JP7260272B2 - 電極の製造方法 - Google Patents
電極の製造方法 Download PDFInfo
- Publication number
- JP7260272B2 JP7260272B2 JP2018177563A JP2018177563A JP7260272B2 JP 7260272 B2 JP7260272 B2 JP 7260272B2 JP 2018177563 A JP2018177563 A JP 2018177563A JP 2018177563 A JP2018177563 A JP 2018177563A JP 7260272 B2 JP7260272 B2 JP 7260272B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- electrolysis
- layer
- cathode
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Description
現在これら電解槽に使用される陽極、陰極は、電解セルのそれぞれ陽極室、陰極室に溶接、折り込み等の方法により固定され、その後、保管、顧客先へ輸送される。一方、隔膜はそれ自体単独で塩化ビニル(塩ビ)製のパイプ等に巻いた状態で保管、顧客先へ輸送される。顧客先では電解セルを電解槽のフレーム上に並べ、隔膜を電解セルの間に挟んで電解槽を組み立てる。このようにして電解セルの製造および顧客先での電解槽の組立が実施されている。このような電解槽に適用しうる構造物として、特許文献1、2には、隔膜と電極が一体となった構造物が開示されている。
また、劣化部分のみに、補修用の電極を当て、当該電極の外周部分をシールや接着剤で貼り付けることで、既存電極を補修することが考えられる。しかしながら、かかる貼付では、貼付部分の電極厚みが増すことにより、その部分において電極から隔膜への押圧が増加する。その部分においては、電解液が滞留する傾向にあるため、隔膜が劣化して電解性能に悪影響を及ぼし得る。
すなわち、本発明は、以下の態様を包含する。
〔1〕
既存電極の表面を補修することにより、新たな電極を製造するための方法であって、
前記既存電極の表面の少なくとも1つの領域に、厚みが315μm以下である電解用電極を固定する工程(A)を有する、電極の製造方法。
〔2〕
前記領域において、前記電解用電極の少なくとも一部が、前記既存電極を貫通して固定されている、〔1〕に記載の電極の製造方法。
〔3〕
前記領域において、前記電解用電極の少なくとも一部が、前記既存電極の内部に位置して固定されている、〔1〕又は〔2〕のいずれかに記載の電極の製造方法。
〔4〕
前記既存電極と前記電解用電極とを固定するための固定用部材をさらに有する、〔1〕~〔3〕のいずれかに記載の電極の製造方法。
〔5〕
前記工程(A)において、前記電解用電極と前記既存電極との間に水が介在する、〔1〕~〔4〕のいずれかに記載の電極の製造方法。
〔6〕
前記既存電極の補修前の電極厚みT1と補修後の電極厚みT2の比が、T2/T1として、1.0~2.1未満である、〔1〕~〔5〕のいずれかに記載の電極の製造方法。
〔7〕
前記電解用電極が、パンチング形状、エキスパンド形状又はメッシュ形状を有する、〔1〕~〔6〕のいずれかに記載の電極の製造方法。
本実施形態に係る電極の製造方法は、既存電極の表面を補修することにより、新たな電極を製造するための方法であって、前記既存電極の表面の少なくとも1つの領域に、厚みが315μm以下である電解用電極を固定する工程(A)を有する。
本実施形態に係る電極の製造方法によれば、上記の工程(A)を有するため、既存電極の一部を補修するのみで新たな電極を得ることができ、既存電極自体を除去して交換する作業が不要となる。また、補修部分の電極厚みの過度な増加を防止でき、その部分において電極から隔膜への押圧や電解液の滞留を防止できる。すなわち、本実施形態に係る電極の製造方法により、電解槽における電極更新の際のコストを低減すると共に作業効率を向上させ、更に補修後の電解性能も維持できる。
また、本実施形態において、既存電極を備える電解槽を「既存電解槽」と称し、新たな電極を備える電解槽を「新たな電解槽」と称する。すなわち、既存電解槽は、「既に運転に供した電解槽」を想定しており、また、新たな電解槽は、「未だ運転に供していない電解槽」を想定している。ここで、新たな電解槽として製造された電解槽をひとたび運転に供すると、「本実施形態における既存電解槽」となり、この既存電解槽における既存電極を上述の工程(A)により補修したものは「本実施形態における新たな電解槽」となる。
なお、本実施形態において、「補修」とは、既存電極の電解性能を向上させ、電極が運転に供される前に有していた初期性能と同等の性能にする、又は、当該初期性能よりも高い性能とすることを意味する。
本実施形態における工程(A)では、既存電極の表面の少なくとも1つの領域に、厚みが315μm以下である電解用電極を固定する。既存電極の表面は、特に限定されないが、隔膜の損傷を効果的に防止する観点から、既存電極の隔膜に対向する面であることが好ましい。すなわち、既存電極の隔膜対向面における少なくとも1つの領域に対して、本実施形態における電解用電極を固定することが好ましい。なお、本実施形態において、「固定」の手段は、種々の手段を採用することができる。好適な固定手段の具体例については後述する。
本実施形態における電解用電極は、電解に用いられる電極であって、厚みが315μm以下である限り特に限定されない。また、本実施形態における電解用電極は、既存電極が陽極である場合は陽極として機能するものであり、既存電極が陰極である場合は陰極として機能するものである。
電解性能をより向上させる観点から、好ましくは0.005N/(mg・cm2)超であり、より好ましくは0.08N/(mg・cm2)以上であり、さらに好ましくは0.1N/mg・cm2以上であり、よりさらに好ましくは0.14N/(mg・cm2)以上である。大型サイズ(例えば、サイズ1.5m×2.5m)での取り扱いが容易になるとの観点から、0.2N/(mg・cm2)以上が更により好ましい。
上記かかる力は、例えば、後述する開孔率、電極の厚み、算術平均表面粗さ等を適宜調整することで上記範囲とすることができる。より具体的には、例えば、開孔率を大きくすると、かかる力は小さくなる傾向にあり、開孔率を小さくすると、かかる力は大きくなる傾向にある。
また、良好なハンドリング性が得られ、イオン交換膜や微多孔膜などの隔膜、劣化した電極及び触媒コーティングがされていない給電体などと良好な接着力を有し、さらに、経済性の観点から、単位面積あたりの質量が、48mg/cm2以下であることが好ましく、より好ましくは、30mg/cm2以下であり、さらに好ましくは、20mg/cm2以下であり、さらに、ハンドリング性、接着性及び経済性を合わせた総合的な観点から、15mg/cm2以下である。下限値は、特に限定されないが、例えば、1mg/cm2程度である。
上記単位面積あたりの質量は、例えば、後述する開孔率、電極の厚み等を適宜調整することで上記範囲とすることができる。より具体的には、例えば、同じ厚みであれば、開孔率を大きくすると、単位面積あたりの質量は小さくなる傾向にあり、開孔率を小さくすると、単位面積あたりの質量は大きくなる傾向にある。
粒番号320のアルミナでブラスト加工を施して得られるニッケル板(厚み1.2mm、200mm角)と、イオン交換基が導入されたパーフルオロカーボン重合体の膜の両面に無機物粒子と結合剤を塗布したイオン交換膜(170mm角)と電極サンプル(130mm角)とをこの順で積層させ、この積層体を純水にて十分に浸漬した後、積層体表面に付着した余分な水分を除去することで測定用サンプルを得る。なお、ブラスト処理後のニッケル板の算術平均表面粗さ(Ra)は、0.5~0.8μmである。算術平均表面粗さ(Ra)の具体的な算出方法は、実施例に記載のとおりである。
温度23±2℃、相対湿度30±5%の条件下で、この測定用サンプル中の電極サンプルのみを引張圧縮試験機を用いて、垂直方向に10mm/分で上昇させて、電極サンプルが、垂直方向に10mm上昇したときの加重を測定する。この測定を3回実施して平均値を算出する。
この平均値を、電極サンプルとイオン交換膜の重なり部分の面積、およびイオン交換膜と重なっている部分の電極サンプルにおける質量で除して、単位質量・単位面積あたりのかかる力(1)(N/mg・cm2)を算出する。
粒番号320のアルミナでブラスト加工を施して得られるニッケル板(厚み1.2mm、200mm角、上記方法(i)と同様のニッケル板)と、電極サンプル(130mm角)とをこの順で積層させ、この積層体を純水にて十分に浸漬した後、積層体表面に付着した余分な水分を除去することで測定用サンプルを得る。温度23±2℃、相対湿度30±5%の条件下で、この測定用サンプル中の電極サンプルのみを、引張圧縮試験機を用いて、垂直方向に10mm/分で上昇させて、電極サンプルが、垂直方向に10mm上昇したときの加重を測定する。この測定を3回実施して平均値を算出する。
この平均値を、電極サンプルとニッケル板の重なり部分の面積、およびニッケル板と重なっている部分における電極サンプルの質量で除して、単位質量・単位面積あたりの接着力(2)(N/mg・cm2)を算出する。
〔方法(2)〕
イオン交換膜(170mm角)と、電極サンプル(130mm角)とをこの順で積層させる。温度23±2℃、相対湿度30±5%の条件下で、この積層体中の電極サンプルが外側になるように、ポリエチレンのパイプ(外径280mm)の曲面上に積層体を置き、積層体とパイプを純水にて十分に浸漬させ、積層体表面及びパイプに付着した余分な水分を除去し、その1分後に、イオン交換膜(170mm角)と、電極サンプルとが密着している部分の面積の割合(%)を測定する。
〔方法(3)〕
イオン交換膜(170mm角)と、電極サンプル(130mm角)とをこの順で積層させる。温度23±2℃、相対湿度30±5%の条件下で、この積層体中の電極サンプルが外側になるように、ポリエチレンのパイプ(外径145mm)の曲面上に積層体を置き、積層体とパイプを純水にて十分に浸漬させ、積層体表面及びパイプに付着した余分な水分を除去し、その1分後に、イオン交換膜(170mm角)と、電極サンプルとが密着している部分の面積の割合(%)を測定する。
なお、開孔率とは、単位体積あたりの開孔部の割合である。開孔部もサブミクロンオーダーまで勘案するのか、目に見える開口のみ勘案するのかによって、算出方法が様々である。本実施形態では、電極のゲージ厚み、幅、長さの値から体積Vを算出し、更に重量Wを実測することにより、開孔率Aを下記の式で算出した。
A=(1-(W/(V×ρ))×100
ρは電極の材質の密度(g/cm3)である。例えばニッケルの場合は8.908g/cm3、チタンの場合は4.506g/cm3である。開孔率の調整は、パンチングメタルであれば単位面積あたりに金属を打ち抜く面積を変更する、エキスパンドメタルであればSW(短径)、LW(長径)、送りの値を変更する、メッシュであれが金属繊維の線径、メッシュ数を変更する、エレクトロフォーミングであれば使用するフォトレジストのパターンを変更する、不織布であれば金属繊維径および繊維密度を変更する、発泡金属であれは空隙を形成させるための鋳型を変更する等の方法により適宜調整することができる。
本実施形態に係る電解用電極は、電解用電極基材及び触媒層を含むことが好ましい。触媒層は以下の通り、複数の層で構成されてもよいし、単層構造でもよい。
図1に示すように、本実施形態に係る電解用電極100は、電解用電極基材10と、電解用電極基材10の両表面を被覆する一対の第一層20とを備える。第一層20は電解用電極基材10全体を被覆することが好ましい。これにより、電解用電極の触媒活性及び耐久性が向上し易くなる。なお、電解用電極基材10の一方の表面だけに第一層20が積層されていてもよい。
また、図1に示すように、第一層20の表面は、第二層30で被覆されていてもよい。第二層30は、第一層20全体を被覆することが好ましい。また、第二層30は、第一層20の一方の表面だけ積層されていてもよい。
電解用電極基材10としては、特に限定されるものではないが、例えばニッケル、ニッケル合金、ステンレススチール、またはチタンなどに代表されるバルブ金属を使用でき、ニッケル(Ni)及びチタン(Ti)から選ばれる少なくとも1種の元素を含むことが好ましい。
ステンレススチールを高濃度のアルカリ水溶液中で用いた場合、鉄及びクロムが溶出すること、及びステンレススチールの電気伝導性がニッケルの1/10程度であることを考慮すると、電解用電極基材としてはニッケル(Ni)を含む基材が好ましい。
また、電解用電極基材10は、飽和に近い高濃度の食塩水中で、塩素ガス発生雰囲気で用いた場合、材質は耐食性の高いチタンであることも好ましい。
電解用電極基材10の形状には特に限定はなく、目的によって適切な形状を選択することができる。形状としては、パンチングメタル、不織布、発泡金属、エキスパンドメタル、エレクトロフォーミングにより形成した金属多孔箔、金属線を編んで作製したいわゆるウーブンメッシュ等いずれのものも使用できる。この中でも、パンチングメタルあるいはエキスパンドメタルが好ましい。なお、エレクトロフォーミングとは、写真製版と電気メッキ法を組み合わせて、精密なパターンの金属薄膜を製作する技術である。基板上にフォトレジストにてパターン形成し、レジストに保護されていない部分に電気メッキを施し、金属薄を得る方法である。
電解用電極基材の形状については、電解槽における陽極と陰極との距離によって好適な仕様がある。特に限定されるものではないが、陽極と陰極とが有限な距離を有する場合には、エキスパンドメタル、パンチングメタル形状を用いることができ、イオン交換膜と電極とが接するいわゆるゼロギャップ電解槽の場合には、細い線を編んだウーブンメッシュ、金網、発泡金属、金属不織布、エキスパンドメタル、パンチングメタル、金属多孔箔などを用いることができる。
電解用電極基材10としては、金属多孔箔、金網、金属不織布、パンチングメタル、エキスパンドメタル又は発泡金属が挙げられる。すなわち、電解用電極としては、パンチング形状、エキスパンド形状又はメッシュ形状を有するものであることが好ましい。
パンチングメタル、エキスパンドメタルに加工する前の板材としては、圧延成形した板材、電解箔などが好ましい。電解箔は、更に後処理として母材と同じ元素でメッキ処理を施して、片面あるいは両面に凹凸をつけることが好ましい。
また、電解用電極基材10の厚みは、315μm未満であることが好ましく、300μm以下であることが好ましく、205μm以下であることがより好ましく、155μm以下であることが更に好ましく、135μm以下であることが更により好ましく、125μm以下であることがより更により好ましく、120μm以下であることが一層好ましく、100μm以下であることがより一層好ましく、ハンドリング性と経済性の観点から、50μm以下であることがより更に一層好ましい。下限値は、特に限定さないが、例えば、1μmであり、好ましく5μmであり、より好ましくは15μmである。
(第一層)
図1において、触媒層である第一層20は、ルテニウム酸化物、イリジウム酸化物及びチタン酸化物のうち少なくとも1種類の酸化物を含む。ルテニウム酸化物としては、RuO2等が挙げられる。イリジウム酸化物としては、IrO2等が挙げられる。チタン酸化物としては、TiO2等が挙げられる。第一層20は、ルテニウム酸化物及びチタン酸化物の2種類の酸化物を含むか、又はルテニウム酸化物、イリジウム酸化物及びチタン酸化物の3種類の酸化物を含むことが好ましい。それにより、第一層20がより安定な層になり、さらに、第二層30との密着性もより向上する。
第二層30は、ルテニウムとチタンを含むことが好ましい。これにより電解直後の塩素過電圧を更に低くすることができる。
(第一層)
触媒層である第一層20の成分としては、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等の金属及び当該金属の酸化物又は水酸化物が挙げられる。
白金族金属、白金族金属酸化物、白金族金属水酸化物、白金族金属を含む合金の少なくとも1種類を含んでもよいし、含まなくてもよい。
白金族金属、白金族金属酸化物、白金族金属水酸化物、白金族金属を含む合金の少なくとも1種類を含む場合、白金族金属、白金族金属酸化物、白金族金属水酸化物、白金族金属を含む合金が白金、パラジウム、ロジウム、ルテニウム、イリジウムのうち少なくとも1種類の白金族金属を含むことが好ましい。
白金族金属としては、白金を含むことが好ましい。
白金族金属酸化物としては、ルテニウム酸化物を含むことが好ましい。
白金族金属水酸化物としては、ルテニウム水酸化物を含むことが好ましい。
白金族金属合金としては、白金とニッケル、鉄、コバルトとの合金を含むことが好ましい。
更に必要に応じて第二成分として、ランタノイド系元素の酸化物あるいは水酸化物を含むことが好ましい。これにより、電解用電極100はすぐれた耐久性を示す。
ランタノイド系元素の酸化物あるいは水酸化物としては、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウムから選ばれる少なくとも1種類を含むことが好ましい。
さらに必要に応じて、第三成分として遷移金属の酸化物あるいは水酸化物を含むことが好ましい。
第三成分を添加することにより、電解用電極100はよりすぐれた耐久性を示し、電解電圧を低減させることができる。
好ましい組み合わせの例としては、ルテニウムのみ、ルテニウム+ニッケル、ルテニウム+セリウム、ルテニウム+ランタン、ルテニウム+ランタン+白金、ルテニウム+ランタン+パラジウム、ルテニウム+プラセオジム、ルテニウム+プラセオジム+白金、ルテニウム+プラセオジム+白金+パラジウム、ルテニウム+ネオジム、ルテニウム+ネオジム+白金、ルテニウム+ネオジム+マンガン、ルテニウム+ネオジム+鉄、ルテニウム+ネオジム+コバルト、ルテニウム+ネオジム+亜鉛、ルテニウム+ネオジム+ガリウム、ルテニウム+ネオジム+硫黄、ルテニウム+ネオジム+鉛、ルテニウム+ネオジム+ニッケル、ルテニウム+ネオジム+銅、ルテニウム+サマリウム、ルテニウム+サマリウム+マンガン、ルテニウム+サマリウム+鉄、ルテニウム+サマリウム+コバルト、ルテニウム+サマリウム+亜鉛、ルテニウム+サマリウム+ガリウム、ルテニウム+サマリウム+硫黄、ルテニウム+サマリウム+鉛、ルテニウム+サマリウム+ニッケル、白金+セリウム、白金+パラジウム+セリウム、白金+パラジウム+ランタン+セリウム、白金+イリジウム、白金+パラジウム、白金+イリジウム+パラジウム、白金+ニッケル+パラジウム、白金+ニッケル+ルテニウム、白金とニッケルの合金、白金とコバルトの合金、白金と鉄の合金、などが挙げられる。
白金族金属、白金族金属酸化物、白金族金属水酸化物、白金族金属を含む合金を含まない場合、触媒の主成分がニッケル元素であることが好ましい。
ニッケル金属、酸化物、水酸化物のうち少なくとも1種類を含むことが好ましい。
第二成分として、遷移金属を添加してもよい。添加する第二成分としては、チタン、スズ、モリブデン、コバルト、マンガン、鉄、硫黄、亜鉛、銅、炭素のうち少なくとも1種類の元素を含むことが好ましい。
好ましい組み合わせとして、ニッケル+スズ、ニッケル+チタン、ニッケル+モリブデン、ニッケル+コバルトなどが挙げられる。
必要に応じ、第1層20と電解用電極基材10の間に、中間層を設けることができる。中間層を設置することにより、電解用電極100の耐久性を向上させることができる。
中間層としては、第1層20と電解用電極基材10の両方に親和性があるものが好ましい。中間層としては、ニッケル酸化物、白金族金属、白金族金属酸化物、白金族金属水酸化物が好ましい。中間層としては、中間層を形成する成分を含む溶液を塗布、焼成することで形成することもできるし、基材を空気雰囲気中で300~600℃の温度で熱処理を実施して、表面酸化物層を形成させることもできる。その他、熱溶射法、イオンプレーティング法など既知の方法で形成させることができる。
触媒層である第一層30の成分としては、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等の金属及び当該金属の酸化物又は水酸化物が挙げられる。
白金族金属、白金族金属酸化物、白金族金属水酸化物、白金族金属を含む合金の少なくとも1種類を含んでもよいし、含まなくてもよい。第二層に含まれる元素の好ましい組み合わせの例としては、第一層で挙げた組み合わせなどがある。第一層と第二層の組み合わせは、同じ組成で組成比が異なる組み合わせでもよいし、異なる組成の組み合わせでもよい。
触媒層の厚みとしては、形成させた触媒層および中間層の合算した厚みが0.01μm~20μmが好ましい。0.01μm以上であれば、触媒として十分機能を発揮できる。20μm以下であれば、基材からの脱落が少なく強固な触媒層を形成することができる。0.05μm~15μmがより好ましい。より好ましくは、0.1μm~10μmである。更に好ましくは、0.2μm~8μmである。
次に電解用電極100の製造方法の一実施形態について詳細に説明する。
本実施形態では、酸素雰囲気下での塗膜の焼成(熱分解)、あるいはイオンプレーティング、メッキ、熱溶射等の方法によって、電解用電極基材上に第一層20、好ましくは第二層30を形成することにより、電解用電極100を製造できる。このような本実施形態の製造方法では、電解用電極100の高い生産性を実現できる。具体的には、触媒を含む塗布液を塗布する塗布工程、塗布液を乾燥する乾燥工程、熱分解を行う熱分解工程により、電解用電極基材上に触媒層が形成される。ここで熱分解とは、前駆体となる金属塩を加熱して、金属又は金属酸化物とガス状物質に分解することを意味する。用いる金属種、塩の種類、熱分解を行う雰囲気等により、分解生成物は異なるが、酸化性雰囲気では多くの金属は酸化物を形成しやすい傾向がある。電極の工業的な製造プロセスにおいて、熱分解は通常空気中で行われ、多くの場合、金属酸化物あるいは金属水酸化物が形成される。
(塗布工程)
第一層20は、ルテニウム、イリジウム及びチタンのうち少なくとも1種類の金属塩を溶解した溶液(第一塗布液)を電解用電極基材に塗布後、酸素の存在下で熱分解(焼成)して得られる。第一塗布液中のルテニウム、イリジウム及びチタンの含有率は、第一層20と概ね等しい。
電解用電極基材100に第一塗布液を塗布した後、10~90℃の温度で乾燥し、350~650℃に加熱した焼成炉で熱分解する。乾燥と熱分解の間に、必要に応じて100~350℃で仮焼成を実施してもよい。乾燥、仮焼成及び熱分解温度は、第一塗布液の組成や溶媒種により、適宜選択することが出来る。一回当たりの熱分解の時間は長い方が好ましいが、電極の生産性の観点から3~60分が好ましく、5~20分がより好ましい。
第二層30は、必要に応じて形成され、例えば、パラジウム化合物及び白金化合物を含む溶液あるいはルテニウム化合物およびチタン化合物を含む溶液(第二塗布液)を第一層20の上に塗布した後、酸素の存在下で熱分解して得られる。
(塗布工程)
第一層20は、種々の組み合わせの金属塩を溶解した溶液(第一塗布液)を電解用電極基材に塗布後、酸素の存在下で熱分解(焼成)して得られる。第一塗布液中の金属の含有率は、第一層20と概ね等しい。
電解用電極基材10に第一塗布液を塗布した後、10~90℃の温度で乾燥し、350~650℃に加熱した焼成炉で熱分解する。乾燥と熱分解の間に、必要に応じて100~350℃で仮焼成を実施してもよい。乾燥、仮焼成及び熱分解温度は、第一塗布液の組成や溶媒種により、適宜選択することが出来る。一回当たりの熱分解の時間は長い方が好ましいが、電極の生産性の観点から3~60分が好ましく、5~20分がより好ましい。
中間層は、必要に応じて形成され、例えば、パラジウム化合物あるいは白金化合物を含む溶液(第二塗布液)を基材の上に塗布した後、酸素の存在下で熱分解して得られる。あるいは、溶液を塗布することなく基材を加熱するだけで基材表面に酸化ニッケル中間層を形成させてもよい。
第一層20はイオンプレーティングで形成させることもできる。
一例として、基材をチャンバー内に固定し、金属ルテニウムターゲットに電子線を照射する方法が挙げられる。蒸発した金属ルテニウム粒子は、チャンバー内のプラズマ中でプラスに帯電され、マイナスに帯電させた基板上に堆積する。プラズマ雰囲気はアルゴン、酸素であり、ルテニウムはルテニウム酸化物として基材上に堆積する。
第一層20は、メッキ法でも形成させることもできる。
一例として、基材を陰極として使用し、ニッケルおよびスズを含む電解液中で電解メッキを実施すると、ニッケルとスズの合金メッキを形成させることができる。
第一層20は、熱溶射法でも形成させることができる。
一例として、酸化ニッケル粒子を基材上にプラズマ溶射することにより、金属ニッケルと酸化ニッケルが混合した触媒層を形成させることができる。
〔イオン交換膜〕
イオン交換膜としては、特に限定されず、種々のイオン交換膜を適用することができる。本実施形態においては、イオン交換基を有する炭化水素系重合体あるいは含フッ素系重合体を含む膜本体と、該膜本体の少なくとも一方面上に設けられたコーティング層とを有するイオン交換膜を用いることが好ましい。また、コーティング層は、無機物粒子と結合剤とを含み、コーティング層の比表面積は、0.1~10m2/gであることが好ましい。かかる構造のイオン交換膜は、電解中に発生するガスによる電解性能への影響が少なく、安定した電解性能を発揮する傾向にある。
上記、イオン交換基が導入されたパーフルオロカーボン重合体の膜とは、スルホ基由来のイオン交換基(-SO3-で表される基、以下「スルホン酸基」ともいう。)を有するスルホン酸層と、カルボキシル基由来のイオン交換基(-CO2-で表される基、以下「カルボン酸基」ともいう。)を有するカルボン酸層のいずれか一方を備えるものである。強度及び寸法安定性の観点から、強化芯材をさらに有することが好ましい。
無機物粒子及び結合剤については、以下コーティング層の説明の欄に詳述する。
先ず、イオン交換膜1を構成する膜本体1aについて説明する。
膜本体1aは、陽イオンを選択的に透過する機能を有し、イオン交換基を有する炭化水素系重合体あるいは含フッ素系重合体を含むものであればよく、その構成や材料は特に限定されず、適宜好適なものを選択することができる。
CF2=CFOCF2-CF(CF3)OCF2COOCH3、
CF2=CFOCF2CF(CF3)O(CF2)2COOCH3、
CF2=CF[OCF2-CF(CF3)]2O(CF2)2COOCH3、
CF2=CFOCF2CF(CF3)O(CF2)3COOCH3、
CF2=CFO(CF2)2COOCH3、
CF2=CFO(CF2)3COOCH3。
CF2=CFOCF2CF2SO2F、
CF2=CFOCF2CF(CF3)OCF2CF2SO2F、
CF2=CFOCF2CF(CF3)OCF2CF2CF2SO2F、
CF2=CF(CF2)2SO2F、
CF2=CFO〔CF2CF(CF3)O〕2CF2CF2SO2F、
CF2=CFOCF2CF(CF2OCF3)OCF2CF2SO2F。
イオン交換膜は、膜本体の少なくとも一方面上にコーティング層を有することが好ましい。また、図2に示すとおり、イオン交換膜1においては、膜本体1aの両面上にそれぞれコーティング層11a及び11bが形成されている。
コーティング層は無機物粒子と結合剤とを含む。
イオン交換膜は、膜本体の内部に配置された強化芯材を有することが好ましい。
開口率=(B)/(A)=((A)-(C))/(A) …(I)
イオン交換膜は、膜本体の内部に連通孔を有することが好ましい。
イオン交換膜の好適な製造方法としては、以下の(1)工程~(6)工程を有する方法が挙げられる。
(1)工程:イオン交換基、又は、加水分解によりイオン交換基となり得るイオン交換基前駆体を有する含フッ素系重合体を製造する工程。
(2)工程:必要に応じて、複数の強化芯材と、酸又はアルカリに溶解する性質を有し、連通孔を形成する犠牲糸と、を少なくとも織り込むことにより、隣接する強化芯材同士の間に犠牲糸が配置された補強材を得る工程。
(3)工程:イオン交換基、又は、加水分解によりイオン交換基となり得るイオン交換基前駆体を有する前記含フッ素系重合体をフィルム化する工程。
(4)工程:前記フィルムに必要に応じて前記補強材を埋め込んで、前記補強材が内部に配置された膜本体を得る工程。
(5)工程:(4)工程で得られた膜本体を加水分解する工程(加水分解工程)。
(6)工程:(5)工程で得られた膜本体に、コーティング層を設ける工程(コーティング工程)。
(1)工程では、上記第1群~第3群に記載した原料の単量体を用いて含フッ素系重合体を製造する。含フッ素系重合体のイオン交換容量を制御するためには、各層を形成する含フッ素系重合体の製造において、原料の単量体の混合比を調整すればよい。
補強材とは、強化糸を織った織布等である。補強材が膜内に埋め込まれることで、強化芯材を形成する。連通孔を有するイオン交換膜とするときには、犠牲糸も一緒に補強材へ織り込む。この場合の犠牲糸の混織量は、好ましくは補強材全体の10~80質量%、より好ましくは30~70質量%である。犠牲糸を織り込むことにより、強化芯材の目ズレを防止することもできる。
(3)工程では、前記(1)工程で得られた含フッ素系重合体を、押出し機を用いてフィルム化する。フィルムは単層構造でもよいし、上述したように、スルホン酸層とカルボン酸層との2層構造でもよいし、3層以上の多層構造であってもよい。
カルボン酸基を有する含フッ素重合体、スルホン酸基を有する含フッ素重合体をそれぞれ別々にフィルム化する方法。
カルボン酸基を有する含フッ素重合体と、スルホン酸基を有する含フッ素重合体とを共押出しにより、複合フィルムとする方法。
(4)工程では、(2)工程で得た補強材を、(3)工程で得たフィルムの内部に埋め込むことで、補強材が内在する膜本体を得る。
(5)工程では、(4)工程で得られた膜本体を加水分解して、イオン交換基前駆体をイオン交換基に変換する工程(加水分解工程)を行う。
(6)工程では、原石粉砕または原石溶融により得られた無機物粒子と、結合剤とを含むコーティング液を調整し、コーティング液を(5)工程で得られたイオン交換膜の表面に塗布及び乾燥させることで、コーティング層を形成することができる。
本実施形態の微多孔膜としても、特に限定されず、種々の微多孔膜を適用することができる。
本実施形態の微多孔膜の気孔率は、特に限定されないが、例えば、20~90とすることができ、好ましくは30~85である。上記気孔率は、例えば、下記の式にて算出できる。
気孔率=(1-(乾燥状態の膜重量)/(膜の厚み、幅、長さから算出される体積と膜素材の密度から算出される重量))×100
本実施形態の微多孔膜の平均孔径は、特に限定されないが、例えば、0.01μm~10μとすることができ、好ましくは0.05μm~5μmである。上記平均孔径は、例えば、膜を厚み方向に垂直に切断し、切断面をFE-SEMで観察する。観察される孔の直径を100点程度測定し、平均することで求めることができる。
本実施形態の微多孔膜の厚みは、特に限定されないが、例えば、10μm~1000μmとすることができ、好ましくは50μm~600μmである。上記厚みは、例えば、マイクロメーター(株式会社ミツトヨ製)等を用いて測定することができる。
上述のような微多孔膜の具体例としては、Agfa社製のZirfon Perl UTP 500(本実施形態において、Zirfon膜とも称す)、国際公開第2013-183584号パンフレット、国際公開第2016-203701号パンフレットなどに記載のものが挙げられる。
本実施形態において、電解用電極は、既存電極の表面の少なくとも1つの領域に固定されており、本明細書において、この1つ又は2以上の領域を固定領域ともいう。本実施形態における固定領域は、電解用電極と既存電極との分離を抑制する機能を有し、既存電極に電解用電極を固定する部分であれば特に限定されず、例えば、電解用電極自体が固定手段となることで固定領域を構成する場合もあり、また、電解用電極とは別体である固定用部材が固定手段となることで固定領域を構成する場合もある。なお、本実施形態における固定領域は、電解時の通電面に対応する位置のみに存在してもよく、非通電面に対応する位置に延在してもよい。なお、「通電面」は、陽極室と陰極室との間で電解質の移動が行わるように設計された部分に対応する。また、「非通電面」とは、通電面以外の部分を意味する。
図5A,Bでは、電解用電極101の少なくとも一部が、既存電極102を貫通し固定された状態を示している。ここで、電解用電極101及び既存電極102は、いずれも金属多孔電極として例示している(以下の図6~8でも同様である。)。まず、図5A上部に示すように、矩形状に既存電極102の劣化部分を切除し、切除部分102aを形成する。なお、切除部分の形状は単なる例示であり、矩形状には限定されず、種々の形状とすることができる(以下の図6~8でも同様である。)。次いで、電解用電極101としては、その端部から所定の長さで伸びる金属線101aを有するものを使用することが好ましい。すなわち、図5A上部に示すように、電解用電極101を切除部分102aを完全に覆うように当て、次いで金属線101aを既存電極102の内部に挿通し、貫通させたところで、既存電極102の電解用電極101当接面とは反対の面上で金属線101aを湾曲させ、固定する。図5AのX-X’断面図を図5Bに示す。あらかじめ金属線101aを湾曲させてから既存電極102に挿通させてもよい。
図6A,Bでは、電解用電極101の少なくとも一部が、既存電極102の内部で固定された状態を示している。まず、図6A上部に示すように、矩形状に既存電極102の劣化部分を切除し、切除部分102aを形成する。次いで、電解用電極101としては、その端部から所定の長さで伸びる金属線101aを有するものを使用することが好ましい。すなわち、図6A上部に示すように、電解用電極101を切除部分102aを完全に覆うように当て、次いで金属線101aを既存電極102の内部に挿通し、既存電極102の内部で、金属線101aを湾曲させ、固定する。図6AのY-Y’断面図を図6Bに示す。あらかじめ金属線101aを湾曲させてから既存電極102に挿通させてもよい。
また、タッカーのような固定機構を用いて、電解用電極101と既存電極102とを固定することも可能である。
本実施形態においては、電解液に溶解する、あるいは電解中に溶解、分解する有機樹脂を使用してもよい。電解液に溶解する、あるいは電解中に溶解、分解する有機樹脂としては、以下に限定されないが、例えば、酢酸ビニル系接着剤、エチレン酢酸ビニル共重合系接着剤、アクリル樹脂系接着剤、α―オレフィン系接着剤、スチレンブタジエンゴム系ラテックス接着剤、塩化ビニル樹脂系接着剤、クロロプレン系接着剤、ニトリルゴム系接着剤、ウレタンゴム系接着剤、エポキシ系接着剤、シリコーン樹脂系接着剤、変性シリコーン系接着剤、エポキシ・変成シリコーン樹脂系接着剤、シリル化ウレタン樹脂系接着剤、シアノアクリレート系接着剤などが挙げられる。
ヘキサン(20.44mN/m)、アセトン(23.30mN/m)、メタノール(24.00mN/m)、エタノール(24.05mN/m)、エチレングリコール(50.21mN/m)水(72.76mN/m)
表面張力の大きな液体であれば、既存電極と電解用電極とが固定されやすく、既存電極の補修がより容易となる傾向にある。既存電極と電解用電極との間の液体は表面張力によりお互いが張り付く程度の量でよく、その結果液体量が少ないため、電解槽運転時に電解液に混ざっても、電解自体に影響を与えることはない。
実用状の観点からは、液体としてエタノール、エチレングリコール、水等の表面張力が24mN/mから80mN/mの液体を使用することが好ましい。特に水、または水に苛性ソーダ、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム等を溶解させてアルカリ性にした水溶液が好ましい。また、これらの液体に界面活性剤を含ませ、表面張力を調整することもできる。界面活性剤を含むことで、既存電極と電解用電極との接着性が変化し、ハンドリング性を調整することができる。界面活性剤としては、特に限定されず、イオン性界面活性剤、非イオン性界面活性剤のいずれも使用できる。
本実施形態の電解槽は、本実施形態の電解セルを含むものであり、かかる電解セルにおいて、既存電極又は新たな電極が配されている。以下、隔膜としてイオン交換膜を用い、食塩電解を行う場合を例として、電解槽の一実施形態を詳述する。但し、本実施形態において、電解槽は、食塩電解に用いられることに限定されず、例えば、水電解や燃料電池にも用いられる。
図9は、電解セル50の断面図である。
電解セル50は、陽極室60と、陰極室70と、陽極室60及び陰極室70の間に設置された隔壁80と、陽極室60に設置された陽極11と、陰極室70に設置された陰極21と、を備える。必要に応じて基材18aと当該基材18a上に形成された逆電流吸収層18bとを有し、陰極室内に設置された逆電流吸収体18と、を備えてもよい。1つの電解セル50に属する陽極11及び陰極21は互いに電気的に接続されている。換言すれば、電解セル50は次の陰極構造体を備える。陰極構造体90は、陰極室70と、陰極室70に設置された陰極21と、陰極室70内に設置された逆電流吸収体18と、を備え、逆電流吸収体18は、図13に示すように基材18aと当該基材18a上に形成された逆電流吸収層18bとを有し、陰極21と逆電流吸収層18bとが電気的に接続されている。陰極室70は、集電体23と、当該集電体を支持する支持体24と、金属弾性体22とを更に有する。金属弾性体22は、集電体23及び陰極21の間に設置されている。支持体24は、集電体23及び隔壁80の間に設置されている。集電体23は、金属弾性体22を介して、陰極21と電気的に接続されている。隔壁80は、支持体24を介して、集電体23と電気的に接続されている。したがって、隔壁80、支持体24、集電体23、金属弾性体22及び陰極21は電気的に接続されている。陰極21及び逆電流吸収層18bは電気的に接続されている。陰極21及び逆電流吸収層は、直接接続されていてもよく、集電体、支持体、金属弾性体又は隔壁等を介して間接的に接続されていてもよい。陰極21の表面全体は還元反応のための触媒層で被覆されていることが好ましい。また、電気的接続の形態は、隔壁80と支持体24、支持体24と集電体23、集電体23と金属弾性体22がそれぞれ直接取り付けられ、金属弾性体22上に陰極21が積層される形態であってもよい。これらの各構成部材を互いに直接取り付ける方法として、溶接等があげられる。また、逆電流吸収体18、陰極21、および集電体23を総称して陰極構造体90としてもよい。
陽極室60は、陽極11または陽極給電体11を有する。本実施形態における電解用電極を陽極側へ挿入した場合には、11は陽極給電体として機能する。本実施形態における電解用電極を陽極側へ挿入しない場合には、11は陽極として機能する。また、陽極室60は、陽極室60に電解液を供給する陽極側電解液供給部と、陽極側電解液供給部の上方に配置され、隔壁80と略平行または斜めになるように配置されたバッフル板と、バッフル板の上方に配置され、気体が混入した電解液から気体を分離する陽極側気液分離部とを有することが好ましい。
本実施形態における電解用電極を陽極側へ挿入しない場合には、陽極室60の枠内には、陽極11が設けられている。陽極11としては、いわゆるDSA(登録商標)等の金属電極を用いることができる。DSAとは、ルテニウム、イリジウム、チタンを成分とする酸化物によって表面を被覆されたチタン基材の電極である。
形状としては、パンチングメタル、不織布、発泡金属、エキスパンドメタル、エレクトロフォーミングにより形成した金属多孔箔、金属線を編んで作製したいわゆるウーブンメッシュ等いずれのものも使用できる。
本実施形態における電解用電極を陽極側へ挿入した場合には、陽極室60の枠内には、陽極給電体11が設けられている。陽極給電体11としては、いわゆるDSA(登録商標)等の金属電極を用いることもできるし、触媒コーティングがされていないチタンを用いることもできる。また、触媒コーティング厚みを薄くしたDSAを用いることもできる。さらに、使用済みの陽極を用いることもできる。
形状としては、パンチングメタル、不織布、発泡金属、エキスパンドメタル、エレクトロフォーミングにより形成した金属多孔箔、金属線を編んで作製したいわゆるウーブンメッシュ等いずれのものも使用できる。
陽極側電解液供給部は、陽極室60に電解液を供給するものであり、電解液供給管に接続される。陽極側電解液供給部は、陽極室60の下方に配置されることが好ましい。陽極側電解液供給部としては、例えば、表面に開口部が形成されたパイプ(分散パイプ)等を用いることができる。かかるパイプは、陽極11の表面に沿って、電解セルの底部19に対して平行に配置されていることがより好ましい。このパイプは、電解セル50内に電解液を供給する電解液供給管(液供給ノズル)に接続される。液供給ノズルから供給された電解液はパイプによって電解セル50内まで搬送され、パイプの表面に設けられた開口部から陽極室60の内部に供給される。パイプを、陽極11の表面に沿って、電解セルの底部19に平行に配置することで、陽極室60の内部に均一に電解液を供給することができるため好ましい。
陽極側気液分離部は、バッフル板の上方に配置されることが好ましい。電解中において、陽極側気液分離部は、塩素ガス等の生成ガスと電解液を分離する機能を有する。なお、特に断りがない限り、上方とは、図9の電解セル50における上方向を意味し、下方とは、図9の電解セル50における下方向を意味する。
バッフル板は、陽極側電解液供給部の上方に配置され、かつ、隔壁80と略平行または斜めに配置されることが好ましい。バッフル板は、陽極室60の電解液の流れを制御する仕切り板である。バッフル板を設けることで、陽極室60において電解液(塩水等)を内部循環させ、その濃度を均一にすることができる。内部循環を起こすために、バッフル板は、陽極11近傍の空間と隔壁80近傍の空間とを隔てるように配置することが好ましい。かかる観点から、バッフル板は、陽極11及び隔壁80の各表面に対向するように設けられていることが好ましい。バッフル板により仕切られた陽極近傍の空間では、電解が進行することにより電解液濃度(塩水濃度)が下がり、また、塩素ガス等の生成ガスが発生する。これにより、バッフル板により仕切られた陽極11近傍の空間と、隔壁80近傍の空間とで気液の比重差が生まれる。これを利用して、陽極室60における電解液の内部循環を促進させ、陽極室60の電解液の濃度分布をより均一にすることができる。
隔壁80は、陽極室60と陰極室70の間に配置されている。隔壁80は、セパレータと呼ばれることもあり、陽極室60と陰極室70とを区画するものである。隔壁80としては、電解用のセパレータとして公知のものを使用することができ、例えば、陰極側にニッケル、陽極側にチタンからなる板を溶接した隔壁等が挙げられる。
陰極室70は、本実施形態における電解用電極を陰極側へ挿入した場合には、21は陰極給電体として機能し、本実施形態における電解用電極を陰極側へ挿入しない場合には、21は陰極として機能する。逆電流吸収体を有する場合は、陰極あるいは陰極給電体21と逆電流吸収体は電気的に接続されている。また、陰極室70も陽極室60と同様に、陰極側電解液供給部、陰極側気液分離部を有していることが好ましい。なお、陰極室70を構成する各部位のうち、陽極室60を構成する各部位と同様のものについては説明を省略する。
本実施形態における電解用電極を陰極側へ挿入しない場合には、陰極室70の枠内には、陰極21が設けられている。陰極21は、ニッケル基材とニッケル基材を被覆する触媒層とを有することが好ましい。ニッケル基材上の触媒層の成分としては、Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等の金属及び当該金属の酸化物又は水酸化物が挙げられる。触媒層の形成方法としては、メッキ、合金めっき、分散・複合めっき、CVD、PVD、熱分解及び溶射が挙げられる。これらの方法を組み合わせてもよい。触媒層は必要に応じて複数の層、複数の元素を有してもよい。また、必要に応じて陰極21に還元処理を施してもよい。なお、陰極21の基材としては、ニッケル、ニッケル合金、鉄あるいはステンレスにニッケルをメッキしたものを用いてもよい。
形状としては、パンチングメタル、不織布、発泡金属、エキスパンドメタル、エレクトロフォーミングにより形成した金属多孔箔、金属線を編んで作製したいわゆるウーブンメッシュ等いずれのものも使用できる。
本実施形態における電解用電極を陰極側へ挿入した場合には、陰極室70の枠内には、陰極給電体21が設けられている。陰極給電体21に触媒成分が被覆されていてもよい。その触媒成分は、もともと陰極として使用されて、残存したものでもよい。触媒層の成分としては、Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等の金属及び当該金属の酸化物又は水酸化物が挙げられる。触媒層の形成方法としては、メッキ、合金めっき、分散・複合めっき、CVD、PVD、熱分解及び溶射が挙げられる。これらの方法を組み合わせてもよい。触媒層は必要に応じて複数の層、複数の元素を有してもよい。また、触媒コーティングがされてない、ニッケル、ニッケル合金、鉄あるいはステンレスに、ニッケルをメッキしたものを用いてもよい。なお、陰極給電体21の基材としては、ニッケル、ニッケル合金、鉄あるいはステンレスにニッケルをメッキしたものを用いてもよい。
形状としては、パンチングメタル、不織布、発泡金属、エキスパンドメタル、エレクトロフォーミングにより形成した金属多孔箔、金属線を編んで作製したいわゆるウーブンメッシュ等いずれのものも使用できる。
前述の陰極の触媒層用の元素の酸化還元電位よりも卑な酸化還元電位を持つ材料を逆電流吸収層の材料として選択することができる。例えば、ニッケルや鉄などが挙げられる。
陰極室70は集電体23を備えることが好ましい。これにより、集電効果が高まる。本実施形態では、集電体23は多孔板であり、陰極21の表面と略平行に配置されることが好ましい。
集電体23と陰極21との間に金属弾性体22が設置されることにより、直列に接続された複数の電解セル50の各陰極21が陽イオン交換膜51に押し付けられ、各陽極11と各陰極21との間の距離が短くなり、直列に接続された複数の電解セル50全体に掛かる電圧を下げることができる。電圧が下がることにより、消費電量を下げることができる。また、金属弾性体22が設置されることにより、本実施形態に係る電解用電極を含む積層体を電解セルに設置した際に、金属弾性体22による押し付け圧により、該電解用電極を安定して定位置に維持することができる。
陰極室70は、集電体23と隔壁80とを電気的に接続する支持体24を備えることが好ましい。これにより、効率よく電流を流すことができる。
陽極側ガスケットは、陽極室60を構成する枠体表面に配置されることが好ましい。陰極側ガスケットは、陰極室70を構成する枠体表面に配置されていることが好ましい。1つの電解セルが備える陽極側ガスケットと、これに隣接する電解セルの陰極側ガスケットとが、陽イオン交換膜51を挟持するように、電解セル同士が接続される(図9、10参照)。これらのガスケットにより、陽イオン交換膜51を介して複数の電解セル50を直列に接続する際に、接続箇所に気密性を付与することができる。
陽イオン交換膜51としては、上記、イオン交換膜の項に記載のとおりである。
本実施形態の電解槽であって、水電解を行う場合の電解槽は、上述した食塩電解を行う場合の電解槽におけるイオン交換膜を微多孔膜に変更した構成を有するものである。また、供給する原料が水である点において、上述した食塩電解を行う場合の電解槽とは相違するものである。その他の構成については、水電解を行う場合の電解槽も食塩電解を行う場合の電解槽と同様の構成を採用することができる。食塩電解の場合には、陽極室で塩素ガスが発生するため、陽極室の材質はチタンが用いられるが、水電解の場合には、陽極室で酸素ガスが発生するのみであるため、陰極室の材質と同じものを使用できる。例えば、ニッケル等が挙げられる。また、陽極コーティングは酸素発生用の触媒コーティングが適当である。触媒コーティングの例としては、白金族金属および遷移金族の金属、酸化物、水酸化物などが挙げられる。例えば、白金、イリジウム、パラジウム、ルテニウム、ニッケル、コバルト、鉄等の元素を使用することができる。
積層体の製造に用いる隔膜としては、下記のとおりに製造されたイオン交換膜Aを使用した。
強化芯材として、ポリテトラフルオロエチレン(PTFE)製であり、90デニールのモノフィラメントを用いた(以下、PTFE糸という。)。犠牲糸として、35デニール、6フィラメントのポリエチレンテレフタレート(PET)を200回/mの撚りを掛けた糸を用いた(以下、PET糸という。)。まず、TD及びMDの両方向のそれぞれにおいて、PTFE糸が24本/インチ、犠牲糸が隣接するPTFE糸間に2本配置するように平織りして、織布を得た。得られた織布を、ロールで圧着し、厚さ70μmの織布である補強材を得た。
次に、CF2=CF2とCF2=CFOCF2CF(CF3)OCF2CF2COOCH3との共重合体でイオン交換容量が0.85mg当量/gである乾燥樹脂の樹脂A、CF2=CF2とCF2=CFOCF2CF(CF3)OCF2CF2SO2Fとの共重合体でイオン交換容量が1.03mg当量/gである乾燥樹脂の樹脂Bを準備した。
これらの樹脂A及び樹脂Bを使用し、共押出しTダイ法にて樹脂A層の厚みが15μm、樹脂B層の厚みが84μmである、2層フィルムXを得た。また、樹脂Bのみを使用し、Tダイ法にて厚みが20μmである単層フィルムYを得た。
続いて、内部に加熱源及び真空源を有し、その表面に微細孔を有するホットプレート上に、離型紙(高さ50μmの円錐形状のエンボス加工)、フィルムY、補強材及びフィルムXの順に積層し、ホットプレート表面温度223℃、減圧度0.067MPaの条件で2分間加熱減圧した後、離型紙を取り除くことで複合膜を得た。なお、フィルムXは樹脂Bが下面となるように積層した。
得られた複合膜を、ジメチルスルホキシド(DMSO)30質量%、水酸化カリウム(KOH)15質量%を含む80℃の水溶液に20分浸漬することでケン化した。その後、水酸化ナトリウム(NaOH)0.5N含む50℃の水溶液に1時間浸漬して、イオン交換基の対イオンをNaに置換し、続いて水洗した。その後、研磨ロールと膜の相対速度が100m/分、研磨ロールのプレス量を2mmとして樹脂B側表面を研磨し、開孔部を形成した後に、60℃で乾燥した。
さらに、樹脂Bの酸型樹脂の5質量%エタノール溶液に、1次粒径1μmの酸化ジルコニウムを20質量%加え、分散させた懸濁液を調合し、懸濁液スプレー法で、上記の複合膜の両面に噴霧し、酸化ジルコニウムのコーティングを複合膜の表面に形成させ、隔膜としてのイオン交換膜Aを得た。
酸化ジルコニウムの塗布密度を蛍光X線測定で測定したところ0.5mg/cm2だった。ここで、平均粒径は、粒度分布計(島津製作所製「SALD(登録商標)2200」)によって測定した。
デジマチックシックスネスゲージ(株式会社ミツトヨ製、最少表示0.001mm)用いて面内を均一に10点測定した平均値を算出した。
下記電解実験によって、電解性能を評価した。
陽極が設置された陽極室を有するチタン製の陽極セルと、陰極が設置されたニッケル製の陰極室を有する陰極セルとを向い合せた。セル間に一対のガスケットを配置した。一対のガスケット間にイオン交換膜Aを挟んだ。そして、陽極セル、ガスケット、イオン交換膜A、ガスケット及び陰極を密着させて、電解セルを得、これを含む電解槽を準備した。
陽極としては、前処理としてブラスト及び酸エッチング処理をしたチタン基材上に、塩化ルテニウム、塩化イリジウム及び四塩化チタンの混合溶液を塗布、乾燥、焼成することで作製した。陽極は、溶接により陽極室に固定した。
陰極室の集電体としては、ニッケル製エキスパンドメタルを使用した。集電体のサイズは縦95mm×横110mmであった。金属弾性体としては、ニッケル細線で編んだマットレスを使用した。金属弾性体であるマットレスを集電体の上に置いた。その上に直径150μmのニッケル線を40メッシュの目開きで平織したニッケルメッシュにルテニウムとセリウムの混合溶液を塗布、乾燥、焼成することにより作成したメッシュ陰極を設置した。コーティング後の陰極の厚みは310μmだった。この陰極の四隅を、テフロン(登録商標)で作製した紐で集電体に固定した。
この電解セルにおいては、金属弾性体であるマットレスの反発力を利用して、ゼロギャップ構造になっている。ガスケットとしては、EPDM(エチレンプロピレンジエン)製のゴムガスケットを使用した。
上記電解セルを用いて食塩の電解を行った。陽極室の塩水濃度(塩化ナトリウム濃度)は205g/Lに調整した。陰極室の水酸化ナトリウム濃度は32質量%に調整した。各電解セル内の温度が90℃になるように、陽極室及び陰極室の各温度を調節した。電流密度6kA/m2で食塩電解を実施し、電圧、電流効率を測定した。ここで、電流効率とは、流した電流に対する、生成された苛性ソーダの量の割合であり、流した電流により、ナトリウムイオンではなく、不純物イオンや水酸化物イオンがイオン交換膜を移動すると、電流効率が低下する。電流効率は、一定時間に生成された苛性ソーダのモル数を、その間に流れた電流の電子のモル数で除することで求めた。苛性ソーダのモル数は、電解により生成した苛性ソーダをポリタンクに回収して、その質量を測定することにより、求めた。
電解試験後のイオン交換膜Aの状態確認は、以下のように実施した。
まず、補修することにより電極厚みが厚くなった部分(既存電極と補修用の電解用電極が重なった部分)に対応するイオン交換膜Aの表面部分の外観を観察した。必要に応じて、表面に施してあるコーティングを刷毛などを用いて除去した。外観観察では、イオン交換膜Aの白化、変色等がないかを調べた。
次に、上述したイオン交換膜Aの表面部分を等間隔に5か所切断し、露出された膜断面をマクロスコープ、SEMで観察した。膜表面および内部における剥がれ、ブリスターの発生(以下、単に「膜損傷」ともいう。)の有無を確認し、発生している場合はその個数をカウントした。
補修に使用する電解用電極は以下のように作成した。
ゲージ厚みが22μmのニッケル箔を準備した。このニッケル箔の片面にニッケルメッキによる粗面化処理を施した。
粗面化した表面の算術平均粗さRaは0.95μmだった。
表面粗さ測定には、触針式の表面粗さ測定機SJ-310(株式会社ミツトヨ)を使用した。
地面と平行な定盤上に測定サンプルを設置し、下記の測定条件で算術平均粗さRaを測定した。測定は、6回実施時、その平均値を記載した。
<触針の形状>円すいテーパ角度=60°、先端半径=2μm、静的測定力=0.75mN
<粗さ規格>JIS2001
<評価曲線>R
<フィルタ>GAUSS
<カットオフ値 λc>0.8mm
<カットオフ値 λs>2.5μm
<区間数>5
<前走、後走>有
(開孔率の測定)
電解用電極をデジマチックシックスネスゲージ(株式会社ミツトヨ製、最少表示0.001mm)用いて面内を均一に10点測定した平均値を算出した。これを電極の厚み(ゲージ厚み)をとして、体積を算出した。その後、電子天秤で質量を測定し、金属の比重(ニッケルの比重=8.908g/cm3、チタンの比重=4.506g/cm3)から、開孔率あるいは空隙率を算出した。
開孔率(空隙率)(%)=(1-(電極質量)/(電極体積×金属の比重))×100
ルテニウム濃度が100g/Lの硝酸ルテニウム溶液(株式会社フルヤ金属)、硝酸セリウム(キシダ化学株式会社)を、ルテニウム元素とセリウム元素のモル比が1:0.25となるように混合した。この混合液を充分に撹拌し、これを陰極コーティング液とした。
ロール塗布装置の最下部に上記塗布液を入れたバットを設置した。PVC(ポリ塩化ビニル)製の筒に独立気泡タイプの発泡EPDM(エチレン・プロピレン・ジエンゴム)製のゴム(イノアックコーポレイション、E-4088、厚み10mm)を巻きつけた塗布ロールと塗布液が常に接するように設置した。その上部に同じEPDMを巻きつけた塗布ロールを設置、更にその上にPVC製のローラーを設置した。
電解用電極基材を2番目の塗布ロールと最上部のPVC製のローラーの間を通して塗布液を塗布した(ロール塗布法)。その後、50℃で10分間の乾燥、150℃で3分間の仮焼成を行い、350℃で10分間の焼成を実施した。これら塗布、乾燥、仮焼成、焼成の一連の操作を所定のコーティング量になるまで繰り返した。
作製した電解用電極の厚みは、30μmだった。酸化ルテニウムと酸化セリウムを含む触媒層の厚みは、電解用電極の厚みから電解用電極基材の厚みを差し引いてそれぞれ8μmだった。コーティングは粗面化されていない面にも形成された。
電解評価を実施したところ、穴をあけていないときの電解性能と同じであり、膜損傷も見られなかった。
補修前の電極厚みT1=310μm、補修後の既存電極と補修用電極が重なった部分の厚みT2=340μmだった。T2/T1=1.10だった。
補修用電極の四辺(外縁部分)をシアノアクリレート系の接着剤で固定したこと以外は実施例1と同様に補修を実施した。
要した時間は数分程度で、簡単に補修を実施できた。
電解評価を実施したところ、穴をあけていないときの電解性能と同じであり、膜損傷も見られなかった。
補修前の電極厚みT1=310μm、補修後の既存電極と補修用電極が重なった部分の厚みT2=340μmだった。T2/T1=1.10だった。
補修用電極の四辺(外縁部分)をPTFE製の糸で波縫いすることで固定したこと以外は実施例1と同様に補修を実施した。
要した時間は数分程度で、簡単に補修を実施できた。
電解評価を実施したところ、穴をあけていないときの電解性能と同じであり、膜損傷も見られなかった。
補修前の電極厚みT1=310μm、補修後の既存電極と補修用電極が重なった部分の厚みT2=340μmだった。T2/T1=1.10だった。
補修用電極として、厚みが30μmのニッケル箔を使用したこと以外は実施例1と同様に補修を実施した。補修用電極の厚みは38μmだった。
要した時間は数分程度で、簡単に補修を実施できた。
電解評価を実施したところ、穴をあけていないときの電解性能と同じであり、膜損傷も見られなかった。
補修前の電極厚みT1=310μm、補修後の既存電極と補修用電極が重なった部分の厚みT2=348μmだった。T2/T1=1.12だった。
補修用電極として、厚みが50μmのニッケル箔を使用したこと以外は実施例1と同様に補修を実施した。補修用電極の厚みは59μmだった。
要した時間は数分程度で、簡単に補修を実施できた。
電解評価を実施したところ、穴をあけていないときの電解性能と同じであり、膜損傷も見られなかった。
補修前の電極厚みT1=310μm、補修後の既存電極と補修用電極が重なった部分の厚みT2=369μmだった。T2/T1=1.19だった。
補修用電極として、厚みが10μmのニッケル箔を使用したこと以外は実施例1と同様に補修を実施した。補修用電極の厚みは16μmだった。
要した時間は数分程度で、簡単に補修を実施できた。
電解評価を実施したところ、穴をあけていないときの電解性能と同じであり、膜損傷も見られなかった。
補修前の電極厚みT1=310μm、補修後の既存電極と補修用電極が重なった部分の厚みT2=326μmだった。T2/T1=1.05だった。
補修用電極として、厚みが100μmのニッケルエキスパンドメタルを使用したこと以外は実施例1と同様に補修を実施した。補修用電極の厚みは107μmだった。
要した時間は数分程度で、簡単に補修を実施できた。
電解評価を実施したところ、穴をあけていないときの電解性能と同じであり、膜損傷も見られなかった。
補修前の電極厚みT1=310μm、補修後の既存電極と補修用電極が重なった部分の厚みT2=417μmだった。T2/T1=1.35だった。
補修用電極として、厚みが150μmのニッケルエキスパンドメタルを使用したこと以外は実施例1と同様に補修を実施した。補修用電極の厚みは157μmだった。
要した時間は数分程度で、簡単に補修を実施できた。
電解評価を実施したところ、穴をあけていないときの電解性能と同じであった。また、外観観察時にわずかではあるものの白化が観察されたが、断面観察での膜損傷は0個で問題なく、全体として問題ない程度と評価された。
補修前の電極厚みT1=310μm、補修後の既存電極と補修用電極が重なった部分の厚みT2=467μmだった。T2/T1=1.51だった。
補修用電極として、厚みが200μmのニッケルエキスパンドメタルを使用したこと以外は実施例1と同様に補修を実施した。補修用電極の厚みは211μmだった。
要した時間は数分程度で、簡単に補修を実施できた。
電解評価を実施したところ、穴をあけていないときの電解性能と同じであった。また、外観観察時にわずかではあるものの白化が観察されたが、断面観察での膜損傷は0個で問題なく、全体として問題ない程度と評価された。
補修前の電極厚みT1=310μm、補修後の既存電極と補修用電極が重なった部分の厚みT2=521μmだった。T2/T1=1.68だった。
補修用電極として、厚みが250μmのニッケルエキスパンドメタルを使用したこと以外は実施例1と同様に補修を実施した。補修用電極の厚みは260μmだった。
要した時間は数分程度で、簡単に補修を実施できた。
電解評価を実施したところ、穴をあけていないときの電解性能と同じであった。また、外観観察時にわずかではあるものの白化が観察されたが、断面観察での膜損傷は0個で問題なく、全体として問題ない程度と評価された。
補修前の電極厚みT1=310μm、補修後の既存電極と補修用電極が重なった部分の厚みT2=521μmだった。T2/T1=1.68だった。
補修用電極として、既存電極と同じ電極を用いたこと以外は実施例1と同様に補修を実施した。補修用電極の厚みは320μmだった。
要した時間は数分程度で、簡単に補修を実施できた。
電解評価を実施したところ、穴をあけていないときの電解性能と比べて悪化した。溶接で盛り上がった部分に対応する場所に膜損傷が見られた。具体的には、溶接していないニッケル線端部が膜を貫通させる損傷が見られた。また、外観観察では白化している箇所が複数観察され、断面観察では膜損傷が7か所観察された。
補修前の電極厚みT1=320μm、補修後の既存電極と補修用電極が重なった部分の厚みT2=640μmだった。T2/T1=2.00だった。
ニッケル線1本1本を溶接でつなぎ合わせて補修したこと以外は比較例1と同様に補修を実施した。溶接する線の数は4辺合計で100以上あり、補修に半日程度を要した。商業電解枠の補修には時間がかかりすぎて、適用できないことが分かった。
電解評価を実施したところ、穴をあけていないときの電解性能と同じであった。
補修用電極として、厚みが500μmのニッケルエキスパンドメタルを基材に使用したこと以外は実施例1と同様に補修を実施した。補修用電極の厚みは508μmだった。
要した時間は数分程度で、簡単に補修を実施できた。
電解評価を実施したところ、穴をあけていないときの電解性能より電解電圧が2%上昇し、電流効率が0.5%悪化した。また、外観観察では白化している箇所が多数観察され、断面観察では、補修電極の端部に由来する膜の折れ、膜損傷が10か所観察された。
補修前の電極厚みT1=310μm、補修後の既存電極と補修用電極が重なった部分の厚みT2=818μmだった。T2/T1=2.64だった。
10…電解用電極基材、20…基材を被覆する第一層、30…第二層、101…電解用電極
1…イオン交換膜、1a…膜本体、2…カルボン酸層、3…スルホン酸層、4…強化芯材、11a,11b…コーティング層
21a,21b…強化芯材
52…強化糸、504…連通孔、504a…犠牲糸
101・・・電解用電極、101a・・・電解用電極の端部から伸びる金属線、102・・・既存電極、102a・・・既存電極における切除部分。
4…電解槽、5…プレス器、6…陰極端子、7…陽極端子、
11…陽極、12…陽極ガスケット、13…陰極ガスケット、
18…逆電流吸収体、18a…基材、18b…逆電流吸収層、19…陽極室の底部、
21…陰極、22…金属弾性体、23…集電体、24…支持体、
50…電解セル、60…陽極室、51…イオン交換膜(隔膜)、70…陰極室、
80…隔壁、90…電解用陰極構造体
Claims (3)
- 既存電極の表面を補修することにより、新たな電極を製造するための方法であって、
前記既存電極の表面の少なくとも1つの領域に、厚みが315μm以下である電解用電極を固定する工程(A)を有し、
前記既存電極の補修前の電極厚みT1と補修後の電極厚みT2の比が、T2/T1として、1.0~2.1未満であり、
下記条件(i)~(iii)の少なくとも1つを満たす、電極の製造方法:
(i)前記領域において、前記電解用電極の少なくとも一部が、前記既存電極を貫通して固定されている。
(ii)前記領域において、前記電解用電極の少なくとも一部が、前記既存電極の内部に位置して固定されている。
(iii)前記工程(A)において、前記電解用電極と前記既存電極との間に水が介在する。 - 前記既存電極と前記電解用電極とを固定するための固定用部材をさらに有する、請求項1に記載の電極の製造方法。
- 前記電解用電極が、パンチング形状、エキスパンド形状又はメッシュ形状を有する、請求項1又は2に記載の電極の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018177563A JP7260272B2 (ja) | 2018-09-21 | 2018-09-21 | 電極の製造方法 |
CN201910880528.5A CN110938835B (zh) | 2018-09-21 | 2019-09-18 | 电极的制造方法 |
DE102019125363.2A DE102019125363A1 (de) | 2018-09-21 | 2019-09-20 | Verfahren zur Herstellung einer Elektrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018177563A JP7260272B2 (ja) | 2018-09-21 | 2018-09-21 | 電極の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020045550A JP2020045550A (ja) | 2020-03-26 |
JP7260272B2 true JP7260272B2 (ja) | 2023-04-18 |
Family
ID=69899340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018177563A Active JP7260272B2 (ja) | 2018-09-21 | 2018-09-21 | 電極の製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7260272B2 (ja) |
CN (1) | CN110938835B (ja) |
DE (1) | DE102019125363A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2022013869A (es) * | 2020-07-07 | 2022-11-30 | Bule Star Beijing Chemical Machinery Co Ltd | Celda electrolitica de membrana ionica de distancia polar de membrana. |
EP3974560A1 (en) * | 2020-09-25 | 2022-03-30 | Basf Se | Reactor for electrochemical synthesis |
JP7470818B2 (ja) | 2020-12-07 | 2024-04-18 | 旭化成株式会社 | アルカリ水電解システム、およびアルカリ水電解システムの運転方法 |
WO2024127921A1 (ja) * | 2022-12-14 | 2024-06-20 | デノラ・ペルメレック株式会社 | 塩素発生電解用陽極 |
DE102023107953A1 (de) | 2023-03-29 | 2024-10-02 | Asahi Kasei Kabushiki Kaisha | Elektrodenstruktur, Elektrolysezelle, Elektrolysebehälter, Verfahren zur Herstellung eines Elektrolysebehälters |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3002236B2 (ja) | 1990-06-22 | 2000-01-24 | ペルメレック電極株式会社 | 電解用電極の再活性化方法 |
JP2010037619A (ja) | 2008-08-07 | 2010-02-18 | Tosoh Corp | イオン交換膜法電解槽及びその陰極の性能回復方法 |
JP2010174346A (ja) | 2009-01-30 | 2010-08-12 | Tosoh Corp | イオン交換膜法電解槽及びその製造方法 |
JP2012140653A (ja) | 2010-12-28 | 2012-07-26 | Tosoh Corp | イオン交換膜法電解槽 |
JP2017088952A (ja) | 2015-11-10 | 2017-05-25 | 株式会社大阪ソーダ | イオン交換膜電解槽 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3940328A (en) * | 1974-04-11 | 1976-02-24 | Electronor Corporation | Reconstructed or repaired electrode structure |
US5454925A (en) * | 1994-05-03 | 1995-10-03 | Eltech Systems Corporation | Repair of mesh electrode spaced from electrode pan |
JP3608880B2 (ja) * | 1996-08-07 | 2005-01-12 | クロリンエンジニアズ株式会社 | 活性陰極の再活性化方法および再活性化した陰極を備えたイオン交換膜電解槽 |
CN100472699C (zh) * | 2006-01-18 | 2009-03-25 | 四川世纪双虹显示器件有限公司 | 一种等离子显示屏断线电极的修复方法 |
JP5019811B2 (ja) * | 2006-07-20 | 2012-09-05 | 東京エレクトロン株式会社 | 静電吸着電極の補修方法 |
CN100555520C (zh) * | 2007-04-26 | 2009-10-28 | 南京华显高科有限公司 | 铝膜电极缺陷的检测、断线修补方法及检测装置 |
CN202985295U (zh) * | 2012-11-15 | 2013-06-12 | 广东生益科技股份有限公司 | 电极修复装置 |
CN206882043U (zh) * | 2017-04-17 | 2018-01-16 | 蓝星(北京)化工机械有限公司 | 一种电极涂层修复装置 |
-
2018
- 2018-09-21 JP JP2018177563A patent/JP7260272B2/ja active Active
-
2019
- 2019-09-18 CN CN201910880528.5A patent/CN110938835B/zh active Active
- 2019-09-20 DE DE102019125363.2A patent/DE102019125363A1/de active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3002236B2 (ja) | 1990-06-22 | 2000-01-24 | ペルメレック電極株式会社 | 電解用電極の再活性化方法 |
JP2010037619A (ja) | 2008-08-07 | 2010-02-18 | Tosoh Corp | イオン交換膜法電解槽及びその陰極の性能回復方法 |
JP2010174346A (ja) | 2009-01-30 | 2010-08-12 | Tosoh Corp | イオン交換膜法電解槽及びその製造方法 |
JP2012140653A (ja) | 2010-12-28 | 2012-07-26 | Tosoh Corp | イオン交換膜法電解槽 |
JP2017088952A (ja) | 2015-11-10 | 2017-05-25 | 株式会社大阪ソーダ | イオン交換膜電解槽 |
Also Published As
Publication number | Publication date |
---|---|
CN110938835A (zh) | 2020-03-31 |
DE102019125363A1 (de) | 2020-05-28 |
CN110938835B (zh) | 2022-03-22 |
JP2020045550A (ja) | 2020-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7260272B2 (ja) | 電極の製造方法 | |
JP7278444B2 (ja) | 積層体製造用冶具、積層体の製造方法、梱包体、積層体、電解槽、及び電解槽の製造方法 | |
JP7320520B2 (ja) | 電解槽の製造方法、積層体、電解槽、及び電解槽の運転方法 | |
JP7073152B2 (ja) | 電解槽の製造方法 | |
TW202020231A (zh) | 積層體、電解槽、電解槽之製造方法、積層體之更新方法、及捲繞體之製造方法 | |
JP2023025201A (ja) | 電解用電極及び積層体 | |
JP7058152B2 (ja) | 電解用電極 | |
JP7234252B2 (ja) | 積層体、積層体の保管方法、積層体の輸送方法、保護積層体、及びその捲回体 | |
JP7173806B2 (ja) | 電解槽の製造方法 | |
JP7075792B2 (ja) | 積層体 | |
JP7109220B2 (ja) | 電解槽の製造方法、電極の更新方法、及び捲回体の製造方法 | |
JP7072413B2 (ja) | 電解槽の製造方法 | |
JP7449362B2 (ja) | 電解槽及び電解槽の製造方法 | |
JP7104533B2 (ja) | 積層体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220513 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230406 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7260272 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |