JP7449362B2 - 電解槽及び電解槽の製造方法 - Google Patents

電解槽及び電解槽の製造方法 Download PDF

Info

Publication number
JP7449362B2
JP7449362B2 JP2022503744A JP2022503744A JP7449362B2 JP 7449362 B2 JP7449362 B2 JP 7449362B2 JP 2022503744 A JP2022503744 A JP 2022503744A JP 2022503744 A JP2022503744 A JP 2022503744A JP 7449362 B2 JP7449362 B2 JP 7449362B2
Authority
JP
Japan
Prior art keywords
electrode
cathode
anode
electrolytic cell
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022503744A
Other languages
English (en)
Other versions
JPWO2021172508A1 (ja
Inventor
修二郎 清水
衛 松岡
明恭 船川
佳典 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JPWO2021172508A1 publication Critical patent/JPWO2021172508A1/ja
Application granted granted Critical
Publication of JP7449362B2 publication Critical patent/JP7449362B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Secondary Cells (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

本発明は、電解槽及び電解槽の製造方法に関する。
食塩水等のアルカリ金属塩化物水溶液の電気分解、水の電気分解(以下、併せて「電解」という。)では、隔膜、より具体的にはイオン交換膜や微多孔膜を備えた電解槽を用いた方法が利用されている。この電解槽は、多くの場合その内部に多数直列に接続された電解セルを備える。各電解セルの間に隔膜を介在させて電解が行われる。電解セルでは、陰極を有する陰極室と、陽極を有する陽極室とが、隔壁(背面板)を介して、あるいはプレス圧力、ボルト締め等による押し付けを介して、背中合わせに配置されている。
従来、これら電解槽に使用される陽極、陰極は、それぞれ電解セルの陽極室、陰極室に溶接、折り込み等の方法により固定され、その後、保管、顧客先へ輸送される。一方、隔膜はそれ自体単独で塩化ビニル製のパイプ等に巻いた状態で保管、顧客先へ輸送される。顧客先では電解セルを電解槽のフレーム上に並べ、隔膜を電解セルの間に挟んで電解槽を組み立てる。このようにして電解セルの製造および顧客先での電解槽の組立が実施されている。このような電解槽に適用しうる構造物として、特許文献1、2には、隔膜と電極が一体となった構造物が開示されている。
なお、従来の電解槽において、その構成単位である電解セル毎に、陽極、隔膜及び陰極をこの順に配するのみでは、その構造上、陰極と陽極との間に最大1mm程度の距離が生じ、特に隔膜と陰極との間に存在するギャップが抵抗となることに起因して電解電圧が高くなる傾向にある(以下、このようなギャップを有する従来の電解槽を「ナローギャップ電解槽」ともいう。)。かかる課題に鑑み、電解電圧を低下させるべく、陽極及び陰極を隔膜に密着させてギャップを無くした電解槽(以下、「ゼロギャップ電解槽」ともいう。)が開発されている。また、これに関連して、ナローギャップ電解槽を改造する方法、すなわち、ナローギャップ電解槽で使用されていた電解セルを改造することによってゼロギャップ電解槽を製造する方法が提案されている(例えば、特許文献3参照)。
特開昭58-048686号公報 特開昭55-148775号公報 特許第5047265号公報
(第1の目的)
電解運転をスタートし、継続していくと様々な要因で各部品は劣化、電解性能が低下し、ある時点で各部品を交換することになる。隔膜は電解セルの間から抜き出し、新しい隔膜を挿入することにより比較的簡単に更新することができる。一方、陽極や陰極は電解セルに固定されているため、電極更新時には電解槽から電解セルを取り出し、専用の更新工場まで搬出、溶接等の固定を外して古い電極を剥ぎ取った後、新しい電極を設置し、溶接等の方法で固定、電解工場に運搬、電解槽に戻す、という非常に煩雑な作業が発生するという課題がある。ここで、特許文献1、2に記載の隔膜と電極とを熱圧着にて一体とした構造物を上記の更新に利用することが考えられるが、当該構造物は、実験室レベルでは比較的容易に製造可能であっても、実際の商業サイズの電解セル(例えば、縦1.5m、横3m)に合わせて製造することは容易ではない。また、当該構造物を使用した場合でも、上述した煩雑な作業が発生することは避けられない。
一方、上述した課題に鑑み、既存の電極と既存の隔膜の間に新たな電解用電極を挿入することにより、劣化した電極を除去することなく更新することが考えられる。ここで、隔膜と陰極とが接するいわゆるゼロギャップ電解槽の場合、陰極は、弾性体により、隔膜及び陽極へ向かう方向に押圧されることでゼロギャップを維持する構造となっているが、当該弾性体が劣化すると(ゼロギャップを維持するために十分な弾性を失うと)、上述のような更新操作を実施する前に、弾性体を新品に交換せざるを得ず、電解槽の構造上、当該弾性体の交換に際しては既存の電極を一旦除去することとなる。このような操作もやはり煩雑といえる。
本発明は、上記の従来技術が有する課題に鑑みてなされたものであり、ゼロギャップ電解槽における部品更新の際の作業効率を向上させることができる、電解槽の製造方法、及びそれに対応する構造を備える電解槽を提供することを第1の目的とする。
(第2の目的)
また、特許文献3に記載の方法によれば、ナローギャップ電解槽を改造するに際して、そのギャップにクッションマット層と新たな陰極を順次設置することにより、ナローギャップ電解槽で使用されていた既存の部材を維持しつつ、安価にかつ簡単にゼロギャップ電解槽を製造できるとされている。一方、既に運転に供されたナローギャップ電解槽をベースに上記のような改造を実施する場合、ナローギャップ電解槽中の既存の部材が劣化していることも想定される。特許文献3に記載の方法によれば、新たな陰極が設置されるため、既存の陰極が劣化していたとしても、陰極部材としての性能は更新されるが、既存の陰極が劣化するほどに運転を重ねていた場合、既存の隔膜も劣化している可能性がある。その場合、特許文献3に記載の方法によってゼロギャップ化したのみでは、結果的に得られる電解性能が十分でない可能性がある。電解槽は、通常、その構成単位である電解セルを多数含むものであるため、構成単位中の一部材であっても劣化していたとすれば、その影響は顕在化しやすいといえる。
本発明は、上記課題に鑑みてなされたものであり、ナローギャップ電解槽で使用されていた電解セルを改造することによってゼロギャップ電解槽を製造する方法において、ゼロギャップ化を図るだけでなく既存の陰極及び隔膜の性能を更新でき、さらに作業効率にも優れる電解槽の製造方法、及びそれに対応する構造を備える電解槽を提供することを第2の目的とする。
本発明者らは、第1の目的を達成すべく鋭意検討を重ねた結果、既存電解槽における既存の弾性体を除去する代わりに、新たな弾性体を既存電解槽内に配することにより、上記課題が解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は、以下の態様を包含する。
〔1〕
陽極と、
前記陽極に対向する陰極と、
前記陽極と前記陰極との間に配される隔膜と、
前記陰極を前記陽極へ向かう方向に押圧する第1の弾性体と、
前記隔膜と前記陰極との間に配される第1の電解用電極と、
前記第1の電解用電極と前記陰極との間に配され、かつ、前記第1の電解用電極を前記陽極へ向かう方向に押圧する第2の弾性体と、
を備え、
前記第1の電解用電極が陰極電極として機能し、
前記第1の電解用電極と前記第2の弾性体と前記陰極と前記第1の弾性体とが、電気的に接続されている、電解槽。
〔2〕
前記第2の弾性体の厚みが、前記第1の弾性体の厚みよりも大きい、〔1〕に記載の電解槽。
〔3〕
前記第2の弾性体の常用面圧が、前記第1の弾性体の常用面圧よりも大きい、〔1〕又は〔2〕に記載の電解槽。
〔4〕
前記陽極と前記隔膜との間に配される第2の電解用電極をさらに備え、
前記第2の電解用電極が陽極電極として機能し、
前記第2の電解用電極と前記陽極とが、電気的に接続されている、〔1〕~〔3〕のいずれか1項に記載の電解槽。
〔5〕
陽極と、前記陽極に対向する陰極と、前記陽極と前記陰極との間に配される隔膜と、前記陰極を前記陽極へ向かう方向に押圧する第1の弾性体と、を備える既存電解槽から、新たな電解槽を製造するための方法であって、
前記既存電解槽において、前記隔膜と前記陰極との間に第1の電解用電極を配し、かつ、前記第1の電解用電極と前記陰極との間に第2の弾性体を配する工程(A)を含み、
前記第2の弾性体が、前記陽極へ向かう方向に前記第1の電解用電極を押圧し、
前記第1の電解用電極が陰極電極として機能し、
前記第1の電解用電極と前記第2の弾性体と前記陰極と前記第1の弾性体とが、電気的に接続されている、電解槽の製造方法。
〔6〕
前記第2の弾性体の厚みが、前記第1の弾性体の厚みよりも大きい、〔5〕に記載の電解槽の製造方法。
〔7〕
前記第2の弾性体の常用面圧が、前記第1の弾性体の常用面圧よりも大きい、〔5〕又は〔6〕に記載の電解槽の製造方法。
〔8〕
前記陽極と前記隔膜との間に第2の電解用電極を配する工程(B)をさらに含み、
前記第2の電解用電極が陽極電極として機能し、
前記第2の電解用電極と前記陽極とが、電気的に接続されている、〔5〕~〔7〕のいずれか1項に記載の電解槽の製造方法。
〔9〕
前記工程(A)が、前記隔膜を除去するサブ工程(a1)と、前記サブ工程(a1)の後、新たな隔膜と前記第1の電解用電極とを含む積層体を、前記第2の弾性体と前記陽極との間に配するサブ工程(a2)とを含む、〔5〕~〔7〕のいずれか1項に記載の電解槽の製造方法。
〔10〕
前記積層体が第2の電解用電極をさらに含み、
前記第2の電解用電極が陽極電極として機能し、
前記第2の電解用電極と前記陽極とが、電気的に接続されている、〔9〕に記載の電解槽の製造方法。
また、本発明者らは、第2の目的を達成すべく鋭意検討を重ねた結果、ナローギャップ電解槽で使用されていた電解セルを改造することによってゼロギャップ電解槽を製造する方法において、新たな隔膜と電解用電極とを含む積層体を配することにより、上記課題が解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は、以下の態様を包含する。
〔11〕
陽極と、前記陽極に対向する陰極と、前記陽極と前記陰極との間に配される隔膜と、前記陰極を直接支持する支持体と、を備える既存電解槽から、新たな電解槽を製造するための方法であって、
前記既存電解槽において、前記隔膜を、新たな隔膜と第1の電解用電極とを含む積層体に交換し、かつ、前記第1の電解用電極と前記陰極との間に弾性体を配する工程(A)を含み、
前記弾性体が、前記陽極へ向かう方向に前記第1の電解用電極を押圧し、
前記第1の電解用電極の厚みが120μm以下であり、
前記第1の電解用電極と前記弾性体と前記陰極と前記支持体とが、電気的に接続されている、電解槽の製造方法。
〔12〕
前記積層体が第2の電解用電極をさらに含み、
前記第2の電解用電極が陽極電極として機能し、
前記第2の電解用電極と前記陽極とが、電気的に接続されている、〔11〕に記載の電解槽の製造方法。
〔13〕
陽極と、
前記陽極に対向する陰極と、
前記陽極と前記陰極との間に配される隔膜と、
前記隔膜と前記陰極との間に配される第1の電解用電極と、
前記陽極と前記隔膜との間に配される第2の電解用電極と、
前記第1の電解用電極と前記陰極との間に配され、かつ、当該第1の電解用電極を前記陽極へ向かう方向に押圧する弾性体と、
前記陰極を直接支持する支持体と、
を備え、
前記第1の電解用電極が陰極電極として機能し、
前記第2の電解用電極が陽極電極として機能し、
前記第1の電解用電極の厚みが120μm以下であり、
前記第1の電解用電極と前記弾性体と前記陰極と前記支持体とが、電気的に接続されており、
前記第2の電解用電極と前記陽極とが、電気的に接続されている、電解槽。
〔14〕
陽極と、前記陽極に対向する陰極と、前記陽極と前記陰極との間に配される隔膜と、前記陰極を直接支持する支持体と、を備える既存電解セルから、新たな電解セルを製造するための方法であって、
前記既存電解セルにおいて、前記隔膜を、新たな隔膜と第1の電解用電極とを含む積層体に交換し、かつ、前記第1の電解用電極と前記陰極との間に弾性体を配する工程(A)を含み、
前記弾性体が、前記陽極へ向かう方向に前記第1の電解用電極を押圧し、
前記第1の電解用電極の厚みが120μm以下であり、
前記第1の電解用電極と前記弾性体と前記陰極と前記支持体とが、電気的に接続されている、電解セルの製造方法。
〔15〕
前記積層体が第2の電解用電極をさらに含み、
前記第2の電解用電極が陽極電極として機能し、
前記第2の電解用電極と前記陽極とが、電気的に接続されている、〔14〕に記載の電解セルの製造方法。
〔16〕
陽極と、
前記陽極に対向する陰極と、
前記陽極と前記陰極との間に配される隔膜と、
前記隔膜と前記陰極との間に配される第1の電解用電極と、
前記陽極と前記隔膜との間に配される第2の電解用電極と、
前記第1の電解用電極と前記陰極との間に配され、かつ、当該第1の電解用電極を前記陽極へ向かう方向に押圧する弾性体と、
前記陰極を直接支持する支持体と、
を備え、
前記第1の電解用電極が陰極電極として機能し、
前記第2の電解用電極が陽極電極として機能し、
前記第1の電解用電極の厚みが120μm以下であり、
前記第1の電解用電極と前記弾性体と前記陰極と前記支持体とが、電気的に接続されており、
前記第2の電解用電極と前記陽極とが、電気的に接続されている、電解セル。
〔17〕
〔16〕に記載の電解セルを有する電解槽。
本発明の一態様によれば、電解槽における電極更新の際の作業効率を向上させることができる、電解槽の製造方法、及びそれに対応する構造を備える電解槽を提供することができる。
また、本発明の他の態様によれば、ナローギャップ電解槽で使用されていた電解セルを改造することによってゼロギャップ電解槽を製造する方法において、ゼロギャップ化を図るだけでなく既存の陰極及び隔膜の性能を更新でき、さらに作業効率にも優れる電解槽の製造方法、及びそれに対応する構造を備える電解槽を提供することができる。
図1は、第1実施形態に係る電解セルの模式的断面図である。 図2は、第1実施形態に係る既存の電解槽における、2つの電解セルが直列に接続された状態を示す模式的断面図である。 図3は、第1実施形態に係る電解槽における、2つの電解セルが直列に接続された状態を例示する模式的断面図である。 図4は、第1実施形態に係る電解槽の模式図である。 図5は、第1実施形態に係る電解槽を組み立てる工程を示す模式的斜視図である。 図6は、本実施形態における電解セルが備えうる逆電流吸収体の模式的断面図である。 図7は、本実施形態における電解用電極の模式的断面図である。 図8は、本実施形態におけるイオン交換膜の構造を例示する断面模式図である。 図9は、本実施形態におけるイオン交換膜を構成する強化芯材の開口率を説明するための概略図である。 図10は、イオン交換膜の連通孔を形成する方法を説明するための模式図である。 図11は、第1実施形態に係る電解槽の製造方法の一態様を例示する説明図である。 図12は、第1実施形態に係る電解槽の製造方法の別の態様を例示する説明図である。 図13は、第1実施形態に係る電解槽の製造方法の更に別の態様を例示する説明図である。 図14は、第1実施形態に係る電解槽の製造方法の更にまた別の態様を例示する説明図である。 図15は、第2実施形態に係る電解セルの模式的断面図である。 図16は、第2実施形態に係る電解槽の模式図である。 図17は、第2実施形態に係る電解槽を組み立てる工程を示す模式的斜視図である。 図18は、第2実施形態に係る電解槽の製造方法に用いられる部材の概要図である。図18(A)は、弾性体の概要図である。図18(B)は、第1の電解用電極と隔膜との積層体の概要図である。図18(C)は、第1の電解用電極と隔膜と第2の電解用電極との積層体の概要図である。 図19は、第2実施形態に係る電解槽の製造方法の一態様を実施した場合に得られる、電解セルを例示する模式的断面図である。 図20は、第2実施形態に係る電解槽の製造方法の別の態様を実施した場合に得られる、電解セルを例示する模式的断面図である。
以下、本発明の実施形態(以下、本実施形態ともいう)について、必要に応じて図面を参照しつつ詳細に説明する。以下の実施形態は、本発明を説明するための例示であり、本発明は以下の内容に限定されない。また、添付図面は実施形態の一例を示したものであり、形態はこれに限定して解釈されるものではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。なお、図面中上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づく。図面の寸法及び比率は図示されたものに限られるものではない。
<第1実施形態>
ここでは、本実施形態に係る第1の態様(以下、「第1実施形態」ともいう。)について、図1~14を参照しつつ詳細に説明する。
[電解槽]
第1実施形態(以降、特に断りがない限り、<第1実施形態>の項における「本実施形態」は第1実施形態を意味する。)の電解槽は、陽極と、前記陽極に対向する陰極と、前記陽極と前記陰極との間に配される隔膜と、前記陰極を前記陽極へ向かう方向に押圧する第1の弾性体と、前記隔膜と前記陰極との間に配される第1の電解用電極と、前記第1の電解用電極と前記陰極との間に配され、かつ、前記第1の電解用電極を前記陽極へ向かう方向に押圧する第2の弾性体と、を備え、前記第1の電解用電極が陰極電極として機能し、前記第1の電解用電極と前記第2の弾性体と前記陰極と前記第1の弾性体とが、電気的に接続されている。
上記の構成を有する電解槽によれば、第2の弾性体は第1の電解用電極を前記陽極へ向かう方向に押圧することとなるため、第1の弾性体が劣化してゼロギャップを維持するために十分な弾性を失った場合でも、第2の弾性体の弾性によってゼロギャップを維持することが可能となり、第1の弾性体自体を除去及び交換する必要がなくなる。さらに、仮に第2の弾性体が劣化してゼロギャップを維持するために十分な弾性を失った場合でも、当該第2の弾性体は隣接する部材に挟持されているものであるため、当該挟持を解除するのみで容易に第2の弾性体自体を新品に交換できる。
加えて、陰極が劣化した場合でも、第1の電解用電極が陰極電極として機能するため、陰極自体を除去及び交換する必要がなくなる。さらに、仮に第1の電解用電極が劣化して電解性能が低下した場合でも、当該第1の電解用電極は隣接する部材に挟持されているものであるため、当該挟持を解除するのみで容易に第1の電解用電極を新品に交換できる。
したがって、本実施形態の電解槽によれば、電解槽における電極更新の際の煩雑な作業を避けることができる。
本実施形態において、陽極を含む陽極室と、陰極を含む陰極室とを組み合わせたものを電解セルと称し、以下で各部材を詳細に説明する。
〔電解セル〕
まず、本実施形態の電解槽の構成単位として使用できる電解セルについて説明する。図1は、電解セル50の断面図である。
電解セル50は、陽極室60と、陰極室70と、陽極室60及び陰極室70の間に設置された隔壁80と、陽極室60に設置された陽極11と、陰極室70に設置された陰極21と、を備える。必要に応じて陰極室内に設置された逆電流吸収体18を備えてもよい。1つの電解セル50に属する陽極11及び陰極21は互いに電気的に接続されている。電解セル50は、次の陰極構造体を備えるものということもできる。陰極構造体90は、陰極室70と、陰極室70に設置された陰極21と、陰極室70内に設置された逆電流吸収体18と、を備え、逆電流吸収体18は、図6に示すように基材18aと当該基材18a上に形成された逆電流吸収層18bとを有し、陰極21と逆電流吸収層18bとが電気的に接続されている。陰極室70は、集電体23と、当該集電体を支持する支持体24と、金属弾性体である第1の弾性体22とを更に有する。第1の弾性体22は、集電体23及び陰極21の間に設置されている。支持体24は、集電体23及び隔壁80の間に設置されている。集電体23は、第1の弾性体22を介して、陰極21と電気的に接続されている。隔壁80は、支持体24を介して、集電体23と電気的に接続されている。したがって、隔壁80、支持体24、集電体23、第1の弾性体22及び陰極21は電気的に接続されている。陰極21及び逆電流吸収層18bは電気的に接続されている。陰極21及び逆電流吸収層は、直接接続されていてもよく、集電体、支持体、金属弾性体又は隔壁等を介して間接的に接続されていてもよい。陰極21の表面全体は還元反応のための触媒層で被覆されていることが好ましい。また、電気的接続の形態は、隔壁80と支持体24、支持体24と集電体23、集電体23と第1の弾性体22がそれぞれ直接取り付けられ、第1の弾性体22上に陰極21が積層される形態であってもよい。これらの各構成部材を互いに直接取り付ける方法として、溶接等が挙げられる。また、逆電流吸収体18、陰極21、および集電体23を総称して陰極構造体90としてもよい。
図2は、本実施形態の電解槽を組み立てる前の、電解槽内において隣接する2つの電解セル50の断面図である。図3は、本実施形態の電解槽4内において隣接する2つの電解セル50の断面図である。図4は、本実施形態の電解槽4を示す。図5は、電解槽4を組み立てる工程を示す。
図2に示すように、電解セル50、陽イオン交換膜51、電解セル50がこの順序で直列に並べられている。図2において隣接する2つの電解セルのうち一方の電解セル50の陽極室と他方の電解セル50の陰極室との間に陽イオン交換膜51が配置されている。つまり、電解セル50の陽極室60と、これに隣接する電解セル50の陰極室70とは、陽イオン交換膜51で隔てられる。図4に示すように、電解槽4は、陽イオン交換膜51を介して直列に接続された複数の電解セル50から構成される。つまり、電解槽4は、直列に配置された複数の電解セル50と、隣接する電解セル50の間に配置された陽イオン交換膜51と、を備える複極式電解槽である。図5に示すように、電解槽4は、陽イオン交換膜51を介して複数の電解セル50を直列に配置して、プレス器5により連結されることにより組み立てられる。
本実施形態の電解槽が有する構造について、図3(A)を用いて説明する。図3(A)に示すように、電解槽4内において、陽イオン交換膜51とその左側の電解セル50との間に第1の電解用電極53が配される。すなわち、第1の電解用電極53は、陰極21と陽イオン交換膜51との間に配され、陰極電極として機能する。さらに、図3(A)に示すように、第1の電解用電極53と陰極21との間に第2の弾性体22’が配される。
このように、本実施形態の電解槽において、第2の弾性体22’は第1の電解用電極53を陽極11へ向かう方向に押圧することとなるため、第1の弾性体22が劣化してゼロギャップを維持するために十分な弾性を失った場合でも、第2の弾性体22’の弾性によってゼロギャップを維持することが可能となり、第1の弾性体22自体を除去及び交換する必要がなくなる。さらに、仮に第2の弾性体22’が劣化してゼロギャップを維持するために十分な弾性を失った場合でも、当該第2の弾性体22’は隣接する部材に挟持されているものであるため、当該挟持を解除するのみで容易に第2の弾性体自体を新品に交換できる。
加えて、陰極21が劣化した場合でも、第1の電解用電極53が陰極電極として機能するため、陰極21自体を除去及び交換する必要がなくなる。さらに、仮に第1の電解用電極53が劣化して電解性能が低下した場合でも、当該第1の電解用電極53は隣接する部材に挟持されているものであるため、当該挟持を解除するのみで容易に第1の電解用電極を新品に交換できる。
本実施形態の電解槽が有する好ましい構造について、図3(B)を用いて説明する。図3(B)に示すように、電解槽4内において、陽イオン交換膜51とその左側の電解セル50との間に、第1の電解用電極53と陽イオン交換膜51と第2の電解用電極53’との積層体54が配される。すなわち、第1の電解用電極53は、陰極21と陽イオン交換膜51との間に配され、陰極電極として機能する一方、第2の電解用電極53’は、陽極11と陽イオン交換膜51との間に配され、陽極電極として機能する。さらに、図3(B)に示すように、第1の電解用電極53と陰極21との間に第2の弾性体22’が配される。
このような電解槽においても、第2の弾性体22’は第1の電解用電極53を陽極11へ向かう方向に押圧することとなるため、第1の弾性体22が劣化してゼロギャップを維持するために十分な弾性を失った場合でも、第2の弾性体22’の弾性によってゼロギャップを維持することが可能となり、第1の弾性体22自体を除去及び交換する必要がなくなる。さらに、仮に第2の弾性体22’が劣化してゼロギャップを維持するために十分な弾性を失った場合でも、当該第2の弾性体22’は隣接する部材に挟持されているものであるため、当該挟持を解除するのみで容易に第2の弾性体自体を新品に交換できる。
加えて、陰極21が劣化した場合でも、第1の電解用電極53が陰極電極として機能するため、陰極21自体を除去及び交換する必要がなくなる。さらに、仮に第1の電解用電極53が劣化して電解性能が低下した場合でも、当該第1の電解用電極53は隣接する部材に挟持されているものであるため、当該挟持を解除するのみで容易に第1の電解用電極を新品に交換できる。
また、陽極11が劣化した場合でも、第2の電解用電極53’が陽極電極として機能するため、陽極11自体を除去及び交換する必要がなくなる。さらに、仮に第2の電解用電極53’が劣化して電解性能が低下した場合でも、当該第2の電解用電極53’は隣接する部材に挟持されているものであるため、当該挟持を解除するのみで容易に第2の電解用電極を新品に交換できる。
電解槽4は、電源に接続される陽極端子7と陰極端子6とを有する。電解槽4内で直列に連結された複数の電解セル50のうち最も端に位置する電解セル50の陽極11は、陽極端子7に電気的に接続される。電解槽4内で直列に連結された複数の電解セル50のうち陽極端子7の反対側の端に位置する電解セルの陰極21は、陰極端子6に電気的に接続される。電解時の電流は、陽極端子7側から、各電解セル50の陽極及び陰極を経由して、陰極端子6へ向かって流れる。なお、連結した電解セル50の両端には、陽極室のみを有する電解セル(陽極ターミナルセル)と、陰極室のみを有する電解セル(陰極ターミナルセル)を配置してもよい。この場合、その一端に配置された陽極ターミナルセルに陽極端子7が接続され、他の端に配置された陰極ターミナルセルに陰極端子6が接続される。
塩水の電解を行なう場合、各陽極室60には塩水が供給され、陰極室70には純水又は低濃度の水酸化ナトリウム水溶液が供給される。各液体は、電解液供給管(図中省略)から、電解液供給ホース(図中省略)を経由して、各電解セル50に供給される。また、電解液及び電解による生成物は、電解液回収管(図中省略)より、回収される。電解において、塩水中のナトリウムイオンは、一方の電解セル50の陽極室60から、陽イオン交換膜51を通過して、隣の電解セル50の陰極室70へ移動する。よって、電解中の電流は、電解セル50が直列に連結された方向に沿って、流れることになる。つまり、電流は、陽イオン交換膜51を介して陽極室60から陰極室70に向かって流れる。塩水の電解に伴い、陽極11側で塩素ガスが生成し、陰極21側で水酸化ナトリウム(溶質)と水素ガスが生成する。
(陽極室)
陽極室60は、陽極11または陽極給電体11を有する。ここでいう給電体としては、劣化した電極(すなわち既存電極)や、触媒コーティングがされていない電極等を意味する。本実施形態における電解用電極を陽極側へ挿入した場合には、11は陽極給電体として機能する。本実施形態における電解用電極を陽極側へ挿入しない場合には、11は陽極として機能する。また、陽極室60は、陽極室60に電解液を供給する陽極側電解液供給部と、陽極側電解液供給部の上方に配置され、隔壁80と略平行または斜めになるように配置されたバッフル板と、バッフル板の上方に配置され、気体が混入した電解液から気体を分離する陽極側気液分離部とを有することが好ましい。
(陽極)
本実施形態における電解用電極を陽極側へ挿入しない場合には、陽極室60の枠(すなわち、陽極枠)内には、陽極11が設けられている。陽極11としては、いわゆるDSA(登録商標)等の金属電極を用いることができる。DSAとは、ルテニウム、イリジウム、チタンを成分とする酸化物によって表面を被覆されたチタン基材の電極である。
形状としては、パンチングメタル、不織布、発泡金属、エキスパンドメタル、エレクトロフォーミングにより形成した金属多孔箔、金属線を編んで作製したいわゆるウーブンメッシュ等いずれのものも使用できる。
(陽極給電体)
本実施形態における電解用電極を陽極側へ挿入した場合には、陽極室60の枠内には、陽極給電体11が設けられている。陽極給電体11としては、いわゆるDSA(登録商標)等の金属電極を用いることもできるし、触媒コーティングがされていないチタンを用いることもできる。また、触媒コーティング厚みを薄くしたDSAを用いることもできる。さらに、使用済みの陽極を用いることもできる。
形状としては、パンチングメタル、不織布、発泡金属、エキスパンドメタル、エレクトロフォーミングにより形成した金属多孔箔、金属線を編んで作製したいわゆるウーブンメッシュ等いずれのものも使用できる。
(陽極側電解液供給部)
陽極側電解液供給部は、陽極室60に電解液を供給するものであり、電解液供給管に接続される。陽極側電解液供給部は、陽極室60の下方に配置されることが好ましい。陽極側電解液供給部としては、例えば、表面に開口部が形成されたパイプ(分散パイプ)等を用いることができる。かかるパイプは、陽極11の表面に沿って、電解セルの底部19に対して平行に配置されていることがより好ましい。このパイプは、電解セル50内に電解液を供給する電解液供給管(液供給ノズル)に接続される。液供給ノズルから供給された電解液はパイプによって電解セル50内まで搬送され、パイプの表面に設けられた開口部から陽極室60の内部に供給される。パイプを、陽極11の表面に沿って、電解セルの底部19に平行に配置することで、陽極室60の内部に均一に電解液を供給することができるため好ましい。
(陽極側気液分離部)
陽極側気液分離部は、バッフル板の上方に配置されることが好ましい。電解中において、陽極側気液分離部は、塩素ガス等の生成ガスと電解液を分離する機能を有する。なお、特に断りがない限り、上方とは、図1の電解セル50における上方向を意味し、下方とは、図1の電解セル50における下方向を意味する。
電解時、電解セル50で発生した生成ガスと電解液が混相(気液混相)となり系外に排出されると、電解セル50内部の圧力変動によって振動が発生し、イオン交換膜の物理的な破損を引き起こす場合がある。これを抑制するために、本実施形態における電解セル50には、気体と液体を分離するための陽極側気液分離部が設けられていることが好ましい。陽極側気液分離部には、気泡を消去するための消泡板が設置されることが好ましい。気液混相流が消泡板を通過するときに気泡がはじけることにより、電解液とガスに分離することができる。その結果、電解時の振動を防止することができる。
(バッフル板)
バッフル板は、陽極側電解液供給部の上方に配置され、かつ、隔壁80と略平行または斜めに配置されることが好ましい。バッフル板は、陽極室60の電解液の流れを制御する仕切り板である。バッフル板を設けることで、陽極室60において電解液(塩水等)を内部循環させ、その濃度を均一にすることができる。内部循環を起こすために、バッフル板は、陽極11近傍の空間と隔壁80近傍の空間とを隔てるように配置することが好ましい。かかる観点から、バッフル板は、陽極11及び隔壁80の各表面に対向するように設けられていることが好ましい。バッフル板により仕切られた陽極近傍の空間では、電解が進行することにより電解液濃度(塩水濃度)が下がり、また、塩素ガス等の生成ガスが発生する。これにより、バッフル板により仕切られた陽極11近傍の空間と、隔壁80近傍の空間とで気液の比重差が生まれる。これを利用して、陽極室60における電解液の内部循環を促進させ、陽極室60の電解液の濃度分布をより均一にすることができる。
なお、図1に示していないが、陽極室60の内部に集電体を別途設けてもよい。かかる集電体としては、後述する陰極室の集電体と同様の材料や構成とすることもできる。また、陽極室60においては、陽極11自体を集電体として機能させることもできる。
(隔壁)
隔壁80は、陽極室60と陰極室70の間に配置されている。隔壁80は、セパレータと呼ばれることもあり、陽極室60と陰極室70とを区画するものである。隔壁80としては、電解用のセパレータとして公知のものを使用することができ、例えば、陰極側にニッケル、陽極側にチタンからなる板を溶接した隔壁等が挙げられる。
(陰極室)
陰極室70は、本実施形態における電解用電極を陰極側へ挿入した場合には、21は陰極給電体として機能し、本実施形態における電解用電極を陰極側へ挿入しない場合には、21は陰極として機能する。逆電流吸収体を有する場合は、陰極あるいは陰極給電体21と逆電流吸収体は電気的に接続されている。また、陰極室70も陽極室60と同様に、陰極側電解液供給部、陰極側気液分離部を有していることが好ましい。なお、陰極室70を構成する各部位のうち、陽極室60を構成する各部位と同様のものについては説明を省略する。
(陰極)
本実施形態における電解用電極を陰極側へ挿入しない場合には、陰極室70の枠(すなわち、陰極枠)内には、陰極21が設けられている。陰極21は、ニッケル基材とニッケル基材を被覆する触媒層とを有することが好ましい。ニッケル基材上の触媒層の成分としては、Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等の金属及び当該金属の酸化物又は水酸化物が挙げられる。触媒層の形成方法としては、メッキ、合金めっき、分散・複合めっき、CVD、PVD、熱分解及び溶射が挙げられる。これらの方法を組み合わせてもよい。触媒層は必要に応じて複数の層、複数の元素を有してもよい。また、必要に応じて陰極21に還元処理を施してもよい。なお、陰極21の基材としては、ニッケル、ニッケル合金、鉄あるいはステンレスにニッケルをメッキしたものを用いてもよい。
形状としては、パンチングメタル、不織布、発泡金属、エキスパンドメタル、エレクトロフォーミングにより形成した金属多孔箔、金属線を編んで作製したいわゆるウーブンメッシュ等いずれのものも使用できる。
(陰極給電体)
本実施形態における電解用電極を陰極側へ挿入した場合には、陰極室70の枠内には、陰極給電体21が設けられている。陰極給電体21に触媒成分が被覆されていてもよい。その触媒成分は、もともと陰極として使用されて、残存したものでもよい。触媒層の成分としては、Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等の金属及び当該金属の酸化物又は水酸化物が挙げられる。触媒層の形成方法としては、メッキ、合金めっき、分散・複合めっき、CVD、PVD、熱分解及び溶射が挙げられる。これらの方法を組み合わせてもよい。触媒層は必要に応じて複数の層、複数の元素を有してもよい。また、触媒コーティングがされてない、ニッケル、ニッケル合金、鉄あるいはステンレスに、ニッケルをメッキしたものを用いてもよい。なお、陰極給電体21の基材としては、ニッケル、ニッケル合金、鉄あるいはステンレスにニッケルをメッキしたものを用いてもよい。
形状としては、パンチングメタル、不織布、発泡金属、エキスパンドメタル、エレクトロフォーミングにより形成した金属多孔箔、金属線を編んで作製したいわゆるウーブンメッシュ等いずれのものも使用できる。
(逆電流吸収層)
前述の陰極の触媒層用の元素の酸化還元電位よりも卑な酸化還元電位を持つ材料を逆電流吸収層の材料として選択することができる。例えば、ニッケルや鉄などが挙げられる。
(集電体)
陰極室70は集電体23を備えることが好ましい。これにより、集電効果が高まる。本実施形態では、集電体23は多孔板であり、陰極21の表面と略平行に配置されることが好ましい。
集電体23としては、例えば、ニッケル、鉄、銅、銀、チタンなどの電気伝導性のある金属からなることが好ましい。集電体23は、これらの金属の混合物、合金又は複合酸化物でもよい。なお、集電体23の形状は、集電体として機能する形状であればどのような形状でもよく、板状、網状であってもよい。
(弾性体)
集電体23と陰極21との間に第1の弾性体22が設置されることにより、直列に接続された複数の電解セル50の各陰極21が陽イオン交換膜51に押し付けられ、各陽極11と各陰極21との間の距離が短くなり、直列に接続された複数の電解セル50全体に掛かる電圧を下げることができる。電圧が下がることにより、消費電量を下げることができる。また、第1の弾性体22が設置されることにより、本実施形態における電解用電極を含む積層体を電解セルに設置した際に、第1の弾性体22による押し付け圧により、該電解用電極を安定して定位置に維持することができる。ただし、本実施形態においては、第1の弾性体22は電解槽の長期運転に伴い経時的に劣化していくことを想定している。すなわち、第1の弾性体22は、劣化によりゼロギャップを維持するために十分な弾性を失ったものであってもよい。このように第1の弾性体22が劣化していたとしても、本実施形態においては、第2の弾性体の弾性によってゼロギャップを維持することができる。
第1の弾性体22及び第2の弾性体22’としては、渦巻きばね、コイル等のばね部材、クッション性のマット等を用いることができる。また、第1の弾性体22及び第2の弾性体22’としては、イオン交換膜を押し付ける応力等を考慮して適宜好適なものを採用できる。第1の弾性体22は陰極室70側の集電体23の表面上に設けてもよいし、陽極室60側の隔壁の表面上に設けてもよい。通常、陰極室70が陽極室60よりも小さくなるよう両室が区画されているので、枠体の強度等の観点から、第1の弾性体22を陰極室70の集電体23と陰極21の間に設けることが好ましい。また、第1の弾性体22及び第2の弾性体22’は、ニッケル、鉄、銅、銀、チタンなどの電気伝導性を有する金属からなることが好ましい。
本実施形態において、第1の弾性体22及び第2の弾性体22’は、互いに同一の形状、材質及び物性を有するものであってもよく、これらにおいて互いに異なるものであってもよい。
本実施形態の電解槽において、第1の弾性体の劣化に起因してゼロギャップ構造が失われることを効果的に防止する観点から、第2の弾性体の厚みは、第1の弾性体の厚みよりも大きいことが好ましい。上記同様の観点から、第2の弾性体の常用面圧が、第1の弾性体の常用面圧よりも大きいことが好ましい。
なお、第1の弾性体の厚み及び第2の弾性体の厚みは特に限定されず、いずれも、例えば0.1mm~15mmとすることができ、好ましくは0.2mm~10mmであり、より好ましくは0.5mm~7mmである。
また、第1の弾性体の常用面圧及び第2の弾性体の常用面圧も特に限定されず、いずれも、例えば30gf/cm2~350gf/cm2とすることができ、好ましくは40~300gf/cm2であり、より好ましくは50~250gf/cm2である。
(支持体)
陰極室70は、集電体23と隔壁80とを電気的に接続する支持体24を備えることが好ましい。これにより、効率よく電流を流すことができる。
支持体24は、ニッケル、鉄、銅、銀、チタンなど電気伝導性を有する金属からなることが好ましい。また、支持体24の形状としては、集電体23を支えることができる形状であればどのような形状でもよく、棒状、板状又は網状であってよい。支持体24は、例えば、板状である。複数の支持体24は、隔壁80と集電体23との間に配置される。複数の支持体24は、それぞれの面が互いに平行になるように並んでいる。支持体24は、隔壁80及び集電体23に対して略垂直に配置されている。
(陽極側ガスケット、陰極側ガスケット)
陽極側ガスケット12は、陽極室60を構成する枠体表面に配置されることが好ましい。陰極側ガスケット13は、陰極室70を構成する枠体表面に配置されていることが好ましい。1つの電解セルが備える陽極側ガスケット12と、これに隣接する電解セルの陰極側ガスケット13とが、陽イオン交換膜51を挟持するように、電解セル同士が接続される(図2参照)。これらのガスケットにより、陽イオン交換膜51を介して複数の電解セル50を直列に接続する際に、接続箇所に気密性を付与することができる。
ガスケットとは、イオン交換膜と電解セルとの間をシールするものである。ガスケットの具体例としては、中央に開口部が形成された額縁状のゴム製シート等が挙げられる。ガスケットには、腐食性の電解液や生成するガス等に対して耐性を有し、長期間使用できることが求められる。そこで、耐薬品性や硬度の点から、通常、エチレン・プロピレン・ジエンゴム(EPDMゴム)、エチレン・プロピレンゴム(EPMゴム)の加硫品や過酸化物架橋品等がガスケットとして用いられる。また、必要に応じて液体に接する領域(接液部)をポリテトラフルオロエチレン(PTFE)やテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)などのフッ素系樹脂で被覆したガスケットを用いることもできる。これらガスケットは、電解液の流れを妨げないように、それぞれ開口部を有していればよく、その形状は特に限定されない。例えば、陽極室60を構成する陽極室枠又は陰極室70を構成する陰極室枠の各開口部の周縁に沿って、額縁状のガスケットが接着剤等で貼り付けられる。そして、例えば陽イオン交換膜51を介して2体の電解セル50を接続する場合(図2参照)、陽イオン交換膜51を介してガスケットを貼り付けた各電解セル50を締め付ければよい。これにより、電解液、電解により生成するアルカリ金属水酸化物、塩素ガス、水素ガス等が電解セル50の外部に漏れることを抑制することができる。
〔積層体〕
本実施形態における電解用電極は、イオン交換膜や微多孔膜などの隔膜との積層体として用いることができる。すなわち、本実施形態における積層体は、第1の電解用電極と隔膜とを含むものであってもよく、第1の電解用電極と隔膜と第2の電解用電極とを含むものであってもよい。電解用電極及び隔膜の具体例について、以下で詳述する。
〔電解用電極〕
本実施形態における電解用電極は、特に限定されないが、上述のように隔膜と積層体を構成できるもの、すなわち、隔膜と一体化可能なものであることが好ましく、捲回体として用いられるものであることがより好ましい。電解用電極は、電解槽において陰極として機能するものであってもよく、陽極として機能するものであってもよい。また、電解用電極の材質・形状・物性等については、後述する本実施形態における工程(A),(B)や電解槽の構成等を考慮し、適切なものを適宜選択することができる。以下、本実施形態における電解用電極の好ましい態様について説明するが、これらはあくまで工程(A),(B)を実施する上で好ましい態様の例示に過ぎず、後述する態様以外の電解用電極も適宜採用することができる。
本実施形態における電解用電極は、良好なハンドリング性が得られ、イオン交換膜や微多孔膜などの隔膜、給電体(劣化した電極及び触媒コーティングがされていない電極)などと良好な接着力を有する観点から、単位質量・単位面積あたりのかかる力が、1.6N/(mg・cm2)以下であることが好ましく、より好ましくは1.6N/(mg・cm2)未満であり、さらに好ましくは1.5N/(mg・cm2)未満であり、よりさらに好ましくは1.2N/mg・cm2以下であり、一層好ましくは1.20N/mg・cm2以下である。より一層好ましくは1.1N/mg・cm2以下であり、さらに一層好ましくは1.10N/mg・cm2以下であり、特に好ましくは1.0N/mg・cm2以下であり、1.00N/mg・cm2以下であることがとりわけ好ましい。
電解性能をより向上させる観点から、好ましくは0.005N/(mg・cm2)超であり、より好ましくは0.08N/(mg・cm2)以上であり、さらに好ましくは0.1N/mg・cm2以上であり、よりさらに好ましくは0.14N/(mg・cm2)以上である。大型サイズ(例えば、サイズ1.5m×2.5m)での取り扱いが容易になるとの観点から、0.2N/(mg・cm2)以上が更により好ましい。
上記かかる力は、例えば、後述する開孔率、電極の厚み、算術平均表面粗さ等を適宜調整することで上記範囲とすることができる。より具体的には、例えば、開孔率を大きくすると、かかる力は小さくなる傾向にあり、開孔率を小さくすると、かかる力は大きくなる傾向にある。
また、良好なハンドリング性が得られ、イオン交換膜や微多孔膜などの隔膜、劣化した電極及び触媒コーティングがされていない給電体などと良好な接着力を有し、さらに、経済性の観点から、単位面積あたりの質量が、48mg/cm2以下であることが好ましく、より好ましくは、30mg/cm2以下であり、さらに好ましくは、20mg/cm2以下であり、さらに、ハンドリング性、接着性及び経済性を合わせた総合的な観点から、15mg/cm2以下であることが好ましい。下限値は、特に限定されないが、例えば、1mg/cm2程度である。
上記単位面積あたりの質量は、例えば、後述する開孔率、電極の厚み等を適宜調整することで上記範囲とすることができる。より具体的には、例えば、同じ厚みであれば、開孔率を大きくすると、単位面積あたりの質量は小さくなる傾向にあり、開孔率を小さくすると、単位面積あたりの質量は大きくなる傾向にある。
かかる力は、以下の方法(i)または(ii)により測定できる。かかる力は、方法(i)の測定により得られた値(「かかる力(1)」とも称す)と、方法(ii)の測定により得られた値(「かかる力(2)」とも称す)とが、同一であってもよく、異なっていてもよいが、いずれの値であっても1.5N/mg・cm2未満となることが好ましい。
〔方法(i)〕
粒番号320のアルミナでブラスト加工を施して得られるニッケル板(厚み1.2mm、200mm角)と、イオン交換基が導入されたパーフルオロカーボン重合体の膜の両面に無機物粒子と結合剤を塗布したイオン交換膜(170mm角、ここでいうイオン交換膜の詳細については、実施例に記載のとおりである)と電極サンプル(130mm角)とをこの順で積層させ、この積層体を純水にて十分に浸漬した後、積層体表面に付着した余分な水分を除去することで測定用サンプルを得る。なお、ブラスト処理後のニッケル板の算術平均表面粗さ(Ra)は、0.5~0.8μmである。算術平均表面粗さ(Ra)の具体的な算出方法は、実施例に記載のとおりである。
温度23±2℃、相対湿度30±5%の条件下で、この測定用サンプル中の電極サンプルのみを引張圧縮試験機を用いて、垂直方向に10mm/分で上昇させて、電極サンプルが、垂直方向に10mm上昇したときの加重を測定する。この測定を3回実施して平均値を算出する。
この平均値を、電極サンプルとイオン交換膜の重なり部分の面積、およびイオン交換膜と重なっている部分の電極サンプルにおける質量で除して、単位質量・単位面積あたりのかかる力(1)(N/mg・cm2)を算出する。
方法(i)により得られる、単位質量・単位面積あたりのかかる力(1)は、良好なハンドリング性が得られ、イオン交換膜や微多孔膜などの隔膜、劣化した電極及び触媒コーティングがされていない給電体と良好な接着力を有するとの観点から、1.6N/(mg・cm2)以下であることが好ましく、より好ましくは1.6N/(mg・cm2)未満であり、さらに好ましくは1.5N/(mg・cm2)未満であり、よりさらに好ましくは1.2N/mg・cm2以下であり、一層好ましくは1.20N/mg・cm2以下である。より一層好ましくは1.1N/mg・cm2以下であり、さらに一層好ましくは1.10N/mg・cm2以下であり、特に好ましくは1.0N/mg・cm2以下であり、1.00N/mg・cm2以下であることがとりわけ好ましい。また、電解性能をより向上させる観点から、好ましくは0.005N/(mg・cm2)超であり、より好ましくは0.08N/(mg・cm2)以上であり、さらに好ましくは、0.1N/(mg・cm2)以上であり、さらに、大型サイズ(例えば、サイズ1.5m×2.5m)での取り扱いが容易になるとの観点から、よりさらに好ましくは、0.14N/(mg・cm2)であり、0.2N/(mg・cm2)以上であることが一層好ましい。
〔方法(ii)〕
粒番号320のアルミナでブラスト加工を施して得られるニッケル板(厚み1.2mm、200mm角、上記方法(i)と同様のニッケル板)と、電極サンプル(130mm角)とをこの順で積層させ、この積層体を純水にて十分に浸漬した後、積層体表面に付着した余分な水分を除去することで測定用サンプルを得る。温度23±2℃、相対湿度30±5%の条件下で、この測定用サンプル中の電極サンプルのみを、引張圧縮試験機を用いて、垂直方向に10mm/分で上昇させて、電極サンプルが、垂直方向に10mm上昇したときの加重を測定する。この測定を3回実施して平均値を算出する。
この平均値を、電極サンプルとニッケル板の重なり部分の面積、およびニッケル板と重なっている部分における電極サンプルの質量で除して、単位質量・単位面積あたりの接着力(2)(N/mg・cm2)を算出する。
方法(ii)により得られる、単位質量・単位面積あたりのかかる力(2)は、良好なハンドリング性が得られ、イオン交換膜や微多孔膜などの隔膜、劣化した電極及び触媒コーティングがされていない給電体と良好な接着力を有するとの観点から、1.6N/(mg・cm2)以下であることが好ましく、より好ましくは1.6N/(mg・cm2)未満であり、さらに好ましくは1.5N/(mg・cm2)未満であり、よりさらに好ましくは1.2N/mg・cm2以下であり、一層好ましくは1.20N/mg・cm2以下である。より一層好ましくは1.1N/mg・cm2以下であり、さらに一層好ましくは1.10N/mg・cm2以下であり、特に好ましくは1.0N/mg・cm2以下であり、1.00N/mg・cm2以下であることがとりわけ好ましい。さらに、電解性能をより向上させる観点から、好ましくは0.005N/(mg・cm2)超であり、より好ましくは0.08N/(mg・cm2)以上であり、さらに好ましくは、0.1N/(mg・cm2)以上であり、よりさらに好ましくは、さらに、大型サイズ(例えば、サイズ1.5m×2.5m)での取り扱いが容易になるとの観点から、よりさらに好ましくは0.14N/(mg・cm2)以上である。
本実施形態における電解用電極は、電解用電極基材及び触媒層を含むことが好ましい。該電解用電極基材の厚み(ゲージ厚み)は、特に限定されないが、良好なハンドリング性が得られ、イオン交換膜や微多孔膜などの隔膜、劣化した電極(給電体)及び触媒コーティングがされていない電極(給電体)と良好な接着力を有し、好適にロール状に巻け、良好に折り曲げることができ、大型サイズ(例えば、サイズ1.5m×2.5m)での取り扱いが容易になるとの観点から、300μm以下が好ましく、205μm以下がより好ましく、155μm以下が更に好ましく、135μm以下が更により好ましく、125μm以下がより更により好ましく、120μm以下が一層好ましく、100μm以下がより一層好ましく、ハンドリング性と経済性の観点から、50μm以下が更に一層好ましい。下限値は、特に限定さないが、例えば、1μmであり、好ましく5μmであり、より好ましくは15μmである。
本実施形態において、隔膜と電解用電極とを一体化させる上で、これらの間に液体が介在することが好ましい。当該液体は、水、有機溶媒など表面張力を発生させるものであればどのような液体でも使用することができる。液体の表面張力が大きいほど、隔膜と電解用電極との間にかかる力は大きくなるため、表面張力の大きな液体が好ましい。液体としては、次のものが挙げられる(カッコ内の数値は、その液体の20℃における表面張力である)。
ヘキサン(20.44mN/m)、アセトン(23.30mN/m)、メタノール(24.00mN/m)、エタノール(24.05mN/m)、エチレングリコール(50.21mN/m)水(72.76mN/m)
表面張力の大きな液体であれば、隔膜と電解用電極とが一体となり(積層体となり)やすく、電極更新がより容易となる傾向にある。隔膜と電解用電極との間の液体は表面張力によりお互いが張り付く程度の量でよく、その結果液体量が少ないため、該積層体の電解セルに設置した後に電解液に混ざっても、電解自体に影響を与えることはない。
実用状の観点からは、液体としてエタノール、エチレングリコール、水等の表面張力が24mN/mから80mN/mの液体を使用することが好ましい。特に水、または水に苛性ソーダ、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム等を溶解させてアルカリ性にした水溶液が好ましい。また、これらの液体に界面活性剤を含ませ、表面張力を調整することもできる。界面活性剤を含むことで、隔膜と電解用電極との接着性が変化し、ハンドリング性を調整することができる。界面活性剤としては、特に限定されず、イオン性界面活性剤、非イオン性界面活性剤のいずれも使用できる。
本実施形態における電解用電極は、特に限定されないが、良好なハンドリング性が得られ、イオン交換膜や微多孔膜などの隔膜、劣化した電極(給電体)及び触媒コーティングがされていない電極(給電体)と良好な接着力を有するとの観点から、以下の方法(2)により測定した割合が、90%以上であることが好ましく、92%以上であることがより好ましく、さらに、大型サイズ(例えば、サイズ1.5m×2.5m)での取り扱いが容易になるとの観点から、95%以上であることがさらに好ましい。上限値は、100%である。
〔方法(2)〕
イオン交換膜(170mm角)と、電極サンプル(130mm角)とをこの順で積層させる。温度23±2℃、相対湿度30±5%の条件下で、この積層体中の電極サンプルが外側になるように、ポリエチレンのパイプ(外径280mm)の曲面上に積層体を置き、積層体とパイプを純水にて十分に浸漬させ、積層体表面及びパイプに付着した余分な水分を除去し、その1分後に、イオン交換膜(170mm角)と、電極サンプルとが密着している部分の面積の割合(%)を測定する。
本実施形態における電解用電極は、特に限定されないが、良好なハンドリング性が得られ、イオン交換膜や微多孔膜などの隔膜、劣化した電極(給電体)及び触媒コーティングがされていない電極(給電体)と良好な接着力を有し、好適にロール状に巻け、良好に折り曲げることができるとの観点から、以下の方法(3)により測定した割合が、75%以上であることが好ましく、80%以上であることがより好ましく、さらに、大型サイズ(例えば、サイズ1.5m×2.5m)での取り扱いが容易になるとの観点から、90%以上であることがさらに好ましい。上限値は、100%である。
〔方法(3)〕
イオン交換膜(170mm角)と、電極サンプル(130mm角)とをこの順で積層させる。温度23±2℃、相対湿度30±5%の条件下で、この積層体中の電極サンプルが外側になるように、ポリエチレンのパイプ(外径145mm)の曲面上に積層体を置き、積層体とパイプを純水にて十分に浸漬させ、積層体表面及びパイプに付着した余分な水分を除去し、その1分後に、イオン交換膜(170mm角)と、電極サンプルとが密着している部分の面積の割合(%)を測定する。
本実施形態における電解用電極は、特に限定されないが、良好なハンドリング性が得られ、イオン交換膜や微多孔膜などの隔膜、劣化した電極(給電体)及び触媒コーティングがされていない電極(給電体)と良好な接着力を有し、電解中に発生するガスの滞留防止の観点から、多孔構造であり、その開孔率または空隙率が5~90%以下であることが好ましい。開孔率は、より好ましくは10~80%以下であり、さらに好ましくは、20~75%である。
なお、開孔率とは、単位体積あたりの開孔部の割合である。開孔部もサブミクロンオーダーまで勘案するのか、目に見える開口のみ勘案するのかによって、算出方法が様々である。本実施形態では、電極のゲージ厚み、幅、長さの値から体積Vを算出し、更に重量Wを実測することにより、開孔率Aを下記の式で算出できる。
A=(1-(W/(V×ρ))×100
ρは電極の材質の密度(g/cm3)である。例えばニッケルの場合は8.908g/cm3、チタンの場合は4.506g/cm3である。開孔率の調整は、パンチングメタルであれば単位面積あたりに金属を打ち抜く面積を変更する、エキスパンドメタルであればSW(短径)、LW(長径)、送りの値を変更する、メッシュであれば金属繊維の線径、メッシュ数を変更する、エレクトロフォーミングであれば使用するフォトレジストのパターンを変更する、不織布であれば金属繊維径および繊維密度を変更する、発泡金属であれは空隙を形成させるための鋳型を変更する等の方法により適宜調整することができる。
本実施形態における電解用電極は、ハンドリング性の観点から、以下の方法(A)により測定した値が、40mm以下であることが好ましく、より好ましくは29mm以下であり、さらに好ましくは10mm以下であり、さらにより好ましくは6.5mm以下である。
〔方法(A)〕
温度23±2℃、相対湿度30±5%の条件下、イオン交換膜と前記電解用電極とを積層した積層体のサンプルを、外径φ32mmの塩化ビニル製芯材の曲面上に巻きつけて固定し、6時間静置したのちに当該電解用電極を分離して水平な板に載置したとき、当該電解用電極の両端部における垂直方向の高さL1及びL2を測定し、これらの平均値を測定値とする。
本実施形態における電解用電極は、当該電解用電極を50mm×50mmのサイズとし、温度24℃、相対湿度32%、ピストン速度0.2cm/s及び通気量0.4cc/cm2/sとした場合(以下、「測定条件1」ともいう)の通気抵抗(以下、「通気抵抗1」ともいう。)が、24kPa・s/m以下であることが好ましい。通気抵抗が大きいことは、空気が流れづらいことを意味しており、密度が高い状態を指す。この状態では、電解による生成物が電極中にとどまり、反応基質が電極内部に拡散しにくくなるため、電解性能(電圧等)が悪くなる傾向にある。また、膜表面の濃度が上がる傾向にある。具体的には、陰極面では苛性濃度が上がり、陽極面では塩水の供給性が下がる傾向にある。その結果、隔膜と電解用電極が接している界面に生成物が高濃度で滞留するため、隔膜の損傷につながり、陰極面上の電圧上昇及び膜損傷、陽極面上の膜損傷にもつながる傾向にある。
これらの不具合を防止するべく、通気抵抗を24kPa・s/m以下とすることが好ましい。
上記同様の観点から、0.19kPa・s/m未満であることがより好ましく、0.15kPa・s/m以下であることがさらに好ましく、0.07kPa・s/m以下であることがさらにより好ましい。
なお、通気抵抗が一定以上大きいと、陰極の場合には電極で発生したNaOHが電解用電極と隔膜の界面に滞留し、高濃度になる傾向があり、陽極の場合には塩水供給性が低下し、塩水濃度が低濃度になる傾向があり、このような滞留に起因して生じ得る隔膜への損傷を未然に防止する上では、0.19kPa・s/m未満であることが好ましく、0.15kPa・s/m以下であることがより好ましく、0.07kPa・s/m以下であることが更に好ましい。
一方、通気抵抗が低い場合、電解用電極の面積が小さくなるため、電解面積が小さくなり電解性能(電圧等)が悪くなる傾向にある。通気抵抗がゼロの場合は、電解用電極が設置されていないため、給電体が電極として機能し、電解性能(電圧等)が著しく悪くなる傾向にある。かかる点から、通気抵抗1として特定される好ましい下限値は、特に限定されないが、0kPa・s/m超であることが好ましく、より好ましくは0.0001kPa・s/m以上であり、更に好ましくは0.001kPa・s/m以上である。
なお、通気抵抗1は、その測定法上、0.07kPa・s/m以下では十分な測定精度が得られない場合がある。かかる観点から、通気抵抗1が0.07kPa・s/m以下である電解用電極に対しては、次の測定方法(以下、「測定条件2」ともいう)による通気抵抗(以下、「通気抵抗2」ともいう。)による評価も可能である。すなわち、通気抵抗2は、電解用電極を50mm×50mmのサイズとし、温度24℃、相対湿度32%、ピストン速度2cm/s及び通気量4cc/cm2/sとした場合の通気抵抗である。
上記通気抵抗1及び2は、例えば、後述する開孔率、電極の厚み等を適宜調整することで上記範囲とすることができる。より具体的には、例えば、同じ厚みであれば、開孔率を大きくすると、通気抵抗1及び2は小さくなる傾向にあり、開孔率を小さくすると、通気抵抗1及び2は大きくなる傾向にある。
以下、本実施形態における電解用電極のより具体的な実施形態について、説明する。
本実施形態における電解用電極は、電解用電極基材及び触媒層を含むことが好ましい。触媒層は以下の通り、複数の層で構成されてもよいし、単層構造でもよい。
図7に示すように、本実施形態に係る電解用電極101は、電解用電極基材10と、電解用電極基材10の両表面を被覆する一対の第一層20とを備える。第一層20は電解用電極基材10全体を被覆することが好ましい。これにより、電解用電極の触媒活性及び耐久性が向上し易くなる。なお、電解用電極基材10の一方の表面だけに第一層20が積層されていてもよい。
また、図7に示すように、第一層20の表面は、第二層30で被覆されていてもよい。第二層30は、第一層20全体を被覆することが好ましい。また、第二層30は、第一層20の一方の表面だけ積層されていてもよい。
(電解用電極基材)
電解用電極基材10としては、特に限定されるものではないが、例えばニッケル、ニッケル合金、ステンレススチール、またはチタンなどに代表されるバルブ金属を使用でき、ニッケル(Ni)及びチタン(Ti)から選ばれる少なくとも1種の元素を含むことが好ましい。
ステンレススチールを高濃度のアルカリ水溶液中で用いた場合、鉄及びクロムが溶出すること、及びステンレススチールの電気伝導性がニッケルの1/10程度であることを考慮すると、電解用電極基材としてはニッケル(Ni)を含む基材が好ましい。
また、電解用電極基材10は、飽和に近い高濃度の食塩水中で、塩素ガス発生雰囲気で用いた場合、材質は耐食性の高いチタンであることも好ましい。
電解用電極基材10の形状には特に限定はなく、目的によって適切な形状を選択することができる。形状としては、パンチングメタル、不織布、発泡金属、エキスパンドメタル、エレクトロフォーミングにより形成した金属多孔箔、金属線を編んで作製したいわゆるウーブンメッシュ等いずれのものも使用できる。この中でも、パンチングメタルあるいはエキスパンドメタルが好ましい。なお、エレクトロフォーミングとは、写真製版と電気メッキ法を組み合わせて、精密なパターンの金属薄膜を製作する技術である。基板上にフォトレジストにてパターン形成し、レジストに保護されていない部分に電気メッキを施し、金属薄を得る方法である。
電解用電極基材の形状については、電解槽における陽極と陰極との距離によって好適な仕様がある。特に限定されるものではないが、陽極と陰極とが有限な距離を有する場合には、エキスパンドメタル、パンチングメタル形状を用いることができ、イオン交換膜と電極とが接するいわゆるゼロギャップ電解槽の場合には、細い線を編んだウーブンメッシュ、金網、発泡金属、金属不織布、エキスパンドメタル、パンチングメタル、金属多孔箔などを用いることができる。
電解用電極基材10としては、金属多孔箔、金網、金属不織布、パンチングメタル、エキスパンドメタル又は発泡金属が挙げられる。
パンチングメタル、エキスパンドメタルに加工する前の板材としては、圧延成形した板材、電解箔などが好ましい。電解箔は、更に後処理として母材と同じ元素でメッキ処理を施して、片面あるいは両面に凹凸をつけることが好ましい。
また、電解用電極基材10の厚みは、前述の通り、300μm以下であることが好ましく、205μm以下であることがより好ましく、155μm以下であることが更に好ましく、135μm以下であることが更により好ましく、125μm以下であることがより更により好ましく、120μm以下であることが一層好ましく、100μm以下であることがより一層好ましく、ハンドリング性と経済性の観点から、50μm以下であることがより更に一層好ましい。下限値は、特に限定さないが、例えば、1μmであり、好ましく5μmであり、より好ましくは15μmである。
電解用電極基材においては、電解用電極基材を酸化雰囲気中で焼鈍することによって加工時の残留応力を緩和することが好ましい。また、電解用電極基材の表面には、前記表面に被覆される触媒層との密着性を向上させるために、スチールグリッド、アルミナ粉などを用いて凹凸を形成し、その後酸処理により表面積を増加させることが好ましい。または、基材と同じ元素でメッキ処理を施し、表面積を増加させることが好ましい。
電解用電極基材10には、第一層20と電解用電極基材10の表面とを密着させるために、表面積を増大させる処理を行うことが好ましい。表面積を増大させる処理としては、カットワイヤ、スチールグリッド、アルミナグリッド等を用いたブラスト処理、硫酸又は塩酸を用いた酸処理、基材と同元素でのメッキ処理等が挙げられる。基材表面の算術平均表面粗さ(Ra)は、特に限定されないが、0.05μm~50μmが好ましく、0.1~10μmがより好ましく、0.1~8μmがさらに好ましい。
次に、本実施形態における電解用電極を食塩電解用陽極として使用する場合について説明する。
(第一層)
図7において、触媒層である第一層20は、ルテニウム酸化物、イリジウム酸化物及びチタン酸化物のうち少なくとも1種類の酸化物を含む。ルテニウム酸化物としては、RuO2等が挙げられる。イリジウム酸化物としては、IrO2等が挙げられる。チタン酸化物としては、TiO2等が挙げられる。第一層20は、ルテニウム酸化物及びチタン酸化物の2種類の酸化物を含むか、又はルテニウム酸化物、イリジウム酸化物及びチタン酸化物の3種類の酸化物を含むことが好ましい。それにより、第一層20がより安定な層になり、さらに、第二層30との密着性もより向上する。
第一層20が、ルテニウム酸化物及びチタン酸化物の2種類の酸化物を含む場合には、第一層20に含まれるルテニウム酸化物1モルに対して、第一層20に含まれるチタン酸化物は1~9モルであることが好ましく、1~4モルであることがより好ましい。2種類の酸化物の組成比をこの範囲とすることによって、電解用電極101は優れた耐久性を示す。
第一層20が、ルテニウム酸化物、イリジウム酸化物及びチタン酸化物の3種類の酸化物を含む場合、第一層20に含まれるルテニウム酸化物1モルに対して、第一層20に含まれるイリジウム酸化物は0.2~3モルであることが好ましく、0.3~2.5モルであることがより好ましい。また、第一層20に含まれるルテニウム酸化物1モルに対して、第一層20に含まれるチタン酸化物は0.3~8モルであることが好ましく、1~7モルであることがより好ましい。3種類の酸化物の組成比をこの範囲とすることによって、電解用電極101は優れた耐久性を示す。
第一層20が、ルテニウム酸化物、イリジウム酸化物及びチタン酸化物の中から選ばれる少なくとも2種類の酸化物を含む場合、これらの酸化物は、固溶体を形成していることが好ましい。酸化物固溶体を形成することにより、電解用電極101はすぐれた耐久性を示す。
上記の組成の他にも、ルテニウム酸化物、イリジウム酸化物及びチタン酸化物のうち少なくとも1種類の酸化物を含んでいる限り、種々の組成のものを用いることができる。例えば、DSA(登録商標)と呼ばれる、ルテニウム、イリジウム、タンタル、ニオブ、チタン、スズ、コバルト、マンガン、白金等を含む酸化物コーティングを第一層20として用いることも可能である。
第一層20は、単層である必要はなく、複数の層を含んでいてもよい。例えば、第一層20が3種類の酸化物を含む層と2種類の酸化物を含む層とを含んでいてもよい。第一層20の厚みは0.05~10μmが好ましく、0.1~8μmがより好ましい。
(第二層)
第二層30は、ルテニウムとチタンを含むことが好ましい。これにより電解直後の塩素過電圧を更に低くすることができる。
第二層30が酸化パラジウム、酸化パラジウムと白金の固溶体あるいはパラジウムと白金の合金を含むことが好ましい。これにより電解直後の塩素過電圧を更に低くすることができる。
第二層30は、厚い方が電解性能を維持できる期間が長くなるが、経済性の観点から0.05~3μmの厚みであることが好ましい。
次に、本実施形態における電解用電極を食塩電解用陰極として使用する場合について説明する。
(第一層)
触媒層である第一層20の成分としては、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等の金属及び当該金属の酸化物又は水酸化物が挙げられる。
白金族金属、白金族金属酸化物、白金族金属水酸化物、白金族金属を含む合金の少なくとも1種類を含んでもよいし、含まなくてもよい。
白金族金属、白金族金属酸化物、白金族金属水酸化物、白金族金属を含む合金の少なくとも1種類を含む場合、白金族金属、白金族金属酸化物、白金族金属水酸化物、白金族金属を含む合金が白金、パラジウム、ロジウム、ルテニウム、イリジウムのうち少なくとも1種類の白金族金属を含むことが好ましい。
白金族金属としては、白金を含むことが好ましい。
白金族金属酸化物としては、ルテニウム酸化物を含むことが好ましい。
白金族金属水酸化物としては、ルテニウム水酸化物を含むことが好ましい。
白金族金属合金としては、白金とニッケル、鉄、コバルトとの合金を含むことが好ましい。
更に必要に応じて第二成分として、ランタノイド系元素の酸化物あるいは水酸化物を含むことが好ましい。これにより、電解用電極101はすぐれた耐久性を示す。
ランタノイド系元素の酸化物あるいは水酸化物としては、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウムから選ばれる少なくとも1種類を含むことが好ましい。
さらに必要に応じて、第三成分として遷移金属の酸化物あるいは水酸化物を含むことが好ましい。
第三成分を添加することにより、電解用電極101はよりすぐれた耐久性を示し、電解電圧を低減させることができる。
好ましい組み合わせの例としては、ルテニウムのみ、ルテニウム+ニッケル、ルテニウム+セリウム、ルテニウム+ランタン、ルテニウム+ランタン+白金、ルテニウム+ランタン+パラジウム、ルテニウム+プラセオジム、ルテニウム+プラセオジム+白金、ルテニウム+プラセオジム+白金+パラジウム、ルテニウム+ネオジム、ルテニウム+ネオジム+白金、ルテニウム+ネオジム+マンガン、ルテニウム+ネオジム+鉄、ルテニウム+ネオジム+コバルト、ルテニウム+ネオジム+亜鉛、ルテニウム+ネオジム+ガリウム、ルテニウム+ネオジム+硫黄、ルテニウム+ネオジム+鉛、ルテニウム+ネオジム+ニッケル、ルテニウム+ネオジム+銅、ルテニウム+サマリウム、ルテニウム+サマリウム+マンガン、ルテニウム+サマリウム+鉄、ルテニウム+サマリウム+コバルト、ルテニウム+サマリウム+亜鉛、ルテニウム+サマリウム+ガリウム、ルテニウム+サマリウム+硫黄、ルテニウム+サマリウム+鉛、ルテニウム+サマリウム+ニッケル、白金+セリウム、白金+パラジウム+セリウム、白金+パラジウム+ランタン+セリウム、白金+イリジウム、白金+パラジウム、白金+イリジウム+パラジウム、白金+ニッケル+パラジウム、白金+ニッケル+ルテニウム、白金とニッケルの合金、白金とコバルトの合金、白金と鉄の合金、などが挙げられる。
白金族金属、白金族金属酸化物、白金族金属水酸化物、白金族金属を含む合金を含まない場合、触媒の主成分がニッケル元素であることが好ましい。
ニッケル金属、酸化物、水酸化物のうち少なくとも1種類を含むことが好ましい。
第二成分として、遷移金属を添加してもよい。添加する第二成分としては、チタン、スズ、モリブデン、コバルト、マンガン、鉄、硫黄、亜鉛、銅、炭素のうち少なくとも1種類の元素を含むことが好ましい。
好ましい組み合わせとして、ニッケル+スズ、ニッケル+チタン、ニッケル+モリブデン、ニッケル+コバルトなどが挙げられる。
必要に応じ、第1層20と電解用電極基材10の間に、中間層を設けることができる。中間層を設置することにより、電解用電極101の耐久性を向上させることができる。
中間層としては、第1層20と電解用電極基材10の両方に親和性があるものが好ましい。中間層としては、ニッケル酸化物、白金族金属、白金族金属酸化物、白金族金属水酸化物が好ましい。中間層としては、中間層を形成する成分を含む溶液を塗布、焼成することで形成することもできるし、基材を空気雰囲気中で300~600℃の温度で熱処理を実施して、表面酸化物層を形成させることもできる。その他、熱溶射法、イオンプレーティング法など既知の方法で形成させることができる。
(第二層)
触媒層である第層30の成分としては、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等の金属及び当該金属の酸化物又は水酸化物が挙げられる。
白金族金属、白金族金属酸化物、白金族金属水酸化物、白金族金属を含む合金の少なくとも1種類を含んでもよいし、含まなくてもよい。第二層に含まれる元素の好ましい組み合わせの例としては、第一層で挙げた組み合わせなどがある。第一層と第二層の組み合わせは、同じ組成で組成比が異なる組み合わせでもよいし、異なる組成の組み合わせでもよい。
触媒層の厚みとしては、形成させた触媒層および中間層の合算した厚みが0.01μm~20μmが好ましい。0.01μm以上であれば、触媒として十分機能を発揮できる。20μm以下であれば、基材からの脱落が少なく強固な触媒層を形成することができる。0.05μm~15μmがより好ましい。より好ましくは、0.1μm~10μmである。更に好ましくは、0.2μm~8μmである。
電極の厚み、すなわち、電解用電極基材と触媒層の合計の厚みとしては、電極のハンドリング性の点から、315μm以下が好ましく、220μm以下がより好ましく、170μm以下が更に好ましく、150μm以下が更により好ましく、145μm以下が特に好ましく、140μm以下が一層好ましく、138μm以下がより一層好ましく、135μm以下が更に一層好ましい。135μm以下であれば、特に良好なハンドリング性が得られる。さらに、上記と同様の観点から、130μm以下であることが好ましく、より好ましくは、130μm未満であり、更に好ましくは、120μm以下であり、より更に好ましくは、115μm以下であり、一層好ましくは、65μm以下である。下限値は、特に限定されないが、1μm以上が好ましく、実用上から5μm以上がより好ましく、20μm以上であることがより好ましい。なお、電極の厚みは、デジマチックシックスネスゲージ(株式会社ミツトヨ、最少表示0.001mm)で測定することで求めることができる。電極用電極基材の厚みは、電極厚みと同様に測定する。触媒層厚みは、電極厚みから電解用電極基材の厚みを引くことで求めることができる。
本実施形態において、十分な電解性能を確保する観点から、電解用電極が、Ru、Rh、Pd、Ir、Pt、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y,Zr、Nb、Mo、Ag、Ta、W、Re、Os、Al、In、Sn、Sb、Ga、Ge、B、C、N、O、Si、P、S、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb及びDyからなる群より選択される少なくとも一種の触媒成分を含むことが好ましい。
本実施形態において、電解用電極は、弾性変形領域が広い電極であると、より良好なハンドリング性が得られ、イオン交換膜や微多孔膜などの隔膜、劣化した電極及び触媒コーティングがされていない給電体などとより良好な接着力を有する観点から、電解用電極の厚みは、315μm以下が好ましく、220μm以下がより好ましく、170μm以下が更に好ましく、150μm以下が更により好ましく、145μm以下が特に好ましく、140μm以下が一層好ましく、138μm以下がより一層好ましく、135μm以下が更に一層好ましい。135μm以下であれば、特に良好なハンドリング性が得られる。さらに、上記と同様の観点から、130μm以下が好ましく、130μm未満がより好ましく、115μm以下が更に好ましく、65μm以下がより更に好ましい。下限値は、特に限定されないが、1μm以上が好ましく、実用上から5μm以上がより好ましく、20μm以上であることがより好ましい。なお、本実施形態において、「弾性変形領域が広い」とは、電解用電極を捲回して捲回体とし、捲回状態を解除した後、捲回に由来する反りが生じ難いことを意味する。また、電解用電極の厚みとは、後述の触媒層を含む場合、電解用電極基材と触媒層を合わせた厚みを言う。
なお、第1の電解用電極としては、前述した材質・形状・物性等を有する電解用電極のうち、陰極として機能するものを適宜選択して用いることができる。また、第2の電解用電極としては、前述した材質・形状・物性等を有する電解用電極のうち、陽極として機能するものを適宜選択して用いることができる。
(電解用電極の製造方法)
次に電解用電極101の製造方法の一実施形態について詳細に説明する。
本実施形態では、酸素雰囲気下での塗膜の焼成(熱分解)、あるいはイオンプレーティング、メッキ、熱溶射等の方法によって、電解用電極基材上に第一層20、好ましくは第二層30を形成することにより、電解用電極101を製造できる。このような本実施形態の製造方法では、電解用電極101の高い生産性を実現できる。具体的には、触媒を含む塗布液を塗布する塗布工程、塗布液を乾燥する乾燥工程、熱分解を行う熱分解工程により、電解用電極基材上に触媒層が形成される。ここで熱分解とは、前駆体となる金属塩を加熱して、金属又は金属酸化物とガス状物質に分解することを意味する。用いる金属種、塩の種類、熱分解を行う雰囲気等により、分解生成物は異なるが、酸化性雰囲気では多くの金属は酸化物を形成しやすい傾向がある。電極の工業的な製造プロセスにおいて、熱分解は通常空気中で行われ、多くの場合、金属酸化物あるいは金属水酸化物が形成される。
(陽極の第一層の形成)
(塗布工程)
第一層20は、ルテニウム、イリジウム及びチタンのうち少なくとも1種類の金属塩を溶解した溶液(第一塗布液)を電解用電極基材に塗布後、酸素の存在下で熱分解(焼成)して得られる。第一塗布液中のルテニウム、イリジウム及びチタンの含有率は、第一層20と概ね等しい。
金属塩としては、塩化物塩、硝酸塩、硫酸塩、金属アルコキシド、その他のいずれの形態でもよい。第一塗布液の溶媒は、金属塩の種類に応じて選択できるが、水及びブタノール等のアルコール類等を用いることができる。溶媒としては、水または水とアルコール類の混合溶媒が好ましい。金属塩を溶解させた第一塗布液中の総金属濃度は特に限定されないが、1回の塗布で形成される塗膜の厚みとの兼ね合いから10~150g/Lの範囲が好ましい。
第一塗布液を電解用電極基材10上に塗布する方法としては、電解用電極基材10を第一塗布液に浸漬するディップ法、第一塗布液を刷毛で塗る方法、第一塗布液を含浸させたスポンジ状のロールを用いるロール法、電解用電極基材10と第一塗布液とを反対荷電に帯電させてスプレー噴霧を行う静電塗布法等が用いられる。この中でも工業的な生産性に優れた、ロール法又は静電塗布法が好ましい。
(乾燥工程、熱分解工程)
電解用電極基材10に第一塗布液を塗布した後、10~90℃の温度で乾燥し、350~650℃に加熱した焼成炉で熱分解する。乾燥と熱分解の間に、必要に応じて100~350℃で仮焼成を実施してもよい。乾燥、仮焼成及び熱分解温度は、第一塗布液の組成や溶媒種により、適宜選択することが出来る。一回当たりの熱分解の時間は長い方が好ましいが、電極の生産性の観点から3~60分が好ましく、5~20分がより好ましい。
上記の塗布、乾燥及び熱分解のサイクルを繰り返して、被覆(第一層20)を所定の厚みに形成する。第一層20を形成した後に、必要に応じて更に長時間焼成する後加熱を行うと、第一層20の安定性を更に高めることができる。
(第二層の形成)
第二層30は、必要に応じて形成され、例えば、パラジウム化合物及び白金化合物を含む溶液あるいはルテニウム化合物およびチタン化合物を含む溶液(第二塗布液)を第一層20の上に塗布した後、酸素の存在下で熱分解して得られる。
(熱分解法での陰極の第一層の形成)
(塗布工程)
第一層20は、種々の組み合わせの金属塩を溶解した溶液(第一塗布液)を電解用電極基材に塗布後、酸素の存在下で熱分解(焼成)して得られる。第一塗布液中の金属の含有率は、第一層20と概ね等しい。
金属塩としては、塩化物塩、硝酸塩、硫酸塩、金属アルコキシド、その他のいずれの形態でもよい。第一塗布液の溶媒は、金属塩の種類に応じて選択できるが、水及びブタノール等のアルコール類等を用いることができる。溶媒としては、水または水とアルコール類の混合溶媒が好ましい。金属塩を溶解させた第一塗布液中の総金属濃度は特に限定されないが、1回の塗布で形成される塗膜の厚みとの兼ね合いから10~150g/Lの範囲が好ましい。
第一塗布液を電解用電極基材10上に塗布する方法としては、電解用電極基材10を第一塗布液に浸漬するディップ法、第一塗布液を刷毛で塗る方法、第一塗布液を含浸させたスポンジ状のロールを用いるロール法、電解用電極基材10と第一塗布液とを反対荷電に帯電させてスプレー噴霧を行う静電塗布法等が用いられる。この中でも工業的な生産性に優れた、ロール法又は静電塗布法が好ましい。
(乾燥工程、熱分解工程)
電解用電極基材10に第一塗布液を塗布した後、10~90℃の温度で乾燥し、350~650℃に加熱した焼成炉で熱分解する。乾燥と熱分解の間に、必要に応じて100~350℃で仮焼成を実施してもよい。乾燥、仮焼成及び熱分解温度は、第一塗布液の組成や溶媒種により、適宜選択することが出来る。一回当たりの熱分解の時間は長い方が好ましいが、電極の生産性の観点から3~60分が好ましく、5~20分がより好ましい。
上記の塗布、乾燥及び熱分解のサイクルを繰り返して、被覆(第一層20)を所定の厚みに形成する。第一層20を形成した後に、必要に応じて更に長時間焼成する後加熱を行うと、第一層20の安定性を更に高めることができる。
(中間層の形成)
中間層は、必要に応じて形成され、例えば、パラジウム化合物あるいは白金化合物を含む溶液(第二塗布液)を基材の上に塗布した後、酸素の存在下で熱分解して得られる。あるいは、溶液を塗布することなく基材を加熱するだけで基材表面に酸化ニッケル中間層を形成させてもよい。
(イオンプレーティングでの陰極の第一層の形成)
第一層20はイオンプレーティングで形成させることもできる。
一例として、基材をチャンバー内に固定し、金属ルテニウムターゲットに電子線を照射する方法が挙げられる。蒸発した金属ルテニウム粒子は、チャンバー内のプラズマ中でプラスに帯電され、マイナスに帯電させた基板上に堆積する。プラズマ雰囲気はアルゴン、酸素であり、ルテニウムはルテニウム酸化物として基材上に堆積する。
(メッキでの陰極の第一層の形成)
第一層20は、メッキ法でも形成させることもできる。
一例として、基材を陰極として使用し、ニッケルおよびスズを含む電解液中で電解メッキを実施すると、ニッケルとスズの合金メッキを形成させることができる。
(熱溶射での陰極の第一層の形成)
第一層20は、熱溶射法でも形成させることができる。
一例として、酸化ニッケル粒子を基材上にプラズマ溶射することにより、金属ニッケルと酸化ニッケルが混合した触媒層を形成させることができる。
以下、隔膜の一態様に係るイオン交換膜について詳述する。
〔イオン交換膜〕
イオン交換膜としては、電解用電極と積層体とすることができれば、特に限定されず、種々のイオン交換膜を適用することができる。本実施形態においては、イオン交換基を有する炭化水素系重合体あるいは含フッ素系重合体を含む膜本体と、該膜本体の少なくとも一方面上に設けられたコーティング層とを有するイオン交換膜を用いることが好ましい。また、コーティング層は、無機物粒子と結合剤とを含み、コーティング層の比表面積は、0.1~10m2/gであることが好ましい。かかる構造のイオン交換膜は、電解中に発生するガスによる電解性能への影響が少なく、安定した電解性能を発揮する傾向にある。
上記、イオン交換基が導入されたパーフルオロカーボン重合体の膜とは、スルホ基由来のイオン交換基(-SO3-で表される基、以下「スルホン酸基」ともいう。)を有するスルホン酸層と、カルボキシル基由来のイオン交換基(-CO2-で表される基、以下「カルボン酸基」ともいう。)を有するカルボン酸層のいずれか一方を備えるものである。強度及び寸法安定性の観点から、強化芯材をさらに有することが好ましい。
無機物粒子及び結合剤については、以下コーティング層の説明の欄に詳述する。
図8は、イオン交換膜の一実施形態を示す断面模式図である。イオン交換膜1は、イオン交換基を有する炭化水素系重合体あるいは含フッ素系重合体を含む膜本体1aと、膜本体1aの両面に形成されたコーティング層11a及び11bを有する。
イオン交換膜1において、膜本体1aは、スルホ基由来のイオン交換基(-SO3 -で表される基、以下「スルホン酸基」ともいう。)を有するスルホン酸層3と、カルボキシル基由来のイオン交換基(-CO2 -で表される基、以下「カルボン酸基」ともいう。)を有するカルボン酸層2とを備え、強化芯材4により強度及び寸法安定性が強化されている。イオン交換膜1は、スルホン酸層3とカルボン酸層2とを備えるため、陽イオン交換膜として好適に用いられる。
なお、イオン交換膜は、スルホン酸層及びカルボン酸層のいずれか一方のみを有するものであってもよい。また、イオン交換膜は、必ずしも強化芯材により強化されている必要はなく、強化芯材の配置状態も図8の例に限定されるものではない。
(膜本体)
先ず、イオン交換膜1を構成する膜本体1aについて説明する。
膜本体10は、陽イオンを選択的に透過する機能を有し、イオン交換基を有する炭化水素系重合体あるいは含フッ素系重合体を含むものであればよく、その構成や材料は特に限定されず、適宜好適なものを選択することができる。
膜本体1aにおけるイオン交換基を有する炭化水素系重合体あるいは含フッ素系重合体は、例えば、加水分解等によりイオン交換基となり得るイオン交換基前駆体を有する炭化水素系重合体あるいは含フッ素系重合体から得ることができる。具体的には、例えば、主鎖がフッ素化炭化水素からなり、加水分解等によりイオン交換基に変換可能な基(イオン交換基前駆体)をペンダント側鎖として有し、且つ溶融加工が可能な重合体(以下、場合により「含フッ素系重合体(a)」という。)を用いて膜本体1aの前駆体を作製した後、イオン交換基前駆体をイオン交換基に変換することにより、膜本体1aを得ることができる。
含フッ素系重合体(a)は、例えば、下記第1群より選ばれる少なくとも一種の単量体と、下記第2群及び/又は下記第3群より選ばれる少なくとも一種の単量体と、を共重合することにより製造することができる。また、下記第1群、下記第2群、及び下記第3群のいずれかより選ばれる1種の単量体の単独重合により製造することもできる。
第1群の単量体としては、例えば、フッ化ビニル化合物が挙げられる。フッ化ビニル化合物としては、例えば、フッ化ビニル、テトラフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、パーフルオロアルキルビニルエーテル等が挙げられる。特に、イオン交換膜をアルカリ電解用膜として用いる場合、フッ化ビニル化合物は、パーフルオロ単量体であることが好ましく、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテルからなる群より選ばれるパーフルオロ単量体が好ましい。
第2群の単量体としては、例えば、カルボン酸型イオン交換基(カルボン酸基)に変換し得る官能基を有するビニル化合物が挙げられる。カルボン酸基に変換し得る官能基を有するビニル化合物としては、例えば、CF2=CF(OCF2CYF)s-O(CZF)t-COORで表される単量体等が挙げられる(ここで、sは0~2の整数を表し、tは1~12の整数を表し、Y及びZは、各々独立して、F又はCF3を表し、Rは低級アルキル基を表す。低級アルキル基は、例えば炭素数1~3のアルキル基である。)。
これらの中でも、CF2=CF(OCF2CYF)n-O(CF2m-COORで表される化合物が好ましい。ここで、nは0~2の整数を表し、mは1~4の整数を表し、YはF又はCF3を表し、RはCH3、C25、又はC37を表す。
なお、イオン交換膜をアルカリ電解用陽イオン交換膜として用いる場合、単量体としてパーフルオロ化合物を少なくとも用いることが好ましいが、エステル基のアルキル基(上記R参照)は加水分解される時点で重合体から失われるため、アルキル基(R)は全ての水素原子がフッ素原子に置換されているパーフルオロアルキル基でなくてもよい。
第2群の単量体としては、上記の中でも下記に表す単量体がより好ましい。
CF2=CFOCF2-CF(CF3)OCF2COOCH3
CF2=CFOCF2CF(CF3)O(CF22COOCH3
CF2=CF[OCF2-CF(CF3)]2O(CF22COOCH3
CF2=CFOCF2CF(CF3)O(CF23COOCH3
CF2=CFO(CF22COOCH3
CF2=CFO(CF23COOCH3
第3群の単量体としては、例えば、スルホン型イオン交換基(スルホン酸基)に変換し得る官能基を有するビニル化合物が挙げられる。スルホン酸基に変換し得る官能基を有するビニル化合物としては、例えば、CF2=CFO-X-CF2-SO2Fで表される単量体が好ましい(ここで、Xはパーフルオロアルキレン基を表す。)。これらの具体例としては、下記に表す単量体等が挙げられる。
CF2=CFOCF2CF2SO2F、
CF2=CFOCF2CF(CF3)OCF2CF2SO2F、
CF2=CFOCF2CF(CF3)OCF2CF2CF2SO2F、
CF2=CF(CF22SO2F、
CF2=CFO〔CF2CF(CF3)O〕2CF2CF2SO2F、
CF2=CFOCF2CF(CF2OCF3)OCF2CF2SO2F。
これらの中でも、CF2=CFOCF2CF(CF3)OCF2CF2CF2SO2F、及びCF2=CFOCF2CF(CF3)OCF2CF2SO2Fがより好ましい。
これら単量体から得られる共重合体は、フッ化エチレンの単独重合及び共重合に対して開発された重合法、特にテトラフルオロエチレンに対して用いられる一般的な重合方法によって製造することができる。例えば、非水性法においては、パーフルオロ炭化水素、クロロフルオロカーボン等の不活性溶媒を用い、パーフルオロカーボンパーオキサイドやアゾ化合物等のラジカル重合開始剤の存在下で、温度0~200℃、圧力0.1~20MPaの条件下で、重合反応を行うことができる。
上記共重合において、上記単量体の組み合わせの種類及びその割合は、特に限定されず、得られる含フッ素系重合体に付与したい官能基の種類及び量によって選択決定される。例えば、カルボン酸基のみを含有する含フッ素系重合体とする場合、上記第1群及び第2群から各々少なくとも1種の単量体を選択して共重合させればよい。また、スルホン酸基のみを含有する含フッ素系重合体とする場合、上記第1群及び第3群の単量体から各々少なくとも1種の単量体を選択して共重合させればよい。さらに、カルボン酸基及びスルホン酸基を有する含フッ素系重合体とする場合、上記第1群、第2群及び第3群の単量体から各々少なくとも1種の単量体を選択して共重合させればよい。この場合、上記第1群及び第2群よりなる共重合体と、上記第1群及び第3群よりなる共重合体とを、別々に重合し、後に混合することによっても目的の含フッ素系重合体を得ることができる。また、各単量体の混合割合は、特に限定されないが、単位重合体当たりの官能基の量を増やす場合、上記第2群及び第3群より選ばれる単量体の割合を増加させればよい。
含フッ素系共重合体の総イオン交換容量は特に限定されないが、0.5~2.0mg当量/gであることが好ましく、0.6~1.5mg当量/gであることがより好ましい。ここで、総イオン交換容量とは、乾燥樹脂の単位重量あたりの交換基の当量のことをいい、中和滴定等によって測定することができる。
イオン交換膜1の膜本体1aにおいては、スルホン酸基を有する含フッ素系重合体を含むスルホン酸層3と、カルボン酸基を有する含フッ素系重合体を含むカルボン酸層2とが積層されている。このような層構造の膜本体1aとすることで、ナトリウムイオン等の陽イオンの選択的透過性を一層向上させることができる。
イオン交換膜1を電解槽に配置する場合、通常、スルホン酸層3が電解槽の陽極側に、カルボン酸層2が電解槽の陰極側に、それぞれ位置するように配置する。
スルホン酸層3は、電気抵抗が低い材料から構成されていることが好ましく、膜強度の観点から、膜厚がカルボン酸層2より厚いことが好ましい。スルホン酸層3の膜厚は、好ましくはカルボン酸層2の2~25倍であり、より好ましくは3~15倍である。
カルボン酸層2は、膜厚が薄くても高いアニオン排除性を有するものであることが好ましい。ここでいうアニオン排除性とは、イオン交換膜1へのアニオンの侵入や透過を妨げようとする性質をいう。アニオン排除性を高くするためには、スルホン酸層に対し、イオン交換容量の小さいカルボン酸層を配すること等が有効である。
スルホン酸層3に用いる含フッ素系重合体としては、例えば、第3群の単量体としてCF2=CFOCF2CF(CF3)OCF2CF2SO2Fを用いて得られた重合体が好適である。
カルボン酸層2に用いる含フッ素系重合体としては、例えば、第2群の単量体としてCF2=CFOCF2CF(CF2)O(CF22COOCH3を用いて得られた重合体が好適である。
(コーティング層)
イオン交換膜は、膜本体の少なくとも一方面上にコーティング層を有することが好ましい。また、図8に示すとおり、イオン交換膜1においては、膜本体1aの両面上にそれぞれコーティング層11a及び11bが形成されている。
コーティング層は無機物粒子と結合剤とを含む。
無機物粒子の平均粒径は、0.90μm以上であることがより好ましい。無機物粒子の平均粒径が0.90μm以上であると、ガス付着だけでなく不純物への耐久性が極めて向上する。すなわち、無機物粒子の平均粒径を大きくしつつ、且つ上述の比表面積の値を満たすようにすることで、特に顕著な効果が得られるようになる。このような平均粒径と比表面積を満たすため、不規則状の無機物粒子が好ましい。溶融により得られる無機物粒子、原石粉砕により得られる無機物粒子を用いることができる。好ましくは原石粉砕により得られる無機物粒子を好適に用いることができる。
また、無機物粒子の平均粒径は、2μm以下とすることができる。無機物粒子の平均粒径が2μm以下であれば、無機物粒子によって膜が損傷することを防止できる。無機物粒子の平均粒径は、より好ましくは、0.90~1.2μmである。
ここで、平均粒径は、粒度分布計(「SALD2200」島津製作所)によって測定することができる。
無機物粒子の形状は、不規則形状であることが好ましい。不純物への耐性がより向上する。また、無機物粒子の粒度分布は 、ブロードであることが好ましい。
無機物粒子は、周期律表第IV族元素の酸化物、周期律表第IV族元素の窒化物、及び周期律表第IV族元素の炭化物からなる群より選ばれる少なくとも一種の無機物を含むことが好ましい。より好ましくは、耐久性の観点から、酸化ジルコニウムの粒子である。
この無機物粒子は、無機物粒子の原石を粉砕されることにより製造された無機物粒子であるか、または、無機物粒子の原石を溶融して精製することによって、粒子の径が揃った球状の粒子を無機物粒子であることが好ましい。
原石粉砕方法としては、特に限定されないが、ボールミル、ビーズミル、コロイドミル、コニカルミル、ディスクミル、エッジミル、製粉ミル、ハンマーミル、ペレットミル、VSIミル、ウィリーミル、ローラーミル、ジェットミルなどが挙げられる。また、粉砕後、洗浄されることが好ましく、そのとき洗浄方法としては、酸処理されることが好ましい。それによって、無機物粒子の表面に付着した鉄等の不純物を削減することができる。
コーティング層は結合剤を含むことが好ましい。結合剤は、無機物粒子をイオン交換膜の表面に保持して、コーティング層を成す成分である。結合剤は、電解液や電解による生成物への耐性の観点から、含フッ素系重合体を含むことが好ましい。
結合剤としては、電解液や電解による生成物への耐性、及び、イオン交換膜の表面への接着性の観点から、カルボン酸基又はスルホン酸基を有する含フッ素系重合体であることがより好ましい。スルホン酸基を有する含フッ素重合体を含む層(スルホン酸層)上にコーティング層を設ける場合、当該コーティング層の結合剤としては、スルホン酸基を有する含フッ素系重合体を用いることがさらに好ましい。また、カルボン酸基を有する含フッ素重合体を含む層(カルボン酸層)上にコーティング層を設ける場合、当該コーティング層の結合剤としては、カルボン酸基を有する含フッ素系重合体を用いることがさらに好ましい。
コーティング層中、無機物粒子の含有量は40~90質量%であることが好ましく、50~90質量%であることがより好ましい。また、結合剤の含有量は、10~60質量%であることが好ましく、10~50質量%であることがより好ましい。
イオン交換膜におけるコーティング層の分布密度は、1cm2当り0.05~2mgであることが好ましい。また、イオン交換膜が表面に凹凸形状を有する場合には、コーティング層の分布密度は、1cm2当り0.5~2mgであることが好ましい。
コーティング層を形成する方法としては、特に限定されず、公知の方法を用いることがきる。例えば、無機物粒子を結合剤を含む溶液に分散したコーティング液を、スプレー等により塗布する方法が挙げられる。
(強化芯材)
イオン交換膜は、膜本体の内部に配置された強化芯材を有することが好ましい。
強化芯材は、イオン交換膜の強度や寸法安定性を強化する部材である。強化芯材を膜本体の内部に配置させることで、特に、イオン交換膜の伸縮を所望の範囲に制御することができる。かかるイオン交換膜は、電解時等において、必要以上に伸縮せず、長期に優れた寸法安定性を維持することができる。
強化芯材の構成は、特に限定されず、例えば、強化糸と呼ばれる糸を紡糸して形成させてもよい。ここでいう強化糸とは、強化芯材を構成する部材であって、イオン交換膜に所望の寸法安定性及び機械的強度を付与できるものであり、かつ、イオン交換膜中で安定に存在できる糸のことをいう。かかる強化糸を紡糸した強化芯材を用いることにより、一層優れた寸法安定性及び機械的強度をイオン交換膜に付与することができる。
強化芯材及びこれに用いる強化糸の材料は、特に限定されないが、酸やアルカリ等に耐性を有する材料であることが好ましく、長期にわたる耐熱性、耐薬品性が必要であることから、含フッ素系重合体から成る繊維が好ましい。
強化芯材に用いられる含フッ素系重合体としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-エチレン共重合体(ETFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、トリフルオロクロルエチレン-エチレン共重合体及びフッ化ビニリデン重合体(PVDF)等が挙げられる。これらのうち、特に耐熱性及び耐薬品性の観点からは、ポリテトラフルオロエチレンからなる繊維を用いることが好ましい。
強化芯材に用いられる強化糸の糸径は、特に限定されないが、好ましくは20~300デニール、より好ましくは50~250デニールである。織り密度(単位長さあたりの打ち込み本数)は、好ましくは5~50本/インチである。強化芯材の形態としては、特に限定されず、例えば、織布、不織布、編布等が用いられるが、織布の形態であることが好ましい。また、織布の厚みは、好ましくは30~250μm、より好ましくは30~150μmのものが使用される。
織布又は編布は、モノフィラメント、マルチフィラメント又はこれらのヤーン、スリットヤーン等が使用でき、織り方は平織り、絡み織り、編織り、コード織り、シャーサッカ等の種々の織り方が使用できる。
膜本体における強化芯材の織り方及び配置は、特に限定されず、イオン交換膜の大きさや形状、イオン交換膜に所望する物性及び使用環境等を考慮して適宜好適な配置とすることができる。
例えば、膜本体の所定の一方向に沿って強化芯材を配置してもよいが、寸法安定性の観点から、所定の第一の方向に沿って強化芯材を配置し、かつ第一の方向に対して略垂直である第二の方向に沿って別の強化芯材を配置することが好ましい。膜本体の縦方向膜本体の内部において、略直行するように複数の強化芯材を配置することで、多方向において一層優れた寸法安定性及び機械的強度を付与することができる。例えば、膜本体の表面において縦方向に沿って配置された強化芯材(縦糸)と横方向に沿って配置された強化芯材(横糸)を織り込む配置が好ましい。縦糸と横糸を交互に浮き沈みさせて打ち込んで織った平織りや、2本の経糸を捩りながら横糸と織り込んだ絡み織り、2本又は数本ずつ引き揃えて配置した縦糸に同数の横糸を打ち込んで織った斜子織り(ななこおり)等とすることが、寸法安定性、機械的強度及び製造容易性の観点からより好ましい。
特に、イオン交換膜のMD方向(Machine Direction方向)及びTD方向(Transverse Direction方向)の両方向に沿って強化芯材が配置されていることが好ましい。すなわち、MD方向とTD方向に平織りされていることが好ましい。ここで、MD方向とは、後述するイオン交換膜の製造工程において、膜本体や各種芯材(例えば、強化芯材、強化糸、後述する犠牲糸等)が搬送される方向(流れ方向)をいい、TD方向とは、MD方向と略垂直の方向をいう。そして、MD方向に沿って織られた糸をMD糸といい、TD方向に沿って織られた糸をTD糸という。通常、電解に用いるイオン交換膜は、矩形状であり、長手方向がMD方向となり、幅方向がTD方向となることが多い。MD糸である強化芯材とTD糸である強化芯材を織り込むことで、多方向において一層優れた寸法安定性及び機械的強度を付与することができる。
強化芯材の配置間隔は、特に限定されず、イオン交換膜に所望する物性及び使用環境等を考慮して適宜好適な配置とすることができる。
強化芯材の開口率は、特に限定されず、好ましくは30%以上、より好ましくは50%以上90%以下である。開口率は、イオン交換膜の電気化学的性質の観点からは30%以上が好ましく、イオン交換膜の機械的強度の観点からは90%以下が好ましい。
強化芯材の開口率とは、膜本体のいずれか一方の表面の面積(A)におけるイオン等の物質(電解液及びそれに含有される陽イオン(例えば、ナトリウムイオン))が通過できる表面の総面積(B)の割合(B/A)をいう。イオン等の物質が通過できる表面の総面積(B)とは、イオン交換膜において、陽イオンや電解液等が、イオン交換膜に含まれる強化芯材等によって遮断されない領域の総面積ということができる。
図9は、イオン交換膜を構成する強化芯材の開口率を説明するための概略図である。図9はイオン交換膜の一部を拡大し、その領域内における強化芯材21a及び21bの配置のみを図示しているものであり、他の部材については図示を省略している。
縦方向に沿って配置された強化芯材21aと横方向に配置された強化芯材21bによって囲まれた領域であって、強化芯材の面積も含めた領域の面積(A)から強化芯材の総面積(C)を減じることにより、上述した領域の面積(A)におけるイオン等の物質が通過できる領域の総面積(B)を求めることができる。すなわち、開口率は、下記式(I)により求めることができる。
開口率=(B)/(A)=((A)-(C))/(A) …(I)
強化芯材の中でも、特に好ましい形態は、耐薬品性及び耐熱性の観点から、PTFEを含むテープヤーン又は高配向モノフィラメントである。具体的には、PTFEからなる高強度多孔質シートをテープ状にスリットしたテープヤーン、又はPTFEからなる高度に配向したモノフィラメントの50~300デニールを使用し、かつ、織り密度が10~50本/インチである平織りであり、その厚みが50~100μmの範囲である強化芯材であることがより好ましい。かかる強化芯材を含むイオン交換膜の開口率は60%以上であることが更に好ましい。
強化糸の形状としては、丸糸、テープ状糸等が挙げられる。
(連通孔)
イオン交換膜は、膜本体の内部に連通孔を有することが好ましい。
連通孔とは、電解の際に発生するイオンや電解液の流路となり得る孔をいう。また、連通孔とは、膜本体内部に形成されている管状の孔であり、後述する犠牲芯材(又は犠牲糸)が溶出することで形成される。連通孔の形状や径等は、犠牲芯材(犠牲糸)の形状や径を選択することによって制御することができる。
イオン交換膜に連通孔を形成することで、電解の際に電解液の移動性を確保できる。連通孔の形状は特に限定されないが、後述する製法によれば、連通孔の形成に用いられる犠牲芯材の形状とすることができる。
連通孔は、強化芯材の陽極側(スルホン酸層側)と陰極側(カルボン酸層側)を交互に通過するように形成されることが好ましい。かかる構造とすることで、強化芯材の陰極側に連通孔が形成されている部分では、連通孔に満たされている電解液を通して輸送されたイオン(例えば、ナトリウムイオン)が、強化芯材の陰極側にも流れることができる。その結果、陽イオンの流れが遮蔽されることがないため、イオン交換膜の電気抵抗を更に低くすることができる。
連通孔は、イオン交換膜を構成する膜本体の所定の一方向のみに沿って形成されていてもよいが、より安定した電解性能を発揮するという観点から、膜本体の縦方向と横方向との両方向に形成されていることが好ましい。
〔製造方法〕
イオン交換膜の好適な製造方法としては、以下の(1)工程~(6)工程を有する方法が挙げられる。
(1)工程:イオン交換基、又は、加水分解によりイオン交換基となり得るイオン交換基前駆体を有する含フッ素系重合体を製造する工程。
(2)工程:必要に応じて、複数の強化芯材と、酸又はアルカリに溶解する性質を有し、連通孔を形成する犠牲糸と、を少なくとも織り込むことにより、隣接する強化芯材同士の間に犠牲糸が配置された補強材を得る工程。
(3)工程:イオン交換基、又は、加水分解によりイオン交換基となり得るイオン交換基前駆体を有する前記含フッ素系重合体をフィルム化する工程。
(4)工程:前記フィルムに必要に応じて前記補強材を埋め込んで、前記補強材が内部に配置された膜本体を得る工程。
(5)工程:(4)工程で得られた膜本体を加水分解する工程(加水分解工程)。
(6)工程:(5)工程で得られた膜本体に、コーティング層を設ける工程(コーティング工程)。
以下、各工程について詳述する。
(1)工程:含フッ素系重合体を製造する工程
(1)工程では、上記第1群~第3群に記載した原料の単量体を用いて含フッ素系重合体を製造する。含フッ素系重合体のイオン交換容量を制御するためには、各層を形成する含フッ素系重合体の製造において、原料の単量体の混合比を調整すればよい。
(2)工程:補強材の製造工程
補強材とは、強化糸を織った織布等である。補強材が膜内に埋め込まれることで、強化芯材を形成する。連通孔を有するイオン交換膜とするときには、犠牲糸も一緒に補強材へ織り込む。この場合の犠牲糸の混織量は、好ましくは補強材全体の10~80質量%、より好ましくは30~70質量%である。犠牲糸を織り込むことにより、強化芯材の目ズレを防止することもできる。
犠牲糸は、膜の製造工程もしくは電解環境下において溶解性を有するものであり、レーヨン、ポリエチレンテレフタレート(PET)、セルロース及びポリアミド等が用いられる。また、20~50デニールの太さを有し、モノフィラメント又はマルチフィラメントからなるポリビニルアルコール等も好ましい。
なお、(2)工程において、強化芯材や犠牲糸の配置を調整することにより、開口率や連通孔の配置等を制御することができる。
(3)工程:フィルム化工程
(3)工程では、前記(1)工程で得られた含フッ素系重合体を、押出し機を用いてフィルム化する。フィルムは単層構造でもよいし、上述したように、スルホン酸層とカルボン酸層との2層構造でもよいし、3層以上の多層構造であってもよい。
フィルム化する方法としては例えば、以下のものが挙げられる。
カルボン酸基を有する含フッ素重合体、スルホン酸基を有する含フッ素重合体をそれぞれ別々にフィルム化する方法。
カルボン酸基を有する含フッ素重合体と、スルホン酸基を有する含フッ素重合体とを共押出しにより、複合フィルムとする方法。
なお、フィルムはそれぞれ複数枚であってもよい。また、異種のフィルムを共押出しすることは、界面の接着強度を高めることに寄与するため、好ましい。
(4)工程:膜本体を得る工程
(4)工程では、(2)工程で得た補強材を、(3)工程で得たフィルムの内部に埋め込むことで、補強材が内在する膜本体を得る。
膜本体の好ましい形成方法としては、(i)陰極側に位置するカルボン酸基前駆体(例えば、カルボン酸エステル官能基)を有する含フッ素系重合体(以下、これからなる層を第一層という)と、スルホン酸基前駆体(例えば、スルホニルフルオライド官能基)を有する含フッ素系重合体(以下、これからなる層を第二層という)を共押出し法によってフィルム化し、必要に応じて加熱源及び真空源を用いて、表面上に多数の細孔を有する平板またはドラム上に、透気性を有する耐熱性の離型紙を介して、補強材、第二層/第一層複合フィルムの順に積層して、各重合体が溶融する温度下で減圧により各層間の空気を除去しながら一体化する方法;(ii)第二層/第一層複合フィルムとは別に、スルホン酸基前駆体を有する含フッ素系重合体(第三層)を予め単独でフィルム化し、必要に応じて加熱源及び真空源を用いて、表面上に多数の細孔を有する平板又はドラム上に透気性を有する耐熱性の離型紙を介して、第三層フィルム、強化芯材、第二層/第一層からなる複合フィルムの順に積層して、各重合体が溶融する温度下で減圧により各層間の空気を除去しながら一体化する方法が挙げられる。
ここで、第一層と第二層とを共押出しすることは、界面の接着強度を高めることに寄与している。
また、減圧下で一体化する方法は、加圧プレス法に比べて、補強材上の第三層の厚みが大きくなる特徴を有している。更に、補強材が膜本体の内面に固定されているため、イオン交換膜の機械的強度が十分に保持できる性能を有している。
なお、ここで説明した積層のバリエーションは一例であり、所望する膜本体の層構成や物性等を考慮して、適宜好適な積層パターン(例えば、各層の組合せ等)を選択した上で、共押出しすることができる。
なお、イオン交換膜の電気的性能をさらに高める目的で、第一層と第二層との間に、カルボン酸基前駆体とスルホン酸基前駆体の両方を有する含フッ素系重合体からなる第四層をさらに介在させることや、第二層の代わりにカルボン酸基前駆体とスルホン酸基前駆体の両方を有する含フッ素系重合体からなる第四層を用いることも可能である。
第四層の形成方法は、カルボン酸基前駆体を有する含フッ素系重合体と、スルホン酸基前駆体を有する含フッ素系重合体と、を別々に製造した後に混合する方法でもよく、カルボン酸基前駆体を有する単量体とスルホン酸基前駆体を有する単量体とを共重合したものを使用する方法でもよい。
第四層をイオン交換膜の構成とする場合には、第一層と第四層との共押出しフィルムを成形し、第三層と第二層はこれとは別に単独でフィルム化し、前述の方法で積層してもよいし、第一層/第四層/第二層の3層を一度に共押し出しでフィルム化してもよい。
この場合、押出しされたフィルムが流れていく方向が、MD方向である。このようにして、イオン交換基を有する含フッ素系重合体を含む膜本体を、補強材上に形成することができる。
また、イオン交換膜は、スルホン酸層からなる表面側に、スルホン酸基を有する含フッ素重合体からなる突出した部分、すなわち凸部を有することが好ましい。このような凸部を形成する方法としては、特に限定されず、樹脂表面に凸部を形成する公知の方法を採用することができる。具体的には、例えば、膜本体の表面にエンボス加工を施す方法が挙げられる。例えば、前記した複合フィルムと補強材等とを一体化する際に、予めエンボス加工された離型紙を用いることによって、上記の凸部を形成させることができる。エンボス加工により凸部を形成する場合、凸部の高さや配置密度の制御は、転写するエンボス形状(離型紙の形状)を制御することで行うことができる。
(5)加水分解工程
(5)工程では、(4)工程で得られた膜本体を加水分解して、イオン交換基前駆体をイオン交換基に変換する工程(加水分解工程)を行う。
また、(5)工程では、膜本体に含まれている犠牲糸を酸又はアルカリで溶解除去することで、膜本体に溶出孔を形成させることができる。なお、犠牲糸は、完全に溶解除去されずに、連通孔に残っていてもよい。また、連通孔に残っていた犠牲糸は、イオン交換膜が電解に供された際、電解液により溶解除去されてもよい。
犠牲糸は、イオン交換膜の製造工程や電解環境下において、酸又はアルカリに対して溶解性を有するものであり、犠牲糸が溶出することで当該部位に連通孔が形成される。
(5)工程は、酸又はアルカリを含む加水分解溶液に(4)工程で得られた膜本体を浸漬して行うことができる。該加水分解溶液としては、例えば、KOHとDMSO(Dimethyl sulfoxide)とを含む混合溶液を用いることができる。
該混合溶液は、KOHを2.5~4.0N含み、DMSOを25~35質量%含むことが好ましい。
加水分解の温度としては、70~100℃であることが好ましい。温度が高いほど、見かけ厚みをより厚くすることができる。より好ましくは、75~100℃である。
加水分解の時間としては、10~120分であることが好ましい。時間が長いほど、見かけ厚みをより厚くすることができる。より好ましくは、20~120分である。
ここで、犠牲糸を溶出させることで連通孔形成する工程についてより詳細に説明する。図10(a)、(b)は、イオン交換膜の連通孔を形成する方法を説明するための模式図である。
図10(a)、(b)では、強化糸52と犠牲糸504aと犠牲糸504aにより形成される連通孔504のみを図示しており、膜本体等の他の部材については、図示を省略している。
まず、イオン交換膜中で強化芯材を構成することとなる強化糸52と、イオン交換膜中で連通孔504を形成するための犠牲糸504aとを、編み込み補強材とする。そして、(5)工程において犠牲糸504aが溶出することで連通孔504が形成される。
上記方法によれば、イオン交換膜の膜本体内において強化芯材、連通孔を如何なる配置とするのかに応じて、強化糸52と犠牲糸504aの編み込み方を調整すればよいため簡便である。
図10(a)では、紙面において縦方向と横方向の両方向に沿って強化糸52と犠牲糸504aを織り込んだ平織りの補強材を例示しているが、必要に応じて補強材における強化糸52と犠牲糸504aの配置を変更することができる。
(6)コーティング工程
(6)工程では、原石粉砕または原石溶融により得られた無機物粒子と、結合剤とを含むコーティング液を調整し、コーティング液を(5)工程で得られたイオン交換膜の表面に塗布及び乾燥させることで、コーティング層を形成することができる。
結合剤としては、イオン交換基前駆体を有する含フッ素系重合体を、ジメチルスルホキシド(DMSO)及び水酸化カリウム(KOH)を含む水溶液で加水分解した後、塩酸に浸漬してイオン交換基の対イオンをH+に置換した結合剤(例えば、カルボキシル基又はスルホ基を有する含フッ素系重合体)が好ましい。それによって、後述する水やエタノールに溶解しやすくなるため、好ましい。
この結合剤を、水とエタノールを混合した溶液に溶解する。なお、水とエタノールの好ましい体積比10:1~1:10であり、より好ましくは、5:1~1:5であり、さらに好ましくは、2:1~1:2である。このようにして得た溶解液中に、無機物粒子をボールミルで分散させてコーティング液を得る。このとき、分散する際の、時間、回転速度を調整することで、粒子の平均粒径等を調整することもできる。なお、無機物粒子と結合剤の好ましい配合量は、前述の通りである。
コーティング液中の無機物粒子及び結合剤の濃度については、特に限定されないが、薄いコーティング液とする方が好ましい。それによって、イオン交換膜の表面に均一に塗布することが可能となる。
また、無機物粒子を分散させる際に、界面活性剤を分散液に添加してもよい。界面活性剤としては、ノニオン系界面活性剤が好ましく、例えば、日油株式会社性HS-210、NS-210、P-210、E-212等が挙げられる。
得られたコーティング液を、スプレー塗布やロール塗工でイオン交換膜表面に塗布することでイオン交換膜が得られる。
〔微多孔膜〕
本実施形態の微多孔膜としては、前述の通り、電解用電極と積層体とすることができれば、特に限定されず、種々の微多孔膜を適用することができる。
本実施形態の微多孔膜の気孔率は、特に限定されないが、例えば、20~90とすることができ、好ましくは30~85である。上記気孔率は、例えば、下記の式にて算出できる。
気孔率=(1-(乾燥状態の膜重量)/(膜の厚み、幅、長さから算出される体積と膜素材の密度から算出される重量))×100
本実施形態の微多孔膜の平均孔径は、特に限定されないが、例えば、0.01μm~10μとすることができ、好ましくは0.05μm~5μmである。上記平均孔径は、例えば、膜を厚み方向に垂直に切断し、切断面をFE-SEMで観察する。観察される孔の直径を100点程度測定し、平均することで求めることができる。
本実施形態の微多孔膜の厚みは、特に限定されないが、例えば、10μm~1000μmとすることができ、好ましくは50μm~600μmである。上記厚みは、例えば、マイクロメーター(株式会社ミツトヨ製)等を用いて測定することができる。
上述のような微多孔膜の具体例としては、Agfa社製のZirfon Perl UTP 500(本実施形態において、Zirfon膜とも称す)、国際公開第2013-183584号パンフレット、国際公開第2016-203701号パンフレットなどに記載のものが挙げられる。
本実施形態においては、隔膜が、第1のイオン交換樹脂層と、当該第1のイオン交換樹脂層とは異なるEW(イオン交換当量)を有する第2のイオン交換樹脂層とを含むことが好ましい。また、隔膜が、第1のイオン交換樹脂層と、当該第1のイオン交換樹脂層とは異なる官能基を有する第2のイオン交換樹脂層とを含むことが好ましい。イオン交換当量は導入する官能基によって調整でき、導入しうる官能基については前述したとおりである。
(水電解)
本実施形態の電解槽であって、水電解を行う場合の電解槽は、上述した食塩電解を行う場合の電解槽におけるイオン交換膜を微多孔膜に変更した構成を有するものである。また、供給する原料が水である点において、上述した食塩電解を行う場合の電解槽とは相違するものである。その他の構成については、水電解を行う場合の電解槽も食塩電解を行う場合の電解槽と同様の構成を採用することができる。食塩電解の場合には、陽極室で塩素ガスが発生するため、陽極室の材質はチタンが用いられるが、水電解の場合には、陽極室で酸素ガスが発生するのみであるため、陰極室の材質と同じものを使用できる。例えば、ニッケル等が挙げられる。また、陽極コーティングは酸素発生用の触媒コーティングが適当である。触媒コーティングの例としては、白金族金属および遷移金の金属、酸化物、水酸化物などが挙げられる。例えば、白金、イリジウム、パラジウム、ルテニウム、ニッケル、コバルト、鉄等の元素を使用することができる。
[電解槽の製造方法]
本実施形態の電解槽の製造方法は、陽極(以下、「既存陽極」ともいう。)と、前記陽極に対向する陰極(以下、「既存陰極」ともいう。)と、前記陽極と前記陰極との間に配される隔膜(以下、「既存隔膜」ともいう。)と、前記陰極を前記陽極へ向かう方向に押圧する第1の弾性体(以下、「既存弾性体」ともいう。)と、を備える既存電解槽から、新たな電解槽を製造するための方法であって、前記既存電解槽において、前記隔膜と前記陰極との間に第1の電解用電極を配し、かつ、前記第1の電解用電極と前記陰極との間に第2の弾性体を配する工程(A)を含み、前記第2の弾性体が、前記陽極へ向かう方向に前記第1の電解用電極を押圧する。
上記のように、本実施形態に係る電解槽の製造方法によれば、陰極(すなわち、既存電解槽における既存の陰極)を除去することなく、当該陰極の性能を更新できるだけでなく、さらに第1の弾性体(すなわち、既存電解槽における既存の弾性体)を除去することなく、ゼロギャップ構造を維持するための部材更新が可能となるため、電解セルの取出、搬出、古い電極の除去、古い弾性体の除去、新しい弾性体の設置・固定、新しい電極の設置・固定、電解槽への運搬・設置、といった煩雑な作業を伴うことなく、電解槽における部材の更新の際の作業効率を向上させることができる。
本実施形態において、既存電解槽は、陽極と、前記陽極に対向する陰極と、前記陽極と前記陰極との間に配される隔膜と、前記陰極を前記陽極へ向かう方向に押圧する第1の弾性体とを構成部材として含むものであり、換言すると、電解セルを含むものである。既存電解槽は、上記した構成部材を含む限り特に限定されず、種々公知の構成を適用することができる。なお、既存電解槽における陽極は、後述する第2の電解用電極と接している場合、実質的には給電体として機能するものであり、第2の電解用電極と接していない場合、それ自体が陽極として機能するものである。同様に、既存電解槽における陰極は、第1の電解用電極と接している場合、実質的には給電体として機能するものであり、第1の電解用電極と接していない場合、それ自体が陰極として機能するものである。ここで、本実施形態及び後述する第2実施形態において、給電体とは、劣化した電極(すなわち既存電極)や、触媒コーティングがされていない電極等を意味する。
本実施形態において、新たな電解槽は、既存電解槽において既に陽極又は陰極として機能している部材に加えて、第2の弾性体と第1の電解用電極とを更に備えるものであり、全体的な更新の観点から、好ましくは第2の弾性体と第1の電解用電極と新たな隔膜とを含む積層体を更に備えるものであり、より好ましくは第2の弾性体と第1の電解用電極と新たな隔膜と第2の電解用電極とを含む積層体を更に備えるものである。すなわち、新たな電解槽の製造の際に配される第1の電解用電極は、陰極として機能するものであり、第2の電解用電極は陽極として機能するものであり、これらは既存電解槽における陰極及び陽極とは別体である。本実施形態では、既存電解槽の運転に伴って陽極及び/又は陰極として機能する電解用電極の電解性能が劣化した場合であっても、劣化した電解用電極をこれとは別体の新たな電解用電極に交換することで、陽極及び/又は陰極の性能を更新することができる。さらに、上述した積層体を用いる場合、既存隔膜が新たな隔膜に交換されることとなるため、運転に伴って性能が劣化した隔膜の性能も同時に更新することができる。本実施形態及び後述する第2実施形態において、「更新」とは、電解槽における各部品の性能を更新することを意味し、より詳細には、既存電解槽が運転に供される前に有していた初期性能と同等の性能にする、又は、当該初期性能よりも高い性能とすることを意味する。
本実施形態において、既存電解槽は、「既に運転に供した電解槽」を想定しており、また、新たな電解槽は、「未だ運転に供していない電解槽」を想定している。すなわち、新たな電解槽として製造された電解槽をひとたび運転に供すると、「本実施形態における既存電解槽」となり、この既存電解槽に新たな積層体を配したものは「本実施形態における新たな電解槽」となる。
本実施形態において、既存電解槽における隔膜と新たな隔膜とは、それぞれ、形状・材質・物性において同様とすることができる。したがって、本明細書においては、「本実施形態における隔膜」は、「本実施形態における新たな隔膜」を包含するものとする。
(工程(A))
本実施形態における工程(A)を実施するための一例について、図11を用いて説明する。図11(A)に示すように、既存電解槽においては、陽イオン交換膜51が一方の電解セル50の陰極21側と他方の電解セル50の陽極11側とで挟持されている。ここで、例えば既存電解槽におけるプレス器を操作すること等により、当該挟持を解除し、図11(B)に示すように陰極21と陽イオン交換膜51との間に空隙Sを形成することができる。次いで、この空隙Sに第2の弾性体22’と第1の電解用電極53とを配し、再度プレス器を操作すること等によりこれらを挟持し、図11(C)に示す状態とすることができる。すなわち、図11(C)に示す状態において、陽イオン交換膜51と陰極21との間に第1の電解用電極53が配されており、かつ、第1の電解用電極53と陰極21との間に第2の弾性体22’が配されることとなる。なお、図11(C)に示す状態において、第1の電解用電極53は陰極電極として機能し、かつ、第1の電解用電極53と第2の弾性体22’と陰極21と図示しない第1の弾性体22(図3参照)とは、電気的に接続されることとなる。
第1の電解用電極53と第2の弾性体22’とを配置する順番は特に限定されず、同時に配置してもよいし、いずれか一方を先に配置してもよい。
(工程(B))
本実施形態における工程(B)を実施するための一例について、図12を用いて説明する。図12(A)に示すように、既存電解槽においては、陽イオン交換膜51が一方の電解セル50の陰極21側と他方の電解セル50の陽極11側とで挟持されている。ここで、例えば既存電解槽におけるプレス器を操作すること等により、当該挟持を解除し、図12(B)に示すように陰極21と陽イオン交換膜51との間、及び陽極11と陽イオン交換膜51との間に各々空隙Sを形成することができる。次いで、陰極21側の空隙Sに第2の弾性体22’と第1の電解用電極53とを配し、陽極11側の空隙Sに第2の電解用電極53’を配し、再度プレス器を操作すること等によりこれらを挟持し、図12(C)に示す状態とすることができる。すなわち、図12(C)に示す状態において、陽イオン交換膜51と陰極21との間に第1の電解用電極53が配されており、かつ、第1の電解用電極53と陰極21との間に第2の弾性体22’が配されており、かつ、陽極11と陽イオン交換膜51との間に第2の電解用電極53’が配されることとなる。なお、図12(C)に示す状態において、第1の電解用電極53は陰極電極として機能し、かつ、第2の電解用電極53’は陽極電極として機能し、かつ、第2の電解用電極53’と陽極11とは電気的に接続され、かつ、第1の電解用電極53と第2の弾性体22’と陰極21と図示しない第1の弾性体22(図3参照)とは電気的に接続されることとなる。
第1の電解用電極53と第2の弾性体22’と第2の電解用電極53’とを配置する順番は特に限定されず、同時に配置してもよいし、いずれか一方を先に配置してもよい。
(サブ工程(a1)~(a2))
本実施形態において、全体的な更新の観点から、工程(A)は、隔膜を除去するサブ工程(a1)と、前記サブ工程(a1)の後、新たな隔膜と前記第1の電解用電極とを含む積層体を、前記第2の弾性体と前記陽極との間に配するサブ工程(a2)とを含むことが好ましい。ここで、サブ工程(a1)~(a2)を実施するための一例について、図13を用いて説明する。図13(A)に示すように、既存電解槽においては、陽イオン交換膜51が一方の電解セル50の陰極21側と他方の電解セル50の陽極11側とで挟持されている。ここで、例えば既存電解槽におけるプレス器を操作すること等により、当該挟持を解除し、さらに陽イオン交換膜51を除去することで、図13(B)に示すように陰極21と陽極11との間に空隙Sを形成することができる。次いで、この空隙Sに、第2の弾性体22’と、第1の電解用電極53と、新たな隔膜としての陽イオン交換膜51’を配し、再度プレス器を操作すること等によりこれらを挟持し、図13(C)に示す状態とすることができる。すなわち、図13(C)に示す状態において、陽イオン交換膜51’と陰極21との間に第1の電解用電極53が配されており、かつ、第1の電解用電極53と陰極21との間に第2の弾性体22’が配されることとなる。なお、図13(C)に示す状態において、第1の電解用電極53は陰極電極として機能し、かつ、第1の電解用電極53と第2の弾性体22’と陰極21と図示しない第1の弾性体22(図3参照)とは、電気的に接続されることとなる。
第1の電解用電極53と第2の弾性体22’と陽イオン交換膜51’とを配置する順番は特に限定されず、同時に配置してもよいし、いずれか一方を先に配置してもよい。ここで、これらを同時に配置する場合、第1の電解用電極53と陽イオン交換膜51’とを含む積層体を用いることが好ましい。更新に係る操作のハンドリング性の観点から、かかる積層体は、本実施形態の電解槽について説明した積層体と同様の構成ないし物性を有することが好ましい。
サブ工程(a1)~(a2)において、第1の電解用電極53と陽イオン交換膜51’とを含む積層体を用いる場合、全体的な更新の観点から、当該積層体は、第2の電解用電極53’を更に含むことが好ましい。上記工程を実施するための一例について、図14を用いて説明する。図14(A)に示すように、既存電解槽においては、陽イオン交換膜51が一方の電解セル50の陰極21側と他方の電解セル50の陽極11側とで挟持されている。ここで、例えば既存電解槽におけるプレス器を操作すること等により、当該挟持を解除し、さらに陽イオン交換膜51を除去することで、図14(B)に示すように陰極21と陽極11との間に空隙Sを形成することができる。次いで、空隙Sに、第1の電解用電極53と新たな隔膜としての陽イオン交換膜51’と第2の電解用電極53’とを含む積層体54と、第2の弾性体22’とを配し、再度プレス器を操作すること等によりこれらを挟持し、図14(C)に示す状態とすることができる。すなわち、図14(C)に示す状態において、陽イオン交換膜51’と陰極21との間に第1の電解用電極53が配されており、かつ、第1の電解用電極53と陰極21との間に第2の弾性体22’が配されており、かつ、陽極11と陽イオン交換膜51’との間に第2の電解用電極53’が配されることとなる。なお、図14(C)に示す状態において、第1の電解用電極53は陰極電極として機能し、かつ、第2の電解用電極53’は陽極電極として機能し、かつ、第2の電解用電極53’と陽極11とは電気的に接続され、かつ、第1の電解用電極53と第2の弾性体22’と陰極21と図示しない第1の弾性体22(図3参照)とは電気的に接続されることとなる。
積層体54と第2の弾性体22’とを配置する順番は特に限定されず、同時に配置してもよいし、いずれか一方を先に配置してもよい。
本実施形態において、第1の弾性体の劣化に起因してゼロギャップ構造が失われることを効果的に防止する観点から、第2の弾性体の厚みは、第1の弾性体の厚みよりも大きいことが好ましい。同様の観点から、第2の弾性体の常用面圧が、第1の弾性体の常用面圧よりも大きいことが好ましい。
<第2実施形態>
ここでは、本実施形態に係る第2の態様(以下、「第2実施形態」ともいう。)について、図15~20を参照しつつ詳細に説明する。
[電解槽の製造方法]
第2実施形態(以降、特に断りがない限り、<第2実施形態>の項における「本実施形態」は第2実施形態を意味する。)に係る電解槽の製造方法(以下、「本実施形態の方法」ともいう。)は、陽極と、前記陽極に対向する陰極と、前記陽極と前記陰極との間に配される隔膜と、前記陰極を直接支持する支持体と、を備える既存電解槽から、新たな電解槽を製造するための方法であって、前記既存電解槽において、前記隔膜を、新たな隔膜と第1の電解用電極とを含む積層体に交換し、かつ、前記第1の電解用電極と前記陰極との間に弾性体を配する工程(A)を含み、前記弾性体が、前記陽極へ向かう方向に前記第1の電解用電極を押圧し、前記第1の電解用電極の厚みが120μm以下であり、前記第1の電解用電極と前記弾性体と前記陰極と前記支持体とが、電気的に接続されている。
上記のように構成されているため、本実施形態の方法によれば、ナローギャップ電解槽で使用されていた既存の構造を活かしつつゼロギャップ化を図るだけでなく、既存の隔膜の性能を更新でき、さらに作業効率にも優れる。
新たな電解槽は、本実施形態の方法により得られるものであれば特に限定されない。すなわち、本実施形態の電解槽は既存電解槽を改造して得ることができる。以下、既存電解槽の構造を踏まえつつ説明する。
本実施形態において、新たな電解槽は、既存電解槽(ナローギャップ電解槽)をゼロギャップ化した電解槽であって、未だ運転に供していない電解槽を想定している。また、既存電解槽は、「既に運転に供した電解槽」を想定しており、以下に説明するような構成を有する。
[既存電解槽]
本実施形態において、既存電解槽は、陽極と、前記陽極に対向する陰極と、前記陽極と前記陰極との間に配される隔膜と、前記陰極を直接支持する支持体と、を構成部材として含むものであり、換言すると、少なくとも陽極と陰極と隔膜と支持体とを含む電解セルを備えるものである。既存電解槽は、上記した構成部材を含む限り特に限定されず、種々公知の構成を適用することができる。
また、本実施形態における新たな電解槽は、既存電解槽における電解セル(既存電解セル)を改造して得られる新たな電解セルを備えるものということもできる。このように、本実施形態における新たな電解槽を製造するに際しては、新たな電解セルが得られることから、本実施形態に係る電解槽の製造方法は、電解セルの製造方法(新たな電解セルを製造する方法)に対応するということができ、より具体的には、本実施形態に係る電解セルの製造方法は、陽極と、前記陽極に対向する陰極と、前記陽極と前記陰極との間に配される隔膜と、前記陰極を直接支持する支持体と、を備える既存電解セルから、新たな電解セルを製造するための方法であって、前記既存電解セルにおいて、前記隔膜を、新たな隔膜と第1の電解用電極とを含む積層体に交換し、かつ、前記第1の電解用電極と前記陰極との間に弾性体を配する工程(A)を含み、前記弾性体が、前記陽極へ向かう方向に前記第1の電解用電極を押圧し、前記第1の電解用電極の厚みが120μm以下であり、前記第1の電解用電極と前記弾性体と前記陰極と前記支持体とが、電気的に接続されている、ということができる。
上述の観点から、以降の本実施形態に係る電解槽の製造方法に関する説明は、電解セルの製造方法に関する説明として読み替えることができる。
以下、隔膜としてイオン交換膜を用い、食塩電解を行う場合を例として、既存電解槽の一実施形態を詳述する。ただし、本実施形態において、既存電解槽及び新たな電解槽は、食塩電解に用いられることに限定されず、例えば、水電解や燃料電池にも用いられる。
〔電解セル〕
まず、本実施形態における電解槽の構成単位として使用できる電解セルの一例について説明する。
図15は、電解セル50の模式的断面図である。
図15に示すように、電解セル50は、陽イオン交換膜51と、陽イオン交換膜51及び陽極フレーム24で画成される陽極室60と、陽イオン交換膜51及び陰極フレーム25で画成される陰極室70と、陽極室60に設置された陽極11と、陰極室70に設置された陰極21と、を備えるものであり、陽極11は陽極フレーム24に、陰極21は陰極フレーム25に、それぞれ直接支持されている。すなわち、陽極フレーム24及び陰極フレーム25は、それぞれ、陽極11及び陰極21の支持体として機能している。また、図15において、説明の便宜上、陽イオン交換膜51、陽極フレーム24及び陰極フレーム25を離して示しているが、電解槽に配置された状態では、これらは接触している。ただし、既存電解槽内において、電解セル中の陽イオン交換膜51と陰極21との間にはギャップが存在する。
図16は、電解槽4を示す。図17は、電解槽4を組み立てる工程を示す。
図16に示すように、電解槽4は、直列に接続された複数の電解セル50から構成される。つまり、電解槽4は、直列に配置された複数の電解セル50を備える複極式電解槽である。また、図16~17に示すように、電解槽4は、複数の電解セル50を直列に配置して、プレス器5により連結されることにより組み立てられる。
電解槽4は、電源に接続される陽極端子7と陰極端子6とを有する。電解槽4内で直列に連結された複数の電解セル50のうち最も端に位置する電解セル50の陽極11は、陽極端子7に電気的に接続される。電解槽4内で直列に連結された複数の電解セル50のうち陽極端子7の反対側の端に位置する電解セルの陰極21は、陰極端子6に電気的に接続される。電解時の電流は、陽極端子7側から、各電解セル50の陽極及び陰極を経由して、陰極端子6へ向かって流れる。なお、連結した電解セル50の両端には、陽極室のみを有する電解セル(陽極ターミナルセル)と、陰極室のみを有する電解セル(陰極ターミナルセル)を配置してもよい。この場合、その一端に配置された陽極ターミナルセルに陽極端子7が接続され、他の端に配置された陰極ターミナルセルに陰極端子6が接続される。
塩水の電解を行なう場合、各陽極室60には塩水が供給され、陰極室70には純水又は低濃度の水酸化ナトリウム水溶液が供給される。各液体は、電解液供給管(図中省略)から、電解液供給ホース(図中省略)を経由して、各電解セル50に供給される。また、電解液及び電解による生成物は、電解液回収管(図中省略)より、回収される。電解において、塩水中のナトリウムイオンは、一方の電解セル50の陽極室60から、陽イオン交換膜51を通過して、陰極室70へ移動する。よって、電解中の電流は、電解セル50が直列に連結された方向に沿って、流れることになる。つまり、電流は、陽イオン交換膜51を介して陽極室60から陰極室70に向かって流れる。塩水の電解に伴い、陽極11側で塩素ガスが生成し、陰極21側で水酸化ナトリウム(溶質)と水素ガスが生成する。
(陽極室)
陽極室60は、陽極11を有する。また、陽極室60は、陽極室60に電解液を供給する陽極側電解液供給部と、陽極側電解液供給部の上方に配置され、陽極フレーム24と略平行または斜めになるように配置されたバッフル板と、バッフル板の上方に配置され、気体が混入した電解液から気体を分離する陽極側気液分離部とを有することが好ましい。
(陽極)
陽極11としては、いわゆるDSA(登録商標)等の金属電極を用いることができる。DSAとは、ルテニウム、イリジウム、チタンを成分とする酸化物によって表面を被覆されたチタン基材の電極である。
形状としては、パンチングメタル、不織布、発泡金属、エキスパンドメタル、エレクトロフォーミングにより形成した金属多孔箔、金属線を編んで作製したいわゆるウーブンメッシュ等いずれのものも使用できる。
(陽極側電解液供給部)
陽極側電解液供給部は、陽極室60に電解液を供給するものであり、電解液供給管に接続される。陽極側電解液供給部は、陽極室60の下方に配置されることが好ましい。陽極側電解液供給部としては、例えば、表面に開口部が形成されたパイプ(分散パイプ)等を用いることができる。かかるパイプは、陽極11の表面に沿って、電解セルの底部に対して平行に配置されていることがより好ましい。このパイプは、電解セル50内に電解液を供給する電解液供給管(液供給ノズル)に接続される。液供給ノズルから供給された電解液はパイプによって電解セル50内まで搬送され、パイプの表面に設けられた開口部から陽極室60の内部に供給される。パイプを、陽極11の表面に沿って、電解セルの底部に平行に配置することで、陽極室60の内部に均一に電解液を供給することができるため好ましい。
(陽極側気液分離部)
陽極側気液分離部は、バッフル板の上方に配置されることが好ましい。電解中において、陽極側気液分離部は、塩素ガス等の生成ガスと電解液を分離する機能を有する。なお、特に断りがない限り、上方とは、図15の電解セル50における右方向を意味し、下方とは、図15の電解セル50における左方向を意味する。
電解時、電解セル50で発生した生成ガスと電解液が混相(気液混相)となり系外に排出されると、電解セル50内部の圧力変動によって振動が発生し、イオン交換膜の物理的な破損を引き起こす場合がある。これを抑制するために、電解セル50には、気体と液体を分離するための陽極側気液分離部が設けられていることが好ましい。陽極側気液分離部には、気泡を消去するための消泡板が設置されることが好ましい。気液混相流が消泡板を通過するときに気泡がはじけることにより、電解液とガスに分離することができる。その結果、電解時の振動を防止することができる。
(バッフル板)
バッフル板は、陽極側電解液供給部の上方に配置され、かつ、陽極フレーム24と略平行または斜めに配置されることが好ましい。バッフル板は、陽極室60の電解液の流れを制御する仕切り板である。バッフル板を設けることで、陽極室60において電解液(塩水等)を内部循環させ、その濃度を均一にすることができる。内部循環を起こすために、バッフル板は、陽極11近傍の空間と陽極フレーム24近傍の空間とを隔てるように配置することが好ましい。かかる観点から、バッフル板は、陽極11及び陽極フレーム24の各表面に対向するように設けられていることが好ましい。バッフル板により仕切られた陽極近傍の空間では、電解が進行することにより電解液濃度(塩水濃度)が下がり、また、塩素ガス等の生成ガスが発生する。これにより、バッフル板により仕切られた陽極11近傍の空間と、陽極フレーム24近傍の空間とで気液の比重差が生まれる。これを利用して、陽極室60における電解液の内部循環を促進させ、陽極室60の電解液の濃度分布をより均一にすることができる。
(陽極フレーム)
陽極フレーム24は、陽イオン交換膜51と共に陽極室60を画成するものである。陽極フレーム24としては、電解用のセパレータとして公知のものを使用することができ、例えば、チタンからなる板を溶接した金属板が挙げられる。
なお、図15に示していないが、陽極室60内において、陽極11と陽極フレーム24との間に集電体を別途設けてもよい。かかる集電体としては、後述する陰極室の集電体と同様の材料や構成とすることもできる。
(陰極室)
陰極室70は、陰極21を有する。また、陰極室70も陽極室60と同様に、陰極側電解液供給部、陰極側気液分離部を有していることが好ましい。なお、陰極室70を構成する各部位のうち、陽極室60を構成する各部位と同様のものについては説明を省略する。
(陰極)
陰極21の表面全体は還元反応のための触媒層で被覆されていることが好ましい。より具体的には、陰極21は、ニッケル基材とニッケル基材を被覆する触媒層とを有することが好ましい。ニッケル基材上の触媒層の成分としては、Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等の金属及び当該金属の酸化物又は水酸化物が挙げられる。触媒層の形成方法としては、メッキ、合金めっき、分散・複合めっき、CVD、PVD、熱分解及び溶射が挙げられる。これらの方法を組み合わせてもよい。触媒層は必要に応じて複数の層、複数の元素を有してもよい。また、必要に応じて陰極21に還元処理を施してもよい。なお、陰極21の基材としては、ニッケル、ニッケル合金、鉄あるいはステンレスにニッケルをメッキしたものを用いてもよい。
形状としては、パンチングメタル、不織布、発泡金属、エキスパンドメタル、エレクトロフォーミングにより形成した金属多孔箔、金属線を編んで作製したいわゆるウーブンメッシュ等いずれのものも使用できる。
(陰極フレーム)
陰極フレーム25は、陽イオン交換膜51と共に陰極室70を画成するものである。陰極フレーム25としては、電解用のセパレータとして公知のものを使用することができ、例えば、ニッケルからなる板を溶接した金属板が挙げられる。
本実施形態において、陰極は、支持体に直接支持されている。ここでいう「直接支持」は、支持体が後述する弾性体を介して陰極を支持する態様を除外する趣旨であり、支持体が集電体を介して陰極を支持する態様は包含される。なお、図15では、陰極フレーム25が陰極21を直接支持する支持体として機能する例を示しているが、陰極室を画成する枠体は本実施形態における支持体と別体であってもよい。
(集電体)
上記のように、陰極室70内において、陰極21と陰極フレーム25との間に図示しない集電体が配されていていてもよい。これにより、集電効果が高まる傾向にある。かかる集電体としては、例えば、ニッケル、鉄、銅、銀、チタンなどの電気伝導性のある金属からなることが好ましい。集電体は、これらの金属の混合物、合金又は複合酸化物でもよい。なお、集電体の形状は、集電体として機能する形状であればどのような形状でもよく、板状、網状等の多孔板であってもよい。
(逆電流吸収体)
電解セル50は、必要に応じ、陰極室内に図示しない逆電流吸収体を設置することができる。逆電流吸収体は、陰極と電気的に接続されるように配されるものであり、基材と当該基材上に形成された逆電流吸収層とを有する多層構造とすることができる。陰極21及び逆電流吸収層は、直接接続されていてもよく、集電体、後述する弾性体又は陰極フレーム等を介して間接的に接続されていてもよい。
前述の陰極の触媒層用の元素の酸化還元電位よりも卑な酸化還元電位を持つ材料を逆電流吸収層の材料として選択することができる。例えば、ニッケルや鉄などが挙げられる。基材については導電性があるものであれば特に限定されず種々公知の材料を適用できる。
(陽極側ガスケット、陰極側ガスケット)
陽極側ガスケット12は、陽極室60を構成する陽極フレーム24の表面に配置されることが好ましい。また、陰極側ガスケット13は、陰極室70を構成する陰極フレーム25の表面に配置されていることが好ましい。電解セル50が備える陽極側ガスケット12と、陰極側ガスケット13とが、陽イオン交換膜51を挟持するように、陽極フレーム24及び陰極フレーム25が一体化される(図15参照)。これらのガスケットにより、上述の一体化の際、接続箇所に気密性を付与することができる。
ガスケットは、隔膜と各電極との間をシールするものである。ガスケットの具体例としては、中央に開口部が形成された額縁状のゴム製シート等が挙げられる。ガスケットは、腐食性の電解液や生成するガス等に対して耐性を有し、長期間使用できることが好ましい。そこで、耐薬品性や硬度の点から、通常、エチレン・プロピレン・ジエンゴム(EPDMゴム)、エチレン・プロピレンゴム(EPMゴム)の加硫品や過酸化物架橋品等がガスケットとして用いられる。また、必要に応じて液体に接する領域(接液部)をポリテトラフルオロエチレン(PTFE)やテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)などのフッ素系樹脂で被覆したガスケットを用いることもできる。これらガスケットは、電解液の流れを妨げないように、それぞれ開口部を有していればよく、その形状は特に限定されない。例えば、陽極室60を構成する陽極フレーム24又は陰極室70を構成する陰極フレーム25の各開口部の周縁に沿って、額縁状のガスケットが接着剤等で貼り付けられる。例えば、陽イオン交換膜51を介して陽極フレーム24及び陰極フレーム25を接続する場合(図15参照)、陽極フレーム24及び陰極フレーム25の各ガスケットを貼り付けた面で陽イオン交換膜51を挟む形で締め付ければよい。これにより、電解液、電解により生成するアルカリ金属水酸化物、塩素ガス、水素ガス等が電解セル50の外部に漏れることを抑制することができる。
本実施形態の製造方法では、上述したような既存電解槽を用い、以下に詳述する工程により新たな電解槽を製造する。
(工程(A))
工程(A)では、既存電解槽において、隔膜を、新たな隔膜と第1の電解用電極とを含む積層体に交換し、かつ、第1の電解用電極と陰極との間に弾性体を配する。
以下、工程(A)を実施するための一例について、図18,19を用いて説明する。工程(A)では、図18(A)に示すような弾性体22と、図18(B)に示すような新たな隔膜51’と第1の電解用電極21’とを含む積層体を使用することができる。
なお、本実施形態における第1の電解用電極は、厚みが120μm以下であれば特に限定されない。また、弾性体は、陽極へ向かう方向に第1の電解用電極を押圧できるものであって、陰極と電気的に接続できるものであれば特に限定されない。第1の電解用電極及び弾性体の詳細については後述する。
また、既存電解槽における隔膜と新たな隔膜とは、それぞれ、形状・材質・物性において同様とすることができる。したがって、本明細書においては、「本実施形態における隔膜」は、「本実施形態における新たな隔膜」を包含するものとする。本実施形態における隔膜の詳細については後述する。
図15における既存電解槽中の電解セル50を例にすれば、既存電解槽におけるプレス器を操作すること等により、陽イオン交換膜51の挟持が解除され、電解セル50から陽イオン交換膜51を取り出すことができる。次いで、陰極21上に図18(A)に示す弾性体22を配すると共に、弾性体22上に図18(B)に示す積層体と配することで、図19に示す構造となる。
図19においては、説明の便宜上、陽極11、新たな隔膜51’、第1の電解用電極21’、及び弾性体22を離して示しているが、電解槽に配置された状態では、これらは接触している。すなわち、新たな電解槽内において、電解セル中の陽イオン交換膜51と陰極21との間にはギャップが存在せず、第1の電解用電極21’と弾性体22と陰極21と陰極フレーム25(陰極21の支持体)とは、電気的に接続されることとなる。
新たな隔膜51’と第1の電解用電極21’とを含む積層体と、弾性体22とを配置する順番は特に限定されず、同時に配置してもよいし、いずれか一方を先に配置してもよい。
また、工程(A)において、図18(A)に示すような弾性体22と、図18(C)に示すような新たな隔膜51’と第1の電解用電極21’と第2の電解用電極11’とを含む積層体を使用することもできる。すなわち、本実施形態に係る電解槽の製造方法においては、前記積層体が第2の電解用電極をさらに含み、前記第2の電解用電極が陽極電極として機能し、前記第2の電解用電極と前記陽極とが、電気的に接続されている態様を採用することができる。また、本実施形態に係る電解セルの製造方法においては、前記積層体が第2の電解用電極をさらに含み、前記第2の電解用電極が陽極電極として機能し、前記第2の電解用電極と前記陽極とが、電気的に接続されている態様を採用することができる。
なお、本実施形態における第2の電解用電極は、陽極電極として機能するものであって、陽極と電気的に接続できるものであれば特に限定されない。第2の電解用電極の詳細については後述する。
図18(C)に示す積層体を用いる場合も、前述と同様に電解セル50から陽イオン交換膜51を取り出すことができる。次いで、陰極21上に図18(A)に示す弾性体22を配すると共に、弾性体22上に図18(C)に示す積層体と配することで、図20に示す構造となる。
図20においても、説明の便宜上、陽極11、第2の電解用電極11’、新たな隔膜51’、第1の電解用電極21’、及び弾性体22を離して示しているが、電解槽に配置された状態では、これらは接触している。すなわち、新たな電解槽内において、電解セル中の陽イオン交換膜51と陰極21との間にはギャップが存在せず、第1の電解用電極21’と弾性体22と陰極21と陰極フレーム25(陰極21の支持体)とは、電気的に接続されることとなる。さらに、第2の電解用電極11’と陽極11とも電気的に接続されることとなる。
上記のとおり、本実施形態における新たな電解槽は、陽極と、前記陽極に対向する陰極と、前記陽極と前記陰極との間に配される隔膜と、前記隔膜と前記陰極との間に配される第1の電解用電極と、前記陽極と前記隔膜との間に配される第2の電解用電極と、前記第1の電解用電極と前記陰極との間に配され、かつ、当該第1の電解用電極を前記陽極へ向かう方向に押圧する弾性体と、前記陰極を直接支持する支持体と、を備え、前記第1の電解用電極が陰極電極として機能し、前記第2の電解用電極が陽極電極として機能し、前記第1の電解用電極の厚みが120μm以下であり、前記第1の電解用電極と前記弾性体と前記陰極と前記支持体とが、電気的に接続されており、前記第2の電解用電極と前記陽極とが、電気的に接続されていることが好ましい。
また、本実施形態における新たな電解セルは、陽極と、前記陽極に対向する陰極と、前記陽極と前記陰極との間に配される隔膜と、前記隔膜と前記陰極との間に配される第1の電解用電極と、前記陽極と前記隔膜との間に配される第2の電解用電極と、前記第1の電解用電極と前記陰極との間に配され、かつ、当該第1の電解用電極を前記陽極へ向かう方向に押圧する弾性体と、前記陰極を直接支持する支持体と、を備え、前記第1の電解用電極が陰極電極として機能し、前記第2の電解用電極が陽極電極として機能し、前記第1の電解用電極の厚みが120μm以下であり、前記第1の電解用電極と前記弾性体と前記陰極と前記支持体とが、電気的に接続されており、前記第2の電解用電極と前記陽極とが、電気的に接続されていることが好ましい。
新たな隔膜51’と第1の電解用電極21’と第2の電解用電極11’とを含む積層体と、弾性体22とを配置する順番は特に限定されず、同時に配置してもよいし、いずれか一方を先に配置してもよい。
本実施形態において、新たな電解槽は、既存電解槽における隔膜と陽極と陰極と前述した任意の部材に加えて、後述する弾性体と第1の電解用電極と新たな隔膜と含む積層体を更に備えるものであり、全体的な更新の観点から、好ましくは弾性体と第1の電解用電極と新たな隔膜と第2の電解用電極とを含む積層体を更に備えるものである。すなわち、新たな電解槽の製造の際に配される第1の電解用電極は、陰極として機能するものであり、第2の電解用電極は陽極として機能するものであり、これらは既存電解槽における陰極及び陽極とは別体である。
既存電解槽における陰極は、第1の電解用電極と接することにより、実質的には給電体として機能するものである。同様に、既存電解槽における陽極は、後述する第2の電解用電極と接している場合、実質的には給電体として機能するものであり、第2の電解用電極と接していない場合、それ自体が陽極として機能するものである。
上記のとおり、本実施形態では、既に運転に供されたナローギャップ電解槽をベースとしてゼロギャップ化を図るに際して、ナローギャップ電解槽中の既存の陰極及び隔膜の性能が運転に伴って劣化していた場合であっても、陰極とは別体の第1の電解用電極を新たに陰極として機能させると共に既存の隔膜が新たな隔膜に交換されるため、陰極及び隔膜の性能を更新することができる。さらに、第1の電解用電極は、その厚みが120μm以下と非常に薄く、新たな隔膜と容易に一体化できる結果、これら第1の電解用電極と新たな隔膜との積層体として工程(A)で使用することができる。なお、広く実用されている電解セルのサイズは、例えば、縦1.5m、横3m程度であり、部材の更新にあたって、このようなサイズの部材を出し入れする作業は煩雑となる傾向にあるが、本実施形態における積層体を用いることで、隔膜や電極の出し入れの回数を低減できるため、作業効率が大きく向上する。すなわち、本実施形態の製造方法によれば、ナローギャップ電解槽をゼロギャップ化して電解槽を製造できるだけでなく、既存の陰極及び隔膜の性能を更新でき、さらに作業効率にも優れるということができる。さらに、本実施形態における積層体が第2の電解用電極をさらに含む場合、運転に伴って性能が劣化した陽極の性能も同時に更新することができる。
(弾性体)
図19,20に示すように、第1の電解用電極21’と陰極21との間に弾性体22が設置されることにより、第1の電解用電極21’が陽イオン交換膜51に押し付けられ、陽極11と陰極21との間の距離が短くなり、電圧を下げることができる。電圧が下がることにより、電解槽全体として消費電量を大きく下げることができる。また、弾性体22が設置されることにより、本実施形態における積層体を電解セルに設置した際に、弾性体22による押し付け圧により、第1の電解用電極21’を安定して定位置に維持することができる。
弾性体としては、渦巻きばね、コイル等のばね部材、クッション性のマット等を用いることができる。また、弾性体としては、イオン交換膜を押し付ける応力等を考慮して適宜好適なものを採用できる。弾性体は、ニッケル、鉄、銅、銀、チタンなどの電気伝導性を有する金属からなることが好ましい。
弾性体の厚みは特に限定されず、例えば、0.1mm~15mmとすることができ、好ましくは0.2mm~10mmであり、より好ましくは0.5mm~7mmである。
また、弾性体の常用面圧も特に限定されず、例えば、30gf/cm2~350gf/cm2とすることができ、好ましくは40~300gf/cm2であり、より好ましくは50~250gf/cm2である。
(積層体)
本実施形態における積層体は、イオン交換膜や微多孔膜などの隔膜と第1の電解用電極とを含み、好ましくは第2の電解用電極をさらに含む。以下、特に断りがない限り、単に「電解用電極」と称するときは、第1の電解用電極及び第2の電解用電極の双方を含むものとし、これらと隔膜の具体例について詳述する。
〔電解用電極〕
本実施形態における電解用電極は、上述のように隔膜と積層体を構成できるもの、すなわち、隔膜と一体化可能なものであることが好ましく、捲回体として用いられるものであることがより好ましい。
第1の電解用電極としては、厚みが120μm以下であれば特に限定されず、例えば、<第1実施形態>の項における電解用電極として前述した材質・形状・物性等を有するもののうち、陰極として機能するものを適宜選択して用いることができる。
第2の電解用電極としては、特に限定されず、例えば、<第1実施形態>の項における第2の電解用電極として前述した材質・形状・物性等を有するもののうち、陽極として機能するものを適宜選択して用いることができる。
すなわち、本実施形態における電解用電極の材質・形状・物性等については、本実施形態における工程(A)や電解槽の構成等を考慮し、適切なものを適宜選択することができる。
本実施形態における隔膜としては、特に限定されないが、<第1実施形態>の項におけるイオン交換膜及び微多孔膜として前述した材質・形状・物性等を有するもののうち、前述した電解用電極との積層体を形成し得るものを適宜選択して用いることができる。
(水電解)
本実施形態の電解槽であって、水電解を行う場合の電解槽は、上述した食塩電解を行う場合の電解槽におけるイオン交換膜を微多孔膜に変更した構成を有するものである。また、供給する原料が水である点において、上述した食塩電解を行う場合の電解槽とは相違するものである。その他の構成については、水電解を行う場合の電解槽も食塩電解を行う場合の電解槽と同様の構成を採用することができる。食塩電解の場合には、陽極室で塩素ガスが発生するため、陽極室の材質はチタンが用いられるが、水電解の場合には、陽極室で酸素ガスが発生するのみであるため、陰極室の材質と同じものを使用できる。例えば、ニッケル等が挙げられる。また、陽極コーティングは酸素発生用の触媒コーティングが適当である。触媒コーティングの例としては、白金族金属および遷移金の金属、酸化物、水酸化物などが挙げられる。例えば、白金、イリジウム、パラジウム、ルテニウム、ニッケル、コバルト、鉄等の元素を使用することができる。
本出願は、2020年2月26日出願の日本特許出願(特願2020-030768号)及び2020年5月12日出願の日本特許出願(特願2020-083726号)に基づくものであり、その内容はここに参照として取り込まれる。
図1~6及び図11~14に対する符号の説明
4…電解槽、5…プレス器、6…陰極端子、7…陽極端子、
11…陽極、12…陽極ガスケット、13…陰極ガスケット、
18…逆電流吸収体、18a…基材、18b…逆電流吸収層、19…陽極室の底部、
21…陰極、22…第1の弾性体、22’…第2の弾性体、23…集電体、24…支持体、
50…電解セル、51…陽イオン交換膜(隔膜)、51’…新たな陽イオン交換膜、53…第1の電解用電極、53’…第2の電解用電極、54…積層体、S…空隙、60…陽極室、70…陰極室、
80…隔壁、90…電解用陰極構造体
図7に対する符号の説明
10…電解用電極基材、20…基材を被覆する第一層、30…第二層、101…電解用電極
図8に対する符号の説明
1…イオン交換膜、1a…膜本体、2…カルボン酸層、3…スルホン酸層、4…強化芯材、11a,11b…コーティング層
図9に対する符号の説明
21a,21b…強化芯材
図10に対する符号の説明
52…強化糸、504…連通孔、504a…犠牲糸
図15~20に対する符号の説明
4…電解槽、5…プレス器、6…陰極端子、7…陽極端子、
11…陽極、11’…第2の電解用電極、12…陽極ガスケット、13…陰極ガスケット、
21…陰極、21’…第1の電解用電極、22…弾性体、
24…陽極フレーム(陽極支持体)、25…陰極フレーム(陰極支持体)、
50…電解セル、51…陽イオン交換膜(隔膜)、51’…新たな隔膜(陽イオン交換膜)
60…陽極室、70…陰極室

Claims (10)

  1. 陽極と、
    前記陽極に対向する陰極と、
    前記陽極と前記陰極との間に配される隔膜と、
    前記陰極を前記陽極へ向かう方向に押圧する第1の弾性体と、
    前記隔膜と前記陰極との間に配される第1の電解用電極と、
    前記第1の電解用電極と前記陰極との間に配され、かつ、前記第1の電解用電極を前記陽極へ向かう方向に押圧する第2の弾性体と、
    前記第1の弾性体の前記陰極とは逆側の面上に配される集電体と、
    前記集電体の前記第1の弾性体とは逆側の面上に配される支持体と、
    前記支持体の前記集電体とは逆側の面上に配される隔壁と、
    を備え、
    前記第1の電解用電極が陰極電極として機能し、
    前記第1の電解用電極と前記第2の弾性体と前記陰極と前記第1の弾性体とが、電気的に接続されている、電解槽。
  2. 前記第2の弾性体の厚みが、前記第1の弾性体の厚みよりも大きい、請求項1に記載の電解槽。
  3. 前記第2の弾性体の常用面圧が、前記第1の弾性体の常用面圧よりも大きい、請求項1又は2に記載の電解槽。
  4. 前記陽極と前記隔膜との間に配される第2の電解用電極をさらに備え、
    前記第2の電解用電極が陽極電極として機能し、
    前記第2の電解用電極と前記陽極とが、電気的に接続されている、請求項1~3のいずれか1項に記載の電解槽。
  5. 陽極と、前記陽極に対向する陰極と、前記陽極と前記陰極との間に配される隔膜と、前記陰極を前記陽極へ向かう方向に押圧する第1の弾性体と、前記第1の弾性体の前記陰極とは逆側の面上に配される集電体と、前記集電体の前記第1の弾性体とは逆側の面上に配される支持体と、前記支持体の前記集電体とは逆側の面上に配される隔壁と、を備える既存電解槽から、新たな電解槽を製造するための方法であって、
    前記既存電解槽において、前記隔膜と前記陰極との間に第1の電解用電極を配し、かつ、前記第1の電解用電極と前記陰極との間に第2の弾性体を配する工程(A)を含み、
    前記第2の弾性体が、前記陽極へ向かう方向に前記第1の電解用電極を押圧し、
    前記第1の電解用電極が陰極電極として機能し、
    前記第1の電解用電極と前記第2の弾性体と前記陰極と前記第1の弾性体とが、電気的に接続されている、電解槽の製造方法。
  6. 前記第2の弾性体の厚みが、前記第1の弾性体の厚みよりも大きい、請求項5に記載の電解槽の製造方法。
  7. 前記第2の弾性体の常用面圧が、前記第1の弾性体の常用面圧よりも大きい、請求項5又は6に記載の電解槽の製造方法。
  8. 前記陽極と前記隔膜との間に第2の電解用電極を配する工程(B)をさらに含み、
    前記第2の電解用電極が陽極電極として機能し、
    前記第2の電解用電極と前記陽極とが、電気的に接続されている、請求項5~7のいずれか1項に記載の電解槽の製造方法。
  9. 前記工程(A)が、前記隔膜を除去するサブ工程(a1)と、前記サブ工程(a1)の後、新たな隔膜と前記第1の電解用電極とを含む積層体を、前記第2の弾性体と前記陽極との間に配するサブ工程(a2)とを含む、請求項5~7のいずれか1項に記載の電解槽の製造方法。
  10. 前記積層体が第2の電解用電極をさらに含み、
    前記第2の電解用電極が陽極電極として機能し、
    前記第2の電解用電極と前記陽極とが、電気的に接続されている、請求項9に記載の電解槽の製造方法。
JP2022503744A 2020-02-26 2021-02-26 電解槽及び電解槽の製造方法 Active JP7449362B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2020030768 2020-02-26
JP2020030768 2020-02-26
JP2020083726 2020-05-12
JP2020083726 2020-05-12
PCT/JP2021/007310 WO2021172508A1 (ja) 2020-02-26 2021-02-26 電解槽及び電解槽の製造方法

Publications (2)

Publication Number Publication Date
JPWO2021172508A1 JPWO2021172508A1 (ja) 2021-09-02
JP7449362B2 true JP7449362B2 (ja) 2024-03-13

Family

ID=77491674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022503744A Active JP7449362B2 (ja) 2020-02-26 2021-02-26 電解槽及び電解槽の製造方法

Country Status (7)

Country Link
US (1) US20230140700A1 (ja)
EP (1) EP4112784A1 (ja)
JP (1) JP7449362B2 (ja)
KR (1) KR20220131986A (ja)
CN (1) CN115135808A (ja)
AU (1) AU2021228470B2 (ja)
WO (1) WO2021172508A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111947A (ja) 2002-11-27 2010-05-20 Asahi Kasei Chemicals Corp 複極式ゼロギャップ電解セルの製造方法
JP2012140653A (ja) 2010-12-28 2012-07-26 Tosoh Corp イオン交換膜法電解槽
JP2013231218A (ja) 2012-04-27 2013-11-14 Chlorine Engineers Corp Ltd イオン交換膜電解槽
WO2015068579A1 (ja) 2013-11-06 2015-05-14 ダイソー株式会社 イオン交換膜電解槽及び弾性体
JP2017088952A (ja) 2015-11-10 2017-05-25 株式会社大阪ソーダ イオン交換膜電解槽
JP2019163524A (ja) 2018-03-20 2019-09-26 旭化成株式会社 電解槽の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148775A (en) 1979-05-04 1980-11-19 Asahi Glass Co Ltd Manufacture of caustic alkali
JPS5848686A (ja) 1981-09-17 1983-03-22 Toyo Soda Mfg Co Ltd 塩化アルカリ水溶液電解用陽イオン交換膜
JP2014012889A (ja) 2012-06-08 2014-01-23 Nitto Denko Corp イオン透過性隔膜
JP6905308B2 (ja) 2015-06-16 2021-07-21 川崎重工業株式会社 アルカリ水電解用隔膜及びその製造方法
JP7104916B2 (ja) 2018-08-24 2022-07-22 国立大学法人岩手大学 移動物体検出装置および移動物体検出方法
JP7129892B2 (ja) 2018-11-29 2022-09-02 株式会社トクヤマ 窒化アルミニウム粉末

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111947A (ja) 2002-11-27 2010-05-20 Asahi Kasei Chemicals Corp 複極式ゼロギャップ電解セルの製造方法
JP2012140653A (ja) 2010-12-28 2012-07-26 Tosoh Corp イオン交換膜法電解槽
JP2013231218A (ja) 2012-04-27 2013-11-14 Chlorine Engineers Corp Ltd イオン交換膜電解槽
WO2015068579A1 (ja) 2013-11-06 2015-05-14 ダイソー株式会社 イオン交換膜電解槽及び弾性体
JP2017088952A (ja) 2015-11-10 2017-05-25 株式会社大阪ソーダ イオン交換膜電解槽
JP2019163524A (ja) 2018-03-20 2019-09-26 旭化成株式会社 電解槽の製造方法

Also Published As

Publication number Publication date
JPWO2021172508A1 (ja) 2021-09-02
CN115135808A (zh) 2022-09-30
KR20220131986A (ko) 2022-09-29
AU2021228470B2 (en) 2024-02-08
US20230140700A1 (en) 2023-05-04
AU2021228470A1 (en) 2022-09-22
WO2021172508A1 (ja) 2021-09-02
EP4112784A1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
JP7073152B2 (ja) 電解槽の製造方法
JP7447330B2 (ja) 積層体製造用冶具、積層体の製造方法、梱包体、積層体、電解槽、及び電解槽の製造方法
JP7260272B2 (ja) 電極の製造方法
JP7320520B2 (ja) 電解槽の製造方法、積層体、電解槽、及び電解槽の運転方法
JP2023025201A (ja) 電解用電極及び積層体
JP7058152B2 (ja) 電解用電極
JP7234252B2 (ja) 積層体、積層体の保管方法、積層体の輸送方法、保護積層体、及びその捲回体
JP7173806B2 (ja) 電解槽の製造方法
JP7449362B2 (ja) 電解槽及び電解槽の製造方法
JP7075792B2 (ja) 積層体
JP7109220B2 (ja) 電解槽の製造方法、電極の更新方法、及び捲回体の製造方法
JP7072413B2 (ja) 電解槽の製造方法
JP7104533B2 (ja) 積層体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230511

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240301

R150 Certificate of patent or registration of utility model

Ref document number: 7449362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150