing process for iodinated aromatic compounds
JP5307149B2 (ja) * 2007-10-23 2013-10-02 エスケー ケミカルズ カンパニー リミテッド ヨード化芳香族化合物の製造方法
US20110021834A1 (en) * 2009-07-21 2011-01-27 Ge Healthcare As Continuous process of preparing intermediate for non-ionic x-ray contrast agents

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219241A (ja) * 1983-05-30 1984-12-10 Asahi Chem Ind Co Ltd 芳香族化合物のオキシヨウ素化法
JPH01502819A (ja) * 1987-03-25 1989-09-28 イーストマン ケミカル カンパニー 沃素化置換芳香族化合物の製造方法
JPH03503412A (ja) * 1988-03-17 1991-08-01 イーストマン コダック カンパニー ナフタレンの液相オキシヨウ素化方法
JPH08157394A (ja) * 1994-12-06 1996-06-18 Ube Ind Ltd 芳香族ヨード化合物の製造法
JP2003012597A (ja) * 2001-07-02 2003-01-15 Ise Chemicals Corp メチル安息香酸のモノヨード体の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1176856B (it) 1984-10-05 1987-08-18 Montedipe Spa Metodo per la sintesi di iodobenzene
IT1176981B (it) * 1984-10-16 1987-08-26 Montedipe Spa Metodo per la sintesi di iodobenzene
US4746758A (en) * 1986-09-29 1988-05-24 Eastman Kodak Company Processes for preparing iodinated aromatic compounds
JPH0817944B2 (ja) * 1986-12-29 1996-02-28 東ソー株式会社 液相有機反応用ゼオライト触媒成形体
US4792642A (en) * 1987-03-25 1988-12-20 Eastman Kodak Company Process for preparing iodinated aromatic compounds
US4806697A (en) * 1987-03-25 1989-02-21 Eastman Kodak Company Selective liquid phase disproportionation catalysts for iodoaromatics
US4792641A (en) * 1987-03-25 1988-12-20 Eastman Kodak Company Process for preparing iodinated aromatic compounds
US4778939A (en) * 1987-03-25 1988-10-18 Eastman Kodak Company Low temperature oxyiodination of aromatic compounds
US4788355A (en) * 1987-10-16 1988-11-29 Eastman Kodak Company Oxyiodination catalyst
JP3503412B2 (ja) 1997-04-11 2004-03-08 Nok株式会社 磁性流体の製造方法
DE602004029787D1 (de) 2003-07-03 2010-12-09 Mitsubishi Gas Chemical Co Verfahren zur herstellung von 5-iodo-2-methylbenzoesäure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219241A (ja) * 1983-05-30 1984-12-10 Asahi Chem Ind Co Ltd 芳香族化合物のオキシヨウ素化法
JPH01502819A (ja) * 1987-03-25 1989-09-28 イーストマン ケミカル カンパニー 沃素化置換芳香族化合物の製造方法
JPH03503412A (ja) * 1988-03-17 1991-08-01 イーストマン コダック カンパニー ナフタレンの液相オキシヨウ素化方法
JPH08157394A (ja) * 1994-12-06 1996-06-18 Ube Ind Ltd 芳香族ヨード化合物の製造法
JP2003012597A (ja) * 2001-07-02 2003-01-15 Ise Chemicals Corp メチル安息香酸のモノヨード体の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J. AM. CHEM. SOC., vol. 90, 1968, pages 6187
JAPAN, vol. 72, 1999, pages 115
See also references of EP1595862A4 *
ZH. OBSCH. KHIM. OBSHCHEST, vol. 17, 1972, pages 464

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105669357A (zh) * 2016-03-08 2016-06-15 武汉工程大学 一种1,4-二碘苯的绿色制备工艺
CN105669357B (zh) * 2016-03-08 2018-06-26 武汉工程大学 一种1,4-二碘苯的绿色制备工艺

Also Published As

Publication number Publication date
KR101031721B1 (ko) 2011-04-29
EP1595862A4 (en) 2007-04-04
EP1595862A1 (en) 2005-11-16
US7750182B2 (en) 2010-07-06
DE602004030095D1 (de) 2010-12-30
EP1595862B1 (en) 2010-11-17
US20060161028A1 (en) 2006-07-20
KR20050112082A (ko) 2005-11-29

Similar Documents

Publication Publication Date Title
JP2009536662A (ja) 水中での芳香族カルボン酸の製造方法
CN100436385C (zh) 碘化合物的制备方法以及高纯度5-碘-2-甲基苯甲酸的制备工艺
WO2004069772A1 (ja) ヨウ素化合物の製造方法および高純度5-ヨード-2-メチル安息香酸の製造方法
JP5055262B2 (ja) 水中におけるp−キシレンの液相酸化によるp−トルイル酸の製造方法
JP3203067B2 (ja) 2,4−ジクロロフルオロベンゼンの製造方法
JP4340858B2 (ja) 5−ヨード−2−メチル安息香酸の製造方法
US7642374B2 (en) Process for producing 5-iodo-2-methylbenzoic acid
JP4293515B2 (ja) 5−ヨード−2−メチル安息香酸の製造方法
JP2003073372A (ja) フェニルエチニルフタル酸無水物誘導体の製造方法
JP4434692B2 (ja) 5−ヨード−2−メチル安息香酸の製造方法
JP2002179608A (ja) フタルアルデヒドの製造方法
JP2005139078A (ja) 5−ヨード−2−メチル安息香酸の製造方法
JPS61267538A (ja) 2−アルキル−6−アシルナフタリンの製造法
JPS62212340A (ja) 2,6−ナフタレンジカルボン酸とトリメリツト酸の併産方法
JP2003146964A (ja) ジアリールスルホンポリカルボン酸類又はその無水物の製造方法
JP4400713B2 (ja) 5−ヨード−2−メチル安息香酸の製造方法
WO2013015203A1 (ja) 3-クロロ-4-メチル安息香酸イソプロピル及びその製造方法
JP2005213181A (ja) 芳香族カルボン酸、芳香族アルデヒドまたは芳香族アルコールの製造法
JP2745087B2 (ja) メチル化芳香族化合物の塩素化方法
JPH0153260B2 (ja)
JPH10182519A (ja) 芳香族カルボン酸、芳香族アルデヒドまたは芳香族アルコールの製造法
JPH08198806A (ja) アルキルベンゾイルクロライドの製造法
JPH08245535A (ja) O−アシルオキシカルボキサニリドの製造方法
JP2018070601A (ja) ハロゲン化合物の製造方法
JP2003221379A (ja) 3,3’,4,4’−ジフェニルスルホンテトラカルボン酸の製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004709714

Country of ref document: EP

Ref document number: 1020057014585

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048039025

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004709714

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057014585

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006161028

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10545005

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10545005

Country of ref document: US