WO2004048643A1 - 複極式ゼロギャップ電解セル - Google Patents

複極式ゼロギャップ電解セル Download PDF

Info

Publication number
WO2004048643A1
WO2004048643A1 PCT/JP2003/015101 JP0315101W WO2004048643A1 WO 2004048643 A1 WO2004048643 A1 WO 2004048643A1 JP 0315101 W JP0315101 W JP 0315101W WO 2004048643 A1 WO2004048643 A1 WO 2004048643A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
anode
electrolytic cell
electrolysis
gap
Prior art date
Application number
PCT/JP2003/015101
Other languages
English (en)
French (fr)
Inventor
Hiroyoshi Houda
Yasuhide Noaki
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to EP03811931.9A priority Critical patent/EP1577424B1/en
Priority to US10/535,249 priority patent/US7323090B2/en
Priority to ES03811931.9T priority patent/ES2533254T3/es
Priority to AU2003302453A priority patent/AU2003302453A1/en
Priority to JP2004555055A priority patent/JP4453973B2/ja
Publication of WO2004048643A1 publication Critical patent/WO2004048643A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms

Definitions

  • the present invention relates to a bipolar zero-gap electrolytic cell.
  • the cathode chamber has a light-conductive cushion mat layer, and at least two layers in which a hydrogen-generating cathode is superimposed on the cushion mat layer above and in contact with the cation exchange membrane.
  • the base material constituting the anode is a titanium expanded metal or a titanium wire mesh having an opening ratio of 25% or more and 70% or less, and the anode after coating the base material with a catalyst is used.
  • the maximum difference between surface irregularities is 5 ⁇ ! 550 ⁇ m and a thickness of 0.7 mm mm2.0 mm.
  • Some of these patents have an expansive pressure plate / cathode fine mesh screen.
  • the strength of the mat, the strength of the mat, the shape of the anode, the concentration distribution of the electrolyte, the pressure fluctuations inside the cell, etc. are not suitable for the electrolysis cell. There are problems such as a voltage rise and breakage of the ion exchange membrane.
  • JP-B 5-34434 JP-A-2000-178781, JP-A-2000-178782, JP-A-2001-64792, JP-A-2001-152380, JP-A-2001-262387
  • an elastic mat is shown, and its strength, the strength of the cathode, and prevention of crushing of the mat are also disclosed.
  • JP-A-10-53887 discloses an electrolytic cell using a spring.
  • the local pressure was high, which could damage the membrane in contact.
  • Examples of the electrolytic cell that can adopt the zero gap structure include JP-A-51-43377, JP-A-62-96688, and JP-T-61-500669 (corresponding to WO 85/2419).
  • unit electrolysis cells do not have a gas-liquid separation chamber integrated with the unit electrolysis cell, and the liquid and gas are extracted to the upper part in a gas-liquid mixed phase, so vibration occurs in the unit electrolysis cell and ion exchange is performed.
  • There were drawbacks such as damage to the membrane.
  • JP-A-61-19789 and JP-A-63-11686 it is devised to extract gas and electrolyte downward without extracting gas and electrolyte from the upper part, but the liquid and gas are discharged in a mixed phase. As a result, it was not possible to prevent the occurrence of vibration in the unit electrolytic cell.
  • a conductive dispersion or a current distribution member that can circulate the electrolyte internally is provided, but disadvantages such as the structure inside the electrolytic cell becoming complicated are provided. is there.
  • Japanese Utility Model Application Laid-Open No. 59-153376 proposes a wave canceller as a measure to prevent vibrations generated in the electrolytic cell.
  • this method alone does not yet provide a sufficient wave canceling effect. Vibration due to pressure fluctuation in the cell cannot be completely prevented.
  • Japanese Patent Application Laid-Open Nos. 4-2818984 and 8-100286 in order to make the electrolyte in the cell uniform, a cylindrical duct capable of internally circulating the electrolyte is used.
  • the gas-liquid separation chamber has a sufficiently large size to a certain extent, and a force of 5 kAZm or more that is designed to prevent vibration by devising it in a state where it is separated downward or horizontally in a gas-liquid separation state Oscillation may still occur at high current densities.
  • An object of the present invention is to provide a double-electrode type open-cell gap electrolysis cell and an electrolysis method that enable stable electrolysis with a simple and reliable structure under a high current density. More specifically, an object of the present invention is to provide a zero gap structure in which an ion exchange membrane is hardly damaged when electrolysis is performed at a high current density of 4 kAZm 2 or more using a zero gap type ion exchange membrane electrolytic cell.
  • the present invention provides a bipolar zero-gap electrolysis cell having an anolyte solution and a catholyte solution having a concentration distribution within a certain range, and capable of performing stable electrolysis with little fluctuation in cell internal pressure for a long period of time and an electrolysis method thereof. That is.
  • Another object of the present invention in addition to the above objects, is to provide a bipolar zero-gap electrolytic cell which enables stable electrolysis for a long period of time by preventing damage to an ion exchange membrane due to gas vibration in the electrolytic cell.
  • the present invention provides a bipolar zero gap electrolytic cell for electrolyzing an aqueous alkali chloride solution using a cation exchange membrane. That is, a bipolar zero-gap electrolytic cell for use in a filter-press type electrolytic cell having a plurality of bipolar electrolytic cells and a plurality of cation exchange membranes each disposed between adjacent bipolar electrolytic cells. It is.
  • the electrolytic cell is formed of an anode chamber and an anode provided in the anode chamber, the anode base including titanium eta spanned metal or titanium wire mesh having an aperture ratio of 25% to 75%.
  • the anode After application of the catalyst to the substrate, the anode has a maximum height difference of 5 ⁇ to 50 ⁇ on the anode surface and a thickness of 0.7 mm to 2.0 mm, and an anode chamber.
  • the cathode compartment has at least two stacked layers in the cathode compartment, These layers include a conductive I "raw cushion mat layer and a layer of a cathode for hydrogen generation, and the cathode layer for hydrogen generation is adjacent to the cushion matte layer and is formed on the cation exchange membrane. And a cathode disposed in a contact area.
  • the above configuration maintains an appropriate zero gap between the anode, the ion exchange membrane, and the cathode, and allows the generation of gas to pass, reducing damage to the ion exchange membrane and fluctuations in the internal pressure of the cell. To be able to do so.
  • the anode substrate contains titanium-made expanded metal, and that the metal is formed from a titanium plate by eta-spanding and then rolling.
  • the thickness of the expanded metal is preferably set to 95% to 105% of the sheet thickness before the expansive processing by rolling after the expansive processing.
  • the cathode for hydrogen generation is a base material selected from nickel wire mesh, nickel expanded metal and nickel perforated perforated plate with a thickness of 0.05 mm to 0.5 mm.
  • the hydrogen generating cathode preferably has an electrolysis catalyst coating layer having a thickness of 50 m or less formed on the hydrogen generating cathode. According to such a structure, there is an appropriate softness, and a small number of electrodes that damage the ion exchange membrane can be easily and inexpensively manufactured.
  • the electrolysis cell may further include a gas-liquid separation chamber formed integrally with a non-conducting portion above the anode and cathode chambers.
  • a gas-liquid separation chamber formed integrally with a non-conducting portion above the anode and cathode chambers.
  • at least one of the cylindrical duct and the baffle plate serving as the internal circulation flow path for the electrolytic solution is provided between the anode and the electrode associated with at least one partition of the cathode chamber. Is preferred.
  • a partition plate is formed in the gas-liquid separation chamber.
  • the installation of the gas-liquid separation chamber prevents gas vibration by extracting the generated gas from the upper part of the electrode chamber and enables more stable electrolysis. .
  • FIG. 1 is a side view showing an example of a cathode that can be used in the bipolar zero-gap electrolytic cell of the present invention.
  • FIG. 2 is a perspective view showing an L-shaped portion of an example of a conductive plate usable in the present invention.
  • FIG. 3 is a plan view showing an example of an anode which can be used in the bipolar electrode gap electrolysis cell of the present invention and a sampling position of an electrolyte concentration.
  • FIG. 4 is a side sectional view showing an example of an anode chamber that can be used in the bipolar electrode type gap electrolysis cell of the present invention.
  • FIG. 5 is a side sectional view showing an anode-side gas-liquid separation chamber that can be used in the bipolar zero-gap electrolytic cell of the present invention.
  • FIG. 6 is a sectional view of a bipolar zero-gap electrolytic cell according to an embodiment of the present invention.
  • FIG. 7 is a partially cutaway assembly diagram showing an application example of an electrolytic cell using the cell of the present invention.
  • the cathode gasket 27 and the anode chamber gasket 29 are fixed between the ion exchange membrane 28 and the anode chamber, respectively.
  • FIG. 8 is a plan view showing an example of a cathode that can be used in the bipolar zero-gap electrolytic cell of the present invention and a sampling position of an electrolyte concentration.
  • FIG. 9 is a cross-sectional view illustrating a bipolar poled fine-gap electrolytic cell according to another embodiment of the present invention.
  • the current 4 k A / Not only is it required to be able to perform electrolysis at m 2 to 8 kA / m 2 , but also to lower the voltage to the limit.
  • the present inventors have view of this situation, when improving the unit electrolytic cell, 4 k A / m 2 from a high current density such as 8 k A / m 2, significantly lower voltage than the conventional electrolytic cells Therefore, studies have been conducted with the aim of achieving stable electrolysis.
  • the cation exchange membrane is pressed against the anode by the pressure of the cathode chamber, so that a gap is formed between the cathode and the cation exchange membrane.
  • This part contains a large amount of bubbles in addition to the electrolyte, and has extremely high electrical resistance.
  • the distance between the anode and the cathode hereinafter referred to as the interelectrode distance
  • the electrolyte or gas bubbles existing between the anode and the cathode It is most effective to eliminate the effects of
  • the distance between the poles was usually about 1 to 3 mm (hereinafter referred to as a fine gap).
  • Several means have been proposed to reduce this gap.
  • L electrolysis cells generally have an energization area of 2 m or more, and it is impossible to make the tolerance of the production accuracy almost zero by completely smoothing the anode and cathode. Therefore, simply reducing the distance between the electrodes can push the ion exchange membrane between the anode and the cathode to break, or the distance between the poles is almost the same as the thickness of the ion exchange membrane.
  • the ideal zero gap cannot be obtained because there are parts that cannot be kept in a state where there is almost no gap between the anode and the membrane and between the cathode and the membrane (hereinafter referred to as zero gap).
  • the anode has a relatively high rigidity in order to achieve a zero gap, has a structure that is less deformed even when the ion-exchange membrane is pressed, and has a flexible structure only on the cathode side.
  • the structure is designed to absorb the unevenness due to tolerances in manufacturing accuracy and deformation of the electrodes, etc., and maintain the opening gap.
  • the mouth gap structure needs to have a conductive cushion mat on the cathode side and at least two layers of hydrogen generation cathodes adjacent to this and in contact with the cation exchange membrane. is there.
  • a conductive plate 3 is installed in the cathode chamber, and a conductive mat 2 It is preferable to have at least three layers in which the hydrogen generating cathode 1 having a thickness of 0.5 mm or less is superposed on the portion that contacts the cation exchange membrane.
  • the conductive plate 3 transmits electricity to the cushion mat 2 and the hydrogen generating cathode 1 laminated thereon, supports the load received from them, and allows the gas generated from the cathode to pass through the partition wall 5 without any trouble.
  • the shape of this conductive plate is preferably an expansive methanol punched porous plate.
  • the opening ratio is preferably at least 40% so that hydrogen gas generated from the cathode can be extracted to the partition wall side without any trouble.
  • strength when the distance between ribs 4 is 1 ⁇ 0 mm, a pressure of 3 mH 2 O can be applied to the center of the ribs and if it bends less than 0.5 mm, it can be used as a conductive plate.
  • Nickel, nickel alloy, stainless steel, iron, etc. can be used for the material of corrosion resistance, but nickel is the most preferable for conductivity.
  • An L-shaped portion 6 can be formed on a part of the conductive plate 3 as shown in FIG.
  • the rib serves as the conductive plate, which is preferable because the material can be saved and the assembling time can be reduced.
  • the cathode that has been used in the Finite Night Gap electrolytic cell can be used as it is.
  • Cushion mats need to transmit electricity to the cathode between the conductive plate and the cathode for hydrogen generation, and to pass hydrogen gas generated from the cathode to the conductive plate side without resistance.
  • the most important role is to apply a uniform and appropriate pressure to the cathode in contact with the ion-exchange membrane so as not to damage the membrane, thereby bringing the ion-exchange membrane into close contact with the cathode.
  • the wire diameter of the cushion mat is preferably from 0.05 mm to 0.25 mm. If the wire diameter is smaller than 0.05 mm, the cushion mat will be easily crushed, and if the wire diameter is larger than 0.25 mm, the cushion mat will be strong.If used for electrolysis, the pressure will increase and the membrane performance will be affected. Exert.
  • a wire diameter in the range of 0.08 mm to 0.15 mm can be used.
  • the thickness of such a cushion mat can be about 3 mm to 15 mm.
  • those having a size of about 5 mm to 10 mm can be used.
  • a material having a known range can be used.
  • those having a repulsive force S20 g / cm 2 to 400 g / cm 2 at the time of 50% compression deformation can be used. If the repulsive force at the time of 50% compression deformation is smaller than 20 g / cm 2 , it is not possible to completely press H, and if it is larger than 400 g / cm 2 , the membrane is pressed more strongly, which is not preferable.
  • a material having a resilience of 30 gZcm 2 to 200 gZ cm 2 at the time of 50% compression deformation can be used.
  • Such a cushion mat is used by being stacked on a conductive plate.
  • This mounting method may be a commonly known method, for example, appropriately fixed by spot welding, or a resin pin or a metal wire.
  • the cathode may be directly stacked on the cushion mat. Alternatively, the cathodes may be overlapped via another conductive sheet.
  • a cathode that can be used for the zero gap a cathode having a small wire diameter and a small number of meshes is preferable because of its high flexibility.
  • a substrate a known one can be used.
  • a wire diameter of 0.1 to 0.5 mm and a mesh size of about 20 to 80 mesh may be used.
  • the base material of the cathode is a punched perforated plate made of nickel metal or nickel metal with a thickness of 0.05 to 0.5 mm or a wire net made of nickel metal with an opening ratio of 20% to 70%. Can also be suitably used.
  • a nickel expansed metal having a thickness of 0.1 mm to 0.2 mm or a punched perforated plate or nickel made of nickel.
  • a nickel wire mesh having an aperture ratio force S of 25% to 65% can be more preferably used.
  • the metal is rolled and flattened in the range of 95 to 105% of the thickness of the metal plate before processing.
  • wire mesh two wires intersect at right angles, so the thickness is twice as large as the wire diameter.
  • the wire mesh is rolled in the range of 95 to 105% of the wire diameter. Can also be suitably used.
  • the coating of the cathode is preferably a noble metal oxide coating and thin.
  • the plasma sprayed coating of nickel oxide has a thickness of 100 / ini or more, and it is hard and brittle as a zero-gap cathode that requires flexibility.
  • the exchange membrane was sometimes damaged.
  • the thickness of the coating layer is small, since the softness of the cathode substrate is not impaired and the ion exchange membrane is not damaged. If the coating is too thick, as described above, not only may the ion exchange membrane be damaged, but also there are problems such as an increase in the manufacturing cost of the cathode. If it is too thin, sufficient activity cannot be obtained. Therefore, the thickness of the coating layer is preferably from 0.5 ⁇ m to 50 ⁇ m, and most preferably from 1 ⁇ m to 10 ⁇ m. The coating thickness of the cathode can be measured with an optical microscope and an electron microscope by cutting a cross section of the substrate.
  • the shape of the anode itself is important in addition to the requirements described above.
  • the ion-exchange membrane is pressed against the anode more strongly than the conventional fin-gap electrolysis cell, so in the case of an anode using an eta-spun metal substrate, the ion-exchange membrane may be damaged at the end of the opening, or In some cases, the ion-exchange membrane digged into the opening, creating a gap between the cathode and the ion-exchange membrane, causing the voltage to rise.
  • the electrodes have as planar a shape as possible.
  • the apparent thickness increases about 1.5 times to 2 times before the processing. If this is used for a zero-gap electrolytic cell as it is, the above-mentioned problem will occur.
  • rolling is performed by means such as a roll press to reduce the thickness from 95% to 105% of the thickness of the metal plate before expanding. Flatten Is desirable. By doing so, not only can the ion exchange membrane be prevented from being damaged, but also the voltage can be unexpectedly reduced. The reason for this is not clear, but it is expected that the current density will be uniform because the surface of the electrode and the electrode surface are in uniform contact.
  • the thickness of the anode is usually preferably from 0.7 mni to 2.0 mm. If the thickness is too small, the pressure drops between the anode and cathode chambers and the pressure of the cathode, which causes the ion exchange membrane to press the anode, causing the anode to drop and the distance between the electrodes to widen. It is not preferable because it becomes high. On the other hand, if the thickness is too large, an electrochemical reaction occurs on the back side of the electrode, that is, on the side opposite to the surface in contact with the ion-exchange membrane, and the resistance is undesirably increased.
  • the thickness of the anode is more preferably from 0.9 mm to 1.5 mm, and even more preferably 0.9 mn! ⁇ 1.1 mm thick. In the case of wire mesh, two wires intersect at right angles, so the thickness is twice the wire diameter.
  • a zero gap electrolysis cell In a zero gap electrolysis cell, the ion exchange membrane and the anode surface are in close contact during electrolysis, which may cause a local shortage of electrolyte supply.
  • chlorine gas is generated on the anode side during electrolysis, and hydrogen gas is generated on the cathode side.
  • electrolysis is performed by keeping the gas pressure on the cathode side higher than the gas pressure on the anode side and pressing the membrane against the anode by the gas differential pressure.
  • the pressing pressure due to the mattress on the cathode side is also applied during operation, so the pressing pressure on the anode side is larger than that of the usual finite gap electrolytic cell with a gap between the anode and the cathode.
  • the pressing pressure was increased, fine water bubbles were formed on the ion exchange membrane, and in some cases, the electrolysis voltage was increased.
  • the anode surface is provided with irregularities so that the electrolytic solution can be easily supplied by the depressions.
  • it is effective to provide appropriate irregularities on the surface by means such as plast treatment or etching treatment with an acid.
  • the anode catalyst is applied to the irregularities.
  • the anode catalyst enters the irregularities, and the degree of roughness is reduced from the surface roughness after etching.
  • the anode catalyst is prepared by treating the surface of a titanium substrate with an acid and then applying iridium chloride, ruthenium chloride, or titanium chloride. It is formed by thermal decomposition after applying a mixed solution of tan.
  • the average thickness of the catalyst layer is in the range of 1 m to 10 ⁇ m as a whole by repeating the coating and thermal decomposition processes with a catalyst thickness of 0.2 ⁇ m to 0.3 ⁇ m per time. can do.
  • the thickness of the catalyst layer is determined based on the life and price of the anode. A range of 33 ⁇ is suitably selected.
  • the maximum difference between the peak and valley heights must be in the range of 5 ⁇ m to 50 ⁇ m. If the unevenness is too small, the supply of the electrolyte may be insufficient locally, which is not preferable. On the other hand, if the irregularities are too large, the surface of the ion exchange membrane may be adversely damaged. Therefore, in order to use the ion exchange membrane stably, it is necessary that the maximum value of the difference between the irregularities on the surface of the anode is in the range of 5 ⁇ to 50 ⁇ . For more stable operation, the maximum value of the difference between the irregularities on the surface of the anode is more preferably from 8 / zm to 3 ° ⁇ . '
  • the measurement by the non-contact type optical interference method utilizes NewwView5202 made by Zygo.
  • This device is equipped with an optical microscope, an interference-type objective lens, and a CCD camera.
  • a white light source is applied to the object to be measured, and the interference fringes generated according to the surface shape are vertically scanned to obtain the surface shape of the object.
  • the area to be measured can be arbitrarily selected, but it is preferable to measure the area from 100 zm to 300 ⁇ m square in order to grasp the unevenness of the anode surface to some extent. it can. In particular, when measuring eta spanned metal, it is more preferable to measure a region from 50 ⁇ m to 150 / zm square.
  • the difference between the maximum and minimum values of the surface irregularities is calculated as the PV value (Peak to Val ly). Is calculated.
  • the inventors have found a remarkable correlation between the roughness of the anode surface according to the value and the evaluation result when those anodes are used in a zero gap electrolytic cell, and completed the present invention.
  • this PV value is the maximum value of the difference between the irregularities on the anode surface.
  • the aperture ratio of the anode substrate is preferably 25% or more and 70% or less.
  • various methods for measuring the aperture ratio such as a method in which a sample of the electrode is copied with a copying machine, the opening is cut out and weighed, or the length and width of the opening are measured and calculated. Any method is acceptable.
  • the aperture ratio is too small, the supply of the electrolytic solution to the ion-exchange membrane may be insufficient, and water bubbles may be generated, which may make it impossible to operate at a stable voltage and current efficiency. Also, if the aperture ratio is too large, the surface area of the electrode decreases, and the voltage increases, which is not preferable. Therefore, the most preferable is an aperture ratio in the range of 30% to 60%.
  • a cylindrical duct and / or an internal circulation flow path for the electrolyte solution are provided between the anode chamber and the partition of the cathode chamber or the electrode and the electrode.
  • a conductive plate layer is provided on the cathode side, a conductive cushion mat layer is provided thereon, and 0.5 mm is provided on the upper portion thereof and in contact with the cation exchange membrane.
  • a bipolar zigzag gap electrolytic cell having at least three layers of the following cathode layers for hydrogen generation with the following thickness.
  • the anode-side electrolyte concentration distribution and the cathode-side concentration distribution are easily adjusted appropriately. Furthermore, the pressure fluctuation in the cell is small, and the ion exchange membrane is hardly damaged. Therefore, stable electrolysis can be performed for a long period of time even at a high current density of about 8 kAZm 2 .
  • What is required for long-term operation at a stable voltage is that the electrolyte concentration distribution in the electrolytic cell is uniform, there are no bubbles or gas stagnation in the electrolytic cell, and the electrolyte, bubbles and gas When discharging from the discharge nozzle, they do not become a mixed phase, there is no pressure fluctuation in the electrolytic cell, and no vibration occurs.
  • the vibration in the cell is measured by using the Yokogawa AR1200 Analyzing Recorder to measure the pressure fluctuation in the anode cell, and the difference between the maximum pressure and the minimum pressure as the vibration of the electrolytic cell.
  • the anode and cathode are in close contact with the ion exchange membrane Mass transfer to the ion exchange membrane is likely to be inhibited. If the mass transfer to the ion-exchange membrane is hindered, adverse effects will occur, such as formation of water bubbles in the ion-exchange membrane, an increase in voltage, and a decrease in current efficiency. Therefore, it is important to promote the mass transfer to the ion exchange membrane and keep the concentration distribution of the electrolyte in the cell uniform.
  • the concentration distribution on the anode side and the tendency of the current efficiency of the ion exchange membrane to decrease are correlated, and the lower the current efficiency, the greater the concentration distribution. This tendency was particularly remarkable when the current density was high and when there was a gap.
  • the concentration was measured at nine sampling positions 13 indicated by black circles in Fig. 3, and the value obtained by subtracting the minimum concentration from the maximum concentration was taken as the concentration difference. From 4 kAZ m or more to 8 kA / m 2 or less, it was found that when this concentration difference was 0.5 N or more, the current efficiency was significantly reduced. Therefore, at a current density of 4 k ⁇ / ⁇ or more and 8 k ⁇ or less in the zero-gap electrolytic cell, it is preferable that at least the salt water concentration difference be 0.5 N or less.
  • the electrolytic cell has a plate that can circulate inside the electrolytic cell and can supply the electrolyte uniformly in the horizontal direction. Is one of the structures suitable for the anode side of a zero gap cell.
  • the saturated salt water supplied uniformly in the horizontal direction by the anolyte distributor 14 is circulated in the vertical direction of the electrolytic cell by the baffle plate 9, and the concentration distribution is uniform throughout the cell. Is obtained.
  • the concentration distribution can be adjusted with higher accuracy. In this way, the zero gap electrolysis cell can be electrolyzed with stable performance.
  • the concentration distribution on the cathode side and the increasing tendency of the voltage of the ion-exchange membrane were correlated, and the larger the concentration distribution, the greater the voltage increase. This tendency was particularly remarkable when the current density was high and when the gear was zero.
  • the concentrations were measured at nine sampling positions 13 similar to those in the anode chamber, and the value obtained by subtracting the minimum concentration from the maximum concentration among them was defined as the concentration difference.
  • eight / ⁇ ! ⁇ In 8 k AZM 2 or less from the following, when the density difference is greater than 2%, found that decrease in current efficiency is remarkably. Therefore, at a current density of 4 kA / m 2 or more and 8 kA / m 2 or less in the zero gap electrolytic cell, it is preferable that at least the difference in the concentration of the aluminum alloy be 2% or less.
  • an electrolytic cell that can supply an electrolytic solution uniformly in the horizontal direction is one of the preferred structures for the cathode side of a zero gap cell.
  • the electrolytic solution uniformly supplied in the horizontal direction by the catholyte distributor 23 is circulated in the upward and downward directions of the cell due to the difference between the supply voltage and the concentration in the cathode chamber.
  • a uniform concentration distribution is obtained throughout the cell.
  • the concentration distribution can be adjusted with higher accuracy by appropriately adjusting the supply flow rate using such an electrolytic cell. In this way, the zero gap electrolysis cell can be electrolyzed at a stable voltage.
  • the pressure difference between the anode chamber and the cathode chamber fluctuates.
  • the anode and the cathode are always kept in close contact with each other through the ion exchange membrane using a cushion mat. Therefore, if there is a change in the differential pressure, the adhesion may fluctuate and the electrode may rub the ion exchange membrane. Since the ion-exchange membrane is made of resin and has a coating on its surface to prevent gas adhesion, if the electrode rubs the ion-exchange membrane, the coating layer of the ion-exchange membrane may peel off, The ion exchange resin itself may be scraped off.
  • a partition plate 20 is provided in the gas-liquid separation chamber 7, and a porous plate 19 for removing air bubbles is provided above the partition plate 20. It is effective to provide.
  • a double-pole zero-gap electrolytic cell 30 according to an embodiment of the present invention having the same anode structure and cathode structure as in FIGS. 3 and 8 and having the same cross-sectional structure as in FIG. 6, is arranged in series.
  • An anode unit cell and a cathode unit cell were arranged at the other end, and a current lead plate 28 was attached thereto, thereby assembling the electrolytic cell shown in FIG.
  • the bipolar-type gap electrolysis cell 30 has a width of 24.0 mni and a height of 1280 mm, and has an anode chamber, a cathode chamber, and a gas-liquid separation chamber 7.
  • the anode compartment and the cathode compartment are each formed by a pan-shaped partition wall 5 and arranged back to back.
  • the anode chamber and the cathode chamber are combined by inserting a frame member 22 into a bent portion 18 provided above the partition wall 5.
  • Each gas-liquid separation chamber is defined above each electrode chamber by fixing an L-shaped partition member 16 having a height H to the partition wall 5.
  • Gas-liquid cross-sectional area of the separation chamber anode 2 7 cm 2, 1 is the cross-sectional area of the cathode side of the gas-liquid separation chamber 5 In cm z , only the anode-side gas-liquid separation chamber had the same structure as that in FIG. That is, a titanium partition plate 20 having a width W of the passage B of the anode-side gas-liquid separation chamber of 5 mm, a height H 'of 50 mm, and a plate thickness of lmm is provided, and the height from the upper end to the upper end of the gas-liquid separation chamber vertically.
  • the aperture ratio 5 9%, c anode side gas-liquid separation chamber of holes 15 fitted with a perforated plate 19 of titanium E box pan dead metal thickness 1 mm can be of oval width 5 mm, length 22 mm With a pitch of 37.5 mm. .
  • a baffle plate 9 is provided only on the anode side, a titanium baffle plate with a width W2 of passage D of 10 mm, a height H2 of 500 mm and a plate thickness of 1 mm is provided, and a gap W2 'between the partition wall 5 and the plate bottom is 3 mm. And The height S vertically from the top of the baffle plate to the top of the electrode chamber was 40 mm.
  • the anolyte distributor 14 is a rectangular pipe with a length of 220 cm and a cross-sectional area of 4 cm 2 and having 24 holes of 1.5 mm in diameter at equal intervals. It was mounted horizontally at a position of 50 mm, and one end was joined to Ronozunore 12 on the anode side. The pressure loss of this distributor was about 2 mm ⁇ H 2 ⁇ when saturated brine was supplied at a feed rate of 150 L / Hr equivalent to 4 kA / m 2 .
  • the catholyte distributor 23 those having 24 equally spaced square pipe holes 2 mm diameter with a cross-sectional area of 3. 5 cm 2 in the length of 220 cm, 50 mm from the cathode chamber bottom of the electrolytic cell It was mounted horizontally at one position, and one end was joined to the cathode-side insertion Ronozunore 24. Pressure loss of this distributor was filed at about 12 mm ⁇ H 2 0 upon applying in 4KAZ m corresponding alkali supply amount 300 L / Hr.
  • a nickel-expanded metal having a thickness of 1.2 mm, a horizontal length of the opening of 8 mm, and a vertical length of 5 mm was used as the conductive f raw plate 3, and the cushion mat 2 had a thickness of 0.1 mm.
  • Approximately 3 ⁇ coated, covered with a 40-mesh nickel mesh with a wire diameter of 0.15 mm and around the cathode was fixed to a conductive plate by spot welding at about 60 places to form a three-layer structure.
  • the structure on the anode side was the same as in FIGS. 3 and 4 and provided with an anolyte distributor 14 and a baffle plate 9.
  • a partition plate 2 ° and a porous plate 19 for eliminating bubbles were provided in the anode-side gas-liquid separation chamber as shown in FIG. No such partition plate or perforated plate for eliminating bubbles was provided in the gas-liquid separation chamber on the cathode side.
  • a 1 mm titanium plate is subjected to an expansive process, which is rolled to a thickness of 1 ⁇ 0.05 mm by a roll press process, and is attached to the rib 22.
  • the opening of the expansive metal before the roll press was applied with a pitch of 6 mm (width) ⁇ 3 mm (length) and a feed pitch of 1 mm.
  • the aperture ratio of the metal was 40% as measured by copying with a copy machine. This was etched with sulfuric acid, and the maximum difference in height between peaks and valleys (irregularities) on the surface was 30 ⁇ m.
  • the maximum value of the difference between the irregularities on the anode surface was measured using NewView 5022 manufactured by Zygo.
  • a cation exchange membrane ACIP LEX (registered trademark) F4401 was sandwiched via a gasket to assemble an electrolytic cell.
  • a 300 g / L salt solution is supplied to the anode compartment side of this electrolytic cell so that the outlet salt solution concentration becomes 200 g ZL as an anolyte solution, and the outlet aqueous sodium hydroxide concentration becomes 32% by weight on the cathode compartment side.
  • dilute caustic soda electrolysis temperature 90 ° C, 0. 14MP a absolute pressure during electrolysis, and electrolysis 360 days in a range of current density 4 k AZm 2 ⁇ 6 k a / m 2.
  • the anolyte and catholyte concentration distributions in the electrolysis cell during electrolysis are shown in Figs. 3 and 8. It was measured at the position of the pulling point 13. That is, at a position 150 mm, 600 mm, and 1000 mm below the upper end of the current-carrying part in the cell, 9, 100 mm inside from the cell center and both ends of the cell were measured. Table 1 shows the difference between the maximum density and the minimum density among the nine points as the density difference.
  • Table 1 shows the measurement results of voltage, current efficiency, vibration and concentration distribution in the electrolytic cell during electrolysis. From these results, the voltage rise was only 3 OmV even at 6 kA / m 2 , and the current efficiency was reduced by only about 1%.
  • the vibration in the electrolysis cell is also 5 cm or less at the water column, and the concentration difference is 0.31 N to 0.35 N on the anode side and 0.6% to 0.3 N on the cathode side.
  • the electrolytic cell was disassembled and the ion exchange membrane was taken out and examined. It was found that there was no water bubbles and the operation could be continued for a longer time.
  • An electrolytic cell was formed using the same bipolar electrode cell except that the anode used in Application Example 1 was changed. That is, as an anode, a titanium plate 1 mm obtained by Ekusupando processed, those opening ratio is 30%, by etching with sulfuric acid, the maximum value of unevenness difference on the surface is about 8 ⁇ , Ru0 2 , the maximum value of unevenness difference after applying the coatings based on I r 0 2, T I_ ⁇ 2 is 3 mu m, an anode thickness of 1. was 8 mm.
  • Table 2 shows the results of the same measurement as in application example 1 with the same operation. The results show that the voltage rise was 150 kV at 6 kA / m "and the current efficiency declined by 2 to 3%. The vibration in the electrolytic cell was less than 5 cm at a water column even at 6 kA / m.
  • the concentration difference was 0.31N to 0.35N on the anode side and 0.6% to 0.8 ⁇ % on the cathode side.
  • the electrolytic cell was disassembled and the ion-exchange membrane was taken out and examined.
  • the ion-exchange membrane had fine water bubbles and an ion-exchange membrane with small pinholes.
  • An electrolytic cell was formed using the same bipolar electrolytic cell except that the hydrogen generation cathode used in Application Example 1 was changed. That is, a 14-mesh nickel wire gauze with a wire diameter of 0.4 mm (cathode thickness 0.8 mm) coated with a coating of about 250 ⁇ m mainly composed of nickel oxide was used as the cathode for hydrogen generation.
  • a 14-mesh nickel wire gauze with a wire diameter of 0.4 mm (cathode thickness 0.8 mm) coated with a coating of about 250 ⁇ m mainly composed of nickel oxide was used as the cathode for hydrogen generation.
  • Table 2 shows the results of the same measurement as in application example 1 with the same operation. From this result, the voltage is high from the beginning, the rise is 6 kA / m 2 and 8 OmV, and the decrease in current efficiency is 2% to 3. /. There was also. Vibrations in the electrolytic cell is at less than 5 cm in water column even 6 kAZm 2, density difference anode side 0. 31N ⁇ 0. 35 N, a cathode side was 6% to 0. 8% 0.1.
  • An electrolytic cell was formed using the same bipolar electrode cell except that the anode used in Application Example 1 was changed.
  • Table 4 shows the measurement results of the voltage, current efficiency, vibration and concentration distribution in the electrolysis cell during electrolysis. From this result, the voltage rise was only 3 OmV even at 8 kA / m 2 , and the current efficiency decline was only about 0.9%. Vibration in the electrolytic cell is also 10 cm at the water column The concentration difference is 0.39N ⁇ 0.47N on the anode side and 1.2% ⁇ on the cathode side: L.
  • the electrolytic cell was disassembled, and the ion exchange membrane was taken out and examined. It was found that there was no water bubble and the operation could be continued longer.
  • Electrolysis was performed in the range of 7 kA / m 2 to 8 kAZm 2 using the same electrolytic cell as in Application Example 1.
  • Table 4 shows the measurement results of the voltage, current efficiency, vibration and concentration distribution in the electrolysis cell during electrolysis. From these results, the rise in voltage was 9 OmV at 8 kA / m 2 , and the decrease in current efficiency was 3.3%.
  • the vibration in the electrolytic cell was less than 5 cm at the water column, and the concentration difference was 0.6N to 0.7N on the anode side and 1.5% to 2.1% on the cathode side.
  • the electrolytic cell was disassembled and the ion exchange membrane was taken out and examined. As a result, many water bubbles with a diameter of 1 mm to 10 mm were formed throughout the ion exchange membrane.
  • the cross-sectional view of the bipolar electrolysis cell has the structure shown in Fig. 9 and is equipped with an exponential metal thickness of 1.8 mm as the anode, and a plasma sprayed nickel-sputtered metal with a thickness of 250 mm as the cathode.
  • An electrolytic cell was prepared, which had a coating containing nickel oxide as the main component and was used for one year with a distance between electrodes of 2 mm. The anode of this electrolytic cell was removed, and a new anode was used. Was installed. Further, the coating of the cathode was scraped off with a brush to expose the nickel background and used as a conductive plate. Further, the same cushion mat and the cathode for hydrogen generation as in Application Example 1 were attached in exactly the same manner.
  • the electrolytic cell was disassembled, and the ion exchange membrane was taken out and examined. As a result, there was no water bubble and the operation was possible for a longer time.
  • a gas-liquid separation chamber is provided on each of the non-conducting part above the anode chamber and the non-conducting part above the cathode chamber so as to be integrated with the cathode chamber or the cathode chamber.
  • a cylindrical duct and / or baffle plate that serves as an internal circulation channel for the electrolyte It has at least one conductive plate on the cathode side, a conductive cushion mat on the top, and at least 3 layers of a hydrogen cathode for use on the top and in contact with the cation exchange membrane.
  • Such a zero-gap electrolytic cell can also be manufactured by modifying the electrolytic cell previously used in the fine-gap.
  • a gas-liquid separation chamber is provided integrally with the anode chamber or the cathode chamber at each of the non-conducting part at the upper part of the anode chamber and the non-conducting part at the upper part of the cathode chamber. Between them, there is a case where an electrolytic cell having a cylindrical duct or baffle plate that serves as an internal circulation flow path for the electrolytic solution, which was previously used as a fine night gap, is modified into a zero gap electrolytic cell.
  • the structure of the anode and the anode chamber should be improved as described above, and the cathode chamber should be remodeled so that a conductive plate, a cushion mat, and a cathode could be attached to form a zero-gap electrolytic cell.
  • the cathode used in the fine-gap can be used as it is as a conductive plate, and a zero-gap electrolytic cell can be obtained by simply laminating a cushion mat and a new cathode.
  • the cathode, cushion mat, and conductive plate can be removed from the Zeguchi Gap electrolytic cell, and a new cathode can be used to use it as a fine night gap.
  • Such a modification is significantly cheaper than making a new electrolytic cell, and can be easily modified, so there is a great advantage for the user.

Abstract

 開示した複極式ゼロギャップ電解セルでは、陽極を構成する陽極基材が開口率25%以上70%以下のチタン製エクスパンデッドメタル或いはチタン製金網であり、且つ前記基材に触媒を塗布した後の陽極表面の凹凸の差の最大値が5μm~50μmであり、陽極の厚みが0.7mm~2.0mmである。この電解セルは、イオン交換膜が破損しにくく且つ陽極液と陰極液が一定範囲内の濃度分布を持ち、セル内圧の変動の少ない長期間安定して電解できる。

Description

複極式ゼ口ギャップ電解セル 技術分野
本発明は、 複極式ゼロギヤップ電解セルに関する。
これは、 陽極室と陰極室とを背中合わせに配置して構成した複極式電解槽セル を陽ィオン交換膜を介して多数配列させてなるフィルタープレス型電解槽の複極 式電解セルであって、 上記陰極室に明導電性のクッションマット層と、 更にその上 部で且つ陽ィオン交換膜と接触する部分に水素発生用陰極を重ねた少なくとも 2 層を有している。 書
この電解セルは、 陽極を構成する基材が開口率 2 5 %以上 7 0 %以下のチタン 製ェクスパンデッドメタル或いはチタン製金網であり、 且つ前記基材に触媒を塗 布した後の陽極表面の凹凸の差の最大値が 5 μ π!〜 5 0 μ mであり、 厚み 0 . 7 mm〜2 . 0 mmであることを特徴とする。
背景技術
高電流効率、 低電圧で高純度のアル力リ金属水酸化物を生産するためのィオン 交換膜法塩化アルカリ電解セルについては、 多くの提案がなされている。 その中 でィォン交換膜を挟んで陽極と陰極が接触している形式のゼロギャップに関する ものも提案されている。
米国特許第 4 4 4 4 6 3 2号明細書、 特公平 6— 7 0 2 7 6号公報 (米国特許 4 6 1 5 7 7 5号明細書、 ョ一口ッパ特許 1 2 4 1 2 5号に対応) および特開昭 5 7 - 9 8 6 8 2号公報 (特公平 1— 2 5 8 3 6号、 米国特許 4 3 8 1 9 7 9号 明細書、 ョ一口ッパ特許 5 0 3 7 3号に対応) には、 ワイヤーマツトを用いた電 解用セルが提案されている。 特許第 2 8 7 6 4 2 7号公報 (米国特許 5 5 9 9 4 3 0号明細書に対応) では、 電気化学槽用のマットレスが提案されている。
これら特許の中には、 ェクスパンドプレッシャープレートゃカソードファイン メッシュスクリーンを備えているものもある。 し力、し、 マットの強さや、 陽極の 形状、 電解液濃度分布、 セル内の圧力変動等が適正な電解用セルとなっておらず、 イオン交換膜の電圧上昇や破損などの問題がある。
特公平 5— 34434号公報、 特開 2000— 178781号公報、 特開 20 00-178782号公報、 特開 2001— 64792号公報、 特開 2001— 1 52380号公報、.特開 2001— 262387号公報、 においては、 弾性マ ットが示されており、 その強度や、 陰極の強度、 マツ卜の潰れ防止なども開示さ れている。
これらの改良は確かに効果もあるが、 5 k AZm 以上の高電流密度では、 こ れだけでは長期間電流効率や電圧の安定した電解をするにはまだ不十分である。 ゼロギャップ電解セルとしては、 上記のマットに関するもの以外に、 バネを用 いたものもある。 例えば、 特開平 10— 53887号公報などはバネを用いた電 解槽である。 しカゝし、 パネでは局部的な圧力が強くなり、 接触している膜に損傷 を与える場合があった。 ゼロギャップ構造を採用できる電解槽としては、 例えば 特開昭 51—43377号公報、 特開昭 62— 96688号公報、 特表昭 61— 500669号公報 (WO 85/2419号に対応) 等がある。
これらの単位電解セルは、 単位電解セルと一体となった気液分離室もなく、 液 及ぴガスを気液混相のまま上部に抜き出しているため単位電解セル内に振動が発 生しィオン交換膜を破損するなどの欠点があった。 更に内部に電解液を混合する 工夫がなされておらず、 そのために電解室内の電解液の濃度分布を均一にするた め多量の電解液を循環しなければならない欠点がある。
特開昭 61— 19789号公報、 特開昭 63— 11686号公報では、 上部に ガス及び電解液を抜き出さずに下向きに抜き出すように工夫しているが、 液とガ スが混相で払い出されることがあり、 単位電解セル内での振動発生を防止するこ とはできなかった。 又、 セル内部の電解液濃度を均一にするために、 電解液を内 部循環できる導電性分散体或いは電流分配部材を設けているが、 電解セル内の構 造が複雑になるなどの欠点がある。
実開昭 59— 153376号公報では、 電解セル内で生じる振動を防止するた めの対策として波消し板を提案しているが、 この方法だけでは未だ十分な波消し 効果が得られず、 電解セル内の圧力変動に基づく振動を完全に防止することはで きない。 . 特開平 4 - 2 8 9 1 8 4号公報、 特開平 8— 1 0 0 2 8 6号公報においては、 セル内の電解液を均一にするため、 電解液を内部循環できるな筒状ダクトゃダウ ンカマーを設けているが、 やはり電解セル内の構造が複雑になり製作コス卜が高 くなり、 或いは 5 k A/m 2以上の高電流密で電解しようとするとまだ電解液の 濃度分布は大きく、 イオン交換膜へ悪影響を与えることが懸念される。
更に、 これら公報によると、 気液分離室がある程度十分な大きさを持ち、 且つ 下向きや水平に気液分離した状態で抜き出す工夫をして振動を防止しようとして はしている力 5 k AZm 以上の高電流密度においてはまだ振動が発生するこ ともある。
発明の開示
本発明は、 高電流密度のもとに安定した電解を、 簡単、 確実な構造で可能にす る複極式ゼ口ギヤップ電解セルぉよぴ電解方法を提供することを目的とする。 より詳細には、 本発明の目的は、 ゼロギャップ型のイオン交換膜法電解槽を用 いて、 4 k AZm 2以上の高電流密度で電解する場合、 イオン交換膜の破損しに くいゼロギヤップ構造を有していて、 且つ陽極液と陰極液が一定範囲內の濃度分 布を持ち、 セル内圧の変動の少ない長期間安定して電解できる複極式ゼロギヤッ プ電解セル及ぴその電解方法を提供することである。
本発明の他の目的は、 上記目的に加えて、 電解セル内のガス振動によるイオン 交換膜の破損を防いで長期間安定した電解を可能にする複極式ゼロギヤップ電解 セルの提供である。
本発明は、 陽イオン交換膜を用いて塩化アルカリ水溶液を電解する複極式ゼロ ギャップ電解セルを提供する。 すなわち、 複数の複極式電解セルと、 隣接した複 極式電解セルの間に各々を配した複数の陽イオン交換膜とを有するフィルタープ レス型電解槽に用いるための複極式ゼロギヤップ電解セルである。
この電解セルは、 陽極室と、 陽極室に設けた陽極であって、 開口率 2 5 %から 7 5 %のチタン製エタスパンデッドメタルまたはチタン製金網を含む陽極基材で 形成され、 該陽極基材への触媒の塗布後に、 陽極表面上の凹凸の高低差が最大で 5 μ πιから 5 0 μ πιであり、 厚みが 0 . 7 mmから 2 . 0 mmである陽極と、 陽 極室と背中合わせに配置した陰極室と、 重ねた少なくとも 2つの層を陰極室に有 する陰極であって、 これらの層が導電 I"生クッションマット層と、 水素発生用陰極 の層とを含み、 該水素発生用陰極層がクッションマツト層に隣接するとともに、 前記陽ィオン交換膜に接触する領域に配置されている陰極とを備えることを特徴 とする。
上記構成は、 陽極とイオン交換膜と陰極の間に適切なゼロギャップを保ち、 発 生ガスの通過させることによって、 イオン交換膜の破損とセル内圧の変動が少な く、 安定した電解を長期間に渡って行うことを可能にする。
陽極基材はチタン製ェクスパンデッドメタルを含み、 該ェクスパンデッドメタ ルがエタスパンド加工、 次いで圧延加工によってチタン製板から形成される二と が好ましい。 ェクスパンデッドメタルの厚みは、 ェクスパンド加工後の圧延加工 によって、 ェクスパンド加工前の板厚の 9 5 %から 1 0 5 %に設定することが好 ましい。
水素発生用陰極は、 厚みが 0 . 0 5 mmから 0 . 5 mmで且つ二ッケル製金網, ニッケル製ェクスパンデッドメタルおよびニッケノレ製打ち抜き多孔板のグ^^ープ 力 ら選んだ基材で形成され、 該水素発生用陰極は、 この水素発生用陰極上に形成 した厚みが 5 0 m以下の電解用触媒コーティング層を有することが好ましい。 このような構造によると、 適切な柔軟' I"生があり、 ィオン交換膜を損傷するこの 少なレ、電極を容易に安価に製作することができる。
電解セルは、 さらに、 それぞれ前記陽極および陰極室の上部の非通電部に一体 状に形成した気液分離室を備えていても良い。 この場合、 電解液の内部循環流路 となる筒状ダク トおよぴバッフルプレートのうちの少なくとも一方が前記陽極お よび陰極室の少なくとも 1つの隔壁部と関連した電極との間に設けられることが 好ましい。
気液分離室には仕切板が形成されることが好ましい。
気液分離室の設置は、 電極室上部から発生ガスを抜き出すことによって、 ガス 振動を防いで、 一層安定した電解を可能にする。 .
図面の簡単な説明
図 1は、 本発明の複極式ゼロギヤップ電解セルに使用可能な陰極の一例を示す 側面図である。 図 2は、 本発明に使用可能な導電性プレートの一例の L型部を示す斜視部であ る。
図 3は、 本発明の複極式ゼ口ギャップ電解セルに使用可能な陽極の一例と電解 液濃度のサンプリング位置を示す平面図である。
図 4は、 本発明の複極式ゼ口ギヤップ電解セルに使用可能な陽極室の一例を示 す側断面図である。
図 5は、 本発明の複極式ゼロギヤップ電解セルに使用可能な陽極側気液分離室 を示す側断面図である。
図 6は、 本発明の実施例による複極式ゼロギヤップ電解セルの断面図である。 図 7は、 本発明のセルを用いた電解槽の適用例を示す、 一部を切り欠いた組み 立て図である。 イオン交換膜 2 8と陽極室の間にはそれぞれ陰極用ガスケット 2 7と陽極室ガスケット 2 9を挟んで固定する。
図 8は、 本発明の複極式ゼロギヤップ電解セルに使用可能な陰極の一例と電解 液濃度のサンプリング位置を示す平面図である。
図 9は、 本発明の別の実施例による複極式フアイナイトギャップ電解セルを示 す断面図である。
発明を実施するための最良の形態
一般的に、 安定した塩化アルカリの電解を行ない、 塩素、 水素、 苛性ソーダを 安価に生産するために要求されることは、 設備コストが安価であること、 低電圧 で電解できること、 セル內の振動等によりイオン交換膜が破損しないこと、 セル 内の電解液濃度の分布が均一でイオン交換膜の電圧や電流効率が長期間安定して いること等があげられる。
このような要求に応じて、 近年のイオン交換膜法塩化アルカリ電解における性 能の向上はめざましいものがある。 特にイオン交換膜、 電極、 単位電解セルの性 能向上は著しく、 電力原単位はイオン交換膜法の出現当初の 4 k A/m 2で 3 0
0 0 k W/N a〇H- 1から、 近年では 2 0 0 0 k W/N a O H- 1以下になろうと している。
し力 し、 最近は設備大型化や省力化、 高効率化の要望が更に強くなつており、 電解セルにおいても電解電流密度も当初の 3 k A/m 2から、 現在では 4 k A/ m 2から 8 k A/m 2で電解できるようにすることが求められているばかりでな く、 極限まで電圧を下げて行くことが求められている。
本発明者等はこのような状況に鑑み、 単位電解セルを改良するに当たり、 4 k A/m 2から 8 k A/m 2のような高電流密度で、 従来の電解セルより大幅に低 電圧で、 安定した電解ができることを目標に検討を進めてきた。
通常の場合、 陽イオン交換膜は陰極室側の圧力により陽極に押しつけられてい るため、 陰極と陽イオン交換膜との間には隙間が生じている。 この部分には電解 液の他に大量の気泡が存在し、 電気抵抗が非常に高い。 電解セルの大幅な電解電 圧の低減を図るためには、 陽極と陰極の間隔 (以下極間距離と言う) を出来るだ け小さくして、 陽極と陰極の間に存在する電解液やガス気泡の影響をなくすこと が最も効果的である。
従来はこの極間距離は 1〜 3 mm程度が普通であった (以下ファィナイトギヤ ップと言う) 。 この極間距離を小さくするための手段は既にいくつか提案されて いる。
しか L電解セルは一般に 2 m 以上の通電面積を有しており、 陽極と陰極を完 全に平滑にして製作精度の公差をほぼゼロ mmとすることは不可能である。 従つ て、 ただ単に極間距離を小さくして行くだけでは、 陽極と陰極の間に存在するィ オン交換膜を押し切り破損させたり或いは、 極間距離がィオン交換膜の厚みとほ ぼ同じ距離で、 陽極と膜、 陰極と膜の間に隙間の殆ど無い状態 (以下ゼロギヤッ プと言う) に保てない部分が存在したりして、 理想的なゼロギャップは得られな レ、。
イオン交換膜法では、 ゼロギャップとするために、 陽極は比較的剛性を強くし て、 イオン交換膜を押しつけても変形の少ない構造とし、 陰極側のみを柔軟な構 造にして、 電解セルの製作精度上の公差や電極の変形等による凹凸を吸収してゼ 口ギャップを保つような構造としている。
ゼ口ギヤップ構造としては、 陰極側に導電性のクッションマットと、 これに隣 接し且つ陽イオン交換膜と接触する部分に水素発生用陰極を重ねた少なくとも 2 層を有していることが必要である。 例えば、 図 1に示すように陰極室内に導電性 プレート 3を取り付け、 その上部に導電 ¾Ξのクッシヨンマット 2と、 更にその上 部で且つ陽イオン交換膜と接触する部分に 0 . 5 mm以下の厚みの水素発生用陰 極 1を重ねた少なくとも 3層を有することが好ましい。
導電性プレート 3は、 その上に積層されるクッションマット 2や水素発生用陰 極 1へ電気を伝えるとともに、 それらから受ける荷重を支え、 陰極から発生する ガスを隔壁 5側に支障なく通過させる役割がある。 従って、 この導電性プレート の形状は、 ェクスパンドメタノレゃ打ち抜き多孔板などが好ましい。 開口率は、 陰 極から発生した水素ガスを支障なく隔壁側に抜き出せるために 4 0 %以上あるこ とが好ましい。 強度については、 リブ 4とリブ 4の間隔が 1◦ 0 mmの場合、 そ の中央部に 3 mH 2 Oの圧力がかかつても 0 . 5 mm以下の撓みであれば導電性 プレートとして使用できる。 材質は、 耐食性の面からニッケル、 二ッケル合金、 ステンレススチール、 鉄などが利用できるが、 導電性の面からニッケルが最も好 ましい。
導電性プレート 3の一部に図 2の如く L型部 6を形成して、 隔壁 5に直接取り 付けることもできる。 この場合は、 リブと導電性プレートを兼ねることになり、 材料の節約、 組立時間の削減ができるので好ましい。
導電性プレートは、 今までフアイナイトギャップの電解セルで用いていた陰極 をそのまま利用することもできる。
クッションマツトは、 導電性プレートと水素発生用陰極の間にあって、 電気を 陰極に伝えること、 陰極から発生した水素ガスを導電性プレート側に抵抗なく通 過させることが必要である。 そして最も重要な役割は、 イオン交換膜に接してい る陰極に対し均一で膜を損傷させない程度の適切な圧力を加えて、 ィオン交換膜 と陰極とを密着させることである。
クッションマットとしては、 通常公知のものが使用できる。 クッションマット の線径としては、 0 . 0 5 mm〜0 . 2 5 mmのものが好適に用いられる。 線径 が 0 . 0 5 mmより細いとクッションマットがつぶれやすく、 また線径が 0 . 2 5 mmより太いとクッションマットとして強く、 電解に使用した場合押し付け圧 の増加により膜の性能に影響を及ぼす。
さらに好適には、 0 . 0 8 mm〜 0 . 1 5 mmの範囲の線径を使用することが できる。 例えば線径◦. 1 mm程度のニッケル製ワイヤーを織ったものを波付け 加工したものでよい。 材質は通常は導電性の面からニッケルが使用される。 また このようなクッションマツトの厚みは、 3mmから 1 5mm程度のものを用いる ことができる。
さらに好適には、 5mmから 10mm程度のものが使用できる。 クッションマ ットの柔軟 'ί生は、 公知の範囲のものが使用できる。 クッションマツトの柔軟性は、 50 %圧縮変形時の反発力力 S20 g/cm2〜400 g/cm2の範囲のものを用 いることができる。 50%圧縮変形時の反発力が 20 g/ cm2より小さレ、と H莫 を完全に押し付けることができなく、 400 g/ cm2より大きいと膜をより強 く押し付けるので好ましくない。
さらに好適には 50 %圧縮変形時の反発力が 30 gZcm2から 200 gZ c m 2の弾性を有するものが使用できる。
このようなクッシヨンマツトは、 導電性プレートの上に重ねて使用する。 この 取り付け方法も通常公知の方法、 例えばスポット溶接で適宜固定するか或いは樹 脂製のピンや金属製のワイヤー等が使用できる。
クッションマットの上には直接陰極を重ねても良い。 或いは別の導電性シート を介して陰極を重ねても良い。 ゼロギャップに使用できる陰極としては、 線径が 細くメッシュ数の小さい陰極が柔軟性も高く好ましい。 このような基材は通常公 知のものを使用できる。 線径 0. 1〜0. 5mmで、 目開きが 20メッシュから 80メッシュ程度の範囲であればよい。
また、 陰極の基材としては、 0. 05〜0. 5 mmの板厚のニッケノレ製ェクス パンドメタノレゃニッケノレ製の打ち抜き多孔板やエッケノレ製の金網で、 開口率が 2 0%から 70%のものも好適に用いることができる。
陰極の製造工程における取り扱いや陰極としての柔軟性の面からより好適には、 0. 1 mm〜 0 · 2 mmの板厚のニッケル製ェクスパンデッドメタルや二ッケル 製の打ち抜き多孔板や二ッケル製の金網で、 開口率力 S 25 %から 65 %のものを より好適に用いることができる。 ニッケルエタスパンドメタルの場合は、 圧延処 理を行い、 加工前の金属平板厚みの 95〜105%の範囲で平坦にしたものがよ り好ましい。 金網の場合は、 直角に 2本の線が交わるため板厚としては、 厚みが 線径の 2倍になる。 また、 線径の 95〜 105 %の範囲で金網を圧延加工処理し たものも好適に用いることができる。
陰極のコーティングとしては、 貴金属酸化物のコーティングで且つ薄いことが 好ましい。 その理由は、 例えばニッケル酸化物をプラズマ溶射したコーティング では、 厚みが 1 0 0 /i ni以上にもなり、 柔軟性を要求されるゼロギャップ用陰極 としては硬く脆いため、 陰極に接しているイオン交換膜が傷つく場合があった。 また、 金属のメツキでは、 十分な活性が得られにくい。 そのため貴金属の酸化物 を主成分としたコーティングが活性も高く、 コーティング層の厚みを薄くできる ので好ましい。
コーティング層の厚みが薄いと、 陰極基材の柔享欠 I生が損なわれず、 イオン交換 膜を損傷しないので好ましい。 コーティングは厚すぎると前述のように、 イオン 交換膜を痛める場合があるだけでなく、 陰極の製作コストが上がるなどの不具合 がある。 また薄すぎると十分な活性が得られない。 そのためコーティング層の厚 みは、 0 . 5 μ mから 5 0 μ mが好ましく、 最も好ましくは 1 μ mから 1 0 μ m の範囲である。 陰極のコーティング厚みは、 基材断面を切断し、 光学顕微鏡ゃ電 子顕微鏡により計測することができる。
このような陰極を取り付ける場合は、 通常公知の溶接法やピンで止める方法な どが用いられる。
ゼロギャップ電解セルにおいては、 今まで述べたような、 要件の他に陽極その ものの形状も重要である。 陽極には、 イオン交換膜が、 従来のフアイナイ トギヤ ップ電解セルより強く押しつけられるため、 エタスパンドメタル基材を用いた陽 極では開口部の端で、 イオン交換膜が破損すること或いは、 開口部にイオン交換 膜が食い込んで、 陰極とイオン交換膜の間に隙間ができて電圧が上昇したりする ことがあった。
このために電極としては出来るだけ平面的な形状とすることが必要である。 そ のためには、 ェクスパンド加工した基材をローラでプレスして平面状にすること が望ましい。 一般にェクスパンド加工をすると、 その厚みは、 加工する前の約 1 . 5倍から 2倍に見かけ厚みが増加する。 このままでゼロギヤップ電解セルに用 1/ヽ ると前述の問題が生じるので、 ロールプレス等の手段により圧延して、 エキスパ ンド加工前の金属平板厚みの 9 5 %から 1 0 5 %まで厚みを薄くし平面化するこ とが望ましい。 このようなことをすることにより、 イオン交換膜の損傷が防げる ばかりでなく、 意外なことに電圧も低減できる。 この理由は明確ではないがィォ ン交換 8奠表面と電極面が均一に接触するので電流密度が均一化するためと予想し ている。
陽極の厚みとしては、 通常 0 . 7 mniから 2 . 0 mmが好ましい。 この厚みが あまり薄すぎると、 陽極室と陰極室の圧力差や陰極の押しつけ圧力によりイオン 交換膜が陽極を押しつける圧力で、 陽極が落ち込み、 電極間距離が広がるのでゼ 口ギヤップ電解セルの電圧が高くなるので好ましくない。 また厚すぎると、 電極 の裏側即ちイオン交換膜と接する面の反対側で電気化学反応が生じ、 抵抗が高ま るので好ましくない。
陽極の厚みとして、 より好ましいのは、 0 . 9 mmから 1 . 5 mmの厚さであ り、 さらに好ましくは、 0 . 9 mn!〜 1 . 1 mmの厚さである。 金網の場合は、 直角に 2本の線が交わるため板厚としては、 厚みが線径の 2倍になる。
またゼロギヤップ電解セルにおいては、 電解中はイオン交換膜と陽極表面が密 着しており、 そのために局部的に電解液の供給が不足する場合がある。 ゼロギヤ ップ電解セルの場合、 電解中は陽極側で塩素ガスが発生し、 陰極側で水素ガスが 発生する。 通常電解は、 陰極側のガス圧力を陽極側のガス圧力より大きく保ち、 ガス差圧により陽極に膜を押し付けて運転を行う。 ゼロギヤップ電解槽では、 運 転中に陰極側のマツトレスによる押し付け圧も加わるために、 通常の陽極と陰極 の間にギャップがあるフアイナイ トギャップ電解槽より、 陽極側への押し付け圧 が大きい。 押し付け圧が強くなると、 イオン交換膜に微細な水泡が出来たり、 或 レヽは電解電圧が上昇したりすることがあった。
このようなことを防ぐため、 陽極表面には凹凸を設け、 その凹 ώにより電解液 の供給をしやすい構造とするのが好ましい。 具体的には、 表面をプラスト処理或 いは酸によるエッチング処理などの手段で、 表面に適度な凹凸を設けることが効 果的である。
この凹凸に陽極触媒を塗布していくわけであるが、 この凹凸に陽極触媒が入り 込みエッチング後の表面荒さより、 荒さの程度が軽減される。 例えば陽極の触媒 は、 チタン基材表面を酸処理した後、 塩化イリジウム、 塩化ルテニウム、 塩化チ タンの混合溶液を塗布後に熱分解して形成される。 1回あたりの触媒厚みとして は 0 · 2 μ m〜 0 . 3 μ mで塗布 ·熱分解の工程を繰り返すことにより、 全体とし て平均 1 m〜 1 0 μ mの範囲の触媒層厚みを形成することができる。 触媒層厚 みは、 陽極の寿命や価格などから決定されるが、 平均 1 μ η!〜 3 μ πιの範囲が好 適に選択される。
陽極触媒塗布後の表面荒さの程度としては、 山と谷高さの差の最大値が、 5 μ mから 5 0 μ mの範囲であることが必要である。 凹凸が少なすぎると局部的に 電解液の供給が不足する場合があり好ましくなレ、。 また凹凸が大きすぎると、 逆 にィォン交換膜の表面を傷つけたりする場合があり好ましくない。 したがって、 イオン交換膜を安定して使用するためには陽極の表面の凹凸の差の最大値が 5 μ πιから 5 0 μ πιの範囲であることが必要である。 さらに安定して運転するため には、 陽極の表面の凹凸の差の最大値は、 8 /z mから 3 ◦ μ πιであるのがさらに 好ましい。 '
陽極の表面荒さを測定する場合には、 触針を用いた接触式測定方法や光干渉や レーザー光を利用した非接触測定方法などがある。 ェクスパンド加工後圧延処理 を施し、 酸処理後触媒を塗布した表面は微細な凹凸があるため、 触針式では検知 できない可能性があるので、 非接触式による測定方法が望ましい。
非接触式の光干渉方法による測定は、 Z y g o製の N e w V i e w 5 0 2 2な どを利用する。 本装置は、 光学顕微鏡と干渉系型対物レンズ · C C Dカメラを備 え、 白色光源を被測定物にあて、 表面形状に応じて発生する干渉縞を垂直走査す ることで、 対象物の表面形状を三次元的に測定し、 凹凸を算出する手法である。 被測定領域は、 任意に選ぶことが可能であるが、 陽極の表面の凹凸をある程度 把握するためには、 1 0 z mから 3 0 0 μ m四方の領域を測定することが好適に 選ぶことができる。 特にエタスパンドメタルを測定する場合には、 5 0 μ mから 1 5 0 /z m四方の領域を測定することがより好ましい。
表面の測定値は、 表面の平均荒さ R aや 1 0点平均荒さ等の数値も測定可能で あるが、 表面の凹凸の最高値と最小値の差は、 P V値 (Peak to Val ly) として 算出される。 その値による陽極表面の荒さとそれらの陽極をゼロギャップ電解槽 に用いた場合の評価結果に著しい相関を発見し、 本発明を完成させたのである。 本文中ではこの P V値を陽極表面の凹凸の差の最大値とする。
また、 陽極基材の開口率としては、 2 5 %以上 7 0 %以下であることが好まし い。 この開口率の測定方法は、 いろいろな方法があるが、 電極のサンプルをコピ 一機により複写して開口部分を切り出して重量を計る方法や、 開口部分の長さ幅 などを測定して計算により求める方法などいずれでも良レ、。
開口率があまりに小さすぎると、 イオン交換膜への電解液の供給が不足する事 による水泡の発生などが生じて安定した電圧、 電流効率で運転できなくなる可能 性があり好ましくない。 また開口率が大きすぎても、 電極の表面積が減少して、 電圧が高くなるので好ましくない。 したがって最も好ましいのは、 開口率として 3 0 %から 6 0 %の範囲である。
ゼロギャップ電解セルを用いて電解する場合、 本発明者等の検討では、 陽極室 及びノまたは陰極室の隔壁部と電極の間には電解液の内部循環流路となる筒状の ダクト及び又はバッフルプレートを少なくとも一個有する電解セルにおいて、 陰 極側に導電性プレート層と、 その上部に導電性のクッションマット層と、 更にそ の上部で且つ陽イオン交換膜と接触する部分に 0 . 5 mm以下の厚みの水素発生 用陰極層を重ねた少なくとも 3層を有する複極式ゼ口ギヤップ電解セルが最も好 ましい。 このようなゼロギヤップ電解セルにおいては、 陽極側電解液濃度分布及 び陰極側濃度分布も適正に調整しやすい。 更にはセル内の圧力変動も小さく、 ィ オン交換膜の損傷も殆どない。 従って、 8 k AZm 2程度の高電流密度において も長期間安定した電解ができる。
ゼロギャップ電解槽を 4 k A/m 2以上から 8 k A/m 2以下の、 さらに好ま しくは 5 k A/m 以上から 8 k AZm 2以下の高電流密度で、 安定した電流効 率、 安定した電圧で長期間運転するために必要なことは、 電解セル内の電解液濃 度分布が均一であること、 電解セル内に気泡やガスの滞留部分の無いこと、 電解 液や気泡 ·ガスを排出ノズノレから払い出す際に、 これらが混相とならず電解セル 内に圧力変動が生じることなく、 振動が発生しないことである。 セル内の振動は、 横河電機製 A R 1 2 0 0アナライジングレコーダーを用いて、 陽極セル内の圧力 変動を測定し、 最大圧力と最小圧力の差を電解槽の振動として測定を行う。
ゼロギヤップセルでは、 陽極と陰極がィオン交換膜を挾んで密着しているため、 ィオン交換膜への物質移動が阻害されやすレ、。 ィオン交換膜への物質移動が阻害 されると、 イオン交換膜に水泡が出来たり、 電圧が上昇したり、 電流効率が低下 するなどの悪影響が生ずる。 そのためイオン交換膜への物質移動を促進して、 セ ル内の電解液の濃度分布を均一に保つことが重要である。
本発明者等の検討によると、 陽極側の濃度分布とイオン交換膜の電流効率の低 下傾向は相関しており、 濃度分布が広くなるほど電流効率の低下は大きかった。 また電流密度が高い場合、 ゼ口ギャップである場合に特に顕著にこの傾向が見ら れた。 陽極室内で図 3に黒丸で示す 9つのサンプリング位置 1 3で濃度を測定し て、 その中の最大濃度から最低濃度を差し引いた値を濃度差とした。 4 k AZ m 以上から 8 k A/m 2以下においては、 この濃度差が 0 . 5 N以上になると、 電流効率の低下が著しくなることを見いだした。 したがってゼロギャップ電解槽 で 4 k Α/πχ 以上で 8 k ΑΖιη 以下の電流密度においては、 少なくとも塩水 濃度差は、 0 . 5 N以下にすることが好ましい。
一般にクロルアルカリ電解槽の陽極側においては、 気泡の影響が著しい。 例え ば 4 k A/m 2、 0 . I M P a , 9 0 °Cの電解条件では、 陽極室上部は気泡が充 満しており、 ガス液比が 8 0 %以上にもなる部分が発生する。 このようなガス液 比の大きな部分は電流密度が大きくなればなるほど拡大する傾向がある。 このよ うなガス液比の大きな部分は流動性に欠けるため、 局部的な電解液の濃度低下を 生じたり、 ガスの滞留部分が生じる場合がある。 電極室上部のガス液比の大きな 部分をできるだけ減少させるためには、 電解圧力を高くすることや、 電解液の循 環量を大幅に増大するなどの方法はあるが、 安全上の問題や設備建設コストが高 くなる傾向があり好ましくない。 4 k A/m 2以上の高電流密度においては、 ガ スの発生量が増加することによる気泡の影響が顕著に現れ、 セル内の流動攪拌が 不十分になる部分が生じ、 陽極室内での食塩消費速度が早まること等により、 電 解セル内の電解液濃度分布が不均一になる場合がある。
ゼロギヤップセノレにおいて、 このような陽極室内での濃度分布悪化を防止し、 イオン交換膜への物質移動を阻害しないような手段としてはいくつか考えられる 1 例えば陽極側の構造として、 図 3及び図 4に示すような、 電解セル内に内部 循環出来るようなプレートを有し、 横方向に均一に電解液を供給できる電解セル は、 ゼロギヤップセルの陽極側として適当な構造の一つである。
即ち、 図 3, 図 4において、 陽極液ディストリビュータ 1 4により横方向で均 一に供給された飽和塩水は、 バッフルプレート 9により電解セルの上下方向に循 環され、 セル内全体として均一な濃度分布が得られる。 また、 このような電解セ ルを用いて、 供給塩水に、 出口ノズノレ 8から排出される薄い塩水を集めて飽和塩 水と混ぜて、 供給塩水量を増し且つ濃度を下げて供給する等の方法により更に精 度良く濃度分布を調整できる。 このようにして、 ゼロギャップ電解セルを安定し た性能で電解できるようになる。
陰極側の濃度分布とィオン交換膜の電圧の上昇傾向は相関しており、 濃度分布 が広くなるほど電圧の上昇は大きかった。 また電流密度が高い場合、 ゼロギヤッ プである場合に特に顕著にこの傾向が見られた。 陰極室內でも、 図 8に示すよう に、 陽極室と同様な 9つのサンプリング位置 1 3で濃度を測定して、 その中の最 大濃度から最低濃度を差し引いた値を濃度差とした。 その結果、 八/^!^以 上から 8 k AZm 2以下においては、 この濃度差が 2 %より大きくなると、 電流 効率の低下が著しくなることを見いだした。 したがってゼロギャップ電解槽で 4 k A/m 2以上から 8 k A/m 2以下の電流密度においては、 少なくともアル力 リ濃度差は、 2 %以下にすることが好ましい。
ゼロギヤップセルにおいて、 このような陰極室内での濃度分布悪化を防止し、 イオン交換膜近傍の物質移動を阻害しないような手段としてはいくつか考えられ るが、 例えば陰極側の構造として、 図 6, 図 8に示すような、 横方向に均一に電 解液を供給できる電解セルは、 ゼロギヤップセルの陰極側として好ましい構造の 一つである。
即ち、 図 8において、 陰極液デイストリビュータ 2 3により横方向で均一に供 給された電解液は、 供給アル力リと陰極室内アル力リ濃度の違いによりセルの上 下方向に循環され、 セル内全体として均一な濃度分布が得られる。 また、 このよ うな電解セルを用いて、 供給アル力リ流量を適宜調整することによりに、 更に精 度良く濃度分布を調整できる。 このようにして、 ゼロギャップ電解セルを安定し た電圧で電解できるようになる。
竃解セル内の圧力変動が生じると、 陽極室と陰極室の差圧が変動する。 ゼロギ ャップ電解セルにおいては、 クッションマットを利用して、 ィオン交換膜を介し て陽極と陰極を常に密着させている。 そのため差圧変動があると、 この密着力が 変動し、 電極によりイオン交換膜を擦る場合がある。 イオン交換膜は、 樹脂製で あり且つその表面にはガス付着を防止するためのコーティングがなされているの で、 電極によりイオン交換膜が擦られると、 イオン交換膜のコーティング層が剥 離したり、 イオン交換樹脂そのものを削り落としたりすることがある。 その場合、 電圧の上昇や、 電流効率の低下等を引き起こし、 安定した電解が出来なくなる。 そのため、 電解セル内の圧力変動を防止することはゼロギヤップ電解セルにおい ては重要な要素である。 このようなセル内の圧力変動は、 出来るだけ低い方が好 ましく、 3 0 c mH 2 0以下、 更に好ましくは 1 5 c mH 2〇以下、 最も好まし いのは 1 0 c mH 2〇以下である。 1 0 c mH 2〇以下で有れば 1年以上の長期 間電解した後でも、 ィオン交換膜に何の損傷もなく運転できる。
セル内の圧力変動を防止する手段としては幾つか考えられるが、 例えば図 5に 示すように、 気液分離室 7内に仕切り板 2 0を設け、 その上部に気泡除去用多孔 板 1 9を設けると効果的である。
次に、 本発明の実施例と、 それを用いた適用例を示すが、 本発明はこれら特定 の形態のみに限定されるものではない。
[適用例 1 ]
図 3、 図 8と同様な陽極構造と陰極構造を持ち、 図 6と同様な断面構造を持つ、 本発明の実施例による複極式ゼロギヤップ電解セル 3 0を直列に並べ、 その一方 の端に陽極単位セル及びもう一方の端に陰極単位セルを配して電流リ一ド板 2 8 を敢り付け、 図 7の電解槽を組み立てた。
複極式ゼ口ギヤップ電解セル 3 0は、 横幅が 2 4. 0 0 mni、 高さが 1 2 8 0 m mで、 陽極室と、 陰極室と、 気液分離室 7とを有する。 陽極室および陰極室は、 それぞれ平鍋状の隔壁 5によって形成されて、 背中合わせに配置される。 これら 陽極室および陰極室は、 隔壁 5の上部に設けた折曲部 1 8にフレーム材 2 2を揷 入して組み合わされている。 各気液分離室は、 高さ Hの L字状仕切部材 1 6を隔 壁 5に固定して、 各電極室の上部に画定されている。
気液分離室の断面積は陽極側 2 7 c m 2 , 陰極側の気液分離室の断面積は 1 5 cmzで、 陽極側気液分離室のみ図 5と同様な構造とした。 すなわち陽極側気液 分離室の通路 Bの幅 Wを 5mm、 高さ H'は 50mm、 板厚み lmmのチタン製 仕切板 20を設け、 その上端から垂直に気液分離室上端までの高さで、 開口率 5 9 %、 厚み 1 mmのチタン製ェクスパンデッドメタルの多孔板 19を取り付けた c 陽極側気液分離室の孔 15は、 幅 5 mm、 長さ 22 mmの楕円型のものを 37. 5 mmピッチのものとした。 .
バッフルプレート 9は陽極側のみに設け、 通路 Dの幅 W2を 10mm、 高さ H 2は 500mm、 板厚み 1 mmのチタン製のバッフルプレートを設け、 隔壁 5と プレート下端との隙間 W2'を 3mmとした。 バッフルプレート上端から垂直に 電極室上端までの高さ Sは 40 mmとした。
陽極液デイストリビュータ 14としては、 220 cmの長さで 4 cm 2の断面 積を持つ角形パイプに直径 1. 5mmの穴を等間隔に 24個有するものを、 電角 セルの陽極室底から 50mmの位置に水平に取り付け、 その一方の端を陽極側入 りロノズノレ 12と接合した。 このディストリビュータの圧力損失は、 4 kA/ m 2相当の塩水供給量 150 L/H rの飽和塩水を流した時約 2 mm · H 2〇で あった。
陰極液ディストリビュータ 23としては、 220 cmの長さで 3. 5 cm2の 断面積を持つ角形パイプに直径 2 mmの穴を等間隔に 24個有するものを、 電解 セルの陰極室底から 50mmの位置に水平に取り付け、 その一方の端を陰極側入 りロノズノレ 24と接合した。 このディストリビュータの圧力損失は、 4kAZ m 相当のアルカリ供給量 300 L/Hrで流した時約 12mm · H20であつ た。
ゼ口ギャップ用の陰極側としては、 図 1に示す構造を製作した。 即ち、 導電 f生 プレート 3としてニッケルェクスパンドメタルで、 厚み 1. 2mm、 開口部の横 方向長さ 8 mm、 縦方向の長さ 5 mmのものを用い、 クッションマット 2として 0. lmmのニッケルワイヤー 4本を用いて織物とし更に波形に加工して厚さ 9 mmのものを、 導電性プレートに 18力所スポット溶接して固定し、 更に、 水素 発生用陰極 1として酸化ルテニゥムを主成分とした約 3 μιηのコーティングが施 された、 線径 0. 1 5 mmで 40メッシュのニッケル製金網で覆い、 陰極周辺部 を約 60力所スポット溶接により導電性プレートに固定して 3層構造とした。 陽極側は、 図 3、 4と同様で、 陽極液ディストリビュータ 14とバッフルプレ ート 9を備えた構造とした。
電解セル内の圧力変動を防止するために、 陽極側気液分離室に図 5に示すよう な、 仕切板 2◦と気泡消去用多孔板 19を設けた。 陰極側の気液分離室には、 こ のような仕切板や気泡消去用多孔板は設けなかった。
陽極 11としては、 1mmのチタン板を、 ェクスパンド加工し、 ロールプレス 加工により厚みを 1 ±0. 05 mmまで圧延したものを用い、 リブ 22に取り 付けている。 ロールプレス加ェ前のェクスパンドメタルの開口部は横 6 m m縦 3 mmのピッチで送り加工ピッチは lmmとした。 ロールプレス加工後のェクスノ、。 ンドメタルの開口率をコピー機での複写により測定すると 40 %であった。 これ を硫酸によりエッチング処理して、 表面に山と谷 (凹凸) の高さの差の最大値が 30 μ mであった。 酸によりェツチング処理した基材に R u O 2、 I r O 2、 T i o2をベースとしたコーティングを施して陽極とした後の山谷 (凹凸) 差の 最大値は、 約 1 3 μιηであった。
陽極表面の凹凸の差の最大値は、 Zy g o社製 Ne wV i ew5022を用レヽ て測定を行った。
最初に標準サンプル (回凸 1. 824//m) を用いて、 適切な光量が得られる ように校正を行った。 その後被測定物を白色光源下に置き、 干渉縞が出現するよ うに調整を行つた。 その後垂直方向に 100 μ m程度移動する際の干渉縞を測定 し、 周波数領域解析より凹凸を求め、 最高値と最低値の差を山谷 (凹凸) の差の 最大値として算出を行った。
このような電解セルに、 陽ィオン交換膜 A C I P LEX (登録商標) F 440 1を、 ガスケットを介してはさみ電解槽を組み立てた。 この電解槽の陽極室側に、 陽極液として出口塩水濃度が 200 gZLとなるように濃度 300 g / Lの塩水 を供給し、 陰極室側には出口劳性ソーダ濃度が 32重量%となるように希薄苛性 ソーダを供給し、 電解温度 90°C、 電解時の絶対圧力で 0. 14MP a、 電流密 度 4 k AZm 2〜 6 k A/m 2の範囲で 360日間電解した。
電解中の電解セル内の陽極液濃度分布及び陰極液濃度分布は図 3、 図 8のサン プリングボイント 1 3の位置で測定した。 即ち、 セル内の通電部上端から 1 50 mm、 600 mm, 1000 mm下の位置でセル中央部及びセル両端から各々 1 00 mm内側の 9 , を測定した。 その 9点のうち最大濃度と最小濃度の差を濃度 差として表 1に示す。
表 1
Figure imgf000020_0001
また、 電解中の電圧、 電流効率、 電解セル内の振動と濃度分布を測定した結果 を表 1に示す。 この結果から、 電圧の上昇は 6 k A/m2でも僅か 3 OmVであ .り、 電流効率の低下も僅か 1 %程度であった。 電解セル内の振動も水柱で 5 cm 以下であり、 濃度差は陽極側が 0. 31N〜0. 35 N、 陰極側が 0. 6%〜0.
8%であった。
360日電解後、 電解槽を解体して、 ィオン交換膜を取り出して調査したが、 水泡も全くなく、 更に長く運転できる状態であった。
[比較例 1]
適用例 1で用いた陽極を変更した以外はすべて同様な複極式電解セルを用いて 電解槽を形成した。 即ち、 陽極として、 1 mmのチタン板をェクスパンド加工したもので、 開口率 が 30%であるものを、 硫酸によりエッチング処理して、 表面に凹凸差の最大値 が約 8 μπιであり、 Ru02、 I r 02、 T i〇 2をベースとしたコーティング を施した後の凹凸差の最大値は 3 μ mで、 陽極厚みが 1. 8 mmであった。 適用 例 1と全く同様に運転し、 同様の測定を行った結果を表 2に示す。 この結果から、 電圧の上昇は 6 k A/m "で 150mVもあり、 電流効率の低下は 2〜 3 %もあ つた。 電解セル内の振動は 6 k A/m でも水柱で 5 c m以下であり、 濃度差は 陽極側が 0. 31N~0. 35N、 陰極側が 0. 6 %〜 0. 8 <%であつた。
360日電解後、 電解槽を解体して、 イオン交換膜を取り出して調査した結果、 イオン交換膜に微細な水泡があり、 小さなピンホールのあるイオン交換膜もあつ た。
[参考例 1 ]
適用例 1で用いた水素発生用陰極を変更した以外はすべて同様な複極式電解セ ルを用いて電解槽を形成した。 即ち、 水素発生用陰極として酸化ニッケルを主成 分とした約 250 μ mのコーティングを施した、 線径 0. 4 mm (陰極厚みが 0. 8 mm) で 14メッシュのニッケル製金網を用レヽた。
適用例 1と全く同様に運転し、 同様の測定を行った結果を表 2に示す。 この結 果から、 電圧は初期から高めであり、 その上昇は 6 k A/m 2で 8 OmVもあり、 電流効率の低下は 2 %〜 3。/。もあった。 電解セル内の振動は 6 kAZm2でも水 柱で 5 cm以下であり、 濃度差は陽極側が 0. 31N〜0. 35 N、 陰極側が 0. 6%〜0. 8%であった。
360日電解後、 電解槽を解体して、 イオン交換膜を取り出して調査した結果、 ィオン交換膜表面が削られており、 小さなピンホールのあるィオン交換膜もあつ た。 また陰極コーティングにも多くの剥離や割れが見られた。 表 2
Figure imgf000022_0001
[適用例 2]
適用例 1で用いた陽極を変更した以外はすべて同様な複極式電解セルを用いて 電解槽を形成した。
即ち、 陽極として、 1 mmのチタン板をェクスパンド加工したものをロールプ レス加工により厚みを 1. 2mmにしたものを用いた。 開口率を測定したところ 40%であった。 硫酸によりエッチング処理して、 表面に凹凸差の最大値が約 3
0 //mであり、 Ru〇2、 I r02、 T i O 2をベースとしたコーティングを施 した後の四凸差の最大値は 13 mであった。 実施例 1と全く同様に運転し、 同 様の測定を行った結果を表 3に示す。 この結果から、 電圧の上昇は 6 k A/m2 で 50 m Vであり、 電流効率の低下は 1. 3 %であつた。 電解セル内の振動は 6 k A/m Δでも水柱で 5 c m以下であり、 濃度差は陽極側が 0. 31 N〜 0. 3 6N、 陰極側が 0. 6%〜0. 8%であった。
360日電解後、 電解槽を解体して、 イオン交換膜を取り出して調査した力 水泡も全くなく、 更に長く運転できる状態であった。 表 3
Figure imgf000023_0001
[適用例 3]
適用例 1と全く同様な電解槽を用いて、 7 k A/m2から 8 kA/m2の範囲 で電解を行った。
この場合、 陽極液として電解槽から排出された淡塩水を最高 155 L/H r · c e 1 1まで飽和塩水量に対し加えて、 各電解セルに供給し濃度分布を維持した。 また、 陰極液も、 供給量を、 最高 400 LZHr - e e l 1まで変化させて濃度 分布を維持した。
電解中の電圧、 電流効率、 電解セル内の振動と濃度分布を測定した結果を表 4 に示す。 この結果から、 電圧の上昇は 8 k A/m2でも僅か 3 OmVであり、 電 流効率の低下も僅か 0. 9%程度であった。 電解セル内の振動も水柱で 10 cm 以下であり、 濃度差は陽極側が 0. 39N〜0. 47N、 陰極側が 1. 2 %〜: L .
4%であった。
180日電解後、 電解槽を解体して、 イオン交換膜を取り出して調査したが、 水泡も全くなく、 更に長く運転できる状態であった。
[参考例 2]
適用例 1と全く同様な電解槽を用いて、 7 kA/m2から 8 kAZm2の範囲 で電解を行った。
この場合、 陽極液として電解槽から排出された淡塩水は飽和塩水に加えず、 ま た、 陰極液も、 供給量を 300 L/Hr - e e l 1のままで維持した以外は、 適 用例 3と同様な条件で電解した。
電解中の電圧、 電流効率、 電解セル内の振動と濃度分布を測定した結果を表 4 に示す。 この結果から、 電圧の上昇は 8 kA/m2で 9 OmVであり、 電流効率 の低下も 3. 3 %であった。 電解セル内の振動も水柱で 5 c m以下であり、 濃度 差は陽極側が 0. 6N〜0. 7N、 陰極側が 1. 5%〜2. 1%であった。
180日電解後、 電解槽を解体して、 イオン交換膜を取り出して調査した結果、 ィオン交換膜全体に直径 1 mmから 10 mmの水泡が多数出来ていた。
表 4
Figure imgf000025_0001
[適用例 4 ]
複極式電解セルの断面図が図 9の構造で、 陽極としてェクスパンドメタル厚み 1 . 8 mmのものを備えており、 陰極として、 ニッケルエタスパンドメタルにプ ラズマ溶射により 2 5 0 厚みの酸化ニッケルを主成分とするコーティングが なされていて、 電極間距離 2 mmとして 1年間使用した電解セルを準備した。 この電解セルの陽極を取り除いて、 新たに陽極として適用例 1と全く同様なも のを装着した。 更に、 陰極のコーティングをブラシで削り落とし、 ニッケル地肌 を露出させ導電性プレー卜として用い、 さらに適用例 1と全く同様なクッシヨン マットと水素発生用陰極を全く同様な方法で取り付けた。
適用例 1と同様な電解槽を構成し、 同様な電解を行った。 電解中の電圧、 電流 効率、 電解セル内の振動と濃度分布を測定した結果を表 5に示す。 この結果から、 電圧の上昇は 6 k A/m 2でも僅か 2 O mVであり、 電流効率の低下も僅か 0 . 7 %程度であった。 電 セル内の振動も水中で 5 c m以下であり、 濃度差は陽極 側が最髙 0 . 3 5 N、 陰極側が最高 0 . 8 %であった。
1 8 0日電解後、 電解槽を解体して、 イオン交換膜を取り出して調査したが、 水泡も全くなく、 更に長く運転できる状態であった。
表 5
Figure imgf000026_0001
産業上の利用可能性
陽極室上部の非通電部分及び陰極室上部の非通電部分の各部に気液分離室を陽 極室または陰極室と一体ィ匕して設け、 陽極室及び/または陰極室の隔壁部と電極 の間には電解液の内部循環流路となる筒状のダクト及び又はバッフルプレートを 少なくとも一個有しており陰極側に導電性プレートと、 その上部に導電性のクッ シヨンマットと、 更にその上部で且つ陽ィオン交換膜と接触する部分に水素^ §生 用陰極を重ねた少なくとも 3層を有している複極式ゼ口ギヤップ電解セルにおい て陽極形状が最適であるため、 4 k A/m 2〜8 k A/m 2で電解しても電圧の 経時的な上昇もなく、 電流効率の低下も少なく、 イオン交換膜の水泡も生じない で長期間安定な電解が出来る。
この様なゼロギャップ電解セルは、 今までフアイナイトギャップで使用してい た電解セルを改造することによつても製作できる。 例えば陽極室上部の非通電部 分及び陰極室上部の非通電部分の各部に気液分離室を陽極室または陰極室と一体 化して設けており、 陽極室及び/または陰極室の隔壁部と電極の間には電解液の 内部循環流路となる筒状のダクト或いはバッフルプレートを有する電解セルで、 それまでフアイナイトギャップとして使用していたものを改造してゼロギヤップ 電解セルとする場合である。 この場合、 陽極及ぴ陽極室内を、 今まで述べたよう な構造に改良するとともに、 陰極室も改造し導電性プレー卜、 クッションマット、 陰極を取り付けてゼロギャップ電解セルにすればよレ、。 またフアイナイトギヤッ プで使用していた陰極をそのまま導電性プレートとして利用し、 新たにクッショ ンマット及び陰極を積層するだけでもゼロギヤップ電解セルとすることができる。 また逆にゼ口ギヤップ電解セルから、 陰極、 クッシヨンマット、 導電性プレート を取り除き、 新たに陰極を装着することによりフアイナイトギャップとしても使 用できる。 このような改造は、 新たに電解セルを製作するより大幅に安価で、 簡 単に改造できるので、 ユーザーにとってはメリットが大きい。

Claims

請 求 の 範 囲
1 . 複数の複極式電解セルと、 隣接した複極式電解セルの間に各々を配した 複数の陽ィオン交換膜とを有するフィルタ一プレス型電解槽に用レ、るための複極 式ゼ口ギヤップ電解セルであって、
陽極室と、
前記陽極室に設けた陽極であって、 開口率 2 5 %から 7 5 %のチタン製ェクス パンデッドメタルまたはチタン製金網を含む陽極基材で形成され、 該陽極基材へ の触媒の塗布後に、 陽極表面上の凹凸の高低差が最大で 5 β mから 5 0 μ mであ り、 厚みが 0 . 7 mmから 2 . 0 mmである陽極と、
前記陽極室と背中合わせに配置した陰極室と、
前記陰極室に重ねた少なくとも 2つの層を有する陰極であって、 これらの層が 導電性クッシヨンマット層と、 水素発生用陰極の層とを含み、 該水素発生用陰極 層がクッションマツト層に隣接するとともに、 前記陽イオン交換膜に接触する領 域に配置されている陰極と、
を備えた複極式ゼ口ギヤップ電解セル。
2 . 請求項 1による電解セルにおいて、 前記陽極基材がチタン製エタスパン デッドメタルを含み、 該ェクスパンデッドメタルがェクスパンド加工、 次いで圧 延加工によつてチタン製板から形成される、 複極式ゼ口ギヤップ電解セル。
3 . 請求項 2による電解セルにおいて、 前記メタルの厚みは、 ェクスパンド 加工後の圧延加工によって、 エタスパンド加ェ前の板厚の 9 5 %から 1 0 5 %に 設定される、 複極式ゼ口ギヤップ電解セル。
4. 請求項 1カゝら 3の何れかによる電解セルにおいて、 前記水素発生用陰極 は、 厚みが 0 . 0 5 111111から0 . 5 mmで且つエッケノレ製金網、 ニッケノレ製エタ スパンデッドメタルおよびニッケル製打ち抜き多孔板のグループから選んだ基材 で形成され、 該水素発生用陰極は、 この水素発生用陰極上に形成した厚みが 5 0 μ m以下の電解用触媒コーティング層を有する、 複極式ゼ口ギヤップ電解セル。
5 . 請求項 1による電解セルであって、 さらに、 それぞれ前記陽極および陰 極室の上部の非通電部に一体状に形成した気液分離室を備え、 電解液の内部循環 流路となる筒状ダクトおよびバッフルプレートのうちの少なくとも一方が前記陽 極およぴ陰極室の少なくとも 1つの隔壁部と対応した電極との間に設けられる、 複極式ゼ口ギャップ電解セル。
6 . 請求項 5による電解セルにおいて、 前記気液分離室には仕切板が形成さ れる、 複極式ゼロギャップ電解セル。
PCT/JP2003/015101 2002-11-27 2003-11-26 複極式ゼロギャップ電解セル WO2004048643A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP03811931.9A EP1577424B1 (en) 2002-11-27 2003-11-26 Bipolar zero-gap electrolytic cell
US10/535,249 US7323090B2 (en) 2002-11-27 2003-11-26 Bipolar zero-gap type electrolytic cell
ES03811931.9T ES2533254T3 (es) 2002-11-27 2003-11-26 Célula electrolítica bipolar, sin intersticios
AU2003302453A AU2003302453A1 (en) 2002-11-27 2003-11-26 Bipolar zero-gap electrolytic cell
JP2004555055A JP4453973B2 (ja) 2002-11-27 2003-11-26 複極式ゼロギャップ電解セル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002344467 2002-11-27
JP2002-344467 2002-11-27

Publications (1)

Publication Number Publication Date
WO2004048643A1 true WO2004048643A1 (ja) 2004-06-10

Family

ID=32375951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015101 WO2004048643A1 (ja) 2002-11-27 2003-11-26 複極式ゼロギャップ電解セル

Country Status (9)

Country Link
US (1) US7323090B2 (ja)
EP (2) EP2039806B1 (ja)
JP (2) JP4453973B2 (ja)
KR (1) KR100583332B1 (ja)
CN (2) CN101220482B (ja)
AU (1) AU2003302453A1 (ja)
ES (2) ES2547403T3 (ja)
TW (1) TWI255865B (ja)
WO (1) WO2004048643A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013821A (ja) * 2006-07-06 2008-01-24 炳霖 ▲楊▼ 電気分解を利用した燃焼ガス発生装置及び車載用燃焼ガス発生装置
JP2010144206A (ja) * 2008-12-18 2010-07-01 National Institute Of Advanced Industrial Science & Technology 水素発生方法及び水素発生装置
WO2010122785A1 (ja) * 2009-04-21 2010-10-28 東ソー株式会社 イオン交換膜法電解槽
WO2013141211A1 (ja) 2012-03-19 2013-09-26 旭化成ケミカルズ株式会社 電解セル及び電解槽
JP2014009385A (ja) * 2012-06-29 2014-01-20 Asahi Kasei Chemicals Corp 電解セル及び電解槽
US9476130B2 (en) 2010-12-28 2016-10-25 Tosoh Corporation Electrolytic cell
US9683300B2 (en) 2012-06-18 2017-06-20 Asahi Kasei Kabushiki Kaisha Bipolar alkaline water electrolysis unit and electrolytic cell
US9777382B2 (en) 2015-06-03 2017-10-03 Kabushiki Kaisha Toshiba Electrochemical cell, oxygen reduction device using the cell and refrigerator using the oxygen reduction device
JP2018104756A (ja) * 2016-12-26 2018-07-05 株式会社イープラン 電解槽
WO2018168863A1 (ja) 2017-03-13 2018-09-20 旭化成株式会社 電解セル及び電解槽
JP2018165379A (ja) * 2017-03-28 2018-10-25 高砂熱学工業株式会社 水電解方法、水電解装置、水電解システム、水電解・燃料電池運転方法、水電解・燃料電池装置及び水電解・燃料電池システム
WO2019172750A1 (en) 2018-03-05 2019-09-12 Nederlandse Organisatie Voor Toegepastnatuurwetenschappelijk Onderzoek Tno Method for electrochemically reducing carbon dioxide
CN111044584A (zh) * 2019-12-23 2020-04-21 浙江大学 一种动态测量金属材料氢陷阱参数的装置及方法
JP2020535314A (ja) * 2017-09-29 2020-12-03 ティッセンクルップ・ウーデ・クロリンエンジニアズ ゲー エム ベー ハー 電解装置
JP2022537986A (ja) * 2019-06-18 2022-08-31 ティッセンクルップ・ウーデ・クロリンエンジニアズ ゲー エム ベー ハー 電解用電極および電解装置
JP7364828B1 (ja) * 2022-05-31 2023-10-18 株式会社トクヤマ 電解槽ユニット
WO2023233799A1 (ja) * 2022-05-31 2023-12-07 株式会社トクヤマ 電解槽ユニット

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245468B (zh) * 2007-02-15 2010-12-22 蓝星(北京)化工机械有限公司 弹性网型离子膜电解单元槽
ITMI20070980A1 (it) * 2007-05-15 2008-11-16 Industrie De Nora Spa Elettrodo per celle elettrolitiche a membrana
ITMI20071375A1 (it) * 2007-07-10 2009-01-11 Uhdenora Spa Collettore di corrente elastico per celle elettrochimiche
CN101220483B (zh) * 2007-09-30 2011-05-11 中国蓝星(集团)股份有限公司 膜极距复极式自然循环离子膜电解槽
FR2934610A1 (fr) * 2008-08-01 2010-02-05 Olivier Martimort Electrode, destinee a etre utilisee dans un electrolyseur et electrolyseur ainsi obtenu.
ITBO20080688A1 (it) 2008-11-13 2010-05-14 Gima Spa Cella elettrochimica
CN102212840A (zh) * 2010-04-06 2011-10-12 北京化工大学 一种用于水溶液电解体系的金属阳极
CN103384732A (zh) * 2011-02-25 2013-11-06 旭化成化学株式会社 大型电解槽和电解停止方法
JP5885065B2 (ja) * 2011-11-14 2016-03-15 株式会社大阪ソーダ ゼロギャップ式電解槽用電極ユニット
WO2014069360A1 (ja) * 2012-10-31 2014-05-08 ダイソー株式会社 ゼロギャップ式食塩電解槽用陽極、食塩電解槽、及びこれを用いる食塩電解方法
EP2746429A1 (de) * 2012-12-19 2014-06-25 Uhdenora S.p.A Elektrolysezelle
CN103060833B (zh) * 2013-01-18 2016-02-10 蓝星(北京)化工机械有限公司 离子膜电解槽
US8808512B2 (en) 2013-01-22 2014-08-19 GTA, Inc. Electrolyzer apparatus and method of making it
US9222178B2 (en) 2013-01-22 2015-12-29 GTA, Inc. Electrolyzer
JP5548296B1 (ja) 2013-09-06 2014-07-16 ペルメレック電極株式会社 電解用電極の製造方法
WO2015068579A1 (ja) * 2013-11-06 2015-05-14 ダイソー株式会社 イオン交換膜電解槽及び弾性体
CN104694951B (zh) * 2013-12-10 2018-06-12 蓝星(北京)化工机械有限公司 改进型低槽电压离子膜电解槽
US11643739B2 (en) 2014-01-15 2023-05-09 Tosoh Corporation Anode for ion exchange membrane electrolysis vessel, and ion exchange membrane electrolysis vessel using same
CN106661745B (zh) 2014-07-15 2020-05-01 迪诺拉永久电极股份有限公司 电解用阴极和电解用阴极的制造方法
CN110023541B (zh) * 2017-01-13 2022-02-08 旭化成株式会社 电解用电极、电解槽、电极层积体和电极的更新方法
US10815578B2 (en) 2017-09-08 2020-10-27 Electrode Solutions, LLC Catalyzed cushion layer in a multi-layer electrode
KR101944730B1 (ko) 2017-09-15 2019-02-01 (주) 테크윈 간편한 전극 체결 구조와 전해액 유동 가이드 구조를 구비한 전기분해장치
KR20200095533A (ko) 2017-12-05 2020-08-10 가부시끼가이샤 도꾸야마 알칼리수 전해용 막-전극-개스킷 복합체
WO2019188260A1 (ja) 2018-03-27 2019-10-03 株式会社トクヤマ アルカリ水電解用電解槽
US20210054514A1 (en) 2018-03-27 2021-02-25 Tokuyama Corporation Separator membrane-gasket-protecting member assembly, electrolysis element, and electrolysis vessel
WO2019191576A1 (en) * 2018-03-29 2019-10-03 NorthStar Medical Radioisotopes LLC Ozone water generation system
KR102081305B1 (ko) 2018-03-30 2020-02-25 (주) 테크윈 다중유로 구조를 포함하는 전기분해장치
KR102518704B1 (ko) 2018-07-06 2023-04-05 아사히 가세이 가부시키가이샤 전극 구조체, 전극 구조체의 제조 방법, 전해셀 및 전해조
JP7173806B2 (ja) * 2018-09-21 2022-11-16 旭化成株式会社 電解槽の製造方法
CN109387420A (zh) * 2018-10-31 2019-02-26 中国人民解放军第五七九工厂 一种金相制样电解腐蚀装置及方法
KR102200114B1 (ko) 2019-01-31 2021-01-08 (주) 테크윈 일체형 온도조절장치를 포함한 전기분해조
KR102503553B1 (ko) * 2019-02-22 2023-02-27 주식회사 엘지화학 전기분해용 전극
US20220145481A1 (en) 2019-03-18 2022-05-12 Asahi Kasei Kabushiki Kaisha Elastic mattress and electrolyzer
CN110219012A (zh) * 2019-06-03 2019-09-10 江阴市宏泽氯碱设备制造有限公司 离子膜电解槽
CN110205644A (zh) * 2019-06-03 2019-09-06 江阴市宏泽氯碱设备制造有限公司 新型ineos膜极距电解槽
CN114555866A (zh) 2019-10-31 2022-05-27 株式会社德山 碱性水电解槽用弹性垫
JP7449362B2 (ja) 2020-02-26 2024-03-13 旭化成株式会社 電解槽及び電解槽の製造方法
US20230029237A1 (en) 2020-03-31 2023-01-26 Tokuyama Corporation Electrolysis element for alkaline water electrolysis, and alkaline water electrolysis vessel
CN115335551A (zh) 2020-03-31 2022-11-11 株式会社德山 碱性水电解槽
MX2022013869A (es) * 2020-07-07 2022-11-30 Bule Star Beijing Chemical Machinery Co Ltd Celda electrolitica de membrana ionica de distancia polar de membrana.
KR20220050777A (ko) 2020-10-16 2022-04-25 (주) 테크윈 전기분해장치
EP4053307A1 (en) 2021-03-01 2022-09-07 thyssenkrupp nucera AG & Co. KGaA Electrolysis cell, electrolysis device for chlor-alkali electrolysis and use of an electrolysis cell for chlor-alkali electrolysis
US11444304B1 (en) 2021-06-01 2022-09-13 Verdagy, Inc. Anode and/or cathode pan assemblies in an electrochemical cell, and methods to use and manufacture thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0050373A1 (en) * 1980-10-21 1982-04-28 Oronzio De Nora S.A. Electrolysis cell and method of generating halogen
JPH08109490A (ja) * 1994-08-16 1996-04-30 Daiso Co Ltd 酸素発生用陽極の製法
WO2001016398A1 (fr) * 1999-08-27 2001-03-08 Asahi Kasei Kabushiki Kaisha Cellule unitaire destinee a une cuve electrolytique comprenant une solution aqueuse metallique de chlorure alcalin
JP2001152380A (ja) * 1999-11-29 2001-06-05 Tokuyama Corp イオン交換膜電解槽

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232866B2 (ja) 1974-10-09 1977-08-24
US4111779A (en) * 1974-10-09 1978-09-05 Asahi Kasei Kogyo Kabushiki Kaisha Bipolar system electrolytic cell
US4444632A (en) 1979-08-03 1984-04-24 Oronzio Denora Impianti Elettrochimici S.P.A. Electrolysis cell
IT1122699B (it) * 1979-08-03 1986-04-23 Oronzio De Nora Impianti Collettore elettrico resiliente e cella elettrochimica ad elettrolita solido comprendente lo stesso
US4615775A (en) 1979-08-03 1986-10-07 Oronzio De Nora Electrolysis cell and method of generating halogen
IT8025483A0 (it) 1980-10-21 1980-10-21 Oronzio De Nora Impianti Elettrocdi per celle ad elettrolita solido applicati sulla superficie di membrane scambiatrici di ioni e procedimentodi prparazione ed uso degli stessi.
JPS59153376A (ja) 1983-02-22 1984-09-01 Canon Inc フアクシミリ装置
JPS59173281A (ja) 1983-03-23 1984-10-01 Tokuyama Soda Co Ltd 電解槽
JPS59153376U (ja) 1983-04-01 1984-10-15 クロリンエンジニアズ株式会社 フイルタ−プレス型イオン交換膜法電解槽
JPH0670276B2 (ja) 1983-05-02 1994-09-07 オロンジオ・ド・ノラ・イムピアンチ・エレットロキミシ・ソシエタ・ペル・アジオニ 塩素発生方法及びその電解槽
JPS61500669A (ja) 1983-11-30 1986-04-10 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− ゼロギヤツプ電解槽
US4687558A (en) * 1984-07-02 1987-08-18 Olin Corporation High current density cell
JPS6119789A (ja) 1984-12-25 1986-01-28 Chlorine Eng Corp Ltd 複極電極
JPH0674513B2 (ja) 1985-10-23 1994-09-21 旭化成工業株式会社 複極式電解槽ユニツト
JPS62227097A (ja) * 1986-03-27 1987-10-06 Agency Of Ind Science & Technol チタン電極
JPH0819540B2 (ja) 1986-06-30 1996-02-28 クロリンエンジニアズ株式会社 フイルタ−プレス型電解槽
JP2816029B2 (ja) 1991-03-18 1998-10-27 旭化成工業株式会社 複極式フィルタープレス型電解槽
DE69220526T2 (de) * 1991-03-18 1998-02-05 Asahi Chemical Ind Bipolare filterpressenartige Elektrolysezelle
JPH0534434A (ja) 1991-07-30 1993-02-09 Nec Corp 広周波数帯域雑音相関処理方式
US5599430A (en) 1992-01-14 1997-02-04 The Dow Chemical Company Mattress for electrochemical cells
JP3126232B2 (ja) 1992-08-14 2001-01-22 富士写真フイルム株式会社 画像ファイルの記録・再生方法および装置
JP3555197B2 (ja) 1994-09-30 2004-08-18 旭硝子株式会社 複極型イオン交換膜電解槽
DE4444114C2 (de) * 1994-12-12 1997-01-23 Bayer Ag Elektrochemische Halbzelle mit Druckkompensation
JP3608880B2 (ja) 1996-08-07 2005-01-12 クロリンエンジニアズ株式会社 活性陰極の再活性化方法および再活性化した陰極を備えたイオン交換膜電解槽
JP3553775B2 (ja) * 1997-10-16 2004-08-11 ペルメレック電極株式会社 ガス拡散電極を使用する電解槽
JP3686270B2 (ja) 1998-12-10 2005-08-24 株式会社トクヤマ 電解槽
JP3616265B2 (ja) 1998-12-10 2005-02-02 株式会社トクヤマ イオン交換膜電解槽
JP2000192276A (ja) * 1998-12-25 2000-07-11 Asahi Glass Co Ltd 複極型イオン交換膜電解槽
JP3772055B2 (ja) 1999-08-30 2006-05-10 株式会社トクヤマ 電解槽
JP3707985B2 (ja) 2000-03-22 2005-10-19 株式会社トクヤマ アルカリ金属塩電解槽
DE10138215A1 (de) * 2001-08-03 2003-02-20 Bayer Ag Verfahren zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff
DE10138214A1 (de) * 2001-08-03 2003-02-20 Bayer Ag Elektrolysezelle und Verfahren zur elektrochemischen Herstellung von Chlor
ITMI20012379A1 (it) * 2001-11-12 2003-05-12 Uhdenora Technologies Srl Cella di elettrolisi con elettrodi a diffusione di gas
DE10203689A1 (de) * 2002-01-31 2003-08-07 Bayer Ag Kathodischer Stromverteiler für Elektrolysezellen
TW200304503A (en) * 2002-03-20 2003-10-01 Asahi Chemical Ind Electrode for generation of hydrogen
GB0210017D0 (en) * 2002-05-01 2002-06-12 Univ Newcastle Electrolysis cell and method
US7303661B2 (en) * 2003-03-31 2007-12-04 Chlorine Engineers Corp., Ltd. Electrode for electrolysis and ion exchange membrane electrolytic cell
US7083708B2 (en) * 2003-07-31 2006-08-01 The Regents Of The University Of California Oxygen-consuming chlor alkali cell configured to minimize peroxide formation
DE10347703A1 (de) * 2003-10-14 2005-05-12 Bayer Materialscience Ag Konstruktionseinheit für bipolare Elektrolyseure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0050373A1 (en) * 1980-10-21 1982-04-28 Oronzio De Nora S.A. Electrolysis cell and method of generating halogen
JPH08109490A (ja) * 1994-08-16 1996-04-30 Daiso Co Ltd 酸素発生用陽極の製法
WO2001016398A1 (fr) * 1999-08-27 2001-03-08 Asahi Kasei Kabushiki Kaisha Cellule unitaire destinee a une cuve electrolytique comprenant une solution aqueuse metallique de chlorure alcalin
JP2001152380A (ja) * 1999-11-29 2001-06-05 Tokuyama Corp イオン交換膜電解槽

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1577424A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013821A (ja) * 2006-07-06 2008-01-24 炳霖 ▲楊▼ 電気分解を利用した燃焼ガス発生装置及び車載用燃焼ガス発生装置
JP2010144206A (ja) * 2008-12-18 2010-07-01 National Institute Of Advanced Industrial Science & Technology 水素発生方法及び水素発生装置
WO2010122785A1 (ja) * 2009-04-21 2010-10-28 東ソー株式会社 イオン交換膜法電解槽
US9476130B2 (en) 2010-12-28 2016-10-25 Tosoh Corporation Electrolytic cell
WO2013141211A1 (ja) 2012-03-19 2013-09-26 旭化成ケミカルズ株式会社 電解セル及び電解槽
US9506157B2 (en) 2012-03-19 2016-11-29 Asahi Kasei Kabushiki Kaisha Electrolysis cell and electrolysis tank
US9683300B2 (en) 2012-06-18 2017-06-20 Asahi Kasei Kabushiki Kaisha Bipolar alkaline water electrolysis unit and electrolytic cell
JP2014009385A (ja) * 2012-06-29 2014-01-20 Asahi Kasei Chemicals Corp 電解セル及び電解槽
US9777382B2 (en) 2015-06-03 2017-10-03 Kabushiki Kaisha Toshiba Electrochemical cell, oxygen reduction device using the cell and refrigerator using the oxygen reduction device
JP2018104756A (ja) * 2016-12-26 2018-07-05 株式会社イープラン 電解槽
WO2018168863A1 (ja) 2017-03-13 2018-09-20 旭化成株式会社 電解セル及び電解槽
US11339484B2 (en) 2017-03-13 2022-05-24 Asahi Kasei Kabushiki Kaisha Electrolytic cell and electrolyzer
JP2018165379A (ja) * 2017-03-28 2018-10-25 高砂熱学工業株式会社 水電解方法、水電解装置、水電解システム、水電解・燃料電池運転方法、水電解・燃料電池装置及び水電解・燃料電池システム
JP2020535314A (ja) * 2017-09-29 2020-12-03 ティッセンクルップ・ウーデ・クロリンエンジニアズ ゲー エム ベー ハー 電解装置
JP7055864B2 (ja) 2017-09-29 2022-04-18 ティッセンクルップ・ウーデ・クロリンエンジニアズ ゲー エム ベー ハー 電解装置
US11608561B2 (en) 2017-09-29 2023-03-21 Thyssenkrupp Uhde Chlorine Engineers Gmbh Electrolysis device
WO2019172750A1 (en) 2018-03-05 2019-09-12 Nederlandse Organisatie Voor Toegepastnatuurwetenschappelijk Onderzoek Tno Method for electrochemically reducing carbon dioxide
JP2022537986A (ja) * 2019-06-18 2022-08-31 ティッセンクルップ・ウーデ・クロリンエンジニアズ ゲー エム ベー ハー 電解用電極および電解装置
JP7236568B2 (ja) 2019-06-18 2023-03-09 ティッセンクルップ・ウーデ・クロリンエンジニアズ ゲー エム ベー ハー 電解用電極および電解装置
CN111044584A (zh) * 2019-12-23 2020-04-21 浙江大学 一种动态测量金属材料氢陷阱参数的装置及方法
CN111044584B (zh) * 2019-12-23 2021-01-05 浙江大学 一种动态测量金属材料氢陷阱参数的装置及方法
JP7364828B1 (ja) * 2022-05-31 2023-10-18 株式会社トクヤマ 電解槽ユニット
WO2023233799A1 (ja) * 2022-05-31 2023-12-07 株式会社トクヤマ 電解槽ユニット

Also Published As

Publication number Publication date
AU2003302453A1 (en) 2004-06-18
KR100583332B1 (ko) 2006-05-26
KR20050052516A (ko) 2005-06-02
US20060042935A1 (en) 2006-03-02
ES2533254T3 (es) 2015-04-08
EP2039806A1 (en) 2009-03-25
CN100507087C (zh) 2009-07-01
EP1577424A4 (en) 2005-12-14
JP4453973B2 (ja) 2010-04-21
CN1717507A (zh) 2006-01-04
JP5047265B2 (ja) 2012-10-10
CN101220482A (zh) 2008-07-16
TW200409834A (en) 2004-06-16
EP1577424B1 (en) 2015-03-11
US7323090B2 (en) 2008-01-29
TWI255865B (en) 2006-06-01
EP1577424A1 (en) 2005-09-21
JP2010111947A (ja) 2010-05-20
JPWO2004048643A1 (ja) 2006-03-23
ES2547403T3 (es) 2015-10-06
EP2039806B1 (en) 2015-08-19
CN101220482B (zh) 2011-02-09

Similar Documents

Publication Publication Date Title
WO2004048643A1 (ja) 複極式ゼロギャップ電解セル
EP2165008B1 (en) Elastic current collector for electrochemical cells
US4340452A (en) Novel electrolysis cell
JP5860075B2 (ja) 電解槽
JPS6353272B2 (ja)
JP2003041388A (ja) イオン交換膜電解槽および電解方法
US4444632A (en) Electrolysis cell
CN103380233A (zh) 离子交换膜法电解槽
EP0726971B1 (en) Mattress for electrochemical cells
JPH1081986A (ja) 水平型複極式電解槽
US4615775A (en) Electrolysis cell and method of generating halogen
RU2317352C2 (ru) Конструкция катодных пальцев хлоро-щелочных диафрагменных электролизеров
EP0124125B1 (en) Electrolysis cell and method of generating halogen
JPS6342710B2 (ja)
RU2054050C1 (ru) Электролизер для электролиза водного раствора хлорида натрия
KR840002297B1 (ko) 전해조
CN1316063C (zh) 压滤式复极离子膜单元电解槽

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004555055

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057005168

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006042935

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2003811931

Country of ref document: EP

Ref document number: 10535249

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A41155

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057005168

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003811931

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10535249

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1020057005168

Country of ref document: KR