以下,關於本發明之實施形態(以下亦稱為本實施形態),視需要一邊參照圖式一邊逐個對<第1實施形態>~<第7實施形態>進行詳細說明。以下之實施形態係用以說明本發明之例示,本發明並不限定於以下之內容。又,隨附圖式係表示實施形態之一例者,形態並不限定於此進行解釋。本發明可於其主旨之範圍內適當地變形而實施。再者,只要無特別說明,則圖式中上下左右等位置關係係基於圖式所示之位置關係。圖式之尺寸及比率並不限於所圖示者。
<第1實施形態>
此處,一邊參照圖1~21一邊對本發明之第1實施形態進行詳細說明。
[電解用電極]
第1實施形態(以下於<第1實施形態>之項中簡稱為「本實施形態」)之電解用電極可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力,進而,就經濟性之觀點而言,每單位面積之質量為48 mg/cm
2
以下。又,就上述方面而言,較佳為30 mg/cm
2
以下,進而較佳為20 mg/cm
2
以下,進而,就合併操作性、接著性及經濟性之綜合性之觀點而言,較佳為15 mg/cm
2
以下。下限值並無特別限定,例如為1 mg/cm
2
左右。
上述每單位面積之質量例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則每單位面積之質量有變小之傾向,若減小開孔率,則每單位面積之質量有變大之傾向。
本實施形態之電解用電極就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力之觀點而言,每單位質量·單位面積所承受之力為0.08 N/(mg・cm
2
)以上。又,就上述方面而言,較佳為0.1 N/(mg・cm
2
)以上,更佳為0.14 N/(mg・cm
2
)以上,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理更容易之觀點而言,進而較佳為0.2 N/(mg・cm
2
)以上。上限值並無特別限定,較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。
若本實施形態之電解用電極為彈性變形區域較廣之電極,則就可獲得更良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有更良好之接著力之觀點而言,電解用電極之厚度較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,於本實施形態中,所謂「彈性變形區域較廣」意指將電解用電極捲繞而製成捲繞體,解除捲繞狀態後不易產生由捲繞引起之翹曲。又,所謂電解用電極之厚度於包含下文所述之觸媒層之情形時,係指合併電解用電極基材與觸媒層之厚度。
藉由本實施形態之電解用電極,如上所述,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力,能夠與離子交換膜或微多孔膜等隔膜進行一體化而使用。因此,於更新電極時,無需伴隨將固定於電解池之電極剝離等繁雜之更換貼附作業,而可藉由與隔膜之更新相同之簡單之作業更新電極,因此作業效率大幅提高。又,即使於在新品之電解池僅設置有饋電體之情形時(即,設置有無觸媒層之電極),亦可僅藉由將本實施形態之電解用電極貼附於饋電體而使其作為電極發揮作用,因此亦可大幅地減少觸媒塗層,或者甚至無觸媒塗層。
進而,藉由本實施形態之電解用電極,能夠使電解性能與新品時之性能相同或有所提高。
本實施形態之電解用電極例如可以捲繞於氯乙烯製之管等之狀態(滾筒狀等)進行保管、向顧客處輸送等,操作大幅地變得容易。
承受力可藉由以下之方法(i)或(ii)進行測定,詳細而言,如實施例所記載。關於承受力,藉由方法(i)之測定所獲得之值(亦稱為「承受力(1)」)與藉由方法(ii)之測定所獲得之值(亦稱為「承受力(2)」)可相同亦可不同,但任一值均為0.08 N/(mg・cm
2
)以上。
上述承受力例如可藉由適當調整下文所述之開孔率、電極之厚度、算術平均表面粗糙度等而設為上述範圍。更具體而言,例如,若增大開孔率,則承受力有變小之傾向,若減小開孔率,則承受力有變大之傾向。
[方法(i)]
依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方)、於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之離子交換膜(170 mm見方,關於此處所謂離子交換膜之詳細如實施例所記載)及電解用電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。再者,噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.7 μm。算術平均表面粗糙度(Ra)之具體之算出方法如實施例所記載。
於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電解用電極樣品以10 mm/分鐘沿垂直方向上升,測定電解用電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電解用電極樣品與離子交換膜之重疊部分之面積、及與離子交換膜重疊部分之電解用電極樣品之質量,而算出每單位質量·單位面積所承受之力(1)(N/mg・cm
2
)。
藉由方法(i)獲得之每單位質量·單位面積所承受之力(1)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,為0.08 N/(mg・cm
2
)以上,較佳為0.1 N/(mg・cm
2
)以上,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理更容易之觀點而言,更佳為0.2 N/(mg・cm
2
)以上。上限值並無特別限定,較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。
若本實施形態之電解用電極滿足承受力(1),則例如能夠與離子交換膜或微多孔膜等隔膜進行一體化而使用,因此於更新電極時,無需藉由焊接等方法固定於電解池之陰極及陽極之更換貼附作業,作業效率大幅提高。又,藉由將本實施形態之電解用電極用作與離子交換膜一體化而成之電極,能夠使電解性能與新品時之性能相同或有所提高。
於出貨新品之電解池時,先前對固定於電解池之電極施加有觸媒塗層,但僅藉由使未形成有觸媒塗層之電極與本實施形態之電解用電極組合,而可用作電極,因此能夠大幅地減少用以形成觸媒塗層之製造步驟或觸媒之量或者甚至不存在該等。觸媒塗層大幅減少或不存在之先前之電極與本實施形態之電解用電極電性連接,而可使其作為用以流通電流之饋電體發揮功能。
[方法(ii)]
依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方,與上述方法(i)相同之鎳板)與電解用電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電解用電極樣品以10 mm/分鐘沿垂直方向上升,測定電解用電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電解用電極樣品與鎳板之重疊部分之面積、及與鎳板重疊部分中之電解用電極樣品之質量,算出每單位質量•單位面積之接著力(2)(N/mg・cm
2
)。
藉由方法(ii)獲得之每單位質量·單位面積所承受之力(2)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,為0.08 N/(mg・cm
2
)以上,較佳為0.1 N/(mg・cm
2
)以上,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理更容易之觀點而言,更佳為0.14 N/(mg・cm
2
)以上。上限值並無特別限定,較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。
若本實施形態之電解用電極滿足承受力(2),則例如可以捲繞於氯乙烯製之管等之狀態(滾筒狀等)進行保管、向顧客處輸送等,操作大幅地變得容易。又,藉由對劣化之電極貼附本實施形態之電解用電極,能夠使電解性能與新品時之性能相同或有所提高。
於本實施形態中,存在於離子交換膜或微多孔膜等隔膜與電解用電極、或者饋電體(劣化之電極或未形成有觸媒塗層之電極)與電解用電極之間之液體只要為水、有機溶劑等產生表面張力者,則可使用任意液體。液體之表面張力越大,對隔膜與電解用電極、或金屬板與電解用電極之間承受之力越大,因此較佳為表面張力較大之液體。作為液體,可列舉如下者(括號內之數值係該液體之表面張力)。
己烷(20.44 mN/m)、丙酮(23.30 mN/m)、甲醇(24.00 mN/m)、乙醇(24.05 mN/m)、乙二醇(50.21 mN/m)、水(72.76 mN/m)
若為表面張力較大之液體,則隔膜與電解用電極、或者金屬多孔板或金屬板(饋電體)與電解用電極成為一體(成為積層體),電極更新變得容易。隔膜與電解用電極、或者金屬多孔板或金屬板(饋電體)與電解用電極之間之液體為藉由表面張力而互相貼附之程度之量即可,其結果為液體量較少,因此即使於將該積層體設置於電解池後混入至電解液中,亦不會對電解本身造成影響。
就實用上之觀點而言,作為液體,較佳為使用乙醇、乙二醇、水等表面張力為20 mN/m至80 mN/m之液體。尤佳為水或將苛性鈉、氫氧化鉀、氫氧化鋰、碳酸氫鈉、碳酸氫鉀、碳酸鈉、碳酸鉀等溶解於水中製成鹼性之水溶液。又,亦可使該等液體含有界面活性劑而調整表面張力。藉由含有界面活性劑,隔膜與電解用電極、或金屬板與電解用電極之接著性發生變化,而可調整操作性。作為界面活性劑,並無特別限制,可使用離子性界面活性劑、非離子性界面活性劑之任一種。
本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。該電解用電極基材之厚度(量規厚度)並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折,大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。
本實施形態之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,藉由以下之方法(2)所測得之比率較佳為90%以上,更佳為92%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為95%以上。上限值為100%。
[方法(2)]
依序積層離子交換膜(170 mm見方)與電解用電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電解用電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑280 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電解用電極樣品密接之部分之面積的比率(%)進行測定。
本實施形態之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折之觀點而言,藉由以下之方法(3)所測得之比率較佳為75%以上,更佳為80%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為90%以上。上限值為100%。
[方法(3)]
依序積層離子交換膜(170 mm見方)與電解用電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電解用電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑145 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電解用電極樣品密接之部分之面積的比率(%)進行測定。
本實施形態之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力,防止電解中產生之氣體滯留之觀點而言,較佳為多孔結構,且其開孔率或空隙率為5~90%以下。開孔率更佳為10~80%以下,進而較佳為20~75%。
再者,所謂開孔率係每單位體積之開孔部之比率。開孔部亦根據考慮至次微米級抑或僅考慮目視可見之開口而有各種算出方法。於本實施形態中,藉由根據電極之量規厚度、寬度、長度之值算出體積V,進而對重量W進行實測,而利用下述之式算出開孔率A。
A=(1-(W/(V×ρ))×100
ρ係電極之材質之密度(g/cm
3
)。例如於鎳之情形時為8.908 g/cm
3
,於鈦之情形時為4.506 g/cm
3
。開孔率之調整係藉由如下方法進行適當調整:若為沖孔金屬,則變更每單位面積沖裁金屬之面積;若為多孔金屬,則變更SW(短徑)、LW(長徑)、進給之值;若為絲網,則變更金屬纖維之線徑、網眼數;若為電成形,則變更所使用之光阻之圖案;若為不織布,則變更金屬纖維直徑及纖維密度;若為發泡金屬,則變更用以使空隙形成之模板等。
本實施形態中之電解用電極就操作性之觀點而言,藉由以下之方法(A)所測得之值較佳為40 mm以下,更佳為29 mm以下,進而較佳為10 mm以下,進而更佳為6.5 mm以下。再者,具體之測定方法如實施例所記載。
[方法(A)]
於溫度23±2℃、相對濕度30±5%之條件下,將積層離子交換膜與上述電解用電極而成之樣品捲繞並固定於外徑ϕ32 mm之氯乙烯製芯材之曲面上,靜置6小時後將該電解用電極分離並載置於水平之板,測定此時該電解用電極之兩端部之垂直方向之高度L
1
及L
2
,以該等之平均值作為測定值。
本實施形態中之電解用電極較佳為將該電解用電極設為50 mm×50 mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度0.2 cm/s及通氣量0.4 cc/cm
2
/s之情形時(以下亦稱為「測定條件1」)之通氣阻力(以下亦稱為「通氣阻力1」)為24 kPa・s/m以下。通氣阻力較大意指空氣難以流動,指密度較高之狀態。於該狀態下,電解之產物停留於電極中,反應基質難以擴散至電極內部,因此有電解性能(電壓等)變差之傾向。又,有膜表面之濃度提高之傾向。具體而言,有陰極面苛性濃度提高而陽極面鹽水之供給性降低之傾向。其結果為,由於產物以高濃度滯留於隔膜與電極相接之界面,因此有導致隔膜之損傷,亦導致陰極面上之電壓上升及膜損傷、陽極面上之膜損傷之傾向。於本實施形態中,為了防止該等異常,較佳為將通氣阻力設為24 kPa・s/m以下。就上述同樣之觀點而言,更佳為未達0.19 kPa・s/m,進而較佳為0.15 kPa・s/m以下,進而更佳為0.07 kPa・s/m以下。
再者,於本實施形態中,若通氣阻力大至一定程度以上,則於陰極之情形時有電極中產生之NaOH滯留於電極與隔膜之界面而成為高濃度之傾向,於陽極之情形時有鹽水供給性降低而鹽水濃度成為低濃度之傾向,就將可能因此種滯留產生之對隔膜之損傷防患於未然之方面而言,較佳為未達0.19 kPa・s/m,更佳為0.15 kPa・s/m以下,進而較佳為0.07 kPa・s/m以下。
另一方面,於通氣阻力較低之情形時,由於電極之面積變小,因此有電解面積變小而電解性能(電壓等)變差之傾向。於通氣阻力為零之情形時,由於未設置電解用電極,因此有饋電體作為電極發揮功能而電解性能(電壓等)顯著變差之傾向。就該方面而言,作為通氣阻力1而特定出之較佳之下限值並無特別限定,較佳為超過0 kPa・s/m,更佳為0.0001 kPa・s/m以上,進而較佳為0.001 kPa・s/m以上。
再者,通氣阻力1就其測定法方面而言,若為0.07 kPa・s/m以下,則存在無法獲得充分之測定精度之情形。就該觀點而言,相對於通氣阻力1為0.07 kPa・s/m以下之電解用電極,亦可實現藉由以下之測定方法(以下亦稱為「測定條件2」)獲得之通氣阻力(以下亦稱為「通氣阻力2」)之評價。即,通氣阻力2係將電解用電極設為50 mm×50 mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度2 cm/s及通氣量4 cc/cm
2
/s之情形時之通氣阻力。
具體之通氣阻力1及2之測定方法如實施例所記載。
上述通氣阻力1及2例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則有通氣阻力1及2變小之傾向,若減小開孔率,則有通氣阻力1及2變大之傾向。
以下,對本實施形態之電解用電極之一形態進行說明。
本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。觸媒層如下所述,可包含複數層,亦可為單層結構。
如圖1所示,本實施形態之電解用電極100具備電解用電極基材10、及被覆電解用電極基材10之兩表面之一對第一層20。第一層20較佳為將電解用電極基材10整體被覆。藉此,電極之觸媒活性及耐久性變得容易提高。再者,亦可僅於電解用電極基材10之一表面積層第一層20。
又,如圖1所示,第一層20之表面可由第二層30所被覆。第二層30較佳為將第一層20整體被覆。又,第二層30可僅積層於第一層20之一表面。
(電解用電極基材)
作為電解用電極基材10,並無特別限定,例如可使用鎳、鎳合金、不鏽鋼、進而以鈦等為代表之閥金屬(valve metal)。較佳為含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。即,較佳為電解用電極基材含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。
於在高濃度之鹼性水溶液中使用不鏽鋼之情形時,若考慮到鐵及鉻溶出、及不鏽鋼之導電性為鎳之1/10左右,則較佳為使用含有鎳(Ni)之基材作為電解用電極基材。
又,電解用電極基材10於在接近飽和之高濃度之食鹽水中於氯氣產生環境中使用之情形時,材質亦較佳為耐蝕性較高之鈦。
電解用電極基材10之形狀並無特別限定,可根據目的選擇合適之形狀。作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。其中,較佳為沖孔金屬或多孔金屬。再者,所謂電成形係將照相製版與電鍍法組合而製作精密之圖案之金屬薄膜的技術。其係藉由光阻於基板上形成圖案,對未受到光阻保護之部分實施電鍍而獲得金屬薄膜之方法。
關於電解用電極基材之形狀,根據電解槽中之陽極與陰極之距離而有適宜之規格。並無特別限定,於陽極與陰極具有有限之距離之情形時,可使用多孔金屬、沖孔金屬形狀,於離子交換膜與電極相接之所謂零間距電解槽之情形時,可使用編織細線而成之編織網、發泡金屬、金屬不織布、多孔金屬、沖孔金屬、金屬多孔箔等。
作為電解用電極基材10,可列舉:金屬箔、金屬絲網、金屬不織布、沖孔金屬、多孔金屬或發泡金屬。
作為加工為沖孔金屬、多孔金屬前之板材,較佳為經壓延成形之板材、電解箔等。電解箔較佳為進而作為後處理而藉由與母材相同之元素實施鍍覆處理,於表面形成凹凸。
又,電解用電極基材10之厚度如上文所述,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。
於電解用電極基材中,較佳為藉由在氧化環境中將電解用電極基材進行退火而緩和加工時之殘留應力。又,為了提高與被覆於電解用電極基材之表面之觸媒層之密接性,較佳為使用鋼砂、氧化鋁砂等於上述表面形成凹凸,其後藉由酸處理而增加表面積。較佳為藉由與基材相同之元素實施鍍覆處理,增加表面積。
為了使第一層20與電解用電極基材10之表面密接,較佳為對電解用電極基材10進行增大表面積之處理。作為增大表面積之處理,可列舉使用鋼線粒(cut wire shot)、鋼砂、氧化鋁砂等之噴擊處理、使用硫酸或鹽酸之酸處理、利用與基材相同元素之鍍覆處理等。基材表面之算術平均表面粗糙度(Ra)並無特別限定,較佳為0.05 μm~50 μm,更佳為0.1~10 μm,進而較佳為0.1~5 μm。
繼而,對使用本實施形態之電解用電極作為食鹽電解用陽極之情形進行說明。
(第一層)
於圖1中,作為觸媒層之第一層20含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物。作為釕氧化物,可列舉RuO
2
等。作為銥氧化物,可列舉IrO
2
等。作為鈦氧化物,可列舉TiO
2
等。第一層20較佳為含有釕氧化物及鈦氧化物之兩種氧化物,或含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物。藉此,第一層20成為更穩定之層,進而,與第二層30之密接性亦進一步提高。
於第一層20含有釕氧化物及鈦氧化物之兩種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為1~9莫耳,更佳為1~4莫耳。藉由將兩種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。
於第一層20含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之銥氧化物較佳為0.2~3莫耳,更佳為0.3~2.5莫耳。又,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為0.3~8莫耳,更佳為1~7莫耳。藉由將三種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。
於第一層20含有選自釕氧化物、銥氧化物及鈦氧化物中之至少兩種氧化物之情形時,該等氧化物較佳為形成固溶體。藉由形成氧化物固溶體,電解用電極100表現出優異之耐久性。
除了上述組成以外,只要含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物,則可使用各種組成者。例如,亦可使用稱為DSA(註冊商標)之含有釕、銥、鉭、鈮、鈦、錫、鈷、錳、鉑等之氧化物塗層作為第一層20。
第一層20無需為單層,亦可包含複數層。例如,第一層20可包含含有三種氧化物之層與含有兩種氧化物之層。第一層20之厚度較佳為0.05~10 μm,更佳為0.1~8 μm。
(第二層)
第二層30較佳為含有釕與鈦。藉此,能夠進一步降低剛電解後之氯過電壓。
第二層30較佳為含有氧化鈀、氧化鈀與鉑之固溶體或鈀與鉑之合金。藉此,能夠進一步降低剛電解後之氯過電壓。
第二層30較厚者能夠維持電解性能之時間變長,就經濟性之觀點而言,較佳為0.05~3 μm之厚度。
繼而,對使用本實施形態之電解用電極作為食鹽電解用陰極之情形進行說明。
(第一層)
作為觸媒層之第一層20之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬、及該等金屬之氧化物或氫氧化物。
於含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少一種之情形時,較佳為鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金含有鉑、鈀、銠、釕、銥中之至少一種鉑族金屬。
作為鉑族金屬,較佳為含有鉑。
作為鉑族金屬氧化物,較佳為含有釕氧化物。
作為鉑族金屬氫氧化物,較佳為含有釕氫氧化物。
作為鉑族金屬合金,較佳為含有鉑與鎳、鐵、鈷之合金。
較佳為進而視需要含有鑭系元素之氧化物或氫氧化物作為第二成分。藉此,電解用電極100表現出優異之耐久性。
作為鑭系元素之氧化物或氫氧化物,較佳為含有選自鑭、鈰、鐠、釹、鉕、釤、銪、釓、鋱、鏑中之至少1種。
較佳為進而視需要含有過渡金屬之氧化物或氫氧化物作為第三成分。
藉由添加第三成分,電解用電極100能夠表現出更優異之耐久性,降低電解電壓。
作為較佳之組合之例,可列舉:僅釕、釕+鎳、釕+鈰、釕+鑭、釕+鑭+鉑、釕+鑭+鈀、釕+鐠、釕+鐠+鉑、釕+鐠+鉑+鈀、釕+釹、釕+釹+鉑、釕+釹+錳、釕+釹+鐵、釕+釹+鈷、釕+釹+鋅、釕+釹+鎵、釕+釹+硫、釕+釹+鉛、釕+釹+鎳、釕+釹+銅、釕+釤、釕+釤+錳、釕+釤+鐵、釕+釤+鈷、釕+釤+鋅、釕+釤+鎵、釕+釤+硫、釕+釤+鉛、釕+釤+鎳、鉑+鈰、鉑+鈀+鈰、鉑+鈀+鑭+鈰、鉑+銥、鉑+鈀、鉑+銥+鈀、鉑+鎳+鈀、鉑+鎳+釕、鉑與鎳之合金、鉑與鈷之合金、鉑與鐵之合金等。
於不含鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之情形時,觸媒之主成分較佳為鎳元素。
較佳為含有鎳金屬、氧化物、氫氧化物中之至少1種。
作為第二成分,可添加過渡金屬。作為所添加之第二成分,較佳為含有鈦、錫、鉬、鈷、錳、鐵、硫、鋅、銅、碳中之至少一種元素。
作為較佳之組合,可列舉:鎳+錫、鎳+鈦、鎳+鉬、鎳+鈷等。
視需要可於第一層20與電解用電極基材10之間設置中間層。藉由設置中間層,能夠提高電解用電極100之耐久性。
作為中間層,較佳為對第一層20與電解用電極基材10之兩者具有親和性者。作為中間層,較佳為鎳氧化物、鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物。作為中間層,可藉由將含有形成中間層之成分之溶液進行塗佈、燒成而形成,亦可於空氣環境中在300~600℃之溫度下對基材實施熱處理而形成表面氧化物層。除此以外,可藉由熱熔射法、離子鍍敷法等已知之方法形成。
(第二層)
作為觸媒層之第一層30之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬、及該等金屬之氧化物或氫氧化物。可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。作為第二層所含之元素之較佳之組合例,有第一層中所列舉之組合等。第一層與第二層之組合可為組成相同而組成比不同之組合,亦可為組成不同之組合。
作為觸媒層之厚度,較佳為將所形成之觸媒層及中間層累加而成之厚度為0.01 μm~20 μm。若為0.01 μm以上,則能夠作為觸媒充分發揮功能。若為20 μm以下,則從基材脫落之情況較少,能夠形成牢固之觸媒層。更佳為0.05 μm~15 μm。更佳為0.1 μm~10 μm。進而較佳為0.2 μm~8 μm。
作為電極之厚度、即電解用電極基材與觸媒層之合計之厚度,就電極之操作性之方面而言,較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,電極之厚度可藉由利用電子數顯厚度計(Digimatic Thickness Gauge)(Mitutoyo股份有限公司,最少顯示0.001 mm)進行測定而求出。電解用電極基材之厚度係與電極之厚度同樣地進行測定。觸媒層之厚度可藉由電極之厚度減去電解用電極基材之厚度而求出。
(電解用電極之製造方法)
其次,對電解用電極100之製造方法之一實施形態進行詳細說明。
於本實施形態中,藉由利用氧環境下之塗膜之燒成(熱分解)、或離子鍍敷、鍍覆、熱熔射等方法於電解用電極基材上形成第一層20、較佳為第二層30,可製造電解用電極100。其中,由於熱分解法、鍍覆法、離子鍍敷法能夠抑制電解用電極基材之變形,並且形成觸媒層,故而較佳。進而加入生產性之觀點,進而較佳為鍍覆法、熱分解法。此種本實施形態之製造方法能夠實現電解用電極100之較高之生產性。具體而言,於熱分解法中,藉由塗佈含有觸媒之塗佈液之塗佈步驟、乾燥塗佈液之乾燥步驟、進行熱分解之熱分解步驟,而於電解用電極基材上形成觸媒層。此處所謂熱分解意指對成為前驅物之金屬鹽進行加熱而分解為金屬或金屬氧化物與氣體狀物質。根據所使用之金屬種類、鹽之種類、進行熱分解之環境等,分解產物有所不同,但於氧化性環境下多數金屬有容易形成氧化物之傾向。於電解用電極之工業性之製造工藝中,熱分解通常於空氣中進行,多數情形時形成金屬氧化物或金屬氫氧化物。
(陽極之第一層之形成)
(塗佈步驟)
第一層20係將溶解有釕、銥及鈦中之至少一種金屬之鹽的溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之釕、銥及鈦之含有率與第一層20大致相等。
作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。
作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。
(乾燥步驟、熱分解步驟)
將第一塗佈液塗佈於電解用電極基材100後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。
重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。
(陽極之第二層之形成)
第二層30係視需要而形成,例如將含有鈀化合物及鉑化合物之溶液或含有釕化合物及鈦化合物之溶液(第二塗佈液)塗佈於第一層20上後,於氧氣之存在下進行熱分解而獲得。
(利用熱分解法之陰極之第一層之形成)
(塗佈步驟)
第一層20係將溶解有各種組合之金屬鹽之溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之金屬之含有率與第一層20大致相等。
作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及乙醇、丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。
作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。
(乾燥步驟、熱分解步驟)
將第一塗佈液塗佈於電解用電極基材10後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。
重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步長時間燒成後,於350℃~650℃之範圍內進行1分鐘~90分鐘之加熱,則能夠進一步提高第一層20之穩定性。
(中間層之形成)
中間層係視需要而形成,例如將含有鈀化合物或鉑化合物之溶液(第二塗佈液)塗佈於基材上後,於氧氣之存在下進行熱分解而獲得。或者,亦可不塗佈溶液而僅於300℃~580℃之範圍內將基材加熱1分鐘~60分鐘,藉此於基材表面形成氧化鎳中間層。
(利用離子鍍敷之陰極之第一層之形成)
第一層20亦可藉由離子鍍敷而形成。
作為一例,可列舉將基材固定於腔室內並對金屬釕靶照射電子束之方法。所蒸發之金屬釕粒子於腔室內之電漿中帶正電,而沈積於帶負電之基板上。電漿環境為氬氣、氧氣,釕係以釕氧化物之形式沈積於基材上。
(利用鍍覆之陰極之第一層之形成)
第一層20亦可藉由鍍覆法而形成。
作為一例,若使用基材作為陰極,於含有鎳及錫之電解液中實施電解鍍覆,則可形成鎳與錫之合金鍍覆。
(利用熱熔射之陰極之第一層之形成)
第一層20亦可藉由熱熔射法而形成。
作為一例,藉由將氧化鎳粒子電漿熔射於基材上,而可形成混合有金屬鎳與氧化鎳之觸媒層。
本實施形態之電解用電極能夠與離子交換膜或微多孔膜等隔膜進行一體化而使用。因此,可用作膜一體電極,無需更新電極時之陰極及陽極之更換貼附作業,作業效率大幅提高。
本實施形態之電解用電極藉由與離子交換膜或微多孔膜等隔膜形成積層體,製成隔膜與電極之一體物,而能夠使電解性能與新品時之性能相同或有所提高。該隔膜只要可與電極製成積層體,則無特別限定,以下進行詳細說明。
[離子交換膜]
離子交換膜具有含有具有離子交換基之烴系聚合物或含氟系聚合物之膜本體、與設置於該膜本體之至少一面上之塗佈層。又,塗佈層含有無機物粒子與結合劑,塗佈層之比表面積為0.1~10 m
2
/g。該結構之離子交換膜於電解中所產生之氣體對電解性能之影響較少,能夠發揮出穩定之電解性能。
上述離子交換膜具備具有源自磺基之離子交換基(以-SO
3 -
表示之基,以下亦稱為「磺酸基」)之磺酸層與具有源自羧基之離子交換基(以-CO
2 -
表示之基,以下亦稱為「羧酸基」)之羧酸層之任一者。就強度及尺寸穩定性之觀點而言,較佳為進而具有強化芯材。
以下於塗佈層之說明之欄對無機物粒子及結合劑進行詳細說明。
圖2係表示離子交換膜之一實施形態之剖面模式圖。離子交換膜1具有:膜本體10,其含有具有離子交換基之烴系聚合物或含氟系聚合物;以及塗佈層11a及11b,其等形成於膜本體10之兩面。
於離子交換膜1中,膜本體10具備磺酸層3與羧酸層2,藉由強化芯材4強化強度及尺寸穩定性。離子交換膜1由於具備磺酸層3與羧酸層2,因此可作為離子交換膜而適宜地使用。
再者,離子交換膜亦可僅具有磺酸層及羧酸層之任一者。又,離子交換膜未必由強化芯材所強化,強化芯材之配置狀態亦不限定於圖2之例。
(膜本體)
首先,對構成離子交換膜1之膜本體10進行說明。
膜本體10只要為具有使陽離子選擇性地透過之功能且含有具有離子交換基之烴系聚合物或含氟系聚合物者即可,其構成或材料並無特別限定,可適當選擇適宜者。
膜本體10中之具有離子交換基之烴系聚合物或含氟系聚合物例如可由具有可藉由水解等成為離子交換基之離子交換基前驅物之烴系聚合物或含氟系聚合物獲得。具體而言,例如使用主鏈包含氟化烴、具有可藉由水解等轉換為離子交換基之基(離子交換基前驅物)作為懸垂側鏈且能夠熔融加工之聚合物(以下視情形稱為「含氟系聚合物(a)」)製作膜本體10之前驅物後,將離子交換基前驅物轉換為離子交換基,藉此可獲得膜本體10。
含氟系聚合物(a)例如可藉由使選自下述第1群之至少一種單體與選自下述第2群及/或下述第3群之至少一種單體進行共聚合而製造。又,亦可藉由選自下述第1群、下述第2群、及下述第3群之任一群之1種單體之均聚而製造。
作為第1群之單體,例如可列舉氟乙烯化合物。作為氟乙烯化合物,例如可列舉:氟乙烯、四氟乙烯、六氟丙烯、偏二氟乙烯、三氟乙烯、氯三氟乙烯、全氟烷基乙烯醚等。尤其是於將離子交換膜用作鹼電解用膜之情形時,氟乙烯化合物較佳為全氟單體,較佳為選自由四氟乙烯、六氟丙烯、全氟烷基乙烯醚所組成之群中之全氟單體。
作為第2群之單體,例如可列舉具有可轉換為羧酸型離子交換基(羧酸基)之官能基之乙烯系化合物。作為具有可轉換為羧酸基之官能基之乙烯系化合物,例如可列舉以CF
2
=CF(OCF
2
CYF)
s
-O(CZF)
t
-COOR表示之單體等(此處,s表示0~2之整數,t表示1~12之整數,Y及Z各自獨立地表示F或CF
3
,R表示低級烷基。低級烷基例如為碳數1~3之烷基)。
該等中,較佳為以CF
2
=CF(OCF
2
CYF)
n
-O(CF
2
)
m
-COOR表示之化合物。此處,n表示0~2之整數,m表示1~4之整數,Y表示F或CF
3
,R表示CH
3
、C
2
H
5
、或C
3
H
7
。
再者,於將離子交換膜用作鹼電解用陽離子交換膜之情形時,較佳為至少使用全氟化合物作為單體,但由於酯基之烷基(參照上述R)於水解時從聚合物喪失,因此烷基(R)亦可不為全部氫原子被取代為氟原子之全氟烷基。
作為第2群之單體,於上述中,更佳為下述所表示之單體。
CF
2
=CFOCF
2
-CF(CF
3
)OCF
2
COOCH
3
、
CF
2
=CFOCF
2
CF(CF
3
)O(CF
2
)
2
COOCH
3
、
CF
2
=CF[OCF
2
-CF(CF
3
)]
2
O(CF
2
)
2
COOCH
3
、
CF
2
=CFOCF
2
CF(CF
3
)O(CF
2
)
3
COOCH
3
、
CF
2
=CFO(CF
2
)
2
COOCH
3
、
CF
2
=CFO(CF
2
)
3
COOCH
3
。
作為第3群之單體,例如可列舉具有可轉換為磺酸型離子交換基(磺酸基)之官能基之乙烯系化合物。作為具有可轉換為磺酸基之官能基之乙烯系化合物,例如較佳為以CF
2
=CFO-X-CF
2
-SO
2
F表示之單體(此處,X表示全氟伸烷基)。作為該等之具體例,可列舉下述所表示之單體等。
CF
2
=CFOCF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
CF
2
SO
2
F、
CF
2
=CF(CF
2
)
2
SO
2
F、
CF
2
=CFO[CF
2
CF(CF
3
)O]
2
CF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
2
OCF
3
)OCF
2
CF
2
SO
2
F。
該等中,更佳為CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
CF
2
SO
2
F、及CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F。
由該等單體獲得之共聚物可藉由針對氟乙烯之均聚及共聚合所開發之聚合法、尤其是對四氟乙烯所使用之通常之聚合方法而製造。例如,於非水性法中,可使用全氟烴、氯氟碳等不活性溶劑,於全氟碳過氧化物或偶氮化合物等自由基聚合起始劑之存在下,於溫度0~200℃、壓力0.1~20 MPa之條件下進行聚合反應。
於上述共聚合中,上述單體之組合之種類及其比率並無特別限定,根據欲對所獲得之含氟系聚合物賦予之官能基之種類及量選擇確定。例如於製成僅含有羧酸基之含氟系聚合物之情形時,從上述第1群及第2群分別選擇至少1種單體進行共聚合即可。又,於製成僅含有磺酸基之含氟系聚合物之情形時,從上述第1群及第3群之單體中分別選擇至少1種單體進行共聚合即可。進而,於製成具有羧酸基及磺酸基之含氟系聚合物之情形時,從上述第1群、第2群及第3群之單體中分別選擇至少1種單體進行共聚合即可。於該情形時,藉由使包含上述第1群及第2群之共聚物與包含上述第1群及第3群之共聚物分開進行聚合,其後加以混合亦可獲得目標之含氟系聚合物。又,各單體之混合比率並無特別限定,於增加每單位聚合物之官能基之量之情形時,增加選自上述第2群及第3群之單體之比率即可。
含氟系共聚物之總離子交換容量並無特別限定,較佳為0.5~2.0 mg當量/g,更佳為0.6~1.5 mg當量/g。此處,所謂總離子交換容量係指相對於單位重量之乾燥樹脂之交換基之當量,可藉由中和滴定等進行測定。
於離子交換膜1之膜本體10中,積層有含有具有磺酸基之含氟系聚合物之磺酸層3與含有具有羧酸基之含氟系聚合物之羧酸層2。藉由製成此種層結構之膜本體10,能夠進一步提高鈉離子等陽離子之選擇性透過性。
於將離子交換膜1配置於電解槽之情形時,通常以磺酸層3位於電解槽之陽極側、羧酸層2位於電解槽之陰極側之方式配置。
磺酸層3較佳為由電阻較低之材料構成,就膜強度之觀點而言,較佳為其膜厚厚於羧酸層2。磺酸層3之膜厚較佳為羧酸層2之2~25倍,更佳為3~15倍。
羧酸層2較佳為即使膜厚較薄亦具有較高之陰離子排斥性者。此處所謂陰離子排斥性係指阻礙陰離子對離子交換膜1之滲入或透過之性質。為了提高陰離子排斥性,有效的是對磺酸層配置離子交換容量較小之羧酸層等。
作為磺酸層3所使用之含氟系聚合物,例如適宜為使用CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F作為第3群之單體所獲得之聚合物。
作為羧酸層2所使用之含氟系聚合物,例如適宜為使用CF
2
=CFOCF
2
CF(CF
2
)O(CF
2
)
2
COOCH
3
作為第2群之單體所獲得之聚合物。
(塗佈層)
離子交換膜於膜本體之至少一面上具有塗佈層。又,如圖2所示,於離子交換膜1中,於膜本體10之兩面上分別形成有塗佈層11a及11b。
塗佈層含有無機物粒子與結合劑。
無機物粒子之平均粒徑更佳為0.90 μm以上。若無機物粒子之平均粒徑為0.90 μm以上,則不僅極大地提高對氣體附著之耐久性,而且極大地提高對雜質之耐久性。即,藉由增大無機物粒子之平均粒徑,並且滿足上述比表面積之值,可獲得尤其顯著之效果。為了滿足此種平均粒徑與比表面積,較佳為不規則狀之無機物粒子。可使用藉由熔融獲得之無機物粒子、藉由原石粉碎獲得之無機物粒子。較佳可適宜地使用藉由原石粉碎獲得之無機物粒子。
又,無機物粒子之平均粒徑可設為2 μm以下。若無機物粒子之平均粒徑為2 μm以下,則能夠防止因無機物粒子而損傷膜。無機物粒子之平均粒徑更佳為0.90~1.2 μm。
此處,平均粒徑可藉由粒度分佈計(「SALD2200」島津製作所)進行測定。
無機物粒子之形狀較佳為不規則形狀。對雜質之耐性進一步提高。又,無機物粒子之粒度分佈較佳為較寬。
無機物粒子較佳為含有選自由週期表第IV族元素之氧化物、週期表第IV族元素之氮化物、及週期表第IV族元素之碳化物所組成之群中之至少一種無機物。就耐久性之觀點而言,更佳為氧化鋯之粒子。
該無機物粒子較佳為藉由將無機物粒子之原石粉碎所製造之無機物粒子,或以藉由將無機物粒子之原石熔融並加以精製而粒子之直徑一致之球狀之粒子作為無機物粒子。
作為原石粉碎方法,並無特別限定,可列舉:球磨機、珠磨機、膠體磨機、錐形磨機、盤磨機、輪輾機、磨粉機、錘磨機、造粒機、VSI磨機(vertical shaft impactor mill,立軸式衝擊磨機)、威利磨機(Wiley mill)、輥磨機、噴射磨機等。又,較佳為粉碎後將其洗淨,作為此時之洗淨方法,較佳為酸處理。藉此,能夠減少附著於無機物粒子之表面之鐵等雜質。
塗佈層較佳為含有結合劑。結合劑係將無機物粒子保持於離子交換膜之表面、形成塗佈層之成分。就對電解液或電解之產物之耐性之觀點而言,結合劑較佳為含有含氟系聚合物。
作為結合劑,就對電解液或電解之產物之耐性、及對離子交換膜之表面之接著性之觀點而言,更佳為具有羧酸基或磺酸基之含氟系聚合物。於在含有具有磺酸基之含氟聚合物之層(磺酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有磺酸基之含氟系聚合物。又,於在含有具有羧酸基之含氟聚合物之層(羧酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有羧酸基之含氟系聚合物。
塗佈層中,無機物粒子之含量較佳為40~90質量%,更佳為50~90質量%。又,結合劑之含量較佳為10~60質量%,更佳為10~50質量%。
離子交換膜中之塗佈層之分佈密度較佳為每1 cm
2
為0.05~2 mg。又,於離子交換膜於表面具有凹凸形狀之情形時,塗佈層之分佈密度較佳為每1 cm
2
為0.5~2 mg。
作為形成塗佈層之方法,並無特別限定,可使用公知之方法。例如可列舉藉由噴射等塗佈將無機物粒子分散於含有結合劑之溶液中而成之塗佈液之方法。
(強化芯材)
離子交換膜較佳為具有配置於膜本體之內部之強化芯材。
強化芯材係強化離子交換膜之強度或尺寸穩定性之構件。藉由將強化芯材配置於膜本體之內部,尤其能夠將離子交換膜之伸縮控制為所需之範圍。該離子交換膜於電解時等不會伸縮為必要程度以上,而能夠長期維持優異之尺寸穩定性。
強化芯材之構成並無特別限定,例如可將稱為強化紗之紗進行紡紗而形成。此處所謂強化紗係構成強化芯材之構件,指能夠對離子交換膜賦予所需之尺寸穩定性及機械強度且於離子交換膜中能夠穩定地存在之紗。藉由使用將該強化紗紡紗而成之強化芯材,能夠對離子交換膜賦予更優異之尺寸穩定性及機械強度。
強化芯材及其所使用之強化紗之材料並無特別限定,較佳為對酸或鹼等具有耐性之材料,就需要長期之耐熱性、耐化學品性之方面而言,較佳為包含含氟系聚合物之纖維。
作為強化芯材所使用之含氟系聚合物,例如可列舉:聚四氟乙烯(PTFE)、四氟乙烯-全氟烷基乙烯醚共聚物(PFA)、四氟乙烯-乙烯共聚物(ETFE)、四氟乙烯-六氟丙烯共聚物、三氟氯乙烯-乙烯共聚物及偏二氟乙烯聚合物(PVDF)等。該等中,尤其是就耐熱性及耐化學品性之觀點而言,較佳為使用包含聚四氟乙烯之纖維。
強化芯材所使用之強化紗之紗直徑並無特別限定,較佳為20~300丹尼,更佳為50~250丹尼。紡織密度(每單位長度之織入根數)較佳為5~50根/英吋。作為強化芯材之形態,並無特別限定,例如可使用織布、不織布、針織布等,較佳為織布之形態。又,使用織布之厚度較佳為30~250 μm、更佳為30~150 μm者。
織布或針織布可使用單絲、複絲或該等之紗線、切膜絲(slit yarn)等,紡織方法可使用平織、紗羅組織、針織、凸條組織、縐條紋薄織(seersucker)等各種紡織方法。
膜本體中之強化芯材之紡織方法及配置並無特別限定,可考慮離子交換膜之大小或形狀、離子交換膜所需之物性及使用環境等適當設為適宜之配置。
例如,可沿膜本體之特定之一方向配置強化芯材,就尺寸穩定性之觀點而言,較佳為沿特定之第一方向配置強化芯材,且沿大致垂直於第一方向之第二方向配置其他強化芯材。藉由在膜本體之縱向膜本體之內部以大致成一列之方式配置複數個強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。例如,較佳為於膜本體之表面織入沿縱向配置之強化芯材(縱紗)與沿橫向配置之強化芯材(橫紗)之配置。就尺寸穩定性、機械強度及製造容易性之觀點而言,更佳為製成使縱紗與橫紗一上一下交替織入而紡織之平紋織物、或一邊撚轉2根經紗一邊與橫紗交織之紗羅組織物、於每2根或數根並紗配置之縱紗中織入相同數量之橫紗而紡織之斜紋織物(twill weave)等。
尤佳為沿離子交換膜之MD方向(縱向(Machine Direction)方向)及TD方向(橫向(Transverse Direction)方向)之兩方向配置強化芯材。即,較佳為沿MD方向與TD方向平織。此處,所謂MD方向係指於下文所述之離子交換膜之製造步驟中搬送膜本體或各種芯材(例如,強化芯材、強化紗、下文所述之犧牲紗等)之方向(行進方向),所謂TD方向係指大致垂直於MD方向之方向。此外,將沿MD方向紡織之紗稱為MD紗,將沿TD方向紡織之紗稱為TD紗。通常電解所使用之離子交換膜係矩形,長度方向為MD方向、寬度方向為TD方向之情況較多。藉由織入作為MD紗之強化芯材與作為TD紗之強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。
強化芯材之配置間隔並無特別限定,可考慮離子交換膜所需之物性及使用環境等適當設為適宜之配置。
強化芯材之開口率並無特別限定,較佳為30%以上,更佳為50%以上且90%以下。開口率就離子交換膜之電化學性質之觀點而言,較佳為30%以上,就離子交換膜之機械強度之觀點而言,較佳為90%以下。
所謂強化芯材之開口率係指膜本體之任一表面之面積(A)中離子等物質(電解液及其所含之陽離子(例如,鈉離子))能夠通過之表面之總面積(B)之比率(B/A)。所謂離子等物質能夠通過之表面之總面積(B)可指於離子交換膜中陽離子或電解液等不被離子交換膜所含之強化芯材等阻斷之區域之總面積。
圖3係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。圖3係將離子交換膜之一部分放大而僅圖示該區域內之強化芯材21及22之配置,其他構件省略圖示。
藉由從由沿縱向配置之強化芯材21與沿橫向配置之強化芯材22所圍成之亦包括強化芯材之面積在內之區域的面積(A)減去強化芯材之總面積(C),可求出上述區域之面積(A)中離子等物質能夠通過之區域之總面積(B)。即,開口率可藉由下述式(I)求出。
開口率=(B)/(A)=((A)-(C))/(A) …(I)
於強化芯材中,就耐化學品性及耐熱性之觀點而言,尤佳之形態係含有PTFE之帶狀紗線或高配向單絲。具體而言,更佳為如下強化芯材,其係使用將包含PTFE之高強度多孔質片材切為帶狀而成之帶狀紗線、或包含PTFE之高度配向之單絲之50~300丹尼且紡織密度為10~50根/英吋之平紋織物,其厚度為50~100 μm之範圍。含有該強化芯材之離子交換膜之開口率進而較佳為60%以上。
作為強化紗之形狀,可列舉圓紗、帶狀紗等。
(連通孔)
離子交換膜較佳為於膜本體之內部具有連通孔。
所謂連通孔係指能夠成為電解時產生之離子或電解液之流路之孔。又,所謂連通孔係形成於膜本體內部之管狀之孔,藉由下文所述之犧牲芯材(或犧牲紗)溶出而形成。連通孔之形狀或直徑等可藉由選擇犧牲芯材(犧牲紗)之形狀或直徑進行控制。
藉由在離子交換膜形成連通孔,於電解時能夠確保電解液之移動性。連通孔之形狀並無特別限定,根據下文所述之製法,可製成連通孔之形成所使用之犧牲芯材之形狀。
連通孔較佳為以交替通過強化芯材之陽極側(磺酸層側)與陰極側(羧酸層側)之方式形成。藉由設為該結構,於強化芯材之陰極側形成有連通孔之部分,通過充滿連通孔之電解液所輸送之離子(例如,鈉離子)亦能夠流至強化芯材之陰極側。其結果為,由於陽離子之流動未被遮蔽,因此能夠進一步降低離子交換膜之電阻。
連通孔可僅沿構成離子交換膜之膜本體之特定之一方向形成,就發揮出更穩定之電解性能之觀點而言,較佳為沿膜本體之縱向與橫向之兩方向形成。
[製造方法]
作為離子交換膜之適宜之製造方法,可列舉具有以下之(1)步驟~(6)步驟之方法。
(1)步驟:製造具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之含氟系聚合物之步驟。
(2)步驟:藉由視需要至少織入複數個強化芯材與具有溶於酸或鹼之性質且形成連通孔之犧牲紗而獲得於鄰接之強化芯材彼此之間配置有犧牲紗之補強材之步驟。
(3)步驟:將具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之上述含氟系聚合物進行膜化之步驟。
(4)步驟:視需要將上述補強材埋入至上述膜中而獲得內部配置有上述補強材之膜本體之步驟。
(5)步驟:將(4)步驟中獲得之膜本體進行水解之步驟(水解步驟)。
(6)步驟:於(5)步驟中獲得之膜本體設置塗佈層之步驟(塗佈步驟)。
以下,對各步驟進行詳細說明。
(1)步驟:製造含氟系聚合物之步驟
於(1)步驟中,使用上述第1群~第3群所記載之原料之單體製造含氟系聚合物。為了控制含氟系聚合物之離子交換容量,於形成各層之含氟系聚合物之製造中調整原料之單體之混合比即可。
(2)步驟:補強材之製造步驟
所謂補強材係紡織強化紗之織布等。藉由將補強材埋入至膜內而形成強化芯材。於製成具有連通孔之離子交換膜時,亦將犧牲紗一起織入至補強材中。該情形時之犧牲紗之混織量較佳為補強材整體之10~80質量%,更佳為30~70質量%。藉由織入犧牲紗,亦能夠防止強化芯材之脫線。
犧牲紗係於膜之製造步驟或電解環境下具有溶解性者,可使用嫘縈、聚對苯二甲酸乙二酯(PET)、纖維素及聚醯胺等。又,亦較佳為具有20~50丹尼之粗細程度、包含單絲或複絲之聚乙烯醇等。
再者,於(2)步驟中,可藉由調整強化芯材或犧牲紗之配置而控制開口率或連通孔之配置等。
(3)步驟:膜化步驟
於(3)步驟中,使用擠出機將上述(1)步驟中獲得之含氟系聚合物進行膜化。膜可為單層結構,亦可如上所述為磺酸層與羧酸層之2層結構,亦可為3層以上之多層結構。
作為膜化之方法,例如可列舉以下者。
分別將具有羧酸基之含氟聚合物、具有磺酸基之含氟聚合物分開進行膜化之方法。
藉由共擠出將具有羧酸基之含氟聚合物與具有磺酸基之含氟聚合物製成複合膜之方法。
再者,膜可分別為複數片。又,將異種之膜共擠出有助於提高界面之接著強度,故而較佳。
(4)步驟:獲得膜本體之步驟
於(4)步驟中,藉由將(2)步驟中獲得之補強材埋入至(3)步驟中獲得之膜之內部,而獲得內有補強材之膜本體。
作為膜本體之較佳之形成方法,可列舉:(i)藉由共擠出法將位於陰極側之具有羧酸基前驅物(例如,羧酸酯官能基)之含氟系聚合物(以下將包含其之層稱為第一層)與具有磺酸基前驅物(例如,磺醯氟官能基)之含氟系聚合物(以下將包含其之層稱為第二層)進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將補強材、第二層/第一層複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法;(ii)區別於第二層/第一層複合膜,預先將具有磺酸基前驅物之含氟系聚合物(第三層)單獨進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將第三層膜、強化芯材、包含第二層/第一層之複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法。
此處,將第一層與第二層共擠出有助於提高界面之接著強度。
又,於減壓下進行一體化之方法與加壓壓製法相比,具有補強材上之第三層之厚度變大之特徵。進而,由於將補強材固定於膜本體之內面,因此具有能夠充分保持離子交換膜之機械強度之性能。
再者,此處所說明之積層之變化係一例,可考慮所需之膜本體之層構成或物性等,適當選擇適宜之積層圖案(例如,各層之組合等)後進行共擠出。
再者,為了進一步提高離子交換膜之電性能,亦可於第一層與第二層之間進一步介置包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層,或使用包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層代替第二層。
第四層之形成方法可為分開製造具有羧酸基前驅物之含氟系聚合物與具有磺酸基前驅物之含氟系聚合物後加以混合之方法,亦可為使用將具有羧酸基前驅物之單體與具有磺酸基前驅物之單體共聚合而成者之方法。
於將第四層製成離子交換膜之構成之情形時,可將第一層與第四層之共擠出膜加以成形,第三層及第二層與其分開單獨進行膜化,藉由上文所述之方法進行積層,亦可將第一層/第四層/第二層之3層一次共擠出而進行膜化。
於該情形時,所擠出之膜行進之方向為MD方向。由此可將含有具有離子交換基之含氟系聚合物之膜本體形成於補強材上。
又,離子交換膜較佳為於包含磺酸層之表面側具有包含具有磺酸基之含氟聚合物之突出的部分、即凸部。作為形成此種凸部之方法,並無特別限定,可採用於樹脂表面形成凸部之公知之方法。具體而言,例如可列舉對膜本體之表面實施壓紋加工之方法。例如,於將上述複合膜與補強材等進行一體化時,藉由使用預先經壓紋加工之脫模紙,可形成上述凸部。於藉由壓紋加工形成凸部之情形時,凸部之高度或配置密度之控制可藉由控制所轉印之壓紋形狀(脫模紙之形狀)而進行。
(5)水解步驟
於(5)步驟中,進行將(4)步驟中獲得之膜本體水解而將離子交換基前驅物轉換為離子交換基之步驟(水解步驟)。
又,於(5)步驟中,藉由利用酸或鹼將膜本體所含之犧牲紗溶解去除,可於膜本體形成溶出孔。再者,犧牲紗亦可不完全溶解去除,而殘留於連通孔中。又,殘留於連通孔中之犧牲紗可於將離子交換膜供於電解時藉由電解液溶解去除。
犧牲紗係於離子交換膜之製造步驟或電解環境下對酸或鹼具有溶解性者,藉由使犧牲紗溶出而於該部位形成連通孔。
(5)步驟可將(4)步驟中獲得之膜本體浸漬於含有酸或鹼之水解溶液中進行。作為該水解溶液,例如可使用含有KOH與DMSO(Dimethyl sulfoxide,二甲基亞碸)之混合溶液。
該混合溶液較佳為含有2.5~4.0 N之KOH,且含有25~35質量%之DMSO。
作為水解之溫度,較佳為70~100℃。溫度越高,可使視厚度更厚。更佳為75~100℃。
作為水解之時間,較佳為10~120分鐘。時間越長,可使視厚度更厚。更佳為20~120分鐘。
此處,對藉由溶出犧牲紗而形成連通孔之步驟進一步詳細地說明。圖4(a)、(b)係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。
於圖4(a)、(b)中,僅圖示強化紗52、犧牲紗504a及由犧牲紗504a形成之連通孔504,膜本體等其他構件省略圖示。
首先,將於離子交換膜中構成強化芯材之強化紗52與於離子交換膜中用以形成連通孔504之犧牲紗504a製成針織織入補強材。然後,於(5)步驟中藉由使犧牲紗504a溶出而形成連通孔504。
藉由上述方法,根據於離子交換膜之膜本體內如何配置強化芯材、連通孔而調整強化紗52與犧牲紗504a之針織織入方法即可,因此較簡便。
於圖4(a)中,例示於紙面沿縱向與橫向之兩方向將強化紗52與犧牲紗504a織入之平織之補強材,可視需要變更補強材中之強化紗52與犧牲紗504a之配置。
(6)塗佈步驟
於(6)步驟中,製備含有藉由原石粉碎或原石熔融獲得之無機物粒子與結合劑之塗佈液,將塗佈液塗佈於(5)步驟中獲得之離子交換膜之表面並加以乾燥,藉此可形成塗佈層。
作為結合劑,較佳為將具有離子交換基前驅物之含氟系聚合物水解於含有二甲基亞碸(DMSO)及氫氧化鉀(KOH)之水溶液中之後,浸漬於鹽酸中將離子交換基之抗衡離子置換為H
+
而成之結合劑(例如,具有羧基或磺基之含氟系聚合物)。藉此,變得容易溶解於下文所述之水或乙醇中,故而較佳。
將該結合劑溶解於混合水與乙醇而成之溶液中。再者,水與乙醇之較佳之體積比為10:1~1:10,更佳為5:1~1:5,進而較佳為2:1~1:2。藉由球磨機使無機物粒子分散於由此獲得之溶解液中而獲得塗佈液。此時,亦可藉由調整分散時之時間、旋轉速度而調整粒子之平均粒徑等。再者,無機物粒子與結合劑之較佳之調配量如上文所述。
塗佈液中之無機物粒子及結合劑之濃度並無特別限定,較佳為製成稀薄之塗佈液。藉此,能夠均勻地塗佈於離子交換膜之表面。
又,於使無機物粒子分散時,亦可將界面活性劑添加於分散液中。作為界面活性劑,較佳為非離子系界面活性劑,例如可列舉日油股份有限公司製造之HS-210、NS-210、P-210、E-212等。
藉由利用噴射塗佈或滾筒塗敷將所獲得之塗佈液塗佈於離子交換膜表面而可獲得離子交換膜。
[微多孔膜]
作為本實施形態之微多孔膜,只要如上文所述,可與電解用電極製成積層體,則無特別限定,可應用各種微多孔膜。
本實施形態之微多孔膜之氣孔率並無特別限定,例如可設為20~90,較佳為30~85。上述氣孔率例如可藉由下述之式算出。
氣孔率=(1-(乾燥狀態之膜重量)/(由根據膜之厚度、寬度、長度算出之體積與膜素材之密度所算出之重量))×100
本實施形態之微多孔膜之平均孔徑並無特別限定,例如可設為0.01 μm~10 μ,較佳為0.05 μm~5 μm。上述平均孔徑例如係沿厚度方向將膜垂直切斷,藉由FE-SEM(field emission-scanning electron microscope,場發射掃描式電子顯微鏡)觀察切斷面。對所觀察之孔之直徑測定100點左右並求出平均值,藉此可求出平均孔徑。
本實施形態之微多孔膜之厚度並無特別限定,例如可設為10 μm~1000 μm,較佳為50 μm~600 μm。上述厚度例如可使用測微計(Mitutoyo股份有限公司製造)等進行測定。
作為如上所述之微多孔膜之具體例,可列舉Agfa公司製造之Zirfon Perl UTP 500(於本實施形態中亦稱為Zirfon膜)、國際公開第2013-183584號說明書、國際公開第2016-203701號說明書等所記載者。
[積層體]
本實施形態之積層體具備本實施形態之電解用電極及與上述電解用電極相接之隔膜或饋電體。由於以上述方式構成,因此本實施形態之積層體能夠提高電解槽中之電極更新時之作業效率,進而於更新後亦能夠表現出優異之電解性能。
即,藉由本實施形態之積層體,於更新電極時,無需伴隨剝離固定於電解池之電極等繁雜之作業,藉由如與隔膜之更新相同之簡單之作業即可更新電極,因此作業效率大幅提高。
進而,藉由本發明之積層體,對於電解性能,能夠維持新品時之性能或有所提高。又,即使於在新品之電解池僅設置有饋電體之情形時(即,設置有無觸媒層之電極),亦可僅藉由將本實施形態之電解用電極貼附於饋電體而使其作為電極發揮作用,因此亦可大幅地減少觸媒塗層或者甚至無觸媒塗層。
本實施形態之積層體例如可以捲繞於氯乙烯製之管等之狀態(滾筒狀等)進行保管、向顧客處輸送等,操作大幅地變得容易。
再者,作為本實施形態中之饋電體,可應用劣化之電極(即既有電極)或未形成有觸媒塗層之電極等下文所述之各種基材。
於本實施形態之積層體中,針對上述隔膜或饋電體之上述電解用電極之每單位質量·單位面積所承受之力較佳為0.08 N/(mg・cm
2
)以上,更佳為0.1 N/(mg・cm
2
)以上,進而較佳為0.14 N/(mg・cm
2
)以上,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理更容易之觀點而言,進而更佳為0.2 N/(mg・cm
2
)以上。上限值並無特別限定,較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。
[捲繞體]
本實施形態之捲繞體包含本實施形態之電解用電極、或本實施形態之積層體。即,本實施形態之捲繞體係將本實施形態之電解用電極、或本實施形態之積層體捲繞而成者。如本實施形態之捲繞體般,藉由將本實施形態之電解用電極、或本實施形態之積層體進行捲繞並減小尺寸,能夠進一步提高操作性。
[電解槽]
本實施形態之電解槽包含本實施形態之電解用電極。以下,以使用離子交換膜作為隔膜進行食鹽電解之情形為例,對電解槽之一實施形態進行詳細說明。
[電解池]
圖5係電解池1之剖面圖。
電解池1具備陽極室10、陰極室20、設置於陽極室10及陰極室20之間之間隔壁30、設置於陽極室10之陽極11、及設置於陰極室20之陰極21。視需要亦可具備具有基材18a與形成於該基材18a上之逆向電流吸收層18b且設置於陰極室內之逆向電流吸收體18。屬於1個電解池1之陽極11及陰極21互相電性連接。換言之,電解池1具備如下陰極結構體。陰極結構體40具備陰極室20、設置於陰極室20之陰極21、及設置於陰極室20內之逆向電流吸收體18,逆向電流吸收體18如圖9所示具有基材18a與形成於該基材18a上之逆向電流吸收層18b,陰極21與逆向電流吸收層18b電性連接。陰極室20進而具有集電體23、支持該集電體之支持體24、及金屬彈性體22。金屬彈性體22係設置於集電體23及陰極21之間。支持體24係設置於集電體23及間隔壁30之間。集電體23經由金屬彈性體22而與陰極21電性連接。間隔壁30經由支持體24而與集電體23電性連接。因此,間隔壁30、支持體24、集電體23、金屬彈性體22及陰極21係電性連接。陰極21及逆向電流吸收層18b係電性連接。陰極21及逆向電流吸收層可直接連接,亦可經由集電體、支持體、金屬彈性體或間隔壁等而間接連接。陰極21之表面整體較佳為由用於還原反應之觸媒層所被覆。又,電性連接之形態可為分別直接將間隔壁30與支持體24、支持體24與集電體23、集電體23與金屬彈性體22安裝,並且於金屬彈性體22上積層陰極21之形態。作為將該等各構成構件互相直接安裝之方法,可列舉焊接等。又,亦可將逆向電流吸收體18、陰極21、及集電體23總稱為陰極結構體40。
圖6係電解槽4內鄰接之2個電解池1之剖面圖。圖7表示電解槽4。圖8表示組裝電解槽4之步驟。如圖6所示,將電解池1、陽離子交換膜2、電解池1依序串聯排列。於電解槽內鄰接之2個電解池中之一電解池1之陽極室與另一電解池1之陰極室之間配置離子交換膜2。即,電解池1之陽極室10及與其鄰接之電解池1之陰極室20係由陽離子交換膜2隔開。如圖7所示,電解槽4包含介隔離子交換膜2而串聯連接之複數個電解池1。即,電解槽4係具備串聯配置之複數個電解池1、及配置於鄰接之電解池1之間之離子交換膜2的複極式電解槽。如圖8所示,電解槽4係藉由介隔離子交換膜2將複數個電解池1串聯配置並利用壓製器5連結而組裝。
電解槽4具有連接於電源之陽極端子7與陰極端子6。於電解槽4內串聯連結之複數個電解池1中位於最靠端之電解池1之陽極11係電性連接於陽極端子7。於電解槽4內串聯連結之複數個電解池2中位於陽極端子7之相反側之端之電解池的陰極21係電性連接於陰極端子6。電解時之電流從陽極端子7側起,經過各電解池1之陽極及陰極而流向陰極端子6。再者,可於連結之電解池1之兩端配置僅具有陽極室之電解池(陽極終端池)與僅具有陰極室之電解池(陰極終端池)。於該情形時,將陽極端子7連接於配置於其一端之陽極終端池,將陰極端子6連接於配置於另一端之陰極終端池。
於進行鹽水之電解之情形時,向各陽極室10供給鹽水,向陰極室20供給純水或低濃度之氫氧化鈉水溶液。各液體係從電解液供給管(圖中省略)起,經過電解液供給軟管(圖中省略)而向各電解池1供給。又,電解液及電解之產物係由電解液回收管(圖中省略)所回收。於電解中,鹽水中之鈉離子從一電解池1之陽極室10起,通過離子交換膜2,向旁邊之電解池1之陰極室20移動。由此電解中之電流沿將電解池1串聯連結之方向流通。即,電流係經由陽離子交換膜2而從陽極室10流向陰極室20。伴隨鹽水之電解,於陽極11側產生氯氣,於陰極21側產生氫氧化鈉(溶質)與氫氣。
(陽極室)
陽極室10具有陽極11或陽極饋電體11。於將本實施形態之電解用電極插入陽極側之情形時,11作為陽極饋電體發揮功能。於不將本實施形態之電解用電極插入陽極側之情形時,11作為陽極發揮功能。又,陽極室10較佳為具有向陽極室10供給電解液之陽極側電解液供給部、配置於陽極側電解液供給部之上方且以與間隔壁30大致平行或傾斜之方式配置之擋板、及配置於擋板之上方且從混入有氣體之電解液中分離氣體之陽極側氣液分離部。
(陽極)
於不將本實施形態之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極11。作為陽極11,可使用所謂DSA(註冊商標)等金屬電極。所謂DSA係藉由以釕、銥、鈦作為成分之氧化物被覆表面之鈦基材之電極。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陽極饋電體)
於將本實施形態之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極饋電體11。作為陽極饋電體11,可使用所謂DSA(註冊商標)等金屬電極,亦可使用未形成有觸媒塗層之鈦。又,亦可使用使觸媒塗層厚度變薄之DSA。進而,亦可使用使用過之陽極。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陽極側電解液供給部)
陽極側電解液供給部係向陽極室10供給電解液者,其連接於電解液供給管。陽極側電解液供給部較佳為配置於陽極室10之下方。作為陽極側電解液供給部,例如可使用表面形成有開口部之管(分散管)等。該管更佳為以沿陽極11之表面平行於電解池之底部19之方式配置。該管係連接於向電解池1內供給電解液之電解液供給管(液供給噴嘴)。從液供給噴嘴供給之電解液藉由管被搬送至電解池1內,從設置於管之表面之開口部向陽極室10之內部供給。藉由將管以沿陽極11之表面平行於電解池之底部19之方式配置,能夠將電解液均勻地供給至陽極室10之內部,故而較佳。
(陽極側氣液分離部)
陽極側氣液分離部較佳為配置於擋板之上方。於電解中,陽極側氣液分離部具有將氯氣等產生氣體與電解液分離之功能。再者,只要無特別說明,則所謂上方意指圖5之電解池1中之上方向,所謂下方意指圖5之電解池1中之下方向。
電解時,若電解池1中產生之產生氣體與電解液成為混相(氣液混相)而被排出至系外,則存在因電解池1內部之壓力變動導致產生振動而引起離子交換膜之物理破損之情形。為了抑制該情形,較佳為於本實施形態之電解池1中設置用以將氣體與液體分離之陽極側氣液分離部。較佳為於陽極側氣液分離部設置用以消除氣泡之消泡板。藉由在氣液混相流通過消泡板時氣泡破裂,而可分離為電解液與氣體。其結果為,能夠防止電解時之振動。
(擋板)
擋板較佳為配置於陽極側電解液供給部之上方,且以與間隔壁30大致平行或傾斜之方式配置。擋板係控制陽極室10之電解液之流動之間隔板。藉由設置擋板,可使電解液(鹽水等)於陽極室10內部循環,使其濃度變得均勻。為了引起內部循環,擋板較佳為以將陽極11附近之空間與間隔壁30附近之空間隔開之方式配置。就該觀點而言,擋板較佳為以與陽極11及間隔壁30之各表面相對向之方式設置。於由擋板分隔之陽極附近之空間,藉由進行電解,電解液濃度(鹽水濃度)降低,又,產生氯氣等產生氣體。藉此,於由擋板分隔之陽極11附近之空間與間隔壁30附近之空間產生氣液之比重差。利用該情況,能夠促進陽極室10中之電解液之內部循環,使陽極室10之電解液之濃度分佈變得更均勻。
再者,於圖5並未圖示,但亦可於陽極室10之內部另行設置集電體。作為該集電體,亦可設為與下文所述之陰極室之集電體相同之材料或構成。又,於陽極室10中,亦可使陽極11本身作為集電體發揮功能。
(間隔壁)
間隔壁30係配置於陽極室10與陰極室20之間。間隔壁30有時亦稱為間隔件,係將陽極室10與陰極室20進行劃分者。作為間隔壁30,可使用作為電解用之間隔件所公知者,例如可列舉於陰極側焊接包含鎳之板、於陽極側焊接包含鈦之板之間隔壁等。
(陰極室)
陰極室20於將本實施形態之電解用電極插入陰極側之情形時,21作為陰極饋電體發揮功能,於不將本實施形態之電解用電極插入陰極側之情形時,21作為陰極發揮功能。於具有逆向電流吸收體之情形時,陰極或陰極饋電體21與逆向電流吸收體係電性連接。又,陰極室20較佳為與陽極室10同樣,亦具有陰極側電解液供給部、陰極側氣液分離部。再者,構成陰極室20之各部位中,關於與構成陽極室10之各部位相同者省略說明。
(陰極)
於不將本實施形態之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極21。陰極21較佳為具有鎳基材與被覆鎳基材之觸媒層。作為鎳基材上之觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬、及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD(chemical vapor deposition,化學氣相沈積)、PVD(physical vapor deposition,物理氣相沈積)、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可視需要對陰極21實施還原處理。再者,作為陰極21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陰極饋電體)
於將本實施形態之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極饋電體21。可對陰極饋電體21被覆觸媒成分。該觸媒成分可為原本用作陰極而殘存者。作為觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬、及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。再者,作為陰極饋電體21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。
又,饋電體21可使用未形成有觸媒塗層之鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(逆向電流吸收層)
可選擇具有較上文所述之陰極之觸媒層用元素的氧化還原電位更低之氧化還原電位之材料作為逆向電流吸收層之材料。例如可列舉鎳或鐵等。
(集電體)
陰極室20較佳為具備集電體23。藉此,集電效果提高。於本實施形態中,集電體23較佳為多孔板,且以與陰極21之表面大致平行之方式配置。
作為集電體23,例如較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。集電體23可為該等金屬之混合物、合金或複合氧化物。再者,集電體23之形狀只要為作為集電體發揮功能之形狀,則可為任意形狀,可為板狀、網狀。
(金屬彈性體)
藉由在集電體23與陰極21之間設置金屬彈性體22,將串聯連接之複數個電解池1之各陰極21壓抵於離子交換膜2,各陽極11與各陰極21之間之距離變短,可降低對串聯連接之複數個電解池1整體施加之電壓。藉由電壓降低,可降低消耗電量。又,藉由設置金屬彈性體22,於將含有本發明之電解用電極之積層體設置於電解池時,藉由金屬彈性體22之壓抵壓,可將該電解用電極穩定地維持於起始位置。
作為金屬彈性體22,可使用螺旋彈簧、線圈等彈簧構件、緩衝性之墊等。作為金屬彈性體22,可考慮壓抵離子交換膜之應力等而適當採用適宜者。可將金屬彈性體22設置於陰極室20側之集電體23之表面上,亦可設置於陽極室10側之間隔壁之表面上。通常以陰極室20小於陽極室10之方式劃分兩室,因此就框體之強度等觀點而言,較佳為將金屬彈性體22設置於陰極室20之集電體23與陰極21之間。又,金屬彈性體23較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。
(支持體)
陰極室20較佳為具備將集電體23與間隔壁30電性連接之支持體24。藉此,能夠效率良好地流通電流。
支持體24較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。又,作為支持體24之形狀,只要為能夠支持集電體23之形狀,則可為任意形狀,可為棒狀、板狀或網狀。支持體24例如為板狀。複數個支持體24係配置於間隔壁30與集電體23之間。複數個支持體24係以各自之面互相平行之方式排列。支持體24係以大致垂直於間隔壁30及集電體23之方式配置。
(陽極側墊片、陰極側墊片)
陽極側墊片較佳為配置於構成陽極室10之框體表面。陰極側墊片較佳為配置於構成陰極室20之框體表面。1個電解池所具備之陽極側墊片及與其鄰接之電解池之陰極側墊片以夾持離子交換膜2之方式將電解池彼此連接(參照圖5、6)。藉由該等墊片,於介隔離子交換膜2將複數個電解池1串聯連接時,能夠對連接處賦予氣密性。
所謂墊片係將離子交換膜與電解池之間密封者。作為墊片之具體例,可列舉中央形成有開口部之邊框狀之橡膠製片等。對於墊片要求對腐蝕性之電解液或所產生之氣體等具有耐性而可長期使用。因此,就耐化學品性或硬度之方面而言,通常可使用乙烯-丙烯-二烯橡膠(EPDM橡膠)、乙烯-丙烯橡膠(EPM橡膠)之硫化物或過氧化物交聯物等作為墊片。又,視需要亦可使用以聚四氟乙烯(PTFE)或四氟乙烯-全氟烷基乙烯醚共聚物(PFA)等氟系樹脂被覆與液體相接之區域(接液部)之墊片。該等墊片只要以不妨礙電解液之流動之方式分別具有開口部即可,其形狀並無特別限定。例如沿構成陽極室10之陽極室框或構成陰極室20之陰極室框之各開口部之周緣,藉由接著劑等貼附邊框狀之墊片。此外,於例如介隔離子交換膜2連接2個電解池1之情形時(參照圖6),介隔離子交換膜2將貼附有墊片之各電解池1緊固即可。藉此,能夠抑制電解液、因電解而產生之鹼金屬氫氧化物、氯氣、氫氣等漏至電解池1之外部之情況。
(離子交換膜2)
作為離子交換膜2,如上述離子交換膜之項所記載。
(水電解)
本實施形態之進行水電解之情形時之電解槽係具有將上述進行食鹽電解之情形時之電解槽中之離子交換膜變更為微多孔膜之構成者。又,於所供給之原料為水之方面與上述進行食鹽電解之情形時之電解槽不同。關於其他構成,進行水電解之情形時之電解槽亦可採用與進行食鹽電解之情形時之電解槽相同之構成。於食鹽電解之情形時,由於在陽極室產生氯氣,因此陽極室之材質使用鈦,於水電解之情形時,由於在陽極室僅產生氧氣,因此可使用與陰極室之材質相同者。例如可列舉鎳等。又,陽極塗層適宜為產生氧氣用之觸媒塗層。作為觸媒塗層之例,可列舉鉑族金屬及過渡金屬族之金屬、氧化物、氫氧化物等。例如可使用鉑、銥、鈀、釕、鎳、鈷、鐵等元素。
<第2實施形態>
此處,一邊參照圖22~42一邊對本發明之第2實施形態進行詳細說明。
[積層體]
第2實施形態(以下於<第2實施形態>之項中簡稱為「本實施形態」)之積層體具備電解用電極、及與上述電解用電極相接之隔膜或饋電體,針對上述隔膜或饋電體之上述電解用電極之每單位質量·單位面積所承受之力未達1.5 N/mg・cm
2
。由於以上述方式構成,因此本實施形態之積層體能夠提高電解槽中之電極更新時之作業效率,進而更新後亦能夠表現出優異之電解性能。
即,藉由本實施形態之積層體,於更新電極時,無需伴隨剝離固定於電解池之既有電極等繁雜之作業,藉由如與隔膜之更新相同之簡單之作業即可更新電極,因此作業效率大幅提高。
進而,藉由本發明之積層體,對於電解性能,能夠維持新品時之性能或有所提高。因此,固定於先前之新品之電解池且作為陽極、陰極發揮功能之電極僅作為饋電體發揮功能即可,能夠大幅地減少觸媒塗層或者甚至無觸媒塗層。
本實施形態之積層體例如可以捲繞於氯乙烯製之管等之狀態(滾筒狀等)進行保管、向顧客處輸送等,操作大幅地變得容易。
再者,作為本實施形態中之饋電體,可應用劣化之電極(即既有電極)、或未形成有觸媒塗層之電極等下文所述之各種基材。
又,本實施形態之積層體只要具有上述構成,則可為一部分具有固定部者。即,於本實施形態之積層體具有固定部之情形時,將不具有該固定部之部分供於測定,所獲得之電解用電極之每單位質量·單位面積所承受之力未達1.5 N/mg・cm
2
即可。
[電解用電極]
本實施形態之電解用電極就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、饋電體(劣化之電極及未形成有觸媒塗層之電極)等具有良好之接著力之觀點而言,每單位質量·單位面積所承受之力未達1.5 N/mg・cm
2
,較佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而較佳為1.1 N/mg・cm
2
以下,進而較佳為1.10 N/mg・cm
2
以下,更佳為1.0 N/mg・cm
2
以下,進而更佳為1.00 N/mg・cm
2
以下。
就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/mg・cm
2
以上,進而更佳為0.14 N/(mg・cm
2
)以上。就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.2 N/(mg・cm
2
)以上。
上述承受力例如可藉由適當調整下文所述之開孔率、電極之厚度、算術平均表面粗糙度等而設為上述範圍。更具體而言,例如,若增大開孔率,則承受力有變小之傾向,若減小開孔率,則承受力有變大之傾向。
又,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力之觀點,進而就經濟性之觀點而言,較佳為每單位面積之質量為48 mg/cm
2
以下,更佳為30 mg/cm
2
以下,進而較佳為20 mg/cm
2
以下,進而,就合併操作性、接著性及經濟性之綜合性之觀點而言,較佳為15 mg/cm
2
以下。下限值並無特別限定,例如為1 mg/cm
2
左右。
上述每單位面積之質量例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則每單位面積之質量有變小之傾向,若減小開孔率,則每單位面積之質量有變大之傾向。
承受力可藉由以下之方法(i)或(ii)進行測定,詳細而言,如實施例所記載。關於承受力,藉由方法(i)之測定所獲得之值(亦稱為「承受力(1)」)與藉由方法(ii)之測定所獲得之值(亦稱為「承受力(2)」)可相同亦可不同,但任一值均未達1.5 N/mg・cm
2
。
[方法(i)]
依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方)、於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之離子交換膜(170 mm見方,關於此處所謂離子交換膜之詳細如實施例所記載)及電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。再者,噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.5~0.8 μm。算術平均表面粗糙度(Ra)之具體之算出方法如實施例所記載。
於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極樣品與離子交換膜之重疊部分之面積、及與離子交換膜重疊部分之電極樣品之質量,而算出每單位質量·單位面積所承受之力(1)(N/mg・cm
2
)。
藉由方法(i)獲得之每單位質量·單位面積所承受之力(1)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,未達1.5 N/mg・cm
2
,較佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下,進而較佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,更佳為1.0 N/mg・cm
2
以下,進而更佳為1.00 N/mg・cm
2
以下。又,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/(mg・cm
2
)以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm
2
),更佳為0.2 N/(mg・cm
2
)以上。
若本實施形態之電解用電極滿足承受力(1),則例如可與離子交換膜或微多孔膜等隔膜或饋電體進行一體化(即製成積層體)使用,因此於更新電極時,無需藉由焊接等方法固定於電解池之陰極及陽極之更換貼附作業,作業效率大幅提高。又,藉由將本實施形態之電解用電極用作與離子交換膜或微多孔膜或饋電體進行一體化而成之積層體,而能夠使電解性能與新品時之性能相同或有所提高。
於出貨新品之電解池時,先前對固定於電解池之電極施加有觸媒塗層,但僅藉由使未形成有觸媒塗層之電極與本實施形態之電解用電極組合,而可用作電極,因此能夠大幅地減少用以形成觸媒塗層之製造步驟或觸媒之量或者甚至不存在該等。觸媒塗層大幅減少或不存在之先前之電極與本實施形態之電解用電極電性連接,而可使其作為用以流通電流之饋電體發揮功能。
[方法(ii)]
依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方,與上述方法(i)相同之鎳板)與電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極樣品與鎳板之重疊部分之面積、及與鎳板重疊部分中之電極樣品之質量,而算出每單位質量•單位面積之接著力(2)(N/mg・cm
2
)。
藉由方法(ii)獲得之每單位質量·單位面積所承受之力(2)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,未達1.5 N/mg・cm
2
,較佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下,進而較佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,更佳為1.0 N/mg・cm
2
以下,進而更佳為1.00 N/mg・cm
2
以下。就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/(mg・cm
2
)以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm
2
)以上。
若本實施形態之電解用電極滿足承受力(2),則例如可以捲繞於氯乙烯製之管等之狀態(滾筒狀等)進行保管、向顧客處輸送等,操作大幅地變得容易。又,藉由對劣化之既有電極貼附本實施形態之電解用電極而製成積層體,能夠使電解性能與新品時之性能相同或有所提高。
若本實施形態之電解用電極為彈性變形區域較廣之電極,則就可獲得更良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有更良好之接著力之觀點而言,電解用電極之厚度較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,於本實施形態中,所謂「彈性變形區域較廣」意指將電解用電極捲繞而製成捲繞體,解除捲繞狀態後不易產生由捲繞引起之翹曲。又,所謂電解用電極之厚度於包含下文所述之觸媒層之情形時,係指合併電解用電極基材與觸媒層之厚度。
本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。該電解用電極基材之厚度(量規厚度)並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折,大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。
於本實施形態中,較佳為於離子交換膜或微多孔膜等隔膜與電極、或者劣化之既有電極或未形成有觸媒塗層之電極等金屬多孔板或金屬板(即饋電體)與電解用電極之間介置液體。該液體只要為水、有機溶劑等產生表面張力者,則可使用任意液體。液體之表面張力越大,對隔膜與電解用電極、或者金屬多孔板或金屬板與電解用電極之間承受之力越大,因此較佳為表面張力較大之液體。作為液體,可列舉如下者(括號內之數值係該液體於20℃下之表面張力)。
己烷(20.44 mN/m)、丙酮(23.30 mN/m)、甲醇(24.00 mN/m)、乙醇(24.05 mN/m)、乙二醇(50.21 mN/m)水(72.76 mN/m)
若為表面張力較大之液體,則隔膜與電解用電極、或者金屬多孔板或金屬板(饋電體)與電解用電極成為一體(成為積層體),電極更新變得容易。隔膜與電解用電極、或者金屬多孔板或金屬板(饋電體)與電解用電極之間之液體為藉由表面張力而互相貼附之程度之量即可,其結果為液體量較少,因此即使於將該積層體設置於電解池後混入至電解液中,亦不會對電解本身造成影響。
就實用上之觀點而言,作為液體,較佳為使用乙醇、乙二醇、水等表面張力為24 mN/m至80 mN/m之液體。尤佳為水或將苛性鈉、氫氧化鉀、氫氧化鋰、碳酸氫鈉、碳酸氫鉀、碳酸鈉、碳酸鉀等溶解於水中製成鹼性之水溶液。又,亦可使該等液體含有界面活性劑而調整表面張力。藉由含有界面活性劑,隔膜與電解用電極、或者金屬多孔板或金屬板(饋電體)與電解用電極之接著性發生變化,而可調整操作性。作為界面活性劑,並無特別限制,可使用離子性界面活性劑、非離子性界面活性劑之任一種。
本實施形態之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力之觀點而言,藉由以下之方法(2)所測得之比率較佳為90%以上,更佳為92%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為95%以上。上限值為100%。
[方法(2)]
依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑280 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。
本實施形態之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折之觀點而言,藉由以下之方法(3)所測得之比率較佳為75%以上,更佳為80%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為90%以上。上限值為100%。
[方法(3)]
依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑145 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。
本實施形態之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,防止電解中產生之氣體滯留之觀點而言,較佳為多孔結構,且其開孔率或空隙率為5~90%以下。開孔率更佳為10~80%以下,進而較佳為20~75%。
再者,所謂開孔率係每單位體積之開孔部之比率。開孔部亦根據考慮至次微米級抑或僅考慮目視可見之開口而有各種算出方法。於本實施形態中,藉由根據電極之量規厚度、寬度、長度之值算出體積V,進而對重量W進行實測,而利用下述之式算出開孔率A。
A=(1-(W/(V×ρ))×100
ρ係電極之材質之密度(g/cm
3
)。例如於鎳之情形時為8.908 g/cm
3
,於鈦之情形時為4.506 g/cm
3
。開孔率之調整係藉由如下方法進行適當調整:若為沖孔金屬,則變更每單位面積沖裁金屬之面積;若為多孔金屬,則變更SW(短徑)、LW(長徑)、進給之值;若為絲網,則變更金屬纖維之線徑、網眼數;若為電成形,則變更所使用之光阻之圖案;若為不織布,則變更金屬纖維直徑及纖維密度;若為發泡金屬,則變更用以使空隙形成之模板等。
本實施形態中之電解用電極就操作性之觀點而言,藉由以下之方法(A)所測得之值較佳為40 mm以下,更佳為29 mm以下,進而較佳為10 mm以下,進而更佳為6.5 mm以下。再者,具體之測定方法如實施例所記載。
[方法(A)]
於溫度23±2℃、相對濕度30±5%之條件下,將積層離子交換膜與上述電解用電極而成之樣品捲繞並固定於外徑ϕ32 mm之氯乙烯製芯材之曲面上,靜置6小時後將該電解用電極分離並載置於水平之板,測定此時該電解用電極之兩端部之垂直方向之高度L
1
及L
2
,以該等之平均值作為測定值。
本實施形態中之電解用電極較佳為將該電解用電極設為50 mm×50 mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度0.2 cm/s及通氣量0.4 cc/cm
2
/s之情形時(以下亦稱為「測定條件1」)之通氣阻力(以下亦稱為「通氣阻力1」)為24 kPa・s/m以下。通氣阻力較大意指空氣難以流動,指密度較高之狀態。於該狀態下,電解之產物停留於電極中,反應基質難以擴散至電極內部,因此有電解性能(電壓等)變差之傾向。又,有膜表面之濃度提高之傾向。具體而言,有陰極面苛性濃度提高而陽極面鹽水之供給性降低之傾向。其結果為,由於產物以高濃度滯留於隔膜與電極相接之界面,因此有導致隔膜之損傷,亦導致陰極面上之電壓上升及膜損傷、陽極面上之膜損傷之傾向。於本實施形態中,為了防止該等異常,較佳為將通氣阻力設為24 kPa・s/m以下。就上述同樣之觀點而言,更佳為未達0.19 kPa・s/m,進而較佳為0.15 kPa・s/m以下,進而更佳為0.07 kPa・s/m以下。
再者,於本實施形態中,若通氣阻力大至一定程度以上,則於陰極之情形時有電極中產生之NaOH滯留於電極與隔膜之界面而成為高濃度之傾向,於陽極之情形時有鹽水供給性降低而鹽水濃度成為低濃度之傾向,就將可能因此種滯留產生之對隔膜之損傷防患於未然之方面而言,較佳為未達0.19 kPa・s/m,更佳為0.15 kPa・s/m以下,進而較佳為0.07 kPa・s/m以下。
另一方面,於通氣阻力較低之情形時,由於電極之面積變小,因此有電解面積變小而電解性能(電壓等)變差之傾向。於通氣阻力為零之情形時,由於未設置電解用電極,因此有饋電體作為電極發揮功能而電解性能(電壓等)顯著變差之傾向。就該方面而言,作為通氣阻力1而特定出之較佳之下限值並無特別限定,較佳為超過0 kPa・s/m,更佳為0.0001 kPa・s/m以上,進而較佳為0.001 kPa・s/m以上。
再者,通氣阻力1就其測定法方面而言,若為0.07 kPa・s/m以下,則存在無法獲得充分之測定精度之情形。就該觀點而言,相對於通氣阻力1為0.07 kPa・s/m以下之電解用電極,亦可實現藉由以下之測定方法(以下亦稱為「測定條件2」)獲得之通氣阻力(以下亦稱為「通氣阻力2」)之評價。即,通氣阻力2係將電解用電極設為50 mm×50 mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度2 cm/s及通氣量4 cc/cm
2
/s之情形時之通氣阻力。
具體之通氣阻力1及2之測定方法如實施例所記載。
上述通氣阻力1及2例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則有通氣阻力1及2變小之傾向,若減小開孔率,則有通氣阻力1及2變大之傾向。
本實施形態之電解用電極如上所述,針對隔膜或饋電體之上述電解用電極之每單位質量·單位面積所承受之力未達1.5 N/mg・cm
2
。由此,本實施形態之電解用電極藉由以適度之接著力與隔膜或饋電體(例如,電解槽中之既有之陽極或陰極等)相接,而可構成與隔膜或饋電體之積層體。即,無需藉由熱壓接等繁雜之方法將隔膜或饋電體與電解用電極牢固地接著,例如即使藉由如源自離子交換膜或微多孔膜等隔膜可含之水分之表面張力的相對較弱之力亦接著而成為積層體,因此無論為何種規模均可容易地構成積層體。進而,此種積層體表現出優異之電解性能,因此本實施形態之積層體適於電解用途,例如,可尤佳地用於與電解槽之構件或該構件之更新相關之用途。
以下,對本實施形態之電解用電極之一形態進行說明。
本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。觸媒層如下所述,可包含複數層,亦可為單層結構。
如圖22所示,本實施形態之電解用電極100具備電解用電極基材10、及被覆電解用電極基材10之兩表面之一對第一層20。第一層20較佳為將電解用電極基材10整體被覆。藉此,電解用電極之觸媒活性及耐久性變得容易提高。再者,亦可僅於電解用電極基材10之一表面積層第一層20。
又,如圖22所示,第一層20之表面可由第二層30所被覆。第二層30較佳為將第一層20整體被覆。又,第二層30可僅積層於第一層20之一表面。
(電解用電極基材)
作為電解用電極基材10,並無特別限定,例如可使用鎳、鎳合金、不鏽鋼、或以鈦等為代表之閥金屬,較佳為含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。
於在高濃度之鹼性水溶液中使用不鏽鋼之情形時,若考慮到鐵及鉻溶出、及不鏽鋼之導電性為鎳之1/10左右,則較佳為使用含有鎳(Ni)之基材作為電解用電極基材。
又,電解用電極基材10於在接近飽和之高濃度之食鹽水中於氯氣產生環境中使用之情形時,材質亦較佳為耐蝕性較高之鈦。
電解用電極基材10之形狀並無特別限定,可根據目的選擇合適之形狀。作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。其中,較佳為沖孔金屬或多孔金屬。再者,所謂電成形係將照相製版與電鍍法組合而製作精密之圖案之金屬薄膜的技術。其係藉由光阻於基板上形成圖案,對未受到光阻保護之部分實施電鍍而獲得金屬薄膜之方法。
關於電解用電極基材之形狀,根據電解槽中之陽極與陰極之距離而有適宜之規格。並無特別限定,於陽極與陰極具有有限之距離之情形時,可使用多孔金屬、沖孔金屬形狀,於離子交換膜與電極相接之所謂零間距電解槽之情形時,可使用編織細線而成之編織網、金屬絲網、發泡金屬、金屬不織布、多孔金屬、沖孔金屬、金屬多孔箔等。
作為電解用電極基材10,可列舉:金屬多孔箔、金屬絲網、金屬不織布、沖孔金屬、多孔金屬或發泡金屬。
作為加工為沖孔金屬、多孔金屬前之板材,較佳為經壓延成形之板材、電解箔等。電解箔較佳為進而作為後處理而藉由與母材相同之元素實施鍍覆處理,於單面或兩面形成凹凸。
又,電解用電極基材10之厚度如上文所述,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。
於電解用電極基材中,較佳為藉由在氧化環境中將電解用電極基材進行退火而緩和加工時之殘留應力。又,為了提高與被覆於電解用電極基材之表面之觸媒層之密接性,較佳為使用鋼砂、氧化鋁粉等於上述表面形成凹凸,其後藉由酸處理而增加表面積。或者,較佳為藉由與基材相同之元素實施鍍覆處理,增加表面積。
為了使第一層20與電解用電極基材10之表面密接,較佳為對電解用電極基材10進行增大表面積之處理。作為增大表面積之處理,可列舉使用鋼線粒、鋼砂、氧化鋁砂等之噴擊處理、使用硫酸或鹽酸之酸處理、利用與基材相同元素之鍍覆處理等。基材表面之算術平均表面粗糙度(Ra)並無特別限定,較佳為0.05 μm~50 μm,更佳為0.1~10 μm,進而較佳為0.1~8 μm。
繼而,對使用本實施形態之電解用電極作為食鹽電解用陽極之情形進行說明。
(第一層)
於圖22中,作為觸媒層之第一層20含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物。作為釕氧化物,可列舉RuO
2
等。作為銥氧化物,可列舉IrO
2
等。作為鈦氧化物,可列舉TiO
2
等。第一層20較佳為含有釕氧化物及鈦氧化物之兩種氧化物,或含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物。藉此,第一層20成為更穩定之層,進而,與第二層30之密接性亦進一步提高。
於第一層20含有釕氧化物及鈦氧化物之兩種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為1~9莫耳,更佳為1~4莫耳。藉由將兩種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。
於第一層20含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之銥氧化物較佳為0.2~3莫耳,更佳為0.3~2.5莫耳。又,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為0.3~8莫耳,更佳為1~7莫耳。藉由將三種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。
於第一層20含有選自釕氧化物、銥氧化物及鈦氧化物中之至少兩種氧化物之情形時,該等氧化物較佳為形成固溶體。藉由形成氧化物固溶體,電解用電極100表現出優異之耐久性。
除了上述組成以外,只要含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物,則可使用各種組成者。例如,亦可使用稱為DSA(註冊商標)之含有釕、銥、鉭、鈮、鈦、錫、鈷、錳、鉑等之氧化物塗層作為第一層20。
第一層20無需為單層,亦可包含複數層。例如,第一層20可包含含有三種氧化物之層與含有兩種氧化物之層。第一層20之厚度較佳為0.05~10 μm,更佳為0.1~8 μm。
(第二層)
第二層30較佳為含有釕與鈦。藉此,能夠進一步降低剛電解後之氯過電壓。
第二層30較佳為含有氧化鈀、氧化鈀與鉑之固溶體或鈀與鉑之合金。藉此,能夠進一步降低剛電解後之氯過電壓。
第二層30較厚者能夠維持電解性能之時間變長,就經濟性之觀點而言,較佳為0.05~3 μm之厚度。
繼而,對使用本實施形態之電解用電極作為食鹽電解用陰極之情形進行說明。
(第一層)
作為觸媒層之第一層20之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。
可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。
於含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少一種之情形時,較佳為鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金含有鉑、鈀、銠、釕、銥中之至少一種鉑族金屬。
作為鉑族金屬,較佳為含有鉑。
作為鉑族金屬氧化物,較佳為含有釕氧化物。
作為鉑族金屬氫氧化物,較佳為含有釕氫氧化物。
作為鉑族金屬合金,較佳為含有鉑與鎳、鐵、鈷之合金。
較佳為進而視需要含有鑭系元素之氧化物或氫氧化物作為第二成分。藉此,電解用電極100表現出優異之耐久性。
作為鑭系元素之氧化物或氫氧化物,較佳為含有選自鑭、鈰、鐠、釹、鉕、釤、銪、釓、鋱、鏑中之至少1種。
較佳為進而視需要含有過渡金屬之氧化物或氫氧化物作為第三成分。
藉由添加第三成分,電解用電極100能夠表現出更優異之耐久性,降低電解電壓。
作為較佳之組合之例,可列舉:僅釕、釕+鎳、釕+鈰、釕+鑭、釕+鑭+鉑、釕+鑭+鈀、釕+鐠、釕+鐠+鉑、釕+鐠+鉑+鈀、釕+釹、釕+釹+鉑、釕+釹+錳、釕+釹+鐵、釕+釹+鈷、釕+釹+鋅、釕+釹+鎵、釕+釹+硫、釕+釹+鉛、釕+釹+鎳、釕+釹+銅、釕+釤、釕+釤+錳、釕+釤+鐵、釕+釤+鈷、釕+釤+鋅、釕+釤+鎵、釕+釤+硫、釕+釤+鉛、釕+釤+鎳、鉑+鈰、鉑+鈀+鈰、鉑+鈀+鑭+鈰、鉑+銥、鉑+鈀、鉑+銥+鈀、鉑+鎳+鈀、鉑+鎳+釕、鉑與鎳之合金、鉑與鈷之合金、鉑與鐵之合金等。
於不含鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之情形時,觸媒之主成分較佳為鎳元素。
較佳為含有鎳金屬、氧化物、氫氧化物中之至少1種。
作為第二成分,可添加過渡金屬。作為所添加之第二成分,較佳為含有鈦、錫、鉬、鈷、錳、鐵、硫、鋅、銅、碳中之至少一種元素。
作為較佳之組合,可列舉:鎳+錫、鎳+鈦、鎳+鉬、鎳+鈷等。
視需要可於第一層20與電解用電極基材10之間設置中間層。藉由設置中間層,能夠提高電解用電極100之耐久性。
作為中間層,較佳為對第一層20與電解用電極基材10之兩者具有親和性者。作為中間層,較佳為鎳氧化物、鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物。作為中間層,可藉由將含有形成中間層之成分之溶液進行塗佈、燒成而形成,亦可於空氣環境中在300~600℃之溫度下對基材實施熱處理而形成表面氧化物層。除此以外,可藉由熱熔射法、離子鍍敷法等已知之方法形成。
(第二層)
作為觸媒層之第一層30之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。
可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。作為第二層所含之元素之較佳之組合例,有第一層中所列舉之組合等。第一層與第二層之組合可為組成相同而組成比不同之組合,亦可為組成不同之組合。
作為觸媒層之厚度,較佳為將所形成之觸媒層及中間層累加而成之厚度為0.01 μm~20 μm。若為0.01 μm以上,則能夠作為觸媒充分發揮功能。若為20 μm以下,則從基材脫落之情況較少,能夠形成牢固之觸媒層。更佳為0.05 μm~15 μm。更佳為0.1 μm~10 μm。進而較佳為0.2 μm~8 μm。
作為電解用電極之厚度、即電解用電極基材與觸媒層之合計之厚度,就電解用電極之操作性之方面而言,較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,電極之厚度可藉由利用電子數顯厚度計(Mitutoyo股份有限公司,最少顯示0.001 mm)進行測定而求出。電解用電極基材之厚度可與電解用電極之厚度同樣地進行測定。觸媒層之厚度可藉由電解用電極之厚度減去電解用電極基材之厚度而求出。
(電解用電極之製造方法)
其次,對電解用電極100之製造方法之一實施形態進行詳細說明。
於本實施形態中,藉由利用氧環境下之塗膜之燒成(熱分解)、或離子鍍敷、鍍覆、熱熔射等方法於電解用電極基材上形成第一層20、較佳為第二層30,可製造電解用電極100。此種本實施形態之製造方法能夠實現電解用電極100之較高之生產性。具體而言,藉由塗佈含有觸媒之塗佈液之塗佈步驟、乾燥塗佈液之乾燥步驟、進行熱分解之熱分解步驟,而於電解用電極基材上形成觸媒層。此處所謂熱分解意指對成為前驅物之金屬鹽進行加熱而分解為金屬或金屬氧化物與氣體狀物質。根據所使用之金屬種類、鹽之種類、進行熱分解之環境等,分解產物有所不同,但於氧化性環境下多數金屬有容易形成氧化物之傾向。於電極之工業性之製造工藝中,熱分解通常於空氣中進行,多數情形時形成金屬氧化物或金屬氫氧化物。
(陽極之第一層之形成)
(塗佈步驟)
第一層20係將溶解有釕、銥及鈦中之至少一種金屬之鹽的溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之釕、銥及鈦之含有率與第一層20大致相等。
作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。
作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。
(乾燥步驟、熱分解步驟)
將第一塗佈液塗佈於電解用電極基材100後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。
重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。
(第二層之形成)
第二層30係視需要而形成,例如將含有鈀化合物及鉑化合物之溶液或含有釕化合物及鈦化合物之溶液(第二塗佈液)塗佈於第一層20上後,於氧氣之存在下進行熱分解而獲得。
(利用熱分解法之陰極之第一層之形成)
(塗佈步驟)
第一層20係將溶解有各種組合之金屬鹽之溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之金屬之含有率與第一層20大致相等。
作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。
作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。
(乾燥步驟、熱分解步驟)
將第一塗佈液塗佈於電解用電極基材10後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。
重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。
(中間層之形成)
中間層係視需要而形成,例如將含有鈀化合物或鉑化合物之溶液(第二塗佈液)塗佈於基材上後,於氧氣之存在下進行熱分解而獲得。或者,亦可不塗佈溶液,而僅加熱基材,藉此於基材表面形成氧化鎳中間層。
(利用離子鍍敷之陰極之第一層之形成)
第一層20亦可藉由離子鍍敷而形成。
作為一例,可列舉將基材固定於腔室內並對金屬釕靶照射電子束之方法。所蒸發之金屬釕粒子於腔室內之電漿中帶正電,而沈積於帶負電之基板上。電漿環境為氬氣、氧氣,釕係以釕氧化物之形式沈積於基材上。
(利用鍍覆之陰極之第一層之形成)
第一層20亦可藉由鍍覆法而形成。
作為一例,若使用基材作為陰極,於含有鎳及錫之電解液中實施電解鍍覆,則可形成鎳與錫之合金鍍覆。
(利用熱熔射之陰極之第一層之形成)
第一層20亦可藉由熱熔射法而形成。
作為一例,藉由將氧化鎳粒子電漿熔射於基材上,而可形成混合有金屬鎳與氧化鎳之觸媒層。
本實施形態之電解用電極能夠與離子交換膜或微多孔膜等隔膜進行一體化而使用。因此,可用作膜一體電極,無需更新電極時之陰極及陽極之更換貼附作業,作業效率大幅提高。
又,藉由與離子交換膜或微多孔膜等隔膜之一體電極,能夠使電解性能與新品時之性能相同或有所提高。
以下,對離子交換膜進行詳細說明。
[離子交換膜]
離子交換膜具有含有具有離子交換基之烴系聚合物或含氟系聚合物之膜本體、與設置於該膜本體之至少一面上之塗佈層。又,塗佈層含有無機物粒子與結合劑,塗佈層之比表面積為0.1~10 m
2
/g。該結構之離子交換膜於電解中所產生之氣體對電解性能之影響較少,能夠發揮出穩定之電解性能。
上述所謂導入有離子交換基之全氟碳聚合物之膜係具備具有源自磺基之離子交換基(以-SO
3 -
表示之基,以下亦稱為「磺酸基」)之磺酸層與具有源自羧基之離子交換基(以-CO
2 -
表示之基,以下亦稱為「羧酸基」)之羧酸層之任一者。就強度及尺寸穩定性之觀點而言,較佳為進而具有強化芯材。
以下於塗佈層之說明之欄對無機物粒子及結合劑進行詳細說明。
圖23係表示離子交換膜之一實施形態之剖面模式圖。離子交換膜1具有:膜本體10,其含有具有離子交換基之烴系聚合物或含氟系聚合物;以及塗佈層11a及11b,其等形成於膜本體10之兩面。
於離子交換膜1中,膜本體10具備具有源自磺基之離子交換基(以-SO
3 -
表示之基,以下亦稱為「磺酸基」)之磺酸層3、與具有源自羧基之離子交換基(以-CO
2 -
表示之基,以下亦稱為「羧酸基」)之羧酸層2,藉由強化芯材4強化強度及尺寸穩定性。離子交換膜1由於具備磺酸層3與羧酸層2,因此可作為陽離子交換膜而適宜地使用。
再者,離子交換膜亦可僅具有磺酸層及羧酸層之任一者。又,離子交換膜未必由強化芯材所強化,強化芯材之配置狀態亦不限定於圖23之例。
(膜本體)
首先,對構成離子交換膜1之膜本體10進行說明。
膜本體10只要為具有使陽離子選擇性地透過之功能且含有具有離子交換基之烴系聚合物或含氟系聚合物者即可,其構成或材料並無特別限定,可適當選擇適宜者。
膜本體10中之具有離子交換基之烴系聚合物或含氟系聚合物例如可由具有可藉由水解等成為離子交換基之離子交換基前驅物之烴系聚合物或含氟系聚合物獲得。具體而言,例如使用主鏈包含氟化烴、具有可藉由水解等轉換為離子交換基之基(離子交換基前驅物)作為懸垂側鏈且能夠熔融加工之聚合物(以下視情形稱為「含氟系聚合物(a)」)製作膜本體10之前驅物後,將離子交換基前驅物轉換為離子交換基,藉此可獲得膜本體10。
含氟系聚合物(a)例如可藉由使選自下述第1群之至少一種單體與選自下述第2群及/或下述第3群之至少一種單體進行共聚合而製造。又,亦可藉由選自下述第1群、下述第2群、及下述第3群之任一群之1種單體之均聚而製造。
作為第1群之單體,例如可列舉氟乙烯化合物。作為氟乙烯化合物,例如可列舉:氟乙烯、四氟乙烯、六氟丙烯、偏二氟乙烯、三氟乙烯、氯三氟乙烯、全氟烷基乙烯醚等。尤其是於將離子交換膜用作鹼電解用膜之情形時,氟乙烯化合物較佳為全氟單體,較佳為選自由四氟乙烯、六氟丙烯、全氟烷基乙烯醚所組成之群中之全氟單體。
作為第2群之單體,例如可列舉具有可轉換為羧酸型離子交換基(羧酸基)之官能基之乙烯系化合物。作為具有可轉換為羧酸基之官能基之乙烯系化合物,例如可列舉以CF
2
=CF(OCF
2
CYF)
s
-O(CZF)
t
-COOR表示之單體等(此處,s表示0~2之整數,t表示1~12之整數,Y及Z各自獨立地表示F或CF
3
,R表示低級烷基。低級烷基例如為碳數1~3之烷基)。
該等中,較佳為以CF
2
=CF(OCF
2
CYF)
n
-O(CF
2
)
m
-COOR表示之化合物。此處,n表示0~2之整數,m表示1~4之整數,Y表示F或CF
3
,R表示CH
3
、C
2
H
5
、或C
3
H
7
。
再者,於將離子交換膜用作鹼電解用陽離子交換膜之情形時,較佳為至少使用全氟化合物作為單體,但由於酯基之烷基(參照上述R)於水解時從聚合物喪失,因此烷基(R)亦可不為全部氫原子被取代為氟原子之全氟烷基。
作為第2群之單體,於上述中,更佳為下述所表示之單體。
CF
2
=CFOCF
2
-CF(CF
3
)OCF
2
COOCH
3
、
CF
2
=CFOCF
2
CF(CF
3
)O(CF
2
)
2
COOCH
3
、
CF
2
=CF[OCF
2
-CF(CF
3
)]
2
O(CF
2
)
2
COOCH
3
、
CF
2
=CFOCF
2
CF(CF
3
)O(CF
2
)
3
COOCH
3
、
CF
2
=CFO(CF
2
)
2
COOCH
3
、
CF
2
=CFO(CF
2
)
3
COOCH
3
。
作為第3群之單體,例如可列舉具有可轉換為磺酸型離子交換基(磺酸基)之官能基之乙烯系化合物。作為具有可轉換為磺酸基之官能基之乙烯系化合物,例如較佳為以CF
2
=CFO-X-CF
2
-SO
2
F表示之單體(此處,X表示全氟伸烷基)。作為該等之具體例,可列舉下述所表示之單體等。
CF
2
=CFOCF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
CF
2
SO
2
F、
CF
2
=CF(CF
2
)
2
SO
2
F、
CF
2
=CFO[CF
2
CF(CF
3
)O]
2
CF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
2
OCF
3
)OCF
2
CF
2
SO
2
F。
該等中,更佳為CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
CF
2
SO
2
F、及CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F。
由該等單體獲得之共聚物可藉由針對氟乙烯之均聚及共聚合所開發之聚合法、尤其是對四氟乙烯所使用之通常之聚合方法而製造。例如,於非水性法中,可使用全氟烴、氯氟碳等不活性溶劑,於全氟碳過氧化物或偶氮化合物等自由基聚合起始劑之存在下,於溫度0~200℃、壓力0.1~20 MPa之條件下進行聚合反應。
於上述共聚合中,上述單體之組合之種類及其比率並無特別限定,根據欲對所獲得之含氟系聚合物賦予之官能基之種類及量選擇確定。例如於製成僅含有羧酸基之含氟系聚合物之情形時,從上述第1群及第2群分別選擇至少1種單體進行共聚合即可。又,於製成僅含有磺酸基之含氟系聚合物之情形時,從上述第1群及第3群之單體中分別選擇至少1種單體進行共聚合即可。進而,於製成具有羧酸基及磺酸基之含氟系聚合物之情形時,從上述第1群、第2群及第3群之單體中分別選擇至少1種單體進行共聚合即可。於該情形時,藉由使包含上述第1群及第2群之共聚物與包含上述第1群及第3群之共聚物分開進行聚合,其後加以混合亦可獲得目標之含氟系聚合物。又,各單體之混合比率並無特別限定,於增加每單位聚合物之官能基之量之情形時,增加選自上述第2群及第3群之單體之比率即可。
含氟系共聚物之總離子交換容量並無特別限定,較佳為0.5~2.0 mg當量/g,更佳為0.6~1.5 mg當量/g。此處,所謂總離子交換容量係指相對於單位重量之乾燥樹脂之交換基之當量,可藉由中和滴定等進行測定。
於離子交換膜1之膜本體10中,積層有含有具有磺酸基之含氟系聚合物之磺酸層3與含有具有羧酸基之含氟系聚合物之羧酸層2。藉由製成此種層結構之膜本體10,能夠進一步提高鈉離子等陽離子之選擇性透過性。
於將離子交換膜1配置於電解槽之情形時,通常以磺酸層3位於電解槽之陽極側、羧酸層2位於電解槽之陰極側之方式配置。
磺酸層3較佳為由電阻較低之材料構成,就膜強度之觀點而言,較佳為其膜厚厚於羧酸層2。磺酸層3之膜厚較佳為羧酸層2之2~25倍,更佳為3~15倍。
羧酸層2較佳為即使膜厚較薄亦具有較高之陰離子排斥性者。此處所謂陰離子排斥性係指阻礙陰離子對離子交換膜1之滲入或透過之性質。為了提高陰離子排斥性,有效的是對磺酸層配置離子交換容量較小之羧酸層等。
作為磺酸層3所使用之含氟系聚合物,例如適宜為使用CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F作為第3群之單體所獲得之聚合物。
作為羧酸層2所使用之含氟系聚合物,例如適宜為使用CF
2
=CFOCF
2
CF(CF
2
)O(CF
2
)
2
COOCH
3
作為第2群之單體所獲得之聚合物。
(塗佈層)
離子交換膜於膜本體之至少一面上具有塗佈層。又,如圖23所示,於離子交換膜1中,於膜本體10之兩面上分別形成有塗佈層11a及11b。
塗佈層含有無機物粒子與結合劑。
無機物粒子之平均粒徑更佳為0.90 μm以上。若無機物粒子之平均粒徑為0.90 μm以上,則不僅極大地提高對氣體附著之耐久性,而且極大地提高對雜質之耐久性。即,藉由增大無機物粒子之平均粒徑,並且滿足上述比表面積之值,可獲得尤其顯著之效果。為了滿足此種平均粒徑與比表面積,較佳為不規則狀之無機物粒子。可使用藉由熔融獲得之無機物粒子、藉由原石粉碎獲得之無機物粒子。較佳可適宜地使用藉由原石粉碎獲得之無機物粒子。
又,無機物粒子之平均粒徑可設為2 μm以下。若無機物粒子之平均粒徑為2 μm以下,則能夠防止因無機物粒子而損傷膜。無機物粒子之平均粒徑更佳為0.90~1.2 μm。
此處,平均粒徑可藉由粒度分佈計(「SALD2200」島津製作所)進行測定。
無機物粒子之形狀較佳為不規則形狀。對雜質之耐性進一步提高。又,無機物粒子之粒度分佈較佳為較寬。
無機物粒子較佳為含有選自由週期表第IV族元素之氧化物、週期表第IV族元素之氮化物、及週期表第IV族元素之碳化物所組成之群中之至少一種無機物。就耐久性之觀點而言,更佳為氧化鋯之粒子。
該無機物粒子較佳為藉由將無機物粒子之原石粉碎所製造之無機物粒子,或以藉由將無機物粒子之原石熔融並加以精製而粒子之直徑一致之球狀之粒子作為無機物粒子。
作為原石粉碎方法,並無特別限定,可列舉:球磨機、珠磨機、膠體磨機、錐形磨機、盤磨機、輪輾機、磨粉機、錘磨機、造粒機、VSI磨機、威利磨機、輥磨機、噴射磨機等。又,較佳為粉碎後將其洗淨,作為此時之洗淨方法,較佳為酸處理。藉此,能夠減少附著於無機物粒子之表面之鐵等雜質。
塗佈層較佳為含有結合劑。結合劑係將無機物粒子保持於離子交換膜之表面、形成塗佈層之成分。就對電解液或電解之產物之耐性之觀點而言,結合劑較佳為含有含氟系聚合物。
作為結合劑,就對電解液或電解之產物之耐性、及對離子交換膜之表面之接著性之觀點而言,更佳為具有羧酸基或磺酸基之含氟系聚合物。於在含有具有磺酸基之含氟聚合物之層(磺酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有磺酸基之含氟系聚合物。又,於在含有具有羧酸基之含氟聚合物之層(羧酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有羧酸基之含氟系聚合物。
塗佈層中,無機物粒子之含量較佳為40~90質量%,更佳為50~90質量%。又,結合劑之含量較佳為10~60質量%,更佳為10~50質量%。
離子交換膜中之塗佈層之分佈密度較佳為每1 cm
2
為0.05~2 mg。又,於離子交換膜於表面具有凹凸形狀之情形時,塗佈層之分佈密度較佳為每1 cm
2
為0.5~2 mg。
作為形成塗佈層之方法,並無特別限定,可使用公知之方法。例如可列舉藉由噴射等塗佈將無機物粒子分散於含有結合劑之溶液中而成之塗佈液之方法。
(強化芯材)
離子交換膜較佳為具有配置於膜本體之內部之強化芯材。
強化芯材係強化離子交換膜之強度或尺寸穩定性之構件。藉由將強化芯材配置於膜本體之內部,尤其能夠將離子交換膜之伸縮控制為所需之範圍。該離子交換膜於電解時等不會伸縮為必要程度以上,而能夠長期維持優異之尺寸穩定性。
強化芯材之構成並無特別限定,例如可將稱為強化紗之紗進行紡紗而形成。此處所謂強化紗係構成強化芯材之構件,指能夠對離子交換膜賦予所需之尺寸穩定性及機械強度且於離子交換膜中能夠穩定地存在之紗。藉由使用將該強化紗紡紗而成之強化芯材,能夠對離子交換膜賦予更優異之尺寸穩定性及機械強度。
強化芯材及其所使用之強化紗之材料並無特別限定,較佳為對酸或鹼等具有耐性之材料,就需要長期之耐熱性、耐化學品性之方面而言,較佳為包含含氟系聚合物之纖維。
作為強化芯材所使用之含氟系聚合物,例如可列舉:聚四氟乙烯(PTFE)、四氟乙烯-全氟烷基乙烯醚共聚物(PFA)、四氟乙烯-乙烯共聚物(ETFE)、四氟乙烯-六氟丙烯共聚物、三氟氯乙烯-乙烯共聚物及偏二氟乙烯聚合物(PVDF)等。該等中,尤其是就耐熱性及耐化學品性之觀點而言,較佳為使用包含聚四氟乙烯之纖維。
強化芯材所使用之強化紗之紗直徑並無特別限定,較佳為20~300丹尼,更佳為50~250丹尼。紡織密度(每單位長度之織入根數)較佳為5~50根/英吋。作為強化芯材之形態,並無特別限定,例如可使用織布、不織布、針織布等,較佳為織布之形態。又,使用織布之厚度較佳為30~250 μm、更佳為30~150 μm者。
織布或針織布可使用單絲、複絲或該等之紗線、切膜絲等,紡織方法可使用平織、紗羅組織、針織、凸條組織、縐條紋薄織等各種紡織方法。
膜本體中之強化芯材之紡織方法及配置並無特別限定,可考慮離子交換膜之大小或形狀、離子交換膜所需之物性及使用環境等適當設為適宜之配置。
例如,可沿膜本體之特定之一方向配置強化芯材,就尺寸穩定性之觀點而言,較佳為沿特定之第一方向配置強化芯材,且沿大致垂直於第一方向之第二方向配置其他強化芯材。藉由在膜本體之縱向膜本體之內部以大致成一列之方式配置複數個強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。例如,較佳為於膜本體之表面織入沿縱向配置之強化芯材(縱紗)與沿橫向配置之強化芯材(橫紗)之配置。就尺寸穩定性、機械強度及製造容易性之觀點而言,更佳為製成使縱紗與橫紗一上一下交替織入而紡織之平紋織物、或一邊撚轉2根經紗一邊與橫紗交織之紗羅組織物、於每2根或數根並紗配置之縱紗中織入相同數量之橫紗而紡織之斜紋織物(twill weave)等。
尤佳為沿離子交換膜之MD方向(縱向(Machine Direction)方向)及TD方向(橫向(Transverse Direction)方向)之兩方向配置強化芯材。即,較佳為沿MD方向與TD方向平織。此處,所謂MD方向係指於下文所述之離子交換膜之製造步驟中搬送膜本體或各種芯材(例如,強化芯材、強化紗、下文所述之犧牲紗等)之方向(行進方向),所謂TD方向係指大致垂直於MD方向之方向。此外,將沿MD方向紡織之紗稱為MD紗,將沿TD方向紡織之紗稱為TD紗。通常電解所使用之離子交換膜係矩形,長度方向為MD方向、寬度方向為TD方向之情況較多。藉由織入作為MD紗之強化芯材與作為TD紗之強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。
強化芯材之配置間隔並無特別限定,可考慮離子交換膜所需之物性及使用環境等適當設為適宜之配置。
強化芯材之開口率並無特別限定,較佳為30%以上,更佳為50%以上且90%以下。開口率就離子交換膜之電化學性質之觀點而言,較佳為30%以上,就離子交換膜之機械強度之觀點而言,較佳為90%以下。
所謂強化芯材之開口率係指膜本體之任一表面之面積(A)中離子等物質(電解液及其所含之陽離子(例如,鈉離子))能夠通過之表面之總面積(B)之比率(B/A)。所謂離子等物質能夠通過之表面之總面積(B)可指於離子交換膜中陽離子或電解液等不被離子交換膜所含之強化芯材等阻斷之區域之總面積。
圖24係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。圖24係將離子交換膜之一部分放大而僅圖示該區域內之強化芯材21及22之配置,其他構件省略圖示。
藉由從由沿縱向配置之強化芯材21與沿橫向配置之強化芯材22所圍成之亦包括強化芯材之面積在內之區域的面積(A)減去強化芯材之總面積(C),可求出上述區域之面積(A)中離子等物質能夠通過之區域之總面積(B)。即,開口率可藉由下述式(I)求出。
開口率=(B)/(A)=((A)-(C))/(A) …(I)
於強化芯材中,就耐化學品性及耐熱性之觀點而言,尤佳之形態係含有PTFE之帶狀紗線或高配向單絲。具體而言,更佳為如下強化芯材,其係使用將包含PTFE之高強度多孔質片材切為帶狀而成之帶狀紗線、或包含PTFE之高度配向之單絲之50~300丹尼且紡織密度為10~50根/英吋之平紋織物,其厚度為50~100 μm之範圍。含有該強化芯材之離子交換膜之開口率進而較佳為60%以上。
作為強化紗之形狀,可列舉圓紗、帶狀紗等。
(連通孔)
離子交換膜較佳為於膜本體之內部具有連通孔。
所謂連通孔係指能夠成為電解時產生之離子或電解液之流路之孔。又,所謂連通孔係形成於膜本體內部之管狀之孔,藉由下文所述之犧牲芯材(或犧牲紗)溶出而形成。連通孔之形狀或直徑等可藉由選擇犧牲芯材(犧牲紗)之形狀或直徑進行控制。
藉由在離子交換膜形成連通孔,於電解時能夠確保電解液之移動性。連通孔之形狀並無特別限定,根據下文所述之製法,可製成連通孔之形成所使用之犧牲芯材之形狀。
連通孔較佳為以交替通過強化芯材之陽極側(磺酸層側)與陰極側(羧酸層側)之方式形成。藉由設為該結構,於強化芯材之陰極側形成有連通孔之部分,通過充滿連通孔之電解液所輸送之離子(例如,鈉離子)亦能夠流至強化芯材之陰極側。其結果為,由於陽離子之流動未被遮蔽,因此能夠進一步降低離子交換膜之電阻。
連通孔可僅沿構成離子交換膜之膜本體之特定之一方向形成,就發揮出更穩定之電解性能之觀點而言,較佳為沿膜本體之縱向與橫向之兩方向形成。
[製造方法]
作為離子交換膜之適宜之製造方法,可列舉具有以下之(1)步驟~(6)步驟之方法。
(1)步驟:製造具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之含氟系聚合物之步驟。
(2)步驟:藉由視需要至少織入複數個強化芯材與具有溶於酸或鹼之性質且形成連通孔之犧牲紗而獲得於鄰接之強化芯材彼此之間配置有犧牲紗之補強材之步驟。
(3)步驟:將具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之上述含氟系聚合物進行膜化之步驟。
(4)步驟:視需要將上述補強材埋入至上述膜中而獲得內部配置有上述補強材之膜本體之步驟。
(5)步驟:將(4)步驟中獲得之膜本體進行水解之步驟(水解步驟)。
(6)步驟:於(5)步驟中獲得之膜本體設置塗佈層之步驟(塗佈步驟)。
以下,對各步驟進行詳細說明。
(1)步驟:製造含氟系聚合物之步驟
於(1)步驟中,使用上述第1群~第3群所記載之原料之單體製造含氟系聚合物。為了控制含氟系聚合物之離子交換容量,於形成各層之含氟系聚合物之製造中調整原料之單體之混合比即可。
(2)步驟:補強材之製造步驟
所謂補強材係紡織強化紗之織布等。藉由將補強材埋入至膜內而形成強化芯材。於製成具有連通孔之離子交換膜時,亦將犧牲紗一起織入至補強材中。該情形時之犧牲紗之混織量較佳為補強材整體之10~80質量%,更佳為30~70質量%。藉由織入犧牲紗,亦能夠防止強化芯材之脫線。
犧牲紗係於膜之製造步驟或電解環境下具有溶解性者,可使用嫘縈、聚對苯二甲酸乙二酯(PET)、纖維素及聚醯胺等。又,亦較佳為具有20~50丹尼之粗細程度、包含單絲或複絲之聚乙烯醇等。
再者,於(2)步驟中,可藉由調整強化芯材或犧牲紗之配置而控制開口率或連通孔之配置等。
(3)步驟:膜化步驟
於(3)步驟中,使用擠出機將上述(1)步驟中獲得之含氟系聚合物進行膜化。膜可為單層結構,亦可如上所述為磺酸層與羧酸層之2層結構,亦可為3層以上之多層結構。
作為膜化之方法,例如可列舉以下者。
分別將具有羧酸基之含氟聚合物、具有磺酸基之含氟聚合物分開進行膜化之方法。
藉由共擠出將具有羧酸基之含氟聚合物與具有磺酸基之含氟聚合物製成複合膜之方法。
再者,膜可分別為複數片。又,將異種之膜共擠出有助於提高界面之接著強度,故而較佳。
(4)步驟:獲得膜本體之步驟
於(4)步驟中,藉由將(2)步驟中獲得之補強材埋入至(3)步驟中獲得之膜之內部,而獲得內有補強材之膜本體。
作為膜本體之較佳之形成方法,可列舉:(i)藉由共擠出法將位於陰極側之具有羧酸基前驅物(例如,羧酸酯官能基)之含氟系聚合物(以下將包含其之層稱為第一層)與具有磺酸基前驅物(例如,磺醯氟官能基)之含氟系聚合物(以下將包含其之層稱為第二層)進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將補強材、第二層/第一層複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法;(ii)區別於第二層/第一層複合膜,預先將具有磺酸基前驅物之含氟系聚合物(第三層)單獨進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將第三層膜、強化芯材、包含第二層/第一層之複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法。
此處,將第一層與第二層共擠出有助於提高界面之接著強度。
又,於減壓下進行一體化之方法與加壓壓製法相比,具有補強材上之第三層之厚度變大之特徵。進而,由於將補強材固定於膜本體之內面,因此具有能夠充分保持離子交換膜之機械強度之性能。
再者,此處所說明之積層之變化係一例,可考慮所需之膜本體之層構成或物性等,適當選擇適宜之積層圖案(例如,各層之組合等)後進行共擠出。
再者,為了進一步提高離子交換膜之電性能,亦可於第一層與第二層之間進一步介置包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層,或使用包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層代替第二層。
第四層之形成方法可為分開製造具有羧酸基前驅物之含氟系聚合物與具有磺酸基前驅物之含氟系聚合物後加以混合之方法,亦可為使用將具有羧酸基前驅物之單體與具有磺酸基前驅物之單體共聚合而成者之方法。
於將第四層製成離子交換膜之構成之情形時,可將第一層與第四層之共擠出膜加以成形,第三層及第二層與其分開單獨進行膜化,藉由上文所述之方法進行積層,亦可將第一層/第四層/第二層之3層一次共擠出而進行膜化。
於該情形時,所擠出之膜行進之方向為MD方向。由此可將含有具有離子交換基之含氟系聚合物之膜本體形成於補強材上。
又,離子交換膜較佳為於包含磺酸層之表面側具有包含具有磺酸基之含氟聚合物之突出的部分、即凸部。作為形成此種凸部之方法,並無特別限定,可採用於樹脂表面形成凸部之公知之方法。具體而言,例如可列舉對膜本體之表面實施壓紋加工之方法。例如,於將上述複合膜與補強材等進行一體化時,藉由使用預先經壓紋加工之脫模紙,可形成上述凸部。於藉由壓紋加工形成凸部之情形時,凸部之高度或配置密度之控制可藉由控制所轉印之壓紋形狀(脫模紙之形狀)而進行。
(5)水解步驟
於(5)步驟中,進行將(4)步驟中獲得之膜本體水解而將離子交換基前驅物轉換為離子交換基之步驟(水解步驟)。
又,於(5)步驟中,藉由利用酸或鹼將膜本體所含之犧牲紗溶解去除,可於膜本體形成溶出孔。再者,犧牲紗亦可不完全溶解去除,而殘留於連通孔中。又,殘留於連通孔中之犧牲紗可於將離子交換膜供於電解時藉由電解液溶解去除。
犧牲紗係於離子交換膜之製造步驟或電解環境下對酸或鹼具有溶解性者,藉由使犧牲紗溶出而於該部位形成連通孔。
(5)步驟可將(4)步驟中獲得之膜本體浸漬於含有酸或鹼之水解溶液中進行。作為該水解溶液,例如可使用含有KOH與DMSO(Dimethyl sulfoxide)之混合溶液。
該混合溶液較佳為含有2.5~4.0 N之KOH,且含有25~35質量%之DMSO。
作為水解之溫度,較佳為70~100℃。溫度越高,可使視厚度更厚。更佳為75~100℃。
作為水解之時間,較佳為10~120分鐘。時間越長,可使視厚度更厚。更佳為20~120分鐘。
此處,對藉由溶出犧牲紗而形成連通孔之步驟進一步詳細地說明。圖25(a)、(b)係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。
於圖25(a)、(b)中,僅圖示強化紗52、犧牲紗504a及由犧牲紗504a形成之連通孔504,膜本體等其他構件省略圖示。
首先,將於離子交換膜中構成強化芯材之強化紗52與於離子交換膜中用以形成連通孔504之犧牲紗504a製成針織織入補強材。然後,於(5)步驟中藉由使犧牲紗504a溶出而形成連通孔504。
藉由上述方法,根據於離子交換膜之膜本體內如何配置強化芯材、連通孔而調整強化紗52與犧牲紗504a之針織織入方法即可,因此較簡便。
於圖25(a)中,例示於紙面沿縱向與橫向之兩方向將強化紗52與犧牲紗504a織入之平織之補強材,可視需要變更補強材中之強化紗52與犧牲紗504a之配置。
(6)塗佈步驟
於(6)步驟中,製備含有藉由原石粉碎或原石熔融獲得之無機物粒子與結合劑之塗佈液,將塗佈液塗佈於(5)步驟中獲得之離子交換膜之表面並加以乾燥,藉此可形成塗佈層。
作為結合劑,較佳為將具有離子交換基前驅物之含氟系聚合物水解於含有二甲基亞碸(DMSO)及氫氧化鉀(KOH)之水溶液中之後,浸漬於鹽酸中將離子交換基之抗衡離子置換為H
+
而成之結合劑(例如,具有羧基或磺基之含氟系聚合物)。藉此,變得容易溶解於下文所述之水或乙醇中,故而較佳。
將該結合劑溶解於混合水與乙醇而成之溶液中。再者,水與乙醇之較佳之體積比為10:1~1:10,更佳為5:1~1:5,進而較佳為2:1~1:2。藉由球磨機使無機物粒子分散於由此獲得之溶解液中而獲得塗佈液。此時,亦可藉由調整分散時之時間、旋轉速度而調整粒子之平均粒徑等。再者,無機物粒子與結合劑之較佳之調配量如上文所述。
塗佈液中之無機物粒子及結合劑之濃度並無特別限定,較佳為製成稀薄之塗佈液。藉此,能夠均勻地塗佈於離子交換膜之表面。
又,於使無機物粒子分散時,亦可將界面活性劑添加於分散液中。作為界面活性劑,較佳為非離子系界面活性劑,例如可列舉日油股份有限公司製造之HS-210、NS-210、P-210、E-212等。
藉由利用噴射塗佈或滾筒塗敷將所獲得之塗佈液塗佈於離子交換膜表面而可獲得離子交換膜。
[微多孔膜]
作為本實施形態之微多孔膜,只要如上文所述,可與電解用電極製成積層體,則無特別限定,可應用各種微多孔膜。
本實施形態之微多孔膜之氣孔率並無特別限定,例如可設為20~90,較佳為30~85。上述氣孔率例如可藉由下述之式算出。
氣孔率=(1-(乾燥狀態之膜重量)/(由根據膜之厚度、寬度、長度算出之體積與膜素材之密度所算出之重量))×100
本實施形態之微多孔膜之平均孔徑並無特別限定,例如可設為0.01 μm~10 μ,較佳為0.05 μm~5 μm。上述平均孔徑例如係沿厚度方向將膜垂直切斷,藉由FE-SEM觀察切斷面。對所觀察之孔之直徑測定100點左右並求出平均值,藉此可求出平均孔徑。
本實施形態之微多孔膜之厚度並無特別限定,例如可設為10 μm~1000 μm,較佳為50 μm~600 μm。上述厚度例如可使用測微計(Mitutoyo股份有限公司製造)等進行測定。
作為如上所述之微多孔膜之具體例,可列舉Agfa公司製造之Zirfon Perl UTP 500(於本實施形態中亦稱為Zirfon膜)、國際公開第2013-183584號說明書、國際公開第2016-203701號說明書等所記載者。
推測本實施形態之與隔膜之積層體表現出優異之電解性能之原因如下。於作為先前技術之藉由熱壓接等方法將隔膜與電極牢固地接著之情形時,成為電極嵌入隔膜之狀態而物理性地接著。該接著部分會妨礙鈉離子之膜內之移動,電壓大幅地上升。另一方面,藉由如本實施形態般利用適度之接著力使電解用電極與隔膜或饋電體相接,而消除先前技術中作為問題之妨礙鈉離子之膜內移動之情況。藉此,於隔膜或饋電體與電解用電極藉由適度之接著力相接之情形時,為隔膜或饋電體與電解用電極之一體物,並且能夠表現出優異之電解性能。
[捲繞體]
本實施形態之捲繞體包含本實施形態之積層體。即,本實施形態之捲繞體係將本實施形態之積層體捲繞而成者。如本實施形態之捲繞體般,藉由將本實施形態之積層體進行捲繞並減小尺寸,能夠進一步提高操作性。
[電解槽]
本實施形態之電解槽包含本實施形態之積層體。以下,以使用離子交換膜作為隔膜進行食鹽電解之情形為例,對電解槽之一實施形態進行詳細說明。
[電解池]
圖26係電解池1之剖面圖。
電解池1具備陽極室10、陰極室20、設置於陽極室10及陰極室20之間之間隔壁30、設置於陽極室10之陽極11、及設置於陰極室20之陰極21。視需要亦可具備具有基材18a與形成於該基材18a上之逆向電流吸收層18b且設置於陰極室內之逆向電流吸收體18。屬於1個電解池1之陽極11及陰極21互相電性連接。換言之,電解池1具備如下陰極結構體。陰極結構體40具備陰極室20、設置於陰極室20之陰極21、及設置於陰極室20內之逆向電流吸收體18,逆向電流吸收體18如圖30所示具有基材18a與形成於該基材18a上之逆向電流吸收層18b,陰極21與逆向電流吸收層18b電性連接。陰極室20進而具有集電體23、支持該集電體之支持體24、及金屬彈性體22。金屬彈性體22係設置於集電體23及陰極21之間。支持體24係設置於集電體23及間隔壁30之間。集電體23經由金屬彈性體22而與陰極21電性連接。間隔壁30經由支持體24而與集電體23電性連接。因此,間隔壁30、支持體24、集電體23、金屬彈性體22及陰極21係電性連接。陰極21及逆向電流吸收層18b係電性連接。陰極21及逆向電流吸收層可直接連接,亦可經由集電體、支持體、金屬彈性體或間隔壁等而間接連接。陰極21之表面整體較佳為由用於還原反應之觸媒層所被覆。又,電性連接之形態可為分別直接將間隔壁30與支持體24、支持體24與集電體23、集電體23與金屬彈性體22安裝,並且於金屬彈性體22上積層陰極21之形態。作為將該等各構成構件互相直接安裝之方法,可列舉焊接等。又,亦可將逆向電流吸收體18、陰極21、及集電體23總稱為陰極結構體40。
圖27係電解槽4內鄰接之2個電解池1之剖面圖。圖28表示電解槽4。圖29表示組裝電解槽4之步驟。如圖27所示,將電解池1、陽離子交換膜2、電解池1依序串聯排列。於電解槽內鄰接之2個電解池中之一電解池1之陽極室與另一電解池1之陰極室之間配置離子交換膜2。即,電解池1之陽極室10及與其鄰接之電解池1之陰極室20係由陽離子交換膜2隔開。如圖28所示,電解槽4包含介隔離子交換膜2而串聯連接之複數個電解池1。即,電解槽4係具備串聯配置之複數個電解池1、及配置於鄰接之電解池1之間之離子交換膜2的複極式電解槽。如圖29所示,電解槽4係藉由介隔離子交換膜2將複數個電解池1串聯配置並利用壓製器5連結而組裝。
電解槽4具有連接於電源之陽極端子7與陰極端子6。於電解槽4內串聯連結之複數個電解池1中位於最靠端之電解池1之陽極11係電性連接於陽極端子7。於電解槽4內串聯連結之複數個電解池2中位於陽極端子7之相反側之端之電解池的陰極21係電性連接於陰極端子6。電解時之電流從陽極端子7側起,經過各電解池1之陽極及陰極而流向陰極端子6。再者,可於連結之電解池1之兩端配置僅具有陽極室之電解池(陽極終端池)與僅具有陰極室之電解池(陰極終端池)。於該情形時,將陽極端子7連接於配置於其一端之陽極終端池,將陰極端子6連接於配置於另一端之陰極終端池。
於進行鹽水之電解之情形時,向各陽極室10供給鹽水,向陰極室20供給純水或低濃度之氫氧化鈉水溶液。各液體係從電解液供給管(圖中省略)起,經過電解液供給軟管(圖中省略)而向各電解池1供給。又,電解液及電解之產物係由電解液回收管(圖中省略)所回收。於電解中,鹽水中之鈉離子從一電解池1之陽極室10起,通過離子交換膜2,向旁邊之電解池1之陰極室20移動。由此電解中之電流沿將電解池1串聯連結之方向流通。即,電流係經由陽離子交換膜2而從陽極室10流向陰極室20。伴隨鹽水之電解,於陽極11側產生氯氣,於陰極21側產生氫氧化鈉(溶質)與氫氣。
(陽極室)
陽極室10具有陽極11或陽極饋電體11。於將本實施形態之電解用電極插入陽極側之情形時,11作為陽極饋電體發揮功能。於不將本實施形態之電解用電極插入陽極側之情形時,11作為陽極發揮功能。又,陽極室10較佳為具有向陽極室10供給電解液之陽極側電解液供給部、配置於陽極側電解液供給部之上方且以與間隔壁30大致平行或傾斜之方式配置之擋板、及配置於擋板之上方且從混入有氣體之電解液中分離氣體之陽極側氣液分離部。
(陽極)
於不將本實施形態之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極11。作為陽極11,可使用所謂DSA(註冊商標)等金屬電極。所謂DSA係藉由以釕、銥、鈦作為成分之氧化物被覆表面之鈦基材之電極。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陽極饋電體)
於將本實施形態之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極饋電體11。作為陽極饋電體11,可使用所謂DSA(註冊商標)等金屬電極,亦可使用未形成有觸媒塗層之鈦。又,亦可使用使觸媒塗層厚度變薄之DSA。進而,亦可使用使用過之陽極。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陽極側電解液供給部)
陽極側電解液供給部係向陽極室10供給電解液者,其連接於電解液供給管。陽極側電解液供給部較佳為配置於陽極室10之下方。作為陽極側電解液供給部,例如可使用表面形成有開口部之管(分散管)等。該管更佳為以沿陽極11之表面平行於電解池之底部19之方式配置。該管係連接於向電解池1內供給電解液之電解液供給管(液供給噴嘴)。從液供給噴嘴供給之電解液藉由管被搬送至電解池1內,從設置於管之表面之開口部向陽極室10之內部供給。藉由將管以沿陽極11之表面平行於電解池之底部19之方式配置,能夠將電解液均勻地供給至陽極室10之內部,故而較佳。
(陽極側氣液分離部)
陽極側氣液分離部較佳為配置於擋板之上方。於電解中,陽極側氣液分離部具有將氯氣等產生氣體與電解液分離之功能。再者,只要無特別說明,則所謂上方意指圖26之電解池1中之上方向,所謂下方意指圖26之電解池1中之下方向。
電解時,若電解池1中產生之產生氣體與電解液成為混相(氣液混相)而被排出至系外,則存在因電解池1內部之壓力變動導致產生振動而引起離子交換膜之物理破損之情形。為了抑制該情形,較佳為於本實施形態之電解池1中設置用以將氣體與液體分離之陽極側氣液分離部。較佳為於陽極側氣液分離部設置用以消除氣泡之消泡板。藉由在氣液混相流通過消泡板時氣泡破裂,而可分離為電解液與氣體。其結果為,能夠防止電解時之振動。
(擋板)
擋板較佳為配置於陽極側電解液供給部之上方,且以與間隔壁30大致平行或傾斜之方式配置。擋板係控制陽極室10之電解液之流動之間隔板。藉由設置擋板,可使電解液(鹽水等)於陽極室10內部循環,使其濃度變得均勻。為了引起內部循環,擋板較佳為以將陽極11附近之空間與間隔壁30附近之空間隔開之方式配置。就該觀點而言,擋板較佳為以與陽極11及間隔壁30之各表面相對向之方式設置。於由擋板分隔之陽極附近之空間,藉由進行電解,電解液濃度(鹽水濃度)降低,又,產生氯氣等產生氣體。藉此,於由擋板分隔之陽極11附近之空間與間隔壁30附近之空間產生氣液之比重差。利用該情況,能夠促進陽極室10中之電解液之內部循環,使陽極室10之電解液之濃度分佈變得更均勻。
再者,於圖26並未圖示,但亦可於陽極室10之內部另行設置集電體。作為該集電體,亦可設為與下文所述之陰極室之集電體相同之材料或構成。又,於陽極室10中,亦可使陽極11本身作為集電體發揮功能。
(間隔壁)
間隔壁30係配置於陽極室10與陰極室20之間。間隔壁30有時亦稱為間隔件,係將陽極室10與陰極室20進行劃分者。作為間隔壁30,可使用作為電解用之間隔件所公知者,例如可列舉於陰極側焊接包含鎳之板、於陽極側焊接包含鈦之板之間隔壁等。
(陰極室)
陰極室20於將本實施形態之電解用電極插入陰極側之情形時,21作為陰極饋電體發揮功能,於不將本實施形態之電解用電極插入陰極側之情形時,21作為陰極發揮功能。於具有逆向電流吸收體之情形時,陰極或陰極饋電體21與逆向電流吸收體係電性連接。又,陰極室20較佳為與陽極室10同樣,亦具有陰極側電解液供給部、陰極側氣液分離部。再者,構成陰極室20之各部位中,關於與構成陽極室10之各部位相同者省略說明。
(陰極)
於不將本實施形態之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極21。陰極21較佳為具有鎳基材與被覆鎳基材之觸媒層。作為鎳基材上之觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可視需要對陰極21實施還原處理。再者,作為陰極21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陰極饋電體)
於將本實施形態之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極饋電體21。可對陰極饋電體21被覆觸媒成分。該觸媒成分可為原本用作陰極而殘存者。作為觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可使用未形成有觸媒塗層之鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。再者,作為陰極饋電體21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(逆向電流吸收層)
可選擇具有較上文所述之陰極之觸媒層用元素的氧化還原電位更低之氧化還原電位之材料作為逆向電流吸收層之材料。例如可列舉鎳或鐵等。
(集電體)
陰極室20較佳為具備集電體23。藉此,集電效果提高。於本實施形態中,集電體23較佳為多孔板,且以與陰極21之表面大致平行之方式配置。
作為集電體23,例如較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。集電體23可為該等金屬之混合物、合金或複合氧化物。再者,集電體23之形狀只要為作為集電體發揮功能之形狀,則可為任意形狀,可為板狀、網狀。
(金屬彈性體)
藉由在集電體23與陰極21之間設置金屬彈性體22,將串聯連接之複數個電解池1之各陰極21壓抵於離子交換膜2,各陽極11與各陰極21之間之距離變短,可降低對串聯連接之複數個電解池1整體承受之電壓。藉由電壓降低,可降低消耗電量。又,藉由設置金屬彈性體22,於將含有本實施形態之電解用電極之積層體設置於電解池時,藉由金屬彈性體22之壓抵壓,可將該電解用電極穩定地維持於起始位置。
作為金屬彈性體22,可使用螺旋彈簧、線圈等彈簧構件、緩衝性之墊等。作為金屬彈性體22,可考慮壓抵離子交換膜之應力等而適當採用適宜者。可將金屬彈性體22設置於陰極室20側之集電體23之表面上,亦可設置於陽極室10側之間隔壁之表面上。通常以陰極室20小於陽極室10之方式劃分兩室,因此就框體之強度等觀點而言,較佳為將金屬彈性體22設置於陰極室20之集電體23與陰極21之間。又,金屬彈性體23較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。
(支持體)
陰極室20較佳為具備將集電體23與間隔壁30電性連接之支持體24。藉此,能夠效率良好地流通電流。
支持體24較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。又,作為支持體24之形狀,只要為能夠支持集電體23之形狀,則可為任意形狀,可為棒狀、板狀或網狀。支持體24例如為板狀。複數個支持體24係配置於間隔壁30與集電體23之間。複數個支持體24係以各自之面互相平行之方式排列。支持體24係以大致垂直於間隔壁30及集電體23之方式配置。
(陽極側墊片、陰極側墊片)
陽極側墊片較佳為配置於構成陽極室10之框體表面。陰極側墊片較佳為配置於構成陰極室20之框體表面。1個電解池所具備之陽極側墊片及與其鄰接之電解池之陰極側墊片以夾持離子交換膜2之方式將電解池彼此連接(參照圖26、27)。藉由該等墊片,於介隔離子交換膜2將複數個電解池1串聯連接時,能夠對連接處賦予氣密性。
所謂墊片係將離子交換膜與電解池之間密封者。作為墊片之具體例,可列舉中央形成有開口部之邊框狀之橡膠製片等。對於墊片要求對腐蝕性之電解液或所產生之氣體等具有耐性而可長期使用。因此,就耐化學品性或硬度之方面而言,通常可使用乙烯-丙烯-二烯橡膠(EPDM橡膠)、乙烯-丙烯橡膠(EPM橡膠)之硫化物或過氧化物交聯物等作為墊片。又,視需要亦可使用以聚四氟乙烯(PTFE)或四氟乙烯-全氟烷基乙烯醚共聚物(PFA)等氟系樹脂被覆與液體相接之區域(接液部)之墊片。該等墊片只要以不妨礙電解液之流動之方式分別具有開口部即可,其形狀並無特別限定。例如沿構成陽極室10之陽極室框或構成陰極室20之陰極室框之各開口部之周緣,藉由接著劑等貼附邊框狀之墊片。此外,於例如介隔離子交換膜2連接2個電解池1之情形時(參照圖27),介隔離子交換膜2將貼附有墊片之各電解池1緊固即可。藉此,能夠抑制電解液、因電解而產生之鹼金屬氫氧化物、氯氣、氫氣等漏至電解池1之外部之情況。
(離子交換膜)
作為離子交換膜2,如上述離子交換膜之項所記載。
(水電解)
本實施形態之進行水電解之情形時之電解槽係具有將上述進行食鹽電解之情形時之電解槽中之離子交換膜變更為微多孔膜之構成者。又,於所供給之原料為水之方面與上述進行食鹽電解之情形時之電解槽不同。關於其他構成,進行水電解之情形時之電解槽亦可採用與進行食鹽電解之情形時之電解槽相同之構成。於食鹽電解之情形時,由於在陽極室產生氯氣,因此陽極室之材質使用鈦,於水電解之情形時,由於在陽極室僅產生氧氣,因此可使用與陰極室之材質相同者。例如可列舉鎳等。又,陽極塗層適宜為產生氧氣用之觸媒塗層。作為觸媒塗層之例,可列舉鉑族金屬及過渡金屬族之金屬、氧化物、氫氧化物等。例如可使用鉑、銥、鈀、釕、鎳、鈷、鐵等元素。
(積層體之用途)
本實施形態之積層體如上文所述,能夠提高電解槽中之電極更新時之作業效率,進而更新後亦能夠表現出優異之電解性能。換言之,本實施形態之積層體能夠適宜地用作電解槽之構件更換用之積層體。再者,應用於該用途時之積層體特別地稱為「膜電極接合體」。
(包裝體)
本實施形態之積層體較佳為於封入至包裝材中之狀態下進行搬運等。即,本實施形態之包裝體具備本實施形態之積層體、及包裝上述積層體之包裝材。由於本實施形態之包裝體以上述方式構成,因此能夠防止於搬運本實施形態之積層體等時可能產生之污垢之附著或破損。於用於電解槽之構件更換之情形時,尤佳為以本實施形態之包裝體之形式進行搬運等。作為本實施形態中之包裝材,並無特別限定,可應用各種公知之包裝材。又,本實施形態之包裝體並不限定於以下,但例如可藉由以潔淨狀態之包裝材包裝本實施形態之積層體、繼而封入等方法而製造。
<第3實施形態>
此處一邊參照圖43~62一邊對本發明之第3實施形態進行詳細地說明。
[積層體]
第3實施形態(以下於<第3實施形態>之項中簡稱為「本實施形態」)之積層體具有隔膜、及固定於上述隔膜之表面之至少一區域(以下亦簡稱為「固定區域」)之電解用電極,且上述隔膜之表面中之上述區域之比率超過0%且未達93%。由於以上述方式構成,因此本實施形態之積層體能夠提高電解槽中之電極更新時之作業效率,進而更新後亦能夠表現出優異之電解性能。
即,藉由本實施形態之積層體,於更新電極時,無需伴隨剝離固定於電解池之既有電極等繁雜之作業,藉由如與隔膜之更新相同之簡單之作業即可更新電極,因此作業效率大幅提高。
進而,藉由本實施形態之積層體,能夠將既有電解池之電解性能維持為與新品時之性能相同或有所提高。因此,固定於既有之電解池且作為陽極、陰極發揮功能之電極僅作為饋電體發揮功能即可,能夠大幅地減少觸媒塗層或者甚至無觸媒塗層。作為此處所謂饋電體意指劣化之電極(即既有電極)或未形成有觸媒塗層之電極等。
[電解用電極]
本實施形態中之電解用電極只要為可用於電解之電極,則無特別限定,較佳為電解用電極與隔膜相對向之面之面積(與下文所述之通電面之面積S2相對應)為0.01 m
2
以上。所謂「與隔膜相對向之面」意指電解用電極所具有之表面中隔膜所存在一側之表面。即,電解用電極中與隔膜相對向之面亦可稱為與隔膜之表面相接之面。於電解用電極中之上述與隔膜相對向之面之面積為0.01 m
2
以上之情形時,能夠確保充分之生產性,尤其是於實施工業上之電解之方面有可獲得充分之生產性之傾向。由此,就確保充分之生產性,確保作為更新電解池所使用之積層體之實用性之觀點而言,電解用電極中之上述與隔膜相對向之面之面積更佳為0.1 m
2
以上,進而較佳為1 m
2
以上。該面積例如可藉由實施例所記載之方法進行測定。
本實施形態中之電解用電極就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、饋電體(劣化之電極及未形成有觸媒塗層之電極)等具有良好之接著力之觀點而言,每單位質量·單位面積所承受之力較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。
就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/mg・cm
2
以上,進而更佳為0.14 N/(mg・cm
2
)以上。就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.2 N/(mg・cm
2
)以上。
上述承受力例如可藉由適當調整下文所述之開孔率、電極之厚度、算術平均表面粗糙度等而設為上述範圍。更具體而言,例如,若增大開孔率,則承受力有變小之傾向,若減小開孔率,則承受力有變大之傾向。
又,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力之觀點,進而就經濟性之觀點而言,較佳為每單位面積之質量為48 mg/cm
2
以下,更佳為30 mg/cm
2
以下,進而較佳為20 mg/cm
2
以下,進而,就合併操作性、接著性及經濟性之綜合性之觀點而言,為15 mg/cm
2
以下。下限值並無特別限定,例如為1 mg/cm
2
左右。
上述每單位面積之質量例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則每單位面積之質量有變小之傾向,若減小開孔率,則每單位面積之質量有變大之傾向。
承受力可藉由以下之方法(i)或(ii)進行測定,藉由方法(i)之測定所獲得之值(亦稱為「承受力(1)」)與藉由方法(ii)之測定所獲得之值(亦稱為「承受力(2)」)可相同亦可不同,但較佳為任一值均未達1.5 N/mg・cm
2
。
[方法(i)]
依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方)、於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之離子交換膜(170 mm見方)及電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。再者,噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.5~0.8 μm。算術平均表面粗糙度(Ra)之具體之算出方法如實施例所記載。
於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極樣品與離子交換膜之重疊部分之面積、及與離子交換膜重疊部分之電極樣品之質量,而算出每單位質量·單位面積所承受之力(1)(N/mg・cm
2
)。
藉由方法(i)獲得之每單位質量·單位面積所承受之力(1)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。又,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/(mg・cm
2
)以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm
2
),更佳為0.2 N/(mg・cm
2
)以上。
[方法(ii)]
依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方,與上述方法(i)相同之鎳板)與電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極樣品與鎳板之重疊部分之面積、及與鎳板重疊部分中之電極樣品之質量,而算出每單位質量•單位面積之接著力(2)(N/mg・cm
2
)。
藉由方法(ii)獲得之每單位質量·單位面積所承受之力(2)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。進而,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/(mg・cm
2
)以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm
2
)以上。
本實施形態中之電解用電極較佳為包含電解用電極基材及觸媒層。該電解用電極基材之厚度(量規厚度)並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折,大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。
本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力之觀點而言,藉由以下之方法(2)所測得之比率較佳為90%以上,更佳為92%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為95%以上。上限值為100%。
[方法(2)]
依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑280 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。
本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折之觀點而言,藉由以下之方法(3)所測得之比率較佳為75%以上,更佳為80%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為90%以上。上限值為100%。
[方法(3)]
依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑145 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。
本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,防止電解中產生之氣體滯留之觀點而言,較佳為多孔結構,且其開孔率或空隙率為5~90%以下。開孔率更佳為10~80%以下,進而較佳為20~75%。
再者,所謂開孔率係每單位體積之開孔部之比率。開孔部亦根據考慮至次微米級抑或僅考慮目視可見之開口而有各種算出方法。於本實施形態中,藉由根據電極之量規厚度、寬度、長度之值算出體積V,進而對重量W進行實測,而利用下述之式算出開孔率A。
A=(1-(W/(V×ρ))×100
ρ係電極之材質之密度(g/cm
3
)。例如於鎳之情形時為8.908 g/cm
3
,於鈦之情形時為4.506 g/cm
3
。開孔率之調整係藉由如下方法進行適當調整:若為沖孔金屬,則變更每單位面積沖裁金屬之面積;若為多孔金屬,則變更SW(短徑)、LW(長徑)、進給之值;若為絲網,則變更金屬纖維之線徑、網眼數;若為電成形,則變更所使用之光阻之圖案;若為不織布,則變更金屬纖維直徑及纖維密度;若為發泡金屬,則變更用以使空隙形成之模板等。
以下,對本實施形態中之電解用電極之一形態進行說明。
本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。觸媒層如下所述,可包含複數層,亦可為單層結構。
如圖43所示,本實施形態之電解用電極100具備電解用電極基材10、及被覆電解用電極基材10之兩表面之一對第一層20。第一層20較佳為將電解用電極基材10整體被覆。藉此,電解用電極之觸媒活性及耐久性變得容易提高。再者,亦可僅於電解用電極基材10之一表面積層第一層20。
又,如圖43所示,第一層20之表面可由第二層30所被覆。第二層30較佳為將第一層20整體被覆。又,第二層30可僅積層於第一層20之一表面。
(電解用電極基材)
作為電解用電極基材10,並無特別限定,例如可使用鎳、鎳合金、不鏽鋼、或以鈦等為代表之閥金屬,較佳為含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。
於在高濃度之鹼性水溶液中使用不鏽鋼之情形時,若考慮到鐵及鉻溶出、及不鏽鋼之導電性為鎳之1/10左右,則較佳為使用含有鎳(Ni)之基材作為電解用電極基材。
又,電解用電極基材10於在接近飽和之高濃度之食鹽水中於氯氣產生環境中使用之情形時,材質亦較佳為耐蝕性較高之鈦。
電解用電極基材10之形狀並無特別限定,可根據目的選擇合適之形狀。作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。其中,較佳為沖孔金屬或多孔金屬。再者,所謂電成形係將照相製版與電鍍法組合而製作精密之圖案之金屬薄膜的技術。其係藉由光阻於基板上形成圖案,對未受到光阻保護之部分實施電鍍而獲得金屬薄膜之方法。
關於電解用電極基材之形狀,根據電解槽中之陽極與陰極之距離而有適宜之規格。並無特別限定,於陽極與陰極具有有限之距離之情形時,可使用多孔金屬、沖孔金屬形狀,於離子交換膜與電極相接之所謂零間距電解槽之情形時,可使用編織細線而成之編織網、金屬絲網、發泡金屬、金屬不織布、多孔金屬、沖孔金屬、金屬多孔箔等。
作為電解用電極基材10,可列舉:金屬多孔箔、金屬絲網、金屬不織布、沖孔金屬、多孔金屬或發泡金屬。
作為加工為沖孔金屬、多孔金屬前之板材,較佳為經壓延成形之板材、電解箔等。電解箔較佳為進而作為後處理而藉由與母材相同之元素實施鍍覆處理,於單面或兩面形成凹凸。
又,電解用電極基材10之厚度如上文所述,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。
於電解用電極基材中,較佳為藉由在氧化環境中將電解用電極基材進行退火而緩和加工時之殘留應力。又,為了提高與被覆於電解用電極基材之表面之觸媒層之密接性,較佳為使用鋼砂、氧化鋁粉等於上述表面形成凹凸,其後藉由酸處理而增加表面積。或者,較佳為藉由與基材相同之元素實施鍍覆處理,增加表面積。
為了使第一層20與電解用電極基材10之表面密接,較佳為對電解用電極基材10進行增大表面積之處理。作為增大表面積之處理,可列舉使用鋼線粒、鋼砂、氧化鋁砂等之噴擊處理、使用硫酸或鹽酸之酸處理、利用與基材相同元素之鍍覆處理等。基材表面之算術平均表面粗糙度(Ra)並無特別限定,較佳為0.05 μm~50 μm,更佳為0.1~10 μm,進而較佳為0.1~8 μm。
繼而,對將本實施形態中之電解用電極用作食鹽電解用陽極之情形進行說明。
(第一層)
於圖43中,作為觸媒層之第一層20含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物。作為釕氧化物,可列舉RuO
2
等。作為銥氧化物,可列舉IrO
2
等。作為鈦氧化物,可列舉TiO
2
等。第一層20較佳為含有釕氧化物及鈦氧化物之兩種氧化物,或含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物。藉此,第一層20成為更穩定之層,進而,與第二層30之密接性亦進一步提高。
於第一層20含有釕氧化物及鈦氧化物之兩種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為1~9莫耳,更佳為1~4莫耳。藉由將兩種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。
於第一層20含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之銥氧化物較佳為0.2~3莫耳,更佳為0.3~2.5莫耳。又,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為0.3~8莫耳,更佳為1~7莫耳。藉由將三種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。
於第一層20含有選自釕氧化物、銥氧化物及鈦氧化物中之至少兩種氧化物之情形時,該等氧化物較佳為形成固溶體。藉由形成氧化物固溶體,電解用電極100表現出優異之耐久性。
除了上述組成以外,只要含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物,則可使用各種組成者。例如,亦可使用稱為DSA(註冊商標)之含有釕、銥、鉭、鈮、鈦、錫、鈷、錳、鉑等之氧化物塗層作為第一層20。
第一層20無需為單層,亦可包含複數層。例如,第一層20可包含含有三種氧化物之層與含有兩種氧化物之層。第一層20之厚度較佳為0.05~10 μm,更佳為0.1~8 μm。
(第二層)
第二層30較佳為含有釕與鈦。藉此,能夠進一步降低剛電解後之氯過電壓。
第二層30較佳為含有氧化鈀、氧化鈀與鉑之固溶體或鈀與鉑之合金。藉此,能夠進一步降低剛電解後之氯過電壓。
第二層30較厚者能夠維持電解性能之時間變長,就經濟性之觀點而言,較佳為0.05~3 μm之厚度。
繼而,對將本實施形態中之電解用電極用作食鹽電解用陰極之情形進行說明。
(第一層)
作為觸媒層之第一層20之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。
可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。
於含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少一種之情形時,較佳為鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金含有鉑、鈀、銠、釕、銥中之至少一種鉑族金屬。
作為鉑族金屬,較佳為含有鉑。
作為鉑族金屬氧化物,較佳為含有釕氧化物。
作為鉑族金屬氫氧化物,較佳為含有釕氫氧化物。
作為鉑族金屬合金,較佳為含有鉑與鎳、鐵、鈷之合金。
較佳為進而視需要含有鑭系元素之氧化物或氫氧化物作為第二成分。藉此,電解用電極100表現出優異之耐久性。
作為鑭系元素之氧化物或氫氧化物,較佳為含有選自鑭、鈰、鐠、釹、鉕、釤、銪、釓、鋱、鏑中之至少1種。
較佳為進而視需要含有過渡金屬之氧化物或氫氧化物作為第三成分。
藉由添加第三成分,電解用電極100能夠表現出更優異之耐久性,降低電解電壓。
作為較佳之組合之例,可列舉:僅釕、釕+鎳、釕+鈰、釕+鑭、釕+鑭+鉑、釕+鑭+鈀、釕+鐠、釕+鐠+鉑、釕+鐠+鉑+鈀、釕+釹、釕+釹+鉑、釕+釹+錳、釕+釹+鐵、釕+釹+鈷、釕+釹+鋅、釕+釹+鎵、釕+釹+硫、釕+釹+鉛、釕+釹+鎳、釕+釹+銅、釕+釤、釕+釤+錳、釕+釤+鐵、釕+釤+鈷、釕+釤+鋅、釕+釤+鎵、釕+釤+硫、釕+釤+鉛、釕+釤+鎳、鉑+鈰、鉑+鈀+鈰、鉑+鈀+鑭+鈰、鉑+銥、鉑+鈀、鉑+銥+鈀、鉑+鎳+鈀、鉑+鎳+釕、鉑與鎳之合金、鉑與鈷之合金、鉑與鐵之合金等。
於不含鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之情形時,觸媒之主成分較佳為鎳元素。
較佳為含有鎳金屬、氧化物、氫氧化物中之至少1種。
作為第二成分,可添加過渡金屬。作為所添加之第二成分,較佳為含有鈦、錫、鉬、鈷、錳、鐵、硫、鋅、銅、碳中之至少一種元素。
作為較佳之組合,可列舉:鎳+錫、鎳+鈦、鎳+鉬、鎳+鈷等。
視需要可於第一層20與電解用電極基材10之間設置中間層。藉由設置中間層,能夠提高電解用電極100之耐久性。
作為中間層,較佳為對第一層20與電解用電極基材10之兩者具有親和性者。作為中間層,較佳為鎳氧化物、鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物。作為中間層,可藉由將含有形成中間層之成分之溶液進行塗佈、燒成而形成,亦可於空氣環境中在300~600℃之溫度下對基材實施熱處理而形成表面氧化物層。除此以外,可藉由熱熔射法、離子鍍敷法等已知之方法形成。
(第二層)
作為觸媒層之第一層30之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。
可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。作為第二層所含之元素之較佳之組合例,有第一層中所列舉之組合等。第一層與第二層之組合可為組成相同而組成比不同之組合,亦可為組成不同之組合。
作為觸媒層之厚度,較佳為將所形成之觸媒層及中間層累加而成之厚度為0.01 μm~20 μm。若為0.01 μm以上,則能夠作為觸媒充分發揮功能。若為20 μm以下,則從基材脫落之情況較少,能夠形成牢固之觸媒層。更佳為0.05 μm~15 μm。更佳為0.1 μm~10 μm。進而較佳為0.2 μm~8 μm。
作為電極之厚度、即電解用電極基材與觸媒層之合計之厚度,就電極之操作性之方面而言,較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,電極之厚度可藉由利用電子數顯厚度計(Mitutoyo股份有限公司,最少顯示0.001 mm)進行測定而求出。電解用電極基材之厚度係與電極厚度同樣地進行測定。觸媒層厚度可藉由電極厚度減去電解用電極基材之厚度而求出。
於本實施形態中,就確保充分之電解性能之觀點而言,較佳為電解用電極含有選自由Ru、Rh、Pd、Ir、Pt、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y,Zr、Nb、Mo、Ag、Ta、W、Re、Os、Al、In、Sn、Sb、Ga、Ge、B、C、N、O、Si、P、S、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb及Dy所組成之群中之至少一種觸媒成分。
於本實施形態中,若電解用電極係彈性變形區域較廣之電極,則就可獲得更良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有更良好之接著力之觀點而言,電解用電極之厚度較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,於本實施形態中,所謂「彈性變形區域較廣」意指將電解用電極捲繞而製成捲繞體,解除捲繞狀態後不易產生由捲繞引起之翹曲。又,所謂電解用電極之厚度於包含下文所述之觸媒層之情形時,係指合併電解用電極基材與觸媒層之厚度。
(電解用電極之製造方法)
其次,對電解用電極100之製造方法之一實施形態進行詳細說明。
於本實施形態中,藉由利用氧環境下之塗膜之燒成(熱分解)、或離子鍍敷、鍍覆、熱熔射等方法於電解用電極基材上形成第一層20、較佳為第二層30,可製造電解用電極100。此種本實施形態之製造方法能夠實現電解用電極100之較高之生產性。具體而言,藉由塗佈含有觸媒之塗佈液之塗佈步驟、乾燥塗佈液之乾燥步驟、進行熱分解之熱分解步驟,而於電解用電極基材上形成觸媒層。此處所謂熱分解意指對成為前驅物之金屬鹽進行加熱而分解為金屬或金屬氧化物與氣體狀物質。根據所使用之金屬種類、鹽之種類、進行熱分解之環境等,分解產物有所不同,但於氧化性環境下多數金屬有容易形成氧化物之傾向。於電極之工業性之製造工藝中,熱分解通常於空氣中進行,多數情形時形成金屬氧化物或金屬氫氧化物。
(陽極之第一層之形成)
(塗佈步驟)
第一層20係將溶解有釕、銥及鈦中之至少一種金屬之鹽的溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之釕、銥及鈦之含有率與第一層20大致相等。
作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。
作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。
(乾燥步驟、熱分解步驟)
將第一塗佈液塗佈於電解用電極基材100後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。
重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。
(第二層之形成)
第二層30係視需要而形成,例如將含有鈀化合物及鉑化合物之溶液或含有釕化合物及鈦化合物之溶液(第二塗佈液)塗佈於第一層20上後,於氧氣之存在下進行熱分解而獲得。
(利用熱分解法之陰極之第一層之形成)
(塗佈步驟)
第一層20係將溶解有各種組合之金屬鹽之溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之金屬之含有率與第一層20大致相等。
作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。
作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。
(乾燥步驟、熱分解步驟)
將第一塗佈液塗佈於電解用電極基材10後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。
重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。
(中間層之形成)
中間層係視需要而形成,例如將含有鈀化合物或鉑化合物之溶液(第二塗佈液)塗佈於基材上後,於氧氣之存在下進行熱分解而獲得。或者,亦可不塗佈溶液,而僅加熱基材,藉此於基材表面形成氧化鎳中間層。
(利用離子鍍敷之陰極之第一層之形成)
第一層20亦可藉由離子鍍敷而形成。
作為一例,可列舉將基材固定於腔室內並對金屬釕靶照射電子束之方法。所蒸發之金屬釕粒子於腔室內之電漿中帶正電,而沈積於帶負電之基板上。電漿環境為氬氣、氧氣,釕係以釕氧化物之形式沈積於基材上。
(利用鍍覆之陰極之第一層之形成)
第一層20亦可藉由鍍覆法而形成。
作為一例,若使用基材作為陰極,於含有鎳及錫之電解液中實施電解鍍覆,則可形成鎳與錫之合金鍍覆。
(利用熱熔射之陰極之第一層之形成)
第一層20亦可藉由熱熔射法而形成。
作為一例,藉由將氧化鎳粒子電漿熔射於基材上,而可形成混合有金屬鎳與氧化鎳之觸媒層。
本實施形態中之電解用電極能夠與離子交換膜或微多孔膜等隔膜進行一體化而使用。因此,本實施形態之積層體可用作膜一體電極,無需更新電極時之陰極及陽極之更換貼附作業,作業效率大幅提高。
又,藉由與離子交換膜或微多孔膜等隔膜之一體電極,能夠使電解性能與新品時之性能相同或有所提高。
以下,對離子交換膜進行詳細說明。
[離子交換膜]
作為離子交換膜,只要可與電解用電極製成積層體,則無特別限定,可應用各種離子交換膜。於本實施形態中,較佳為使用具有含有具有離子交換基之烴系聚合物或含氟系聚合物之膜本體、與設置於該膜本體之至少一面上之塗佈層之離子交換膜。又,塗佈層含有無機物粒子與結合劑,塗佈層之比表面積較佳為0.1~10 m
2
/g。該結構之離子交換膜於電解中所產生之氣體對電解性能之影響較少,有發揮出穩定之電解性能之傾向。
上述所謂導入有離子交換基之全氟碳聚合物之膜係具備具有源自磺基之離子交換基(以-SO
3 -
表示之基,以下亦稱為「磺酸基」)之磺酸層與具有源自羧基之離子交換基(以-CO
2 -
表示之基,以下亦稱為「羧酸基」)之羧酸層之任一者。就強度及尺寸穩定性之觀點而言,較佳為進而具有強化芯材。
以下於塗佈層之說明之欄對無機物粒子及結合劑進行詳細說明。
圖44係表示離子交換膜之一實施形態之剖面模式圖。離子交換膜1具有:膜本體10,其含有具有離子交換基之烴系聚合物或含氟系聚合物;以及塗佈層11a及11b,其等形成於膜本體10之兩面。
於離子交換膜1中,膜本體10具備具有源自磺基之離子交換基(以-SO
3 -
表示之基,以下亦稱為「磺酸基」)之磺酸層3、與具有源自羧基之離子交換基(以-CO
2 -
表示之基,以下亦稱為「羧酸基」)之羧酸層2,藉由強化芯材4強化強度及尺寸穩定性。離子交換膜1由於具備磺酸層3與羧酸層2,因此可作為陽離子交換膜而適宜地使用。
再者,離子交換膜亦可僅具有磺酸層及羧酸層之任一者。又,離子交換膜未必由強化芯材所強化,強化芯材之配置狀態亦不限定於圖44之例。
(膜本體)
首先,對構成離子交換膜1之膜本體10進行說明。
膜本體10只要為具有使陽離子選擇性地透過之功能且含有具有離子交換基之烴系聚合物或含氟系聚合物者即可,其構成或材料並無特別限定,可適當選擇適宜者。
膜本體10中之具有離子交換基之烴系聚合物或含氟系聚合物例如可由具有可藉由水解等成為離子交換基之離子交換基前驅物之烴系聚合物或含氟系聚合物獲得。具體而言,例如使用主鏈包含氟化烴、具有可藉由水解等轉換為離子交換基之基(離子交換基前驅物)作為懸垂側鏈且能夠熔融加工之聚合物(以下視情形稱為「含氟系聚合物(a)」)製作膜本體10之前驅物後,將離子交換基前驅物轉換為離子交換基,藉此可獲得膜本體10。
含氟系聚合物(a)例如可藉由使選自下述第1群之至少一種單體與選自下述第2群及/或下述第3群之至少一種單體進行共聚合而製造。又,亦可藉由選自下述第1群、下述第2群、及下述第3群之任一群之1種單體之均聚而製造。
作為第1群之單體,例如可列舉氟乙烯化合物。作為氟乙烯化合物,例如可列舉:氟乙烯、四氟乙烯、六氟丙烯、偏二氟乙烯、三氟乙烯、氯三氟乙烯、全氟烷基乙烯醚等。尤其是於將離子交換膜用作鹼電解用膜之情形時,氟乙烯化合物較佳為全氟單體,較佳為選自由四氟乙烯、六氟丙烯、全氟烷基乙烯醚所組成之群中之全氟單體。
作為第2群之單體,例如可列舉具有可轉換為羧酸型離子交換基(羧酸基)之官能基之乙烯系化合物。作為具有可轉換為羧酸基之官能基之乙烯系化合物,例如可列舉以CF
2
=CF(OCF
2
CYF)
s
-O(CZF)
t
-COOR表示之單體等(此處,s表示0~2之整數,t表示1~12之整數,Y及Z各自獨立地表示F或CF
3
,R表示低級烷基。低級烷基例如為碳數1~3之烷基)。
該等中,較佳為以CF
2
=CF(OCF
2
CYF)
n
-O(CF
2
)
m
-COOR表示之化合物。此處,n表示0~2之整數,m表示1~4之整數,Y表示F或CF
3
,R表示CH
3
、C
2
H
5
、或C
3
H
7
。
再者,於將離子交換膜用作鹼電解用陽離子交換膜之情形時,較佳為至少使用全氟化合物作為單體,但由於酯基之烷基(參照上述R)於水解時從聚合物喪失,因此烷基(R)亦可不為全部氫原子被取代為氟原子之全氟烷基。
作為第2群之單體,於上述中,更佳為下述所表示之單體。
CF
2
=CFOCF
2
-CF(CF
3
)OCF
2
COOCH
3
、
CF
2
=CFOCF
2
CF(CF
3
)O(CF
2
)
2
COOCH
3
、
CF
2
=CF[OCF
2
-CF(CF
3
)]
2
O(CF
2
)
2
COOCH
3
、
CF
2
=CFOCF
2
CF(CF
3
)O(CF
2
)
3
COOCH
3
、
CF
2
=CFO(CF
2
)
2
COOCH
3
、
CF
2
=CFO(CF
2
)
3
COOCH
3
。
作為第3群之單體,例如可列舉具有可轉換為磺酸型離子交換基(磺酸基)之官能基之乙烯系化合物。作為具有可轉換為磺酸基之官能基之乙烯系化合物,例如較佳為以CF
2
=CFO-X-CF
2
-SO
2
F表示之單體(此處,X表示全氟伸烷基)。作為該等之具體例,可列舉下述所表示之單體等。
CF
2
=CFOCF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
CF
2
SO
2
F、
CF
2
=CF(CF
2
)
2
SO
2
F、
CF
2
=CFO[CF
2
CF(CF
3
)O]
2
CF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
2
OCF
3
)OCF
2
CF
2
SO
2
F。
該等中,更佳為CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
CF
2
SO
2
F、及CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F。
由該等單體獲得之共聚物可藉由針對氟乙烯之均聚及共聚合所開發之聚合法、尤其是對四氟乙烯所使用之通常之聚合方法而製造。例如,於非水性法中,可使用全氟烴、氯氟碳等不活性溶劑,於全氟碳過氧化物或偶氮化合物等自由基聚合起始劑之存在下,於溫度0~200℃、壓力0.1~20 MPa之條件下進行聚合反應。
於上述共聚合中,上述單體之組合之種類及其比率並無特別限定,根據欲對所獲得之含氟系聚合物賦予之官能基之種類及量選擇確定。例如於製成僅含有羧酸基之含氟系聚合物之情形時,從上述第1群及第2群分別選擇至少1種單體進行共聚合即可。又,於製成僅含有磺酸基之含氟系聚合物之情形時,從上述第1群及第3群之單體中分別選擇至少1種單體進行共聚合即可。進而,於製成具有羧酸基及磺酸基之含氟系聚合物之情形時,從上述第1群、第2群及第3群之單體中分別選擇至少1種單體進行共聚合即可。於該情形時,藉由使包含上述第1群及第2群之共聚物與包含上述第1群及第3群之共聚物分開進行聚合,其後加以混合亦可獲得目標之含氟系聚合物。又,各單體之混合比率並無特別限定,於增加每單位聚合物之官能基之量之情形時,增加選自上述第2群及第3群之單體之比率即可。
含氟系共聚物之總離子交換容量並無特別限定,較佳為0.5~2.0 mg當量/g,更佳為0.6~1.5 mg當量/g。此處,所謂總離子交換容量係指相對於單位重量之乾燥樹脂之交換基之當量,可藉由中和滴定等進行測定。
於離子交換膜1之膜本體10中,積層有含有具有磺酸基之含氟系聚合物之磺酸層3與含有具有羧酸基之含氟系聚合物之羧酸層2。藉由製成此種層結構之膜本體10,能夠進一步提高鈉離子等陽離子之選擇性透過性。
於將離子交換膜1配置於電解槽之情形時,通常以磺酸層3位於電解槽之陽極側、羧酸層2位於電解槽之陰極側之方式配置。
磺酸層3較佳為由電阻較低之材料構成,就膜強度之觀點而言,較佳為其膜厚厚於羧酸層2。磺酸層3之膜厚較佳為羧酸層2之2~25倍,更佳為3~15倍。
羧酸層2較佳為即使膜厚較薄亦具有較高之陰離子排斥性者。此處所謂陰離子排斥性係指阻礙陰離子對離子交換膜1之滲入或透過之性質。為了提高陰離子排斥性,有效的是對磺酸層配置離子交換容量較小之羧酸層等。
作為磺酸層3所使用之含氟系聚合物,例如適宜為使用CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F作為第3群之單體所獲得之聚合物。
作為羧酸層2所使用之含氟系聚合物,例如適宜為使用CF
2
=CFOCF
2
CF(CF
2
)O(CF
2
)
2
COOCH
3
作為第2群之單體所獲得之聚合物。
(塗佈層)
離子交換膜較佳為於膜本體之至少一面上具有塗佈層。又,如圖44所示,於離子交換膜1中,於膜本體10之兩面上分別形成有塗佈層11a及11b。
塗佈層含有無機物粒子與結合劑。
無機物粒子之平均粒徑更佳為0.90 μm以上。若無機物粒子之平均粒徑為0.90 μm以上,則不僅極大地提高對氣體附著之耐久性,而且極大地提高對雜質之耐久性。即,藉由增大無機物粒子之平均粒徑,並且滿足上述比表面積之值,可獲得尤其顯著之效果。為了滿足此種平均粒徑與比表面積,較佳為不規則狀之無機物粒子。可使用藉由熔融獲得之無機物粒子、藉由原石粉碎獲得之無機物粒子。較佳可適宜地使用藉由原石粉碎獲得之無機物粒子。
又,無機物粒子之平均粒徑可設為2 μm以下。若無機物粒子之平均粒徑為2 μm以下,則能夠防止因無機物粒子而損傷膜。無機物粒子之平均粒徑更佳為0.90~1.2 μm。
此處,平均粒徑可藉由粒度分佈計(「SALD2200」島津製作所)進行測定。
無機物粒子之形狀較佳為不規則形狀。對雜質之耐性進一步提高。又,無機物粒子之粒度分佈較佳為較寬。
無機物粒子較佳為含有選自由週期表第IV族元素之氧化物、週期表第IV族元素之氮化物、及週期表第IV族元素之碳化物所組成之群中之至少一種無機物。就耐久性之觀點而言,更佳為氧化鋯之粒子。
該無機物粒子較佳為藉由將無機物粒子之原石粉碎所製造之無機物粒子,或以藉由將無機物粒子之原石熔融並加以精製而粒子之直徑一致之球狀之粒子作為無機物粒子。
作為原石粉碎方法,並無特別限定,可列舉:球磨機、珠磨機、膠體磨機、錐形磨機、盤磨機、輪輾機、磨粉機、錘磨機、造粒機、VSI磨機、威利磨機、輥磨機、噴射磨機等。又,較佳為粉碎後將其洗淨,作為此時之洗淨方法,較佳為酸處理。藉此,能夠減少附著於無機物粒子之表面之鐵等雜質。
塗佈層較佳為含有結合劑。結合劑係將無機物粒子保持於離子交換膜之表面、形成塗佈層之成分。就對電解液或電解之產物之耐性之觀點而言,結合劑較佳為含有含氟系聚合物。
作為結合劑,就對電解液或電解之產物之耐性、及對離子交換膜之表面之接著性之觀點而言,更佳為具有羧酸基或磺酸基之含氟系聚合物。於在含有具有磺酸基之含氟聚合物之層(磺酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有磺酸基之含氟系聚合物。又,於在含有具有羧酸基之含氟聚合物之層(羧酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有羧酸基之含氟系聚合物。
塗佈層中,無機物粒子之含量較佳為40~90質量%,更佳為50~90質量%。又,結合劑之含量較佳為10~60質量%,更佳為10~50質量%。
離子交換膜中之塗佈層之分佈密度較佳為每1 cm
2
為0.05~2 mg。又,於離子交換膜於表面具有凹凸形狀之情形時,塗佈層之分佈密度較佳為每1 cm
2
為0.5~2 mg。
作為形成塗佈層之方法,並無特別限定,可使用公知之方法。例如可列舉藉由噴射等塗佈將無機物粒子分散於含有結合劑之溶液中而成之塗佈液之方法。
(強化芯材)
離子交換膜較佳為具有配置於膜本體之內部之強化芯材。
強化芯材係強化離子交換膜之強度或尺寸穩定性之構件。藉由將強化芯材配置於膜本體之內部,尤其能夠將離子交換膜之伸縮控制為所需之範圍。該離子交換膜於電解時等不會伸縮為必要程度以上,而能夠長期維持優異之尺寸穩定性。
強化芯材之構成並無特別限定,例如可將稱為強化紗之紗進行紡紗而形成。此處所謂強化紗係構成強化芯材之構件,指能夠對離子交換膜賦予所需之尺寸穩定性及機械強度且於離子交換膜中能夠穩定地存在之紗。藉由使用將該強化紗紡紗而成之強化芯材,能夠對離子交換膜賦予更優異之尺寸穩定性及機械強度。
強化芯材及其所使用之強化紗之材料並無特別限定,較佳為對酸或鹼等具有耐性之材料,就需要長期之耐熱性、耐化學品性之方面而言,較佳為包含含氟系聚合物之纖維。
作為強化芯材所使用之含氟系聚合物,例如可列舉:聚四氟乙烯(PTFE)、四氟乙烯-全氟烷基乙烯醚共聚物(PFA)、四氟乙烯-乙烯共聚物(ETFE)、四氟乙烯-六氟丙烯共聚物、三氟氯乙烯-乙烯共聚物及偏二氟乙烯聚合物(PVDF)等。該等中,尤其是就耐熱性及耐化學品性之觀點而言,較佳為使用包含聚四氟乙烯之纖維。
強化芯材所使用之強化紗之紗直徑並無特別限定,較佳為20~300丹尼,更佳為50~250丹尼。紡織密度(每單位長度之織入根數)較佳為5~50根/英吋。作為強化芯材之形態,並無特別限定,例如可使用織布、不織布、針織布等,較佳為織布之形態。又,使用織布之厚度較佳為30~250 μm、更佳為30~150 μm者。
織布或針織布可使用單絲、複絲或該等之紗線、切膜絲等,紡織方法可使用平織、紗羅組織、針織、凸條組織、縐條紋薄織等各種紡織方法。
膜本體中之強化芯材之紡織方法及配置並無特別限定,可考慮離子交換膜之大小或形狀、離子交換膜所需之物性及使用環境等適當設為適宜之配置。
例如,可沿膜本體之特定之一方向配置強化芯材,就尺寸穩定性之觀點而言,較佳為沿特定之第一方向配置強化芯材,且沿大致垂直於第一方向之第二方向配置其他強化芯材。藉由在膜本體之縱向膜本體之內部以大致成一列之方式配置複數個強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。例如,較佳為於膜本體之表面織入沿縱向配置之強化芯材(縱紗)與沿橫向配置之強化芯材(橫紗)之配置。就尺寸穩定性、機械強度及製造容易性之觀點而言,更佳為製成使縱紗與橫紗一上一下交替織入而紡織之平紋織物、或一邊撚轉2根經紗一邊與橫紗交織之紗羅組織物、於每2根或數根並紗配置之縱紗中織入相同數量之橫紗而紡織之斜紋織物(twill weave)等。
尤佳為沿離子交換膜之MD方向(縱向(Machine Direction)方向)及TD方向(橫向(Transverse Direction)方向)之兩方向配置強化芯材。即,較佳為沿MD方向與TD方向平織。此處,所謂MD方向係指於下文所述之離子交換膜之製造步驟中搬送膜本體或各種芯材(例如,強化芯材、強化紗、下文所述之犧牲紗等)之方向(行進方向),所謂TD方向係指大致垂直於MD方向之方向。此外,將沿MD方向紡織之紗稱為MD紗,將沿TD方向紡織之紗稱為TD紗。通常電解所使用之離子交換膜係矩形,長度方向為MD方向、寬度方向為TD方向之情況較多。藉由織入作為MD紗之強化芯材與作為TD紗之強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。
強化芯材之配置間隔並無特別限定,可考慮離子交換膜所需之物性及使用環境等適當設為適宜之配置。
強化芯材之開口率並無特別限定,較佳為30%以上,更佳為50%以上且90%以下。開口率就離子交換膜之電化學性質之觀點而言,較佳為30%以上,就離子交換膜之機械強度之觀點而言,較佳為90%以下。
所謂強化芯材之開口率係指膜本體之任一表面之面積(A)中離子等物質(電解液及其所含之陽離子(例如,鈉離子))能夠通過之表面之總面積(B)之比率(B/A)。所謂離子等物質能夠通過之表面之總面積(B)可指於離子交換膜中陽離子或電解液等不被離子交換膜所含之強化芯材等阻斷之區域之總面積。
圖45係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。圖45係將離子交換膜之一部分放大而僅圖示該區域內之強化芯材21及22之配置,其他構件省略圖示。
藉由從由沿縱向配置之強化芯材21與沿橫向配置之強化芯材22所圍成之亦包括強化芯材之面積在內之區域的面積(A)減去強化芯材之總面積(C),可求出上述區域之面積(A)中離子等物質能夠通過之區域之總面積(B)。即,開口率可藉由下述式(I)求出。
開口率=(B)/(A)=((A)-(C))/(A) …(I)
於強化芯材中,就耐化學品性及耐熱性之觀點而言,尤佳之形態係含有PTFE之帶狀紗線或高配向單絲。具體而言,更佳為如下強化芯材,其係使用將包含PTFE之高強度多孔質片材切為帶狀而成之帶狀紗線、或包含PTFE之高度配向之單絲之50~300丹尼且紡織密度為10~50根/英吋之平紋織物,其厚度為50~100 μm之範圍。含有該強化芯材之離子交換膜之開口率進而較佳為60%以上。
作為強化紗之形狀,可列舉圓紗、帶狀紗等。
(連通孔)
離子交換膜較佳為於膜本體之內部具有連通孔。
所謂連通孔係指能夠成為電解時產生之離子或電解液之流路之孔。又,所謂連通孔係形成於膜本體內部之管狀之孔,藉由下文所述之犧牲芯材(或犧牲紗)溶出而形成。連通孔之形狀或直徑等可藉由選擇犧牲芯材(犧牲紗)之形狀或直徑進行控制。
藉由在離子交換膜形成連通孔,於電解時能夠確保電解液之移動性。連通孔之形狀並無特別限定,根據下文所述之製法,可製成連通孔之形成所使用之犧牲芯材之形狀。
連通孔較佳為以交替通過強化芯材之陽極側(磺酸層側)與陰極側(羧酸層側)之方式形成。藉由設為該結構,於強化芯材之陰極側形成有連通孔之部分,通過充滿連通孔之電解液所輸送之離子(例如,鈉離子)亦能夠流至強化芯材之陰極側。其結果為,由於陽離子之流動未被遮蔽,因此能夠進一步降低離子交換膜之電阻。
連通孔可僅沿構成離子交換膜之膜本體之特定之一方向形成,就發揮出更穩定之電解性能之觀點而言,較佳為沿膜本體之縱向與橫向之兩方向形成。
[製造方法]
作為離子交換膜之適宜之製造方法,可列舉具有以下之(1)步驟~(6)步驟之方法。
(1)步驟:製造具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之含氟系聚合物之步驟。
(2)步驟:藉由視需要至少織入複數個強化芯材與具有溶於酸或鹼之性質且形成連通孔之犧牲紗而獲得於鄰接之強化芯材彼此之間配置有犧牲紗之補強材之步驟。
(3)步驟:將具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之上述含氟系聚合物進行膜化之步驟。
(4)步驟:視需要將上述補強材埋入至上述膜中而獲得內部配置有上述補強材之膜本體之步驟。
(5)步驟:將(4)步驟中獲得之膜本體進行水解之步驟(水解步驟)。
(6)步驟:於(5)步驟中獲得之膜本體設置塗佈層之步驟(塗佈步驟)。
以下,對各步驟進行詳細說明。
(1)步驟:製造含氟系聚合物之步驟
於(1)步驟中,使用上述第1群~第3群所記載之原料之單體製造含氟系聚合物。為了控制含氟系聚合物之離子交換容量,於形成各層之含氟系聚合物之製造中調整原料之單體之混合比即可。
(2)步驟:補強材之製造步驟
所謂補強材係紡織強化紗之織布等。藉由將補強材埋入至膜內而形成強化芯材。於製成具有連通孔之離子交換膜時,亦將犧牲紗一起織入至補強材中。該情形時之犧牲紗之混織量較佳為補強材整體之10~80質量%,更佳為30~70質量%。藉由織入犧牲紗,亦能夠防止強化芯材之脫線。
犧牲紗係於膜之製造步驟或電解環境下具有溶解性者,可使用嫘縈、聚對苯二甲酸乙二酯(PET)、纖維素及聚醯胺等。又,亦較佳為具有20~50丹尼之粗細程度、包含單絲或複絲之聚乙烯醇等。
再者,於(2)步驟中,可藉由調整強化芯材或犧牲紗之配置而控制開口率或連通孔之配置等。
(3)步驟:膜化步驟
於(3)步驟中,使用擠出機將上述(1)步驟中獲得之含氟系聚合物進行膜化。膜可為單層結構,亦可如上所述為磺酸層與羧酸層之2層結構,亦可為3層以上之多層結構。
作為膜化之方法,例如可列舉以下者。
分別將具有羧酸基之含氟聚合物、具有磺酸基之含氟聚合物分開進行膜化之方法。
藉由共擠出將具有羧酸基之含氟聚合物與具有磺酸基之含氟聚合物製成複合膜之方法。
再者,膜可分別為複數片。又,將異種之膜共擠出有助於提高界面之接著強度,故而較佳。
(4)步驟:獲得膜本體之步驟
於(4)步驟中,藉由將(2)步驟中獲得之補強材埋入至(3)步驟中獲得之膜之內部,而獲得內有補強材之膜本體。
作為膜本體之較佳之形成方法,可列舉:(i)藉由共擠出法將位於陰極側之具有羧酸基前驅物(例如,羧酸酯官能基)之含氟系聚合物(以下將包含其之層稱為第一層)與具有磺酸基前驅物(例如,磺醯氟官能基)之含氟系聚合物(以下將包含其之層稱為第二層)進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將補強材、第二層/第一層複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法;(ii)區別於第二層/第一層複合膜,預先將具有磺酸基前驅物之含氟系聚合物(第三層)單獨進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將第三層膜、強化芯材、包含第二層/第一層之複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法。
此處,將第一層與第二層共擠出有助於提高界面之接著強度。
又,於減壓下進行一體化之方法與加壓壓製法相比,具有補強材上之第三層之厚度變大之特徵。進而,由於將補強材固定於膜本體之內面,因此具有能夠充分保持離子交換膜之機械強度之性能。
再者,此處所說明之積層之變化係一例,可考慮所需之膜本體之層構成或物性等,適當選擇適宜之積層圖案(例如,各層之組合等)後進行共擠出。
再者,為了進一步提高離子交換膜之電性能,亦可於第一層與第二層之間進一步介置包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層,或使用包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層代替第二層。
第四層之形成方法可為分開製造具有羧酸基前驅物之含氟系聚合物與具有磺酸基前驅物之含氟系聚合物後加以混合之方法,亦可為使用將具有羧酸基前驅物之單體與具有磺酸基前驅物之單體共聚合而成者之方法。
於將第四層製成離子交換膜之構成之情形時,可將第一層與第四層之共擠出膜加以成形,第三層及第二層與其分開單獨進行膜化,藉由上文所述之方法進行積層,亦可將第一層/第四層/第二層之3層一次共擠出而進行膜化。
於該情形時,所擠出之膜行進之方向為MD方向。由此可將含有具有離子交換基之含氟系聚合物之膜本體形成於補強材上。
又,離子交換膜較佳為於包含磺酸層之表面側具有包含具有磺酸基之含氟聚合物之突出的部分、即凸部。作為形成此種凸部之方法,並無特別限定,可採用於樹脂表面形成凸部之公知之方法。具體而言,例如可列舉對膜本體之表面實施壓紋加工之方法。例如,於將上述複合膜與補強材等進行一體化時,藉由使用預先經壓紋加工之脫模紙,可形成上述凸部。於藉由壓紋加工形成凸部之情形時,凸部之高度或配置密度之控制可藉由控制所轉印之壓紋形狀(脫模紙之形狀)而進行。
(5)水解步驟
於(5)步驟中,進行將(4)步驟中獲得之膜本體水解而將離子交換基前驅物轉換為離子交換基之步驟(水解步驟)。
又,於(5)步驟中,藉由利用酸或鹼將膜本體所含之犧牲紗溶解去除,可於膜本體形成溶出孔。再者,犧牲紗亦可不完全溶解去除,而殘留於連通孔中。又,殘留於連通孔中之犧牲紗可於將離子交換膜供於電解時藉由電解液溶解去除。
犧牲紗係於離子交換膜之製造步驟或電解環境下對酸或鹼具有溶解性者,藉由使犧牲紗溶出而於該部位形成連通孔。
(5)步驟可將(4)步驟中獲得之膜本體浸漬於含有酸或鹼之水解溶液中進行。作為該水解溶液,例如可使用含有KOH與DMSO(Dimethyl sulfoxide)之混合溶液。
該混合溶液較佳為含有2.5~4.0 N之KOH,且含有25~35質量%之DMSO。
作為水解之溫度,較佳為70~100℃。溫度越高,可使視厚度更厚。更佳為75~100℃。
作為水解之時間,較佳為10~120分鐘。時間越長,可使視厚度更厚。更佳為20~120分鐘。
此處,對藉由溶出犧牲紗而形成連通孔之步驟進一步詳細地說明。圖46(a)、(b)係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。
於圖46(a)、(b)中,僅圖示強化紗52、犧牲紗504a及由犧牲紗504a形成之連通孔504,膜本體等其他構件省略圖示。
首先,將於離子交換膜中構成強化芯材之強化紗52與於離子交換膜中用以形成連通孔504之犧牲紗504a製成針織織入補強材。然後,於(5)步驟中藉由使犧牲紗504a溶出而形成連通孔504。
藉由上述方法,根據於離子交換膜之膜本體內如何配置強化芯材、連通孔而調整強化紗52與犧牲紗504a之針織織入方法即可,因此較簡便。
於圖46(a)中,例示於紙面沿縱向與橫向之兩方向將強化紗52與犧牲紗504a織入之平織之補強材,可視需要變更補強材中之強化紗52與犧牲紗504a之配置。
(6)塗佈步驟
於(6)步驟中,製備含有藉由原石粉碎或原石熔融獲得之無機物粒子與結合劑之塗佈液,將塗佈液塗佈於(5)步驟中獲得之離子交換膜之表面並加以乾燥,藉此可形成塗佈層。
作為結合劑,較佳為將具有離子交換基前驅物之含氟系聚合物水解於含有二甲基亞碸(DMSO)及氫氧化鉀(KOH)之水溶液中之後,浸漬於鹽酸中將離子交換基之抗衡離子置換為H
+
而成之結合劑(例如,具有羧基或磺基之含氟系聚合物)。藉此,變得容易溶解於下文所述之水或乙醇中,故而較佳。
將該結合劑溶解於混合水與乙醇而成之溶液中。再者,水與乙醇之較佳之體積比為10:1~1:10,更佳為5:1~1:5,進而較佳為2:1~1:2。藉由球磨機使無機物粒子分散於由此獲得之溶解液中而獲得塗佈液。此時,亦可藉由調整分散時之時間、旋轉速度而調整粒子之平均粒徑等。再者,無機物粒子與結合劑之較佳之調配量如上文所述。
塗佈液中之無機物粒子及結合劑之濃度並無特別限定,較佳為製成稀薄之塗佈液。藉此,能夠均勻地塗佈於離子交換膜之表面。
又,於使無機物粒子分散時,亦可將界面活性劑添加於分散液中。作為界面活性劑,較佳為非離子系界面活性劑,例如可列舉日油股份有限公司製造之HS-210、NS-210、P-210、E-212等。
藉由利用噴射塗佈或滾筒塗敷將所獲得之塗佈液塗佈於離子交換膜表面而可獲得離子交換膜。
[微多孔膜]
作為本實施形態之微多孔膜,只要如上文所述,可與電解用電極製成積層體,則無特別限定,可應用各種微多孔膜。
本實施形態之微多孔膜之氣孔率並無特別限定,例如可設為20~90,較佳為30~85。上述氣孔率例如可藉由下述之式算出。
氣孔率=(1-(乾燥狀態之膜重量)/(由根據膜之厚度、寬度、長度算出之體積與膜素材之密度所算出之重量))×100
本實施形態之微多孔膜之平均孔徑並無特別限定,例如可設為0.01 μm~10 μ,較佳為0.05 μm~5 μm。上述平均孔徑例如係沿厚度方向將膜垂直切斷,藉由FE-SEM觀察切斷面。對所觀察之孔之直徑測定100點左右並求出平均值,藉此可求出平均孔徑。
本實施形態之微多孔膜之厚度並無特別限定,例如可設為10 μm~1000 μm,較佳為50 μm~600 μm。上述厚度例如可使用測微計(Mitutoyo股份有限公司製造)等進行測定。
作為如上所述之微多孔膜之具體例,可列舉Agfa公司製造之Zirfon Perl UTP 500(於本實施形態中亦稱為Zirfon膜)、國際公開第2013-183584號說明書、國際公開第2016-203701號說明書等所記載者。
於本實施形態中,較佳為隔膜包含第1離子交換樹脂層、及具有與該第1離子交換樹脂層不同之EW(離子交換當量)之第2離子交換樹脂層。又,較佳為隔膜包含第1離子交換樹脂層及具有與該第1離子交換樹脂層不同之官能基之第2離子交換樹脂層。離子交換當量可藉由所導入之官能基進行調整,關於可導入之官能基係如上文所述。
[固定區域]
於本實施形態中,電解用電極係固定於隔膜之表面之至少一區域,於<第3實施形態>之項中,亦將該1個或2個以上之區域稱為固定區域。本實施形態中之固定區域只要為具有抑制電解用電極與隔膜之分離之功能、且將電解用電極固定於隔膜之部分,則無特別限定,例如,亦存在藉由電解用電極本身成為固定機構而構成固定區域之情形,又,亦存在藉由與電解用電極不同體之固定用構件成為固定機構而構成固定區域之情形。再者,本實施形態中之固定區域可僅存在於與電解時之通電面相對應之位置,亦可延伸至與非通電面相對應之位置。再者,「通電面」與以於陽極室與陰極室之間進行電解質之移動之方式設計之部分相對應。又,所謂「非通電面」意指通電面以外之部分。
進而,於本實施形態中,隔膜之表面中之固定區域之比率(以下亦簡稱為「比率α」)超過0%且未達93%。上述比率可作為固定區域之面積(以下亦簡稱為「面積S3」)相對於隔膜之表面之面積(以下亦簡稱為「面積S1」)的比率而求出。於本實施形態中,所謂「隔膜之表面」意指隔膜所具有之表面中電解用電極所存在之側之表面。再者,於上述隔膜之表面中,未由電解用電極覆蓋之部分之面積亦算作面積S1。
就作為隔膜與電解用電極之積層體而更穩定之觀點而言,上述比率α(=100×S3/S1)超過0%,較佳為0.00000001%以上,更佳為0.0000001%以上。另一方面,如先前技術中所存在般,於藉由熱壓接等方法將隔膜與電極之接觸面之整個面牢固地接著之情形時(即,上述比率成為100%之情形時),成為電極中之接觸面之整個面嵌入隔膜之狀態而物理性地接著。此種接著部分會妨礙鈉離子之膜內之移動,電壓大幅地上升。於本實施形態中,就充分確保離子可自由移動之空間之觀點而言,上述比率未達93%,較佳為90%以下,更佳為70%以下,進而較佳為未達60%。
於本實施形態中,就獲得更良好之電解性能之觀點而言,較佳為對固定區域之面積(面積S3)中僅與通電面相對應之部分之面積(以下亦簡稱為「面積S3'」)進行調整。即,較佳為對面積S3'相對於通電面之面積(以下亦簡稱為「面積S2」)之比率(以下亦簡稱為「比率β」)進行調整。再者,面積S2可作為電解用電極之表面積而特定出(下文對詳細內容進行說明)。具體而言,於本實施形態中,比率β(=100×S3'/S2)較佳為超過0%且未達100%,更佳為0.0000001%以上且未達83%,進而較佳為0.000001%以上且70%以下,進而更佳為0.00001%以上且25%以下。
上述比率α及β例如可以如下方式進行測定。
首先,算出隔膜之表面之面積S1。其次,算出電解用電極之面積S2。此處,面積S1及S2可作為從電解用電極側觀察隔膜與電解用電極之積層體時(參照圖57)之面積而特定出。
再者,電解用電極之形狀並無特別限定,可具有開孔,於形狀為網狀等具有開孔者且(i)開孔率未達90%之情形時,關於S2,其開孔部分亦算入面積S2中,另一方面,於形狀為網狀等具有開孔者且(ii)開孔率為90%以上之情形時,為了充分確保電解性能,而以去除該開孔部分之面積算出S2。此處所謂開孔率係電解用電極中之開孔部分之合計面積S'除以將該開孔部分算入面積中所獲得之電解用電極中之面積S''所獲得之數值(%,100×S'/S'')。
下文對固定區域之面積(面積S3及面積S3')進行說明。
如上所述,隔膜之表面中之上述區域之比率α(%)可藉由算出100×(S3/S1)而求出。又,作為僅與固定區域之通電面相對應之部分之面積相對於通電面之面積之比率β(%),可藉由算出100×(S3'/S2)而求出。
更具體而言,可藉由下文所述之實施例所記載之方法進行測定。
以上述方式特定出之隔膜之表面之面積S1並無特別限定,較佳為通電面之面積S2之1倍以上且5倍以下,更佳為1倍以上且4倍以下,進而較佳為1倍以上且3倍以下。
於本實施形態中,並非對固定區域中之固定結構進行限定,但例如可採用以下所例示之固定結構。再者,各固定結構可僅採用1種,亦可組合2種以上而採用。
於本實施形態中,較佳為於固定區域中電解用電極之至少一部分貫通隔膜而被固定。使用圖47A對該態樣進行說明。
於圖47A中,電解用電極2之至少一部分貫通隔膜3而被固定。如圖47A所示,電解用電極2之一部分為貫通隔膜3之狀態。於圖47A中,係示出電解用電極2為金屬多孔電極之例。即,於圖47A中將複數個電解用電極2之部分獨立表示,但該等相連而表示一體之金屬多孔電極之剖面(於以下之圖48~51中亦相同)。
於此種電極結構下,例如若將特定位置(應成為固定區域之位置)之隔膜3壓抵於電解用電極2,則隔膜3之一部分進入至電解用電極2之表面之凹凸結構內或孔結構內,電極表面之凹部或孔之周圍之凸部分貫通隔膜3,較佳為如圖47A所示,穿透至隔膜3之外表面3b。
如上所述,圖47A之固定結構可藉由將隔膜3壓抵於電解用電極2而製造,於該情形時,於藉由加溫使隔膜3軟化之狀態下進行熱壓接、熱抽吸。藉此,電解用電極2將隔膜3貫通。或者,亦可於將隔膜3熔融之狀態下進行。於該情形時,較佳為於圖47B所示之狀態下從電解用電極2之外表面2b側(背面側)抽吸隔膜3。再者,將隔膜3壓抵於電解用電極2之區域構成「固定區域」。
圖47A所示之固定結構可藉由放大鏡(loupe)、光學顯微鏡或電子顯微鏡進行觀察。又,藉由電解用電極2將隔膜3貫通,利用隔膜3之外表面3b與電解用電極2之外表面2b之間的使用測試機等之導通檢查,可推測出圖47A之固定結構。
於圖47A中,較佳為由隔膜隔開之陽極室、陰極室之電解液不會透過貫通部。因此,較佳為貫通之部分之孔徑小至電解液不會透過之程度。具體而言,較佳為於實施電解試驗時發揮出與不具有貫通部之隔膜相同之性能。或者,較佳為對貫通之部分實施防止電解液之透過之加工。較佳為貫通之部分使用不會因陽極室電解液、陽極室中產生之產物、陰極室電解液、陰極室中產生之產物而溶出、分解之材料。例如較佳為EPDM、氟系之樹脂。更佳為具有離子交換基之氟樹脂。
於本實施形態中,較佳為於固定區域中電解用電極之至少一部分位於隔膜之內部而被固定。使用圖48A對該態樣進行說明。
如上所述,電解用電極2之表面被設為凹凸結構或孔結構。於圖48A所示之實施形態中,電極表面之一部分插入並被固定於特定位置(應成為固定區域之位置)之隔膜3。圖48A所示之固定結構可藉由將隔膜3壓抵於電解用電極2而製造。於該情形時,較佳為於藉由加溫使隔膜3軟化之狀態下進行熱壓接、熱抽吸而形成圖48A之固定結構。或者,亦可將隔膜3熔融而形成圖48A之固定結構。於該情形時,較佳為從電解用電極2之外表面2b側(背面側)抽吸隔膜3。
圖48A所示之固定結構可藉由放大鏡(loupe)、光學顯微鏡或電子顯微鏡進行觀察。較佳為尤其是對樣品進行包埋處理後藉由切片機製作剖面並進行觀察之方法。再者,於圖48A所示之固定結構中,由於電解用電極2未貫通隔膜3,因此並不確認隔膜3之外表面3b與電解用電極2之外表面2b之間的利用導通檢查之導通。
於本實施形態中,較佳為進一步具有用以將隔膜與電解用電極加以固定之固定用構件。使用圖49A~C對該態樣進行說明。
圖49A所示之固定結構係使用與電解用電極2及隔膜3不同體之固定用構件7,且固定用構件7將電解用電極2與隔膜3貫通而加以固定之結構。電解用電極2未必一定被固定用構件7所貫通,以不與隔膜2分離之方式藉由固定用構件7進行固定即可。固定用構件7之材質並無特別限定,作為固定用構件7,例如可使用包含金屬或樹脂等者。於金屬之情形時,可列舉鎳、鎳鉻合金、鈦、不鏽鋼(SUS)等。亦可為該等之氧化物。作為樹脂,可使用氟樹脂(例如,PTFE(聚四氟乙烯)、PFA(四氟乙烯與全氟烷氧基乙烯之共聚物)、ETFE(四氟乙烯與乙烯之共聚物)或下述所記載之隔膜3之材質)或PVDF(聚偏二氟乙烯)、EPDM(乙烯-丙烯-二烯橡膠)、PP(聚乙烯)、PE(聚丙烯)、尼龍、芳香族聚醯胺等。
於本實施形態中,例如使用紗狀之固定用構件(紗狀之金屬或樹脂),如圖49B、49C所示般對電解用電極2與隔膜3之外表面2b、3b間之特定位置(應成為固定區域之位置)進行縫製,藉此亦可進行固定。作為紗狀之樹脂,並無特別限定,例如可列舉PTFE之紗等。又,亦可使用如活褶縫製器(tucker)之固定機構將電解用電極2與隔膜3加以固定。
於圖49A~C中,較佳為由隔膜隔開之陽極室、陰極室之電解液不會透過貫通部。因此,較佳為貫通之部分之孔徑小至電解液不會透過之程度。具體而言,較佳為於實施電解試驗時發揮出與不具有貫通部之隔膜相同之性能。或者,較佳為對貫通之部分實施防止電解液之透過之加工。較佳為貫通之部分使用不會因陽極室電解液、陽極室中產生之產物、陰極室電解液、陰極室中產生之產物而溶出、分解之材料。例如較佳為EPDM、氟系之樹脂。更佳為具有離子交換基之氟樹脂。
圖50所示之固定結構係於電解用電極2與隔膜3之間介置有機樹脂(接著層)進行固定之結構。即,於圖50中係將作為固定用構件7之有機樹脂配置於電解用電極2與隔膜3之間之特定位置(應成為固定區域之位置)而藉由接著進行固定之結構。例如,於電解用電極2之內表面2a、或隔膜3之內表面3a、或電解用電極2及隔膜3之內表面2a、3a之兩者或其中一者塗佈有機樹脂。然後,將電解用電極2與隔膜3貼合,藉此可形成圖50所示之固定結構。有機樹脂之材質並無特別限定,例如可使用氟樹脂(例如,PTFE、PFA、ETFE)、或與上文所述之構成隔膜3之材料相同之樹脂等。又,亦可適當地使用市售之氟系接著劑、PTFE分散液等。進而,亦可使用通用之乙酸乙烯酯系接著劑、乙烯-乙酸乙烯酯共聚合系接著劑、丙烯酸系樹脂系接著劑、α-烯烴系接著劑、苯乙烯丁二烯橡膠系乳膠接著劑、氯乙烯樹脂系接著劑、氯丁二烯系接著劑、腈橡膠系接著劑、胺基甲酸酯橡膠系接著劑、環氧系接著劑、聚矽氧樹脂系接著劑、改性聚矽氧系接著劑、環氧-改性聚矽氧樹脂系接著劑、矽烷化胺基甲酸酯樹脂系接著劑、氰基丙烯酸酯系接著劑等。
於本實施形態中,可使用溶於電解液或於電解中溶解、分解之有機樹脂。作為溶於電解液或於電解中溶解、分解之有機樹脂,並不限定於以下,例如可列舉:乙酸乙烯酯系接著劑、乙烯-乙酸乙烯酯共聚合系接著劑、丙烯酸系樹脂系接著劑、α-烯烴系接著劑、苯乙烯丁二烯橡膠系乳膠接著劑、氯乙烯樹脂系接著劑、氯丁二烯系接著劑、腈橡膠系接著劑、胺基甲酸酯橡膠系接著劑、環氧系接著劑、聚矽氧樹脂系接著劑、改性聚矽氧系接著劑、環氧-改性聚矽氧樹脂系接著劑、矽烷化胺基甲酸酯樹脂系接著劑、氰基丙烯酸酯系接著劑等。
圖50所示之固定結構可藉由光學顯微鏡或電子顯微鏡進行觀察。較佳為尤其是對樣品進行包埋處理後藉由切片機製作剖面並進行觀察之方法。
於本實施形態中,較佳為固定用構件之至少一部分從外部將隔膜與電解用電極固持。使用圖51A對該態樣進行說明。
圖51A所示之固定結構係從外部將電解用電極2與隔膜3固持並加以固定之結構。即,藉由作為固定用構件7之固持構件將電解用電極2之外表面2b與隔膜3之外表面3b之間夾持並固定。於圖51A所示之固定結構中,亦包括固持構件陷入電解用電極2或隔膜3之狀態。作為固持構件,例如可列舉膠帶、夾具等。
於本實施形態中,亦可使用溶於電解液之固持構件。作為溶於電解液之固持構件,例如可列舉PET製之膠帶、夾具、PVA(polyvinyl alcohol,聚乙烯醇)製之膠帶、夾具等。
圖51A所示之固定結構與圖47~圖50不同,並非將電解用電極2與隔膜3之界面接合者,電解用電極2與隔膜3之各內表面2a、3a僅處於接觸或相對向之狀態,藉由去除固持構件,可將電解用電極2與隔膜3之固定狀態加以解除而分離。
圖51A並未示出,但亦可使用固持構件將電解用電極2與隔膜3固定於電解池。
例如可以回折PTFE製之膠帶夾住隔膜與電極之方式進行固定。
又,於本實施形態中,較佳為固定用構件之至少一部分藉由磁力將隔膜與電解用電極進行固定。使用圖51B對該態樣進行說明。
圖51B所示之固定結構係從外部將電解用電極2與隔膜3固持並加以固定之結構。與圖51A之區別在於使用1對磁石作為用作固定用構件之固持構件之方面。於圖51B所示之固定結構之態樣中,於將積層體1安裝於電解槽後,於電解槽運轉時可將固持構件直接殘留,亦可將其從積層體1去除。
圖51B並未示出,但亦可使用固持構件將電解用電極2與隔膜3固定於電解池。又,於電解池之材質之一部分使用與磁石接著之磁性材料之情形時,亦可將1種固持材料設置於隔膜面側,將電解池、電解用電極2及隔膜3夾住而固定。
再者,亦可設置複數列固定區域。即,可從積層體1之輪廓側起朝向內側配置1、2、3、…n條固定區域。n為1以上之整數。又,第m號(m<n)固定區域與第L號(m<L≦n)固定區域可藉由不同之固定圖案形成。
形成於通電部之固定區域較佳為線對稱之形狀。藉此,有能夠抑制應力集中之傾向。例如,若將正交之2個方向設為X方向與Y方向,則可於X方向與Y方向之各方向各配置1條、或於X方向與Y方向之各方向等間隔地各配置複數條而構成固定區域。並非對X方向及Y方向之固定區域之條數進行限定,但較佳為於X方向及Y方向分別設為100條以下。又,就確保通電部之面性之觀點而言,X方向及Y方向之固定區域之條數宜分別為50條以下。
於本實施形態中之固定區域中,於具有圖47A或圖49所示之固定結構之情形時,就防止由陽極與陰極接觸引起之短路之觀點而言,較佳為於固定區域之膜面上塗佈密封材。作為密封材,例如可使用上述接著劑中所說明之素材。
於使用固定用構件之情形時,於求面積S3及面積S3'時,關於該固定用構件重複之部分,並不將重複量算入面積S3及面積S3'中。例如,於將上文所述之PTFE紗作為固定用構件進行固定時,PTFE紗彼此交叉之部分作為重複量而不算入面積中。又,於將上文所述之PTFE膠帶作為固定用構件進行固定時,PTFE膠帶彼此重疊之部分作為重複量而不算入面積中。
又,於將上文所述之PTFE紗或接著劑作為固定用構件進行固定之情形時,存在於電解用電極及/或隔膜之背面側之面積亦算入面積S3及面積S3'中。
本實施形態中之積層體可如上所述,於各種位置具有各種固定區域,但較佳為尤其是於不存在固定區域之部分(非固定區域),電解用電極滿足上述「承受力」。即,較佳為電解用電極之非固定區域中之每單位質量·單位面積所承受之力未達1.5 N/mg・cm
2
。
[電解槽]
本實施形態之電解槽包含本實施形態之積層體。以下,以使用離子交換膜作為隔膜進行食鹽電解之情形為例,對電解槽之一實施形態進行詳細說明。
[電解池]
圖52係電解池1之剖面圖。
電解池1具備陽極室10、陰極室20、設置於陽極室10及陰極室20之間之間隔壁30、設置於陽極室10之陽極11、及設置於陰極室20之陰極21。視需要亦可具備具有基材18a與形成於該基材18a上之逆向電流吸收層18b且設置於陰極室內之逆向電流吸收體18。屬於1個電解池1之陽極11及陰極21互相電性連接。換言之,電解池1具備如下陰極結構體。陰極結構體40具備陰極室20、設置於陰極室20之陰極21、及設置於陰極室20內之逆向電流吸收體18,逆向電流吸收體18如圖56所示具有基材18a與形成於該基材18a上之逆向電流吸收層18b,陰極21與逆向電流吸收層18b電性連接。陰極室20進而具有集電體23、支持該集電體之支持體24、及金屬彈性體22。金屬彈性體22係設置於集電體23及陰極21之間。支持體24係設置於集電體23及間隔壁30之間。集電體23經由金屬彈性體22而與陰極21電性連接。間隔壁30經由支持體24而與集電體23電性連接。因此,間隔壁30、支持體24、集電體23、金屬彈性體22及陰極21係電性連接。陰極21及逆向電流吸收層18b係電性連接。陰極21及逆向電流吸收層可直接連接,亦可經由集電體、支持體、金屬彈性體或間隔壁等而間接連接。陰極21之表面整體較佳為由用於還原反應之觸媒層所被覆。又,電性連接之形態可為分別直接將間隔壁30與支持體24、支持體24與集電體23、集電體23與金屬彈性體22安裝,並且於金屬彈性體22上積層陰極21之形態。作為將該等各構成構件互相直接安裝之方法,可列舉焊接等。又,亦可將逆向電流吸收體18、陰極21、及集電體23總稱為陰極結構體40。
圖53係電解槽4內鄰接之2個電解池1之剖面圖。圖54表示電解槽4。圖55表示組裝電解槽4之步驟。如圖53所示,將電解池1、陽離子交換膜2、電解池1依序串聯排列。於電解槽內鄰接之2個電解池中之一電解池1之陽極室與另一電解池1之陰極室之間配置離子交換膜2。即,電解池1之陽極室10及與其鄰接之電解池1之陰極室20係由陽離子交換膜2隔開。如圖54所示,電解槽4包含介隔離子交換膜2而串聯連接之複數個電解池1。即,電解槽4係具備串聯配置之複數個電解池1、及配置於鄰接之電解池1之間之離子交換膜2的複極式電解槽。如圖55所示,電解槽4係藉由介隔離子交換膜2將複數個電解池1串聯配置並利用壓製器5連結而組裝。
電解槽4具有連接於電源之陽極端子7與陰極端子6。於電解槽4內串聯連結之複數個電解池1中位於最靠端之電解池1之陽極11係電性連接於陽極端子7。於電解槽4內串聯連結之複數個電解池2中位於陽極端子7之相反側之端之電解池的陰極21係電性連接於陰極端子6。電解時之電流從陽極端子7側起,經過各電解池1之陽極及陰極而流向陰極端子6。再者,可於連結之電解池1之兩端配置僅具有陽極室之電解池(陽極終端池)與僅具有陰極室之電解池(陰極終端池)。於該情形時,將陽極端子7連接於配置於其一端之陽極終端池,將陰極端子6連接於配置於另一端之陰極終端池。
於進行鹽水之電解之情形時,向各陽極室10供給鹽水,向陰極室20供給純水或低濃度之氫氧化鈉水溶液。各液體係從電解液供給管(圖中省略)起,經過電解液供給軟管(圖中省略)而向各電解池1供給。又,電解液及電解之產物係由電解液回收管(圖中省略)所回收。於電解中,鹽水中之鈉離子從一電解池1之陽極室10起,通過離子交換膜2,向旁邊之電解池1之陰極室20移動。由此電解中之電流沿將電解池1串聯連結之方向流通。即,電流係經由陽離子交換膜2而從陽極室10流向陰極室20。伴隨鹽水之電解,於陽極11側產生氯氣,於陰極21側產生氫氧化鈉(溶質)與氫氣。
(陽極室)
陽極室10具有陽極11或陽極饋電體11。於將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極饋電體發揮功能。於不將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極發揮功能。又,陽極室10較佳為具有向陽極室10供給電解液之陽極側電解液供給部、配置於陽極側電解液供給部之上方且以與間隔壁30大致平行或傾斜之方式配置之擋板、及配置於擋板之上方且從混入有氣體之電解液中分離氣體之陽極側氣液分離部。
(陽極)
於不將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極11。作為陽極11,可使用所謂DSA(註冊商標)等金屬電極。所謂DSA係藉由以釕、銥、鈦作為成分之氧化物被覆表面之鈦基材之電極。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陽極饋電體)
於將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極饋電體11。作為陽極饋電體11,可使用所謂DSA(註冊商標)等金屬電極,亦可使用未形成有觸媒塗層之鈦。又,亦可使用使觸媒塗層厚度變薄之DSA。進而,亦可使用使用過之陽極。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陽極側電解液供給部)
陽極側電解液供給部係向陽極室10供給電解液者,其連接於電解液供給管。陽極側電解液供給部較佳為配置於陽極室10之下方。作為陽極側電解液供給部,例如可使用表面形成有開口部之管(分散管)等。該管更佳為以沿陽極11之表面平行於電解池之底部19之方式配置。該管係連接於向電解池1內供給電解液之電解液供給管(液供給噴嘴)。從液供給噴嘴供給之電解液藉由管被搬送至電解池1內,從設置於管之表面之開口部向陽極室10之內部供給。藉由將管以沿陽極11之表面平行於電解池之底部19之方式配置,能夠將電解液均勻地供給至陽極室10之內部,故而較佳。
(陽極側氣液分離部)
陽極側氣液分離部較佳為配置於擋板之上方。於電解中,陽極側氣液分離部具有將氯氣等產生氣體與電解液分離之功能。再者,只要無特別說明,則所謂上方意指圖52之電解池1中之上方向,所謂下方意指圖52之電解池1中之下方向。
電解時,若電解池1中產生之產生氣體與電解液成為混相(氣液混相)而被排出至系外,則存在因電解池1內部之壓力變動導致產生振動而引起離子交換膜之物理破損之情形。為了抑制該情形,較佳為於本實施形態中之電解池1中設置用以將氣體與液體分離之陽極側氣液分離部。較佳為於陽極側氣液分離部設置用以消除氣泡之消泡板。藉由在氣液混相流通過消泡板時氣泡破裂,而可分離為電解液與氣體。其結果為,能夠防止電解時之振動。
(擋板)
擋板較佳為配置於陽極側電解液供給部之上方,且以與間隔壁30大致平行或傾斜之方式配置。擋板係控制陽極室10之電解液之流動之間隔板。藉由設置擋板,可使電解液(鹽水等)於陽極室10內部循環,使其濃度變得均勻。為了引起內部循環,擋板較佳為以將陽極11附近之空間與間隔壁30附近之空間隔開之方式配置。就該觀點而言,擋板較佳為以與陽極11及間隔壁30之各表面相對向之方式設置。於由擋板分隔之陽極附近之空間,藉由進行電解,電解液濃度(鹽水濃度)降低,又,產生氯氣等產生氣體。藉此,於由擋板分隔之陽極11附近之空間與間隔壁30附近之空間產生氣液之比重差。利用該情況,能夠促進陽極室10中之電解液之內部循環,使陽極室10之電解液之濃度分佈變得更均勻。
再者,於圖52並未圖示,但亦可於陽極室10之內部另行設置集電體。作為該集電體,亦可設為與下文所述之陰極室之集電體相同之材料或構成。又,於陽極室10中,亦可使陽極11本身作為集電體發揮功能。
(間隔壁)
間隔壁30係配置於陽極室10與陰極室20之間。間隔壁30有時亦稱為間隔件,係將陽極室10與陰極室20進行劃分者。作為間隔壁30,可使用作為電解用之間隔件所公知者,例如可列舉於陰極側焊接包含鎳之板、於陽極側焊接包含鈦之板之間隔壁等。
(陰極室)
陰極室20於將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極饋電體發揮功能,於不將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極發揮功能。於具有逆向電流吸收體之情形時,陰極或陰極饋電體21與逆向電流吸收體係電性連接。又,陰極室20較佳為與陽極室10同樣,亦具有陰極側電解液供給部、陰極側氣液分離部。再者,構成陰極室20之各部位中,關於與構成陽極室10之各部位相同者省略說明。
(陰極)
於不將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極21。陰極21較佳為具有鎳基材與被覆鎳基材之觸媒層。作為鎳基材上之觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可視需要對陰極21實施還原處理。再者,作為陰極21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陰極饋電體)
於將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極饋電體21。可對陰極饋電體21被覆觸媒成分。該觸媒成分可為原本用作陰極而殘存者。作為觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可使用未形成有觸媒塗層之鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。再者,作為陰極饋電體21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(逆向電流吸收層)
可選擇具有較上文所述之陰極之觸媒層用元素的氧化還原電位更低之氧化還原電位之材料作為逆向電流吸收層之材料。例如可列舉鎳或鐵等。
(集電體)
陰極室20較佳為具備集電體23。藉此,集電效果提高。於本實施形態中,集電體23較佳為多孔板,且以與陰極21之表面大致平行之方式配置。
作為集電體23,例如較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。集電體23可為該等金屬之混合物、合金或複合氧化物。再者,集電體23之形狀只要為作為集電體發揮功能之形狀,則可為任意形狀,可為板狀、網狀。
(金屬彈性體)
藉由在集電體23與陰極21之間設置金屬彈性體22,將串聯連接之複數個電解池1之各陰極21壓抵於離子交換膜2,各陽極11與各陰極21之間之距離變短,可降低對串聯連接之複數個電解池1整體施加之電壓。藉由電壓降低,可降低消耗電量。又,藉由設置金屬彈性體22,於將含有本實施形態之電解用電極之積層體設置於電解池時,藉由金屬彈性體22之壓抵壓,可將該電解用電極穩定地維持於起始位置。
作為金屬彈性體22,可使用螺旋彈簧、線圈等彈簧構件、緩衝性之墊等。作為金屬彈性體22,可考慮壓抵離子交換膜之應力等而適當採用適宜者。可將金屬彈性體22設置於陰極室20側之集電體23之表面上,亦可設置於陽極室10側之間隔壁之表面上。通常以陰極室20小於陽極室10之方式劃分兩室,因此就框體之強度等觀點而言,較佳為將金屬彈性體22設置於陰極室20之集電體23與陰極21之間。又,金屬彈性體23較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。
(支持體)
陰極室20較佳為具備將集電體23與間隔壁30電性連接之支持體24。藉此,能夠效率良好地流通電流。
支持體24較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。又,作為支持體24之形狀,只要為能夠支持集電體23之形狀,則可為任意形狀,可為棒狀、板狀或網狀。支持體24例如為板狀。複數個支持體24係配置於間隔壁30與集電體23之間。複數個支持體24係以各自之面互相平行之方式排列。支持體24係以大致垂直於間隔壁30及集電體23之方式配置。
(陽極側墊片、陰極側墊片)
陽極側墊片較佳為配置於構成陽極室10之框體表面。陰極側墊片較佳為配置於構成陰極室20之框體表面。1個電解池所具備之陽極側墊片及與其鄰接之電解池之陰極側墊片以夾持離子交換膜2之方式將電解池彼此連接(參照圖52、53)。藉由該等墊片,於介隔離子交換膜2將複數個電解池1串聯連接時,能夠對連接處賦予氣密性。
所謂墊片係將離子交換膜與電解池之間密封者。作為墊片之具體例,可列舉中央形成有開口部之邊框狀之橡膠製片等。對於墊片要求對腐蝕性之電解液或所產生之氣體等具有耐性而可長期使用。因此,就耐化學品性或硬度之方面而言,通常可使用乙烯-丙烯-二烯橡膠(EPDM橡膠)、乙烯-丙烯橡膠(EPM橡膠)之硫化物或過氧化物交聯物等作為墊片。又,視需要亦可使用以聚四氟乙烯(PTFE)或四氟乙烯-全氟烷基乙烯醚共聚物(PFA)等氟系樹脂被覆與液體相接之區域(接液部)之墊片。該等墊片只要以不妨礙電解液之流動之方式分別具有開口部即可,其形狀並無特別限定。例如沿構成陽極室10之陽極室框或構成陰極室20之陰極室框之各開口部之周緣,藉由接著劑等貼附邊框狀之墊片。此外,於例如介隔離子交換膜2連接2個電解池1之情形時(參照圖53),介隔離子交換膜2將貼附有墊片之各電解池1緊固即可。藉此,能夠抑制電解液、因電解而產生之鹼金屬氫氧化物、氯氣、氫氣等漏至電解池1之外部之情況。
(離子交換膜2)
作為離子交換膜2,如上述離子交換膜之項所記載。
(水電解)
本實施形態之進行水電解之情形時之電解槽係具有將上述進行食鹽電解之情形時之電解槽中之離子交換膜變更為微多孔膜之構成者。又,於所供給之原料為水之方面與上述進行食鹽電解之情形時之電解槽不同。關於其他構成,進行水電解之情形時之電解槽亦可採用與進行食鹽電解之情形時之電解槽相同之構成。於食鹽電解之情形時,由於在陽極室產生氯氣,因此陽極室之材質使用鈦,於水電解之情形時,由於在陽極室僅產生氧氣,因此可使用與陰極室之材質相同者。例如可列舉鎳等。又,陽極塗層適宜為產生氧氣用之觸媒塗層。作為觸媒塗層之例,可列舉鉑族金屬及過渡金屬族之金屬、氧化物、氫氧化物等。例如可使用鉑、銥、鈀、釕、鎳、鈷、鐵等元素。
<第4實施形態>
此處,一邊參照圖63~90一邊對本發明之第4實施形態進行詳細地說明。
[電解槽]
第4實施形態(以下於<第4實施形態>之項中簡稱為「本實施形態」)之電解槽具備陽極、支持上述陽極之陽極框、配置於上述陽極框上之陽極側墊片、與上述陽極相對向之陰極、支持上述陰極之陰極框、配置於上述陰極框上且與上述陽極側墊片相對向之陰極側墊片、配置於上述陽極側墊片與上述陰極側墊片之間之隔膜與電解用電極之積層體,且上述積層體之至少一部分由上述陽極側墊片及上述陰極側墊片所夾持,將上述電解用電極設為50 mm×50 mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度0.2 cm/s及通氣量0.4 cc/cm
2
/s之情形時之通氣阻力為24 kPa・s/m以下。由於以上述方式構成,因此本實施形態之電解槽之電解性能優異並且能夠防止隔膜之損傷。
本實施形態之電解槽係包含上述構成構件者,換言之,係包含電解池者。以下,以使用離子交換膜作為隔膜進行食鹽電解之情形為例,對電解槽之一實施形態進行詳細說明。
[電解池]
首先,對可用作本實施形態之電解槽之構成單元的電解池進行說明。圖63係電解池1之剖面圖。
電解池1具備陽極室10、陰極室20、設置於陽極室10及陰極室20之間之間隔壁30、設置於陽極室10之陽極11、及設置於陰極室20之陰極21。視需要亦可具備具有基材18a與形成於該基材18a上之逆向電流吸收層18b且設置於陰極室內之逆向電流吸收體18。屬於1個電解池1之陽極11及陰極21互相電性連接。換言之,電解池1具備如下陰極結構體。陰極結構體40具備陰極室20、設置於陰極室20之陰極21、及設置於陰極室20內之逆向電流吸收體18,逆向電流吸收體18如圖67所示具有基材18a與形成於該基材18a上之逆向電流吸收層18b,陰極21與逆向電流吸收層18b電性連接。陰極室20進而具有集電體23、支持該集電體之支持體24、及金屬彈性體22。金屬彈性體22係設置於集電體23及陰極21之間。支持體24係設置於集電體23及間隔壁30之間。集電體23經由金屬彈性體22而與陰極21電性連接。間隔壁30經由支持體24而與集電體23電性連接。因此,間隔壁30、支持體24、集電體23、金屬彈性體22及陰極21係電性連接。陰極21及逆向電流吸收層18b係電性連接。陰極21及逆向電流吸收層可直接連接,亦可經由集電體、支持體、金屬彈性體或間隔壁等而間接連接。陰極21之表面整體較佳為由用於還原反應之觸媒層所被覆。又,電性連接之形態可為分別直接將間隔壁30與支持體24、支持體24與集電體23、集電體23與金屬彈性體22安裝,並且於金屬彈性體22上積層陰極21之形態。作為將該等各構成構件互相直接安裝之方法,可列舉焊接等。又,亦可將逆向電流吸收體18、陰極21、及集電體23總稱為陰極結構體40。
圖64係電解槽4內鄰接之2個電解池1之剖面圖。圖65表示電解槽4。圖66表示組裝電解槽4之步驟。
於先前之電解槽中,如圖64A所示,將電解池1、隔膜(此處為陽離子交換膜)2、電解池1依序串聯排列,於電解槽內鄰接之2個電解池中之一電解池1之陽極室與另一電解池1之陰極室之間配置離子交換膜2。即,於電解槽中,通常電解池1之陽極室10及與其鄰接之電解池1之陰極室20係由陽離子交換膜2隔開。
另一方面,於本實施形態中,如圖64B所示,將電解池1、具有隔膜(此處為陽離子交換膜)2與電解用電極(此處為更新用陰極)21a之積層體25、電解池1依序串聯排列,積層體25於其一部分(圖64B中為上端部)中係被夾持於陽極墊片12及陰極墊片13之間。
又,如圖65所示,電解槽4包含介隔離子交換膜2而串聯連接之複數個電解池1。即,電解槽4係具備串聯配置之複數個電解池1、及配置於鄰接之電解池1之間之離子交換膜2的複極式電解槽。如圖66所示,電解槽4係藉由介隔離子交換膜2將複數個電解池1串聯配置並利用壓製器5連結而組裝。
電解槽4具有連接於電源之陽極端子7與陰極端子6。於電解槽4內串聯連結之複數個電解池1中位於最靠端之電解池1之陽極11係電性連接於陽極端子7。於電解槽4內串聯連結之複數個電解池2中位於陽極端子7之相反側之端之電解池的陰極21係電性連接於陰極端子6。電解時之電流從陽極端子7側起,經過各電解池1之陽極及陰極而流向陰極端子6。再者,可於連結之電解池1之兩端配置僅具有陽極室之電解池(陽極終端池)與僅具有陰極室之電解池(陰極終端池)。於該情形時,將陽極端子7連接於配置於其一端之陽極終端池,將陰極端子6連接於配置於另一端之陰極終端池。
於進行鹽水之電解之情形時,向各陽極室10供給鹽水,向陰極室20供給純水或低濃度之氫氧化鈉水溶液。各液體係從電解液供給管(圖中省略)起,經過電解液供給軟管(圖中省略)而向各電解池1供給。又,電解液及電解之產物係由電解液回收管(圖中省略)所回收。於電解中,鹽水中之鈉離子從一電解池1之陽極室10起,通過離子交換膜2,向旁邊之電解池1之陰極室20移動。由此電解中之電流沿將電解池1串聯連結之方向流通。即,電流係經由陽離子交換膜2而從陽極室10流向陰極室20。伴隨鹽水之電解,於陽極11側產生氯氣,於陰極21側產生氫氧化鈉(溶質)與氫氣。
如上文所述,電解槽中之隔膜、陰極及陽極通常伴隨電解槽之運轉,其性能會劣化,最終必須更換為新品,於僅更換隔膜之情形時,可藉由將既有之隔膜從電解池之間抽出並插入新隔膜而簡單地更新,但於藉由焊接進行陽極或陰極之更換之情形時,必需專用之設備,因此較繁雜。
另一方面,於本實施形態中,如上所述,積層體25於其一部分(圖64B中為上端部)中係被夾持於陽極墊片12及陰極墊片13之間。尤其是於圖64B所示之例中,隔膜(此處為陽離子交換膜)2與電解用電極(此處為更新用陰極)21a至少於該等之積層體之上端部可藉由對從陽極墊片12朝向積層體25之方向之按壓、及對從陰極墊片13朝向積層體25之方向之按壓進行固定。於該情形時,無需藉由焊接將積層體25(尤其是電解用電極)固定於既有之構件(例如既有陰極),故而較佳。即,於電解用電極及隔膜之兩者被陽極側墊片及上述陰極側墊片所夾持之情形時,有提高電解槽中之電極更新時之作業效率的傾向,故而較佳。
進而,根據本實施形態之電解槽之構成,隔膜與電解用電極以積層體之形式被充分固定,因此能夠獲得優異之電解性能。
(陽極室)
陽極室10具有陽極11或陽極饋電體11。作為此處所謂饋電體意指劣化之電極(即既有電極)或未形成有觸媒塗層之電極等。於將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極饋電體發揮功能。於不將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極發揮功能。又,陽極室10較佳為具有向陽極室10供給電解液之陽極側電解液供給部、配置於陽極側電解液供給部之上方且以與間隔壁30大致平行或傾斜之方式配置之擋板、及配置於擋板之上方且從混入有氣體之電解液中分離氣體之陽極側氣液分離部。
(陽極)
於不將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框(即,陽極框)內設置有陽極11。作為陽極11,可使用所謂DSA(註冊商標)等金屬電極。所謂DSA係藉由以釕、銥、鈦作為成分之氧化物被覆表面之鈦基材之電極。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陽極饋電體)
於將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極饋電體11。作為陽極饋電體11,可使用所謂DSA(註冊商標)等金屬電極,亦可使用未形成有觸媒塗層之鈦。又,亦可使用使觸媒塗層厚度變薄之DSA。進而,亦可使用使用過之陽極。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陽極側電解液供給部)
陽極側電解液供給部係向陽極室10供給電解液者,其連接於電解液供給管。陽極側電解液供給部較佳為配置於陽極室10之下方。作為陽極側電解液供給部,例如可使用表面形成有開口部之管(分散管)等。該管更佳為以沿陽極11之表面平行於電解池之底部19之方式配置。該管係連接於向電解池1內供給電解液之電解液供給管(液供給噴嘴)。從液供給噴嘴供給之電解液藉由管被搬送至電解池1內,從設置於管之表面之開口部向陽極室10之內部供給。藉由將管以沿陽極11之表面平行於電解池之底部19之方式配置,能夠將電解液均勻地供給至陽極室10之內部,故而較佳。
(陽極側氣液分離部)
陽極側氣液分離部較佳為配置於擋板之上方。於電解中,陽極側氣液分離部具有將氯氣等產生氣體與電解液分離之功能。再者,只要無特別說明,則所謂上方意指圖63之電解池1中之上方向,所謂下方意指圖63之電解池1中之下方向。
電解時,若電解池1中產生之產生氣體與電解液成為混相(氣液混相)而被排出至系外,則存在因電解池1內部之壓力變動導致產生振動而引起離子交換膜之物理破損之情形。為了抑制該情形,較佳為於本實施形態中之電解池1中設置用以將氣體與液體分離之陽極側氣液分離部。較佳為於陽極側氣液分離部設置用以消除氣泡之消泡板。藉由在氣液混相流通過消泡板時氣泡破裂,而可分離為電解液與氣體。其結果為,能夠防止電解時之振動。
(擋板)
擋板較佳為配置於陽極側電解液供給部之上方,且以與間隔壁30大致平行或傾斜之方式配置。擋板係控制陽極室10之電解液之流動之間隔板。藉由設置擋板,可使電解液(鹽水等)於陽極室10內部循環,使其濃度變得均勻。為了引起內部循環,擋板較佳為以將陽極11附近之空間與間隔壁30附近之空間隔開之方式配置。就該觀點而言,擋板較佳為以與陽極11及間隔壁30之各表面相對向之方式設置。於由擋板分隔之陽極附近之空間,藉由進行電解,電解液濃度(鹽水濃度)降低,又,產生氯氣等產生氣體。藉此,於由擋板分隔之陽極11附近之空間與間隔壁30附近之空間產生氣液之比重差。利用該情況,能夠促進陽極室10中之電解液之內部循環,使陽極室10之電解液之濃度分佈變得更均勻。
再者,於圖63並未圖示,但亦可於陽極室10之內部另行設置集電體。作為該集電體,亦可設為與下文所述之陰極室之集電體相同之材料或構成。又,於陽極室10中,亦可使陽極11本身作為集電體發揮功能。
(間隔壁)
間隔壁30係配置於陽極室10與陰極室20之間。間隔壁30有時亦稱為間隔件,係將陽極室10與陰極室20進行劃分者。作為間隔壁30,可使用作為電解用之間隔件所公知者,例如可列舉於陰極側焊接包含鎳之板、於陽極側焊接包含鈦之板之間隔壁等。
(陰極室)
陰極室20於將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極饋電體發揮功能,於不將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極發揮功能。於具有逆向電流吸收體之情形時,陰極或陰極饋電體21與逆向電流吸收體係電性連接。又,陰極室20較佳為與陽極室10同樣,亦具有陰極側電解液供給部、陰極側氣液分離部。再者,構成陰極室20之各部位中,關於與構成陽極室10之各部位相同者省略說明。
(陰極)
於不將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框(即,陰極框)內設置有陰極21。陰極21較佳為具有鎳基材與被覆鎳基材之觸媒層。作為鎳基材上之觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可視需要對陰極21實施還原處理。再者,作為陰極21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陰極饋電體)
於將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極饋電體21。可對陰極饋電體21被覆觸媒成分。該觸媒成分可為原本用作陰極而殘存者。作為觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可使用未形成有觸媒塗層之鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。再者,作為陰極饋電體21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(逆向電流吸收層)
可選擇具有較上文所述之陰極之觸媒層用元素的氧化還原電位更低之氧化還原電位之材料作為逆向電流吸收層之材料。例如可列舉鎳或鐵等。
(集電體)
陰極室20較佳為具備集電體23。藉此,集電效果提高。於本實施形態中,集電體23較佳為多孔板,且以與陰極21之表面大致平行之方式配置。
作為集電體23,例如較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。集電體23可為該等金屬之混合物、合金或複合氧化物。再者,集電體23之形狀只要為作為集電體發揮功能之形狀,則可為任意形狀,可為板狀、網狀。
(金屬彈性體)
藉由在集電體23與陰極21之間設置金屬彈性體22,將串聯連接之複數個電解池1之各陰極21壓抵於離子交換膜2,各陽極11與各陰極21之間之距離變短,可降低對串聯連接之複數個電解池1整體施加之電壓。藉由電壓降低,可降低消耗電量。又,藉由設置金屬彈性體22,於將含有本實施形態中之電解用電極之積層體設置於電解池時,藉由金屬彈性體22之壓抵壓,可將該電解用電極穩定地維持於起始位置。
作為金屬彈性體22,可使用螺旋彈簧、線圈等彈簧構件、緩衝性之墊等。作為金屬彈性體22,可考慮壓抵離子交換膜之應力等而適當採用適宜者。可將金屬彈性體22設置於陰極室20側之集電體23之表面上,亦可設置於陽極室10側之間隔壁之表面上。通常以陰極室20小於陽極室10之方式劃分兩室,因此就框體之強度等觀點而言,較佳為將金屬彈性體22設置於陰極室20之集電體23與陰極21之間。又,金屬彈性體23較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。
(支持體)
陰極室20較佳為具備將集電體23與間隔壁30電性連接之支持體24。藉此,能夠效率良好地流通電流。
支持體24較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。又,作為支持體24之形狀,只要為能夠支持集電體23之形狀,則可為任意形狀,可為棒狀、板狀或網狀。支持體24例如為板狀。複數個支持體24係配置於間隔壁30與集電體23之間。複數個支持體24係以各自之面互相平行之方式排列。支持體24係以大致垂直於間隔壁30及集電體23之方式配置。
(陽極側墊片、陰極側墊片)
陽極側墊片較佳為配置於構成陽極室10之框體表面。陰極側墊片較佳為配置於構成陰極室20之框體表面。1個電解池所具備之陽極側墊片及與其鄰接之電解池之陰極側墊片以夾持積層體25之方式將電解池彼此連接(參照圖64B)。藉由該等墊片,於介隔積層體25將複數個電解池1串聯連接時,能夠對連接處賦予氣密性。
所謂墊片係將離子交換膜與電解池之間密封者。作為墊片之具體例,可列舉中央形成有開口部之邊框狀之橡膠製片等。對於墊片要求對腐蝕性之電解液或所產生之氣體等具有耐性而可長期使用。因此,就耐化學品性或硬度之方面而言,通常可使用乙烯-丙烯-二烯橡膠(EPDM橡膠)、乙烯-丙烯橡膠(EPM橡膠)之硫化物或過氧化物交聯物等作為墊片。又,視需要亦可使用以聚四氟乙烯(PTFE)或四氟乙烯-全氟烷基乙烯醚共聚物(PFA)等氟系樹脂被覆與液體相接之區域(接液部)之墊片。該等墊片只要以不妨礙電解液之流動之方式分別具有開口部即可,其形狀並無特別限定。例如沿構成陽極室10之陽極室框或構成陰極室20之陰極室框之各開口部之周緣,藉由接著劑等貼附邊框狀之墊片。藉由以陽極墊片及陰極墊片夾持積層體25,能夠抑制電解液、因電解而產生之鹼金屬氫氧化物、氯氣、氫氣等漏至電解池1之外部之情況。
[積層體]
本實施形態中之積層體具有隔膜與電解用電極。本實施形態中之積層體能夠提高電解槽中之電極更新時之作業效率,進而更新後亦能夠表現出優異之電解性能。即,藉由本實施形態中之積層體,於更新電極時,無需伴隨剝離固定於電解池之既有電極等繁雜之作業,藉由如與隔膜之更新相同之簡單之作業即可更新電極,因此作業效率大幅提高。
進而,藉由本實施形態中之積層體,能夠將既有電解池之電解性能維持為與新品時之性能相同或有所提高。因此,固定於既有之電解池且作為陽極、陰極發揮功能之電極僅作為饋電體發揮功能即可,能夠大幅地減少觸媒塗層或者甚至無觸媒塗層。
[電解用電極]
本實施形態中之電解用電極於將該電解用電極設為50 mm×50 mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度0.2 cm/s及通氣量0.4 cc/cm
2
/s之情形時(以下亦稱為「測定條件1」)之通氣阻力(以下亦稱為「通氣阻力1」)為24 kPa・s/m以下。通氣阻力較大意指空氣難以流動,指密度較高之狀態。於該狀態下,電解之產物停留於電極中,反應基質難以擴散至電極內部,因此電解性能(電壓等)變差。又,膜表面之濃度提高。具體而言,於陰極面苛性濃度提高,於陽極面鹽水之供給性降低。其結果為,由於產物以高濃度滯留於隔膜與電極相接之界面,因此導致隔膜之損傷,亦導致陰極面上之電壓上升及膜損傷、陽極面上之膜損傷。於本實施形態中,為了防止該等異常,而將通氣阻力設為24 kPa・s/m以下。
再者,於本實施形態中,若通氣阻力大至一定程度以上,則於陰極之情形時有電極中產生之NaOH滯留於電極與隔膜之界面而成為高濃度之傾向,於陽極之情形時有鹽水供給性降低而鹽水濃度成為低濃度之傾向,就將可能因此種滯留產生之對隔膜之損傷防患於未然之方面而言,較佳為未達0.19 kPa・s/m,更佳為0.15 kPa・s/m以下,進而較佳為0.07 kPa・s/m以下。
另一方面,於通氣阻力較低之情形時,由於電極之面積變小,因此通電面積變小而電解性能(電壓等)變差。於通氣阻力為零之情形時,由於未設置電解用電極,因此饋電體作為電極發揮功能而電解性能(電壓等)顯著變差。就該方面而言,作為通氣阻力1而特定出之較佳之下限值並無特別限定,較佳為超過0 kPa・s/m,更佳為0.0001 kPa・s/m以上,進而較佳為0.001 kPa・s/m以上。
再者,通氣阻力1就其測定法方面而言,若為0.07 kPa・s/m以下,則存在無法獲得充分之測定精度之情形。就該觀點而言,相對於通氣阻力1為0.07 kPa・s/m以下之電解用電極,亦可實現藉由以下之測定方法(以下亦稱為「測定條件2」)獲得之通氣阻力(以下亦稱為「通氣阻力2」)之評價。即,通氣阻力2係將電解用電極設為50 mm×50 mm之尺寸且設為溫度24℃、相對濕度32%、活塞速度2 cm/s及通氣量4 cc/cm
2
/s之情形時之通氣阻力。
具體之通氣阻力1及2之測定方法如實施例所記載。
上述通氣阻力1及2例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則有通氣阻力1及2變小之傾向,若減小開孔率,則有通氣阻力1及2變大之傾向。
本實施形態中之電解用電極就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、饋電體(劣化之電極及未形成有觸媒塗層之電極)等具有良好之接著力之觀點而言,每單位質量·單位面積所承受之力較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。
就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/mg・cm
2
以上,進而更佳為0.14 N/(mg・cm
2
)以上。就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.2 N/(mg・cm
2
)以上。
上述承受力例如可藉由適當調整下文所述之開孔率、電極之厚度、算術平均表面粗糙度等而設為上述範圍。更具體而言,例如,若增大開孔率,則承受力有變小之傾向,若減小開孔率,則承受力有變大之傾向。
又,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力之觀點,進而就經濟性之觀點而言,較佳為每單位面積之質量為48 mg/cm
2
以下,更佳為30 mg/cm
2
以下,進而較佳為20 mg/cm
2
以下,進而,就合併操作性、接著性及經濟性之綜合性之觀點而言,較佳為15 mg/cm
2
以下。下限值並無特別限定,例如為1 mg/cm
2
左右。
上述每單位面積之質量例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則每單位面積之質量有變小之傾向,若減小開孔率,則每單位面積之質量有變大之傾向。
承受力可藉由以下之方法(i)或(ii)進行測定,詳細而言,如實施例所記載。關於承受力,藉由方法(i)之測定所獲得之值(亦稱為「承受力(1)」)與藉由方法(ii)之測定所獲得之值(亦稱為「承受力(2)」)可相同亦可不同,但較佳為任一值均未達1.5 N/mg・cm
2
。
[方法(i)]
依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方)、於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之離子交換膜(170 mm見方,關於此處所謂離子交換膜之詳細如實施例所記載)及電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。再者,噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.5~0.8 μm。算術平均表面粗糙度(Ra)之具體之算出方法如實施例所記載。
於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極樣品與離子交換膜之重疊部分之面積、及與離子交換膜重疊部分之電極樣品之質量,而算出每單位質量·單位面積所承受之力(1)(N/mg・cm
2
)。
藉由方法(i)獲得之每單位質量·單位面積所承受之力(1)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。又,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/(mg・cm
2
)以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm
2
),更佳為0.2 N/(mg・cm
2
)以上。
[方法(ii)]
依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方,與上述方法(i)相同之鎳板)與電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極樣品與鎳板之重疊部分之面積、及與鎳板重疊部分中之電極樣品之質量,而算出每單位質量•單位面積之接著力(2)(N/mg・cm
2
)。
藉由方法(ii)獲得之每單位質量·單位面積所承受之力(2)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。進而,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/(mg・cm
2
)以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm
2
)以上。
本實施形態中之電解用電極較佳為包含電解用電極基材及觸媒層。該電解用電極基材之厚度(量規厚度)並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折,大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。
本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力之觀點而言,藉由以下之方法(2)所測得之比率較佳為90%以上,更佳為92%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為95%以上。上限值為100%。
[方法(2)]
依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑280 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。
本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折之觀點而言,藉由以下之方法(3)所測得之比率較佳為75%以上,更佳為80%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為90%以上。上限值為100%。
[方法(3)]
依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑145 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。
本實施形態中之電解用電極就操作性之觀點而言,藉由以下之方法(A)所測得之值較佳為40 mm以下,更佳為29 mm以下,進而較佳為19 mm以下。
[方法(A)]
於溫度23±2℃、相對濕度30±5%之條件下,將積層於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之離子交換膜(170 mm見方,關於此處所謂離子交換膜之詳細如實施例所記載)與上述電解用電極而成之樣品捲繞並固定於外徑ϕ32 mm之氯乙烯製芯材之曲面上,靜置6小時後將該電解用電極分離並載置於水平之板,測定此時該電解用電極之兩端部之垂直方向之高度L
1
及L
2
,以該等之平均值作為測定值。
本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,防止電解中產生之氣體滯留之觀點而言,較佳為多孔結構,且其開孔率或空隙率為5~90%以下。開孔率更佳為10~80%以下,進而較佳為20~75%。
再者,所謂開孔率係每單位體積之開孔部之比率。開孔部亦根據考慮至次微米級抑或僅考慮目視可見之開口而有各種算出方法。於本實施形態中,藉由根據電極之量規厚度、寬度、長度之值算出體積V,進而對重量W進行實測,而利用下述之式算出開孔率A。
A=(1-(W/(V×ρ))×100
ρ係電極之材質之密度(g/cm
3
)。例如於鎳之情形時為8.908 g/cm
3
,於鈦之情形時為4.506 g/cm
3
。開孔率之調整可藉由如下方法進行適當調整:若為沖孔金屬,則變更每單位面積沖裁金屬之面積;若為多孔金屬,則變更SW(短徑)、LW(長徑)、進給之值;若為絲網,則變更金屬纖維之線徑、網眼數;若為電成形,則變更所使用之光阻之圖案;若為不織布,則變更金屬纖維直徑及纖維密度;若為發泡金屬,則變更用以使空隙形成之模板等。
以下,對本實施形態中之電解用電極之一形態進行說明。
本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。觸媒層如下所述,可包含複數層,亦可為單層結構。
如圖68所示,本實施形態之電解用電極100具備電解用電極基材10、及被覆電解用電極基材10之兩表面之一對第一層20。第一層20較佳為將電解用電極基材10整體被覆。藉此,電解用電極之觸媒活性及耐久性變得容易提高。再者,亦可僅於電解用電極基材10之一表面積層第一層20。
又,如圖68所示,第一層20之表面可由第二層30所被覆。第二層30較佳為將第一層20整體被覆。又,第二層30可僅積層於第一層20之一表面。
(電解用電極基材)
作為電解用電極基材10,並無特別限定,例如可使用鎳、鎳合金、不鏽鋼、或以鈦等為代表之閥金屬,較佳為含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。
於在高濃度之鹼性水溶液中使用不鏽鋼之情形時,若考慮到鐵及鉻溶出、及不鏽鋼之導電性為鎳之1/10左右,則較佳為使用含有鎳(Ni)之基材作為電解用電極基材。
又,電解用電極基材10於在接近飽和之高濃度之食鹽水中於氯氣產生環境中使用之情形時,材質亦較佳為耐蝕性較高之鈦。
電解用電極基材10之形狀並無特別限定,可根據目的選擇合適之形狀。作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。其中,較佳為沖孔金屬或多孔金屬。再者,所謂電成形係將照相製版與電鍍法組合而製作精密之圖案之金屬薄膜的技術。其係藉由光阻於基板上形成圖案,對未受到光阻保護之部分實施電鍍而獲得金屬薄膜之方法。
關於電解用電極基材之形狀,根據電解槽中之陽極與陰極之距離而有適宜之規格。並無特別限定,於陽極與陰極具有有限之距離之情形時,可使用多孔金屬、沖孔金屬形狀,於離子交換膜與電極相接之所謂零間距電解槽之情形時,可使用編織細線而成之編織網、金屬絲網、發泡金屬、金屬不織布、多孔金屬、沖孔金屬、金屬多孔箔等。
作為電解用電極基材10,可列舉:金屬多孔箔、金屬絲網、金屬不織布、沖孔金屬、多孔金屬或發泡金屬。
作為加工為沖孔金屬、多孔金屬前之板材,較佳為經壓延成形之板材、電解箔等。電解箔較佳為進而作為後處理而藉由與母材相同之元素實施鍍覆處理,於單面或兩面形成凹凸。
又,電解用電極基材10之厚度如上文所述,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。
於電解用電極基材中,較佳為藉由在氧化環境中將電解用電極基材進行退火而緩和加工時之殘留應力。又,為了提高與被覆於電解用電極基材之表面之觸媒層之密接性,較佳為使用鋼砂、氧化鋁粉等於上述表面形成凹凸,其後藉由酸處理而增加表面積。或者,較佳為藉由與基材相同之元素實施鍍覆處理,增加表面積。
為了使第一層20與電解用電極基材10之表面密接,較佳為對電解用電極基材10進行增大表面積之處理。作為增大表面積之處理,可列舉使用鋼線粒、鋼砂、氧化鋁砂等之噴擊處理、使用硫酸或鹽酸之酸處理、利用與基材相同元素之鍍覆處理等。基材表面之算術平均表面粗糙度(Ra)並無特別限定,較佳為0.05 μm~50 μm,更佳為0.1~10 μm,進而較佳為0.1~8 μm。
繼而,對將本實施形態中之電解用電極用作食鹽電解用陽極之情形進行說明。
(第一層)
於圖68中,作為觸媒層之第一層20含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物。作為釕氧化物,可列舉RuO
2
等。作為銥氧化物,可列舉IrO
2
等。作為鈦氧化物,可列舉TiO
2
等。第一層20較佳為含有釕氧化物及鈦氧化物之兩種氧化物,或含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物。藉此,第一層20成為更穩定之層,進而,與第二層30之密接性亦進一步提高。
於第一層20含有釕氧化物及鈦氧化物之兩種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為1~9莫耳,更佳為1~4莫耳。藉由將兩種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。
於第一層20含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之銥氧化物較佳為0.2~3莫耳,更佳為0.3~2.5莫耳。又,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為0.3~8莫耳,更佳為1~7莫耳。藉由將三種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。
於第一層20含有選自釕氧化物、銥氧化物及鈦氧化物中之至少兩種氧化物之情形時,該等氧化物較佳為形成固溶體。藉由形成氧化物固溶體,電解用電極100表現出優異之耐久性。
除了上述組成以外,只要含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物,則可使用各種組成者。例如,亦可使用稱為DSA(註冊商標)之含有釕、銥、鉭、鈮、鈦、錫、鈷、錳、鉑等之氧化物塗層作為第一層20。
第一層20無需為單層,亦可包含複數層。例如,第一層20可包含含有三種氧化物之層與含有兩種氧化物之層。第一層20之厚度較佳為0.05~10 μm,更佳為0.1~8 μm。
(第二層)
第二層30較佳為含有釕與鈦。藉此,能夠進一步降低剛電解後之氯過電壓。
第二層30較佳為含有氧化鈀、氧化鈀與鉑之固溶體或鈀與鉑之合金。藉此,能夠進一步降低剛電解後之氯過電壓。
第二層30較厚者能夠維持電解性能之時間變長,就經濟性之觀點而言,較佳為0.05~3 μm之厚度。
繼而,對將本實施形態中之電解用電極用作食鹽電解用陰極之情形進行說明。
(第一層)
作為觸媒層之第一層20之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。
可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。
於含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少一種之情形時,較佳為鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金含有鉑、鈀、銠、釕、銥中之至少一種鉑族金屬。
作為鉑族金屬,較佳為含有鉑。
作為鉑族金屬氧化物,較佳為含有釕氧化物。
作為鉑族金屬氫氧化物,較佳為含有釕氫氧化物。
作為鉑族金屬合金,較佳為含有鉑與鎳、鐵、鈷之合金。
較佳為進而視需要含有鑭系元素之氧化物或氫氧化物作為第二成分。藉此,電解用電極100表現出優異之耐久性。
作為鑭系元素之氧化物或氫氧化物,較佳為含有選自鑭、鈰、鐠、釹、鉕、釤、銪、釓、鋱、鏑中之至少1種。
較佳為進而視需要含有過渡金屬之氧化物或氫氧化物作為第三成分。
藉由添加第三成分,電解用電極100能夠表現出更優異之耐久性,降低電解電壓。
作為較佳之組合之例,可列舉:僅釕、釕+鎳、釕+鈰、釕+鑭、釕+鑭+鉑、釕+鑭+鈀、釕+鐠、釕+鐠+鉑、釕+鐠+鉑+鈀、釕+釹、釕+釹+鉑、釕+釹+錳、釕+釹+鐵、釕+釹+鈷、釕+釹+鋅、釕+釹+鎵、釕+釹+硫、釕+釹+鉛、釕+釹+鎳、釕+釹+銅、釕+釤、釕+釤+錳、釕+釤+鐵、釕+釤+鈷、釕+釤+鋅、釕+釤+鎵、釕+釤+硫、釕+釤+鉛、釕+釤+鎳、鉑+鈰、鉑+鈀+鈰、鉑+鈀+鑭+鈰、鉑+銥、鉑+鈀、鉑+銥+鈀、鉑+鎳+鈀、鉑+鎳+釕、鉑與鎳之合金、鉑與鈷之合金、鉑與鐵之合金等。
於不含鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之情形時,觸媒之主成分較佳為鎳元素。
較佳為含有鎳金屬、氧化物、氫氧化物中之至少1種。
作為第二成分,可添加過渡金屬。作為所添加之第二成分,較佳為含有鈦、錫、鉬、鈷、錳、鐵、硫、鋅、銅、碳中之至少一種元素。
作為較佳之組合,可列舉:鎳+錫、鎳+鈦、鎳+鉬、鎳+鈷等。
視需要可於第一層20與電解用電極基材10之間設置中間層。藉由設置中間層,能夠提高電解用電極100之耐久性。
作為中間層,較佳為對第一層20與電解用電極基材10之兩者具有親和性者。作為中間層,較佳為鎳氧化物、鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物。作為中間層,可藉由將含有形成中間層之成分之溶液進行塗佈、燒成而形成,亦可於空氣環境中在300~600℃之溫度下對基材實施熱處理而形成表面氧化物層。除此以外,可藉由熱熔射法、離子鍍敷法等已知之方法形成。
(第二層)
作為觸媒層之第一層30之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。
可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。作為第二層所含之元素之較佳之組合例,有第一層中所列舉之組合等。第一層與第二層之組合可為組成相同而組成比不同之組合,亦可為組成不同之組合。
作為觸媒層之厚度,較佳為將所形成之觸媒層及中間層累加而成之厚度為0.01 μm~20 μm。若為0.01 μm以上,則能夠作為觸媒充分發揮功能。若為20 μm以下,則從基材脫落之情況較少,能夠形成牢固之觸媒層。更佳為0.05 μm~15 μm。更佳為0.1 μm~10 μm。進而較佳為0.2 μm~8 μm。
作為電極之厚度、即電解用電極基材與觸媒層之合計之厚度,就電極之操作性之方面而言,較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,電極之厚度可藉由利用電子數顯厚度計(Mitutoyo股份有限公司,最少顯示0.001 mm)進行測定而求出。電解用電極基材之厚度係與電極厚度同樣地進行測定。觸媒層厚度可藉由電極厚度減去電解用電極基材之厚度而求出。
於本實施形態中,就確保充分之電解性能之觀點而言,較佳為電解用電極含有選自由Ru、Rh、Pd、Ir、Pt、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y,Zr、Nb、Mo、Ag、Ta、W、Re、Os、Al、In、Sn、Sb、Ga、Ge、B、C、N、O、Si、P、S、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb及Dy所組成之群中之至少一種觸媒成分。
於本實施形態中,若電解用電極係彈性變形區域較廣之電極,則就可獲得更良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有更良好之接著力之觀點而言,電解用電極之厚度較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,於本實施形態中,所謂「彈性變形區域較廣」意指將電解用電極捲繞而製成捲繞體,解除捲繞狀態後不易產生由捲繞引起之翹曲。又,所謂電解用電極之厚度於包含下文所述之觸媒層之情形時,係指合併電解用電極基材與觸媒層之厚度。
(電解用電極之製造方法)
其次,對電解用電極100之製造方法之一實施形態進行詳細說明。
於本實施形態中,藉由利用氧環境下之塗膜之燒成(熱分解)、或離子鍍敷、鍍覆、熱熔射等方法於電解用電極基材上形成第一層20、較佳為第二層30,可製造電解用電極100。此種本實施形態之製造方法能夠實現電解用電極100之較高之生產性。具體而言,藉由塗佈含有觸媒之塗佈液之塗佈步驟、乾燥塗佈液之乾燥步驟、進行熱分解之熱分解步驟,而於電解用電極基材上形成觸媒層。此處所謂熱分解意指對成為前驅物之金屬鹽進行加熱而分解為金屬或金屬氧化物與氣體狀物質。根據所使用之金屬種類、鹽之種類、進行熱分解之環境等,分解產物有所不同,但於氧化性環境下多數金屬有容易形成氧化物之傾向。於電極之工業性之製造工藝中,熱分解通常於空氣中進行,多數情形時形成金屬氧化物或金屬氫氧化物。
(陽極之第一層之形成)
(塗佈步驟)
第一層20係將溶解有釕、銥及鈦中之至少一種金屬之鹽的溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之釕、銥及鈦之含有率與第一層20大致相等。
作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。
作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。
(乾燥步驟、熱分解步驟)
將第一塗佈液塗佈於電解用電極基材100後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。
重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。
(第二層之形成)
第二層30係視需要而形成,例如將含有鈀化合物及鉑化合物之溶液或含有釕化合物及鈦化合物之溶液(第二塗佈液)塗佈於第一層20上後,於氧氣之存在下進行熱分解而獲得。
(利用熱分解法之陰極之第一層之形成)
(塗佈步驟)
第一層20係將溶解有各種組合之金屬鹽之溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之金屬之含有率與第一層20大致相等。
作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。
作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。
(乾燥步驟、熱分解步驟)
將第一塗佈液塗佈於電解用電極基材10後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。
重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。
(中間層之形成)
中間層係視需要而形成,例如將含有鈀化合物或鉑化合物之溶液(第二塗佈液)塗佈於基材上後,於氧氣之存在下進行熱分解而獲得。或者,亦可不塗佈溶液,而僅加熱基材,藉此於基材表面形成氧化鎳中間層。
(利用離子鍍敷之陰極之第一層之形成)
第一層20亦可藉由離子鍍敷而形成。
作為一例,可列舉將基材固定於腔室內並對金屬釕靶照射電子束之方法。所蒸發之金屬釕粒子於腔室內之電漿中帶正電,而沈積於帶負電之基板上。電漿環境為氬氣、氧氣,釕係以釕氧化物之形式沈積於基材上。
(利用鍍覆之陰極之第一層之形成)
第一層20亦可藉由鍍覆法而形成。
作為一例,若使用基材作為陰極,於含有鎳及錫之電解液中實施電解鍍覆,則可形成鎳與錫之合金鍍覆。
(利用熱熔射之陰極之第一層之形成)
第一層20亦可藉由熱熔射法而形成。
作為一例,藉由將氧化鎳粒子電漿熔射於基材上,而可形成混合有金屬鎳與氧化鎳之觸媒層。
本實施形態中之電解用電極能夠與離子交換膜或微多孔膜等隔膜進行一體化而使用。因此,本實施形態中之積層體可用作膜一體電極,無需更新電極時之陰極及陽極之更換貼附作業,作業效率大幅提高。
又,藉由與離子交換膜或微多孔膜等隔膜之一體電極,能夠使電解性能與新品時之性能相同或有所提高。
以下,對離子交換膜進行詳細說明。
[離子交換膜]
作為離子交換膜,只要可與電解用電極製成積層體,則無特別限定,可應用各種離子交換膜。於本實施形態中,較佳為使用具有含有具有離子交換基之烴系聚合物或含氟系聚合物之膜本體、與設置於該膜本體之至少一面上之塗佈層之離子交換膜。又,塗佈層含有無機物粒子與結合劑,塗佈層之比表面積較佳為0.1~10 m
2
/g。該結構之離子交換膜於電解中所產生之氣體對電解性能之影響較少,有發揮出穩定之電解性能之傾向。
上述所謂導入有離子交換基之全氟碳聚合物之膜係具備具有源自磺基之離子交換基(以-SO
3 -
表示之基,以下亦稱為「磺酸基」)之磺酸層與具有源自羧基之離子交換基(以-CO
2 -
表示之基,以下亦稱為「羧酸基」)之羧酸層之任一者。就強度及尺寸穩定性之觀點而言,較佳為進而具有強化芯材。
以下於塗佈層之說明之欄對無機物粒子及結合劑進行詳細說明。
圖69係表示離子交換膜之一實施形態之剖面模式圖。離子交換膜1具有:膜本體10,其含有具有離子交換基之烴系聚合物或含氟系聚合物;以及塗佈層11a及11b,其等形成於膜本體10之兩面。
於離子交換膜1中,膜本體10具備具有源自磺基之離子交換基(以-SO
3 -
表示之基,以下亦稱為「磺酸基」)之磺酸層3、與具有源自羧基之離子交換基(以-CO
2 -
表示之基,以下亦稱為「羧酸基」)之羧酸層2,藉由強化芯材4強化強度及尺寸穩定性。離子交換膜1由於具備磺酸層3與羧酸層2,因此可作為陽離子交換膜而適宜地使用。
再者,離子交換膜亦可僅具有磺酸層及羧酸層之任一者。又,離子交換膜未必由強化芯材所強化,強化芯材之配置狀態亦不限定於圖69之例。
(膜本體)
首先,對構成離子交換膜1之膜本體10進行說明。
膜本體10只要為具有使陽離子選擇性地透過之功能且含有具有離子交換基之烴系聚合物或含氟系聚合物者即可,其構成或材料並無特別限定,可適當選擇適宜者。
膜本體10中之具有離子交換基之烴系聚合物或含氟系聚合物例如可由具有可藉由水解等成為離子交換基之離子交換基前驅物之烴系聚合物或含氟系聚合物獲得。具體而言,例如使用主鏈包含氟化烴、具有可藉由水解等轉換為離子交換基之基(離子交換基前驅物)作為懸垂側鏈且能夠熔融加工之聚合物(以下視情形稱為「含氟系聚合物(a)」)製作膜本體10之前驅物後,將離子交換基前驅物轉換為離子交換基,藉此可獲得膜本體10。
含氟系聚合物(a)例如可藉由使選自下述第1群之至少一種單體與選自下述第2群及/或下述第3群之至少一種單體進行共聚合而製造。又,亦可藉由選自下述第1群、下述第2群、及下述第3群之任一群之1種單體之均聚而製造。
作為第1群之單體,例如可列舉氟乙烯化合物。作為氟乙烯化合物,例如可列舉:氟乙烯、四氟乙烯、六氟丙烯、偏二氟乙烯、三氟乙烯、氯三氟乙烯、全氟烷基乙烯醚等。尤其是於將離子交換膜用作鹼電解用膜之情形時,氟乙烯化合物較佳為全氟單體,較佳為選自由四氟乙烯、六氟丙烯、全氟烷基乙烯醚所組成之群中之全氟單體。
作為第2群之單體,例如可列舉具有可轉換為羧酸型離子交換基(羧酸基)之官能基之乙烯系化合物。作為具有可轉換為羧酸基之官能基之乙烯系化合物,例如可列舉以CF
2
=CF(OCF
2
CYF)
s
-O(CZF)
t
-COOR表示之單體等(此處,s表示0~2之整數,t表示1~12之整數,Y及Z各自獨立地表示F或CF
3
,R表示低級烷基。低級烷基例如為碳數1~3之烷基)。
該等中,較佳為以CF
2
=CF(OCF
2
CYF)
n
-O(CF
2
)
m
-COOR表示之化合物。此處,n表示0~2之整數,m表示1~4之整數,Y表示F或CF
3
,R表示CH
3
、C
2
H
5
、或C
3
H
7
。
再者,於將離子交換膜用作鹼電解用陽離子交換膜之情形時,較佳為至少使用全氟化合物作為單體,但由於酯基之烷基(參照上述R)於水解時從聚合物喪失,因此烷基(R)亦可不為全部氫原子被取代為氟原子之全氟烷基。
作為第2群之單體,於上述中,更佳為下述所表示之單體。
CF
2
=CFOCF
2
-CF(CF
3
)OCF
2
COOCH
3
、
CF
2
=CFOCF
2
CF(CF
3
)O(CF
2
)
2
COOCH
3
、
CF
2
=CF[OCF
2
-CF(CF
3
)]
2
O(CF
2
)
2
COOCH
3
、
CF
2
=CFOCF
2
CF(CF
3
)O(CF
2
)
3
COOCH
3
、
CF
2
=CFO(CF
2
)
2
COOCH
3
、
CF
2
=CFO(CF
2
)
3
COOCH
3
。
作為第3群之單體,例如可列舉具有可轉換為磺酸型離子交換基(磺酸基)之官能基之乙烯系化合物。作為具有可轉換為磺酸基之官能基之乙烯系化合物,例如較佳為以CF
2
=CFO-X-CF
2
-SO
2
F表示之單體(此處,X表示全氟伸烷基)。作為該等之具體例,可列舉下述所表示之單體等。
CF
2
=CFOCF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
CF
2
SO
2
F、
CF
2
=CF(CF
2
)
2
SO
2
F、
CF
2
=CFO[CF
2
CF(CF
3
)O]
2
CF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
2
OCF
3
)OCF
2
CF
2
SO
2
F。
該等中,更佳為CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
CF
2
SO
2
F、及CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F。
由該等單體獲得之共聚物可藉由針對氟乙烯之均聚及共聚合所開發之聚合法、尤其是對四氟乙烯所使用之通常之聚合方法而製造。例如,於非水性法中,可使用全氟烴、氯氟碳等不活性溶劑,於全氟碳過氧化物或偶氮化合物等自由基聚合起始劑之存在下,於溫度0~200℃、壓力0.1~20 MPa之條件下進行聚合反應。
於上述共聚合中,上述單體之組合之種類及其比率並無特別限定,根據欲對所獲得之含氟系聚合物賦予之官能基之種類及量選擇確定。例如於製成僅含有羧酸基之含氟系聚合物之情形時,從上述第1群及第2群分別選擇至少1種單體進行共聚合即可。又,於製成僅含有磺酸基之含氟系聚合物之情形時,從上述第1群及第3群之單體中分別選擇至少1種單體進行共聚合即可。進而,於製成具有羧酸基及磺酸基之含氟系聚合物之情形時,從上述第1群、第2群及第3群之單體中分別選擇至少1種單體進行共聚合即可。於該情形時,藉由使包含上述第1群及第2群之共聚物與包含上述第1群及第3群之共聚物分開進行聚合,其後加以混合亦可獲得目標之含氟系聚合物。又,各單體之混合比率並無特別限定,於增加每單位聚合物之官能基之量之情形時,增加選自上述第2群及第3群之單體之比率即可。
含氟系共聚物之總離子交換容量並無特別限定,較佳為0.5~2.0 mg當量/g,更佳為0.6~1.5 mg當量/g。此處,所謂總離子交換容量係指相對於單位重量之乾燥樹脂之交換基之當量,可藉由中和滴定等進行測定。
於離子交換膜1之膜本體10中,積層有含有具有磺酸基之含氟系聚合物之磺酸層3與含有具有羧酸基之含氟系聚合物之羧酸層2。藉由製成此種層結構之膜本體10,能夠進一步提高鈉離子等陽離子之選擇性透過性。
於將離子交換膜1配置於電解槽之情形時,通常以磺酸層3位於電解槽之陽極側、羧酸層2位於電解槽之陰極側之方式配置。
磺酸層3較佳為由電阻較低之材料構成,就膜強度之觀點而言,較佳為其膜厚厚於羧酸層2。磺酸層3之膜厚較佳為羧酸層2之2~25倍,更佳為3~15倍。
羧酸層2較佳為即使膜厚較薄亦具有較高之陰離子排斥性者。此處所謂陰離子排斥性係指阻礙陰離子對離子交換膜1之滲入或透過之性質。為了提高陰離子排斥性,有效的是對磺酸層配置離子交換容量較小之羧酸層等。
作為磺酸層3所使用之含氟系聚合物,例如適宜為使用CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F作為第3群之單體所獲得之聚合物。
作為羧酸層2所使用之含氟系聚合物,例如適宜為使用CF
2
=CFOCF
2
CF(CF
2
)O(CF
2
)
2
COOCH
3
作為第2群之單體所獲得之聚合物。
(塗佈層)
離子交換膜較佳為於膜本體之至少一面上具有塗佈層。又,如圖69所示,於離子交換膜1中,於膜本體10之兩面上分別形成有塗佈層11a及11b。
塗佈層含有無機物粒子與結合劑。
無機物粒子之平均粒徑更佳為0.90 μm以上。若無機物粒子之平均粒徑為0.90 μm以上,則不僅極大地提高對氣體附著之耐久性,而且極大地提高對雜質之耐久性。即,藉由增大無機物粒子之平均粒徑,並且滿足上述比表面積之值,可獲得尤其顯著之效果。為了滿足此種平均粒徑與比表面積,較佳為不規則狀之無機物粒子。可使用藉由熔融獲得之無機物粒子、藉由原石粉碎獲得之無機物粒子。較佳可適宜地使用藉由原石粉碎獲得之無機物粒子。
又,無機物粒子之平均粒徑可設為2 μm以下。若無機物粒子之平均粒徑為2 μm以下,則能夠防止因無機物粒子而損傷膜。無機物粒子之平均粒徑更佳為0.90~1.2 μm。
此處,平均粒徑可藉由粒度分佈計(「SALD2200」島津製作所)進行測定。
無機物粒子之形狀較佳為不規則形狀。對雜質之耐性進一步提高。又,無機物粒子之粒度分佈較佳為較寬。
無機物粒子較佳為含有選自由週期表第IV族元素之氧化物、週期表第IV族元素之氮化物、及週期表第IV族元素之碳化物所組成之群中之至少一種無機物。就耐久性之觀點而言,更佳為氧化鋯之粒子。
該無機物粒子較佳為藉由將無機物粒子之原石粉碎所製造之無機物粒子,或以藉由將無機物粒子之原石熔融並加以精製而粒子之直徑一致之球狀之粒子作為無機物粒子。
作為原石粉碎方法,並無特別限定,可列舉:球磨機、珠磨機、膠體磨機、錐形磨機、盤磨機、輪輾機、磨粉機、錘磨機、造粒機、VSI磨機、威利磨機、輥磨機、噴射磨機等。又,較佳為粉碎後將其洗淨,作為此時之洗淨方法,較佳為酸處理。藉此,能夠減少附著於無機物粒子之表面之鐵等雜質。
塗佈層較佳為含有結合劑。結合劑係將無機物粒子保持於離子交換膜之表面、形成塗佈層之成分。就對電解液或電解之產物之耐性之觀點而言,結合劑較佳為含有含氟系聚合物。
作為結合劑,就對電解液或電解之產物之耐性、及對離子交換膜之表面之接著性之觀點而言,更佳為具有羧酸基或磺酸基之含氟系聚合物。於在含有具有磺酸基之含氟聚合物之層(磺酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有磺酸基之含氟系聚合物。又,於在含有具有羧酸基之含氟聚合物之層(羧酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有羧酸基之含氟系聚合物。
塗佈層中,無機物粒子之含量較佳為40~90質量%,更佳為50~90質量%。又,結合劑之含量較佳為10~60質量%,更佳為10~50質量%。
離子交換膜中之塗佈層之分佈密度較佳為每1 cm
2
為0.05~2 mg。又,於離子交換膜於表面具有凹凸形狀之情形時,塗佈層之分佈密度較佳為每1 cm
2
為0.5~2 mg。
作為形成塗佈層之方法,並無特別限定,可使用公知之方法。例如可列舉藉由噴射等塗佈將無機物粒子分散於含有結合劑之溶液中而成之塗佈液之方法。
(強化芯材)
離子交換膜較佳為具有配置於膜本體之內部之強化芯材。
強化芯材係強化離子交換膜之強度或尺寸穩定性之構件。藉由將強化芯材配置於膜本體之內部,尤其能夠將離子交換膜之伸縮控制為所需之範圍。該離子交換膜於電解時等不會伸縮為必要程度以上,而能夠長期維持優異之尺寸穩定性。
強化芯材之構成並無特別限定,例如可將稱為強化紗之紗進行紡紗而形成。此處所謂強化紗係構成強化芯材之構件,指能夠對離子交換膜賦予所需之尺寸穩定性及機械強度且於離子交換膜中能夠穩定地存在之紗。藉由使用將該強化紗紡紗而成之強化芯材,能夠對離子交換膜賦予更優異之尺寸穩定性及機械強度。
強化芯材及其所使用之強化紗之材料並無特別限定,較佳為對酸或鹼等具有耐性之材料,就需要長期之耐熱性、耐化學品性之方面而言,較佳為包含含氟系聚合物之纖維。
作為強化芯材所使用之含氟系聚合物,例如可列舉:聚四氟乙烯(PTFE)、四氟乙烯-全氟烷基乙烯醚共聚物(PFA)、四氟乙烯-乙烯共聚物(ETFE)、四氟乙烯-六氟丙烯共聚物、三氟氯乙烯-乙烯共聚物及偏二氟乙烯聚合物(PVDF)等。該等中,尤其是就耐熱性及耐化學品性之觀點而言,較佳為使用包含聚四氟乙烯之纖維。
強化芯材所使用之強化紗之紗直徑並無特別限定,較佳為20~300丹尼,更佳為50~250丹尼。紡織密度(每單位長度之織入根數)較佳為5~50根/英吋。作為強化芯材之形態,並無特別限定,例如可使用織布、不織布、針織布等,較佳為織布之形態。又,使用織布之厚度較佳為30~250 μm、更佳為30~150 μm者。
織布或針織布可使用單絲、複絲或該等之紗線、切膜絲等,紡織方法可使用平織、紗羅組織、針織、凸條組織、縐條紋薄織等各種紡織方法。
膜本體中之強化芯材之紡織方法及配置並無特別限定,可考慮離子交換膜之大小或形狀、離子交換膜所需之物性及使用環境等適當設為適宜之配置。
例如,可沿膜本體之特定之一方向配置強化芯材,就尺寸穩定性之觀點而言,較佳為沿特定之第一方向配置強化芯材,且沿大致垂直於第一方向之第二方向配置其他強化芯材。藉由在膜本體之縱向膜本體之內部以大致成一列之方式配置複數個強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。例如,較佳為於膜本體之表面織入沿縱向配置之強化芯材(縱紗)與沿橫向配置之強化芯材(橫紗)之配置。就尺寸穩定性、機械強度及製造容易性之觀點而言,更佳為製成使縱紗與橫紗一上一下交替織入而紡織之平紋織物、或一邊撚轉2根經紗一邊與橫紗交織之紗羅組織物、於每2根或數根並紗配置之縱紗中織入相同數量之橫紗而紡織之斜紋織物(twill weave)等。
尤佳為沿離子交換膜之MD方向(縱向(Machine Direction)方向)及TD方向(橫向(Transverse Direction)方向)之兩方向配置強化芯材。即,較佳為沿MD方向與TD方向平織。此處,所謂MD方向係指於下文所述之離子交換膜之製造步驟中搬送膜本體或各種芯材(例如,強化芯材、強化紗、下文所述之犧牲紗等)之方向(行進方向),所謂TD方向係指大致垂直於MD方向之方向。此外,將沿MD方向紡織之紗稱為MD紗,將沿TD方向紡織之紗稱為TD紗。通常電解所使用之離子交換膜係矩形,長度方向為MD方向、寬度方向為TD方向之情況較多。藉由織入作為MD紗之強化芯材與作為TD紗之強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。
強化芯材之配置間隔並無特別限定,可考慮離子交換膜所需之物性及使用環境等適當設為適宜之配置。
強化芯材之開口率並無特別限定,較佳為30%以上,更佳為50%以上且90%以下。開口率就離子交換膜之電化學性質之觀點而言,較佳為30%以上,就離子交換膜之機械強度之觀點而言,較佳為90%以下。
所謂強化芯材之開口率係指膜本體之任一表面之面積(A)中離子等物質(電解液及其所含之陽離子(例如,鈉離子))能夠通過之表面之總面積(B)之比率(B/A)。所謂離子等物質能夠通過之表面之總面積(B)可指於離子交換膜中陽離子或電解液等不被離子交換膜所含之強化芯材等阻斷之區域之總面積。
圖70係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。圖70係將離子交換膜之一部分放大而僅圖示該區域內之強化芯材21及22之配置,其他構件省略圖示。
藉由從由沿縱向配置之強化芯材21與沿橫向配置之強化芯材22所圍成之亦包括強化芯材之面積在內之區域的面積(A)減去強化芯材之總面積(C),可求出上述區域之面積(A)中離子等物質能夠通過之區域之總面積(B)。即,開口率可藉由下述式(I)求出。
開口率=(B)/(A)=((A)-(C))/(A) …(I)
於強化芯材中,就耐化學品性及耐熱性之觀點而言,尤佳之形態係含有PTFE之帶狀紗線或高配向單絲。具體而言,更佳為如下強化芯材,其係使用將包含PTFE之高強度多孔質片材切為帶狀而成之帶狀紗線、或包含PTFE之高度配向之單絲之50~300丹尼且紡織密度為10~50根/英吋之平紋織物,其厚度為50~100 μm之範圍。含有該強化芯材之離子交換膜之開口率進而較佳為60%以上。
作為強化紗之形狀,可列舉圓紗、帶狀紗等。
(連通孔)
離子交換膜較佳為於膜本體之內部具有連通孔。
所謂連通孔係指能夠成為電解時產生之離子或電解液之流路之孔。又,所謂連通孔係形成於膜本體內部之管狀之孔,藉由下文所述之犧牲芯材(或犧牲紗)溶出而形成。連通孔之形狀或直徑等可藉由選擇犧牲芯材(犧牲紗)之形狀或直徑進行控制。
藉由在離子交換膜形成連通孔,於電解時能夠確保電解液之移動性。連通孔之形狀並無特別限定,根據下文所述之製法,可製成連通孔之形成所使用之犧牲芯材之形狀。
連通孔較佳為以交替通過強化芯材之陽極側(磺酸層側)與陰極側(羧酸層側)之方式形成。藉由設為該結構,於強化芯材之陰極側形成有連通孔之部分,通過充滿連通孔之電解液所輸送之離子(例如,鈉離子)亦能夠流至強化芯材之陰極側。其結果為,由於陽離子之流動未被遮蔽,因此能夠進一步降低離子交換膜之電阻。
連通孔可僅沿構成離子交換膜之膜本體之特定之一方向形成,就發揮出更穩定之電解性能之觀點而言,較佳為沿膜本體之縱向與橫向之兩方向形成。
[製造方法]
作為離子交換膜之適宜之製造方法,可列舉具有以下之(1)步驟~(6)步驟之方法。
(1)步驟:製造具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之含氟系聚合物之步驟。
(2)步驟:藉由視需要至少織入複數個強化芯材與具有溶於酸或鹼之性質且形成連通孔之犧牲紗而獲得於鄰接之強化芯材彼此之間配置有犧牲紗之補強材之步驟。
(3)步驟:將具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之上述含氟系聚合物進行膜化之步驟。
(4)步驟:視需要將上述補強材埋入至上述膜中而獲得內部配置有上述補強材之膜本體之步驟。
(5)步驟:將(4)步驟中獲得之膜本體進行水解之步驟(水解步驟)。
(6)步驟:於(5)步驟中獲得之膜本體設置塗佈層之步驟(塗佈步驟)。
以下,對各步驟進行詳細說明。
(1)步驟:製造含氟系聚合物之步驟
於(1)步驟中,使用上述第1群~第3群所記載之原料之單體製造含氟系聚合物。為了控制含氟系聚合物之離子交換容量,於形成各層之含氟系聚合物之製造中調整原料之單體之混合比即可。
(2)步驟:補強材之製造步驟
所謂補強材係紡織強化紗之織布等。藉由將補強材埋入至膜內而形成強化芯材。於製成具有連通孔之離子交換膜時,亦將犧牲紗一起織入至補強材中。該情形時之犧牲紗之混織量較佳為補強材整體之10~80質量%,更佳為30~70質量%。藉由織入犧牲紗,亦能夠防止強化芯材之脫線。
犧牲紗係於膜之製造步驟或電解環境下具有溶解性者,可使用嫘縈、聚對苯二甲酸乙二酯(PET)、纖維素及聚醯胺等。又,亦較佳為具有20~50丹尼之粗細程度、包含單絲或複絲之聚乙烯醇等。
再者,於(2)步驟中,可藉由調整強化芯材或犧牲紗之配置而控制開口率或連通孔之配置等。
(3)步驟:膜化步驟
於(3)步驟中,使用擠出機將上述(1)步驟中獲得之含氟系聚合物進行膜化。膜可為單層結構,亦可如上所述為磺酸層與羧酸層之2層結構,亦可為3層以上之多層結構。
作為膜化之方法,例如可列舉以下者。
分別將具有羧酸基之含氟聚合物、具有磺酸基之含氟聚合物分開進行膜化之方法。
藉由共擠出將具有羧酸基之含氟聚合物與具有磺酸基之含氟聚合物製成複合膜之方法。
再者,膜可分別為複數片。又,將異種之膜共擠出有助於提高界面之接著強度,故而較佳。
(4)步驟:獲得膜本體之步驟
於(4)步驟中,藉由將(2)步驟中獲得之補強材埋入至(3)步驟中獲得之膜之內部,而獲得內有補強材之膜本體。
作為膜本體之較佳之形成方法,可列舉:(i)藉由共擠出法將位於陰極側之具有羧酸基前驅物(例如,羧酸酯官能基)之含氟系聚合物(以下將包含其之層稱為第一層)與具有磺酸基前驅物(例如,磺醯氟官能基)之含氟系聚合物(以下將包含其之層稱為第二層)進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將補強材、第二層/第一層複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法;(ii)區別於第二層/第一層複合膜,預先將具有磺酸基前驅物之含氟系聚合物(第三層)單獨進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將第三層膜、強化芯材、包含第二層/第一層之複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法。
此處,將第一層與第二層共擠出有助於提高界面之接著強度。
又,於減壓下進行一體化之方法與加壓壓製法相比,具有補強材上之第三層之厚度變大之特徵。進而,由於將補強材固定於膜本體之內面,因此具有能夠充分保持離子交換膜之機械強度之性能。
再者,此處所說明之積層之變化係一例,可考慮所需之膜本體之層構成或物性等,適當選擇適宜之積層圖案(例如,各層之組合等)後進行共擠出。
再者,為了進一步提高離子交換膜之電性能,亦可於第一層與第二層之間進一步介置包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層,或使用包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層代替第二層。
第四層之形成方法可為分開製造具有羧酸基前驅物之含氟系聚合物與具有磺酸基前驅物之含氟系聚合物後加以混合之方法,亦可為使用將具有羧酸基前驅物之單體與具有磺酸基前驅物之單體共聚合而成者之方法。
於將第四層製成離子交換膜之構成之情形時,可將第一層與第四層之共擠出膜加以成形,第三層及第二層與其分開單獨進行膜化,藉由上文所述之方法進行積層,亦可將第一層/第四層/第二層之3層一次共擠出而進行膜化。
於該情形時,所擠出之膜行進之方向為MD方向。由此可將含有具有離子交換基之含氟系聚合物之膜本體形成於補強材上。
又,離子交換膜較佳為於包含磺酸層之表面側具有包含具有磺酸基之含氟聚合物之突出的部分、即凸部。作為形成此種凸部之方法,並無特別限定,可採用於樹脂表面形成凸部之公知之方法。具體而言,例如可列舉對膜本體之表面實施壓紋加工之方法。例如,於將上述複合膜與補強材等進行一體化時,藉由使用預先經壓紋加工之脫模紙,可形成上述凸部。於藉由壓紋加工形成凸部之情形時,凸部之高度或配置密度之控制可藉由控制所轉印之壓紋形狀(脫模紙之形狀)而進行。
(5)水解步驟
於(5)步驟中,進行將(4)步驟中獲得之膜本體水解而將離子交換基前驅物轉換為離子交換基之步驟(水解步驟)。
又,於(5)步驟中,藉由利用酸或鹼將膜本體所含之犧牲紗溶解去除,可於膜本體形成溶出孔。再者,犧牲紗亦可不完全溶解去除,而殘留於連通孔中。又,殘留於連通孔中之犧牲紗可於將離子交換膜供於電解時藉由電解液溶解去除。
犧牲紗係於離子交換膜之製造步驟或電解環境下對酸或鹼具有溶解性者,藉由使犧牲紗溶出而於該部位形成連通孔。
(5)步驟可將(4)步驟中獲得之膜本體浸漬於含有酸或鹼之水解溶液中進行。作為該水解溶液,例如可使用含有KOH與DMSO(Dimethyl sulfoxide)之混合溶液。
該混合溶液較佳為含有2.5~4.0 N之KOH,且含有25~35質量%之DMSO。
作為水解之溫度,較佳為70~100℃。溫度越高,可使視厚度更厚。更佳為75~100℃。
作為水解之時間,較佳為10~120分鐘。時間越長,可使視厚度更厚。更佳為20~120分鐘。
此處,對藉由溶出犧牲紗而形成連通孔之步驟進一步詳細地說明。圖71(a)、(b)係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。
於圖71(a)、(b)中,僅圖示強化紗52、犧牲紗504a及由犧牲紗504a形成之連通孔504,膜本體等其他構件省略圖示。
首先,將於離子交換膜中構成強化芯材之強化紗52與於離子交換膜中用以形成連通孔504之犧牲紗504a製成針織織入補強材。然後,於(5)步驟中藉由使犧牲紗504a溶出而形成連通孔504。
藉由上述方法,根據於離子交換膜之膜本體內如何配置強化芯材、連通孔而調整強化紗52與犧牲紗504a之針織織入方法即可,因此較簡便。
於圖71(a)中,例示於紙面沿縱向與橫向之兩方向將強化紗52與犧牲紗504a織入之平織之補強材,可視需要變更補強材中之強化紗52與犧牲紗504a之配置。
(6)塗佈步驟
於(6)步驟中,製備含有藉由原石粉碎或原石熔融獲得之無機物粒子與結合劑之塗佈液,將塗佈液塗佈於(5)步驟中獲得之離子交換膜之表面並加以乾燥,藉此可形成塗佈層。
作為結合劑,較佳為將具有離子交換基前驅物之含氟系聚合物水解於含有二甲基亞碸(DMSO)及氫氧化鉀(KOH)之水溶液中之後,浸漬於鹽酸中將離子交換基之抗衡離子置換為H
+
而成之結合劑(例如,具有羧基或磺基之含氟系聚合物)。藉此,變得容易溶解於下文所述之水或乙醇中,故而較佳。
將該結合劑溶解於混合水與乙醇而成之溶液中。再者,水與乙醇之較佳之體積比為10:1~1:10,更佳為5:1~1:5,進而較佳為2:1~1:2。藉由球磨機使無機物粒子分散於由此獲得之溶解液中而獲得塗佈液。此時,亦可藉由調整分散時之時間、旋轉速度而調整粒子之平均粒徑等。再者,無機物粒子與結合劑之較佳之調配量如上文所述。
塗佈液中之無機物粒子及結合劑之濃度並無特別限定,較佳為製成稀薄之塗佈液。藉此,能夠均勻地塗佈於離子交換膜之表面。
又,於使無機物粒子分散時,亦可將界面活性劑添加於分散液中。作為界面活性劑,較佳為非離子系界面活性劑,例如可列舉日油股份有限公司製造之HS-210、NS-210、P-210、E-212等。
藉由利用噴射塗佈或滾筒塗敷將所獲得之塗佈液塗佈於離子交換膜表面而可獲得離子交換膜。
[微多孔膜]
作為本實施形態之微多孔膜,只要如上文所述,可與電解用電極製成積層體,則無特別限定,可應用各種微多孔膜。
本實施形態之微多孔膜之氣孔率並無特別限定,例如可設為20~90,較佳為30~85。上述氣孔率例如可藉由下述之式算出。
氣孔率=(1-(乾燥狀態之膜重量)/(由根據膜之厚度、寬度、長度算出之體積與膜素材之密度所算出之重量))×100
本實施形態之微多孔膜之平均孔徑並無特別限定,例如可設為0.01 μm~10 μ,較佳為0.05 μm~5 μm。上述平均孔徑例如係沿厚度方向將膜垂直切斷,藉由FE-SEM觀察切斷面。對所觀察之孔之直徑測定100點左右並求出平均值,藉此可求出平均孔徑。
本實施形態之微多孔膜之厚度並無特別限定,例如可設為10 μm~1000 μm,較佳為50 μm~600 μm。上述厚度例如可使用測微計(Mitutoyo股份有限公司製造)等進行測定。
作為如上所述之微多孔膜之具體例,可列舉Agfa公司製造之Zirfon Perl UTP 500(於本實施形態中亦稱為Zirfon膜)、國際公開第2013-183584號說明書、國際公開第2016-203701號說明書等所記載者。
於本實施形態中,較佳為隔膜包含第1離子交換樹脂層、及具有與該第1離子交換樹脂層不同之EW(離子交換當量)之第2離子交換樹脂層。又,較佳為隔膜包含第1離子交換樹脂層及具有與該第1離子交換樹脂層不同之官能基之第2離子交換樹脂層。離子交換當量可藉由所導入之官能基進行調整,關於可導入之官能基係如上文所述。
於本實施形態中,夾持於陽極墊片12及陰極墊片13之間之積層體25之部分較佳為非通電面。再者,「通電面」與以於陽極室與陰極室之間進行電解質之移動之方式設計之部分相對應,「非通電面」係不屬於通電面之部分。
又,於本實施形態中,積層體之最外周緣與陽極側墊片及陰極側墊片之最外周緣相比,可位於通電面方向內側,亦可位於外側,較佳為位於外側。於以此種方式構成之情形時,可抓持位於外側之最外周緣,因此有組裝電解槽時之作業性提高之傾向。此處,積層體之最外周緣係將隔膜與電解用電極組合之狀態下之最外周緣。即,若與隔膜之最外周緣相比,電解用電極之最外周緣處於互相之接觸面外側,則意指電解用電極之最外周緣,又,若與隔膜之最外周緣相比,電解用電極之最外周緣處於互相之接觸面內側,則意指隔膜之最外周緣。
使用圖72、73對該位置關係進行說明。圖72、73係表示於例如從圖64B所示之α方向觀察2個電解池之情形時尤其是墊片及積層體之位置關係。於圖72、73中,中央具有開口部之長方形狀之墊片A位於最靠近前之位置。長方形狀之隔膜B位於其背側,進而長方形狀之電解用電極C位於其背側。即,墊片A之開口部係與積層體之通電面相對應之部分。
於圖72中,墊片A之最外周緣A1與隔膜B之最外周緣B1及電解用電極C之最外周緣C1相比,位於通電面方向內側。
又,於圖73中,墊片A之最外周緣A1與電解用電極C之最外周緣C1相比,位於通電面方向外側,但隔膜B之最外周緣B1與墊片A之最外周緣A1相比,位於通電面方向外側。
再者,於本實施形態中,作為積層體,被陽極側墊片及陰極側墊片夾持即可,電解用電極本身亦可不被陽極側墊片及陰極側墊片直接夾持。即,只要將電解用電極本身固定於隔膜,則亦可僅隔膜被陽極側墊片及陰極側墊片直接夾持。於本實施形態中,就於電解槽中將電解用電極更穩定地固定之觀點而言,較佳為電解用電極及隔膜之兩者被陽極側墊片及陰極側墊片夾持。
於本實施形態中,隔膜與電解用電極至少由陽極墊片及陰極墊片所固定,以積層體之形式存在,但亦可具有其他固定結構,例如可採用以下所例示之固定結構。再者,各固定結構可僅採用1種,亦可組合2種以上而採用。
於本實施形態中,較佳為電解用電極之至少一部分貫通隔膜而被固定。使用圖74A對該態樣進行說明。
於圖74A中,電解用電極2之至少一部分貫通隔膜3而被固定。於圖74A中係示出電解用電極2為金屬多孔電極之例。即,於圖74A中將複數個電解用電極2之部分獨立表示,但該等相連而表示一體之金屬多孔電極之剖面(於以下之圖75~78中亦相同)。
於此種電極結構下,例如若將特定位置(應成為固定部之位置)之隔膜3壓抵於電解用電極2,則隔膜3之一部分進入至電解用電極2之表面之凹凸結構內或孔結構內,電極表面之凹部或孔之周圍之凸部分貫通隔膜3,較佳為如圖74A所示,穿透至隔膜3之外表面3b。
如上所述,圖74A之固定結構可藉由將隔膜3壓抵於電解用電極2而製造,於該情形時,於藉由加溫使隔膜3軟化之狀態下進行熱壓接、熱抽吸。藉此,電解用電極2將隔膜3貫通。或者,亦可於將隔膜3熔融之狀態下進行。於該情形時,較佳為於圖74B所示之狀態下從電解用電極2之外表面2b側(背面側)抽吸隔膜3。再者,將隔膜3壓抵於電解用電極2之區域構成「固定部」。
圖74A所示之固定結構可藉由放大鏡(loupe)、光學顯微鏡或電子顯微鏡進行觀察。又,藉由電解用電極2將隔膜3貫通,利用隔膜3之外表面3b與電解用電極2之外表面2b之間的使用測試機等之導通檢查,可推測出圖74A之固定結構。
於本實施形態中,較佳為於固定部中電解用電極之至少一部分位於隔膜之內部而被固定。使用圖75A對該態樣進行說明。
如上所述,電解用電極2之表面被設為凹凸結構或孔結構。於圖75A所示之實施形態中,電極表面之一部分插入並被固定於特定位置(應成為固定部之位置)之隔膜3。圖75A所示之固定結構可藉由將隔膜3壓抵於電解用電極2而製造。於該情形時,較佳為於藉由加溫使隔膜3軟化之狀態下進行熱壓接、熱抽吸而形成圖75A之固定結構。或者,亦可將隔膜3熔融而形成圖75A之固定結構。於該情形時,較佳為從電解用電極2之外表面2b側(背面側)抽吸隔膜3。
圖75A所示之固定結構可藉由放大鏡(loupe)、光學顯微鏡或電子顯微鏡進行觀察。較佳為尤其是對樣品進行包埋處理後藉由切片機製作剖面並進行觀察之方法。再者,於圖75A所示之固定結構中,由於電解用電極2未貫通隔膜3,因此並不確認隔膜3之外表面3b與電解用電極2之外表面2b之間的利用導通檢查之導通。
於本實施形態中,較佳為於積層體中進一步具有用以將隔膜與電解用電極加以固定之固定用構件。使用圖76A~C對該態樣進行說明。
圖76A所示之固定結構係使用與電解用電極2及隔膜3不同體之固定用構件7,且固定用構件7將電解用電極2與隔膜3貫通而加以固定之結構。電解用電極2未必一定被固定用構件7所貫通,以不與隔膜2分離之方式藉由固定用構件7進行固定即可。固定用構件7之材質並無特別限定,作為固定用構件7,例如可使用包含金屬或樹脂等者。於金屬之情形時,可列舉鎳、鎳鉻合金、鈦、不鏽鋼(SUS)等。亦可為該等之氧化物。作為樹脂,可使用氟樹脂(例如,PTFE(聚四氟乙烯)、PFA(四氟乙烯與全氟烷氧基乙烯之共聚物)、ETFE(四氟乙烯與乙烯之共聚物)或下述所記載之隔膜3之材質)或PVDF(聚偏二氟乙烯)、EPDM(乙烯-丙烯-二烯橡膠)、PP(聚乙烯)、PE(聚丙烯)、尼龍、芳香族聚醯胺等。
於本實施形態中,例如使用紗狀之金屬或樹脂,如圖76B、76C所示般,對電解用電極2與隔膜3之外表面2b、3b間之特定位置(應成為固定部之位置)進行縫製,藉此亦可進行固定。又,亦可使用如活褶縫製器之固定機構將電解用電極2與隔膜3加以固定。
圖77所示之固定結構係於電解用電極2與隔膜3之間介置有機樹脂(接著層)進行固定之結構。即,於圖77中係將作為固定用構件7之有機樹脂配置於電解用電極2與隔膜3之間之特定位置(應成為固定部之位置)而藉由接著進行固定之結構。例如,於電解用電極2之內表面2a、或隔膜3之內表面3a、或電解用電極2及隔膜3之內表面2a、3a之兩者或其中一者塗佈有機樹脂。然後,將電解用電極2與隔膜3貼合,藉此可形成圖77所示之固定結構。有機樹脂之材質並無特別限定,例如可使用氟樹脂(例如,PTFE、PFE(Polyfluoroethylene,聚氟乙烯)、PFPE(perfluoropolyether,全氟聚醚))、或與上文所述之構成隔膜3之材料相同之樹脂等。又,亦可適當地使用市售之氟系接著劑、PTFE分散液等。進而,亦可使用通用之乙酸乙烯酯系接著劑、乙烯-乙酸乙烯酯共聚合系接著劑、丙烯酸系樹脂系接著劑、α-烯烴系接著劑、苯乙烯丁二烯橡膠系乳膠接著劑、氯乙烯樹脂系接著劑、氯丁二烯系接著劑、腈橡膠系接著劑、胺基甲酸酯橡膠系接著劑、環氧系接著劑、聚矽氧樹脂系接著劑、改性聚矽氧系接著劑、環氧-改性聚矽氧樹脂系接著劑、矽烷化胺基甲酸酯樹脂系接著劑、氰基丙烯酸酯系接著劑等。
於本實施形態中,可使用溶於電解液或於電解中溶解、分解之有機樹脂。作為溶於電解液或於電解中溶解、分解之有機樹脂,並不限定於以下,例如可列舉:乙酸乙烯酯系接著劑、乙烯-乙酸乙烯酯共聚合系接著劑、丙烯酸系樹脂系接著劑、α-烯烴系接著劑、苯乙烯丁二烯橡膠系乳膠接著劑、氯乙烯樹脂系接著劑、氯丁二烯系接著劑、腈橡膠系接著劑、胺基甲酸酯橡膠系接著劑、環氧系接著劑、聚矽氧樹脂系接著劑、改性聚矽氧系接著劑、環氧-改性聚矽氧樹脂系接著劑、矽烷化胺基甲酸酯樹脂系接著劑、氰基丙烯酸酯系接著劑等。
圖77所示之固定結構可藉由光學顯微鏡或電子顯微鏡進行觀察。較佳為尤其是對樣品進行包埋處理後藉由切片機製作剖面並進行觀察之方法。
於本實施形態中,較佳為固定用構件之至少一部分從外部將隔膜與電解用電極固持。使用圖78A對該態樣進行說明。
圖78A所示之固定結構係從外部將電解用電極2與隔膜3固持並加以固定之結構。即,藉由作為固定用構件7之固持構件將電解用電極2之外表面2b與隔膜3之外表面3b之間夾持並固定。於圖78A所示之固定結構中,亦包括固持構件陷入電解用電極2或隔膜3之狀態。作為固持構件,例如可列舉膠帶、夾具等。
於本實施形態中,亦可使用溶於電解液之固持構件。作為溶於電解液之固持構件,例如可列舉PET製之膠帶、夾具、PVA製之膠帶、夾具等。
圖78A所示之固定結構與圖74~圖77不同,並非將電解用電極2與隔膜3之界面接合者,電解用電極2與隔膜3之各內表面2a、3a僅處於接觸或相對向之狀態,藉由去除固持構件,可將電解用電極2與隔膜3之固定狀態加以解除而分離。
圖78A並未示出,但亦可使用固持構件將電解用電極2與隔膜3固定於電解池。
又,於本實施形態中,較佳為固定用構件之至少一部分藉由磁力將隔膜與電解用電極進行固定。使用圖78B對該態樣進行說明。
圖78B所示之固定結構係從外部將電解用電極2與隔膜3固持並加以固定之結構。與圖78A之區別在於使用1對磁石作為用作固定用構件之固持構件之方面。於圖78B所示之固定結構之態樣中,於將積層體1安裝於電解槽後,於電解槽運轉時可將固持構件直接殘留,亦可將其從積層體1去除。
圖78B並未示出,但亦可使用固持構件將電解用電極2與隔膜3固定於電解池。又,於電解池之材質之一部分使用與磁石接著之磁性材料之情形時,亦可將1種固持材料設置於隔膜面側,將電解池、電解用電極2及隔膜3夾住而固定。
再者,亦可設置複數列固定部。即,可從積層體1之輪廓側起朝向內側配置1、2、3、…n條固定部。n為1以上之整數。又,第m號(m<n)固定部與第L號(m<L≦n)固定部可藉由不同之固定圖案形成。
形成於通電面之固定部較佳為線對稱之形狀。藉此,有能夠抑制應力集中之傾向。例如,若將正交之2個方向設為X方向與Y方向,則可於X方向與Y方向之各方向各配置1條、或於X方向與Y方向之各方向等間隔地各配置複數條而構成固定部。並非對X方向及Y方向之固定部之條數進行限定,但較佳為於X方向及Y方向分別設為100條以下。又,就確保通電面之面性之觀點而言,X方向及Y方向之固定部之條數宜分別為50條以下。
於本實施形態中之固定部中,於具有圖74A或圖76所示之固定結構之情形時,就防止由陽極與陰極接觸引起之短路之觀點而言,較佳為於固定部之膜面上塗佈密封材。作為密封材,例如可使用上述接著劑中所說明之素材。
本實施形態中之積層體可如上所述,於各種位置具有各種固定部,就充分確保電解性能之觀點而言,該等固定部較佳為存在於非通電面。
本實施形態中之積層體可如上所述,於各種位置具有各種固定部,但較佳為尤其是於不存在固定部之部分(非固定部),電解用電極滿足上述「承受力」。即,較佳為電解用電極之非固定部中之每單位質量·單位面積所承受之力未達1.5 N/mg・cm
2
。
又,於本實施形態中,較佳為隔膜包含於表面層含有有機樹脂之離子交換膜,且於該有機樹脂中電解用電極被固定。該有機樹脂如上所述,可藉由各種公知之方法作為離子交換膜之表面層而形成。
(水電解)
本實施形態之進行水電解之情形時之電解槽係具有將上述進行食鹽電解之情形時之電解槽中之離子交換膜變更為微多孔膜之構成者。又,於所供給之原料為水之方面與上述進行食鹽電解之情形時之電解槽不同。關於其他構成,進行水電解之情形時之電解槽亦可採用與進行食鹽電解之情形時之電解槽相同之構成。於食鹽電解之情形時,由於在陽極室產生氯氣,因此陽極室之材質使用鈦,於水電解之情形時,由於在陽極室僅產生氧氣,因此可使用與陰極室之材質相同者。例如可列舉鎳等。又,陽極塗層適宜為產生氧氣用之觸媒塗層。作為觸媒塗層之例,可列舉鉑族金屬及過渡金屬族之金屬、氧化物、氫氧化物等。例如可使用鉑、銥、鈀、釕、鎳、鈷、鐵等元素。
(電解槽之製造方法及積層體之更新方法)
本實施形態之電解槽中之積層體之更新方法具有:藉由將本實施形態中之積層體從陽極側墊片及陰極側墊片分離而將該積層體從電解槽取出之驟;及於陽極側墊片與陰極側墊片之間夾持新的積層體之步驟。再者,所謂新積層體意指本實施形態中之積層體,電解用電極及隔膜之至少一者為新品即可。
於上述夾持積層體之步驟中,就於電解槽中將電解用電極更穩定地固定之觀點而言,較佳為電解用電極及隔膜之兩者被陽極側墊片及陰極側墊片夾持。
又,本實施形態之電解槽之製造方法具有於陽極側墊片與陰極側墊片之間夾持本實施形態中之積層體之步驟。
本實施形態之電解槽之製造方法及積層體之更新方法由於以上述方式構成,因此能夠提高電解槽中之電極更新時之作業效率,進而更新後亦可獲得優異之電解性能。
於上述夾持積層體之步驟中,就於電解槽中將電解用電極更穩定地固定之觀點而言,亦較佳為電解用電極及隔膜之兩者被陽極側墊片及陰極側墊片夾持。
<第5實施形態>
此處,一邊參照圖91~102一邊對本發明之第5實施形態進行詳細地說明。
[電解槽之製造方法]
第5實施形態(以下於<第5實施形態>之項中簡稱為「本實施形態」)之電解槽之製造方法係用以藉由對具備陽極、與上述陽極相對向之陰極、及配置於上述陽極與上述陰極之間之隔膜的既有電解槽配置電解用電極或該電解用電極與新隔膜之積層體而製造新電解槽之方法,並且使用上述電解用電極或上述積層體之捲繞體。如上所述,根據本實施形態之電解槽之製造方法,由於使用電解用電極或該電解用電極與新隔膜之積層體之捲繞體,因此能夠減小用作電解槽之構件時之電解用電極或積層體之尺寸後進行搬運等,能夠提高電解槽中之電極更新時之作業效率。
於本實施形態中,既有電解槽包含陽極、與上述陽極相對向之陰極、及配置於上述陽極與上述陰極之間之隔膜作為構成構件,換言之,其包含電解池。既有電解槽只要包含上述構成構件,則無特別限定,可應用各種公知之構成。
於本實施形態中,新電解槽係除了於既有電解槽中已作為陽極或陰極而發揮功能之構件以外,進而具備電解用電極或積層體者。即,於製造新電解槽時所配置之「電解用電極」係作為陽極或陰極而發揮功能者,與既有電解槽中之陰極及陽極不同體。於本實施形態中,即使於伴隨既有電解槽之運轉陽極及/或陰極之電解性能劣化之情形時,藉由配置與該等不同體之電解用電極,亦可更新陽極及/或陰極之性能。又,於本實施形態中使用積層體之情形時,由於一併配置新離子交換膜,因此伴隨運轉性能劣化之離子交換膜之性能亦可同時更新。此處所謂「更新性能」意指設為與將既有電解槽供於運轉前所具有之初始性能相同之性能、或高於該初始性能之性能。
於本實施形態中,假定既有電解槽係「已供於運轉之電解槽」,又,假定新電解槽係「尚未供於運轉之電解槽」。即,若將作為新電解槽所製造之電解槽供於運轉一次,則成為「本實施形態中之既有電解槽」,對該既有電解槽配置電解用電極或積層體而成者成為「本實施形態中之新電解槽」。
以下,以使用離子交換膜作為隔膜進行食鹽電解之情形為例,對電解槽之一實施形態進行詳細說明。再者,於<第5實施形態>之項中,只要無特別說明,則「本實施形態中之電解槽」包含「本實施形態中之既有電解槽」及「本實施形態中之新電解槽」之兩者。
[電解池]
首先,對可用作本實施形態中之電解槽之構成單元的電解池進行說明。圖91係電解池1之剖面圖。
電解池1具備陽極室10、陰極室20、設置於陽極室10及陰極室20之間之間隔壁30、設置於陽極室10之陽極11、及設置於陰極室20之陰極21。視需要亦可具備具有基材18a與形成於該基材18a上之逆向電流吸收層18b且設置於陰極室內之逆向電流吸收體18。屬於1個電解池1之陽極11及陰極21互相電性連接。換言之,電解池1具備如下陰極結構體。陰極結構體40具備陰極室20、設置於陰極室20之陰極21、及設置於陰極室20內之逆向電流吸收體18,逆向電流吸收體18如圖95所示具有基材18a與形成於該基材18a上之逆向電流吸收層18b,陰極21與逆向電流吸收層18b電性連接。陰極室20進而具有集電體23、支持該集電體之支持體24、及金屬彈性體22。金屬彈性體22係設置於集電體23及陰極21之間。支持體24係設置於集電體23及間隔壁30之間。集電體23經由金屬彈性體22而與陰極21電性連接。間隔壁30經由支持體24而與集電體23電性連接。因此,間隔壁30、支持體24、集電體23、金屬彈性體22及陰極21係電性連接。陰極21及逆向電流吸收層18b係電性連接。陰極21及逆向電流吸收層可直接連接,亦可經由集電體、支持體、金屬彈性體或間隔壁等而間接連接。陰極21之表面整體較佳為由用於還原反應之觸媒層所被覆。又,電性連接之形態可為分別直接將間隔壁30與支持體24、支持體24與集電體23、集電體23與金屬彈性體22安裝,並且於金屬彈性體22上積層陰極21之形態。作為將該等各構成構件互相直接安裝之方法,可列舉焊接等。又,亦可將逆向電流吸收體18、陰極21、及集電體23總稱為陰極結構體40。
圖92係電解槽4內鄰接之2個電解池1之剖面圖。圖93表示電解槽4。圖94表示組裝電解槽4之步驟。
如圖92所示,將電解池1、陽離子交換膜2、電解池1依序串聯排列。於電解槽內鄰接之2個電解池中之一電解池1之陽極室與另一電解池1之陰極室之間配置離子交換膜2。即,電解池1之陽極室10及與其鄰接之電解池1之陰極室20係由陽離子交換膜2隔開。如圖93所示,電解槽4包含介隔離子交換膜2而串聯連接之複數個電解池1。即,電解槽4係具備串聯配置之複數個電解池1、及配置於鄰接之電解池1之間之離子交換膜2的複極式電解槽。如圖94所示,電解槽4係藉由介隔離子交換膜2將複數個電解池1串聯配置並利用壓製器5連結而組裝。
電解槽4具有連接於電源之陽極端子7與陰極端子6。於電解槽4內串聯連結之複數個電解池1中位於最靠端之電解池1之陽極11係電性連接於陽極端子7。於電解槽4內串聯連結之複數個電解池2中位於陽極端子7之相反側之端之電解池的陰極21係電性連接於陰極端子6。電解時之電流從陽極端子7側起,經過各電解池1之陽極及陰極而流向陰極端子6。再者,可於連結之電解池1之兩端配置僅具有陽極室之電解池(陽極終端池)與僅具有陰極室之電解池(陰極終端池)。於該情形時,將陽極端子7連接於配置於其一端之陽極終端池,將陰極端子6連接於配置於另一端之陰極終端池。
於進行鹽水之電解之情形時,向各陽極室10供給鹽水,向陰極室20供給純水或低濃度之氫氧化鈉水溶液。各液體係從電解液供給管(圖中省略)起,經過電解液供給軟管(圖中省略)而向各電解池1供給。又,電解液及電解之產物係由電解液回收管(圖中省略)所回收。於電解中,鹽水中之鈉離子從一電解池1之陽極室10起,通過離子交換膜2,向旁邊之電解池1之陰極室20移動。由此電解中之電流沿將電解池1串聯連結之方向流通。即,電流係經由陽離子交換膜2而從陽極室10流向陰極室20。伴隨鹽水之電解,於陽極11側產生氯氣,於陰極21側產生氫氧化鈉(溶質)與氫氣。
(陽極室)
陽極室10具有陽極11或陽極饋電體11。作為此處所謂饋電體意指劣化之電極(即既有電極)或未形成有觸媒塗層之電極等。於將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極饋電體發揮功能。於不將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極發揮功能。又,陽極室10較佳為具有向陽極室10供給電解液之陽極側電解液供給部、配置於陽極側電解液供給部之上方且以與間隔壁30大致平行或傾斜之方式配置之擋板、及配置於擋板之上方且從混入有氣體之電解液中分離氣體之陽極側氣液分離部。
(陽極)
於不將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框(即,陽極框)內設置有陽極11。作為陽極11,可使用所謂DSA(註冊商標)等金屬電極。所謂DSA係藉由以釕、銥、鈦作為成分之氧化物被覆表面之鈦基材之電極。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陽極饋電體)
於將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極饋電體11。作為陽極饋電體11,可使用所謂DSA(註冊商標)等金屬電極,亦可使用未形成有觸媒塗層之鈦。又,亦可使用使觸媒塗層厚度變薄之DSA。進而,亦可使用使用過之陽極。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陽極側電解液供給部)
陽極側電解液供給部係向陽極室10供給電解液者,其連接於電解液供給管。陽極側電解液供給部較佳為配置於陽極室10之下方。作為陽極側電解液供給部,例如可使用表面形成有開口部之管(分散管)等。該管更佳為以沿陽極11之表面平行於電解池之底部19之方式配置。該管係連接於向電解池1內供給電解液之電解液供給管(液供給噴嘴)。從液供給噴嘴供給之電解液藉由管被搬送至電解池1內,從設置於管之表面之開口部向陽極室10之內部供給。藉由將管以沿陽極11之表面平行於電解池之底部19之方式配置,能夠將電解液均勻地供給至陽極室10之內部,故而較佳。
(陽極側氣液分離部)
陽極側氣液分離部較佳為配置於擋板之上方。於電解中,陽極側氣液分離部具有將氯氣等產生氣體與電解液分離之功能。再者,只要無特別說明,則所謂上方意指圖91之電解池1中之上方向,所謂下方意指圖91之電解池1中之下方向。
電解時,若電解池1中產生之產生氣體與電解液成為混相(氣液混相)而被排出至系外,則存在因電解池1內部之壓力變動導致產生振動而引起離子交換膜之物理破損之情形。為了抑制該情形,較佳為於本實施形態中之電解池1中設置用以將氣體與液體分離之陽極側氣液分離部。較佳為於陽極側氣液分離部設置用以消除氣泡之消泡板。藉由在氣液混相流通過消泡板時氣泡破裂,而可分離為電解液與氣體。其結果為,能夠防止電解時之振動。
(擋板)
擋板較佳為配置於陽極側電解液供給部之上方,且以與間隔壁30大致平行或傾斜之方式配置。擋板係控制陽極室10之電解液之流動之間隔板。藉由設置擋板,可使電解液(鹽水等)於陽極室10內部循環,使其濃度變得均勻。為了引起內部循環,擋板較佳為以將陽極11附近之空間與間隔壁30附近之空間隔開之方式配置。就該觀點而言,擋板較佳為以與陽極11及間隔壁30之各表面相對向之方式設置。於由擋板分隔之陽極附近之空間,藉由進行電解,電解液濃度(鹽水濃度)降低,又,產生氯氣等產生氣體。藉此,於由擋板分隔之陽極11附近之空間與間隔壁30附近之空間產生氣液之比重差。利用該情況,能夠促進陽極室10中之電解液之內部循環,使陽極室10之電解液之濃度分佈變得更均勻。
再者,於圖91並未圖示,但亦可於陽極室10之內部另行設置集電體。作為該集電體,亦可設為與下文所述之陰極室之集電體相同之材料或構成。又,於陽極室10中,亦可使陽極11本身作為集電體發揮功能。
(間隔壁)
間隔壁30係配置於陽極室10與陰極室20之間。間隔壁30有時亦稱為間隔件,係將陽極室10與陰極室20進行劃分者。作為間隔壁30,可使用作為電解用之間隔件所公知者,例如可列舉於陰極側焊接包含鎳之板、於陽極側焊接包含鈦之板之間隔壁等。
(陰極室)
陰極室20於將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極饋電體發揮功能,於不將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極發揮功能。於具有逆向電流吸收體之情形時,陰極或陰極饋電體21與逆向電流吸收體係電性連接。又,陰極室20較佳為與陽極室10同樣,亦具有陰極側電解液供給部、陰極側氣液分離部。再者,構成陰極室20之各部位中,關於與構成陽極室10之各部位相同者省略說明。
(陰極)
於不將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框(即,陰極框)內設置有陰極21。陰極21較佳為具有鎳基材與被覆鎳基材之觸媒層。作為鎳基材上之觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可視需要對陰極21實施還原處理。再者,作為陰極21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陰極饋電體)
於將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極饋電體21。可對陰極饋電體21被覆觸媒成分。該觸媒成分可為原本用作陰極而殘存者。作為觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可使用未形成有觸媒塗層之鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。再者,作為陰極饋電體21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(逆向電流吸收層)
可選擇具有較上文所述之陰極之觸媒層用元素的氧化還原電位更低之氧化還原電位之材料作為逆向電流吸收層之材料。例如可列舉鎳或鐵等。
(集電體)
陰極室20較佳為具備集電體23。藉此,集電效果提高。於本實施形態中,集電體23較佳為多孔板,且以與陰極21之表面大致平行之方式配置。
作為集電體23,例如較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。集電體23可為該等金屬之混合物、合金或複合氧化物。再者,集電體23之形狀只要為作為集電體發揮功能之形狀,則可為任意形狀,可為板狀、網狀。
(金屬彈性體)
藉由在集電體23與陰極21之間設置金屬彈性體22,將串聯連接之複數個電解池1之各陰極21壓抵於離子交換膜2,各陽極11與各陰極21之間之距離變短,可降低對串聯連接之複數個電解池1整體施加之電壓。藉由電壓降低,可降低消耗電量。又,藉由設置金屬彈性體22,於將含有本實施形態中之電解用電極之積層體設置於電解池時,藉由金屬彈性體22之壓抵壓,可將該電解用電極穩定地維持於起始位置。
作為金屬彈性體22,可使用螺旋彈簧、線圈等彈簧構件、緩衝性之墊等。作為金屬彈性體22,可考慮壓抵離子交換膜之應力等而適當採用適宜者。可將金屬彈性體22設置於陰極室20側之集電體23之表面上,亦可設置於陽極室10側之間隔壁之表面上。通常以陰極室20小於陽極室10之方式劃分兩室,因此就框體之強度等觀點而言,較佳為將金屬彈性體22設置於陰極室20之集電體23與陰極21之間。又,金屬彈性體23較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。
(支持體)
陰極室20較佳為具備將集電體23與間隔壁30電性連接之支持體24。藉此,能夠效率良好地流通電流。
支持體24較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。又,作為支持體24之形狀,只要為能夠支持集電體23之形狀,則可為任意形狀,可為棒狀、板狀或網狀。支持體24例如為板狀。複數個支持體24係配置於間隔壁30與集電體23之間。複數個支持體24係以各自之面互相平行之方式排列。支持體24係以大致垂直於間隔壁30及集電體23之方式配置。
(陽極側墊片、陰極側墊片)
陽極側墊片較佳為配置於構成陽極室10之框體表面。陰極側墊片較佳為配置於構成陰極室20之框體表面。1個電解池所具備之陽極側墊片及與其鄰接之電解池之陰極側墊片以夾持離子交換膜2之方式將電解池彼此連接(參照圖92)。藉由該等墊片,於介隔離子交換膜2將複數個電解池1串聯連接時,能夠對連接處賦予氣密性。
所謂墊片係將離子交換膜與電解池之間密封者。作為墊片之具體例,可列舉中央形成有開口部之邊框狀之橡膠製片等。對於墊片要求對腐蝕性之電解液或所產生之氣體等具有耐性而可長期使用。因此,就耐化學品性或硬度之方面而言,通常可使用乙烯-丙烯-二烯橡膠(EPDM橡膠)、乙烯-丙烯橡膠(EPM橡膠)之硫化物或過氧化物交聯物等作為墊片。又,視需要亦可使用以聚四氟乙烯(PTFE)或四氟乙烯-全氟烷基乙烯醚共聚物(PFA)等氟系樹脂被覆與液體相接之區域(接液部)之墊片。該等墊片只要以不妨礙電解液之流動之方式分別具有開口部即可,其形狀並無特別限定。例如沿構成陽極室10之陽極室框或構成陰極室20之陰極室框之各開口部之周緣,藉由接著劑等貼附邊框狀之墊片。此外,於例如介隔離子交換膜2連接2個電解池1之情形時(參照圖92),介隔離子交換膜2將貼附有墊片之各電解池1緊固即可。藉此,能夠抑制電解液、因電解而產生之鹼金屬氫氧化物、氯氣、氫氣等漏至電解池1之外部之情況。
[使用捲繞體之步驟]
本實施形態中之捲繞體可為電解用電極之捲繞體,亦可為電解用電極與新隔膜之積層體之捲繞體。於本實施形態之電解槽之製造方法中,使用該捲繞體。作為使用捲繞體之步驟之具體例,並不限定於以下,可列舉如下方法等:首先,於既有電解槽中將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,於該電解池及離子交換膜之間形成空隙,其次,將解除電解用電極之捲繞體之捲繞狀態而成者插入至該空隙,再次藉由壓製器將各構件連結。再者,於使用積層體之捲繞體之情形時,例如可列舉如下方法等:以上述方式於電解池及離子交換膜之間形成空隙後,去除成為更新對象之既有之離子交換膜,其次,將解除積層體之捲繞體之捲繞狀態而成者插入至該空隙,再次藉由壓製器將各構件連結。藉由此種方法,能夠將電解用電極或積層體配置於既有電解槽中之陽極或陰極之表面上,而能夠更新離子交換膜、陽極及/或陰極之性能。
如上所述,於本實施形態中,較佳為使用捲繞體之步驟具有將捲繞體之捲繞狀態加以解除之步驟(B),又,更佳為具有於步驟(B)之後將電解用電極或積層體配置於陽極及陰極之至少一者之表面上之步驟(C)。
又,於本實施形態中,較佳為使用捲繞體之步驟具有將電解用電極或積層體保持為捲繞狀態而獲得捲繞體之步驟(A)。於步驟(A)中,可將電解用電極或積層體本身進行捲繞而製成捲繞體,亦可將電解用電極或積層體纏繞至芯而製成捲繞體。作為此處可使用之芯,並無特別限定,例如可使用具有大致圓柱形狀且與電解用電極或積層體相適應之尺寸之構件。
[電解用電極]
於本實施形態中,電解用電極只要如上所述可用作捲繞體、即為能夠捲繞者,則無特別限定。電解用電極可為於電解槽中作為陰極而發揮功能者,亦可為作為陽極而發揮功能者。又,關於電解用電極之材質或形狀等,可考慮本實施形態中之使用捲繞體之步驟或電解槽之構成等,適當選擇於製成捲繞體之方面合適者。以下,對本實施形態中之電解用電極之較佳之態樣進行說明,但該等終歸僅為於製成捲繞體之方面較佳之態樣之例示,亦可適當採用下文所述之態樣以外之電解用電極。
本實施形態中之電解用電極就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、饋電體(劣化之電極及未形成有觸媒塗層之電極)等具有良好之接著力之觀點而言,每單位質量·單位面積所承受之力較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。
就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/mg・cm
2
以上,進而更佳為0.14 N/(mg・cm
2
)以上。就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.2 N/(mg・cm
2
)以上。
上述承受力例如可藉由適當調整下文所述之開孔率、電極之厚度、算術平均表面粗糙度等而設為上述範圍。更具體而言,例如,若增大開孔率,則承受力有變小之傾向,若減小開孔率,則承受力有變大之傾向。
又,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力之觀點,進而就經濟性之觀點而言,較佳為每單位面積之質量為48 mg/cm
2
以下,更佳為30 mg/cm
2
以下,進而較佳為20 mg/cm
2
以下,進而,就合併操作性、接著性及經濟性之綜合性之觀點而言,較佳為15 mg/cm
2
以下。下限值並無特別限定,例如為1 mg/cm
2
左右。
上述每單位面積之質量例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則每單位面積之質量有變小之傾向,若減小開孔率,則每單位面積之質量有變大之傾向。
承受力可藉由以下之方法(i)或(ii)進行測定,詳細而言,如實施例所記載。關於承受力,藉由方法(i)之測定所獲得之值(亦稱為「承受力(1)」)與藉由方法(ii)之測定所獲得之值(亦稱為「承受力(2)」)可相同亦可不同,但較佳為任一值均未達1.5 N/mg・cm
2
。
[方法(i)]
依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方)、於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之離子交換膜(170 mm見方,關於此處所謂離子交換膜之詳細如實施例所記載)及電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。再者,噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.5~0.8 μm。算術平均表面粗糙度(Ra)之具體之算出方法如實施例所記載。
於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極樣品與離子交換膜之重疊部分之面積、及與離子交換膜重疊部分之電極樣品之質量,而算出每單位質量·單位面積所承受之力(1)(N/mg・cm
2
)。
藉由方法(i)獲得之每單位質量·單位面積所承受之力(1)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。又,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/(mg・cm
2
)以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm
2
),更佳為0.2 N/(mg・cm
2
)以上。
[方法(ii)]
依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方,與上述方法(i)相同之鎳板)與電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極樣品與鎳板之重疊部分之面積、及與鎳板重疊部分中之電極樣品之質量,而算出每單位質量•單位面積之接著力(2)(N/mg・cm
2
)。
藉由方法(ii)獲得之每單位質量·單位面積所承受之力(2)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。進而,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/(mg・cm
2
)以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm
2
)以上。
本實施形態中之電解用電極較佳為包含電解用電極基材及觸媒層。該電解用電極基材之厚度(量規厚度)並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折,大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。
本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力之觀點而言,藉由以下之方法(2)所測得之比率較佳為90%以上,更佳為92%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為95%以上。上限值為100%。
[方法(2)]
依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑280 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。
本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折之觀點而言,藉由以下之方法(3)所測得之比率較佳為75%以上,更佳為80%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為90%以上。上限值為100%。
[方法(3)]
依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑145 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。
本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,防止電解中產生之氣體滯留之觀點而言,較佳為多孔結構,且其開孔率或空隙率為5~90%以下。開孔率更佳為10~80%以下,進而較佳為20~75%。
再者,所謂開孔率係每單位體積之開孔部之比率。開孔部亦根據考慮至次微米級抑或僅考慮目視可見之開口而有各種算出方法。於本實施形態中,可藉由根據電極之量規厚度、寬度、長度之值算出體積V,進而實測重量W,而利用下述之式算出開孔率A。
A=(1-(W/(V×ρ))×100
ρ係電極之材質之密度(g/cm
3
)。例如於鎳之情形時為8.908 g/cm
3
,於鈦之情形時為4.506 g/cm
3
。開孔率之調整可藉由如下方法進行適當調整:若為沖孔金屬,則變更每單位面積沖裁金屬之面積;若為多孔金屬,則變更SW(短徑)、LW(長徑)、進給之值;若為絲網,則變更金屬纖維之線徑、網眼數;若為電成形,則變更所使用之光阻之圖案;若為不織布,則變更金屬纖維直徑及纖維密度;若為發泡金屬,則變更用以使空隙形成之模板等。
以下,對本實施形態中之電解用電極之更具體之實施形態進行說明。
本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。觸媒層如下所述,可包含複數層,亦可為單層結構。
如圖96所示,本實施形態之電解用電極100具備電解用電極基材10、及被覆電解用電極基材10之兩表面之一對第一層20。第一層20較佳為將電解用電極基材10整體被覆。藉此,電解用電極之觸媒活性及耐久性變得容易提高。再者,亦可僅於電解用電極基材10之一表面積層第一層20。
又,如圖96所示,第一層20之表面可由第二層30所被覆。第二層30較佳為將第一層20整體被覆。又,第二層30可僅積層於第一層20之一表面。
(電解用電極基材)
作為電解用電極基材10,並無特別限定,例如可使用鎳、鎳合金、不鏽鋼、或以鈦等為代表之閥金屬,較佳為含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。
於在高濃度之鹼性水溶液中使用不鏽鋼之情形時,若考慮到鐵及鉻溶出、及不鏽鋼之導電性為鎳之1/10左右,則較佳為使用含有鎳(Ni)之基材作為電解用電極基材。
又,電解用電極基材10於在接近飽和之高濃度之食鹽水中於氯氣產生環境中使用之情形時,材質亦較佳為耐蝕性較高之鈦。
電解用電極基材10之形狀並無特別限定,可根據目的選擇合適之形狀。作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。其中,較佳為沖孔金屬或多孔金屬。再者,所謂電成形係將照相製版與電鍍法組合而製作精密之圖案之金屬薄膜的技術。其係藉由光阻於基板上形成圖案,對未受到光阻保護之部分實施電鍍而獲得金屬薄膜之方法。
關於電解用電極基材之形狀,根據電解槽中之陽極與陰極之距離而有適宜之規格。並無特別限定,於陽極與陰極具有有限之距離之情形時,可使用多孔金屬、沖孔金屬形狀,於離子交換膜與電極相接之所謂零間距電解槽之情形時,可使用編織細線而成之編織網、金屬絲網、發泡金屬、金屬不織布、多孔金屬、沖孔金屬、金屬多孔箔等。
作為電解用電極基材10,可列舉:金屬多孔箔、金屬絲網、金屬不織布、沖孔金屬、多孔金屬或發泡金屬。
作為加工為沖孔金屬、多孔金屬前之板材,較佳為經壓延成形之板材、電解箔等。電解箔較佳為進而作為後處理而藉由與母材相同之元素實施鍍覆處理,於單面或兩面形成凹凸。
又,電解用電極基材10之厚度如上文所述,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。
於電解用電極基材中,較佳為藉由在氧化環境中將電解用電極基材進行退火而緩和加工時之殘留應力。又,為了提高與被覆於電解用電極基材之表面之觸媒層之密接性,較佳為使用鋼砂、氧化鋁粉等於上述表面形成凹凸,其後藉由酸處理而增加表面積。或者,較佳為藉由與基材相同之元素實施鍍覆處理,增加表面積。
為了使第一層20與電解用電極基材10之表面密接,較佳為對電解用電極基材10進行增大表面積之處理。作為增大表面積之處理,可列舉使用鋼線粒、鋼砂、氧化鋁砂等之噴擊處理、使用硫酸或鹽酸之酸處理、利用與基材相同元素之鍍覆處理等。基材表面之算術平均表面粗糙度(Ra)並無特別限定,較佳為0.05 μm~50 μm,更佳為0.1~10 μm,進而較佳為0.1~8 μm。
繼而,對將本實施形態中之電解用電極用作食鹽電解用陽極之情形進行說明。
(第一層)
於圖96中,作為觸媒層之第一層20含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物。作為釕氧化物,可列舉RuO
2
等。作為銥氧化物,可列舉IrO
2
等。作為鈦氧化物,可列舉TiO
2
等。第一層20較佳為含有釕氧化物及鈦氧化物之兩種氧化物,或含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物。藉此,第一層20成為更穩定之層,進而,與第二層30之密接性亦進一步提高。
於第一層20含有釕氧化物及鈦氧化物之兩種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為1~9莫耳,更佳為1~4莫耳。藉由將兩種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。
於第一層20含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之銥氧化物較佳為0.2~3莫耳,更佳為0.3~2.5莫耳。又,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為0.3~8莫耳,更佳為1~7莫耳。藉由將三種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。
於第一層20含有選自釕氧化物、銥氧化物及鈦氧化物中之至少兩種氧化物之情形時,該等氧化物較佳為形成固溶體。藉由形成氧化物固溶體,電解用電極100表現出優異之耐久性。
除了上述組成以外,只要含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物,則可使用各種組成者。例如,亦可使用稱為DSA(註冊商標)之含有釕、銥、鉭、鈮、鈦、錫、鈷、錳、鉑等之氧化物塗層作為第一層20。
第一層20無需為單層,亦可包含複數層。例如,第一層20可包含含有三種氧化物之層與含有兩種氧化物之層。第一層20之厚度較佳為0.05~10 μm,更佳為0.1~8 μm。
(第二層)
第二層30較佳為含有釕與鈦。藉此,能夠進一步降低剛電解後之氯過電壓。
第二層30較佳為含有氧化鈀、氧化鈀與鉑之固溶體或鈀與鉑之合金。藉此,能夠進一步降低剛電解後之氯過電壓。
第二層30較厚者能夠維持電解性能之時間變長,就經濟性之觀點而言,較佳為0.05~3 μm之厚度。
繼而,對將本實施形態中之電解用電極用作食鹽電解用陰極之情形進行說明。
(第一層)
作為觸媒層之第一層20之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。
可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。
於含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少一種之情形時,較佳為鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金含有鉑、鈀、銠、釕、銥中之至少一種鉑族金屬。
作為鉑族金屬,較佳為含有鉑。
作為鉑族金屬氧化物,較佳為含有釕氧化物。
作為鉑族金屬氫氧化物,較佳為含有釕氫氧化物。
作為鉑族金屬合金,較佳為含有鉑與鎳、鐵、鈷之合金。
較佳為進而視需要含有鑭系元素之氧化物或氫氧化物作為第二成分。藉此,電解用電極100表現出優異之耐久性。
作為鑭系元素之氧化物或氫氧化物,較佳為含有選自鑭、鈰、鐠、釹、鉕、釤、銪、釓、鋱、鏑中之至少1種。
較佳為進而視需要含有過渡金屬之氧化物或氫氧化物作為第三成分。
藉由添加第三成分,電解用電極100能夠表現出更優異之耐久性,降低電解電壓。
作為較佳之組合之例,可列舉:僅釕、釕+鎳、釕+鈰、釕+鑭、釕+鑭+鉑、釕+鑭+鈀、釕+鐠、釕+鐠+鉑、釕+鐠+鉑+鈀、釕+釹、釕+釹+鉑、釕+釹+錳、釕+釹+鐵、釕+釹+鈷、釕+釹+鋅、釕+釹+鎵、釕+釹+硫、釕+釹+鉛、釕+釹+鎳、釕+釹+銅、釕+釤、釕+釤+錳、釕+釤+鐵、釕+釤+鈷、釕+釤+鋅、釕+釤+鎵、釕+釤+硫、釕+釤+鉛、釕+釤+鎳、鉑+鈰、鉑+鈀+鈰、鉑+鈀+鑭+鈰、鉑+銥、鉑+鈀、鉑+銥+鈀、鉑+鎳+鈀、鉑+鎳+釕、鉑與鎳之合金、鉑與鈷之合金、鉑與鐵之合金等。
於不含鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之情形時,觸媒之主成分較佳為鎳元素。
較佳為含有鎳金屬、氧化物、氫氧化物中之至少1種。
作為第二成分,可添加過渡金屬。作為所添加之第二成分,較佳為含有鈦、錫、鉬、鈷、錳、鐵、硫、鋅、銅、碳中之至少一種元素。
作為較佳之組合,可列舉:鎳+錫、鎳+鈦、鎳+鉬、鎳+鈷等。
視需要可於第一層20與電解用電極基材10之間設置中間層。藉由設置中間層,能夠提高電解用電極100之耐久性。
作為中間層,較佳為對第一層20與電解用電極基材10之兩者具有親和性者。作為中間層,較佳為鎳氧化物、鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物。作為中間層,可藉由將含有形成中間層之成分之溶液進行塗佈、燒成而形成,亦可於空氣環境中在300~600℃之溫度下對基材實施熱處理而形成表面氧化物層。除此以外,可藉由熱熔射法、離子鍍敷法等已知之方法形成。
(第二層)
作為觸媒層之第一層30之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。
可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。作為第二層所含之元素之較佳之組合例,有第一層中所列舉之組合等。第一層與第二層之組合可為組成相同而組成比不同之組合,亦可為組成不同之組合。
作為觸媒層之厚度,較佳為將所形成之觸媒層及中間層累加而成之厚度為0.01 μm~20 μm。若為0.01 μm以上,則能夠作為觸媒充分發揮功能。若為20 μm以下,則從基材脫落之情況較少,能夠形成牢固之觸媒層。更佳為0.05 μm~15 μm。更佳為0.1 μm~10 μm。進而較佳為0.2 μm~8 μm。
作為電極之厚度、即電解用電極基材與觸媒層之合計之厚度,就電極之操作性之方面而言,較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,電極之厚度可藉由利用電子數顯厚度計(Mitutoyo股份有限公司,最少顯示0.001 mm)進行測定而求出。電解用電極基材之厚度係與電極厚度同樣地進行測定。觸媒層厚度可藉由電極厚度減去電解用電極基材之厚度而求出。
於本實施形態中,就確保充分之電解性能之觀點而言,較佳為電解用電極含有選自由Ru、Rh、Pd、Ir、Pt、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y,Zr、Nb、Mo、Ag、Ta、W、Re、Os、Al、In、Sn、Sb、Ga、Ge、B、C、N、O、Si、P、S、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb及Dy所組成之群中之至少一種觸媒成分。
於本實施形態中,若電解用電極係彈性變形區域較廣之電極,則就可獲得更良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有更良好之接著力之觀點而言,電解用電極之厚度較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,於本實施形態中,所謂「彈性變形區域較廣」意指將電解用電極捲繞而製成捲繞體,解除捲繞狀態後不易產生由捲繞引起之翹曲。又,所謂電解用電極之厚度於包含下文所述之觸媒層之情形時,係指合併電解用電極基材與觸媒層之厚度。
(電解用電極之製造方法)
其次,對電解用電極100之製造方法之一實施形態進行詳細說明。
於本實施形態中,藉由利用氧環境下之塗膜之燒成(熱分解)、或離子鍍敷、鍍覆、熱熔射等方法於電解用電極基材上形成第一層20、較佳為第二層30,可製造電解用電極100。此種本實施形態之製造方法能夠實現電解用電極100之較高之生產性。具體而言,藉由塗佈含有觸媒之塗佈液之塗佈步驟、乾燥塗佈液之乾燥步驟、進行熱分解之熱分解步驟,而於電解用電極基材上形成觸媒層。此處所謂熱分解意指對成為前驅物之金屬鹽進行加熱而分解為金屬或金屬氧化物與氣體狀物質。根據所使用之金屬種類、鹽之種類、進行熱分解之環境等,分解產物有所不同,但於氧化性環境下多數金屬有容易形成氧化物之傾向。於電極之工業性之製造工藝中,熱分解通常於空氣中進行,多數情形時形成金屬氧化物或金屬氫氧化物。
(陽極之第一層之形成)
(塗佈步驟)
第一層20係將溶解有釕、銥及鈦中之至少一種金屬之鹽的溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之釕、銥及鈦之含有率與第一層20大致相等。
作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。
作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。
(乾燥步驟、熱分解步驟)
將第一塗佈液塗佈於電解用電極基材100後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。
重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。
(第二層之形成)
第二層30係視需要而形成,例如將含有鈀化合物及鉑化合物之溶液或含有釕化合物及鈦化合物之溶液(第二塗佈液)塗佈於第一層20上後,於氧氣之存在下進行熱分解而獲得。
(利用熱分解法之陰極之第一層之形成)
(塗佈步驟)
第一層20係將溶解有各種組合之金屬鹽之溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之金屬之含有率與第一層20大致相等。
作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。
作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。
(乾燥步驟、熱分解步驟)
將第一塗佈液塗佈於電解用電極基材10後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。
重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。
(中間層之形成)
中間層係視需要而形成,例如將含有鈀化合物或鉑化合物之溶液(第二塗佈液)塗佈於基材上後,於氧氣之存在下進行熱分解而獲得。或者,亦可不塗佈溶液,而僅加熱基材,藉此於基材表面形成氧化鎳中間層。
(利用離子鍍敷之陰極之第一層之形成)
第一層20亦可藉由離子鍍敷而形成。
作為一例,可列舉將基材固定於腔室內並對金屬釕靶照射電子束之方法。所蒸發之金屬釕粒子於腔室內之電漿中帶正電,而沈積於帶負電之基板上。電漿環境為氬氣、氧氣,釕係以釕氧化物之形式沈積於基材上。
(利用鍍覆之陰極之第一層之形成)
第一層20亦可藉由鍍覆法而形成。
作為一例,若使用基材作為陰極,於含有鎳及錫之電解液中實施電解鍍覆,則可形成鎳與錫之合金鍍覆。
(利用熱熔射之陰極之第一層之形成)
第一層20亦可藉由熱熔射法而形成。
作為一例,藉由將氧化鎳粒子電漿熔射於基材上,而可形成混合有金屬鎳與氧化鎳之觸媒層。
[積層體]
本實施形態中之電解用電極可作為與離子交換膜或微多孔膜等隔膜之積層體而使用。即,本實施形態中之積層體係包含電解用電極與新隔膜者。所謂新隔膜,只要與既有電解槽中之隔膜不同體,則無特別限定,可應用各種公知之隔膜。又,新隔膜可為材質、形狀、物性等與既有電解槽中之隔膜相同者。
以下,對隔膜之一態樣之離子交換膜進行詳細說明。
[離子交換膜]
作為離子交換膜,只要可與電解用電極製成積層體,則無特別限定,可應用各種離子交換膜。於本實施形態中,較佳為使用具有含有具有離子交換基之烴系聚合物或含氟系聚合物之膜本體、與設置於該膜本體之至少一面上之塗佈層之離子交換膜。又,塗佈層含有無機物粒子與結合劑,塗佈層之比表面積較佳為0.1~10 m
2
/g。該結構之離子交換膜於電解中所產生之氣體對電解性能之影響較少,有發揮出穩定之電解性能之傾向。
上述所謂導入有離子交換基之全氟碳聚合物之膜係具備具有源自磺基之離子交換基(以-SO
3 -
表示之基,以下亦稱為「磺酸基」)之磺酸層與具有源自羧基之離子交換基(以-CO
2 -
表示之基,以下亦稱為「羧酸基」)之羧酸層之任一者。就強度及尺寸穩定性之觀點而言,較佳為進而具有強化芯材。
以下於塗佈層之說明之欄對無機物粒子及結合劑進行詳細說明。
圖97係表示離子交換膜之一實施形態之剖面模式圖。離子交換膜1具有:膜本體10,其含有具有離子交換基之烴系聚合物或含氟系聚合物;以及塗佈層11a及11b,其等形成於膜本體10之兩面。
於離子交換膜1中,膜本體10具備具有源自磺基之離子交換基(以-SO
3 -
表示之基,以下亦稱為「磺酸基」)之磺酸層3、與具有源自羧基之離子交換基(以-CO
2 -
表示之基,以下亦稱為「羧酸基」)之羧酸層2,藉由強化芯材4強化強度及尺寸穩定性。離子交換膜1由於具備磺酸層3與羧酸層2,因此可作為陽離子交換膜而適宜地使用。
再者,離子交換膜亦可僅具有磺酸層及羧酸層之任一者。又,離子交換膜未必由強化芯材所強化,強化芯材之配置狀態亦不限定於圖97之例。
(膜本體)
首先,對構成離子交換膜1之膜本體10進行說明。
膜本體10只要為具有使陽離子選擇性地透過之功能且含有具有離子交換基之烴系聚合物或含氟系聚合物者即可,其構成或材料並無特別限定,可適當選擇適宜者。
膜本體10中之具有離子交換基之烴系聚合物或含氟系聚合物例如可由具有可藉由水解等成為離子交換基之離子交換基前驅物之烴系聚合物或含氟系聚合物獲得。具體而言,例如使用主鏈包含氟化烴、具有可藉由水解等轉換為離子交換基之基(離子交換基前驅物)作為懸垂側鏈且能夠熔融加工之聚合物(以下視情形稱為「含氟系聚合物(a)」)製作膜本體10之前驅物後,將離子交換基前驅物轉換為離子交換基,藉此可獲得膜本體10。
含氟系聚合物(a)例如可藉由使選自下述第1群之至少一種單體與選自下述第2群及/或下述第3群之至少一種單體進行共聚合而製造。又,亦可藉由選自下述第1群、下述第2群、及下述第3群之任一群之1種單體之均聚而製造。
作為第1群之單體,例如可列舉氟乙烯化合物。作為氟乙烯化合物,例如可列舉:氟乙烯、四氟乙烯、六氟丙烯、偏二氟乙烯、三氟乙烯、氯三氟乙烯、全氟烷基乙烯醚等。尤其是於將離子交換膜用作鹼電解用膜之情形時,氟乙烯化合物較佳為全氟單體,較佳為選自由四氟乙烯、六氟丙烯、全氟烷基乙烯醚所組成之群中之全氟單體。
作為第2群之單體,例如可列舉具有可轉換為羧酸型離子交換基(羧酸基)之官能基之乙烯系化合物。作為具有可轉換為羧酸基之官能基之乙烯系化合物,例如可列舉以CF
2
=CF(OCF
2
CYF)
s
-O(CZF)
t
-COOR表示之單體等(此處,s表示0~2之整數,t表示1~12之整數,Y及Z各自獨立地表示F或CF
3
,R表示低級烷基。低級烷基例如為碳數1~3之烷基)。
該等中,較佳為以CF
2
=CF(OCF
2
CYF)
n
-O(CF
2
)
m
-COOR表示之化合物。此處,n表示0~2之整數,m表示1~4之整數,Y表示F或CF
3
,R表示CH
3
、C
2
H
5
、或C
3
H
7
。
再者,於將離子交換膜用作鹼電解用陽離子交換膜之情形時,較佳為至少使用全氟化合物作為單體,但由於酯基之烷基(參照上述R)於水解時從聚合物喪失,因此烷基(R)亦可不為全部氫原子被取代為氟原子之全氟烷基。
作為第2群之單體,於上述中,更佳為下述所表示之單體。
CF
2
=CFOCF
2
-CF(CF
3
)OCF
2
COOCH
3
、
CF
2
=CFOCF
2
CF(CF
3
)O(CF
2
)
2
COOCH
3
、
CF
2
=CF[OCF
2
-CF(CF
3
)]
2
O(CF
2
)
2
COOCH
3
、
CF
2
=CFOCF
2
CF(CF
3
)O(CF
2
)
3
COOCH
3
、
CF
2
=CFO(CF
2
)
2
COOCH
3
、
CF
2
=CFO(CF
2
)
3
COOCH
3
。
作為第3群之單體,例如可列舉具有可轉換為磺酸型離子交換基(磺酸基)之官能基之乙烯系化合物。作為具有可轉換為磺酸基之官能基之乙烯系化合物,例如較佳為以CF
2
=CFO-X-CF
2
-SO
2
F表示之單體(此處,X表示全氟伸烷基)。作為該等之具體例,可列舉下述所表示之單體等。
CF
2
=CFOCF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
CF
2
SO
2
F、
CF
2
=CF(CF
2
)
2
SO
2
F、
CF
2
=CFO[CF
2
CF(CF
3
)O]
2
CF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
2
OCF
3
)OCF
2
CF
2
SO
2
F。
該等中,更佳為CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
CF
2
SO
2
F、及CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F。
由該等單體獲得之共聚物可藉由針對氟乙烯之均聚及共聚合所開發之聚合法、尤其是對四氟乙烯所使用之通常之聚合方法而製造。例如,於非水性法中,可使用全氟烴、氯氟碳等不活性溶劑,於全氟碳過氧化物或偶氮化合物等自由基聚合起始劑之存在下,於溫度0~200℃、壓力0.1~20 MPa之條件下進行聚合反應。
於上述共聚合中,上述單體之組合之種類及其比率並無特別限定,根據欲對所獲得之含氟系聚合物賦予之官能基之種類及量選擇確定。例如於製成僅含有羧酸基之含氟系聚合物之情形時,從上述第1群及第2群分別選擇至少1種單體進行共聚合即可。又,於製成僅含有磺酸基之含氟系聚合物之情形時,從上述第1群及第3群之單體中分別選擇至少1種單體進行共聚合即可。進而,於製成具有羧酸基及磺酸基之含氟系聚合物之情形時,從上述第1群、第2群及第3群之單體中分別選擇至少1種單體進行共聚合即可。於該情形時,藉由使包含上述第1群及第2群之共聚物與包含上述第1群及第3群之共聚物分開進行聚合,其後加以混合亦可獲得目標之含氟系聚合物。又,各單體之混合比率並無特別限定,於增加每單位聚合物之官能基之量之情形時,增加選自上述第2群及第3群之單體之比率即可。
含氟系共聚物之總離子交換容量並無特別限定,較佳為0.5~2.0 mg當量/g,更佳為0.6~1.5 mg當量/g。此處,所謂總離子交換容量係指相對於單位重量之乾燥樹脂之交換基之當量,可藉由中和滴定等進行測定。
於離子交換膜1之膜本體10中,積層有含有具有磺酸基之含氟系聚合物之磺酸層3與含有具有羧酸基之含氟系聚合物之羧酸層2。藉由製成此種層結構之膜本體10,能夠進一步提高鈉離子等陽離子之選擇性透過性。
於將離子交換膜1配置於電解槽之情形時,通常以磺酸層3位於電解槽之陽極側、羧酸層2位於電解槽之陰極側之方式配置。
磺酸層3較佳為由電阻較低之材料構成,就膜強度之觀點而言,較佳為其膜厚厚於羧酸層2。磺酸層3之膜厚較佳為羧酸層2之2~25倍,更佳為3~15倍。
羧酸層2較佳為即使膜厚較薄亦具有較高之陰離子排斥性者。此處所謂陰離子排斥性係指阻礙陰離子對離子交換膜1之滲入或透過之性質。為了提高陰離子排斥性,有效的是對磺酸層配置離子交換容量較小之羧酸層等。
作為磺酸層3所使用之含氟系聚合物,例如適宜為使用CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F作為第3群之單體所獲得之聚合物。
作為羧酸層2所使用之含氟系聚合物,例如適宜為使用CF
2
=CFOCF
2
CF(CF
2
)O(CF
2
)
2
COOCH
3
作為第2群之單體所獲得之聚合物。
(塗佈層)
離子交換膜較佳為於膜本體之至少一面上具有塗佈層。又,如圖97所示,於離子交換膜1中,於膜本體10之兩面上分別形成有塗佈層11a及11b。
塗佈層含有無機物粒子與結合劑。
無機物粒子之平均粒徑更佳為0.90 μm以上。若無機物粒子之平均粒徑為0.90 μm以上,則不僅極大地提高對氣體附著之耐久性,而且極大地提高對雜質之耐久性。即,藉由增大無機物粒子之平均粒徑,並且滿足上述比表面積之值,可獲得尤其顯著之效果。為了滿足此種平均粒徑與比表面積,較佳為不規則狀之無機物粒子。可使用藉由熔融獲得之無機物粒子、藉由原石粉碎獲得之無機物粒子。較佳可適宜地使用藉由原石粉碎獲得之無機物粒子。
又,無機物粒子之平均粒徑可設為2 μm以下。若無機物粒子之平均粒徑為2 μm以下,則能夠防止因無機物粒子而損傷膜。無機物粒子之平均粒徑更佳為0.90~1.2 μm。
此處,平均粒徑可藉由粒度分佈計(「SALD2200」島津製作所)進行測定。
無機物粒子之形狀較佳為不規則形狀。對雜質之耐性進一步提高。又,無機物粒子之粒度分佈較佳為較寬。
無機物粒子較佳為含有選自由週期表第IV族元素之氧化物、週期表第IV族元素之氮化物、及週期表第IV族元素之碳化物所組成之群中之至少一種無機物。就耐久性之觀點而言,更佳為氧化鋯之粒子。
該無機物粒子較佳為藉由將無機物粒子之原石粉碎所製造之無機物粒子,或以藉由將無機物粒子之原石熔融並加以精製而粒子之直徑一致之球狀之粒子作為無機物粒子。
作為原石粉碎方法,並無特別限定,可列舉:球磨機、珠磨機、膠體磨機、錐形磨機、盤磨機、輪輾機、磨粉機、錘磨機、造粒機、VSI磨機、威利磨機、輥磨機、噴射磨機等。又,較佳為粉碎後將其洗淨,作為此時之洗淨方法,較佳為酸處理。藉此,能夠減少附著於無機物粒子之表面之鐵等雜質。
塗佈層較佳為含有結合劑。結合劑係將無機物粒子保持於離子交換膜之表面、形成塗佈層之成分。就對電解液或電解之產物之耐性之觀點而言,結合劑較佳為含有含氟系聚合物。
作為結合劑,就對電解液或電解之產物之耐性、及對離子交換膜之表面之接著性之觀點而言,更佳為具有羧酸基或磺酸基之含氟系聚合物。於在含有具有磺酸基之含氟聚合物之層(磺酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有磺酸基之含氟系聚合物。又,於在含有具有羧酸基之含氟聚合物之層(羧酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有羧酸基之含氟系聚合物。
塗佈層中,無機物粒子之含量較佳為40~90質量%,更佳為50~90質量%。又,結合劑之含量較佳為10~60質量%,更佳為10~50質量%。
離子交換膜中之塗佈層之分佈密度較佳為每1 cm
2
為0.05~2 mg。又,於離子交換膜於表面具有凹凸形狀之情形時,塗佈層之分佈密度較佳為每1 cm
2
為0.5~2 mg。
作為形成塗佈層之方法,並無特別限定,可使用公知之方法。例如可列舉藉由噴射等塗佈將無機物粒子分散於含有結合劑之溶液中而成之塗佈液之方法。
(強化芯材)
離子交換膜較佳為具有配置於膜本體之內部之強化芯材。
強化芯材係強化離子交換膜之強度或尺寸穩定性之構件。藉由將強化芯材配置於膜本體之內部,尤其能夠將離子交換膜之伸縮控制為所需之範圍。該離子交換膜於電解時等不會伸縮為必要程度以上,而能夠長期維持優異之尺寸穩定性。
強化芯材之構成並無特別限定,例如可將稱為強化紗之紗進行紡紗而形成。此處所謂強化紗係構成強化芯材之構件,指能夠對離子交換膜賦予所需之尺寸穩定性及機械強度且於離子交換膜中能夠穩定地存在之紗。藉由使用將該強化紗紡紗而成之強化芯材,能夠對離子交換膜賦予更優異之尺寸穩定性及機械強度。
強化芯材及其所使用之強化紗之材料並無特別限定,較佳為對酸或鹼等具有耐性之材料,就需要長期之耐熱性、耐化學品性之方面而言,較佳為包含含氟系聚合物之纖維。
作為強化芯材所使用之含氟系聚合物,例如可列舉:聚四氟乙烯(PTFE)、四氟乙烯-全氟烷基乙烯醚共聚物(PFA)、四氟乙烯-乙烯共聚物(ETFE)、四氟乙烯-六氟丙烯共聚物、三氟氯乙烯-乙烯共聚物及偏二氟乙烯聚合物(PVDF)等。該等中,尤其是就耐熱性及耐化學品性之觀點而言,較佳為使用包含聚四氟乙烯之纖維。
強化芯材所使用之強化紗之紗直徑並無特別限定,較佳為20~300丹尼,更佳為50~250丹尼。紡織密度(每單位長度之織入根數)較佳為5~50根/英吋。作為強化芯材之形態,並無特別限定,例如可使用織布、不織布、針織布等,較佳為織布之形態。又,使用織布之厚度較佳為30~250 μm、更佳為30~150 μm者。
織布或針織布可使用單絲、複絲或該等之紗線、切膜絲等,紡織方法可使用平織、紗羅組織、針織、凸條組織、縐條紋薄織等各種紡織方法。
膜本體中之強化芯材之紡織方法及配置並無特別限定,可考慮離子交換膜之大小或形狀、離子交換膜所需之物性及使用環境等適當設為適宜之配置。
例如,可沿膜本體之特定之一方向配置強化芯材,就尺寸穩定性之觀點而言,較佳為沿特定之第一方向配置強化芯材,且沿大致垂直於第一方向之第二方向配置其他強化芯材。藉由在膜本體之縱向膜本體之內部以大致成一列之方式配置複數個強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。例如,較佳為於膜本體之表面織入沿縱向配置之強化芯材(縱紗)與沿橫向配置之強化芯材(橫紗)之配置。就尺寸穩定性、機械強度及製造容易性之觀點而言,更佳為製成使縱紗與橫紗一上一下交替織入而紡織之平紋織物、或一邊撚轉2根經紗一邊與橫紗交織之紗羅組織物、於每2根或數根並紗配置之縱紗中織入相同數量之橫紗而紡織之斜紋織物(twill weave)等。
尤佳為沿離子交換膜之MD方向(縱向(Machine Direction)方向)及TD方向(橫向(Transverse Direction)方向)之兩方向配置強化芯材。即,較佳為沿MD方向與TD方向平織。此處,所謂MD方向係指於下文所述之離子交換膜之製造步驟中搬送膜本體或各種芯材(例如,強化芯材、強化紗、下文所述之犧牲紗等)之方向(行進方向),所謂TD方向係指大致垂直於MD方向之方向。此外,將沿MD方向紡織之紗稱為MD紗,將沿TD方向紡織之紗稱為TD紗。通常電解所使用之離子交換膜係矩形,長度方向為MD方向、寬度方向為TD方向之情況較多。藉由織入作為MD紗之強化芯材與作為TD紗之強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。
強化芯材之配置間隔並無特別限定,可考慮離子交換膜所需之物性及使用環境等適當設為適宜之配置。
強化芯材之開口率並無特別限定,較佳為30%以上,更佳為50%以上且90%以下。開口率就離子交換膜之電化學性質之觀點而言,較佳為30%以上,就離子交換膜之機械強度之觀點而言,較佳為90%以下。
所謂強化芯材之開口率係指膜本體之任一表面之面積(A)中離子等物質(電解液及其所含之陽離子(例如,鈉離子))能夠通過之表面之總面積(B)之比率(B/A)。所謂離子等物質能夠通過之表面之總面積(B)可指於離子交換膜中陽離子或電解液等不被離子交換膜所含之強化芯材等阻斷之區域之總面積。
圖98係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。圖98係將離子交換膜之一部分放大而僅圖示該區域內之強化芯材21及22之配置,其他構件省略圖示。
藉由從由沿縱向配置之強化芯材21與沿橫向配置之強化芯材22所圍成之亦包括強化芯材之面積在內之區域的面積(A)減去強化芯材之總面積(C),可求出上述區域之面積(A)中離子等物質能夠通過之區域之總面積(B)。即,開口率可藉由下述式(I)求出。
開口率=(B)/(A)=((A)-(C))/(A) …(I)
於強化芯材中,就耐化學品性及耐熱性之觀點而言,尤佳之形態係含有PTFE之帶狀紗線或高配向單絲。具體而言,更佳為如下強化芯材,其係使用將包含PTFE之高強度多孔質片材切為帶狀而成之帶狀紗線、或包含PTFE之高度配向之單絲之50~300丹尼且紡織密度為10~50根/英吋之平紋織物,其厚度為50~100 μm之範圍。含有該強化芯材之離子交換膜之開口率進而較佳為60%以上。
作為強化紗之形狀,可列舉圓紗、帶狀紗等。
(連通孔)
離子交換膜較佳為於膜本體之內部具有連通孔。
所謂連通孔係指能夠成為電解時產生之離子或電解液之流路之孔。又,所謂連通孔係形成於膜本體內部之管狀之孔,藉由下文所述之犧牲芯材(或犧牲紗)溶出而形成。連通孔之形狀或直徑等可藉由選擇犧牲芯材(犧牲紗)之形狀或直徑進行控制。
藉由在離子交換膜形成連通孔,於電解時能夠確保電解液之移動性。連通孔之形狀並無特別限定,根據下文所述之製法,可製成連通孔之形成所使用之犧牲芯材之形狀。
連通孔較佳為以交替通過強化芯材之陽極側(磺酸層側)與陰極側(羧酸層側)之方式形成。藉由設為該結構,於強化芯材之陰極側形成有連通孔之部分,通過充滿連通孔之電解液所輸送之離子(例如,鈉離子)亦能夠流至強化芯材之陰極側。其結果為,由於陽離子之流動未被遮蔽,因此能夠進一步降低離子交換膜之電阻。
連通孔可僅沿構成離子交換膜之膜本體之特定之一方向形成,就發揮出更穩定之電解性能之觀點而言,較佳為沿膜本體之縱向與橫向之兩方向形成。
[製造方法]
作為離子交換膜之適宜之製造方法,可列舉具有以下之(1)步驟~(6)步驟之方法。
(1)步驟:製造具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之含氟系聚合物之步驟。
(2)步驟:藉由視需要至少織入複數個強化芯材與具有溶於酸或鹼之性質且形成連通孔之犧牲紗而獲得於鄰接之強化芯材彼此之間配置有犧牲紗之補強材之步驟。
(3)步驟:將具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之上述含氟系聚合物進行膜化之步驟。
(4)步驟:視需要將上述補強材埋入至上述膜中而獲得內部配置有上述補強材之膜本體之步驟。
(5)步驟:將(4)步驟中獲得之膜本體進行水解之步驟(水解步驟)。
(6)步驟:於(5)步驟中獲得之膜本體設置塗佈層之步驟(塗佈步驟)。
以下,對各步驟進行詳細說明。
(1)步驟:製造含氟系聚合物之步驟
於(1)步驟中,使用上述第1群~第3群所記載之原料之單體製造含氟系聚合物。為了控制含氟系聚合物之離子交換容量,於形成各層之含氟系聚合物之製造中調整原料之單體之混合比即可。
(2)步驟:補強材之製造步驟
所謂補強材係紡織強化紗之織布等。藉由將補強材埋入至膜內而形成強化芯材。於製成具有連通孔之離子交換膜時,亦將犧牲紗一起織入至補強材中。該情形時之犧牲紗之混織量較佳為補強材整體之10~80質量%,更佳為30~70質量%。藉由織入犧牲紗,亦能夠防止強化芯材之脫線。
犧牲紗係於膜之製造步驟或電解環境下具有溶解性者,可使用嫘縈、聚對苯二甲酸乙二酯(PET)、纖維素及聚醯胺等。又,亦較佳為具有20~50丹尼之粗細程度、包含單絲或複絲之聚乙烯醇等。
再者,於(2)步驟中,可藉由調整強化芯材或犧牲紗之配置而控制開口率或連通孔之配置等。
(3)步驟:膜化步驟
於(3)步驟中,使用擠出機將上述(1)步驟中獲得之含氟系聚合物進行膜化。膜可為單層結構,亦可如上所述為磺酸層與羧酸層之2層結構,亦可為3層以上之多層結構。
作為膜化之方法,例如可列舉以下者。
分別將具有羧酸基之含氟聚合物、具有磺酸基之含氟聚合物分開進行膜化之方法。
藉由共擠出將具有羧酸基之含氟聚合物與具有磺酸基之含氟聚合物製成複合膜之方法。
再者,膜可分別為複數片。又,將異種之膜共擠出有助於提高界面之接著強度,故而較佳。
(4)步驟:獲得膜本體之步驟
於(4)步驟中,藉由將(2)步驟中獲得之補強材埋入至(3)步驟中獲得之膜之內部,而獲得內有補強材之膜本體。
作為膜本體之較佳之形成方法,可列舉:(i)藉由共擠出法將位於陰極側之具有羧酸基前驅物(例如,羧酸酯官能基)之含氟系聚合物(以下將包含其之層稱為第一層)與具有磺酸基前驅物(例如,磺醯氟官能基)之含氟系聚合物(以下將包含其之層稱為第二層)進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將補強材、第二層/第一層複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法;(ii)區別於第二層/第一層複合膜,預先將具有磺酸基前驅物之含氟系聚合物(第三層)單獨進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將第三層膜、強化芯材、包含第二層/第一層之複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法。
此處,將第一層與第二層共擠出有助於提高界面之接著強度。
又,於減壓下進行一體化之方法與加壓壓製法相比,具有補強材上之第三層之厚度變大之特徵。進而,由於將補強材固定於膜本體之內面,因此具有能夠充分保持離子交換膜之機械強度之性能。
再者,此處所說明之積層之變化係一例,可考慮所需之膜本體之層構成或物性等,適當選擇適宜之積層圖案(例如,各層之組合等)後進行共擠出。
再者,為了進一步提高離子交換膜之電性能,亦可於第一層與第二層之間進一步介置包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層,或使用包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層代替第二層。
第四層之形成方法可為分開製造具有羧酸基前驅物之含氟系聚合物與具有磺酸基前驅物之含氟系聚合物後加以混合之方法,亦可為使用將具有羧酸基前驅物之單體與具有磺酸基前驅物之單體共聚合而成者之方法。
於將第四層製成離子交換膜之構成之情形時,可將第一層與第四層之共擠出膜加以成形,第三層及第二層與其分開單獨進行膜化,藉由上文所述之方法進行積層,亦可將第一層/第四層/第二層之3層一次共擠出而進行膜化。
於該情形時,所擠出之膜行進之方向為MD方向。由此可將含有具有離子交換基之含氟系聚合物之膜本體形成於補強材上。
又,離子交換膜較佳為於包含磺酸層之表面側具有包含具有磺酸基之含氟聚合物之突出的部分、即凸部。作為形成此種凸部之方法,並無特別限定,可採用於樹脂表面形成凸部之公知之方法。具體而言,例如可列舉對膜本體之表面實施壓紋加工之方法。例如,於將上述複合膜與補強材等進行一體化時,藉由使用預先經壓紋加工之脫模紙,可形成上述凸部。於藉由壓紋加工形成凸部之情形時,凸部之高度或配置密度之控制可藉由控制所轉印之壓紋形狀(脫模紙之形狀)而進行。
(5)水解步驟
於(5)步驟中,進行將(4)步驟中獲得之膜本體水解而將離子交換基前驅物轉換為離子交換基之步驟(水解步驟)。
又,於(5)步驟中,藉由利用酸或鹼將膜本體所含之犧牲紗溶解去除,可於膜本體形成溶出孔。再者,犧牲紗亦可不完全溶解去除,而殘留於連通孔中。又,殘留於連通孔中之犧牲紗可於將離子交換膜供於電解時藉由電解液溶解去除。
犧牲紗係於離子交換膜之製造步驟或電解環境下對酸或鹼具有溶解性者,藉由使犧牲紗溶出而於該部位形成連通孔。
(5)步驟可將(4)步驟中獲得之膜本體浸漬於含有酸或鹼之水解溶液中進行。作為該水解溶液,例如可使用含有KOH與DMSO(Dimethyl sulfoxide)之混合溶液。
該混合溶液較佳為含有2.5~4.0 N之KOH,且含有25~35質量%之DMSO。
作為水解之溫度,較佳為70~100℃。溫度越高,可使視厚度更厚。更佳為75~100℃。
作為水解之時間,較佳為10~120分鐘。時間越長,可使視厚度更厚。更佳為20~120分鐘。
此處,對藉由溶出犧牲紗而形成連通孔之步驟進一步詳細地說明。圖99(a)、(b)係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。
於圖99(a)、(b)中,僅圖示強化紗52、犧牲紗504a及由犧牲紗504a形成之連通孔504,膜本體等其他構件省略圖示。
首先,將於離子交換膜中構成強化芯材之強化紗52與於離子交換膜中用以形成連通孔504之犧牲紗504a製成針織織入補強材。然後,於(5)步驟中藉由使犧牲紗504a溶出而形成連通孔504。
藉由上述方法,根據於離子交換膜之膜本體內如何配置強化芯材、連通孔而調整強化紗52與犧牲紗504a之針織織入方法即可,因此較簡便。
於圖99(a)中,例示於紙面沿縱向與橫向之兩方向將強化紗52與犧牲紗504a織入之平織之補強材,可視需要變更補強材中之強化紗52與犧牲紗504a之配置。
(6)塗佈步驟
於(6)步驟中,製備含有藉由原石粉碎或原石熔融獲得之無機物粒子與結合劑之塗佈液,將塗佈液塗佈於(5)步驟中獲得之離子交換膜之表面並加以乾燥,藉此可形成塗佈層。
作為結合劑,較佳為將具有離子交換基前驅物之含氟系聚合物水解於含有二甲基亞碸(DMSO)及氫氧化鉀(KOH)之水溶液中之後,浸漬於鹽酸中將離子交換基之抗衡離子置換為H
+
而成之結合劑(例如,具有羧基或磺基之含氟系聚合物)。藉此,變得容易溶解於下文所述之水或乙醇中,故而較佳。
將該結合劑溶解於混合水與乙醇而成之溶液中。再者,水與乙醇之較佳之體積比為10:1~1:10,更佳為5:1~1:5,進而較佳為2:1~1:2。藉由球磨機使無機物粒子分散於由此獲得之溶解液中而獲得塗佈液。此時,亦可藉由調整分散時之時間、旋轉速度而調整粒子之平均粒徑等。再者,無機物粒子與結合劑之較佳之調配量如上文所述。
塗佈液中之無機物粒子及結合劑之濃度並無特別限定,較佳為製成稀薄之塗佈液。藉此,能夠均勻地塗佈於離子交換膜之表面。
又,於使無機物粒子分散時,亦可將界面活性劑添加於分散液中。作為界面活性劑,較佳為非離子系界面活性劑,例如可列舉日油股份有限公司製造之HS-210、NS-210、P-210、E-212等。
藉由利用噴射塗佈或滾筒塗敷將所獲得之塗佈液塗佈於離子交換膜表面而可獲得離子交換膜。
[微多孔膜]
作為本實施形態之微多孔膜,只要如上文所述,可與電解用電極製成積層體,則無特別限定,可應用各種微多孔膜。
本實施形態之微多孔膜之氣孔率並無特別限定,例如可設為20~90,較佳為30~85。上述氣孔率例如可藉由下述之式算出。
氣孔率=(1-(乾燥狀態之膜重量)/(由根據膜之厚度、寬度、長度算出之體積與膜素材之密度所算出之重量))×100
本實施形態之微多孔膜之平均孔徑並無特別限定,例如可設為0.01 μm~10 μ,較佳為0.05 μm~5 μm。上述平均孔徑例如係沿厚度方向將膜垂直切斷,藉由FE-SEM觀察切斷面。對所觀察之孔之直徑測定100點左右並求出平均值,藉此可求出平均孔徑。
本實施形態之微多孔膜之厚度並無特別限定,例如可設為10 μm~1000 μm,較佳為50 μm~600 μm。上述厚度例如可使用測微計(Mitutoyo股份有限公司製造)等進行測定。
作為如上所述之微多孔膜之具體例,可列舉Agfa公司製造之Zirfon Perl UTP 500(於本實施形態中亦稱為Zirfon膜)、國際公開第2013-183584號說明書、國際公開第2016-203701號說明書等所記載者。
於本實施形態中,較佳為隔膜包含第1離子交換樹脂層、及具有與該第1離子交換樹脂層不同之EW(離子交換當量)之第2離子交換樹脂層。又,較佳為隔膜包含第1離子交換樹脂層及具有與該第1離子交換樹脂層不同之官能基之第2離子交換樹脂層。離子交換當量可藉由所導入之官能基進行調整,關於可導入之官能基係如上文所述。
(水電解)
本實施形態中之進行水電解之情形時之電解槽係具有將上述進行食鹽電解之情形時之電解槽中之離子交換膜變更為微多孔膜之構成者。又,於所供給之原料為水之方面與上述進行食鹽電解之情形時之電解槽不同。關於其他構成,進行水電解之情形時之電解槽亦可採用與進行食鹽電解之情形時之電解槽相同之構成。於食鹽電解之情形時,由於在陽極室產生氯氣,因此陽極室之材質使用鈦,於水電解之情形時,由於在陽極室僅產生氧氣,因此可使用與陰極室之材質相同者。例如可列舉鎳等。又,陽極塗層適宜為產生氧氣用之觸媒塗層。作為觸媒塗層之例,可列舉鉑族金屬及過渡金屬族之金屬、氧化物、氫氧化物等。例如可使用鉑、銥、鈀、釕、鎳、鈷、鐵等元素。
[電極之更新方法]
本實施形態之電解槽之製造方法亦可作為電極(陽極及/或陰極)之更新方法而實施。即,本實施形態之電極之更新方法係用以藉由使用電解用電極而更新既有之電極之方法,並且使用上述電解用電極之捲繞體。
作為使用捲繞體之步驟之具體例,並不限定於以下,可列舉將解除電解用電極之捲繞體之捲繞狀態而成者配置於既有之電極之表面上的方法等。藉由此種方法,能夠將電解用電極配置於既有之陽極或陰極之表面上,而能夠更新陽極及/或陰極之性能。
如上所述,於本實施形態中,較佳為使用捲繞體之步驟具有將捲繞體之捲繞狀態加以解除之步驟(B'),又,更佳為具有於步驟(B')之後將電解用電極配置於既有之電極之表面上的步驟(C')。
又,於本實施形態之電極之更新方法中,較佳為使用捲繞體之步驟具有將電解用電極保持為捲繞狀態而獲得捲繞體之步驟(A')。於步驟(A')中,可將電解用電極本身進行捲繞而製成捲繞體,亦可將電解用電極纏繞至芯而製成捲繞體。作為此處可使用之芯,並無特別限定,例如可使用具有大致圓柱形狀且與電解用電極相適應之尺寸之構件。
[捲繞體之製造方法]
於本實施形態之電解槽之製造方法及本實施形態之電極之更新方法中,可實施之步驟(A)或(A')亦可作為捲繞體之製造方法而實施。即,本實施形態之捲繞體之製造方法係用以更新具備陽極、與上述陽極相對向之陰極、及配置於上述陽極與上述陰極之間之隔膜的既有電解槽的捲繞體之製造方法,並且具有將電解用電極或該電解用電極與新隔膜之積層體捲繞而獲得上述捲繞體之步驟。於獲得捲繞體之步驟中,可將電解用電極本身進行捲繞而製成捲繞體,亦可將電解用電極纏繞至芯而製成捲繞體。作為此處可使用之芯,並無特別限定,例如可使用具有大致圓柱形狀且與電解用電極相適應之尺寸之構件。
<第6實施形態>
此處,一邊參照圖103~111一邊對本發明之第6實施形態進行詳細地說明。
[電解槽之製造方法]
第6實施形態(以下於<第6實施形態>之項中簡稱為「本實施形態」)之電解槽之製造方法係用以藉由對具備陽極、與上述陽極相對向之陰極、及配置於上述陽極與上述陰極之間之隔膜的既有電解槽配置積層體而製造新電解槽之方法,並且具有:藉由將電解用電極與新隔膜於該隔膜不熔融之溫度下進行一體化,而獲得上述積層體之步驟(A);及於上述步驟(A)後將既有電解槽中之上述隔膜更換為上述積層體之步驟(B)。
如上所述,根據本實施形態之電解槽之製造方法,不藉由熱壓接之類之不實用之方法而能夠將電解用電極與隔膜進行一體化使用,因此能夠提高電解槽中之電極更新時之作業效率。
於本實施形態中,既有電解槽包含陽極、與上述陽極相對向之陰極、及配置於上述陽極與上述陰極之間之隔膜作為構成構件,換言之,其包含電解池。既有電解槽只要包含上述構成構件,則無特別限定,可應用各種公知之構成。
於本實施形態中,新電解槽係除了於既有電解槽中已作為陽極或陰極而發揮功能之構件以外,進而具備電解用電極或積層體者。即,於製造新電解槽時所配置之「電解用電極」係作為陽極或陰極而發揮功能者,與既有電解槽中之陰極及陽極不同體。於本實施形態中,即使於伴隨既有電解槽之運轉陽極及/或陰極之電解性能劣化之情形時,藉由配置與該等不同體之電解用電極,亦可更新陽極及/或陰極之性能。進而,由於亦一併配置構成積層體之新離子交換膜,因此伴隨運轉性能劣化之離子交換膜之性能亦可同時更新。此處所謂「更新性能」意指設為與將既有電解槽供於運轉前所具有之初始性能相同之性能、或高於該初始性能之性能。
於本實施形態中,假定既有電解槽係「已供於運轉之電解槽」,又,假定新電解槽係「尚未供於運轉之電解槽」。即,若將作為新電解槽所製造之電解槽供於運轉一次,則成為「本實施形態中之既有電解槽」,對該既有電解槽配置電解用電極或積層體而成者成為「本實施形態中之新電解槽」。
以下,以使用離子交換膜作為隔膜進行食鹽電解之情形為例,對電解槽之一實施形態進行詳細說明。再者,於<第6實施形態>之項中,只要無特別說明,則「本實施形態中之電解槽」包含「本實施形態中之既有電解槽」及「本實施形態中之新電解槽」之兩者。
[電解池]
首先,對可用作本實施形態中之電解槽之構成單元的電解池進行說明。圖103係電解池1之剖面圖。
電解池1具備陽極室10、陰極室20、設置於陽極室10及陰極室20之間之間隔壁30、設置於陽極室10之陽極11、及設置於陰極室20之陰極21。視需要亦可具備具有基材18a與形成於該基材18a上之逆向電流吸收層18b且設置於陰極室內之逆向電流吸收體18。屬於1個電解池1之陽極11及陰極21互相電性連接。換言之,電解池1具備如下陰極結構體。陰極結構體40具備陰極室20、設置於陰極室20之陰極21、及設置於陰極室20內之逆向電流吸收體18,逆向電流吸收體18如圖107所示具有基材18a與形成於該基材18a上之逆向電流吸收層18b,陰極21與逆向電流吸收層18b電性連接。陰極室20進而具有集電體23、支持該集電體之支持體24、及金屬彈性體22。金屬彈性體22係設置於集電體23及陰極21之間。支持體24係設置於集電體23及間隔壁30之間。集電體23經由金屬彈性體22而與陰極21電性連接。間隔壁30經由支持體24而與集電體23電性連接。因此,間隔壁30、支持體24、集電體23、金屬彈性體22及陰極21係電性連接。陰極21及逆向電流吸收層18b係電性連接。陰極21及逆向電流吸收層可直接連接,亦可經由集電體、支持體、金屬彈性體或間隔壁等而間接連接。陰極21之表面整體較佳為由用於還原反應之觸媒層所被覆。又,電性連接之形態可為分別直接將間隔壁30與支持體24、支持體24與集電體23、集電體23與金屬彈性體22安裝,並且於金屬彈性體22上積層陰極21之形態。作為將該等各構成構件互相直接安裝之方法,可列舉焊接等。又,亦可將逆向電流吸收體18、陰極21、及集電體23總稱為陰極結構體40。
圖104係電解槽4內鄰接之2個電解池1之剖面圖。圖105表示電解槽4。圖106表示組裝電解槽4之步驟。
如圖104所示,將電解池1、陽離子交換膜2、電解池1依序串聯排列。於電解槽內鄰接之2個電解池中之一電解池1之陽極室與另一電解池1之陰極室之間配置離子交換膜2。即,電解池1之陽極室10及與其鄰接之電解池1之陰極室20係由陽離子交換膜2隔開。如圖105所示,電解槽4包含介隔離子交換膜2而串聯連接之複數個電解池1。即,電解槽4係具備串聯配置之複數個電解池1、及配置於鄰接之電解池1之間之離子交換膜2的複極式電解槽。如圖106所示,電解槽4係藉由介隔離子交換膜2將複數個電解池1串聯配置並利用壓製器5連結而組裝。
電解槽4具有連接於電源之陽極端子7與陰極端子6。於電解槽4內串聯連結之複數個電解池1中位於最靠端之電解池1之陽極11係電性連接於陽極端子7。於電解槽4內串聯連結之複數個電解池2中位於陽極端子7之相反側之端之電解池的陰極21係電性連接於陰極端子6。電解時之電流從陽極端子7側起,經過各電解池1之陽極及陰極而流向陰極端子6。再者,可於連結之電解池1之兩端配置僅具有陽極室之電解池(陽極終端池)與僅具有陰極室之電解池(陰極終端池)。於該情形時,將陽極端子7連接於配置於其一端之陽極終端池,將陰極端子6連接於配置於另一端之陰極終端池。
於進行鹽水之電解之情形時,向各陽極室10供給鹽水,向陰極室20供給純水或低濃度之氫氧化鈉水溶液。各液體係從電解液供給管(圖中省略)起,經過電解液供給軟管(圖中省略)而向各電解池1供給。又,電解液及電解之產物係由電解液回收管(圖中省略)所回收。於電解中,鹽水中之鈉離子從一電解池1之陽極室10起,通過離子交換膜2,向旁邊之電解池1之陰極室20移動。由此電解中之電流沿將電解池1串聯連結之方向流通。即,電流係經由陽離子交換膜2而從陽極室10流向陰極室20。伴隨鹽水之電解,於陽極11側產生氯氣,於陰極21側產生氫氧化鈉(溶質)與氫氣。
(陽極室)
陽極室10具有陽極11或陽極饋電體11。作為此處所謂饋電體意指劣化之電極(即既有電極)或未形成有觸媒塗層之電極等。於將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極饋電體發揮功能。於不將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極發揮功能。又,陽極室10較佳為具有向陽極室10供給電解液之陽極側電解液供給部、配置於陽極側電解液供給部之上方且以與間隔壁30大致平行或傾斜之方式配置之擋板、及配置於擋板之上方且從混入有氣體之電解液中分離氣體之陽極側氣液分離部。
(陽極)
於不將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框(即,陽極框)內設置有陽極11。作為陽極11,可使用所謂DSA(註冊商標)等金屬電極。所謂DSA係藉由以釕、銥、鈦作為成分之氧化物被覆表面之鈦基材之電極。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陽極饋電體)
於將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極饋電體11。作為陽極饋電體11,可使用所謂DSA(註冊商標)等金屬電極,亦可使用未形成有觸媒塗層之鈦。又,亦可使用使觸媒塗層厚度變薄之DSA。進而,亦可使用使用過之陽極。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陽極側電解液供給部)
陽極側電解液供給部係向陽極室10供給電解液者,其連接於電解液供給管。陽極側電解液供給部較佳為配置於陽極室10之下方。作為陽極側電解液供給部,例如可使用表面形成有開口部之管(分散管)等。該管更佳為以沿陽極11之表面平行於電解池之底部19之方式配置。該管係連接於向電解池1內供給電解液之電解液供給管(液供給噴嘴)。從液供給噴嘴供給之電解液藉由管被搬送至電解池1內,從設置於管之表面之開口部向陽極室10之內部供給。藉由將管以沿陽極11之表面平行於電解池之底部19之方式配置,能夠將電解液均勻地供給至陽極室10之內部,故而較佳。
(陽極側氣液分離部)
陽極側氣液分離部較佳為配置於擋板之上方。於電解中,陽極側氣液分離部具有將氯氣等產生氣體與電解液分離之功能。再者,只要無特別說明,則所謂上方意指圖103之電解池1中之上方向,所謂下方意指圖103之電解池1中之下方向。
電解時,若電解池1中產生之產生氣體與電解液成為混相(氣液混相)而被排出至系外,則存在因電解池1內部之壓力變動導致產生振動而引起離子交換膜之物理破損之情形。為了抑制該情形,較佳為於本實施形態中之電解池1中設置用以將氣體與液體分離之陽極側氣液分離部。較佳為於陽極側氣液分離部設置用以消除氣泡之消泡板。藉由在氣液混相流通過消泡板時氣泡破裂,而可分離為電解液與氣體。其結果為,能夠防止電解時之振動。
(擋板)
擋板較佳為配置於陽極側電解液供給部之上方,且以與間隔壁30大致平行或傾斜之方式配置。擋板係控制陽極室10之電解液之流動之間隔板。藉由設置擋板,可使電解液(鹽水等)於陽極室10內部循環,使其濃度變得均勻。為了引起內部循環,擋板較佳為以將陽極11附近之空間與間隔壁30附近之空間隔開之方式配置。就該觀點而言,擋板較佳為以與陽極11及間隔壁30之各表面相對向之方式設置。於由擋板分隔之陽極附近之空間,藉由進行電解,電解液濃度(鹽水濃度)降低,又,產生氯氣等產生氣體。藉此,於由擋板分隔之陽極11附近之空間與間隔壁30附近之空間產生氣液之比重差。利用該情況,能夠促進陽極室10中之電解液之內部循環,使陽極室10之電解液之濃度分佈變得更均勻。
再者,於圖103並未圖示,但亦可於陽極室10之內部另行設置集電體。作為該集電體,亦可設為與下文所述之陰極室之集電體相同之材料或構成。又,於陽極室10中,亦可使陽極11本身作為集電體發揮功能。
(間隔壁)
間隔壁30係配置於陽極室10與陰極室20之間。間隔壁30有時亦稱為間隔件,係將陽極室10與陰極室20進行劃分者。作為間隔壁30,可使用作為電解用之間隔件所公知者,例如可列舉於陰極側焊接包含鎳之板、於陽極側焊接包含鈦之板之間隔壁等。
(陰極室)
陰極室20於將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極饋電體發揮功能,於不將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極發揮功能。於具有逆向電流吸收體之情形時,陰極或陰極饋電體21與逆向電流吸收體係電性連接。又,陰極室20較佳為與陽極室10同樣,亦具有陰極側電解液供給部、陰極側氣液分離部。再者,構成陰極室20之各部位中,關於與構成陽極室10之各部位相同者省略說明。
(陰極)
於不將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框(即,陰極框)內設置有陰極21。陰極21較佳為具有鎳基材與被覆鎳基材之觸媒層。作為鎳基材上之觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可視需要對陰極21實施還原處理。再者,作為陰極21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陰極饋電體)
於將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極饋電體21。可對陰極饋電體21被覆觸媒成分。該觸媒成分可為原本用作陰極而殘存者。作為觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可使用未形成有觸媒塗層之鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。再者,作為陰極饋電體21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(逆向電流吸收層)
可選擇具有較上文所述之陰極之觸媒層用元素的氧化還原電位更低之氧化還原電位之材料作為逆向電流吸收層之材料。例如可列舉鎳或鐵等。
(集電體)
陰極室20較佳為具備集電體23。藉此,集電效果提高。於本實施形態中,集電體23較佳為多孔板,且以與陰極21之表面大致平行之方式配置。
作為集電體23,例如較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。集電體23可為該等金屬之混合物、合金或複合氧化物。再者,集電體23之形狀只要為作為集電體發揮功能之形狀,則可為任意形狀,可為板狀、網狀。
(金屬彈性體)
藉由在集電體23與陰極21之間設置金屬彈性體22,將串聯連接之複數個電解池1之各陰極21壓抵於離子交換膜2,各陽極11與各陰極21之間之距離變短,可降低對串聯連接之複數個電解池1整體施加之電壓。藉由電壓降低,可降低消耗電量。又,藉由設置金屬彈性體22,於將含有本實施形態中之電解用電極之積層體設置於電解池時,藉由金屬彈性體22之壓抵壓,可將該電解用電極穩定地維持於起始位置。
作為金屬彈性體22,可使用螺旋彈簧、線圈等彈簧構件、緩衝性之墊等。作為金屬彈性體22,可考慮壓抵離子交換膜之應力等而適當採用適宜者。可將金屬彈性體22設置於陰極室20側之集電體23之表面上,亦可設置於陽極室10側之間隔壁之表面上。通常以陰極室20小於陽極室10之方式劃分兩室,因此就框體之強度等觀點而言,較佳為將金屬彈性體22設置於陰極室20之集電體23與陰極21之間。又,金屬彈性體23較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。
(支持體)
陰極室20較佳為具備將集電體23與間隔壁30電性連接之支持體24。藉此,能夠效率良好地流通電流。
支持體24較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。又,作為支持體24之形狀,只要為能夠支持集電體23之形狀,則可為任意形狀,可為棒狀、板狀或網狀。支持體24例如為板狀。複數個支持體24係配置於間隔壁30與集電體23之間。複數個支持體24係以各自之面互相平行之方式排列。支持體24係以大致垂直於間隔壁30及集電體23之方式配置。
(陽極側墊片、陰極側墊片)
陽極側墊片較佳為配置於構成陽極室10之框體表面。陰極側墊片較佳為配置於構成陰極室20之框體表面。1個電解池所具備之陽極側墊片及與其鄰接之電解池之陰極側墊片以夾持離子交換膜2之方式將電解池彼此連接(參照圖104)。藉由該等墊片,於介隔離子交換膜2將複數個電解池1串聯連接時,能夠對連接處賦予氣密性。
所謂墊片係將離子交換膜與電解池之間密封者。作為墊片之具體例,可列舉中央形成有開口部之邊框狀之橡膠製片等。對於墊片要求對腐蝕性之電解液或所產生之氣體等具有耐性而可長期使用。因此,就耐化學品性或硬度之方面而言,通常可使用乙烯-丙烯-二烯橡膠(EPDM橡膠)、乙烯-丙烯橡膠(EPM橡膠)之硫化物或過氧化物交聯物等作為墊片。又,視需要亦可使用以聚四氟乙烯(PTFE)或四氟乙烯-全氟烷基乙烯醚共聚物(PFA)等氟系樹脂被覆與液體相接之區域(接液部)之墊片。該等墊片只要以不妨礙電解液之流動之方式分別具有開口部即可,其形狀並無特別限定。例如沿構成陽極室10之陽極室框或構成陰極室20之陰極室框之各開口部之周緣,藉由接著劑等貼附邊框狀之墊片。此外,於例如介隔離子交換膜2連接2個電解池1之情形時(參照圖104),介隔離子交換膜2將貼附有墊片之各電解池1緊固即可。藉此,能夠抑制電解液、因電解而產生之鹼金屬氫氧化物、氯氣、氫氣等漏至電解池1之外部之情況。
[積層體]
本實施形態中之電解用電極係作為與離子交換膜或微多孔膜等隔膜之積層體而使用。即,本實施形態中之積層體係包含電解用電極與新隔膜者。所謂新隔膜,只要與既有電解槽中之隔膜不同體,則無特別限定,可應用各種公知之隔膜。又,新隔膜可為材質、形狀、物性等與既有電解槽中之隔膜相同者。對電解用電極及隔膜之具體例追加詳細說明。
(步驟(A))
於本實施形態中之步驟(A)中,藉由將電解用電極與新隔膜於該隔膜不熔融之溫度下進行一體化,而獲得積層體。
「隔膜不熔融之溫度」可作為新隔膜之軟化點而特定出。該溫度可根據構成隔膜之材料而變動,較佳為0~100℃,更佳為5~80℃,進而較佳為10~50℃。
又,上述一體化較佳為於常壓下進行。
作為上述一體化之具體之方法,可使用除了熱壓接等將隔膜熔融之典型之方法以外之所有方法,並無特別限定。作為較佳之一例,可列舉下文所述之將液體介置於電解用電極與隔膜之間而藉由該液體之表面張力進行一體化之方法等。
[步驟(B)]
於本實施形態中之步驟(B)中,於步驟(A)之後,將既有電解槽中之隔膜與積層體交換。作為交換之方法,並無特別限定,例如可列舉如下方法等:首先,於既有電解槽中將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,於該電解池及離子交換膜之間形成空隙,其次將成為更新對象之既有之離子交換膜去除,繼而,將積層體插入至該空隙,再次藉由壓製器將各構件連結。藉由此種方法,能夠將積層體配置於既有電解槽中之陽極或陰極之表面上,而能夠更新離子交換膜、陽極及/或陰極之性能。
[電解用電極]
於本實施形態中,電解用電極只要如上所述可與新隔膜進行一體化、即為能夠一體化者,則無特別限定。電解用電極可為於電解槽中作為陰極而發揮功能者,亦可為作為陽極而發揮功能者。又,關於電解用電極之材質或形狀等,可考慮本實施形態中之步驟(A)、(B)或電解槽之構成等而適當選擇合適者。以下,對本實施形態中之電解用電極之較佳之態樣進行說明,但該等終歸僅為於與新隔膜進行一體化之方面較佳之態樣之例示,亦可適當採用下文所述之態樣以外之電解用電極。
本實施形態中之電解用電極就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、饋電體(劣化之電極及未形成有觸媒塗層之電極)等具有良好之接著力之觀點而言,每單位質量·單位面積所承受之力較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。
就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/mg・cm
2
以上,進而更佳為0.14 N/(mg・cm
2
)以上。就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.2 N/(mg・cm
2
)以上。
上述承受力例如可藉由適當調整下文所述之開孔率、電極之厚度、算術平均表面粗糙度等而設為上述範圍。更具體而言,例如,若增大開孔率,則承受力有變小之傾向,若減小開孔率,則承受力有變大之傾向。
又,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力之觀點,進而就經濟性之觀點而言,較佳為每單位面積之質量為48 mg/cm
2
以下,更佳為30 mg/cm
2
以下,進而較佳為20 mg/cm
2
以下,進而,就合併操作性、接著性及經濟性之綜合性之觀點而言,較佳為15 mg/cm
2
以下。下限值並無特別限定,例如為1 mg/cm
2
左右。
上述每單位面積之質量例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則每單位面積之質量有變小之傾向,若減小開孔率,則每單位面積之質量有變大之傾向。
承受力可藉由以下之方法(i)或(ii)進行測定,詳細而言,如實施例所記載。關於承受力,藉由方法(i)之測定所獲得之值(亦稱為「承受力(1)」)與藉由方法(ii)之測定所獲得之值(亦稱為「承受力(2)」)可相同亦可不同,但較佳為任一值均未達1.5 N/mg・cm
2
。
[方法(i)]
依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方)、於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之離子交換膜(170 mm見方,關於此處所謂離子交換膜之詳細如實施例所記載)及電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。再者,噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.5~0.8 μm。算術平均表面粗糙度(Ra)之具體之算出方法如實施例所記載。
於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極樣品與離子交換膜之重疊部分之面積、及與離子交換膜重疊部分之電極樣品之質量,而算出每單位質量·單位面積所承受之力(1)(N/mg・cm
2
)。
藉由方法(i)獲得之每單位質量·單位面積所承受之力(1)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。又,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/(mg・cm
2
)以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm
2
),更佳為0.2 N/(mg・cm
2
)以上。
[方法(ii)]
依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方,與上述方法(i)相同之鎳板)與電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極樣品與鎳板之重疊部分之面積、及與鎳板重疊部分中之電極樣品之質量,而算出每單位質量•單位面積之接著力(2)(N/mg・cm
2
)。
藉由方法(ii)獲得之每單位質量·單位面積所承受之力(2)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。進而,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/(mg・cm
2
)以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm
2
)以上。
本實施形態中之電解用電極較佳為包含電解用電極基材及觸媒層。該電解用電極基材之厚度(量規厚度)並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折,大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。
於本實施形態中,較佳為將新隔膜與電解用電極進行一體化後,於該等之間介置液體。該液體只要為水、有機溶劑等產生表面張力者,則可使用任意液體。液體之表面張力越大,對新隔膜與電解用電極之間承受之力越大,因此較佳為表面張力較大之液體。作為液體,可列舉如下者(括號內之數值係該液體於20℃下之表面張力)。
己烷(20.44 mN/m)、丙酮(23.30 mN/m)、甲醇(24.00 mN/m)、乙醇(24.05 mN/m)、乙二醇(50.21 mN/m)水(72.76 mN/m)
若為表面張力較大之液體,則新隔膜與電解用電極成為一體(成為積層體),有電極更新變得更容易之傾向。新隔膜與電解用電極之間之液體為藉由表面張力而互相貼附之程度之量即可,其結果為液體量較少,因此即使於將該積層體設置於電解池後混入至電解液中,亦不會對電解本身造成影響。
就實用上之觀點而言,作為液體,較佳為使用乙醇、乙二醇、水等表面張力為24 mN/m至80 mN/m之液體。尤佳為水或將苛性鈉、氫氧化鉀、氫氧化鋰、碳酸氫鈉、碳酸氫鉀、碳酸鈉、碳酸鉀等溶解於水中製成鹼性之水溶液。又,亦可使該等液體含有界面活性劑而調整表面張力。藉由含有界面活性劑,新隔膜與電解用電極之接著性發生變化,而可調整操作性。作為界面活性劑,並無特別限定,可使用離子性界面活性劑、非離子性界面活性劑之任一種。
本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力之觀點而言,藉由以下之方法(2)所測得之比率較佳為90%以上,更佳為92%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為95%以上。上限值為100%。
[方法(2)]
依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑280 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。
本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折之觀點而言,藉由以下之方法(3)所測得之比率較佳為75%以上,更佳為80%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為90%以上。上限值為100%。
[方法(3)]
依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑145 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。
本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,防止電解中產生之氣體滯留之觀點而言,較佳為多孔結構,且其開孔率或空隙率為5~90%以下。開孔率更佳為10~80%以下,進而較佳為20~75%。
再者,所謂開孔率係每單位體積之開孔部之比率。開孔部亦根據考慮至次微米級抑或僅考慮目視可見之開口而有各種算出方法。於本實施形態中,可藉由根據電極之量規厚度、寬度、長度之值算出體積V,進而實測重量W,而利用下述之式算出開孔率A。
A=(1-(W/(V×ρ))×100
ρ係電極之材質之密度(g/cm
3
)。例如於鎳之情形時為8.908 g/cm
3
,於鈦之情形時為4.506 g/cm
3
。開孔率之調整可藉由如下方法進行適當調整:若為沖孔金屬,則變更每單位面積沖裁金屬之面積;若為多孔金屬,則變更SW(短徑)、LW(長徑)、進給之值;若為絲網,則變更金屬纖維之線徑、網眼數;若為電成形,則變更所使用之光阻之圖案;若為不織布,則變更金屬纖維直徑及纖維密度;若為發泡金屬,則變更用以使空隙形成之模板等。
以下,對本實施形態中之電解用電極之更具體之實施形態進行說明。
本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。觸媒層如下所述,可包含複數層,亦可為單層結構。
如圖108所示,本實施形態之電解用電極100具備電解用電極基材10、及被覆電解用電極基材10之兩表面之一對第一層20。第一層20較佳為將電解用電極基材10整體被覆。藉此,電解用電極之觸媒活性及耐久性變得容易提高。再者,亦可僅於電解用電極基材10之一表面積層第一層20。
又,如圖108所示,第一層20之表面可由第二層30所被覆。第二層30較佳為將第一層20整體被覆。又,第二層30可僅積層於第一層20之一表面。
(電解用電極基材)
作為電解用電極基材10,並無特別限定,例如可使用鎳、鎳合金、不鏽鋼、或以鈦等為代表之閥金屬,較佳為含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。
於在高濃度之鹼性水溶液中使用不鏽鋼之情形時,若考慮到鐵及鉻溶出、及不鏽鋼之導電性為鎳之1/10左右,則較佳為使用含有鎳(Ni)之基材作為電解用電極基材。
又,電解用電極基材10於在接近飽和之高濃度之食鹽水中於氯氣產生環境中使用之情形時,材質亦較佳為耐蝕性較高之鈦。
電解用電極基材10之形狀並無特別限定,可根據目的選擇合適之形狀。作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。其中,較佳為沖孔金屬或多孔金屬。再者,所謂電成形係將照相製版與電鍍法組合而製作精密之圖案之金屬薄膜的技術。其係藉由光阻於基板上形成圖案,對未受到光阻保護之部分實施電鍍而獲得金屬薄膜之方法。
關於電解用電極基材之形狀,根據電解槽中之陽極與陰極之距離而有適宜之規格。並無特別限定,於陽極與陰極具有有限之距離之情形時,可使用多孔金屬、沖孔金屬形狀,於離子交換膜與電極相接之所謂零間距電解槽之情形時,可使用編織細線而成之編織網、金屬絲網、發泡金屬、金屬不織布、多孔金屬、沖孔金屬、金屬多孔箔等。
作為電解用電極基材10,可列舉:金屬多孔箔、金屬絲網、金屬不織布、沖孔金屬、多孔金屬或發泡金屬。
作為加工為沖孔金屬、多孔金屬前之板材,較佳為經壓延成形之板材、電解箔等。電解箔較佳為進而作為後處理而藉由與母材相同之元素實施鍍覆處理,於單面或兩面形成凹凸。
又,電解用電極基材10之厚度如上文所述,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。
於電解用電極基材中,較佳為藉由在氧化環境中將電解用電極基材進行退火而緩和加工時之殘留應力。又,為了提高與被覆於電解用電極基材之表面之觸媒層之密接性,較佳為使用鋼砂、氧化鋁粉等於上述表面形成凹凸,其後藉由酸處理而增加表面積。或者,較佳為藉由與基材相同之元素實施鍍覆處理,增加表面積。
為了使第一層20與電解用電極基材10之表面密接,較佳為對電解用電極基材10進行增大表面積之處理。作為增大表面積之處理,可列舉使用鋼線粒、鋼砂、氧化鋁砂等之噴擊處理、使用硫酸或鹽酸之酸處理、利用與基材相同元素之鍍覆處理等。基材表面之算術平均表面粗糙度(Ra)並無特別限定,較佳為0.05 μm~50 μm,更佳為0.1~10 μm,進而較佳為0.1~8 μm。
繼而,對將本實施形態中之電解用電極用作食鹽電解用陽極之情形進行說明。
(第一層)
於圖108中,作為觸媒層之第一層20含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物。作為釕氧化物,可列舉RuO
2
等。作為銥氧化物,可列舉IrO
2
等。作為鈦氧化物,可列舉TiO
2
等。第一層20較佳為含有釕氧化物及鈦氧化物之兩種氧化物,或含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物。藉此,第一層20成為更穩定之層,進而,與第二層30之密接性亦進一步提高。
於第一層20含有釕氧化物及鈦氧化物之兩種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為1~9莫耳,更佳為1~4莫耳。藉由將兩種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。
於第一層20含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之銥氧化物較佳為0.2~3莫耳,更佳為0.3~2.5莫耳。又,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為0.3~8莫耳,更佳為1~7莫耳。藉由將三種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。
於第一層20含有選自釕氧化物、銥氧化物及鈦氧化物中之至少兩種氧化物之情形時,該等氧化物較佳為形成固溶體。藉由形成氧化物固溶體,電解用電極100表現出優異之耐久性。
除了上述組成以外,只要含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物,則可使用各種組成者。例如,亦可使用稱為DSA(註冊商標)之含有釕、銥、鉭、鈮、鈦、錫、鈷、錳、鉑等之氧化物塗層作為第一層20。
第一層20無需為單層,亦可包含複數層。例如,第一層20可包含含有三種氧化物之層與含有兩種氧化物之層。第一層20之厚度較佳為0.05~10 μm,更佳為0.1~8 μm。
(第二層)
第二層30較佳為含有釕與鈦。藉此,能夠進一步降低剛電解後之氯過電壓。
第二層30較佳為含有氧化鈀、氧化鈀與鉑之固溶體或鈀與鉑之合金。藉此,能夠進一步降低剛電解後之氯過電壓。
第二層30較厚者能夠維持電解性能之時間變長,就經濟性之觀點而言,較佳為0.05~3 μm之厚度。
繼而,對將本實施形態中之電解用電極用作食鹽電解用陰極之情形進行說明。
(第一層)
作為觸媒層之第一層20之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。
可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。
於含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少一種之情形時,較佳為鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金含有鉑、鈀、銠、釕、銥中之至少一種鉑族金屬。
作為鉑族金屬,較佳為含有鉑。
作為鉑族金屬氧化物,較佳為含有釕氧化物。
作為鉑族金屬氫氧化物,較佳為含有釕氫氧化物。
作為鉑族金屬合金,較佳為含有鉑與鎳、鐵、鈷之合金。
較佳為進而視需要含有鑭系元素之氧化物或氫氧化物作為第二成分。藉此,電解用電極100表現出優異之耐久性。
作為鑭系元素之氧化物或氫氧化物,較佳為含有選自鑭、鈰、鐠、釹、鉕、釤、銪、釓、鋱、鏑中之至少1種。
較佳為進而視需要含有過渡金屬之氧化物或氫氧化物作為第三成分。
藉由添加第三成分,電解用電極100能夠表現出更優異之耐久性,降低電解電壓。
作為較佳之組合之例,可列舉:僅釕、釕+鎳、釕+鈰、釕+鑭、釕+鑭+鉑、釕+鑭+鈀、釕+鐠、釕+鐠+鉑、釕+鐠+鉑+鈀、釕+釹、釕+釹+鉑、釕+釹+錳、釕+釹+鐵、釕+釹+鈷、釕+釹+鋅、釕+釹+鎵、釕+釹+硫、釕+釹+鉛、釕+釹+鎳、釕+釹+銅、釕+釤、釕+釤+錳、釕+釤+鐵、釕+釤+鈷、釕+釤+鋅、釕+釤+鎵、釕+釤+硫、釕+釤+鉛、釕+釤+鎳、鉑+鈰、鉑+鈀+鈰、鉑+鈀+鑭+鈰、鉑+銥、鉑+鈀、鉑+銥+鈀、鉑+鎳+鈀、鉑+鎳+釕、鉑與鎳之合金、鉑與鈷之合金、鉑與鐵之合金等。
於不含鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之情形時,觸媒之主成分較佳為鎳元素。
較佳為含有鎳金屬、氧化物、氫氧化物中之至少1種。
作為第二成分,可添加過渡金屬。作為所添加之第二成分,較佳為含有鈦、錫、鉬、鈷、錳、鐵、硫、鋅、銅、碳中之至少一種元素。
作為較佳之組合,可列舉:鎳+錫、鎳+鈦、鎳+鉬、鎳+鈷等。
視需要可於第一層20與電解用電極基材10之間設置中間層。藉由設置中間層,能夠提高電解用電極100之耐久性。
作為中間層,較佳為對第一層20與電解用電極基材10之兩者具有親和性者。作為中間層,較佳為鎳氧化物、鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物。作為中間層,可藉由將含有形成中間層之成分之溶液進行塗佈、燒成而形成,亦可於空氣環境中在300~600℃之溫度下對基材實施熱處理而形成表面氧化物層。除此以外,可藉由熱熔射法、離子鍍敷法等已知之方法形成。
(第二層)
作為觸媒層之第一層30之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。
可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。作為第二層所含之元素之較佳之組合例,有第一層中所列舉之組合等。第一層與第二層之組合可為組成相同而組成比不同之組合,亦可為組成不同之組合。
作為觸媒層之厚度,較佳為將所形成之觸媒層及中間層累加而成之厚度為0.01 μm~20 μm。若為0.01 μm以上,則能夠作為觸媒充分發揮功能。若為20 μm以下,則從基材脫落之情況較少,能夠形成牢固之觸媒層。更佳為0.05 μm~15 μm。更佳為0.1 μm~10 μm。進而較佳為0.2 μm~8 μm。
作為電極之厚度、即電解用電極基材與觸媒層之合計之厚度,就電極之操作性之方面而言,較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,電極之厚度可藉由利用電子數顯厚度計(Mitutoyo股份有限公司,最少顯示0.001 mm)進行測定而求出。電解用電極基材之厚度係與電極厚度同樣地進行測定。觸媒層厚度可藉由電極厚度減去電解用電極基材之厚度而求出。
於本實施形態中,就確保充分之電解性能之觀點而言,較佳為電解用電極含有選自由Ru、Rh、Pd、Ir、Pt、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y,Zr、Nb、Mo、Ag、Ta、W、Re、Os、Al、In、Sn、Sb、Ga、Ge、B、C、N、O、Si、P、S、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb及Dy所組成之群中之至少一種觸媒成分。
於本實施形態中,若電解用電極係彈性變形區域較廣之電極,則就可獲得更良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有更良好之接著力之觀點而言,電解用電極之厚度較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,於本實施形態中,所謂「彈性變形區域較廣」意指將電解用電極捲繞而製成捲繞體,解除捲繞狀態後不易產生由捲繞引起之翹曲。又,所謂電解用電極之厚度於包含下文所述之觸媒層之情形時,係指合併電解用電極基材與觸媒層之厚度。
(電解用電極之製造方法)
其次,對電解用電極100之製造方法之一實施形態進行詳細說明。
於本實施形態中,藉由利用氧環境下之塗膜之燒成(熱分解)、或離子鍍敷、鍍覆、熱熔射等方法於電解用電極基材上形成第一層20、較佳為第二層30,可製造電解用電極100。此種本實施形態之製造方法能夠實現電解用電極100之較高之生產性。具體而言,藉由塗佈含有觸媒之塗佈液之塗佈步驟、乾燥塗佈液之乾燥步驟、進行熱分解之熱分解步驟,而於電解用電極基材上形成觸媒層。此處所謂熱分解意指對成為前驅物之金屬鹽進行加熱而分解為金屬或金屬氧化物與氣體狀物質。根據所使用之金屬種類、鹽之種類、進行熱分解之環境等,分解產物有所不同,但於氧化性環境下多數金屬有容易形成氧化物之傾向。於電極之工業性之製造工藝中,熱分解通常於空氣中進行,多數情形時形成金屬氧化物或金屬氫氧化物。
(陽極之第一層之形成)
(塗佈步驟)
第一層20係將溶解有釕、銥及鈦中之至少一種金屬之鹽的溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之釕、銥及鈦之含有率與第一層20大致相等。
作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。
作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。
(乾燥步驟、熱分解步驟)
將第一塗佈液塗佈於電解用電極基材100後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。
重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。
(第二層之形成)
第二層30係視需要而形成,例如將含有鈀化合物及鉑化合物之溶液或含有釕化合物及鈦化合物之溶液(第二塗佈液)塗佈於第一層20上後,於氧氣之存在下進行熱分解而獲得。
(利用熱分解法之陰極之第一層之形成)
(塗佈步驟)
第一層20係將溶解有各種組合之金屬鹽之溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之金屬之含有率與第一層20大致相等。
作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。
作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。
(乾燥步驟、熱分解步驟)
將第一塗佈液塗佈於電解用電極基材10後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。
重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。
(中間層之形成)
中間層係視需要而形成,例如將含有鈀化合物或鉑化合物之溶液(第二塗佈液)塗佈於基材上後,於氧氣之存在下進行熱分解而獲得。或者,亦可不塗佈溶液,而僅加熱基材,藉此於基材表面形成氧化鎳中間層。
(利用離子鍍敷之陰極之第一層之形成)
第一層20亦可藉由離子鍍敷而形成。
作為一例,可列舉將基材固定於腔室內並對金屬釕靶照射電子束之方法。所蒸發之金屬釕粒子於腔室內之電漿中帶正電,而沈積於帶負電之基板上。電漿環境為氬氣、氧氣,釕係以釕氧化物之形式沈積於基材上。
(利用鍍覆之陰極之第一層之形成)
第一層20亦可藉由鍍覆法而形成。
作為一例,若使用基材作為陰極,於含有鎳及錫之電解液中實施電解鍍覆,則可形成鎳與錫之合金鍍覆。
(利用熱熔射之陰極之第一層之形成)
第一層20亦可藉由熱熔射法而形成。
作為一例,藉由將氧化鎳粒子電漿熔射於基材上,而可形成混合有金屬鎳與氧化鎳之觸媒層。
以下,對隔膜之一態樣之離子交換膜進行詳細說明。
[離子交換膜]
作為離子交換膜,只要可與電解用電極製成積層體,則無特別限定,可應用各種離子交換膜。於本實施形態中,較佳為使用具有含有具有離子交換基之烴系聚合物或含氟系聚合物之膜本體、與設置於該膜本體之至少一面上之塗佈層之離子交換膜。又,塗佈層含有無機物粒子與結合劑,塗佈層之比表面積較佳為0.1~10 m
2
/g。該結構之離子交換膜於電解中所產生之氣體對電解性能之影響較少,有發揮出穩定之電解性能之傾向。
上述所謂導入有離子交換基之全氟碳聚合物之膜係具備具有源自磺基之離子交換基(以-SO
3 -
表示之基,以下亦稱為「磺酸基」)之磺酸層與具有源自羧基之離子交換基(以-CO
2 -
表示之基,以下亦稱為「羧酸基」)之羧酸層之任一者。就強度及尺寸穩定性之觀點而言,較佳為進而具有強化芯材。
以下於塗佈層之說明之欄對無機物粒子及結合劑進行詳細說明。
圖109係表示離子交換膜之一實施形態之剖面模式圖。離子交換膜1具有:膜本體10,其含有具有離子交換基之烴系聚合物或含氟系聚合物;以及塗佈層11a及11b,其等形成於膜本體10之兩面。
於離子交換膜1中,膜本體10具備具有源自磺基之離子交換基(以-SO
3 -
表示之基,以下亦稱為「磺酸基」)之磺酸層3、與具有源自羧基之離子交換基(以-CO
2 -
表示之基,以下亦稱為「羧酸基」)之羧酸層2,藉由強化芯材4強化強度及尺寸穩定性。離子交換膜1由於具備磺酸層3與羧酸層2,因此可作為陽離子交換膜而適宜地使用。
再者,離子交換膜亦可僅具有磺酸層及羧酸層之任一者。又,離子交換膜未必由強化芯材所強化,強化芯材之配置狀態亦不限定於圖109之例。
(膜本體)
首先,對構成離子交換膜1之膜本體10進行說明。
膜本體10只要為具有使陽離子選擇性地透過之功能且含有具有離子交換基之烴系聚合物或含氟系聚合物者即可,其構成或材料並無特別限定,可適當選擇適宜者。
膜本體10中之具有離子交換基之烴系聚合物或含氟系聚合物例如可由具有可藉由水解等成為離子交換基之離子交換基前驅物之烴系聚合物或含氟系聚合物獲得。具體而言,例如使用主鏈包含氟化烴、具有可藉由水解等轉換為離子交換基之基(離子交換基前驅物)作為懸垂側鏈且能夠熔融加工之聚合物(以下視情形稱為「含氟系聚合物(a)」)製作膜本體10之前驅物後,將離子交換基前驅物轉換為離子交換基,藉此可獲得膜本體10。
含氟系聚合物(a)例如可藉由使選自下述第1群之至少一種單體與選自下述第2群及/或下述第3群之至少一種單體進行共聚合而製造。又,亦可藉由選自下述第1群、下述第2群、及下述第3群之任一群之1種單體之均聚而製造。
作為第1群之單體,例如可列舉氟乙烯化合物。作為氟乙烯化合物,例如可列舉:氟乙烯、四氟乙烯、六氟丙烯、偏二氟乙烯、三氟乙烯、氯三氟乙烯、全氟烷基乙烯醚等。尤其是於將離子交換膜用作鹼電解用膜之情形時,氟乙烯化合物較佳為全氟單體,較佳為選自由四氟乙烯、六氟丙烯、全氟烷基乙烯醚所組成之群中之全氟單體。
作為第2群之單體,例如可列舉具有可轉換為羧酸型離子交換基(羧酸基)之官能基之乙烯系化合物。作為具有可轉換為羧酸基之官能基之乙烯系化合物,例如可列舉以CF
2
=CF(OCF
2
CYF)
s
-O(CZF)
t
-COOR表示之單體等(此處,s表示0~2之整數,t表示1~12之整數,Y及Z各自獨立地表示F或CF
3
,R表示低級烷基。低級烷基例如為碳數1~3之烷基)。
該等中,較佳為以CF
2
=CF(OCF
2
CYF)
n
-O(CF
2
)
m
-COOR表示之化合物。此處,n表示0~2之整數,m表示1~4之整數,Y表示F或CF
3
,R表示CH
3
、C
2
H
5
、或C
3
H
7
。
再者,於將離子交換膜用作鹼電解用陽離子交換膜之情形時,較佳為至少使用全氟化合物作為單體,但由於酯基之烷基(參照上述R)於水解時從聚合物喪失,因此烷基(R)亦可不為全部氫原子被取代為氟原子之全氟烷基。
作為第2群之單體,於上述中,更佳為下述所表示之單體。
CF
2
=CFOCF
2
-CF(CF
3
)OCF
2
COOCH
3
、
CF
2
=CFOCF
2
CF(CF
3
)O(CF
2
)
2
COOCH
3
、
CF
2
=CF[OCF
2
-CF(CF
3
)]
2
O(CF
2
)
2
COOCH
3
、
CF
2
=CFOCF
2
CF(CF
3
)O(CF
2
)
3
COOCH
3
、
CF
2
=CFO(CF
2
)
2
COOCH
3
、
CF
2
=CFO(CF
2
)
3
COOCH
3
。
作為第3群之單體,例如可列舉具有可轉換為磺酸型離子交換基(磺酸基)之官能基之乙烯系化合物。作為具有可轉換為磺酸基之官能基之乙烯系化合物,例如較佳為以CF
2
=CFO-X-CF
2
-SO
2
F表示之單體(此處,X表示全氟伸烷基)。作為該等之具體例,可列舉下述所表示之單體等。
CF
2
=CFOCF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
CF
2
SO
2
F、
CF
2
=CF(CF
2
)
2
SO
2
F、
CF
2
=CFO[CF
2
CF(CF
3
)O]
2
CF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
2
OCF
3
)OCF
2
CF
2
SO
2
F。
該等中,更佳為CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
CF
2
SO
2
F、及CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F。
由該等單體獲得之共聚物可藉由針對氟乙烯之均聚及共聚合所開發之聚合法、尤其是對四氟乙烯所使用之通常之聚合方法而製造。例如,於非水性法中,可使用全氟烴、氯氟碳等不活性溶劑,於全氟碳過氧化物或偶氮化合物等自由基聚合起始劑之存在下,於溫度0~200℃、壓力0.1~20 MPa之條件下進行聚合反應。
於上述共聚合中,上述單體之組合之種類及其比率並無特別限定,根據欲對所獲得之含氟系聚合物賦予之官能基之種類及量選擇確定。例如於製成僅含有羧酸基之含氟系聚合物之情形時,從上述第1群及第2群分別選擇至少1種單體進行共聚合即可。又,於製成僅含有磺酸基之含氟系聚合物之情形時,從上述第1群及第3群之單體中分別選擇至少1種單體進行共聚合即可。進而,於製成具有羧酸基及磺酸基之含氟系聚合物之情形時,從上述第1群、第2群及第3群之單體中分別選擇至少1種單體進行共聚合即可。於該情形時,藉由使包含上述第1群及第2群之共聚物與包含上述第1群及第3群之共聚物分開進行聚合,其後加以混合亦可獲得目標之含氟系聚合物。又,各單體之混合比率並無特別限定,於增加每單位聚合物之官能基之量之情形時,增加選自上述第2群及第3群之單體之比率即可。
含氟系共聚物之總離子交換容量並無特別限定,較佳為0.5~2.0 mg當量/g,更佳為0.6~1.5 mg當量/g。此處,所謂總離子交換容量係指相對於單位重量之乾燥樹脂之交換基之當量,可藉由中和滴定等進行測定。
於離子交換膜1之膜本體10中,積層有含有具有磺酸基之含氟系聚合物之磺酸層3與含有具有羧酸基之含氟系聚合物之羧酸層2。藉由製成此種層結構之膜本體10,能夠進一步提高鈉離子等陽離子之選擇性透過性。
於將離子交換膜1配置於電解槽之情形時,通常以磺酸層3位於電解槽之陽極側、羧酸層2位於電解槽之陰極側之方式配置。
磺酸層3較佳為由電阻較低之材料構成,就膜強度之觀點而言,較佳為其膜厚厚於羧酸層2。磺酸層3之膜厚較佳為羧酸層2之2~25倍,更佳為3~15倍。
羧酸層2較佳為即使膜厚較薄亦具有較高之陰離子排斥性者。此處所謂陰離子排斥性係指阻礙陰離子對離子交換膜1之滲入或透過之性質。為了提高陰離子排斥性,有效的是對磺酸層配置離子交換容量較小之羧酸層等。
作為磺酸層3所使用之含氟系聚合物,例如適宜為使用CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F作為第3群之單體所獲得之聚合物。
作為羧酸層2所使用之含氟系聚合物,例如適宜為使用CF
2
=CFOCF
2
CF(CF
2
)O(CF
2
)
2
COOCH
3
作為第2群之單體所獲得之聚合物。
(塗佈層)
離子交換膜較佳為於膜本體之至少一面上具有塗佈層。又,如圖109所示,於離子交換膜1中,於膜本體10之兩面上分別形成有塗佈層11a及11b。
塗佈層含有無機物粒子與結合劑。
無機物粒子之平均粒徑更佳為0.90 μm以上。若無機物粒子之平均粒徑為0.90 μm以上,則不僅極大地提高對氣體附著之耐久性,而且極大地提高對雜質之耐久性。即,藉由增大無機物粒子之平均粒徑,並且滿足上述比表面積之值,可獲得尤其顯著之效果。為了滿足此種平均粒徑與比表面積,較佳為不規則狀之無機物粒子。可使用藉由熔融獲得之無機物粒子、藉由原石粉碎獲得之無機物粒子。較佳可適宜地使用藉由原石粉碎獲得之無機物粒子。
又,無機物粒子之平均粒徑可設為2 μm以下。若無機物粒子之平均粒徑為2 μm以下,則能夠防止因無機物粒子而損傷膜。無機物粒子之平均粒徑更佳為0.90~1.2 μm。
此處,平均粒徑可藉由粒度分佈計(「SALD2200」島津製作所)進行測定。
無機物粒子之形狀較佳為不規則形狀。對雜質之耐性進一步提高。又,無機物粒子之粒度分佈較佳為較寬。
無機物粒子較佳為含有選自由週期表第IV族元素之氧化物、週期表第IV族元素之氮化物、及週期表第IV族元素之碳化物所組成之群中之至少一種無機物。就耐久性之觀點而言,更佳為氧化鋯之粒子。
該無機物粒子較佳為藉由將無機物粒子之原石粉碎所製造之無機物粒子,或以藉由將無機物粒子之原石熔融並加以精製而粒子之直徑一致之球狀之粒子作為無機物粒子。
作為原石粉碎方法,並無特別限定,可列舉:球磨機、珠磨機、膠體磨機、錐形磨機、盤磨機、輪輾機、磨粉機、錘磨機、造粒機、VSI磨機、威利磨機、輥磨機、噴射磨機等。又,較佳為粉碎後將其洗淨,作為此時之洗淨方法,較佳為酸處理。藉此,能夠減少附著於無機物粒子之表面之鐵等雜質。
塗佈層較佳為含有結合劑。結合劑係將無機物粒子保持於離子交換膜之表面、形成塗佈層之成分。就對電解液或電解之產物之耐性之觀點而言,結合劑較佳為含有含氟系聚合物。
作為結合劑,就對電解液或電解之產物之耐性、及對離子交換膜之表面之接著性之觀點而言,更佳為具有羧酸基或磺酸基之含氟系聚合物。於在含有具有磺酸基之含氟聚合物之層(磺酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有磺酸基之含氟系聚合物。又,於在含有具有羧酸基之含氟聚合物之層(羧酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有羧酸基之含氟系聚合物。
塗佈層中,無機物粒子之含量較佳為40~90質量%,更佳為50~90質量%。又,結合劑之含量較佳為10~60質量%,更佳為10~50質量%。
離子交換膜中之塗佈層之分佈密度較佳為每1 cm
2
為0.05~2 mg。又,於離子交換膜於表面具有凹凸形狀之情形時,塗佈層之分佈密度較佳為每1 cm
2
為0.5~2 mg。
作為形成塗佈層之方法,並無特別限定,可使用公知之方法。例如可列舉藉由噴射等塗佈將無機物粒子分散於含有結合劑之溶液中而成之塗佈液之方法。
(強化芯材)
離子交換膜較佳為具有配置於膜本體之內部之強化芯材。
強化芯材係強化離子交換膜之強度或尺寸穩定性之構件。藉由將強化芯材配置於膜本體之內部,尤其能夠將離子交換膜之伸縮控制為所需之範圍。該離子交換膜於電解時等不會伸縮為必要程度以上,而能夠長期維持優異之尺寸穩定性。
強化芯材之構成並無特別限定,例如可將稱為強化紗之紗進行紡紗而形成。此處所謂強化紗係構成強化芯材之構件,指能夠對離子交換膜賦予所需之尺寸穩定性及機械強度且於離子交換膜中能夠穩定地存在之紗。藉由使用將該強化紗紡紗而成之強化芯材,能夠對離子交換膜賦予更優異之尺寸穩定性及機械強度。
強化芯材及其所使用之強化紗之材料並無特別限定,較佳為對酸或鹼等具有耐性之材料,就需要長期之耐熱性、耐化學品性之方面而言,較佳為包含含氟系聚合物之纖維。
作為強化芯材所使用之含氟系聚合物,例如可列舉:聚四氟乙烯(PTFE)、四氟乙烯-全氟烷基乙烯醚共聚物(PFA)、四氟乙烯-乙烯共聚物(ETFE)、四氟乙烯-六氟丙烯共聚物、三氟氯乙烯-乙烯共聚物及偏二氟乙烯聚合物(PVDF)等。該等中,尤其是就耐熱性及耐化學品性之觀點而言,較佳為使用包含聚四氟乙烯之纖維。
強化芯材所使用之強化紗之紗直徑並無特別限定,較佳為20~300丹尼,更佳為50~250丹尼。紡織密度(每單位長度之織入根數)較佳為5~50根/英吋。作為強化芯材之形態,並無特別限定,例如可使用織布、不織布、針織布等,較佳為織布之形態。又,使用織布之厚度較佳為30~250 μm、更佳為30~150 μm者。
織布或針織布可使用單絲、複絲或該等之紗線、切膜絲等,紡織方法可使用平織、紗羅組織、針織、凸條組織、縐條紋薄織等各種紡織方法。
膜本體中之強化芯材之紡織方法及配置並無特別限定,可考慮離子交換膜之大小或形狀、離子交換膜所需之物性及使用環境等適當設為適宜之配置。
例如,可沿膜本體之特定之一方向配置強化芯材,就尺寸穩定性之觀點而言,較佳為沿特定之第一方向配置強化芯材,且沿大致垂直於第一方向之第二方向配置其他強化芯材。藉由在膜本體之縱向膜本體之內部以大致成一列之方式配置複數個強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。例如,較佳為於膜本體之表面織入沿縱向配置之強化芯材(縱紗)與沿橫向配置之強化芯材(橫紗)之配置。就尺寸穩定性、機械強度及製造容易性之觀點而言,更佳為製成使縱紗與橫紗一上一下交替織入而紡織之平紋織物、或一邊撚轉2根經紗一邊與橫紗交織之紗羅組織物、於每2根或數根並紗配置之縱紗中織入相同數量之橫紗而紡織之斜紋織物(twill weave)等。
尤佳為沿離子交換膜之MD方向(縱向(Machine Direction)方向)及TD方向(橫向(Transverse Direction)方向)之兩方向配置強化芯材。即,較佳為沿MD方向與TD方向平織。此處,所謂MD方向係指於下文所述之離子交換膜之製造步驟中搬送膜本體或各種芯材(例如,強化芯材、強化紗、下文所述之犧牲紗等)之方向(行進方向),所謂TD方向係指大致垂直於MD方向之方向。此外,將沿MD方向紡織之紗稱為MD紗,將沿TD方向紡織之紗稱為TD紗。通常電解所使用之離子交換膜係矩形,長度方向為MD方向、寬度方向為TD方向之情況較多。藉由織入作為MD紗之強化芯材與作為TD紗之強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。
強化芯材之配置間隔並無特別限定,可考慮離子交換膜所需之物性及使用環境等適當設為適宜之配置。
強化芯材之開口率並無特別限定,較佳為30%以上,更佳為50%以上且90%以下。開口率就離子交換膜之電化學性質之觀點而言,較佳為30%以上,就離子交換膜之機械強度之觀點而言,較佳為90%以下。
所謂強化芯材之開口率係指膜本體之任一表面之面積(A)中離子等物質(電解液及其所含之陽離子(例如,鈉離子))能夠通過之表面之總面積(B)之比率(B/A)。所謂離子等物質能夠通過之表面之總面積(B)可指於離子交換膜中陽離子或電解液等不被離子交換膜所含之強化芯材等阻斷之區域之總面積。
圖110係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。圖110係將離子交換膜之一部分放大而僅圖示該區域內之強化芯材21及22之配置,其他構件省略圖示。
藉由從由沿縱向配置之強化芯材21與沿橫向配置之強化芯材22所圍成之亦包括強化芯材之面積在內之區域的面積(A)減去強化芯材之總面積(C),可求出上述區域之面積(A)中離子等物質能夠通過之區域之總面積(B)。即,開口率可藉由下述式(I)求出。
開口率=(B)/(A)=((A)-(C))/(A) …(I)
於強化芯材中,就耐化學品性及耐熱性之觀點而言,尤佳之形態係含有PTFE之帶狀紗線或高配向單絲。具體而言,更佳為如下強化芯材,其係使用將包含PTFE之高強度多孔質片材切為帶狀而成之帶狀紗線、或包含PTFE之高度配向之單絲之50~300丹尼且紡織密度為10~50根/英吋之平紋織物,其厚度為50~100 μm之範圍。含有該強化芯材之離子交換膜之開口率進而較佳為60%以上。
作為強化紗之形狀,可列舉圓紗、帶狀紗等。
(連通孔)
離子交換膜較佳為於膜本體之內部具有連通孔。
所謂連通孔係指能夠成為電解時產生之離子或電解液之流路之孔。又,所謂連通孔係形成於膜本體內部之管狀之孔,藉由下文所述之犧牲芯材(或犧牲紗)溶出而形成。連通孔之形狀或直徑等可藉由選擇犧牲芯材(犧牲紗)之形狀或直徑進行控制。
藉由在離子交換膜形成連通孔,於電解時能夠確保電解液之移動性。連通孔之形狀並無特別限定,根據下文所述之製法,可製成連通孔之形成所使用之犧牲芯材之形狀。
連通孔較佳為以交替通過強化芯材之陽極側(磺酸層側)與陰極側(羧酸層側)之方式形成。藉由設為該結構,於強化芯材之陰極側形成有連通孔之部分,通過充滿連通孔之電解液所輸送之離子(例如,鈉離子)亦能夠流至強化芯材之陰極側。其結果為,由於陽離子之流動未被遮蔽,因此能夠進一步降低離子交換膜之電阻。
連通孔可僅沿構成離子交換膜之膜本體之特定之一方向形成,就發揮出更穩定之電解性能之觀點而言,較佳為沿膜本體之縱向與橫向之兩方向形成。
[製造方法]
作為離子交換膜之適宜之製造方法,可列舉具有以下之(1)步驟~(6)步驟之方法。
(1)步驟:製造具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之含氟系聚合物之步驟。
(2)步驟:藉由視需要至少織入複數個強化芯材與具有溶於酸或鹼之性質且形成連通孔之犧牲紗而獲得於鄰接之強化芯材彼此之間配置有犧牲紗之補強材之步驟。
(3)步驟:將具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之上述含氟系聚合物進行膜化之步驟。
(4)步驟:視需要將上述補強材埋入至上述膜中而獲得內部配置有上述補強材之膜本體之步驟。
(5)步驟:將(4)步驟中獲得之膜本體進行水解之步驟(水解步驟)。
(6)步驟:於(5)步驟中獲得之膜本體設置塗佈層之步驟(塗佈步驟)。
以下,對各步驟進行詳細說明。
(1)步驟:製造含氟系聚合物之步驟
於(1)步驟中,使用上述第1群~第3群所記載之原料之單體製造含氟系聚合物。為了控制含氟系聚合物之離子交換容量,於形成各層之含氟系聚合物之製造中調整原料之單體之混合比即可。
(2)步驟:補強材之製造步驟
所謂補強材係紡織強化紗之織布等。藉由將補強材埋入至膜內而形成強化芯材。於製成具有連通孔之離子交換膜時,亦將犧牲紗一起織入至補強材中。該情形時之犧牲紗之混織量較佳為補強材整體之10~80質量%,更佳為30~70質量%。藉由織入犧牲紗,亦能夠防止強化芯材之脫線。
犧牲紗係於膜之製造步驟或電解環境下具有溶解性者,可使用嫘縈、聚對苯二甲酸乙二酯(PET)、纖維素及聚醯胺等。又,亦較佳為具有20~50丹尼之粗細程度、包含單絲或複絲之聚乙烯醇等。
再者,於(2)步驟中,可藉由調整強化芯材或犧牲紗之配置而控制開口率或連通孔之配置等。
(3)步驟:膜化步驟
於(3)步驟中,使用擠出機將上述(1)步驟中獲得之含氟系聚合物進行膜化。膜可為單層結構,亦可如上所述為磺酸層與羧酸層之2層結構,亦可為3層以上之多層結構。
作為膜化之方法,例如可列舉以下者。
分別將具有羧酸基之含氟聚合物、具有磺酸基之含氟聚合物分開進行膜化之方法。
藉由共擠出將具有羧酸基之含氟聚合物與具有磺酸基之含氟聚合物製成複合膜之方法。
再者,膜可分別為複數片。又,將異種之膜共擠出有助於提高界面之接著強度,故而較佳。
(4)步驟:獲得膜本體之步驟
於(4)步驟中,藉由將(2)步驟中獲得之補強材埋入至(3)步驟中獲得之膜之內部,而獲得內有補強材之膜本體。
作為膜本體之較佳之形成方法,可列舉:(i)藉由共擠出法將位於陰極側之具有羧酸基前驅物(例如,羧酸酯官能基)之含氟系聚合物(以下將包含其之層稱為第一層)與具有磺酸基前驅物(例如,磺醯氟官能基)之含氟系聚合物(以下將包含其之層稱為第二層)進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將補強材、第二層/第一層複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法;(ii)區別於第二層/第一層複合膜,預先將具有磺酸基前驅物之含氟系聚合物(第三層)單獨進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將第三層膜、強化芯材、包含第二層/第一層之複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法。
此處,將第一層與第二層共擠出有助於提高界面之接著強度。
又,於減壓下進行一體化之方法與加壓壓製法相比,具有補強材上之第三層之厚度變大之特徵。進而,由於將補強材固定於膜本體之內面,因此具有能夠充分保持離子交換膜之機械強度之性能。
再者,此處所說明之積層之變化係一例,可考慮所需之膜本體之層構成或物性等,適當選擇適宜之積層圖案(例如,各層之組合等)後進行共擠出。
再者,為了進一步提高離子交換膜之電性能,亦可於第一層與第二層之間進一步介置包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層,或使用包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層代替第二層。
第四層之形成方法可為分開製造具有羧酸基前驅物之含氟系聚合物與具有磺酸基前驅物之含氟系聚合物後加以混合之方法,亦可為使用將具有羧酸基前驅物之單體與具有磺酸基前驅物之單體共聚合而成者之方法。
於將第四層製成離子交換膜之構成之情形時,可將第一層與第四層之共擠出膜加以成形,第三層及第二層與其分開單獨進行膜化,藉由上文所述之方法進行積層,亦可將第一層/第四層/第二層之3層一次共擠出而進行膜化。
於該情形時,所擠出之膜行進之方向為MD方向。由此可將含有具有離子交換基之含氟系聚合物之膜本體形成於補強材上。
又,離子交換膜較佳為於包含磺酸層之表面側具有包含具有磺酸基之含氟聚合物之突出的部分、即凸部。作為形成此種凸部之方法,並無特別限定,可採用於樹脂表面形成凸部之公知之方法。具體而言,例如可列舉對膜本體之表面實施壓紋加工之方法。例如,於將上述複合膜與補強材等進行一體化時,藉由使用預先經壓紋加工之脫模紙,可形成上述凸部。於藉由壓紋加工形成凸部之情形時,凸部之高度或配置密度之控制可藉由控制所轉印之壓紋形狀(脫模紙之形狀)而進行。
(5)水解步驟
於(5)步驟中,進行將(4)步驟中獲得之膜本體水解而將離子交換基前驅物轉換為離子交換基之步驟(水解步驟)。
又,於(5)步驟中,藉由利用酸或鹼將膜本體所含之犧牲紗溶解去除,可於膜本體形成溶出孔。再者,犧牲紗亦可不完全溶解去除,而殘留於連通孔中。又,殘留於連通孔中之犧牲紗可於將離子交換膜供於電解時藉由電解液溶解去除。
犧牲紗係於離子交換膜之製造步驟或電解環境下對酸或鹼具有溶解性者,藉由使犧牲紗溶出而於該部位形成連通孔。
(5)步驟可將(4)步驟中獲得之膜本體浸漬於含有酸或鹼之水解溶液中進行。作為該水解溶液,例如可使用含有KOH與DMSO(Dimethyl sulfoxide)之混合溶液。
該混合溶液較佳為含有2.5~4.0 N之KOH,且含有25~35質量%之DMSO。
作為水解之溫度,較佳為70~100℃。溫度越高,可使視厚度更厚。更佳為75~100℃。
作為水解之時間,較佳為10~120分鐘。時間越長,可使視厚度更厚。更佳為20~120分鐘。
此處,對藉由溶出犧牲紗而形成連通孔之步驟進一步詳細地說明。圖111(a)、(b)係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。
於圖111(a)、(b)中,僅圖示強化紗52、犧牲紗504a及由犧牲紗504a形成之連通孔504,膜本體等其他構件省略圖示。
首先,將於離子交換膜中構成強化芯材之強化紗52與於離子交換膜中用以形成連通孔504之犧牲紗504a製成針織織入補強材。然後,於(5)步驟中藉由使犧牲紗504a溶出而形成連通孔504。
藉由上述方法,根據於離子交換膜之膜本體內如何配置強化芯材、連通孔而調整強化紗52與犧牲紗504a之針織織入方法即可,因此較簡便。
於圖111(a)中,例示於紙面沿縱向與橫向之兩方向將強化紗52與犧牲紗504a織入之平織之補強材,可視需要變更補強材中之強化紗52與犧牲紗504a之配置。
(6)塗佈步驟
於(6)步驟中,製備含有藉由原石粉碎或原石熔融獲得之無機物粒子與結合劑之塗佈液,將塗佈液塗佈於(5)步驟中獲得之離子交換膜之表面並加以乾燥,藉此可形成塗佈層。
作為結合劑,較佳為將具有離子交換基前驅物之含氟系聚合物水解於含有二甲基亞碸(DMSO)及氫氧化鉀(KOH)之水溶液中之後,浸漬於鹽酸中將離子交換基之抗衡離子置換為H
+
而成之結合劑(例如,具有羧基或磺基之含氟系聚合物)。藉此,變得容易溶解於下文所述之水或乙醇中,故而較佳。
將該結合劑溶解於混合水與乙醇而成之溶液中。再者,水與乙醇之較佳之體積比為10:1~1:10,更佳為5:1~1:5,進而較佳為2:1~1:2。藉由球磨機使無機物粒子分散於由此獲得之溶解液中而獲得塗佈液。此時,亦可藉由調整分散時之時間、旋轉速度而調整粒子之平均粒徑等。再者,無機物粒子與結合劑之較佳之調配量如上文所述。
塗佈液中之無機物粒子及結合劑之濃度並無特別限定,較佳為製成稀薄之塗佈液。藉此,能夠均勻地塗佈於離子交換膜之表面。
又,於使無機物粒子分散時,亦可將界面活性劑添加於分散液中。作為界面活性劑,較佳為非離子系界面活性劑,例如可列舉日油股份有限公司製造之HS-210、NS-210、P-210、E-212等。
藉由利用噴射塗佈或滾筒塗敷將所獲得之塗佈液塗佈於離子交換膜表面而可獲得離子交換膜。
[微多孔膜]
作為本實施形態之微多孔膜,只要如上文所述,可與電解用電極製成積層體,則無特別限定,可應用各種微多孔膜。
本實施形態之微多孔膜之氣孔率並無特別限定,例如可設為20~90,較佳為30~85。上述氣孔率例如可藉由下述之式算出。
氣孔率=(1-(乾燥狀態之膜重量)/(由根據膜之厚度、寬度、長度算出之體積與膜素材之密度所算出之重量))×100
本實施形態之微多孔膜之平均孔徑並無特別限定,例如可設為0.01 μm~10 μ,較佳為0.05 μm~5 μm。上述平均孔徑例如係沿厚度方向將膜垂直切斷,藉由FE-SEM觀察切斷面。對所觀察之孔之直徑測定100點左右並求出平均值,藉此可求出平均孔徑。
本實施形態之微多孔膜之厚度並無特別限定,例如可設為10 μm~1000 μm,較佳為50 μm~600 μm。上述厚度例如可使用測微計(Mitutoyo股份有限公司製造)等進行測定。
作為如上所述之微多孔膜之具體例,可列舉Agfa公司製造之Zirfon Perl UTP 500(於本實施形態中亦稱為Zirfon膜)、國際公開第2013-183584號說明書、國際公開第2016-203701號說明書等所記載者。
於本實施形態中,較佳為隔膜包含第1離子交換樹脂層、及具有與該第1離子交換樹脂層不同之EW(離子交換當量)之第2離子交換樹脂層。又,較佳為隔膜包含第1離子交換樹脂層及具有與該第1離子交換樹脂層不同之官能基之第2離子交換樹脂層。離子交換當量可藉由所導入之官能基進行調整,關於可導入之官能基係如上文所述。
(水電解)
本實施形態中之進行水電解之情形時之電解槽係具有將上述進行食鹽電解之情形時之電解槽中之離子交換膜變更為微多孔膜之構成者。又,於所供給之原料為水之方面與上述進行食鹽電解之情形時之電解槽不同。關於其他構成,進行水電解之情形時之電解槽亦可採用與進行食鹽電解之情形時之電解槽相同之構成。於食鹽電解之情形時,由於在陽極室產生氯氣,因此陽極室之材質使用鈦,於水電解之情形時,由於在陽極室僅產生氧氣,因此可使用與陰極室之材質相同者。例如可列舉鎳等。又,陽極塗層適宜為產生氧氣用之觸媒塗層。作為觸媒塗層之例,可列舉鉑族金屬及過渡金屬族之金屬、氧化物、氫氧化物等。例如可使用鉑、銥、鈀、釕、鎳、鈷、鐵等元素。
<第7實施形態>
此處,一邊參照圖112~122一邊對本發明之第7實施形態進行詳細地說明。
[電解槽之製造方法]
第7實施形態(以下於<第7實施形態>之項中簡稱為「本實施形態」)之第1態樣(以下亦簡稱為「第1態樣」)之電解槽之製造方法係用以藉由對具備陽極、與上述陽極相對向之陰極、固定於上述陽極與上述陰極之間之隔膜、以及支持上述陽極、上述陰極及上述隔膜之電解槽架的既有電解槽配置包含電解用電極及新隔膜之積層體而製造新電解槽之方法,並且具有於上述電解槽架內解除上述隔膜之固定之步驟(A)、及於上述步驟(A)後將上述隔膜與上述積層體交換之步驟(B)。
如上所述,根據第1態樣之電解槽之製造方法,能夠於不將各構件取出至電解槽架之外側之情況下更新電極,而能夠提高電解槽中之電極更新時之作業效率。
又,本實施形態之第2態樣(以下亦簡稱為「第2態樣」)之電解槽之製造方法係用以藉由對具備陽極、與上述陽極相對向之陰極、固定於上述陽極與上述陰極之間之隔膜、以及支持上述陽極、上述陰極及上述隔膜之電解槽架的既有電解槽配置電解用電極而製造新電解槽之方法,並且具有於上述電解槽架內解除上述隔膜之固定之步驟(A)、及於上述步驟(A)後於上述隔膜與上述陽極或上述陰極之間配置上述電解用電極之步驟(B')。
如上所述,根據第2態樣之電解槽之製造方法,亦能夠於不將各構件取出至電解槽架之外側之情況下更新電極,而能夠提高電解槽中之電極更新時之作業效率。
以下,於稱為「本實施形態之電解槽之製造方法」時,包括第1態樣之電解槽之製造方法及第2態樣之電解槽之製造方法。
於本實施形態之電解槽之製造方法中,既有電解槽包含陽極、與上述陽極相對向之陰極、配置於上述陽極與上述陰極之間之隔膜、以及支持上述陽極、上述陰極及上述隔膜之電解槽架作為構成構件。換言之,既有電解槽包含隔膜、電解池、及支持該等之電解槽架。既有電解槽只要包含上述構成構件,則無特別限定,可應用各種公知之構成。
於本實施形態之電解槽之製造方法中,新電解槽係除了於既有電解槽中已作為陽極或陰極而發揮功能之構件以外,進而具備電解用電極或積層體者。即,於第1態樣及第2態樣中,於製造新電解槽時所配置之「電解用電極」係作為陽極或陰極而發揮功能者,與既有電解槽中之陰極及陽極不同體。於本實施形態之電解槽之製造方法中,即使於伴隨既有電解槽之運轉陽極及/或陰極之電解性能劣化之情形時,藉由配置與該等不同體之電解用電極,亦可更新陽極及/或陰極之性能。又,於使用積層體之第1態樣中,由於一併配置新離子交換膜,因此伴隨運轉性能劣化之離子交換膜之性能亦可同時更新。此處所謂「更新性能」意指設為與將既有電解槽供於運轉前所具有之初始性能相同之性能、或高於該初始性能之性能。
於本實施形態之電解槽之製造方法中,假定既有電解槽係「已供於運轉之電解槽」,又,假定新電解槽係「尚未供於運轉之電解槽」。即,若將作為新電解槽所製造之電解槽供於運轉一次,則成為「本實施形態中之既有電解槽」,對該既有電解槽配置電解用電極或積層體而成者成為「本實施形態中之新電解槽」。
以下,以使用離子交換膜作為隔膜進行食鹽電解之情形為例,對電解槽之一實施形態進行詳細說明。再者,於<第7實施形態>之項中,只要無特別說明,則「本實施形態中之電解槽」包含「本實施形態中之既有電解槽」及「本實施形態中之新電解槽」之兩者。
[電解池]
首先,對可用作本實施形態中之電解槽之構成單元的電解池進行說明。圖112係電解池1之剖面圖。
電解池1具備陽極室10、陰極室20、設置於陽極室10及陰極室20之間之間隔壁30、設置於陽極室10之陽極11、及設置於陰極室20之陰極21。視需要亦可具備具有基材18a與形成於該基材18a上之逆向電流吸收層18b且設置於陰極室內之逆向電流吸收體18。屬於1個電解池1之陽極11及陰極21互相電性連接。換言之,電解池1具備如下陰極結構體。陰極結構體40具備陰極室20、設置於陰極室20之陰極21、及設置於陰極室20內之逆向電流吸收體18,逆向電流吸收體18如圖116所示具有基材18a與形成於該基材18a上之逆向電流吸收層18b,陰極21與逆向電流吸收層18b電性連接。陰極室20進而具有集電體23、支持該集電體之支持體24、及金屬彈性體22。金屬彈性體22係設置於集電體23及陰極21之間。支持體24係設置於集電體23及間隔壁30之間。集電體23經由金屬彈性體22而與陰極21電性連接。間隔壁30經由支持體24而與集電體23電性連接。因此,間隔壁30、支持體24、集電體23、金屬彈性體22及陰極21係電性連接。陰極21及逆向電流吸收層18b係電性連接。陰極21及逆向電流吸收層可直接連接,亦可經由集電體、支持體、金屬彈性體或間隔壁等而間接連接。陰極21之表面整體較佳為由用於還原反應之觸媒層所被覆。又,電性連接之形態可為分別直接將間隔壁30與支持體24、支持體24與集電體23、集電體23與金屬彈性體22安裝,並且於金屬彈性體22上積層陰極21之形態。作為將該等各構成構件互相直接安裝之方法,可列舉焊接等。又,亦可將逆向電流吸收體18、陰極21、及集電體23總稱為陰極結構體40。
圖113係電解槽4內鄰接之2個電解池1之剖面圖。圖114表示作為既有電解槽之電解槽4。圖115表示組裝電解槽4之步驟(與步驟(A)~(B)及步驟(A')~(B')不同)。
如圖113所示,將電解池1、陽離子交換膜2、電解池1依序串聯排列。於電解槽內鄰接之2個電解池中之一電解池1之陽極室與另一電解池1之陰極室之間配置離子交換膜2。即,電解池1之陽極室10及與其鄰接之電解池1之陰極室20係由陽離子交換膜2隔開。如圖114所示,電解槽4係以藉由電解槽架8支持介隔離子交換膜2而串聯連接之複數個電解池1之形式構成。即,電解槽4係具備串聯配置之複數個電解池1、配置於鄰接之電解池1之間之離子交換膜2、及支持該等之電解槽架8之複極式電解槽。如圖115所示,電解槽4係藉由介隔離子交換膜2串聯配置複數個電解池1並利用電解槽架8中之壓製器5連結而組裝。再者,作為電解槽架,只要可支持各構件並且可連結,則無特別限定,可應用各種公知之形態。作為電解槽架所具備之連結各構件之機構,亦無特別限定,例如,可列舉利用油壓之壓製機構、或具備連接桿作為機構者。
電解槽4具有連接於電源之陽極端子7與陰極端子6。於電解槽4內串聯連結之複數個電解池1中位於最靠端之電解池1之陽極11係電性連接於陽極端子7。於電解槽4內串聯連結之複數個電解池2中位於陽極端子7之相反側之端之電解池的陰極21係電性連接於陰極端子6。電解時之電流從陽極端子7側起,經過各電解池1之陽極及陰極而流向陰極端子6。再者,可於連結之電解池1之兩端配置僅具有陽極室之電解池(陽極終端池)與僅具有陰極室之電解池(陰極終端池)。於該情形時,將陽極端子7連接於配置於其一端之陽極終端池,將陰極端子6連接於配置於另一端之陰極終端池。
於進行鹽水之電解之情形時,向各陽極室10供給鹽水,向陰極室20供給純水或低濃度之氫氧化鈉水溶液。各液體係從電解液供給管(圖中省略)起,經過電解液供給軟管(圖中省略)而向各電解池1供給。又,電解液及電解之產物係由電解液回收管(圖中省略)所回收。於電解中,鹽水中之鈉離子從一電解池1之陽極室10起,通過離子交換膜2,向旁邊之電解池1之陰極室20移動。由此電解中之電流沿將電解池1串聯連結之方向流通。即,電流係經由陽離子交換膜2而從陽極室10流向陰極室20。伴隨鹽水之電解,於陽極11側產生氯氣,於陰極21側產生氫氧化鈉(溶質)與氫氣。
(陽極室)
陽極室10具有陽極11或陽極饋電體11。作為此處所謂饋電體意指劣化之電極(即既有電極)或未形成有觸媒塗層之電極等。於將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極饋電體發揮功能。於不將本實施形態中之電解用電極插入陽極側之情形時,11作為陽極發揮功能。又,陽極室10較佳為具有向陽極室10供給電解液之陽極側電解液供給部、配置於陽極側電解液供給部之上方且以與間隔壁30大致平行或傾斜之方式配置之擋板、及配置於擋板之上方且從混入有氣體之電解液中分離氣體之陽極側氣液分離部。
(陽極)
於不將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框(即,陽極框)內設置有陽極11。作為陽極11,可使用所謂DSA(註冊商標)等金屬電極。所謂DSA係藉由以釕、銥、鈦作為成分之氧化物被覆表面之鈦基材之電極。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陽極饋電體)
於將本實施形態中之電解用電極插入陽極側之情形時,於陽極室10之框內設置有陽極饋電體11。作為陽極饋電體11,可使用所謂DSA(註冊商標)等金屬電極,亦可使用未形成有觸媒塗層之鈦。又,亦可使用使觸媒塗層厚度變薄之DSA。進而,亦可使用使用過之陽極。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陽極側電解液供給部)
陽極側電解液供給部係向陽極室10供給電解液者,其連接於電解液供給管。陽極側電解液供給部較佳為配置於陽極室10之下方。作為陽極側電解液供給部,例如可使用表面形成有開口部之管(分散管)等。該管更佳為以沿陽極11之表面平行於電解池之底部19之方式配置。該管係連接於向電解池1內供給電解液之電解液供給管(液供給噴嘴)。從液供給噴嘴供給之電解液藉由管被搬送至電解池1內,從設置於管之表面之開口部向陽極室10之內部供給。藉由將管以沿陽極11之表面平行於電解池之底部19之方式配置,能夠將電解液均勻地供給至陽極室10之內部,故而較佳。
(陽極側氣液分離部)
陽極側氣液分離部較佳為配置於擋板之上方。於電解中,陽極側氣液分離部具有將氯氣等產生氣體與電解液分離之功能。再者,只要無特別說明,則所謂上方意指圖112之電解池1中之上方向,所謂下方意指圖112之電解池1中之下方向。
電解時,若電解池1中產生之產生氣體與電解液成為混相(氣液混相)而被排出至系外,則存在因電解池1內部之壓力變動導致產生振動而引起離子交換膜之物理破損之情形。為了抑制該情形,較佳為於本實施形態中之電解池1中設置用以將氣體與液體分離之陽極側氣液分離部。較佳為於陽極側氣液分離部設置用以消除氣泡之消泡板。藉由在氣液混相流通過消泡板時氣泡破裂,而可分離為電解液與氣體。其結果為,能夠防止電解時之振動。
(擋板)
擋板較佳為配置於陽極側電解液供給部之上方,且以與間隔壁30大致平行或傾斜之方式配置。擋板係控制陽極室10之電解液之流動之間隔板。藉由設置擋板,可使電解液(鹽水等)於陽極室10內部循環,使其濃度變得均勻。為了引起內部循環,擋板較佳為以將陽極11附近之空間與間隔壁30附近之空間隔開之方式配置。就該觀點而言,擋板較佳為以與陽極11及間隔壁30之各表面相對向之方式設置。於由擋板分隔之陽極附近之空間,藉由進行電解,電解液濃度(鹽水濃度)降低,又,產生氯氣等產生氣體。藉此,於由擋板分隔之陽極11附近之空間與間隔壁30附近之空間產生氣液之比重差。利用該情況,能夠促進陽極室10中之電解液之內部循環,使陽極室10之電解液之濃度分佈變得更均勻。
再者,於圖112並未圖示,但亦可於陽極室10之內部另行設置集電體。作為該集電體,亦可設為與下文所述之陰極室之集電體相同之材料或構成。又,於陽極室10中,亦可使陽極11本身作為集電體發揮功能。
(間隔壁)
間隔壁30係配置於陽極室10與陰極室20之間。間隔壁30有時亦稱為間隔件,係將陽極室10與陰極室20進行劃分者。作為間隔壁30,可使用作為電解用之間隔件所公知者,例如可列舉於陰極側焊接包含鎳之板、於陽極側焊接包含鈦之板之間隔壁等。
(陰極室)
陰極室20於將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極饋電體發揮功能,於不將本實施形態中之電解用電極插入陰極側之情形時,21作為陰極發揮功能。於具有逆向電流吸收體之情形時,陰極或陰極饋電體21與逆向電流吸收體係電性連接。又,陰極室20較佳為與陽極室10同樣,亦具有陰極側電解液供給部、陰極側氣液分離部。再者,構成陰極室20之各部位中,關於與構成陽極室10之各部位相同者省略說明。
(陰極)
於不將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框(即,陰極框)內設置有陰極21。陰極21較佳為具有鎳基材與被覆鎳基材之觸媒層。作為鎳基材上之觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可視需要對陰極21實施還原處理。再者,作為陰極21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(陰極饋電體)
於將本實施形態中之電解用電極插入陰極側之情形時,於陰極室20之框內設置有陰極饋電體21。可對陰極饋電體21被覆觸媒成分。該觸媒成分可為原本用作陰極而殘存者。作為觸媒層之成分,可列舉:Ru、C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。作為觸媒層之形成方法,可列舉:鍍覆、合金鍍覆、分散/複合鍍覆、CVD、PVD、熱分解及熔射。亦可將該等方法加以組合。觸媒層可視需要具有複數層、複數種元素。又,可使用未形成有觸媒塗層之鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。再者,作為陰極饋電體21之基材,可使用鎳、鎳合金、對鐵或不鏽鋼鍍覆鎳而成者。
作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。
(逆向電流吸收層)
可選擇具有較上文所述之陰極之觸媒層用元素的氧化還原電位更低之氧化還原電位之材料作為逆向電流吸收層之材料。例如可列舉鎳或鐵等。
(集電體)
陰極室20較佳為具備集電體23。藉此,集電效果提高。於本實施形態中,集電體23較佳為多孔板,且以與陰極21之表面大致平行之方式配置。
作為集電體23,例如較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。集電體23可為該等金屬之混合物、合金或複合氧化物。再者,集電體23之形狀只要為作為集電體發揮功能之形狀,則可為任意形狀,可為板狀、網狀。
(金屬彈性體)
藉由在集電體23與陰極21之間設置金屬彈性體22,將串聯連接之複數個電解池1之各陰極21壓抵於離子交換膜2,各陽極11與各陰極21之間之距離變短,可降低對串聯連接之複數個電解池1整體施加之電壓。藉由電壓降低,可降低消耗電量。又,藉由設置金屬彈性體22,於將含有本實施形態中之電解用電極之積層體設置於電解池時,藉由金屬彈性體22之壓抵壓,可將該電解用電極穩定地維持於起始位置。
作為金屬彈性體22,可使用螺旋彈簧、線圈等彈簧構件、緩衝性之墊等。作為金屬彈性體22,可考慮壓抵離子交換膜之應力等而適當採用適宜者。可將金屬彈性體22設置於陰極室20側之集電體23之表面上,亦可設置於陽極室10側之間隔壁之表面上。通常以陰極室20小於陽極室10之方式劃分兩室,因此就框體之強度等觀點而言,較佳為將金屬彈性體22設置於陰極室20之集電體23與陰極21之間。又,金屬彈性體23較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。
(支持體)
陰極室20較佳為具備將集電體23與間隔壁30電性連接之支持體24。藉此,能夠效率良好地流通電流。
支持體24較佳為包含鎳、鐵、銅、銀、鈦等具有導電性之金屬。又,作為支持體24之形狀,只要為能夠支持集電體23之形狀,則可為任意形狀,可為棒狀、板狀或網狀。支持體24例如為板狀。複數個支持體24係配置於間隔壁30與集電體23之間。複數個支持體24係以各自之面互相平行之方式排列。支持體24係以大致垂直於間隔壁30及集電體23之方式配置。
(陽極側墊片、陰極側墊片)
陽極側墊片較佳為配置於構成陽極室10之框體表面。陰極側墊片較佳為配置於構成陰極室20之框體表面。1個電解池所具備之陽極側墊片及與其鄰接之電解池之陰極側墊片以夾持離子交換膜2之方式將電解池彼此連接(參照圖113)。藉由該等墊片,於介隔離子交換膜2將複數個電解池1串聯連接時,能夠對連接處賦予氣密性。
所謂墊片係將離子交換膜與電解池之間密封者。作為墊片之具體例,可列舉中央形成有開口部之邊框狀之橡膠製片等。對於墊片要求對腐蝕性之電解液或所產生之氣體等具有耐性而可長期使用。因此,就耐化學品性或硬度之方面而言,通常可使用乙烯-丙烯-二烯橡膠(EPDM橡膠)、乙烯-丙烯橡膠(EPM橡膠)之硫化物或過氧化物交聯物等作為墊片。又,視需要亦可使用以聚四氟乙烯(PTFE)或四氟乙烯-全氟烷基乙烯醚共聚物(PFA)等氟系樹脂被覆與液體相接之區域(接液部)之墊片。該等墊片只要以不妨礙電解液之流動之方式分別具有開口部即可,其形狀並無特別限定。例如沿構成陽極室10之陽極室框或構成陰極室20之陰極室框之各開口部之周緣,藉由接著劑等貼附邊框狀之墊片。此外,於例如介隔離子交換膜2連接2個電解池1之情形時(參照圖113),介隔離子交換膜2將貼附有墊片之各電解池1緊固即可。藉此,能夠抑制電解液、因電解而產生之鹼金屬氫氧化物、氯氣、氫氣等漏至電解池1之外部之情況。
[積層體]
於本實施形態之電解槽之製造方法中,電解用電極可作為與離子交換膜或微多孔膜等隔膜之積層體而使用。即,本實施形態中之積層體係包含電解用電極與新隔膜者。新隔膜只要與既有電解槽中之隔膜不同體,則無特別限定,可應用各種公知之隔膜。又,新隔膜可為材質、形狀、物性等與既有電解槽中之隔膜相同者。對電解用電極及隔膜之具體例追加詳細說明。
(步驟(A))
於第1態樣中之步驟(A)中,於電解槽架內解除隔膜之固定。所謂「於電解槽架內」意指一邊保持電解池(即,包含陽極及陰極之構件)及隔膜由電解槽架所支持之狀態一邊進行步驟(A),將電解池從電解槽架去除之態樣除外。作為解除隔膜之固定之方法,並無特別限定,例如可列舉解除利用電解槽架中之壓製器之按壓,於電解池與隔膜之間形成空隙,設為將隔膜取出至電解槽架之外之狀態之方法等。於步驟(A)中,較佳為藉由使陽極及陰極分別沿該等之排列方向滑動,而於電解槽架內解除隔膜之固定。藉由此種操作,可設為能夠於不將電解池取出至電解槽架之外之情況下將隔膜取出至電解槽架之外之狀態。
[步驟(B)]
於第1態樣中之步驟(B)中,於步驟(A)之後,將既有電解槽中之隔膜與積層體交換。作為交換之方法,並無特別限定,例如可列舉於該電解池及離子交換膜之間形成空隙後,將成為更新對象之既有之隔膜去除,繼而將積層體插入至該空隙之方法等。藉由此種方法,能夠將積層體配置於既有電解槽中之陽極或陰極之表面上,而能夠更新離子交換膜、陽極及/或陰極之性能。
於實施步驟(B)後,較佳為藉由從陽極及陰極進行按壓,而將上述積層體固定於上述電解槽架內。具體而言,可將既有電解槽中之隔膜與積層體交換後,再次藉由壓製器對積層體與電解池等既有電解槽中之各構件進行按壓而加以連結。藉由此種方法,能夠將積層體固定於既有電解槽中之陽極或陰極之表面上。
基於圖117(A)及(B),對第1態樣中之步驟(A)~(B)之具體例進行說明。首先,解除利用壓製器5之按壓,使複數個電解池1及離子交換膜2沿該等之排列方向α滑動。藉此,能夠在不將電解池1取出至電解槽架8之外之情況下於電解池1及離子交換膜2之間形成空隙S,離子交換膜2成為可取出至電解槽架8之外之狀態。繼而,將成為交換對象之既有電解槽之離子交換膜2從電解槽架8取出,取而代之,將新離子交換膜2a與電解用電極100之積層體9插入至鄰接之電解池1之間(即,空隙S)。由此,於鄰接之電解池1之間配置積層體9,該等成為由電解槽架8所支持之狀態。繼而,利用壓製器5沿排列方向α進行按壓,藉此將複數個電解池1與積層體9連結。
(步驟(A'))
於第2態樣中之步驟(A')中,亦與第1態樣同樣地於電解槽架內解除隔膜之固定。於步驟(A')中,亦較佳為藉由使陽極及陰極分別沿該等之排列方向滑動,而於電解槽架內解除隔膜之固定。藉由此種操作,可設為能夠於不將電解池取出至電解槽架之外之情況下將隔膜取出至電解槽架之外之狀態。
[步驟(B')]
於第2態樣中之步驟(B')中,於步驟(A')之後,於隔膜與陽極或陰極之間配置電解用電極。作為配置電解用電極之方法,並無特別限定,例如可列舉於電解池及離子交換膜之間形成空隙後,將電解用電極插入至該空隙之方法等。藉由此種方法,能夠將電解用電極配置於既有電解槽中之陽極或陰極之表面上,而能夠更新陽極或陰極之性能。
於實施步驟(B')後,較佳為藉由從陽極及陰極進行按壓,而將電解用電極固定於電解槽架內。具體而言,可將電解用電極配置於既有電解槽中之陽極或陰極之表面上後,再次藉由壓製器對電解用電極與電解池等既有電解槽中之各構件進行按壓而加以連結。藉由此種方法,能夠將積層體固定於既有電解槽中之陽極或陰極之表面上。
基於圖118(A)及(B),對第2態樣中之步驟(A')~(B')之具體例進行說明。首先,解除利用壓製器5之按壓,使複數個電解池1及離子交換膜2沿該等之排列方向α滑動。藉此,能夠於不將電解池1取出至電解槽架8之外之情況下於電解池1與離子交換膜2之間形成空隙S。繼而,將電解用電極100插入至鄰接之電解池1之間(即,空隙S)。由此,於鄰接之電解池1之間配置電解用電極100,該等成為由電解槽架8所支持之狀態。繼而,利用壓製器5沿排列方向α進行按壓,藉此將複數個電解池1與電解用電極100連結。
再者,於第1態樣中之步驟(B)中,較佳為於積層體不熔融之溫度下,將該積層體固定於陽極及陰極之至少一者之表面上。
「積層體不熔融之溫度」可作為新隔膜之軟化點而特定出。該溫度可根據構成隔膜之材料而變動,較佳為0~100℃,更佳為5~80℃,進而較佳為10~50℃。
又,上述之固定較佳為於常壓下進行。
較佳為進而藉由將電解用電極與新隔膜於該隔膜不熔融之溫度下進行一體化,獲得積層體後用於步驟(B)。
作為上述一體化之具體之方法,可使用除了熱壓接等將隔膜熔融之典型之方法以外之所有方法,並無特別限定。作為較佳之一例,可列舉下文所述之將液體介置於電解用電極與隔膜之間而藉由該液體之表面張力進行一體化之方法等。
[電解用電極]
於本實施形態之電解槽之製造方法中,電解用電極只要為可用於電解者,則無特別限定。電解用電極可為於電解槽中作為陰極而發揮功能者,亦可為作為陽極而發揮功能者。又,關於電解用電極之材質或形狀等,可考慮電解槽之構成等而適當選擇合適者。以下,對本實施形態中之電解用電極之較佳之態樣進行說明,但該等僅為對於第1態樣中與新隔膜進行一體化而製成積層體之情形而言較佳之態樣之例示,亦可適當採用下文所述之態樣以外之電解用電極。
本實施形態中之電解用電極就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、饋電體(劣化之電極及未形成有觸媒塗層之電極)等具有良好之接著力之觀點而言,每單位質量·單位面積所承受之力較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。
就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/mg・cm
2
以上,進而更佳為0.14 N/(mg・cm
2
)以上。就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.2 N/(mg・cm
2
)以上。
上述承受力例如可藉由適當調整下文所述之開孔率、電極之厚度、算術平均表面粗糙度等而設為上述範圍。更具體而言,例如,若增大開孔率,則承受力有變小之傾向,若減小開孔率,則承受力有變大之傾向。
又,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有良好之接著力之觀點,進而就經濟性之觀點而言,較佳為每單位面積之質量為48 mg/cm
2
以下,更佳為30 mg/cm
2
以下,進而較佳為20 mg/cm
2
以下,進而,就合併操作性、接著性及經濟性之綜合性之觀點而言,較佳為15 mg/cm
2
以下。下限值並無特別限定,例如為1 mg/cm
2
左右。
上述每單位面積之質量例如可藉由適當調整下文所述之開孔率、電極之厚度等而設為上述範圍。更具體而言,例如,若為相同之厚度,則若增大開孔率,則每單位面積之質量有變小之傾向,若減小開孔率,則每單位面積之質量有變大之傾向。
承受力可藉由以下之方法(i)或(ii)進行測定,詳細而言,如實施例所記載。關於承受力,藉由方法(i)之測定所獲得之值(亦稱為「承受力(1)」)與藉由方法(ii)之測定所獲得之值(亦稱為「承受力(2)」)可相同亦可不同,但較佳為任一值均未達1.5 N/mg・cm
2
。
[方法(i)]
依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方)、於導入有離子交換基之全氟碳聚合物之膜之兩面塗佈有無機物粒子及結合劑之離子交換膜(170 mm見方,關於此處所謂離子交換膜之詳細如實施例所記載)及電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。再者,噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.5~0.8 μm。算術平均表面粗糙度(Ra)之具體之算出方法如實施例所記載。
於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極樣品與離子交換膜之重疊部分之面積、及與離子交換膜重疊部分之電極樣品之質量,而算出每單位質量·單位面積所承受之力(1)(N/mg・cm
2
)。
藉由方法(i)獲得之每單位質量·單位面積所承受之力(1)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。又,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/(mg・cm
2
)以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm
2
),更佳為0.2 N/(mg・cm
2
)以上。
[方法(ii)]
依序積層以粒編號320之氧化鋁實施噴擊加工所獲得之鎳板(厚度1.2 mm,200 mm見方,與上述方法(i)相同之鎳板)與電極樣品(130 mm見方),將該積層體於純水中充分浸漬後,去除附著於積層體表面之多餘之水分,藉此獲得測定用樣品。於溫度23±2℃、相對濕度30±5%之條件下,使用拉伸壓縮試驗機,僅使該測定用樣品中之電極樣品以10 mm/分鐘沿垂直方向上升,測定電極樣品沿垂直方向上升10 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極樣品與鎳板之重疊部分之面積、及與鎳板重疊部分中之電極樣品之質量,而算出每單位質量•單位面積之接著力(2)(N/mg・cm
2
)。
藉由方法(ii)獲得之每單位質量·單位面積所承受之力(2)就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體具有良好之接著力之觀點而言,較佳為1.6 N/(mg・cm
2
)以下,更佳為未達1.6 N/(mg・cm
2
),進而較佳為未達1.5 N/(mg・cm
2
),進而更佳為1.2 N/mg・cm
2
以下,更佳為1.20 N/mg・cm
2
以下。進而更佳為1.1 N/mg・cm
2
以下,進而更佳為1.10 N/mg・cm
2
以下,尤佳為1.0 N/mg・cm
2
以下,特佳為1.00 N/mg・cm
2
以下。進而,就進一步提高電解性能之觀點而言,較佳為超過0.005 N/(mg・cm
2
),更佳為0.08 N/(mg・cm
2
)以上,進而較佳為0.1 N/(mg・cm
2
)以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而更佳為0.14 N/(mg・cm
2
)以上。
本實施形態中之電解用電極較佳為包含電解用電極基材及觸媒層。該電解用電極基材之厚度(量規厚度)並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折,大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。
於本實施形態之電解槽之製造方法中,較佳為將新隔膜與電解用電極進行一體化後,於該等之間介置液體。該液體只要為水、有機溶劑等產生表面張力者,則可使用任意液體。液體之表面張力越大,對新隔膜與電解用電極之間承受之力越大,因此較佳為表面張力較大之液體。作為液體,可列舉如下者(括號內之數值係該液體於20℃下之表面張力)。
己烷(20.44 mN/m)、丙酮(23.30 mN/m)、甲醇(24.00 mN/m)、乙醇(24.05 mN/m)、乙二醇(50.21 mN/m)水(72.76 mN/m)
若為表面張力較大之液體,則新隔膜與電解用電極成為一體(成為積層體),有電極更新變得更容易之傾向。新隔膜與電解用電極之間之液體為藉由表面張力而互相貼附之程度之量即可,其結果為液體量較少,因此即使於將該積層體設置於電解池後混入至電解液中,亦不會對電解本身造成影響。
就實用上之觀點而言,作為液體,較佳為使用乙醇、乙二醇、水等表面張力為24 mN/m至80 mN/m之液體。尤佳為水或將苛性鈉、氫氧化鉀、氫氧化鋰、碳酸氫鈉、碳酸氫鉀、碳酸鈉、碳酸鉀等溶解於水中製成鹼性之水溶液。又,亦可使該等液體含有界面活性劑而調整表面張力。藉由含有界面活性劑,新隔膜與電解用電極之接著性發生變化,而可調整操作性。作為界面活性劑,並無特別限定,可使用離子性界面活性劑、非離子性界面活性劑之任一種。
本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力之觀點而言,藉由以下之方法(2)所測得之比率較佳為90%以上,更佳為92%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為95%以上。上限值為100%。
[方法(2)]
依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑280 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。
本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,可適宜地捲繞為滾筒狀而良好地彎折之觀點而言,藉由以下之方法(3)所測得之比率較佳為75%以上,更佳為80%以上,進而,就大型尺寸(例如,尺寸1.5 m×2.5 m)下之處理變得容易之觀點而言,進而較佳為90%以上。上限值為100%。
[方法(3)]
依序積層離子交換膜(170 mm見方)與電極樣品(130 mm見方)。於溫度23±2℃、相對濕度30±5%之條件下,以該積層體中之電極樣品成為外側之方式,將積層體置於聚乙烯管(外徑145 mm)之曲面上,利用純水充分地浸漬積層體與管,將附著於積層體表面及管上之多餘之水分去除,於其1分鐘後,對離子交換膜(170 mm見方)與電極樣品密接之部分之面積的比率(%)進行測定。
本實施形態中之電解用電極並無特別限定,就可獲得良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極(饋電體)及未形成有觸媒塗層之電極(饋電體)具有良好之接著力,防止電解中產生之氣體滯留之觀點而言,較佳為多孔結構,且其開孔率或空隙率為5~90%以下。開孔率更佳為10~80%以下,進而較佳為20~75%。
再者,所謂開孔率係每單位體積之開孔部之比率。開孔部亦根據考慮至次微米級抑或僅考慮目視可見之開口而有各種算出方法。於本實施形態中,可藉由根據電極之量規厚度、寬度、長度之值算出體積V,進而實測重量W,而利用下述之式算出開孔率A。
A=(1-(W/(V×ρ))×100
ρ係電極之材質之密度(g/cm
3
)。例如於鎳之情形時為8.908 g/cm
3
,於鈦之情形時為4.506 g/cm
3
。開孔率之調整可藉由如下方法進行適當調整:若為沖孔金屬,則變更每單位面積沖裁金屬之面積;若為多孔金屬,則變更SW(短徑)、LW(長徑)、進給之值;若為絲網,則變更金屬纖維之線徑、網眼數;若為電成形,則變更所使用之光阻之圖案;若為不織布,則變更金屬纖維直徑及纖維密度;若為發泡金屬,則變更用以使空隙形成之模板等。
以下,對本實施形態中之電解用電極之更具體之實施形態進行說明。
本實施形態之電解用電極較佳為包含電解用電極基材及觸媒層。觸媒層如下所述,可包含複數層,亦可為單層結構。
如圖119所示,本實施形態之電解用電極100具備電解用電極基材10、及被覆電解用電極基材10之兩表面之一對第一層20。第一層20較佳為將電解用電極基材10整體被覆。藉此,電解用電極之觸媒活性及耐久性變得容易提高。再者,亦可僅於電解用電極基材10之一表面積層第一層20。
又,如圖119所示,第一層20之表面可由第二層30所被覆。第二層30較佳為將第一層20整體被覆。又,第二層30可僅積層於第一層20之一表面。
(電解用電極基材)
作為電解用電極基材10,並無特別限定,例如可使用鎳、鎳合金、不鏽鋼、或以鈦等為代表之閥金屬,較佳為含有選自鎳(Ni)及鈦(Ti)中之至少1種元素。
於在高濃度之鹼性水溶液中使用不鏽鋼之情形時,若考慮到鐵及鉻溶出、及不鏽鋼之導電性為鎳之1/10左右,則較佳為使用含有鎳(Ni)之基材作為電解用電極基材。
又,電解用電極基材10於在接近飽和之高濃度之食鹽水中於氯氣產生環境中使用之情形時,材質亦較佳為耐蝕性較高之鈦。
電解用電極基材10之形狀並無特別限定,可根據目的選擇合適之形狀。作為形狀,可使用沖孔金屬、不織布、發泡金屬、多孔金屬、藉由電成形所形成之金屬多孔箔、編織金屬線所製作之所謂編織網等任一者。其中,較佳為沖孔金屬或多孔金屬。再者,所謂電成形係將照相製版與電鍍法組合而製作精密之圖案之金屬薄膜的技術。其係藉由光阻於基板上形成圖案,對未受到光阻保護之部分實施電鍍而獲得金屬薄膜之方法。
關於電解用電極基材之形狀,根據電解槽中之陽極與陰極之距離而有適宜之規格。並無特別限定,於陽極與陰極具有有限之距離之情形時,可使用多孔金屬、沖孔金屬形狀,於離子交換膜與電極相接之所謂零間距電解槽之情形時,可使用編織細線而成之編織網、金屬絲網、發泡金屬、金屬不織布、多孔金屬、沖孔金屬、金屬多孔箔等。
作為電解用電極基材10,可列舉:金屬多孔箔、金屬絲網、金屬不織布、沖孔金屬、多孔金屬或發泡金屬。
作為加工為沖孔金屬、多孔金屬前之板材,較佳為經壓延成形之板材、電解箔等。電解箔較佳為進而作為後處理而藉由與母材相同之元素實施鍍覆處理,於單面或兩面形成凹凸。
又,電解用電極基材10之厚度如上文所述,較佳為300 μm以下,更佳為205 μm以下,進而較佳為155 μm以下,進而更佳為135 μm以下,進而更佳為125 μm以下,更佳為120 μm以下,進而更佳為100 μm以下,就操作性與經濟性之觀點而言,進而更佳為50 μm以下。下限值並無特別限定,例如為1 μm,較佳為5 μm,更佳為15 μm。
於電解用電極基材中,較佳為藉由在氧化環境中將電解用電極基材進行退火而緩和加工時之殘留應力。又,為了提高與被覆於電解用電極基材之表面之觸媒層之密接性,較佳為使用鋼砂、氧化鋁粉等於上述表面形成凹凸,其後藉由酸處理而增加表面積。或者,較佳為藉由與基材相同之元素實施鍍覆處理,增加表面積。
為了使第一層20與電解用電極基材10之表面密接,較佳為對電解用電極基材10進行增大表面積之處理。作為增大表面積之處理,可列舉使用鋼線粒、鋼砂、氧化鋁砂等之噴擊處理、使用硫酸或鹽酸之酸處理、利用與基材相同元素之鍍覆處理等。基材表面之算術平均表面粗糙度(Ra)並無特別限定,較佳為0.05 μm~50 μm,更佳為0.1~10 μm,進而較佳為0.1~8 μm。
繼而,對將本實施形態中之電解用電極用作食鹽電解用陽極之情形進行說明。
(第一層)
於圖119中,作為觸媒層之第一層20含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物。作為釕氧化物,可列舉RuO
2
等。作為銥氧化物,可列舉IrO
2
等。作為鈦氧化物,可列舉TiO
2
等。第一層20較佳為含有釕氧化物及鈦氧化物之兩種氧化物,或含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物。藉此,第一層20成為更穩定之層,進而,與第二層30之密接性亦進一步提高。
於第一層20含有釕氧化物及鈦氧化物之兩種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為1~9莫耳,更佳為1~4莫耳。藉由將兩種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。
於第一層20含有釕氧化物、銥氧化物及鈦氧化物之三種氧化物之情形時,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之銥氧化物較佳為0.2~3莫耳,更佳為0.3~2.5莫耳。又,相對於第一層20所含之釕氧化物1莫耳,第一層20所含之鈦氧化物較佳為0.3~8莫耳,更佳為1~7莫耳。藉由將三種氧化物之組成比設為該範圍,電解用電極100表現出優異之耐久性。
於第一層20含有選自釕氧化物、銥氧化物及鈦氧化物中之至少兩種氧化物之情形時,該等氧化物較佳為形成固溶體。藉由形成氧化物固溶體,電解用電極100表現出優異之耐久性。
除了上述組成以外,只要含有釕氧化物、銥氧化物及鈦氧化物中之至少一種氧化物,則可使用各種組成者。例如,亦可使用稱為DSA(註冊商標)之含有釕、銥、鉭、鈮、鈦、錫、鈷、錳、鉑等之氧化物塗層作為第一層20。
第一層20無需為單層,亦可包含複數層。例如,第一層20可包含含有三種氧化物之層與含有兩種氧化物之層。第一層20之厚度較佳為0.05~10 μm,更佳為0.1~8 μm。
(第二層)
第二層30較佳為含有釕與鈦。藉此,能夠進一步降低剛電解後之氯過電壓。
第二層30較佳為含有氧化鈀、氧化鈀與鉑之固溶體或鈀與鉑之合金。藉此,能夠進一步降低剛電解後之氯過電壓。
第二層30較厚者能夠維持電解性能之時間變長,就經濟性之觀點而言,較佳為0.05~3 μm之厚度。
繼而,對將本實施形態中之電解用電極用作食鹽電解用陰極之情形進行說明。
(第一層)
作為觸媒層之第一層20之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。
可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。
於含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少一種之情形時,較佳為鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金含有鉑、鈀、銠、釕、銥中之至少一種鉑族金屬。
作為鉑族金屬,較佳為含有鉑。
作為鉑族金屬氧化物,較佳為含有釕氧化物。
作為鉑族金屬氫氧化物,較佳為含有釕氫氧化物。
作為鉑族金屬合金,較佳為含有鉑與鎳、鐵、鈷之合金。
較佳為進而視需要含有鑭系元素之氧化物或氫氧化物作為第二成分。藉此,電解用電極100表現出優異之耐久性。
作為鑭系元素之氧化物或氫氧化物,較佳為含有選自鑭、鈰、鐠、釹、鉕、釤、銪、釓、鋱、鏑中之至少1種。
較佳為進而視需要含有過渡金屬之氧化物或氫氧化物作為第三成分。
藉由添加第三成分,電解用電極100能夠表現出更優異之耐久性,降低電解電壓。
作為較佳之組合之例,可列舉:僅釕、釕+鎳、釕+鈰、釕+鑭、釕+鑭+鉑、釕+鑭+鈀、釕+鐠、釕+鐠+鉑、釕+鐠+鉑+鈀、釕+釹、釕+釹+鉑、釕+釹+錳、釕+釹+鐵、釕+釹+鈷、釕+釹+鋅、釕+釹+鎵、釕+釹+硫、釕+釹+鉛、釕+釹+鎳、釕+釹+銅、釕+釤、釕+釤+錳、釕+釤+鐵、釕+釤+鈷、釕+釤+鋅、釕+釤+鎵、釕+釤+硫、釕+釤+鉛、釕+釤+鎳、鉑+鈰、鉑+鈀+鈰、鉑+鈀+鑭+鈰、鉑+銥、鉑+鈀、鉑+銥+鈀、鉑+鎳+鈀、鉑+鎳+釕、鉑與鎳之合金、鉑與鈷之合金、鉑與鐵之合金等。
於不含鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之情形時,觸媒之主成分較佳為鎳元素。
較佳為含有鎳金屬、氧化物、氫氧化物中之至少1種。
作為第二成分,可添加過渡金屬。作為所添加之第二成分,較佳為含有鈦、錫、鉬、鈷、錳、鐵、硫、鋅、銅、碳中之至少一種元素。
作為較佳之組合,可列舉:鎳+錫、鎳+鈦、鎳+鉬、鎳+鈷等。
視需要可於第一層20與電解用電極基材10之間設置中間層。藉由設置中間層,能夠提高電解用電極100之耐久性。
作為中間層,較佳為對第一層20與電解用電極基材10之兩者具有親和性者。作為中間層,較佳為鎳氧化物、鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物。作為中間層,可藉由將含有形成中間層之成分之溶液進行塗佈、燒成而形成,亦可於空氣環境中在300~600℃之溫度下對基材實施熱處理而形成表面氧化物層。除此以外,可藉由熱熔射法、離子鍍敷法等已知之方法形成。
(第二層)
作為觸媒層之第一層30之成分可列舉:C、Si、P、S、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等金屬及該等金屬之氧化物或氫氧化物。
可含有鉑族金屬、鉑族金屬氧化物、鉑族金屬氫氧化物、含有鉑族金屬之合金之至少1種,亦可不含。作為第二層所含之元素之較佳之組合例,有第一層中所列舉之組合等。第一層與第二層之組合可為組成相同而組成比不同之組合,亦可為組成不同之組合。
作為觸媒層之厚度,較佳為將所形成之觸媒層及中間層累加而成之厚度為0.01 μm~20 μm。若為0.01 μm以上,則能夠作為觸媒充分發揮功能。若為20 μm以下,則從基材脫落之情況較少,能夠形成牢固之觸媒層。更佳為0.05 μm~15 μm。更佳為0.1 μm~10 μm。進而較佳為0.2 μm~8 μm。
作為電極之厚度、即電解用電極基材與觸媒層之合計之厚度,就電極之操作性之方面而言,較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,電極之厚度可藉由利用電子數顯厚度計(Mitutoyo股份有限公司,最少顯示0.001 mm)進行測定而求出。電解用電極基材之厚度係與電極厚度同樣地進行測定。觸媒層厚度可藉由電極厚度減去電解用電極基材之厚度而求出。
於本實施形態之電解槽之製造方法中,就確保充分之電解性能之觀點而言,較佳為電解用電極含有選自由Ru、Rh、Pd、Ir、Pt、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y,Zr、Nb、Mo、Ag、Ta、W、Re、Os、Al、In、Sn、Sb、Ga、Ge、B、C、N、O、Si、P、S、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb及Dy所組成之群中之至少一種觸媒成分。
於本實施形態中,若電解用電極係彈性變形區域較廣之電極,則就可獲得更良好之操作性,與離子交換膜或微多孔膜等隔膜、劣化之電極及未形成有觸媒塗層之饋電體等具有更良好之接著力之觀點而言,電解用電極之厚度較佳為315 μm以下,更佳為220 μm以下,進而較佳為170 μm以下,進而更佳為150 μm以下,尤佳為145 μm以下,更佳為140 μm以下,進而更佳為138 μm以下,進而更佳為135 μm以下。若為135 μm以下,則可獲得良好之操作性。進而,就與上述同樣之觀點而言,較佳為130 μm以下,更佳為未達130 μm,進而較佳為115 μm以下,進而更佳為65 μm以下。下限值並無特別限定,較佳為1 μm以上,就實用上而言更佳為5 μm以上,更佳為20 μm以上。再者,於本實施形態中,所謂「彈性變形區域較廣」意指將電解用電極捲繞而製成捲繞體,解除捲繞狀態後不易產生由捲繞引起之翹曲。又,所謂電解用電極之厚度於包含下文所述之觸媒層之情形時,係指合併電解用電極基材與觸媒層之厚度。
(電解用電極之製造方法)
其次,對電解用電極100之製造方法之一實施形態進行詳細說明。
於本實施形態中,藉由利用氧環境下之塗膜之燒成(熱分解)、或離子鍍敷、鍍覆、熱熔射等方法於電解用電極基材上形成第一層20、較佳為第二層30,可製造電解用電極100。此種本實施形態之製造方法能夠實現電解用電極100之較高之生產性。具體而言,藉由塗佈含有觸媒之塗佈液之塗佈步驟、乾燥塗佈液之乾燥步驟、進行熱分解之熱分解步驟,而於電解用電極基材上形成觸媒層。此處所謂熱分解意指對成為前驅物之金屬鹽進行加熱而分解為金屬或金屬氧化物與氣體狀物質。根據所使用之金屬種類、鹽之種類、進行熱分解之環境等,分解產物有所不同,但於氧化性環境下多數金屬有容易形成氧化物之傾向。於電極之工業性之製造工藝中,熱分解通常於空氣中進行,多數情形時形成金屬氧化物或金屬氫氧化物。
(陽極之第一層之形成)
(塗佈步驟)
第一層20係將溶解有釕、銥及鈦中之至少一種金屬之鹽的溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之釕、銥及鈦之含有率與第一層20大致相等。
作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。
作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。
(乾燥步驟、熱分解步驟)
將第一塗佈液塗佈於電解用電極基材100後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。
重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。
(第二層之形成)
第二層30係視需要而形成,例如將含有鈀化合物及鉑化合物之溶液或含有釕化合物及鈦化合物之溶液(第二塗佈液)塗佈於第一層20上後,於氧氣之存在下進行熱分解而獲得。
(利用熱分解法之陰極之第一層之形成)
(塗佈步驟)
第一層20係將溶解有各種組合之金屬鹽之溶液(第一塗佈液)塗佈於電解用電極基材後,於氧氣之存在下進行熱分解(燒成)而獲得。第一塗佈液中之金屬之含有率與第一層20大致相等。
作為金屬鹽,可為氯化物鹽、硝酸鹽、硫酸鹽、金屬烷氧化物、其他任一形態。第一塗佈液之溶劑可根據金屬鹽之種類進行選擇,可使用水及丁醇等醇類等。作為溶劑,較佳為水或水與醇類之混合溶劑。溶解有金屬鹽之第一塗佈液中之總金屬濃度並無特別限定,就兼顧藉由1次塗佈所形成之塗膜之厚度之方面而言,較佳為10~150 g/L之範圍。
作為將第一塗佈液塗佈於電解用電極基材10上之方法,可使用將電解用電極基材10浸漬於第一塗佈液中之浸漬法、以毛刷塗佈第一塗佈液之方法、使用含浸有第一塗佈液之海綿狀滾筒之滾筒法、使電解用電極基材10與第一塗佈液帶有相反電荷而進行噴射噴霧之靜電塗佈法等。其中,較佳為工業上之生產性優異之滾筒法或靜電塗佈法。
(乾燥步驟、熱分解步驟)
將第一塗佈液塗佈於電解用電極基材10後,於10~90℃之溫度下加以乾燥,於加熱至350~650℃之燒成爐中進行熱分解。亦可視需要於乾燥與熱分解之間在100~350℃下實施預燒成。乾燥、預燒成及熱分解溫度可根據第一塗佈液之組成或溶劑種類而適當選擇。每次之熱分解之時間較佳為較長,就電極之生產性之觀點而言,較佳為3~60分鐘,更佳為5~20分鐘。
重複上述塗佈、乾燥及熱分解之循環,將被覆(第一層20)形成為特定之厚度。形成第一層20後,若視需要進一步進行長時間燒成之後期加熱,則能夠進一步提高第一層20之穩定性。
(中間層之形成)
中間層係視需要而形成,例如將含有鈀化合物或鉑化合物之溶液(第二塗佈液)塗佈於基材上後,於氧氣之存在下進行熱分解而獲得。或者,亦可不塗佈溶液,而僅加熱基材,藉此於基材表面形成氧化鎳中間層。
(利用離子鍍敷之陰極之第一層之形成)
第一層20亦可藉由離子鍍敷而形成。
作為一例,可列舉將基材固定於腔室內並對金屬釕靶照射電子束之方法。所蒸發之金屬釕粒子於腔室內之電漿中帶正電,而沈積於帶負電之基板上。電漿環境為氬氣、氧氣,釕係以釕氧化物之形式沈積於基材上。
(利用鍍覆之陰極之第一層之形成)
第一層20亦可藉由鍍覆法而形成。
作為一例,若使用基材作為陰極,於含有鎳及錫之電解液中實施電解鍍覆,則可形成鎳與錫之合金鍍覆。
(利用熱熔射之陰極之第一層之形成)
第一層20亦可藉由熱熔射法而形成。
作為一例,藉由將氧化鎳粒子電漿熔射於基材上,而可形成混合有金屬鎳與氧化鎳之觸媒層。
以下,對隔膜之一態樣之離子交換膜進行詳細說明。
[離子交換膜]
作為離子交換膜,只要可與電解用電極製成積層體,則無特別限定,可應用各種離子交換膜。於本實施形態之電解槽之製造方法中,較佳為使用具有含有具有離子交換基之烴系聚合物或含氟系聚合物之膜本體、與設置於該膜本體之至少一面上之塗佈層之離子交換膜。又,塗佈層含有無機物粒子與結合劑,塗佈層之比表面積較佳為0.1~10 m
2
/g。該結構之離子交換膜於電解中所產生之氣體對電解性能之影響較少,有發揮出穩定之電解性能之傾向。
上述所謂導入有離子交換基之全氟碳聚合物之膜係具備具有源自磺基之離子交換基(以-SO
3 -
表示之基,以下亦稱為「磺酸基」)之磺酸層與具有源自羧基之離子交換基(以-CO
2 -
表示之基,以下亦稱為「羧酸基」)之羧酸層之任一者。就強度及尺寸穩定性之觀點而言,較佳為進而具有強化芯材。
以下於塗佈層之說明之欄對無機物粒子及結合劑進行詳細說明。
圖120係表示離子交換膜之一實施形態之剖面模式圖。離子交換膜1具有:膜本體10,其含有具有離子交換基之烴系聚合物或含氟系聚合物;以及塗佈層11a及11b,其等形成於膜本體10之兩面。
於離子交換膜1中,膜本體10具備具有源自磺基之離子交換基(以-SO
3 -
表示之基,以下亦稱為「磺酸基」)之磺酸層3、與具有源自羧基之離子交換基(以-CO
2 -
表示之基,以下亦稱為「羧酸基」)之羧酸層2,藉由強化芯材4強化強度及尺寸穩定性。離子交換膜1由於具備磺酸層3與羧酸層2,因此可作為陽離子交換膜而適宜地使用。
再者,離子交換膜亦可僅具有磺酸層及羧酸層之任一者。又,離子交換膜未必由強化芯材所強化,強化芯材之配置狀態亦不限定於圖120之例。
(膜本體)
首先,對構成離子交換膜1之膜本體10進行說明。
膜本體10只要為具有使陽離子選擇性地透過之功能且含有具有離子交換基之烴系聚合物或含氟系聚合物者即可,其構成或材料並無特別限定,可適當選擇適宜者。
膜本體10中之具有離子交換基之烴系聚合物或含氟系聚合物例如可由具有可藉由水解等成為離子交換基之離子交換基前驅物之烴系聚合物或含氟系聚合物獲得。具體而言,例如使用主鏈包含氟化烴、具有可藉由水解等轉換為離子交換基之基(離子交換基前驅物)作為懸垂側鏈且能夠熔融加工之聚合物(以下視情形稱為「含氟系聚合物(a)」)製作膜本體10之前驅物後,將離子交換基前驅物轉換為離子交換基,藉此可獲得膜本體10。
含氟系聚合物(a)例如可藉由使選自下述第1群之至少一種單體與選自下述第2群及/或下述第3群之至少一種單體進行共聚合而製造。又,亦可藉由選自下述第1群、下述第2群、及下述第3群之任一群之1種單體之均聚而製造。
作為第1群之單體,例如可列舉氟乙烯化合物。作為氟乙烯化合物,例如可列舉:氟乙烯、四氟乙烯、六氟丙烯、偏二氟乙烯、三氟乙烯、氯三氟乙烯、全氟烷基乙烯醚等。尤其是於將離子交換膜用作鹼電解用膜之情形時,氟乙烯化合物較佳為全氟單體,較佳為選自由四氟乙烯、六氟丙烯、全氟烷基乙烯醚所組成之群中之全氟單體。
作為第2群之單體,例如可列舉具有可轉換為羧酸型離子交換基(羧酸基)之官能基之乙烯系化合物。作為具有可轉換為羧酸基之官能基之乙烯系化合物,例如可列舉以CF
2
=CF(OCF
2
CYF)
s
-O(CZF)
t
-COOR表示之單體等(此處,s表示0~2之整數,t表示1~12之整數,Y及Z各自獨立地表示F或CF
3
,R表示低級烷基。低級烷基例如為碳數1~3之烷基)。
該等中,較佳為以CF
2
=CF(OCF
2
CYF)
n
-O(CF
2
)
m
-COOR表示之化合物。此處,n表示0~2之整數,m表示1~4之整數,Y表示F或CF
3
,R表示CH
3
、C
2
H
5
、或C
3
H
7
。
再者,於將離子交換膜用作鹼電解用陽離子交換膜之情形時,較佳為至少使用全氟化合物作為單體,但由於酯基之烷基(參照上述R)於水解時從聚合物喪失,因此烷基(R)亦可不為全部氫原子被取代為氟原子之全氟烷基。
作為第2群之單體,於上述中,更佳為下述所表示之單體。
CF
2
=CFOCF
2
-CF(CF
3
)OCF
2
COOCH
3
、
CF
2
=CFOCF
2
CF(CF
3
)O(CF
2
)
2
COOCH
3
、
CF
2
=CF[OCF
2
-CF(CF
3
)]
2
O(CF
2
)
2
COOCH
3
、
CF
2
=CFOCF
2
CF(CF
3
)O(CF
2
)
3
COOCH
3
、
CF
2
=CFO(CF
2
)
2
COOCH
3
、
CF
2
=CFO(CF
2
)
3
COOCH
3
。
作為第3群之單體,例如可列舉具有可轉換為磺酸型離子交換基(磺酸基)之官能基之乙烯系化合物。作為具有可轉換為磺酸基之官能基之乙烯系化合物,例如較佳為以CF
2
=CFO-X-CF
2
-SO
2
F表示之單體(此處,X表示全氟伸烷基)。作為該等之具體例,可列舉下述所表示之單體等。
CF
2
=CFOCF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
CF
2
SO
2
F、
CF
2
=CF(CF
2
)
2
SO
2
F、
CF
2
=CFO[CF
2
CF(CF
3
)O]
2
CF
2
CF
2
SO
2
F、
CF
2
=CFOCF
2
CF(CF
2
OCF
3
)OCF
2
CF
2
SO
2
F。
該等中,更佳為CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
CF
2
SO
2
F、及CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F。
由該等單體獲得之共聚物可藉由針對氟乙烯之均聚及共聚合所開發之聚合法、尤其是對四氟乙烯所使用之通常之聚合方法而製造。例如,於非水性法中,可使用全氟烴、氯氟碳等不活性溶劑,於全氟碳過氧化物或偶氮化合物等自由基聚合起始劑之存在下,於溫度0~200℃、壓力0.1~20 MPa之條件下進行聚合反應。
於上述共聚合中,上述單體之組合之種類及其比率並無特別限定,根據欲對所獲得之含氟系聚合物賦予之官能基之種類及量選擇確定。例如於製成僅含有羧酸基之含氟系聚合物之情形時,從上述第1群及第2群分別選擇至少1種單體進行共聚合即可。又,於製成僅含有磺酸基之含氟系聚合物之情形時,從上述第1群及第3群之單體中分別選擇至少1種單體進行共聚合即可。進而,於製成具有羧酸基及磺酸基之含氟系聚合物之情形時,從上述第1群、第2群及第3群之單體中分別選擇至少1種單體進行共聚合即可。於該情形時,藉由使包含上述第1群及第2群之共聚物與包含上述第1群及第3群之共聚物分開進行聚合,其後加以混合亦可獲得目標之含氟系聚合物。又,各單體之混合比率並無特別限定,於增加每單位聚合物之官能基之量之情形時,增加選自上述第2群及第3群之單體之比率即可。
含氟系共聚物之總離子交換容量並無特別限定,較佳為0.5~2.0 mg當量/g,更佳為0.6~1.5 mg當量/g。此處,所謂總離子交換容量係指相對於單位重量之乾燥樹脂之交換基之當量,可藉由中和滴定等進行測定。
於離子交換膜1之膜本體10中,積層有含有具有磺酸基之含氟系聚合物之磺酸層3與含有具有羧酸基之含氟系聚合物之羧酸層2。藉由製成此種層結構之膜本體10,能夠進一步提高鈉離子等陽離子之選擇性透過性。
於將離子交換膜1配置於電解槽之情形時,通常以磺酸層3位於電解槽之陽極側、羧酸層2位於電解槽之陰極側之方式配置。
磺酸層3較佳為由電阻較低之材料構成,就膜強度之觀點而言,較佳為其膜厚厚於羧酸層2。磺酸層3之膜厚較佳為羧酸層2之2~25倍,更佳為3~15倍。
羧酸層2較佳為即使膜厚較薄亦具有較高之陰離子排斥性者。此處所謂陰離子排斥性係指阻礙陰離子對離子交換膜1之滲入或透過之性質。為了提高陰離子排斥性,有效的是對磺酸層配置離子交換容量較小之羧酸層等。
作為磺酸層3所使用之含氟系聚合物,例如適宜為使用CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F作為第3群之單體所獲得之聚合物。
作為羧酸層2所使用之含氟系聚合物,例如適宜為使用CF
2
=CFOCF
2
CF(CF
2
)O(CF
2
)
2
COOCH
3
作為第2群之單體所獲得之聚合物。
(塗佈層)
離子交換膜較佳為於膜本體之至少一面上具有塗佈層。又,如圖120所示,於離子交換膜1中,於膜本體10之兩面上分別形成有塗佈層11a及11b。
塗佈層含有無機物粒子與結合劑。
無機物粒子之平均粒徑更佳為0.90 μm以上。若無機物粒子之平均粒徑為0.90 μm以上,則不僅極大地提高對氣體附著之耐久性,而且極大地提高對雜質之耐久性。即,藉由增大無機物粒子之平均粒徑,並且滿足上述比表面積之值,可獲得尤其顯著之效果。為了滿足此種平均粒徑與比表面積,較佳為不規則狀之無機物粒子。可使用藉由熔融獲得之無機物粒子、藉由原石粉碎獲得之無機物粒子。較佳可適宜地使用藉由原石粉碎獲得之無機物粒子。
又,無機物粒子之平均粒徑可設為2 μm以下。若無機物粒子之平均粒徑為2 μm以下,則能夠防止因無機物粒子而損傷膜。無機物粒子之平均粒徑更佳為0.90~1.2 μm。
此處,平均粒徑可藉由粒度分佈計(「SALD2200」島津製作所)進行測定。
無機物粒子之形狀較佳為不規則形狀。對雜質之耐性進一步提高。又,無機物粒子之粒度分佈較佳為較寬。
無機物粒子較佳為含有選自由週期表第IV族元素之氧化物、週期表第IV族元素之氮化物、及週期表第IV族元素之碳化物所組成之群中之至少一種無機物。就耐久性之觀點而言,更佳為氧化鋯之粒子。
該無機物粒子較佳為藉由將無機物粒子之原石粉碎所製造之無機物粒子,或以藉由將無機物粒子之原石熔融並加以精製而粒子之直徑一致之球狀之粒子作為無機物粒子。
作為原石粉碎方法,並無特別限定,可列舉:球磨機、珠磨機、膠體磨機、錐形磨機、盤磨機、輪輾機、磨粉機、錘磨機、造粒機、VSI磨機、威利磨機、輥磨機、噴射磨機等。又,較佳為粉碎後將其洗淨,作為此時之洗淨方法,較佳為酸處理。藉此,能夠減少附著於無機物粒子之表面之鐵等雜質。
塗佈層較佳為含有結合劑。結合劑係將無機物粒子保持於離子交換膜之表面、形成塗佈層之成分。就對電解液或電解之產物之耐性之觀點而言,結合劑較佳為含有含氟系聚合物。
作為結合劑,就對電解液或電解之產物之耐性、及對離子交換膜之表面之接著性之觀點而言,更佳為具有羧酸基或磺酸基之含氟系聚合物。於在含有具有磺酸基之含氟聚合物之層(磺酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有磺酸基之含氟系聚合物。又,於在含有具有羧酸基之含氟聚合物之層(羧酸層)上設置塗佈層之情形時,作為該塗佈層之結合劑,進而較佳為使用具有羧酸基之含氟系聚合物。
塗佈層中,無機物粒子之含量較佳為40~90質量%,更佳為50~90質量%。又,結合劑之含量較佳為10~60質量%,更佳為10~50質量%。
離子交換膜中之塗佈層之分佈密度較佳為每1 cm
2
為0.05~2 mg。又,於離子交換膜於表面具有凹凸形狀之情形時,塗佈層之分佈密度較佳為每1 cm
2
為0.5~2 mg。
作為形成塗佈層之方法,並無特別限定,可使用公知之方法。例如可列舉藉由噴射等塗佈將無機物粒子分散於含有結合劑之溶液中而成之塗佈液之方法。
(強化芯材)
離子交換膜較佳為具有配置於膜本體之內部之強化芯材。
強化芯材係強化離子交換膜之強度或尺寸穩定性之構件。藉由將強化芯材配置於膜本體之內部,尤其能夠將離子交換膜之伸縮控制為所需之範圍。該離子交換膜於電解時等不會伸縮為必要程度以上,而能夠長期維持優異之尺寸穩定性。
強化芯材之構成並無特別限定,例如可將稱為強化紗之紗進行紡紗而形成。此處所謂強化紗係構成強化芯材之構件,指能夠對離子交換膜賦予所需之尺寸穩定性及機械強度且於離子交換膜中能夠穩定地存在之紗。藉由使用將該強化紗紡紗而成之強化芯材,能夠對離子交換膜賦予更優異之尺寸穩定性及機械強度。
強化芯材及其所使用之強化紗之材料並無特別限定,較佳為對酸或鹼等具有耐性之材料,就需要長期之耐熱性、耐化學品性之方面而言,較佳為包含含氟系聚合物之纖維。
作為強化芯材所使用之含氟系聚合物,例如可列舉:聚四氟乙烯(PTFE)、四氟乙烯-全氟烷基乙烯醚共聚物(PFA)、四氟乙烯-乙烯共聚物(ETFE)、四氟乙烯-六氟丙烯共聚物、三氟氯乙烯-乙烯共聚物及偏二氟乙烯聚合物(PVDF)等。該等中,尤其是就耐熱性及耐化學品性之觀點而言,較佳為使用包含聚四氟乙烯之纖維。
強化芯材所使用之強化紗之紗直徑並無特別限定,較佳為20~300丹尼,更佳為50~250丹尼。紡織密度(每單位長度之織入根數)較佳為5~50根/英吋。作為強化芯材之形態,並無特別限定,例如可使用織布、不織布、針織布等,較佳為織布之形態。又,使用織布之厚度較佳為30~250 μm、更佳為30~150 μm者。
織布或針織布可使用單絲、複絲或該等之紗線、切膜絲等,紡織方法可使用平織、紗羅組織、針織、凸條組織、縐條紋薄織等各種紡織方法。
膜本體中之強化芯材之紡織方法及配置並無特別限定,可考慮離子交換膜之大小或形狀、離子交換膜所需之物性及使用環境等適當設為適宜之配置。
例如,可沿膜本體之特定之一方向配置強化芯材,就尺寸穩定性之觀點而言,較佳為沿特定之第一方向配置強化芯材,且沿大致垂直於第一方向之第二方向配置其他強化芯材。藉由在膜本體之縱向膜本體之內部以大致成一列之方式配置複數個強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。例如,較佳為於膜本體之表面織入沿縱向配置之強化芯材(縱紗)與沿橫向配置之強化芯材(橫紗)之配置。就尺寸穩定性、機械強度及製造容易性之觀點而言,更佳為製成使縱紗與橫紗一上一下交替織入而紡織之平紋織物、或一邊撚轉2根經紗一邊與橫紗交織之紗羅組織物、於每2根或數根並紗配置之縱紗中織入相同數量之橫紗而紡織之斜紋織物(twill weave)等。
尤佳為沿離子交換膜之MD方向(縱向(Machine Direction)方向)及TD方向(橫向(Transverse Direction)方向)之兩方向配置強化芯材。即,較佳為沿MD方向與TD方向平織。此處,所謂MD方向係指於下文所述之離子交換膜之製造步驟中搬送膜本體或各種芯材(例如,強化芯材、強化紗、下文所述之犧牲紗等)之方向(行進方向),所謂TD方向係指大致垂直於MD方向之方向。此外,將沿MD方向紡織之紗稱為MD紗,將沿TD方向紡織之紗稱為TD紗。通常電解所使用之離子交換膜係矩形,長度方向為MD方向、寬度方向為TD方向之情況較多。藉由織入作為MD紗之強化芯材與作為TD紗之強化芯材,可於多方向賦予更優異之尺寸穩定性及機械強度。
強化芯材之配置間隔並無特別限定,可考慮離子交換膜所需之物性及使用環境等適當設為適宜之配置。
強化芯材之開口率並無特別限定,較佳為30%以上,更佳為50%以上且90%以下。開口率就離子交換膜之電化學性質之觀點而言,較佳為30%以上,就離子交換膜之機械強度之觀點而言,較佳為90%以下。
所謂強化芯材之開口率係指膜本體之任一表面之面積(A)中離子等物質(電解液及其所含之陽離子(例如,鈉離子))能夠通過之表面之總面積(B)之比率(B/A)。所謂離子等物質能夠通過之表面之總面積(B)可指於離子交換膜中陽離子或電解液等不被離子交換膜所含之強化芯材等阻斷之區域之總面積。
圖121係用以對構成離子交換膜之強化芯材之開口率進行說明之概略圖。圖121係將離子交換膜之一部分放大而僅圖示該區域內之強化芯材21及22之配置,其他構件省略圖示。
藉由從由沿縱向配置之強化芯材21與沿橫向配置之強化芯材22所圍成之亦包括強化芯材之面積在內之區域的面積(A)減去強化芯材之總面積(C),可求出上述區域之面積(A)中離子等物質能夠通過之區域之總面積(B)。即,開口率可藉由下述式(I)求出。
開口率=(B)/(A)=((A)-(C))/(A) …(I)
於強化芯材中,就耐化學品性及耐熱性之觀點而言,尤佳之形態係含有PTFE之帶狀紗線或高配向單絲。具體而言,更佳為如下強化芯材,其係使用將包含PTFE之高強度多孔質片材切為帶狀而成之帶狀紗線、或包含PTFE之高度配向之單絲之50~300丹尼且紡織密度為10~50根/英吋之平紋織物,其厚度為50~100 μm之範圍。含有該強化芯材之離子交換膜之開口率進而較佳為60%以上。
作為強化紗之形狀,可列舉圓紗、帶狀紗等。
(連通孔)
離子交換膜較佳為於膜本體之內部具有連通孔。
所謂連通孔係指能夠成為電解時產生之離子或電解液之流路之孔。又,所謂連通孔係形成於膜本體內部之管狀之孔,藉由下文所述之犧牲芯材(或犧牲紗)溶出而形成。連通孔之形狀或直徑等可藉由選擇犧牲芯材(犧牲紗)之形狀或直徑進行控制。
藉由在離子交換膜形成連通孔,於電解時能夠確保電解液之移動性。連通孔之形狀並無特別限定,根據下文所述之製法,可製成連通孔之形成所使用之犧牲芯材之形狀。
連通孔較佳為以交替通過強化芯材之陽極側(磺酸層側)與陰極側(羧酸層側)之方式形成。藉由設為該結構,於強化芯材之陰極側形成有連通孔之部分,通過充滿連通孔之電解液所輸送之離子(例如,鈉離子)亦能夠流至強化芯材之陰極側。其結果為,由於陽離子之流動未被遮蔽,因此能夠進一步降低離子交換膜之電阻。
連通孔可僅沿構成離子交換膜之膜本體之特定之一方向形成,就發揮出更穩定之電解性能之觀點而言,較佳為沿膜本體之縱向與橫向之兩方向形成。
[製造方法]
作為離子交換膜之適宜之製造方法,可列舉具有以下之(1)步驟~(6)步驟之方法。
(1)步驟:製造具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之含氟系聚合物之步驟。
(2)步驟:藉由視需要至少織入複數個強化芯材與具有溶於酸或鹼之性質且形成連通孔之犧牲紗而獲得於鄰接之強化芯材彼此之間配置有犧牲紗之補強材之步驟。
(3)步驟:將具有離子交換基、或能夠藉由水解成為離子交換基之離子交換基前驅物之上述含氟系聚合物進行膜化之步驟。
(4)步驟:視需要將上述補強材埋入至上述膜中而獲得內部配置有上述補強材之膜本體之步驟。
(5)步驟:將(4)步驟中獲得之膜本體進行水解之步驟(水解步驟)。
(6)步驟:於(5)步驟中獲得之膜本體設置塗佈層之步驟(塗佈步驟)。
以下,對各步驟進行詳細說明。
(1)步驟:製造含氟系聚合物之步驟
於(1)步驟中,使用上述第1群~第3群所記載之原料之單體製造含氟系聚合物。為了控制含氟系聚合物之離子交換容量,於形成各層之含氟系聚合物之製造中調整原料之單體之混合比即可。
(2)步驟:補強材之製造步驟
所謂補強材係紡織強化紗之織布等。藉由將補強材埋入至膜內而形成強化芯材。於製成具有連通孔之離子交換膜時,亦將犧牲紗一起織入至補強材中。該情形時之犧牲紗之混織量較佳為補強材整體之10~80質量%,更佳為30~70質量%。藉由織入犧牲紗,亦能夠防止強化芯材之脫線。
犧牲紗係於膜之製造步驟或電解環境下具有溶解性者,可使用嫘縈、聚對苯二甲酸乙二酯(PET)、纖維素及聚醯胺等。又,亦較佳為具有20~50丹尼之粗細程度、包含單絲或複絲之聚乙烯醇等。
再者,於(2)步驟中,可藉由調整強化芯材或犧牲紗之配置而控制開口率或連通孔之配置等。
(3)步驟:膜化步驟
於(3)步驟中,使用擠出機將上述(1)步驟中獲得之含氟系聚合物進行膜化。膜可為單層結構,亦可如上所述為磺酸層與羧酸層之2層結構,亦可為3層以上之多層結構。
作為膜化之方法,例如可列舉以下者。
分別將具有羧酸基之含氟聚合物、具有磺酸基之含氟聚合物分開進行膜化之方法。
藉由共擠出將具有羧酸基之含氟聚合物與具有磺酸基之含氟聚合物製成複合膜之方法。
再者,膜可分別為複數片。又,將異種之膜共擠出有助於提高界面之接著強度,故而較佳。
(4)步驟:獲得膜本體之步驟
於(4)步驟中,藉由將(2)步驟中獲得之補強材埋入至(3)步驟中獲得之膜之內部,而獲得內有補強材之膜本體。
作為膜本體之較佳之形成方法,可列舉:(i)藉由共擠出法將位於陰極側之具有羧酸基前驅物(例如,羧酸酯官能基)之含氟系聚合物(以下將包含其之層稱為第一層)與具有磺酸基前驅物(例如,磺醯氟官能基)之含氟系聚合物(以下將包含其之層稱為第二層)進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將補強材、第二層/第一層複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法;(ii)區別於第二層/第一層複合膜,預先將具有磺酸基前驅物之含氟系聚合物(第三層)單獨進行膜化,視需要使用加熱源及真空源,介隔具有透氣性之耐熱性之脫模紙,將第三層膜、強化芯材、包含第二層/第一層之複合膜依序積層於表面具有大量細孔之平板或轉筒上,於各聚合物熔融之溫度下,一邊藉由減壓去除各層間之空氣一邊進行一體化之方法。
此處,將第一層與第二層共擠出有助於提高界面之接著強度。
又,於減壓下進行一體化之方法與加壓壓製法相比,具有補強材上之第三層之厚度變大之特徵。進而,由於將補強材固定於膜本體之內面,因此具有能夠充分保持離子交換膜之機械強度之性能。
再者,此處所說明之積層之變化係一例,可考慮所需之膜本體之層構成或物性等,適當選擇適宜之積層圖案(例如,各層之組合等)後進行共擠出。
再者,為了進一步提高離子交換膜之電性能,亦可於第一層與第二層之間進一步介置包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層,或使用包含具有羧酸基前驅物與磺酸基前驅物之兩者之含氟系聚合物的第四層代替第二層。
第四層之形成方法可為分開製造具有羧酸基前驅物之含氟系聚合物與具有磺酸基前驅物之含氟系聚合物後加以混合之方法,亦可為使用將具有羧酸基前驅物之單體與具有磺酸基前驅物之單體共聚合而成者之方法。
於將第四層製成離子交換膜之構成之情形時,可將第一層與第四層之共擠出膜加以成形,第三層及第二層與其分開單獨進行膜化,藉由上文所述之方法進行積層,亦可將第一層/第四層/第二層之3層一次共擠出而進行膜化。
於該情形時,所擠出之膜行進之方向為MD方向。由此可將含有具有離子交換基之含氟系聚合物之膜本體形成於補強材上。
又,離子交換膜較佳為於包含磺酸層之表面側具有包含具有磺酸基之含氟聚合物之突出的部分、即凸部。作為形成此種凸部之方法,並無特別限定,可採用於樹脂表面形成凸部之公知之方法。具體而言,例如可列舉對膜本體之表面實施壓紋加工之方法。例如,於將上述複合膜與補強材等進行一體化時,藉由使用預先經壓紋加工之脫模紙,可形成上述凸部。於藉由壓紋加工形成凸部之情形時,凸部之高度或配置密度之控制可藉由控制所轉印之壓紋形狀(脫模紙之形狀)而進行。
(5)水解步驟
於(5)步驟中,進行將(4)步驟中獲得之膜本體水解而將離子交換基前驅物轉換為離子交換基之步驟(水解步驟)。
又,於(5)步驟中,藉由利用酸或鹼將膜本體所含之犧牲紗溶解去除,可於膜本體形成溶出孔。再者,犧牲紗亦可不完全溶解去除,而殘留於連通孔中。又,殘留於連通孔中之犧牲紗可於將離子交換膜供於電解時藉由電解液溶解去除。
犧牲紗係於離子交換膜之製造步驟或電解環境下對酸或鹼具有溶解性者,藉由使犧牲紗溶出而於該部位形成連通孔。
(5)步驟可將(4)步驟中獲得之膜本體浸漬於含有酸或鹼之水解溶液中進行。作為該水解溶液,例如可使用含有KOH與DMSO(Dimethyl sulfoxide)之混合溶液。
該混合溶液較佳為含有2.5~4.0 N之KOH,且含有25~35質量%之DMSO。
作為水解之溫度,較佳為70~100℃。溫度越高,可使視厚度更厚。更佳為75~100℃。
作為水解之時間,較佳為10~120分鐘。時間越長,可使視厚度更厚。更佳為20~120分鐘。
此處,對藉由溶出犧牲紗而形成連通孔之步驟進一步詳細地說明。圖122(a)、(b)係用以對形成離子交換膜之連通孔之方法進行說明之模式圖。
於圖122(a)、(b)中,僅圖示強化紗52、犧牲紗504a及由犧牲紗504a形成之連通孔504,膜本體等其他構件省略圖示。
首先,將於離子交換膜中構成強化芯材之強化紗52與於離子交換膜中用以形成連通孔504之犧牲紗504a製成針織織入補強材。然後,於(5)步驟中藉由使犧牲紗504a溶出而形成連通孔504。
藉由上述方法,根據於離子交換膜之膜本體內如何配置強化芯材、連通孔而調整強化紗52與犧牲紗504a之針織織入方法即可,因此較簡便。
於圖122(a)中,例示於紙面沿縱向與橫向之兩方向將強化紗52與犧牲紗504a織入之平織之補強材,可視需要變更補強材中之強化紗52與犧牲紗504a之配置。
(6)塗佈步驟
於(6)步驟中,製備含有藉由原石粉碎或原石熔融獲得之無機物粒子與結合劑之塗佈液,將塗佈液塗佈於(5)步驟中獲得之離子交換膜之表面並加以乾燥,藉此可形成塗佈層。
作為結合劑,較佳為將具有離子交換基前驅物之含氟系聚合物水解於含有二甲基亞碸(DMSO)及氫氧化鉀(KOH)之水溶液中之後,浸漬於鹽酸中將離子交換基之抗衡離子置換為H
+
而成之結合劑(例如,具有羧基或磺基之含氟系聚合物)。藉此,變得容易溶解於下文所述之水或乙醇中,故而較佳。
將該結合劑溶解於混合水與乙醇而成之溶液中。再者,水與乙醇之較佳之體積比為10:1~1:10,更佳為5:1~1:5,進而較佳為2:1~1:2。藉由球磨機使無機物粒子分散於由此獲得之溶解液中而獲得塗佈液。此時,亦可藉由調整分散時之時間、旋轉速度而調整粒子之平均粒徑等。再者,無機物粒子與結合劑之較佳之調配量如上文所述。
塗佈液中之無機物粒子及結合劑之濃度並無特別限定,較佳為製成稀薄之塗佈液。藉此,能夠均勻地塗佈於離子交換膜之表面。
又,於使無機物粒子分散時,亦可將界面活性劑添加於分散液中。作為界面活性劑,較佳為非離子系界面活性劑,例如可列舉日油股份有限公司製造之HS-210、NS-210、P-210、E-212等。
藉由利用噴射塗佈或滾筒塗敷將所獲得之塗佈液塗佈於離子交換膜表面而可獲得離子交換膜。
[微多孔膜]
作為本實施形態之微多孔膜,只要如上文所述,可與電解用電極製成積層體,則無特別限定,可應用各種微多孔膜。
本實施形態之微多孔膜之氣孔率並無特別限定,例如可設為20~90,較佳為30~85。上述氣孔率例如可藉由下述之式算出。
氣孔率=(1-(乾燥狀態之膜重量)/(由根據膜之厚度、寬度、長度算出之體積與膜素材之密度所算出之重量))×100
本實施形態之微多孔膜之平均孔徑並無特別限定,例如可設為0.01 μm~10 μ,較佳為0.05 μm~5 μm。上述平均孔徑例如係沿厚度方向將膜垂直切斷,藉由FE-SEM觀察切斷面。對所觀察之孔之直徑測定100點左右並求出平均值,藉此可求出平均孔徑。
本實施形態之微多孔膜之厚度並無特別限定,例如可設為10 μm~1000 μm,較佳為50 μm~600 μm。上述厚度例如可使用測微計(Mitutoyo股份有限公司製造)等進行測定。
作為如上所述之微多孔膜之具體例,可列舉Agfa公司製造之Zirfon Perl UTP 500、國際公開第2013-183584號說明書、國際公開第2016-203701號說明書等所記載者。
於本實施形態之電解槽之製造方法中,較佳為隔膜包含第1離子交換樹脂層、及具有與該第1離子交換樹脂層不同之EW(離子交換當量)之第2離子交換樹脂層。又,較佳為隔膜包含第1離子交換樹脂層及具有與該第1離子交換樹脂層不同之官能基之第2離子交換樹脂層。離子交換當量可藉由所導入之官能基進行調整,關於可導入之官能基係如上文所述。
(水電解)
本實施形態中之進行水電解之情形時之電解槽係具有將上述進行食鹽電解之情形時之電解槽中之離子交換膜變更為微多孔膜之構成者。又,於所供給之原料為水之方面與上述進行食鹽電解之情形時之電解槽不同。關於其他構成,進行水電解之情形時之電解槽亦可採用與進行食鹽電解之情形時之電解槽相同之構成。於食鹽電解之情形時,由於在陽極室產生氯氣,因此陽極室之材質使用鈦,於水電解之情形時,由於在陽極室僅產生氧氣,因此可使用與陰極室之材質相同者。例如可列舉鎳等。又,陽極塗層適宜為產生氧氣用之觸媒塗層。作為觸媒塗層之例,可列舉鉑族金屬及過渡金屬族之金屬、氧化物、氫氧化物等。例如可使用鉑、銥、鈀、釕、鎳、鈷、鐵等元素。
[實施例]
藉由以下之實施例及比較例進一步詳細地說明本發明,但本發明並不受以下之實施例任何限定。
<第1實施形態之驗證>
如下所述準備與第1實施形態相對應之實驗例(於以下之<第1實施形態之驗證>之項中簡稱為「實施例」)、及不與第1實施形態相對應之實驗例(於以下之<第1實施形態之驗證>之項中簡稱為「比較例」),藉由以下方法對該等進行評價。一邊適當參照圖10~21一邊對其詳細內容進行說明。
[評價方法]
(1)開孔率
將電極切成130 mm×100 mm之尺寸。使用電子數顯厚度計(Mitutoyo股份有限公司製造,最少顯示0.001 mm)於面內均勻地測定10點,並算出平均值。以其作為電極之厚度(量規厚度)而算出體積。其後,利用電子天平測定質量,根據金屬之比重(鎳之比重=8.908 g/cm
3
、鈦之比重=4.506 g/cm
3
)算出開孔率或空隙率。
開孔率(空隙率)(%)=(1-(電極質量)/(電極體積×金屬之比重))×100
(2)每單位面積之質量(mg/cm
2
)
將電極切成130 mm×100 mm之尺寸,利用電子天平測定質量。用該值除以面積(130 mm×100 mm)而算出每單位面積之質量。
(3)每單位質量·單位面積所承受之力(1)(接著力)(N/mg・cm
2
))
[方法(i)]
測定係使用拉伸壓縮試驗機(今田製作所股份有限公司,試驗機本體:SDT-52NA型 拉伸壓縮試驗機,負荷計:SL-6001型負荷計)。
藉由粒編號320之氧化鋁對厚度1.2 mm、200 mm見方之鎳板實施噴擊加工。噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.7 μm。此處,表面粗糙度測定係使用觸針式之表面粗糙度測定機SJ-310(Mitutoyo股份有限公司)。將測定樣品設置於與地面平行之平台上,於下述之測定條件下測定算術平均粗糙度Ra。將測定實施6次時,記載其平均值。
<觸針之形狀>圓錐,錐角度=60°,前端半徑=2 μm,靜態測定力=0.75 mN
<粗糙度標準>JIS2001
<評價曲線>R
<濾波>GAUSS
<臨界值 λc>0.8 mm
<臨界值 λs>2.5 μm
<區間數>5
<前掃、後掃>有
將該鎳板以成為鉛直之方式固定於拉伸壓縮試驗機之下側之夾頭。
使用下述之離子交換膜A作為隔膜。
作為強化芯材,使用聚四氟乙烯(PTFE)製且90丹尼之單絲(以下稱為PTFE紗)。作為犧牲紗,使用35丹尼、6根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。首先,以沿TD及MD之兩方向之各方向以24根/英吋配置PTFE紗、且於鄰接之PTFE紗間配置2根犧牲紗之方式進行平織而獲得織布。藉由滾筒將所獲得之織布進行壓接而獲得厚度70 μm之織布。
繼而,準備以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
COOCH
3
之共聚物計離子交換容量為0.85 mg當量/g之乾燥樹脂之樹脂A、以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.03 mg當量/g之乾燥樹脂之樹脂B。
使用該等樹脂A及B,藉由共擠出T模法獲得樹脂A層之厚度為15 μm、樹脂B層之厚度為104 μm之2層膜X。
繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙(高度50 μm之圓錐形狀之壓紋加工)、補強材及膜X,於加熱板表面溫度223℃、減壓度0.067 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。
藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)30質量%、氫氧化鉀(KOH)15質量%之80℃之水溶液中浸漬20分鐘而進行皂化。其後,於含有氫氧化鈉(NaOH)0.5 N之50℃之水溶液中浸漬1小時,將離子交換基之抗衡離子置換為Na,繼而進行水洗。進而於60℃下加以乾燥。
進而,於樹脂B之酸型樹脂之5質量%乙醇溶液中添加1次粒徑1 μm之氧化鋯20質量%並使其分散而調製懸浮液,藉由懸浮液噴射法對上述複合膜之兩面進行噴霧,於複合膜之表面形成氧化鋯之塗層,而獲得離子交換膜A。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.5 mg/cm
2
。再者,平均粒徑係利用粒度分佈計(島津製作所製造之「SALD(註冊商標)2200」)進行測定。
將上述所獲得之離子交換膜(隔膜)於純水中浸漬12小時以上後用於試驗。使其與以純水充分濡濕之上述鎳板接觸,藉由水之張力進行接著。此時,以鎳板與離子交換膜之上端之位置對齊之方式設置。
測定所使用之電解用電極樣品(電極)係切成130 mm見方。離子交換膜A係切成170 mm見方。以2塊不鏽鋼板(厚度1 mm、縱9 mm、橫170 mm)夾著電極之一邊,以不鏽鋼板、電極之中心對齊之方式對位後,藉由4個夾具均勻地固定。將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。此時,將對試驗機承受之荷重設為0 N。暫時從拉伸壓縮試驗機卸下不鏽鋼板、電極、夾具一體物,為了利用純水將電極充分濡濕,而浸漬於裝有純水之槽中。其後,再次將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。
使拉伸壓縮試驗機之上側夾頭下降,利用純水之表面張力使電解用電極樣品接著於離子交換膜表面。此時之接著面係橫130 mm、縱110 mm。將裝入至洗瓶中之純水吹送至電極及離子交換膜整體,製成隔膜、電極再次充分濡濕之狀態。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從上向下滾動,從而將多餘之純水去除。輥僅施加1次。
以10 mm/分鐘之速度使電極上升,開始負荷測定,記錄電極與隔膜之重疊部分成為橫130 mm、縱100 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極與離子交換膜之重疊部分之面積、及與離子交換膜重疊之部分之電極質量,而算出每單位質量·單位面積所承受之力(1)。與離子交換膜重疊之部分之電極質量係根據上述(2)之每單位面積之質量(mg/cm
2
)中所獲得之值,藉由比例計算而求出。
測定室之環境係溫度23±2℃、相對濕度30±5%。
再者,實施例、比較例中所使用之電極於接著於藉由表面張力接著於鉛直地固定之鎳板之離子交換膜時,可不下垂或剝離而獨立地接著。
再者,將承受力(1)之評價方法之模式圖示於圖10。
再者,拉伸試驗機之測定下限為0.01(N)。
(4)每單位質量·單位面積所承受之力(2)(接著力)(N/mg・cm
2
))
[方法(ii)]
測定係使用拉伸壓縮試驗機(今田製作所股份有限公司,試驗機本體:SDT-52NA型 拉伸壓縮試驗機,負荷計:SL-6001型負荷計)。
將與方法(i)相同之鎳板以成為鉛直之方式固定於拉伸壓縮試驗機之下側之夾頭。
測定所使用之電解用電極樣品(電極)係切成130 mm見方。離子交換膜A係切成170 mm見方。以2塊不鏽鋼板(厚度1 mm、縱9 mm、橫170 mm)夾著電極之一邊,以不鏽鋼板、電極之中心對齊之方式對位後,藉由4個夾具均勻地固定。將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。此時,將對試驗機承受之荷重設為0 N。暫時從拉伸壓縮試驗機卸下不鏽鋼板、電極、夾具一體物,為了利用純水將電極充分濡濕,而浸漬於裝有純水之槽中。其後,再次將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。
使拉伸壓縮試驗機之上側夾頭下降,藉由溶液之表面張力使電解用電極樣品接著於鎳板表面。此時之接著面係橫130 mm、縱110 mm。將裝入至洗瓶中之純水吹送至電極及鎳板整體,製成鎳板、電極再次充分濡濕之狀態。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從上向下滾動,從而將多餘之溶液去除。輥僅施加1次。
以10 mm/分鐘之速度使電極上升,開始負荷測定,記錄電極與鎳板之縱向之重疊部分成為100 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極與鎳板之重疊部分之面積、及與鎳板重疊之部分之電極質量,而算出每單位質量·單位面積所承受之力(2)。與隔膜重疊之部分之電極質量係根據上述(2)之每單位面積之質量(mg/cm
2
)中所獲得之值,藉由比例計算而求出。
又,測定室之環境係溫度23±2℃、相對濕度30±5%。
再者,實施例、比較例中所使用之電極於藉由表面張力接著於鉛直地固定之鎳板時,可不下垂或剝離而獨立地接著。
再者,拉伸試驗機之測定下限為0.01(N)。
(5)直徑280 mm圓柱捲繞評價方法(1)(%)
(膜與圓柱)
按照以下之順序實施評價方法(1)。
將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸。將離子交換膜於純水中浸漬12小時以上後用於試驗。比較例10及11中電極藉由熱壓製而與離子交換膜成為一體,因此準備離子交換膜與電極之一體物(電極係130 mm見方)。將離子交換膜於純水中充分浸漬後,置於外徑280 mm之塑膠(聚乙烯)製之管之曲面上。其後,藉由將厚度5 mm之獨立發泡型之EPDM海綿橡膠捲繞於氯乙烯管(外徑38 mm)而成之輥將多餘之溶液去除。輥係從圖11所示之模式圖之左側向右側於離子交換膜上滾動。輥僅施加1次。1分鐘後,測定離子交換膜與外徑280 mm之塑膠製之管電極密接之部分之比率。
(6)直徑280 mm圓柱捲繞評價方法(2)(%)
(膜與電極)
按照以下之順序實施評價方法(2)。
將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成130 mm見方。將離子交換膜於純水中浸漬12小時以上後用於試驗。將離子交換膜與電極於純水中充分浸漬後進行積層。將該積層體以電極成為外側之方式置於外徑280 mm之塑膠(聚乙烯)製之管之曲面上。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從圖12所示之模式圖之左側向右側滾動,從而將多餘之溶液去除。輥僅施加1次。1分鐘後,測定離子交換膜與電極密接之部分之比率。
(7)直徑145 mm圓柱捲繞評價方法(3)(%)
(膜與電極)
按照以下之順序實施評價方法(3)。
將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成130 mm見方。將離子交換膜於純水中浸漬12小時以上後用於試驗。將離子交換膜與電極於純水中充分浸漬後進行積層。將該積層體以電極成為外側之方式置於外徑145 mm之塑膠(聚乙烯)製之管之曲面上。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從圖13所示之模式圖之左側向右側滾動,從而將多餘之溶液去除。輥僅施加1次。1分鐘後,測定離子交換膜與電極密接之部分之比率。
(8)操作性(感應評價)
(A)將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成95×110 mm。將離子交換膜於純水中浸漬12小時以上後用於試驗。於各實施例中將離子交換膜與電極於碳酸氫鈉水溶液、0.1 N之NaOH水溶液、純水之三種溶液中充分浸漬後進行積層,靜置於鐵氟龍板上。將電解評價所使用之陽極池與陰極池之間隔設為約3 cm,提起靜置之積層體而實施插入並夾於其間之操作。於實施該操作時一邊操作一邊確認電極是否偏離、掉落。
(B)將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成95×110 mm。將離子交換膜於純水中浸漬12小時以上後用於試驗。於各實施例中將離子交換膜與電極於碳酸氫鈉水溶液、0.1 N之NaOH水溶液、純水之三種溶液中充分浸漬後進行積層,靜置於鐵氟龍板上。手持積層體之膜部分之相鄰的兩處之角,以積層體成為鉛直之方式提起。從該狀態起,以將手持之兩處之角靠近之方式移動,使膜成為凸狀、凹狀。將該操作再重複1次,確認電極對膜之追隨性。基於以下之指標,按照1~4之4個等級對該結果進行評價。
1:操作良好
2:能夠操作
3:操作困難
4:大體無法操作
此處,對於比較例5之樣品,以與電極為1.3 m×2.5 m、離子交換膜為1.5 m×2.8 m之尺寸之大型電解池相同之尺寸實施操作。比較例5之評價結果(如下文所述為「3」)係作為對上述(A)、(B)之評價與製成大型尺寸時之不同進行評價之指標。即,於對小型之積層體進行評價所獲得之結果為「1」、「2」之情形時,評價為即使於製成大型尺寸之情形時操作性亦無問題。
(9)電解評價(電壓(V)、電流效率(%)、苛性鈉中食鹽濃度(ppm,50%換算))
藉由下述電解實驗評價電解性能。
使具有設置有陽極之陽極室之鈦製的陽極池(陽極終端池)與具有設置有陰極之鎳製的陰極室(陰極終端池)之陰極池相對。於池間配置一對墊片,將積層體(離子交換膜A與電解用電極之積層體)夾於一對墊片間。然後,使陽極池、墊片、積層體、墊片及陰極密接而獲得電解池,準備包含該電解池之電解槽。
作為陽極,係藉由將氯化釕、氯化銥及四氯化鈦之混合溶液塗佈於已實施噴擊及酸蝕刻處理作為預處理之鈦基材上並進行乾燥、燒成而製作。陽極係藉由焊接而固定於陽極室。作為陰極,使用各實施例、比較例所記載者。作為陰極室之集電體,使用鎳製多孔金屬。集電體之尺寸為縱95 mm×橫110 mm。作為金屬彈性體,使用以鎳細線編織而成之墊。將作為金屬彈性體之墊置於集電體上。於其上覆蓋以40目之網眼將直徑150 μm之鎳線平織而成之鎳網,藉由利用鐵氟龍(註冊商標)製作之繩將Ni網之四角固定於集電體。以該Ni網作為饋電體。於該電解池中,利用作為金屬彈性體之墊之反彈力而成為零間距結構。作為墊片,使用EPDM(乙烯丙烯二烯)製之橡膠墊片。作為隔膜,使用[方法(i)]中製作之離子交換膜A(160 mm見方)。
使用上述電解池進行食鹽之電解。陽極室之鹽水濃度(氯化鈉濃度)係調整為205 g/L。陰極室之氫氧化鈉濃度係調整為32質量%。以各電解池內之溫度成為90℃之方式調節陽極室及陰極室之各溫度。於電流密度6 kA/m
2
下實施食鹽電解,測定電壓、電流效率、苛性鈉中食鹽濃度。此處,所謂電流效率係所生成之苛性鈉之量相對於流通之電流之比率,若藉由流通之電流,雜質離子或氫氧化物離子而非鈉離子於離子交換膜中移動,則電流效率降低。電流效率係藉由一定時間所生成之苛性鈉之莫耳數除以其間流通之電流之電子之莫耳數而求出。苛性鈉之莫耳數係藉由將由電解生成之苛性鈉回收於聚合物槽中,對其質量進行測定而求出。苛性鈉中食鹽濃度表示將苛性鈉濃度換算為50%所得之值。
再者,將實施例、比較例中所使用之電極及饋電體之規格示於表1。
(11)觸媒層之厚度、電解用電極基材、電極之厚度測定
電解用電極基材之厚度係使用電子數顯厚度計(Mitutoyo股份有限公司製造,最少顯示0.001 mm)於面內均勻地測定10點並算出平均值。以此作為電解用電極基材之厚度(量規厚度)。電極之厚度係與電極基材同樣地藉由電子數顯厚度計於面內均勻地測定10點並算出平均值。以此作為電極之厚度(量規厚度)。觸媒層之厚度係藉由電極之厚度減去電解用電極基材之厚度而求出。
(12)電極之彈性變形試驗
將[方法(i)]中製作之離子交換膜A(隔膜)及電極切割成110 mm見方之尺寸。將離子交換膜於純水中浸漬12小時以上後用於試驗。於溫度23±2℃、相對濕度30±5%之條件下,將離子交換膜與電極重疊而製作積層體後,如圖14所示般以不產生間隙之方式捲繞至外徑ϕ32 mm、長度20 cm之PVC製管。為了避免捲繞之積層體從PVC製管剝離或鬆動,而使用聚乙烯製之捆束帶加以固定。於該狀態下保持6小時。其後,去除捆束帶,將積層體從PVC製管解捲。僅將電極置於平台上,測定從平台隆起之部分之高度L
1
、L
2
並求出平均值。以該值作為電極變形之指標。即,值較小意指難以變形。
再者,於使用多孔金屬之情形時,於捲繞時存在SW方向、LW方向之兩種。於本試驗中係沿SW方向捲繞。
又,對於產生變形之電極(未恢復為原來平坦之狀態之電極),藉由如圖15所示之方法對塑性變形後之柔軟程度進行評價。即,將產生變形之電極置於在純水中充分浸漬之隔膜上,將一端固定,將浮起之相反之端部壓抵於隔膜,將力解除,對產生變形之電極是否追隨隔膜進行評價。
(13)膜損傷評價
使用下述之離子交換膜B作為隔膜。
作為強化芯材,使用為聚四氟乙烯(PTFE)且將100丹尼之帶狀紗線以900次/m撚絞而製成紗狀者(以下稱為PTFE紗)。作為經紗之犧牲紗,使用將35丹尼、8根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。又,作為緯紗之犧牲紗,使用將35丹尼、8根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗。首先,以將PTFE紗以24根/英吋配置、將犧牲紗於鄰接之PTFE紗間配置2根之方式進行平織,而獲得厚度100 μm之織布。
繼而,準備以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
COOCH
3
之共聚物計離子交換容量為0.92 mg當量/g之乾燥樹脂之聚合物(A1)、以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.10 mg當量/g之乾燥樹脂之聚合物(B1)。使用該等聚合物(A1)及(B1),藉由共擠出T模法獲得聚合物(A1)層之厚度為25 μm、聚合物(B1)層之厚度為89 μm之2層膜X。再者,各聚合物之離子交換容量表示將各聚合物之離子交換基前驅物水解而轉換為離子交換基時之離子交換容量。
又,另行準備以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.10 mg當量/g之乾燥樹脂之聚合物(B2)。將該聚合物單層擠出而獲得20 μm之膜Y。
繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙、膜Y、補強材及膜X,於加熱板溫度225℃、減壓度0.022 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)與氫氧化鉀(KOH)之水溶液中浸漬1小時而進行皂化後,於0.5 N之NaOH中浸漬1小時,將離子交換基所附離子取代為Na,繼而進行水洗。進而於60℃下加以乾燥。
又,將以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.05 mg當量/g之乾燥樹脂之聚合物(B3)水解後,藉由鹽酸使其成為酸型。於將該酸型之聚合物(B3')以5質量%之比率溶解於水及乙醇之50/50(質量比)混合液中而成之溶液中,以聚合物(B3')與氧化鋯粒子之質量比成為20/80之方式添加一次粒子之平均粒徑為0.02 μm之氧化鋯粒子。其後,藉由球磨機使其於氧化鋯粒子之懸浮液中分散而獲得懸浮液。
利用噴射法將該懸浮液塗佈於離子交換膜之兩表面並加以乾燥,藉此獲得具有含有聚合物(B3')與氧化鋯粒子之塗佈層之離子交換膜B。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.35 mg/cm
2
。
陽極係使用與(9)電解評價相同者。
陰極係使用各實施例、比較例所記載者。陰極室之集電體、墊及饋電體係使用與(9)電解評價相同者。即,以Ni網作為饋電體,利用作為金屬彈性體之墊之反彈力而成為零間距結構。墊片亦使用與(9)電解評價相同者。作為隔膜,使用藉由上述方法所製作之離子交換膜B。即,除了將離子交換膜B與電解用電極之積層體夾持於一對墊片間以外,準備與(9)相同之電解槽。
使用上述電解池進行食鹽之電解。陽極室之鹽水濃度(氯化鈉濃度)係調整為205 g/L。陰極室之氫氧化鈉濃度係調整為32質量%。以各電解池內之溫度成為70℃之方式調節陽極室及陰極室之各溫度。於電流密度8 kA/m
2
下實施食鹽電解。從電解開始起12小時後停止電解,取出離子交換膜B並觀察損傷狀態。
「0」意指無損傷。「1至3」意指存在損傷,數字越大,意指損傷之程度越大。
(14)電極之通氣阻力
使用通氣性試驗機KES-F8(商品名,Kato Tech股份有限公司)測定電極之通氣阻力。通氣阻力值之單位為kPa・s/m。將測定實施5次,將其平均值記載於表2。測定係於以下之兩個條件下實施。再者,測定室之溫度設為24℃,相對濕度設為32%。
・測定條件1(通氣阻力1)
活塞速度:0.2 cm/s
通氣量:0.4 cc/cm
2
/s
測定範圍:SENSE L(低)
樣品尺寸:50 mm×50 mm
・測定條件2(通氣阻力2)
活塞速度:2 cm/s
通氣量:4 cc/cm
2
/s
測定範圍:SENSE M(中)或H(高)
樣品尺寸:50 mm×50 mm
[實施例1]
作為陰極電解用電極基材,準備量規厚度為16 μm之電解鎳箔。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。
藉由打孔加工於該鎳箔開出圓形之孔而製成多孔箔。開孔率為49%。
按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。實施例1中所製作之電極之厚度為24 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。塗層亦形成於未經粗面化之面。又,為氧化釕與氧化鈰之合計厚度。
將藉由上述方法所製作之電極之接著力之測定結果示於表2。觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。
為了將藉由上述方法所製作之電極用於電解評價而將其切成縱95 mm、橫110 mm之尺寸。使電極之經粗面化之面與利用0.1 N之NaOH水溶液平衡之[方法(i)]中所製作之離子交換膜A(尺寸為160 mm×160 mm)之羧酸層側的大致中央之位置相對向,藉由水溶液之表面張力使其等密接。
即使抓持膜與電極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極剝落或偏離之情況。又,即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極剝落或偏離之情況。
將上述膜一體電極以附著有電極之面成為陰極室側之方式夾於陽極池與陰極池之間。剖面結構係從陰極室側起依序排列集電體、墊、鎳網饋電體、電極、膜、陽極而形成零間距結構。
對所獲得之電極進行電解評價。將其結果示於表2。
表現出較低之電壓、較高之電流效率及較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
又,若藉由XRF(螢光X射線分析)測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。
[實施例2]
實施例2係使用量規厚度為22 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.96 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為44%。除此以外,與實施例1同樣地實施評價,並將結果示於表2。
電極之厚度為29 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。塗層亦形成於未經粗面化之面。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0033(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。
[實施例3]
實施例3係使用量規厚度為30 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為1.38 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為44%。除此以外,與實施例1同樣地實施評價,並將結果示於表2。
電極之厚度為38 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。塗層亦形成於未經粗面化之面。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。
[實施例4]
實施例4係使用量規厚度為16 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為75%。除此以外,與實施例1同樣地實施評價,並將結果示於表2。
電極之厚度為24 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0023(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。
[實施例5]
實施例5係準備量規厚度為20 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之兩面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.96 μm。兩面均為相同之粗糙度。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為49%。除此以外,與實施例1同樣地實施評價,並將結果示於表2。
電極之厚度為30 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。塗層亦形成於未經粗面化之面。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0023(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
又,若藉由XRF測定電解後之塗佈量,則兩面均殘存大致100%塗層。若對比實施例1~4進行考慮,則說明即使不與膜相對向之相反面中塗層較少或不存在,亦能夠發揮出良好之電解性能。
[實施例6]
實施例6除了藉由離子鍍敷實施對陰極電解用電極基材之塗佈以外,與實施例1同樣地實施評價,並將結果示於表2。再者,離子鍍敷係於加熱溫度200℃下使用Ru金屬靶,於氬氣/氧氣環境下以成膜壓力7×10
-2
Pa進行製膜。所形成之塗層為氧化釕。
電極之厚度為26 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例7]
實施例7係藉由電成形法製作陰極電解用電極基材。光罩之形狀係設為將0.485 mm×0.485 mm之正方形以0.15 mm為間隔縱、橫排列而成之形狀。藉由依序實施曝光、顯影、電鍍,獲得量規厚度為20 μm、開孔率56%之鎳多孔箔。表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施評價,並將結果示於表2。
電極之厚度為37 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為17 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0032(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例8]
實施例8中作為陰極電解用電極基材,係藉由電成形法製作,量規厚度為50 μm,開孔率為56%。表面之算術平均粗糙度Ra為0.73 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施評價,並將結果示於表2。
電極之厚度為60 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0032(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例9]
實施例9係使用量規厚度為150 μm、空隙率為76%之鎳不織布(NIKKO TECHNO股份有限公司製造)作為陰極電解用電極基材。不織布之鎳纖維直徑約為40 μm,單位面積重量為300 g/m
2
。除此以外,與實施例1同樣地實施評價,並將結果示於表2。
電極之厚度為165 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為15 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為29 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0612(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。
[實施例10]
實施例10係使用量規厚度為200 μm、空隙率為72%之鎳不織布(NIKKO TECHNO股份有限公司製造)作為陰極電解用電極基材。不織布之鎳纖維直徑約為40 μm,單位面積重量為500 g/m
2
。除此以外,與實施例1同樣地實施評價,並將結果示於表2。
電極之厚度為215 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為15 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為40 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0164(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。
[實施例11]
實施例11係使用量規厚度為200 μm、空隙率為72%之發泡鎳(Mitsubishi Materials股份有限公司製造)作為陰極電解用電極基材。除此以外,與實施例1同樣地實施評價,並將結果示於表2。
又,電極之厚度為210 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為17 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0402(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。
[實施例12]
實施例12係使用線徑50 μm、200目、量規厚度為100 μm、開孔率為37%之鎳網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。即使實施噴擊處理,開孔率亦不變化。由於難以測定金屬絲網表面之粗糙度,因此於實施例12中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。1根金屬絲網之算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施評價,並將結果示於表2。
電極之厚度為110 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0.5 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0154(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例13]
實施例13係使用線徑65 μm、150目、量規厚度為130 μm、開孔率為38%之鎳網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。即使實施噴擊處理,開孔率亦不變化。由於難以測定金屬絲網表面之粗糙度,因此於實施例13中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.66 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施上述評價,並將結果示於表2。
電極之厚度為133 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為3 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為6.5 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0124(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價亦為「0」而較良好。
[實施例14]
實施例14係使用與實施例3相同之基材(量規厚度30 μm、開孔率44%)作為陰極電解用電極基材。除了未設置鎳網饋電體以外,以與實施例1相同之構成實施電解評價。即,電解池之剖面結構係從陰極室側起依序排列集電體、墊、膜一體電極、陽極而形成零間距結構,墊作為饋電體發揮功能。除此以外,與實施例1同樣地實施評價,並將結果示於表2。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例15]
實施例15係使用與實施例3相同之基材(量規厚度30 μm、開孔率44%)作為陰極電解用電極基材。設置參考例1中使用之劣化且電解電壓變高之陰極代替鎳網饋電體。除此以外,以與實施例1相同之構成實施電解評價。即,電解池之剖面結構係從陰極室側起依序排列集電體、墊、劣化且電解電壓變高之陰極(作為饋電體發揮功能)、電解用電極(陰極)、隔膜、陽極而形成零間距結構,劣化且電解電壓變高之陰極作為饋電體發揮功能。除此以外,與實施例1同樣地實施評價,並將結果示於表2。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例16]
作為陽極電解用電極基材,準備量規厚度為20 μm之鈦箔。對鈦箔之兩面實施粗面化處理。對該鈦箔實施打孔加工,開出圓形之孔而製成多孔箔。孔之直徑為1 mm,開孔率為14%。表面之算術平均粗糙度Ra為0.37 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。
按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素、銥元素及鈦元素之莫耳比成為0.25:0.25:0.5之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、銥濃度為100 g/L之氯化銥(田中貴金屬工業股份有限公司)、四氯化鈦(和光純藥工業股份有限公司)加以混合。將該混合液充分攪拌,以其作為陽極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。於鈦多孔箔塗佈上述塗佈液後,於60℃下實施10分鐘之乾燥,於475℃下實施10分鐘之燒成。重複實施該等塗佈、乾燥、預燒成、燒成之一系列之操作後,於520℃下進行1小時之燒成。
為了將藉由上述方法所製作之電極用於電解評價而將其切成縱95 mm、橫110 mm之尺寸。藉由水溶液之表面張力使其密接於利用0.1 N之NaOH水溶液平衡之[方法(i)]中製作之離子交換膜A(尺寸為160 mm×160 mm)之磺酸層側的大致中央之位置。
陰極係按照以下之順序製備。首先,準備線徑150 μm、40目之鎳製金屬絲網作為基材。作為預處理而藉由氧化鋁實施噴擊處理後,於6 N之鹽酸中浸漬5分鐘,並利用純水充分洗淨、乾燥。
繼而,以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、氯化鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於300℃下實施3分鐘之預燒成,於550℃下實施10分鐘之燒成。其後,於550℃下實施1小時之燒成。重複進行該等塗佈、乾燥、預燒成、燒成之一系列之操作。
作為陰極室之集電體,使用鎳製多孔金屬。集電體之尺寸為縱95 mm×橫110 mm。作為金屬彈性體,使用以鎳細線編織而成之墊。將作為金屬彈性體之墊置於集電體上。於其上覆蓋藉由上述方法製作之陰極,藉由利用鐵氟龍(註冊商標)製作之繩將網之四角固定於集電體。
即使抓持膜與陽極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極剝落或偏離之情況。又,即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極剝落或偏離之情況。
藉由焊接將參考例3中所使用之劣化且電解電壓變高之陽極固定於陽極池,將上述膜一體電極以附著有電極之面成為陽極室側之方式夾於陽極池與陰極池之間。即,電解池之剖面結構係從陰極室側起依序排列集電體、墊、陰極、隔膜、電解用電極(鈦多孔箔陽極)、劣化且電解電壓變高之陽極,形成零間距結構。劣化且電解電壓變高之陽極作為饋電體發揮功能。再者,鈦多孔箔陽極與劣化且電解電壓變高之陽極之間僅係物理接觸,並未藉由焊接進行固定。
藉由該構成,與實施例1同樣地實施評價,並將結果示於表2。
電極之厚度為26 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為6 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為4 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0060(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例17]
實施例17係使用量規厚度20 μm、開孔率30%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.37 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例16同樣地實施評價,並將結果示於表2。
電極之厚度為30 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為5 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0030(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例18]
實施例18係使用量規厚度20 μm、開孔率42%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.38 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例16同樣地實施評價,並將結果示於表2。
電極之厚度為32 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為12 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為2.5 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0022(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例19]
實施例19係使用量規厚度50 μm、開孔率47%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.40 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例16同樣地實施評價,並將結果示於表2。
電極之厚度為69 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為19 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為8 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0024(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例20]
實施例20係使用量規厚度100 μm、鈦纖維直徑約為20 μm、單位面積重量為100 g/m
2
、開孔率78%之鈦不織布作為陽極電解用電極基材。除此以外,與實施例16同樣地實施評價,並將結果示於表2。
電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為2 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0228(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例21]
實施例21係使用量規厚度120 μm、鈦纖維直徑約為60 μm、150目之鈦金屬絲網作為陽極電解用電極基材。開孔率為42%。藉由粒編號320之氧化鋁實施噴擊處理。由於難以測定金屬絲網表面之粗糙度,因此於實施例21中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.60 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例16同樣地實施評價,並將結果示於表2。
電極之厚度為140 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為20 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為10 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0132(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例22]
實施例22係與實施例16同樣地使用劣化且電解電壓變高之陽極作為陽極饋電體,使用與實施例20相同之鈦不織布作為陽極。與實施例15同樣地使用劣化且電解電壓變高之陰極作為陰極饋電體,使用與實施例3相同之鎳箔電極作為陰極。電解池之剖面結構係從陰極室側起,依序排列集電體、墊、劣化且電壓變高之陰極、鎳多孔箔陰極、隔膜、鈦不織布陽極、劣化且電解電壓變高之陽極而形成零間距結構,劣化且電解電壓變高之陰極及陽極作為饋電體發揮功能。除此以外,與實施例1同樣地實施評價,並將結果示於表2。
電極(陽極)之厚度為114 μm,觸媒層之厚度係電極(陽極)之厚度減去電解用電極基材之厚度而為14 μm。又,電極(陰極)之厚度為38 μm,觸媒層之厚度係電極(陰極)之厚度減去電解用電極基材之厚度而為8 μm。
於陽極及陰極均觀測到充分之接著力。
實施電極(陽極)之變形試驗,結果L
1
、L
2
之平均值為2 mm。實施電極(陰極)之變形試驗,結果L
1
、L
2
之平均值為0 mm。
測定電極(陽極)之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0228(kPa・s/m)。測定電極(陰極)之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。陽極及陰極中膜損傷評價均亦為「0」而較良好。再者,於實施例22中,於隔膜之單面貼附陰極,於相反之面貼附陽極,將陰極及陽極組合進行膜損傷評價。
[實施例23]
於實施例23中係使用Agfa公司製造之微多孔膜「Zirfon Perl UTP 500」。
Zirfon膜係於純水中浸漬12小時以上後用於試驗。除此以外,與實施例3同樣地實施上述評價,並將結果示於表2。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
與使用離子交換膜作為隔膜時相同,觀測到充分之接著力,微多孔膜與電極藉由表面張力而密接,操作性為「1」而較良好。
[實施例24]
作為陰極電解用電極基材,準備量規厚度為566 μm之紡織碳纖維而成之碳布。按照以下之順序製備用以於該碳布形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088(商品名),厚度10 mm)而成之塗佈滾筒與上述塗佈液始終相接之方式設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。所製作之電極之厚度為570 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為4 μm。觸媒層之厚度為氧化釕與氧化鈰之合計厚度。
對所獲得之電極進行電解評價。將其結果示於表2。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。
測定電極之通氣阻力,結果於測定條件1下為0.19(kPa・s/m),於測定條件2下為0.176(kPa・s/m)。
又,操作性為「2」,可判斷能夠作為大型積層體進行操作。
電壓較高,膜損傷評價為「1」,確認到膜損傷。認為其原因在於:由於實施例24之電極之通氣阻力較大,因此電極中產生之NaOH滯留於電極與隔膜之界面而成為高濃度。
[參考例1]
於參考例1中,作為陰極而使用於大型電解槽中使用8年、劣化且電解電壓變高之陰極。於陰極室之墊上設置上述陰極代替鎳網饋電體,隔著[方法(i)]中製作之離子交換膜A實施電解評價。於參考例1中不使用膜一體電極,電解池之剖面結構係從陰極室側起,依序排列集電體、墊、劣化且電解電壓變高之陰極、離子交換膜A、陽極而形成零間距結構。
藉由該構成實施電解評價,結果電壓為3.04 V,電流效率為97.0%,苛性鈉中食鹽濃度(50%換算值)為20 ppm。由於陰極劣化,因此結果為電壓較高
[參考例2]
於參考例2中,使用鎳網饋電體作為陰極。即,藉由未形成觸媒塗層之鎳網實施電解。
將鎳網陰極設置於陰極室之墊上,隔著[方法(i)]中製作之離子交換膜A實施電解評價。參考例2之電池之剖面結構係從陰極室側起,依序排列集電體、墊、鎳網、離子交換膜A、陽極而形成零間距結構。
藉由該構成實施電解評價,結果電壓為3.38 V,電流效率為97.7%,苛性鈉中食鹽濃度(50%換算值)為24 ppm。由於未塗佈陰極觸媒,因此結果為電壓較高。
[參考例3]
於參考例3中,作為陽極而使用於大型電解槽中使用約8年、劣化且電解電壓變高之陽極。
參考例3之電解池之剖面結構係從陰極室側起,依序排列集電體、墊、陰極、[方法(i)]中製作之離子交換膜A、劣化且電解電壓變高之陽極而形成零間距結構。
藉由該構成實施電解評價,結果電壓為3.18 V,電流效率為97.0%,苛性鈉中食鹽濃度(50%換算值)為22 ppm。由於陽極劣化,因此結果為電壓較高。
[比較例1]
於比較例1中,使用全滾筒加工後之量規厚度100 μm、開孔率33%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於比較例1中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.68 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施評價,並將結果示於表2。
電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。
每單位面積之質量為67.5(mg/cm
2
)。每單位質量·單位面積所承受之力(1)為0.05(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為64%,直徑145 mm圓柱捲繞評價(3)之結果為22%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為13 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0168(kPa・s/m)。
[比較例2]
於比較例2中,使用全滾筒加工後之量規厚度100 μm、開孔率16%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於比較例2中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施評價,並將結果示於表2。
電極之厚度為107 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。
每單位面積之質量為78.1(mg/cm
2
)。每單位質量·單位面積所承受之力(1)為0.04(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為37%,直徑145 mm圓柱捲繞評價(3)之結果為25%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為18.5 mm。測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0176(kPa・s/m)。
[比較例3]
比較例3係使用全滾筒加工後之量規厚度為100 μm、開孔率為40%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於比較例3中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.70 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。對電解用電極基材之塗佈係藉由與實施例6同樣之離子鍍敷實施。除此以外,與實施例1同樣地實施評價,並將結果示於表2。
電極之厚度為110 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
每單位質量·單位面積所承受之力(1)為0.07(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為80%,直徑145 mm圓柱捲繞評價(3)之結果為32%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「3」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為11 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0030(kPa・s/m)。
[比較例4]
比較例4係使用全滾筒加工後之量規厚度為100 μm、開孔率為58%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於比較例4中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施評價,將結果示於表2。
電極之厚度為109 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為9 μm。
每單位質量·單位面積所承受之力(1)為0.06(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為69%,直徑145 mm圓柱捲繞評價(3)之結果為39%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「3」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為11.5 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。
[比較例5]
比較例5係使用量規厚度為300 μm、開孔率為56%之鎳金屬絲網作為陰極電解用電極基材。由於難以測定金屬絲網之表面粗糙度,因此於比較例5中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施評價,將結果示於表2。
電極之厚度為308 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。
每單位面積之質量為49.2(mg/cm
2
)。因此,直徑280 mm圓柱捲繞評價(2)之結果為88%,直徑145 mm圓柱捲繞評價(3)之結果為42%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況,操作性為「3」,存在問題。實際中以大型尺寸進行操作,可評價為「3」。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為23 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0034(kPa・s/m)。
[比較例6]
於比較例6中使用量規厚度200 μm、開孔率37%之鎳金屬絲網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定金屬絲網之表面粗糙度,因此於比較例6中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.65 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例1同樣地實施電極電解評價、接著力之測定結果、密接性。將結果示於表2。
電極之厚度為210 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
每單位面積之質量為56.4 mg/cm
2
。因此,直徑145 mm圓柱捲繞評價方法(3)之結果為63%,電極與隔膜之密接性較差。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況,操作性為「3」,存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為19 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0096(kPa・s/m)。
[比較例7]
於比較例7中使用全滾筒加工後之量規厚度500 μm、開孔率17%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於比較例7中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.60 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例16同樣地實施評價,並將結果示於表2。
又,電極之厚度為508 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。
每單位面積之質量為152.5(mg/cm
2
)。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L
1
、L
2
之值。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0072(kPa・s/m)。
[比較例8]
於比較例8中,使用全滾筒加工後之量規厚度800 μm、開孔率8%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於比較例8中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.61 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例16同樣地實施上述評價,並將結果示於表2。
電極之厚度為808 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。
每單位面積之質量為251.3(mg/cm
2
)。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L
1
、L
2
之值。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0172(kPa・s/m)。
[比較例9]
於比較例9中,使用全滾筒加工後之量規厚度1000 μm、開孔率46%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於比較例9中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.59 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例16同樣地實施上述評價,並將結果示於表2。
又,電極之厚度為1011 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為11 μm。
每單位面積之質量為245.5(mg/cm
2
)。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L
1
、L
2
之值。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。
[比較例10]
於比較例10中,以先前文獻(日本專利特開昭58-48686之實施例)為參考,製作將電極熱壓接於隔膜而成之膜電極接合體。
使用量規厚度100 μm、開孔率33%之鎳多孔金屬作為陰極電解用電極基材,與實施例1同樣地實施電極塗佈。其後,按照下述之順序對電極之單面實施惰性化處理。於電極之單面貼附聚醯亞胺黏著帶(中興化成股份有限公司),於相反面塗佈PTFE分散液(DuPont-Mitsui Fluorochemicals股份有限公司,31-JR(商品名)),於120℃之馬弗爐中乾燥10分鐘。將聚醯亞胺膠帶剝離,於設定為380℃之馬弗爐中實施10分鐘燒結處理。將該操作重複2次,對電極之單面進行惰性化處理。
製作由末端官能基為「-COOCH
3
」之全氟碳聚合物(C聚合物)與末端基為「-SO
2
F」之全氟碳聚合物(S聚合物)之2層所形成之膜。C聚合物層之厚度為3密耳(mil),S聚合物層之厚度為4密耳(mil)。對該2層膜實施皂化處理,藉由水解對聚合物之末端導入離子交換基。C聚合物末端被水解為羧酸基,S聚合物末端被水解為磺基。以磺酸基計之離子交換容量為1.0 meq/g,以羧酸基計之離子交換容量為0.9 meq/g。
使具有羧酸基作為離子交換基之面與經惰性化之電極面相對向,並實施熱壓製,而將離子交換膜與電極一體化。熱壓接後電極之單面亦為露出之狀態,不存在電極貫通膜之部分。
其後,為了抑制電解中產生之氣泡對膜之附著,將導入有氧化鋯與磺基之全氟碳聚合物混合物塗佈於兩面。由此製作比較例10之膜電極接合體。
使用該膜電極接合體,測定每單位質量·單位面積所承受之力(1),結果由於藉由熱壓接將電極與膜強力接合,因此電極未向上方移動。因此,以不移動離子交換膜與鎳板之方式進行固定,藉由更強之力將電極向上方拉拽,結果於承受1.50(N/mg・cm
2
)之力時,膜之一部分破裂。比較例10之膜電極接合體之每單位質量·單位面積所承受之力(1)至少為1.50(N/mg・cm
2
),被強力地接合。
實施直徑280 mm圓柱捲繞評價(1),結果與塑膠製管之接觸面積未達5%。另一方面,實施直徑280 mm圓柱捲繞評價(2),結果雖然電極與膜100%接合,但最初隔膜並未捲繞至圓柱。直徑145 mm圓柱捲繞評價(3)之結果亦相同。該結果意指膜之操作性因一體化之電極而受損,而難以捲繞為滾筒狀、或加以彎折。操作性為「3」,存在問題。膜損傷評價為「0」。又,實施電解評價,結果電壓變高,電流效率變低,苛性鈉中之食鹽濃度(50%換算值)變高,電解性能變差。
又,電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。
實施電極之變形試驗,結果L
1
、L
2
之平均值為13 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0168(kPa・s/m)。
[比較例11]
比較例11係使用線徑150 μm、40目、量規厚度300 μm、開孔率58%之鎳網作為陰極電解用電極基材。除此以外,與比較例10同樣地製作膜電極接合體。
使用該膜電極接合體,測定每單位質量·單位面積所承受之力(1),結果由於藉由熱壓接將電極與膜強力接合,因此電極未向上方移動。因此,以不移動離子交換膜與鎳板之方式進行固定,藉由更強之力將電極向上方拉拽,結果於承受1.60(N/mg・cm
2
)之力時,膜之一部分破裂。比較例11之膜電極接合體之每單位質量·單位面積所承受之力(1)至少為1.60(N/mg・cm
2
),被強力地接合。
使用該膜電極接合體實施直徑280 mm圓柱捲繞評價(1),結果與塑膠製管之接觸面積未達5%。另一方面,實施直徑280 mm圓柱捲繞評價(2),結果雖然電極與膜100%接合,但最初隔膜並未捲繞至圓柱。直徑145 mm圓柱捲繞評價(3)之結果亦相同。該結果意指膜之操作性因一體化之電極而受損,而難以捲繞為滾筒狀、或加以彎折。操作性為「3」,存在問題。又,實施電解評價,結果電壓變高,電流效率變低,苛性鈉中之食鹽濃度變高,電解性能變差。
又,電極之厚度為308 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。
實施電極之變形試驗,結果L
1
、L
2
之平均值為23 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0034(kPa・s/m)。
[比較例12]
(觸媒之製備)
將硝酸銀(和光純藥股份有限公司)0.728 g、硝酸鈰6水合物(和光純藥股份有限公司)1.86 g添加至純水150 ml中,製作金屬鹽水溶液。於15%氫氧化四甲基銨水溶液(和光純藥股份有限公司)100 g中添加純水240 g而製作鹼性溶液。一邊使用磁攪拌器攪拌鹼性溶液,一邊使用滴定管以5 ml/分鐘滴加添加上述金屬鹽水溶液。對含有所生成之金屬氫氧化物微粒之懸浮液進行抽氣過濾後,進行水洗而去除鹼性成分。其後,將過濾物轉移至200 ml之2-丙醇(Kishida Chemical股份有限公司)中,藉由超音波分散機(US-600T,日本精機製作所股份有限公司)再分散10分鐘,而獲得均勻之懸浮液。
將疏水性碳黑(DENKA BLACK(註冊商標)AB-7(商品名),電氣化學工業股份有限公司)0.36 g、親水性碳黑(科琴黑(註冊商標)EC-600JD(商品名),三菱化學股份有限公司)0.84 g分散於2-丙醇100 ml中,藉由超音波分散機分散10分鐘,而獲得碳黑之懸浮液。將金屬氫氧化物前驅物之懸浮液與碳黑之懸浮液混合,藉由超音波分散機分散10分鐘。將該懸浮液進行抽氣過濾,於室溫下乾燥半天,而獲得分散固定有金屬氫氧化物前驅物之碳黑。繼而,使用惰性氣體燒成爐(VMF165型,山田電機股份有限公司),於氮氣環境、400℃下進行1小時之燒成,而獲得將電極觸媒分散固定化之碳黑A。
(反應層用之粉末製作)
於將電極觸媒分散固定化之碳黑A 1.6 g中添加利用純水稀釋為20重量%之界面活性劑Triton(註冊商標)X-100(商品名,ICN Biomedical公司)0.84 ml、純水15 ml,藉由超音波分散機分散10分鐘。於該分散液中添加PTFE(聚四氟乙烯)分散液(PTFE30J(商品名),DuPont-Mitsui Fluorochemicals股份有限公司)0.664 g,並攪拌5分鐘後,進行抽氣過濾。進而,於乾燥機中在80℃下乾燥1小時,藉由研磨機進行粉碎,而獲得反應槽用粉末A。
(氣體擴散層用粉末之製作)
藉由超音波分散機將疏水性碳黑(DENKA BLACK(註冊商標)AB-7(商品名))20 g、利用純水稀釋為20重量%之界面活性劑Triton(註冊商標)X-100(商品名)50 ml、純水360 ml分散10分鐘。於所獲得之分散液中添加PTFE分散液22.32 g,並攪拌5分鐘後,進行過濾。進而,於80℃之乾燥機中乾燥1小時,藉由研磨機實施粉碎,而獲得氣體擴散層用粉末A。
(氣體擴散電極之製作)
於氣體擴散層用粉末A 4 g中添加乙醇8.7 ml,進行混練而製成飴狀。藉由滾筒成形機將該製成飴狀之氣體擴散層用粉末成形為片狀,埋入銀網(SW=1,LW=2,厚度=0.3 mm)作為集電體,最終成形為1.8 mm之片狀。於反應層用粉末A 1 g中添加乙醇2.2 ml,進行混練而製成飴狀。藉由滾筒成形機將該製成飴狀之反應層用粉末成形為厚度0.2 mm之片狀。進而,將所製作之使用氣體擴散層用粉末A所獲得之片材及使用反應層用粉末A所獲得之片材之2片片材進行積層,藉由滾筒成形機成形為1.8 mm之片狀。將該積層而成之片材於室溫下乾燥一晝夜,而將乙醇去除。進而,為了將殘存之界面活性劑去除,於空氣中在300℃下進行1小時之熱分解處理。包於鋁箔中,藉由熱壓機(SA303(商品名),TESTER SANGYO股份有限公司),於360℃下以50 kgf/cm
2
進行1分鐘熱壓,而獲得氣體擴散電極。氣體擴散電極之厚度為412 μm。
使用所獲得之電極,進行電解評價。電解池之剖面結構係從陰極室側起依序排列集電體、墊、鎳網饋電體、電極、膜、陽極而形成零間距結構。將其結果示於表2。
實施電極之變形試驗,結果L
1
、L
2
之平均值為19 mm。
測定電極之通氣阻力,結果於測定條件1下為25.88(kPa・s/m)。
又,操作性為「3」,存在問題。又,實施電解評價,結果電流效率變低,苛性鈉中之食鹽濃度變高,電解性能顯著變差。膜損傷評價為「3」,亦存在問題。
根據該等結果可知,若使用比較例12中獲得之氣體擴散電極,則電解性能顯著較差。又,於離子交換膜之大致整個面確認到損傷。認為其原因在於:由於比較例12之氣體擴散電極之通氣阻力顯著較大,因此電極中產生之NaOH滯留於電極與隔膜之界面而成為高濃度。
[比較例13]
準備量規厚度為150 μm之鎳線作為陰極電解用電極基材。實施利用該鎳線之粗面化處理。由於難以測定鎳線之表面粗糙度,因此於比較例13中於噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為鎳線之表面粗糙度。藉由粒編號320之氧化鋁實施噴擊處理。算術平均粗糙度Ra為0.64 μm。
按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088(商品名),厚度10 mm)而成之塗佈滾筒與上述塗佈液始終相接之方式設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。比較例13中所製作之鎳線1根之厚度為158 μm。
將藉由上述方法所製作之鎳線切成110 mm及95 mm之長度。如圖16所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由瞬間接著劑(Aron Alpha(註冊商標),東亞合成股份有限公司)將交點部分接著而製作電極。對電極實施評價,將其結果示於表2。
電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為99.7%。
電極之每單位面積之質量為0.5(mg/cm
2
)。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為15 mm。
測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力值為0.0002(kPa・s/m)。
又,對於電極,使用圖17所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓成為3.16 V,較高。
[比較例14]
於比較例14中,使用比較例13中所製作之電極,如圖18所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由瞬間接著劑(Aron Alpha(註冊商標),東亞合成股份有限公司)將交點部分接著而製作電極。對電極實施評價,將其結果示於表2。
電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為99.4%。
電極之每單位面積之質量為0.9(mg/cm
2
)。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為16 mm。
測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力為0.0004(kPa・s/m)。
又,對於電極,使用圖19所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓為3.18 V,較高。
[比較例15]
於比較例15中,使用比較例13中所製作之電極,如圖20所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由瞬間接著劑(Aron Alpha(註冊商標),東亞合成股份有限公司)將交點部分接著而製作電極。對電極實施評價,將其結果示於表2。
電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為98.8%。
電極之每單位面積之質量為1.9(mg/cm
2
)。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為14 mm。
又,測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力為0.0005(kPa・s/m)。
又,對於電極,使用圖21所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓為3.18 V,較高。
[表1]
[表2]
於表2中,全部樣品於「每單位質量·單位面積所承受之力(1)」及「每單位質量·單位面積所承受之力(2)」之測定前可藉由表面張力而自立(即,不存在下垂之情況)。
比較例1、2、7~9由於每單位面積之質量較大,每單位質量·單位面積所承受之力(1)較小,因此與隔膜之密接性較差。因此,對於大型電解槽尺寸(例如,縱1.5 m、橫3 m),於操作作為高分子膜之隔膜時,必然存在鬆弛之情況,此時電極剝落,無法承受實用。
比較例3、4由於每單位質量·單位面積所承受之力(1)較小,因此與隔膜之密接性較差。因此,對於大型電解槽尺寸(例如,縱1.5 m、橫3 m),操作作為高分子膜之隔膜時,必然存在鬆弛之情況,此時電極剝落,無法承受實用。
比較例5、6每單位面積之質量較大,與隔膜之密接性較差。因此,對於大型電解槽尺寸(例如,縱1.5 m、橫3 m),操作作為高分子膜之隔膜時,必然存在鬆弛之情況,此時電極剝落,無法承受實用。
比較例10、11由於藉由熱壓製將膜與電極強力地接合,因此不存在如比較例1、2、7~9般於操作時從膜發生剝離之情況。然而,由於與電極強力地接合,因此喪失高分子膜之柔軟性,難以捲繞成滾筒狀、或加以彎折,操作性較差,無法承受實用。
進而,比較例10、11中電解性能大幅地變差。認為電壓大幅上升之原因在於:因成為將電極埋入至離子交換膜中之狀態,導致離子之流動受到阻礙。認為電流效率之降低、苛性鈉中食鹽濃度變差之原因在於如下要因:因將電極埋入至具有表現出較高之電流效率、離子選擇性之效果之羧酸層中,導致產生羧酸層之厚度不均,埋入羧酸層之一部分之電極發生貫通等。
進而,於比較例10、11中,於隔膜或電極之某一者產生問題而必須更換之情形時,由於強力地接合,故而無法僅更換其中一者,導致成本變高。
比較例12中電解性能大幅地變差。認為電壓大幅上升之原因在於產物滯留於隔膜與電極之界面。
比較例13~15由於每單位質量·單位面積所承受之力(1)及(2)均較小(為測定下限以下),因此與隔膜之密接性較差。因此,對於大型電解槽尺寸(例如,縱1.5 m、橫3 m),操作作為高分子膜之隔膜時,必然存在鬆弛之情況,此時電極剝落,無法承受實用。
本實施形態中,膜與電極藉由適度之力密接於表面,因此操作中不存在電極剝離等問題,不存在阻礙膜內之離子流動之情況,因此表現出良好之電解性能。
<第2實施形態之驗證>
如下所述準備與第2實施形態相對應之實驗例(於以下之<第2實施形態之驗證>之項中簡稱為「實施例」)、及不與第2實施形態相對應之實驗例(於以下之<第2實施形態之驗證>之項中簡稱為「比較例」),藉由以下方法對該等進行評價。一邊適當參照圖31~42一邊對其詳細內容進行說明。
[評價方法]
(1)開孔率
將電極切成130 mm×100 mm之尺寸。使用電子數顯厚度計(Mitutoyo股份有限公司製造,最少顯示0.001 mm)於面內均勻地測定10點,並算出平均值。以其作為電極之厚度(量規厚度)而算出體積。其後,利用電子天平測定質量,根據金屬之比重(鎳之比重=8.908 g/cm
3
、鈦之比重=4.506 g/cm
3
)算出開孔率或空隙率。
開孔率(空隙率)(%)=(1-(電極質量)/(電極體積×金屬之比重))×100
(2)每單位面積之質量(mg/cm
2
)
將電極切成130 mm×100 mm之尺寸,利用電子天平測定質量。用該值除以面積(130 mm×100 mm)而算出每單位面積之質量。
(3)每單位質量·單位面積所承受之力(1)(接著力)(N/mg・cm
2
))
[方法(i)]
測定係使用拉伸壓縮試驗機(今田製作所股份有限公司,試驗機本體:SDT-52NA型 拉伸壓縮試驗機,負荷計:SL-6001型負荷計)。
利用粒編號320之氧化鋁對厚度1.2 mm、200 mm見方之鎳板實施噴擊加工。噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.7 μm。此處,表面粗糙度測定係使用觸針式之表面粗糙度測定機SJ-310(Mitutoyo股份有限公司)。將測定樣品設置於與地面平行之平台上,於下述之測定條件下測定算術平均粗糙度Ra。將測定實施6次時,記載其平均值。
<觸針之形狀>圓錐,錐角度=60°,前端半徑=2 μm,靜態測定力=0.75 mN
<粗糙度標準>JIS2001
<評價曲線>R
<濾波>GAUSS
<臨界值 λc>0.8 mm
<臨界值 λs>2.5 μm
<區間數>5
<前掃、後掃>有
將該鎳板以成為鉛直之方式固定於拉伸壓縮試驗機之下側之夾頭。
使用下述之離子交換膜A作為隔膜。
作為強化芯材,使用聚四氟乙烯(PTFE)製且90丹尼之單絲(以下稱為PTFE紗)。作為犧牲紗,使用35丹尼、6根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。首先,以沿TD及MD之兩方向之各方向以24根/英吋配置PTFE紗、且於鄰接之PTFE紗間配置2根犧牲紗之方式進行平織而獲得織布。藉由滾筒將所獲得之織布進行壓接而獲得厚度70 μm之織布。
繼而,準備以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
COOCH
3
之共聚物計離子交換容量為0.85 mg當量/g之乾燥樹脂之樹脂A、以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.03 mg當量/g之乾燥樹脂之樹脂B。
使用該等樹脂A及B,藉由共擠出T模法獲得樹脂A層之厚度為15 μm、樹脂B層之厚度為104 μm之2層膜X。
繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙(高度50 μm之圓錐形狀之壓紋加工)、補強材及膜X,於加熱板表面溫度223℃、減壓度0.067 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。
藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)30質量%、氫氧化鉀(KOH)15質量%之80℃之水溶液中浸漬20分鐘而進行皂化。其後,於含有氫氧化鈉(NaOH)0.5 N之50℃之水溶液中浸漬1小時,將離子交換基之抗衡離子置換為Na,繼而進行水洗。進而於60℃下加以乾燥。
進而,於樹脂B之酸型樹脂之5質量%乙醇溶液中添加1次粒徑1 μm之氧化鋯20質量%並使其分散而調製懸浮液,藉由懸浮液噴射法對上述複合膜之兩面進行噴霧,於複合膜之表面形成氧化鋯之塗層,而獲得離子交換膜A。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.5 mg/cm
2
。再者,平均粒徑係利用粒度分佈計(島津製作所製造之「SALD(註冊商標)2200」)進行測定。
將上述所獲得之離子交換膜(隔膜)於純水中浸漬12小時以上後用於試驗。使其與以純水充分濡濕之上述鎳板接觸,藉由水之張力進行接著。此時,以鎳板與離子交換膜之上端之位置對齊之方式設置。
測定所使用之電解用電極樣品(電極)係切成130 mm見方。離子交換膜A係切成170 mm見方。以2塊不鏽鋼板(厚度1 mm、縱9 mm、橫170 mm)夾著電極之一邊,以不鏽鋼板、電極之中心對齊之方式對位後,藉由4個夾具均勻地固定。將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。此時,將對試驗機承受之荷重設為0 N。暫時從拉伸壓縮試驗機卸下不鏽鋼板、電極、夾具一體物,為了利用純水將電極充分濡濕,而浸漬於裝有純水之槽中。其後,再次將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。
使拉伸壓縮試驗機之上側夾頭下降,利用純水之表面張力使電解用電極樣品接著於離子交換膜表面。此時之接著面係橫130 mm、縱110 mm。將裝入至洗瓶中之純水吹送至電極及離子交換膜整體,製成隔膜、電極再次充分濡濕之狀態。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從上向下滾動,從而將多餘之純水去除。輥僅施加1次。
以10 mm/分鐘之速度使電極上升,開始負荷測定,記錄電極與隔膜之重疊部分成為橫130 mm、縱100 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極與離子交換膜之重疊部分之面積、及與離子交換膜重疊之部分之電極質量,而算出每單位質量·單位面積所承受之力(1)。與離子交換膜重疊之部分之電極質量係根據上述(2)之每單位面積之質量(mg/cm
2
)中所獲得之值,藉由比例計算而求出。
測定室之環境係溫度23±2℃、相對濕度30±5%。
再者,實施例、比較例中所使用之電極於接著於藉由表面張力接著於鉛直地固定之鎳板之離子交換膜時,可不下垂或剝離而獨立地接著。
再者,將承受力(1)之評價方法之模式圖示於圖31。
再者,拉伸試驗機之測定下限為0.01(N)。
(4)每單位質量·單位面積所承受之力(2)(接著力)(N/mg・cm
2
))
[方法(ii)]
測定係使用拉伸壓縮試驗機(今田製作所股份有限公司,試驗機本體:SDT-52NA型 拉伸壓縮試驗機,負荷計:SL-6001型負荷計)。
將與方法(i)相同之鎳板以成為鉛直之方式固定於拉伸壓縮試驗機之下側之夾頭。
測定所使用之電解用電極樣品(電極)係切成130 mm見方。離子交換膜A係切成170 mm見方。以2塊不鏽鋼板(厚度1 mm、縱9 mm、橫170 mm)夾著電極之一邊,以不鏽鋼板、電極之中心對齊之方式對位後,藉由4個夾具均勻地固定。將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。此時,將對試驗機承受之荷重設為0 N。暫時從拉伸壓縮試驗機卸下不鏽鋼板、電極、夾具一體物,為了利用純水將電極充分濡濕,而浸漬於裝有純水之槽中。其後,再次將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。
使拉伸壓縮試驗機之上側夾頭下降,藉由溶液之表面張力使電解用電極樣品接著於鎳板表面。此時之接著面係橫130 mm、縱110 mm。將裝入至洗瓶中之純水吹送至電極及鎳板整體,製成鎳板、電極再次充分濡濕之狀態。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從上向下滾動,從而將多餘之溶液去除。輥僅施加1次。
以10 mm/分鐘之速度使電極上升,開始負荷測定,記錄電極與鎳板之縱向之重疊部分成為100 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極與鎳板之重疊部分之面積、及與鎳板重疊之部分之電極質量,而算出每單位質量·單位面積所承受之力(2)。與隔膜重疊之部分之電極質量係根據上述(2)之每單位面積之質量(mg/cm
2
)中所獲得之值,藉由比例計算而求出。
又,測定室之環境係溫度23±2℃、相對濕度30±5%。
再者,實施例、比較例中所使用之電極於藉由表面張力接著於鉛直地固定之鎳板時,可不下垂或剝離而獨立地接著。
再者,拉伸試驗機之測定下限為0.01(N)。
(5)直徑280 mm圓柱捲繞評價方法(1)(%)
(膜與圓柱)
按照以下之順序實施評價方法(1)。
將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸。將離子交換膜於純水中浸漬12小時以上後用於試驗。比較例1及2中電極藉由熱壓製而與離子交換膜成為一體,因此準備離子交換膜與電極之一體物(電極係130 mm見方)。將離子交換膜於純水中充分浸漬後,置於外徑280 mm之塑膠(聚乙烯)製之管之曲面上。其後,藉由將厚度5 mm之獨立發泡型之EPDM海綿橡膠捲繞於氯乙烯管(外徑38 mm)而成之輥將多餘之溶液去除。輥係從圖32所示之模式圖之左側向右側於離子交換膜上滾動。輥僅施加1次。1分鐘後,測定離子交換膜與外徑280 mm之塑膠製之管電極密接之部分之比率。
(6)直徑280 mm圓柱捲繞評價方法(2)(%)
(膜與電極)
按照以下之順序實施評價方法(2)。
將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成130 mm見方。將離子交換膜於純水中浸漬12小時以上後用於試驗。將離子交換膜與電極於純水中充分浸漬後進行積層。將該積層體以電極成為外側之方式置於外徑280 mm之塑膠(聚乙烯)製之管之曲面上。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從圖33所示之模式圖之左側向右側滾動,從而將多餘之溶液去除。輥僅施加1次。1分鐘後,測定離子交換膜與電極密接之部分之比率。
(7)直徑145 mm圓柱捲繞評價方法(3)(%)
(膜與電極)
按照以下之順序實施評價方法(3)。
將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成130 mm見方。將離子交換膜於純水中浸漬12小時以上後用於試驗。將離子交換膜與電極於純水中充分浸漬後進行積層。將該積層體以電極成為外側之方式置於外徑145 mm之塑膠(聚乙烯)製之管之曲面上。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從圖34所示之模式圖之左側向右側滾動,從而將多餘之溶液去除。輥僅施加1次。1分鐘後,測定離子交換膜與電極密接之部分之比率。
(8)操作性(感應評價)
(A)將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成95×110 mm。將離子交換膜於純水中浸漬12小時以上後用於試驗。於各實施例中將離子交換膜與電極於碳酸氫鈉水溶液、0.1 N之NaOH水溶液、純水之三種溶液中充分浸漬後進行積層,靜置於鐵氟龍板上。將電解評價所使用之陽極池與陰極池之間隔設為約3 cm,提起靜置之積層體而實施插入並夾於其間之操作。於實施該操作時一邊操作一邊確認電極是否偏離、掉落。
(B)將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成95×110 mm。將離子交換膜於純水中浸漬12小時以上後用於試驗。於各實施例中將離子交換膜與電極於碳酸氫鈉水溶液、0.1 N之NaOH水溶液、純水之三種溶液中充分浸漬後進行積層,靜置於鐵氟龍板上。手持積層體之膜部分之相鄰的兩處之角,以積層體成為鉛直之方式提起。從該狀態起,以將手持之兩處之角靠近之方式移動,使膜成為凸狀、凹狀。將該操作再重複1次,確認電極對膜之追隨性。基於以下之指標,按照1~4之4個等級對該結果進行評價。
1:操作良好
2:能夠操作
3:操作困難
4:大體無法操作
此處,對於比較例2-5之樣品,以與電極為1.3 m×2.5 m、離子交換膜為1.5 m×2.8 m之尺寸之大型電解池相同之尺寸實施操作。比較例5之評價結果(如下文所述為「3」)係作為對上述(A)、(B)之評價與製成大型尺寸時之不同進行評價之指標。即,於對小型之積層體進行評價所獲得之結果為「1」、「2」之情形時,評價為即使於製成大型尺寸之情形時操作性亦無問題。
(9)電解評價(電壓(V)、電流效率(%)、苛性鈉中食鹽濃度(ppm,50%換算))
藉由下述電解實驗評價電解性能。
使具有設置有陽極之陽極室之鈦製的陽極池(陽極終端池)與具有設置有陰極之鎳製的陰極室(陰極終端池)之陰極池相對。於池間配置一對墊片,將積層體(離子交換膜A與電解用電極之積層體)夾於一對墊片間。然後,使陽極池、墊片、積層體、墊片及陰極密接而獲得電解池,準備包含該電解池之電解槽。
作為陽極,係藉由將氯化釕、氯化銥及四氯化鈦之混合溶液塗佈於已實施噴擊及酸蝕刻處理作為預處理之鈦基材上並進行乾燥、燒成而製作。陽極係藉由焊接而固定於陽極室。作為陰極,使用各實施例、比較例所記載者。作為陰極室之集電體,使用鎳製多孔金屬。集電體之尺寸為縱95 mm×橫110 mm。作為金屬彈性體,使用以鎳細線編織而成之墊。將作為金屬彈性體之墊置於集電體上。於其上覆蓋以40目之網眼將直徑150 μm之鎳線平織而成之鎳網,藉由利用鐵氟龍(註冊商標)製作之繩將Ni網之四角固定於集電體。以該Ni網作為饋電體。於該電解池中,利用作為金屬彈性體之墊之反彈力而成為零間距結構。作為墊片,使用EPDM(乙烯丙烯二烯)製之橡膠墊片。作為隔膜,使用[方法(i)]中製作之離子交換膜A(160 mm見方)。
使用上述電解池進行食鹽之電解。陽極室之鹽水濃度(氯化鈉濃度)係調整為205 g/L。陰極室之氫氧化鈉濃度係調整為32質量%。以各電解池內之溫度成為90℃之方式調節陽極室及陰極室之各溫度。於電流密度6 kA/m
2
下實施食鹽電解,測定電壓、電流效率、苛性鈉中食鹽濃度。此處,所謂電流效率係所生成之苛性鈉之量相對於流通之電流之比率,若藉由流通之電流,雜質離子或氫氧化物離子而非鈉離子於離子交換膜中移動,則電流效率降低。電流效率係藉由一定時間所生成之苛性鈉之莫耳數除以其間流通之電流之電子之莫耳數而求出。苛性鈉之莫耳數係藉由將由電解生成之苛性鈉回收於聚合物槽中,對其質量進行測定而求出。苛性鈉中食鹽濃度表示將苛性鈉濃度換算為50%所得之值。
再者,將實施例、比較例中所使用之電極及饋電體之規格示於表3。
(11)觸媒層之厚度、電解用電極基材、電極之厚度測定
電解用電極基材之厚度係使用電子數顯厚度計(Mitutoyo股份有限公司製造,最少顯示0.001 mm)於面內均勻地測定10點並算出平均值。以此作為電解用電極基材之厚度(量規厚度)。電極之厚度係與電極基材同樣地藉由電子數顯厚度計於面內均勻地測定10點並算出平均值。以此作為電極之厚度(量規厚度)。觸媒層之厚度係藉由電極之厚度減去電解用電極基材之厚度而求出。
(12)電極之彈性變形試驗
將[方法(i)]中製作之離子交換膜A(隔膜)及電極切割成110 mm見方之尺寸。將離子交換膜於純水中浸漬12小時以上後用於試驗。於溫度23±2℃、相對濕度30±5%之條件下,將離子交換膜與電極重疊而製作積層體後,如圖35所示般以不產生間隙之方式捲繞至外徑ϕ32 mm、長度20 cm之PVC製管。為了避免捲繞之積層體從PVC製管剝離或鬆動,而使用聚乙烯製之捆束帶加以固定。於該狀態下保持6小時。其後,去除捆束帶,將積層體從PVC製管解捲。僅將電極置於平台上,測定從平台隆起之部分之高度L
1
、L
2
並求出平均值。以該值作為電極變形之指標。即,值較小意指難以變形。
再者,於使用多孔金屬之情形時,於捲繞時存在SW方向、LW方向之兩種。於本試驗中係沿SW方向捲繞。
又,對於產生變形之電極(未恢復為原來平坦之狀態之電極),藉由如圖36所示之方法對塑性變形後之柔軟程度進行評價。即,將產生變形之電極置於在純水中充分浸漬之隔膜上,將一端固定,將浮起之相反之端部壓抵於隔膜,將力解除,對產生變形之電極是否追隨隔膜進行評價。
(13)膜損傷評價
使用下述之離子交換膜B作為隔膜。
作為強化芯材,使用為聚四氟乙烯(PTFE)且將100丹尼之帶狀紗線以900次/m撚絞而製成紗狀者(以下稱為PTFE紗)。作為經紗之犧牲紗,使用將35丹尼、8根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。又,作為緯紗之犧牲紗,使用將35丹尼、8根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗。首先,以將PTFE紗以24根/英吋配置、將犧牲紗於鄰接之PTFE紗間配置2根之方式進行平織,而獲得厚度100 μm之織布。
繼而,準備以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
COOCH
3
之共聚物計離子交換容量為0.92 mg當量/g之乾燥樹脂之聚合物(A1)、以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.10 mg當量/g之乾燥樹脂之聚合物(B1)。使用該等聚合物(A1)及(B1),藉由共擠出T模法獲得聚合物(A1)層之厚度為25 μm、聚合物(B1)層之厚度為89 μm之2層膜X。再者,各聚合物之離子交換容量表示將各聚合物之離子交換基前驅物水解而轉換為離子交換基時之離子交換容量。
又,另行準備以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.10 mg當量/g之乾燥樹脂之聚合物(B2)。將該聚合物單層擠出而獲得20 μm之膜Y。
繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙、膜Y、補強材及膜X,於加熱板溫度225℃、減壓度0.022 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)與氫氧化鉀(KOH)之水溶液中浸漬1小時而進行皂化後,於0.5 N之NaOH中浸漬1小時,將離子交換基所附離子取代為Na,繼而進行水洗。進而於60℃下加以乾燥。
又,將以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.05 mg當量/g之乾燥樹脂之聚合物(B3)水解後,藉由鹽酸使其成為酸型。於將該酸型之聚合物(B3')以5質量%之比率溶解於水及乙醇之50/50(質量比)混合液中而成之溶液中,以聚合物(B3')與氧化鋯粒子之質量比成為20/80之方式添加一次粒子之平均粒徑為0.02 μm之氧化鋯粒子。其後,藉由球磨機使其於氧化鋯粒子之懸浮液中分散而獲得懸浮液。
利用噴射法將該懸浮液塗佈於離子交換膜之兩表面並加以乾燥,藉此獲得具有含有聚合物(B3')與氧化鋯粒子之塗佈層之離子交換膜B。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.35 mg/cm
2
。
陽極係使用與(9)電解評價相同者。
陰極係使用各實施例、比較例所記載者。陰極室之集電體、墊及饋電體係使用與(9)電解評價相同者。即,以Ni網作為饋電體,利用作為金屬彈性體之墊之反彈力而成為零間距結構。墊片亦使用與(9)電解評價相同者。作為隔膜,使用藉由上述方法所製作之離子交換膜B。即,除了將離子交換膜B與電解用電極之積層體夾持於一對墊片間以外,準備與(9)相同之電解槽。
使用上述電解池進行食鹽之電解。陽極室之鹽水濃度(氯化鈉濃度)係調整為205 g/L。陰極室之氫氧化鈉濃度係調整為32質量%。以各電解池內之溫度成為70℃之方式調節陽極室及陰極室之各溫度。於電流密度8 kA/m
2
下實施食鹽電解。從電解開始起12小時後停止電解,取出離子交換膜B並觀察損傷狀態。
「0」意指無損傷。「1至3」意指存在損傷,數字越大,意指損傷之程度越大。
(14)電極之通氣阻力
使用通氣性試驗機KES-F8(商品名,Kato Tech股份有限公司)測定電極之通氣阻力。通氣阻力值之單位為kPa・s/m。將測定實施5次,將其平均值記載於表4。測定係於以下之兩個條件下實施。再者,測定室之溫度設為24℃,相對濕度設為32%。
・測定條件1(通氣阻力1)
活塞速度:0.2 cm/s
通氣量:0.4 cc/cm
2
/s
測定範圍:SENSE L(低)
樣品尺寸:50 mm×50 mm
・測定條件2(通氣阻力2)
活塞速度:2 cm/s
通氣量:4 cc/cm
2
/s
測定範圍:SENSE M(中)或H(高)
樣品尺寸:50 mm×50 mm
[實施例2-1]
作為陰極電解用電極基材,準備量規厚度為16 μm之電解鎳箔。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。
藉由打孔加工於該鎳箔開出圓形之孔而製成多孔箔。開孔率為49%。
按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。實施例2-1中所製作之電極之厚度為24 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。塗層亦形成於未經粗面化之面。又,為氧化釕與氧化鈰之合計厚度。
將藉由上述方法所製作之電極之接著力之測定結果示於表4。觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。
為了將藉由上述方法所製作之電極用於電解評價而將其切成縱95 mm、橫110 mm之尺寸。使電極之經粗面化之面與利用0.1 N之NaOH水溶液平衡之[方法(i)]中所製作之離子交換膜A(尺寸為160 mm×160 mm)之羧酸層側的大致中央之位置相對向,藉由水溶液之表面張力使其等密接。
即使抓持膜與電極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極剝落或偏離之情況。又,即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極剝落或偏離之情況。
將上述膜一體電極以附著有電極之面成為陰極室側之方式夾於陽極池與陰極池之間。剖面結構係從陰極室側起依序排列集電體、墊、鎳網饋電體、電極、膜、陽極而形成零間距結構。
對所獲得之電極進行電解評價。將其結果示於表4。
表現出較低之電壓、較高之電流效率及較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
又,若藉由XRF(螢光X射線分析)測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。
[實施例2-2]
實施例2-2係使用量規厚度為22 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.96 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為44%。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
電極之厚度為29 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。塗層亦形成於未經粗面化之面。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0033(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。
[實施例2-3]
實施例2-3係使用量規厚度為30 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為1.38 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為44%。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
電極之厚度為38 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。塗層亦形成於未經粗面化之面。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。
[實施例2-4]
實施例2-4係使用量規厚度為16 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為75%。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
電極之厚度為24 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0023(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。
[實施例2-5]
實施例2-5係準備量規厚度為20 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之兩面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.96 μm。兩面均為相同之粗糙度。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為49%。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
電極之厚度為30 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。塗層亦形成於未經粗面化之面。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0023(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
又,若藉由XRF測定電解後之塗佈量,則兩面均殘存大致100%塗層。若對比實施例2-1~2-4進行考慮,則說明即使不與膜相對向之相反面中塗層較少或不存在,亦能夠發揮出良好之電解性能。
[實施例2-6]
實施例2-6除了藉由離子鍍敷實施對陰極電解用電極基材之塗佈以外,與實施例2-1同樣地實施評價,並將結果示於表4。再者,離子鍍敷係於加熱溫度200℃下使用Ru金屬靶,於氬氣/氧氣環境下以成膜壓力7×10
-2
Pa進行製膜。所形成之塗層為氧化釕。
電極之厚度為26 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例2-7]
實施例2-7係藉由電成形法製作陰極電解用電極基材。光罩之形狀係設為將0.485 mm×0.485 mm之正方形以0.15 mm為間隔縱、橫排列而成之形狀。藉由依序實施曝光、顯影、電鍍,獲得量規厚度為20 μm、開孔率56%之鎳多孔箔。表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
電極之厚度為37 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為17 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0032(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例2-8]
實施例2-8中作為陰極電解用電極基材,係藉由電成形法製作,量規厚度為50 μm,開孔率為56%。表面之算術平均粗糙度Ra為0.73 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
電極之厚度為60 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0032(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例2-9]
實施例2-9係使用量規厚度為150 μm、空隙率為76%之鎳不織布(NIKKO TECHNO股份有限公司製造)作為陰極電解用電極基材。不織布之鎳纖維直徑約為40 μm,單位面積重量為300 g/m
2
。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
電極之厚度為165 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為15 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為29 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0612(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。
[實施例2-10]
實施例2-10係使用量規厚度為200 μm、空隙率為72%之鎳不織布(NIKKO TECHNO股份有限公司製造)作為陰極電解用電極基材。不織布之鎳纖維直徑約為40 μm,單位面積重量為500 g/m
2
。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
電極之厚度為215 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為15 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為40 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0164(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。
[實施例2-11]
實施例2-11係使用量規厚度為200 μm、空隙率為72%之發泡鎳(Mitsubishi Materials股份有限公司製造)作為陰極電解用電極基材。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
又,電極之厚度為210 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為17 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0402(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。
[實施例2-12]
實施例2-12係使用線徑50 μm、200目、量規厚度為100 μm、開孔率為37%之鎳網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。即使實施噴擊處理,開孔率亦不變化。由於難以測定金屬絲網表面之粗糙度,因此於實施例2-12中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。1根金屬絲網之算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
電極之厚度為110 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0.5 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0154(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例2-13]
實施例2-13係使用線徑65 μm、150目、量規厚度為130 μm、開孔率為38%之鎳網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。即使實施噴擊處理,開孔率亦不變化。由於難以測定金屬絲網表面之粗糙度,因此於實施例2-13中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.66 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施上述評價,並將結果示於表4。
電極之厚度為133 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為3 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為6.5 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0124(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價亦為「0」而較良好。
[實施例2-14]
實施例2-14係使用與實施例2-3相同之基材(量規厚度30 μm,開孔率44%)作為陰極電解用電極基材。除了未設置鎳網饋電體以外,以與實施例2-1相同之構成實施電解評價。即,電解池之剖面結構係從陰極室側起依序排列集電體、墊、膜一體電極、陽極而形成零間距結構,墊作為饋電體發揮功能。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例2-15]
實施例2-15係使用與實施例2-3相同之基材(量規厚度30 μm,開孔率44%)作為陰極電解用電極基材。設置參考例1中使用之劣化且電解電壓變高之陰極代替鎳網饋電體。除此以外,以與實施例2-1相同之構成實施電解評價。即,電解池之剖面結構係從陰極室側起依序排列集電體、墊、劣化且電解電壓變高之陰極(作為饋電體發揮功能)、電解用電極(陰極)、隔膜、陽極而形成零間距結構,劣化且電解電壓變高之陰極作為饋電體發揮功能。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例2-16]
作為陽極電解用電極基材,準備量規厚度為20 μm之鈦箔。對鈦箔之兩面實施粗面化處理。對該鈦箔實施打孔加工,開出圓形之孔而製成多孔箔。孔之直徑為1 mm,開孔率為14%。表面之算術平均粗糙度Ra為0.37 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。
按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素、銥元素及鈦元素之莫耳比成為0.25:0.25:0.5之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、銥濃度為100 g/L之氯化銥(田中貴金屬工業股份有限公司)、四氯化鈦(和光純藥工業股份有限公司)加以混合。將該混合液充分攪拌,以其作為陽極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。於鈦多孔箔塗佈上述塗佈液後,於60℃下實施10分鐘之乾燥,於475℃下實施10分鐘之燒成。重複實施該等塗佈、乾燥、預燒成、燒成之一系列之操作後,於520℃下進行1小時之燒成。
為了將藉由上述方法所製作之電極用於電解評價而將其切成縱95 mm、橫110 mm之尺寸。藉由水溶液之表面張力使其密接於利用0.1 N之NaOH水溶液平衡之[方法(i)]中製作之離子交換膜A(尺寸為160 mm×160 mm)之磺酸層側的大致中央之位置。
陰極係按照以下之順序製備。首先,準備線徑150 μm、40目之鎳製金屬絲網作為基材。作為預處理而藉由氧化鋁實施噴擊處理後,於6 N之鹽酸中浸漬5分鐘,並利用純水充分洗淨、乾燥。
繼而,以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、氯化鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於300℃下實施3分鐘之預燒成,於550℃下實施10分鐘之燒成。其後,於550℃下實施1小時之燒成。重複進行該等塗佈、乾燥、預燒成、燒成之一系列之操作。
作為陰極室之集電體,使用鎳製多孔金屬。集電體之尺寸為縱95 mm×橫110 mm。作為金屬彈性體,使用以鎳細線編織而成之墊。將作為金屬彈性體之墊置於集電體上。於其上覆蓋藉由上述方法製作之陰極,藉由利用鐵氟龍(註冊商標)製作之繩將網之四角固定於集電體。
即使抓持膜與陽極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極剝落或偏離之情況。又,即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極剝落或偏離之情況。
藉由焊接將參考例3中所使用之劣化且電解電壓變高之陽極固定於陽極池,將上述膜一體電極以附著有電極之面成為陽極室側之方式夾於陽極池與陰極池之間。即,電解池之剖面結構係從陰極室側起依序排列集電體、墊、陰極、隔膜、電解用電極(鈦多孔箔陽極)、劣化且電解電壓變高之陽極,形成零間距結構。劣化且電解電壓變高之陽極作為饋電體發揮功能。再者,鈦多孔箔陽極與劣化且電解電壓變高之陽極之間僅係物理接觸,並未藉由焊接進行固定。
藉由該構成,與實施例2-1同樣地實施評價,並將結果示於表4。
電極之厚度為26 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為6 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為4 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0060(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例2-17]
實施例2-17係使用量規厚度20 μm、開孔率30%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.37 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-16同樣地實施評價,並將結果示於表4。
電極之厚度為30 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為5 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0030(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例2-18]
實施例2-18係使用量規厚度20 μm、開孔率42%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.38 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-16同樣地實施評價,並將結果示於表4。
電極之厚度為32 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為12 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為2.5 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0022(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例2-19]
實施例2-19係使用量規厚度50 μm、開孔率47%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.40 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-16同樣地實施評價,並將結果示於表4。
電極之厚度為69 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為19 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為8 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0024(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例2-20]
實施例2-20係使用量規厚度100 μm、鈦纖維直徑約為20 μm、單位面積重量為100 g/m
2
、開孔率78%之鈦不織布作為陽極電解用電極基材。除此以外,與實施例2-16同樣地實施評價,並將結果示於表4。
電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為2 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0228(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例2-21]
實施例2-21係使用量規厚度120 μm、鈦纖維直徑約為60 μm、150目之鈦金屬絲網作為陽極電解用電極基材。開孔率為42%。藉由粒編號320之氧化鋁實施噴擊處理。由於難以測定金屬絲網表面之粗糙度,因此於實施例2-21中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.60 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-16同樣地實施評價,並將結果示於表4。
電極之厚度為140 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為20 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為10 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0132(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例2-22]
實施例2-22係與實施例2-16同樣地使用劣化且電解電壓變高之陽極作為陽極饋電體,使用與實施例2-20相同之鈦不織布作為陽極。與實施例2-15同樣地使用劣化且電解電壓變高之陰極作為陰極饋電體,使用與實施例2-3相同之鎳箔電極作為陰極。電解池之剖面結構係從陰極室側起,依序排列集電體、墊、劣化且電壓變高之陰極、鎳多孔箔陰極、隔膜、鈦不織布陽極、劣化且電解電壓變高之陽極而形成零間距結構,劣化且電解電壓變高之陰極及陽極作為饋電體發揮功能。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
電極(陽極)之厚度為114 μm,觸媒層之厚度係電極(陽極)之厚度減去電解用電極基材之厚度而為14 μm。又,電極(陰極)之厚度為38 μm,觸媒層之厚度係電極(陰極)之厚度減去電解用電極基材之厚度而為8 μm。
於陽極及陰極均觀測到充分之接著力。
實施電極(陽極)之變形試驗,結果L
1
、L
2
之平均值為2 mm。實施電極(陰極)之變形試驗,結果L
1
、L
2
之平均值為0 mm。
測定電極(陽極)之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0228(kPa・s/m)。測定電極(陰極)之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。陽極及陰極中膜損傷評價均亦為「0」而較良好。再者,於實施例2-22中,於隔膜之單面貼附陰極,於相反之面貼附陽極,將陰極及陽極組合進行膜損傷評價。
[實施例2-23]
於實施例2-23中係使用Agfa公司製造之微多孔膜「Zirfon Perl UTP 500」。
Zirfon膜係於純水中浸漬12小時以上後用於試驗。除此以外,與實施例2-3同樣地實施上述評價,並將結果示於表4。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
與使用離子交換膜作為隔膜時相同,觀測到充分之接著力,微多孔膜與電極藉由表面張力而密接,操作性為「1」而較良好。
[實施例2-24]
作為陰極電解用電極基材,準備量規厚度為566 μm之紡織碳纖維而成之碳布。按照以下之順序製備用以於該碳布形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088(商品名),厚度10 mm)而成之塗佈滾筒與上述塗佈液始終相接之方式設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。所製作之電極之厚度為570 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為4 μm。觸媒層之厚度為氧化釕與氧化鈰之合計厚度。
對所獲得之電極進行電解評價。將其結果示於表4。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。
測定電極之通氣阻力,結果於測定條件1下為0.19(kPa・s/m),於測定條件2下為0.176(kPa・s/m)。
又,操作性為「2」,可判斷能夠作為大型積層體進行操作。
電壓較高,膜損傷評價為「1」,確認到膜損傷。認為其原因在於:由於實施例2-24之電極之通氣阻力較大,因此電極中產生之NaOH滯留於電極與隔膜之界面而成為高濃度。
[參考例1]
於參考例1中,作為陰極而使用於大型電解槽中使用8年、劣化且電解電壓變高之陰極。於陰極室之墊上設置上述陰極代替鎳網饋電體,隔著[方法(i)]中製作之離子交換膜A實施電解評價。於參考例1中不使用膜一體電極,電解池之剖面結構係從陰極室側起,依序排列集電體、墊、劣化且電解電壓變高之陰極、離子交換膜A、陽極而形成零間距結構。
藉由該構成實施電解評價,結果電壓為3.04 V,電流效率為97.0%,苛性鈉中食鹽濃度(50%換算值)為20 ppm。由於陰極劣化,因此結果為電壓較高
[參考例2]
於參考例2中,使用鎳網饋電體作為陰極。即,藉由未形成觸媒塗層之鎳網實施電解。
將鎳網陰極設置於陰極室之墊上,隔著[方法(i)]中製作之離子交換膜A實施電解評價。參考例2之電池之剖面結構係從陰極室側起,依序排列集電體、墊、鎳網、離子交換膜A、陽極而形成零間距結構。
藉由該構成實施電解評價,結果電壓為3.38 V,電流效率為97.7%,苛性鈉中食鹽濃度(50%換算值)為24 ppm。由於未塗佈陰極觸媒,因此結果為電壓較高。
[參考例3]
於參考例3中,作為陽極而使用於大型電解槽中使用約8年、劣化且電解電壓變高之陽極。
參考例3之電解池之剖面結構係從陰極室側起,依序排列集電體、墊、陰極、[方法(i)]中製作之離子交換膜A、劣化且電解電壓變高之陽極而形成零間距結構。
藉由該構成實施電解評價,結果電壓為3.18 V,電流效率為97.0%,苛性鈉中食鹽濃度(50%換算值)為22 ppm。由於陽極劣化,因此結果為電壓較高。
[實施例2-25]
於實施例2-25中,使用全滾筒加工後之量規厚度100 μm、開孔率33%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例2-25中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.68 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。
每單位面積之質量為67.5(mg/cm
2
)。每單位質量·單位面積所承受之力(1)為0.05(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為64%,直徑145 mm圓柱捲繞評價(3)之結果為22%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為13 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0168(kPa・s/m)。
[實施例2-26]
於實施例2-26中,使用全滾筒加工後之量規厚度100 μm、開孔率16%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例2-26中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
電極之厚度為107 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。
每單位面積之質量為78.1(mg/cm
2
)。每單位質量·單位面積所承受之力(1)為0.04(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為37%,直徑145 mm圓柱捲繞評價(3)之結果為25%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為18.5 mm。測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0176(kPa・s/m)。
[實施例2-27]
實施例2-27係使用全滾筒加工後之量規厚度為100 μm、開孔率為40%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例2-27中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.70 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。對電解用電極基材之塗佈係藉由與實施例2-6同樣之離子鍍敷實施。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
電極之厚度為110 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
每單位質量·單位面積所承受之力(1)為0.07(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為80%,直徑145 mm圓柱捲繞評價(3)之結果為32%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「3」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為11 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0030(kPa・s/m)。
[實施例2-28]
實施例2-28係使用全滾筒加工後之量規厚度為100 μm、開孔率為58%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例2-28中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
電極之厚度為109 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為9 μm。
每單位質量·單位面積所承受之力(1)為0.06(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為69%,直徑145 mm圓柱捲繞評價(3)之結果為39%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「3」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為11.5 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。
[實施例2-29]
實施例2-29係使用量規厚度為300 μm、開孔率為56%之鎳金屬絲網作為陰極電解用電極基材。由於難以測定金屬絲網之表面粗糙度,因此於實施例2-29中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施評價,並將結果示於表4。
電極之厚度為308 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。
每單位面積之質量為49.2(mg/cm
2
)。因此,直徑280 mm圓柱捲繞評價(2)之結果為88%,直徑145 mm圓柱捲繞評價(3)之結果為42%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況,操作性為「3」,存在問題。實際中以大型尺寸進行操作,可評價為「3」。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為23 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0034(kPa・s/m)。
[實施例2-30]
於實施例2-30中使用量規厚度200 μm、開孔率37%之鎳金屬絲網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定金屬絲網之表面粗糙度,因此於實施例2-30中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.65 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-1同樣地實施電極電解評價、接著力之測定結果、密接性。將結果示於表4。
電極之厚度為210 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
每單位面積之質量為56.4 mg/cm
2
。因此,直徑145 mm圓柱捲繞評價方法(3)之結果為63%,電極與隔膜之密接性較差。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況,操作性為「3」,存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為19 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0096(kPa・s/m)。
[實施例2-31]
於實施例2-31中使用全滾筒加工後之量規厚度500 μm、開孔率17%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例2-31中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.60 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-16同樣地實施評價,並將結果示於表4。
又,電極之厚度為508 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。
每單位面積之質量為152.5(mg/cm
2
)。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L
1
、L
2
之值。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0072(kPa・s/m)。
[實施例2-32]
於實施例2-32中,使用全滾筒加工後之量規厚度800 μm、開孔率8%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例2-32中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.61 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-16同樣地實施上述評價,並將結果示於表4。
電極之厚度為808 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。
每單位面積之質量為251.3(mg/cm
2
)。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L
1
、L
2
之值。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0172(kPa・s/m)。
[實施例2-33]
於實施例2-33中,使用全滾筒加工後之量規厚度1000 μm、開孔率46%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例2-33中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.59 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例2-16同樣地實施上述評價,並將結果示於表4。
又,電極之厚度為1011 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為11 μm。
每單位面積之質量為245.5(mg/cm
2
)。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L
1
、L
2
之值。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。
[實施例2-34]
準備量規厚度為150 μm之鎳線作為陰極電解用電極基材。實施利用該鎳線之粗面化處理。由於難以測定鎳線之表面粗糙度,因此於實施例2-34中於噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為鎳線之表面粗糙度。藉由粒編號320之氧化鋁實施噴擊處理。算術平均粗糙度Ra為0.64 μm。
按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088(商品名),厚度10 mm)而成之塗佈滾筒與上述塗佈液始終相接之方式設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。實施例2-34中所製作之鎳線1根之厚度為158 μm。
將藉由上述方法所製作之鎳線切成110 mm及95 mm之長度。如圖37所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由瞬間接著劑(Aron Alpha(註冊商標),東亞合成股份有限公司)將交點部分接著而製作電極。對電極實施評價,將其結果示於表4。
電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為99.7%。
電極之每單位面積之質量為0.5(mg/cm
2
)。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為15 mm。
測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力值為0.0002(kPa・s/m)。
又,對於電極,使用圖38所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓成為3.16 V,較高。
[實施例2-35]
於實施例2-35中,使用實施例2-34中所製作之電極,如圖39所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由瞬間接著劑(Aron Alpha(註冊商標),東亞合成股份有限公司)將交點部分接著而製作電極。對電極實施評價,將其結果示於表4。
電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為99.4%。
電極之每單位面積之質量為0.9(mg/cm
2
)。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為16 mm。
測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力為0.0004(kPa・s/m)。
又,對於電極,使用圖40所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓為3.18 V,較高。
[實施例2-36]
於實施例2-36中,使用實施例2-34中所製作之電極,如圖41所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由瞬間接著劑(Aron Alpha(註冊商標),東亞合成股份有限公司)將交點部分接著而製作電極。對電極實施評價,將其結果示於表4。
電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為98.8%。
電極之每單位面積之質量為1.9(mg/cm
2
)。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為14 mm。
又,測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力為0.0005(kPa・s/m)。
又,對於電極,使用圖42所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓為3.18 V,較高。
[比較例2-1]
於比較例2-1中以先前文獻(日本專利特開昭58-48686之實施例)作為參考,製作將電極熱壓接於隔膜之熱壓接接合體。
使用量規厚度100 μm、開孔率33%之鎳多孔金屬作為陰極電解用電極基材,與實施例2-1同樣地實施電極塗佈。其後,按照下述之順序對電極之單面實施惰性化處理。於電極之單面貼附聚醯亞胺黏著帶(中興化成股份有限公司),於相反面塗佈PTFE分散液(DuPont-Mitsui Fluorochemicals股份有限公司,31-JR(商品名)),於120℃之馬弗爐中乾燥10分鐘。將聚醯亞胺膠帶剝離,於設定為380℃之馬弗爐中實施10分鐘燒結處理。將該操作重複2次,對電極之單面進行惰性化處理。
製作由末端官能基為「-COOCH
3
」之全氟碳聚合物(C聚合物)與末端基為「-SO
2
F」之全氟碳聚合物(S聚合物)之2層所形成之膜。C聚合物層之厚度為3密耳(mil),S聚合物層之厚度為4密耳(mil)。對該2層膜實施皂化處理,藉由水解對聚合物之末端導入離子交換基。C聚合物末端被水解為羧酸基,S聚合物末端被水解為磺基。以磺酸基計之離子交換容量為1.0 meq/g,以羧酸基計之離子交換容量為0.9 meq/g。
使具有羧酸基作為離子交換基之面與經惰性化之電極面相對向,並實施熱壓製,而將離子交換膜與電極一體化。熱壓接後電極之單面亦為露出之狀態,不存在電極貫通膜之部分。
其後,為了抑制電解中產生之氣泡對膜之附著,將導入有氧化鋯與磺基之全氟碳聚合物混合物塗佈於兩面。由此製作比較例2-1之熱壓接接合體。
使用該熱壓接接合體,測定每單位質量·單位面積所承受之力(1),結果由於藉由熱壓接將電極與膜強力接合,因此電極未向上方移動。因此,以不移動離子交換膜與鎳板之方式進行固定,藉由更強之力將電極向上方拉拽,結果於承受1.50(N/mg・cm
2
)之力時,膜之一部分破裂。比較例2-1之熱壓接接合體之每單位質量·單位面積所承受之力(1)至少為1.50(N/mg・cm
2
),被強力地接合。
實施直徑280 mm圓柱捲繞評價(1),結果與塑膠製管之接觸面積未達5%。另一方面,實施直徑280 mm圓柱捲繞評價(2),結果雖然電極與膜100%接合,但最初隔膜並未捲繞至圓柱。直徑145 mm圓柱捲繞評價(3)之結果亦相同。該結果意指膜之操作性因一體化之電極而受損,而難以捲繞為滾筒狀、或加以彎折。操作性為「3」,存在問題。膜損傷評價為「0」。又,實施電解評價,結果電壓變高,電流效率變低,苛性鈉中之食鹽濃度(50%換算值)變高,電解性能變差。
又,電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。
實施電極之變形試驗,結果L
1
、L
2
之平均值為13 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0168(kPa・s/m)。
[比較例2-2]
比較例2-2係使用線徑150 μm、40目、量規厚度300 μm、開孔率58%之鎳網作為陰極電解用電極基材。除此以外,與比較例2-1同樣地製作熱壓接接合體。
使用該熱壓接接合體,測定每單位質量·單位面積所承受之力(1),結果由於藉由熱壓接將電極與膜強力接合,因此電極未向上方移動。因此,以不移動離子交換膜與鎳板之方式進行固定,藉由更強之力將電極向上方拉拽,結果於承受1.60(N/mg・cm
2
)之力時,膜之一部分破裂。比較例2-2之熱壓接接合體之每單位質量·單位面積所承受之力(1)至少為1.60(N/mg・cm
2
),被強力地接合。
使用該熱壓接接合體實施直徑280 mm圓柱捲繞評價(1),結果與塑膠製管之接觸面積未達5%。另一方面,實施直徑280 mm圓柱捲繞評價(2),結果雖然電極與膜100%接合,但最初隔膜並未捲繞至圓柱。直徑145 mm圓柱捲繞評價(3)之結果亦相同。該結果意指膜之操作性因一體化之電極而受損,而難以捲繞為滾筒狀、或加以彎折。操作性為「3」,存在問題。又,實施電解評價,結果電壓變高,電流效率變低,苛性鈉中之食鹽濃度變高,電解性能變差。
又,電極之厚度為308 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。
實施電極之變形試驗,結果L
1
、L
2
之平均值為23 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0034(kPa・s/m)。
[表3]
[表4]
於表4中,全部樣品於「每單位質量·單位面積所承受之力(1)」及「每單位質量·單位面積所承受之力(2)」之測定前可藉由表面張力而自立(即,不存在下垂之情況)。
<第3實施形態之驗證>
如下所述準備與第3實施形態相對應之實驗例(於以下之<第3實施形態之驗證>之項中簡稱為「實施例」)、及不與第3實施形態相對應之實驗例(於以下之<第3實施形態之驗證>之項中簡稱為「比較例」),藉由以下方法對該等進行評價。一邊適當參照圖57~62一邊對其詳細內容進行說明。
(1)電解評價(電壓(V)、電流效率(%))
藉由下述電解實驗評價電解性能。
使具有設置有陽極之陽極室之鈦製的陽極池(陽極終端池)與具有設置有陰極之鎳製的陰極室(陰極終端池)之陰極池相對。於池間配置一對墊片,將離子交換膜夾於一對墊片間。然後,使陽極池、墊片、離子交換膜、墊片及陰極密接而獲得電解池。
作為陽極,係藉由將氯化釕、氯化銥及四氯化鈦之混合溶液塗佈於已實施噴擊及酸蝕刻處理作為預處理之鈦基材上並進行乾燥、燒成而製作。陽極係藉由焊接而固定於陽極室。作為陰極,使用各實施例、比較例所記載者。作為陰極室之集電體,使用鎳製多孔金屬。集電體之尺寸為縱95 mm×橫110 mm。作為金屬彈性體,使用以鎳細線編織而成之墊。將作為金屬彈性體之墊置於集電體上。於其上覆蓋以40目之網眼將直徑150 μm之鎳線平織而成之鎳網,藉由利用鐵氟龍(註冊商標)製作之繩將Ni網之四角固定於集電體。以該Ni網作為饋電體。於該電解池中,利用作為金屬彈性體之墊之反彈力而設為零間距結構。作為墊片,使用EPDM(乙烯丙烯二烯)製之橡膠墊片。作為隔膜,使用下述之離子交換膜。
作為強化芯材,使用聚四氟乙烯(PTFE)製且90丹尼之單絲(以下稱為PTFE紗)。作為犧牲紗,使用35丹尼、6根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗。首先,以沿TD及MD之兩方向之各方向以24根/英吋配置PTFE紗、且於鄰接之PTFE紗間配置2根犧牲紗之方式進行平織而獲得織布。藉由滾筒將所獲得之織布進行壓接而獲得厚度70 μm之織布。
繼而,準備以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
COOCH
3
之共聚物計離子交換容量為0.85 mg當量/g之乾燥樹脂之樹脂A、以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
2
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.03 mg當量/g之乾燥樹脂之樹脂B。
使用該等樹脂A及B,藉由共擠出T模法獲得樹脂A層之厚度為15 μm、樹脂B層之厚度為104 μm之2層膜X。
繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙(高度50 μm之圓錐形狀之壓紋加工)、補強材及膜X,於加熱板表面溫度223℃、減壓度0.067 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。
藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)30質量%、氫氧化鉀(KOH)15質量%之80℃之水溶液中浸漬20分鐘而進行皂化。其後,於含有氫氧化鈉(NaOH)0.5 N之50℃之水溶液中浸漬1小時,將離子交換基之抗衡離子置換為Na,繼而進行水洗。進而於60℃下加以乾燥。
進而,於樹脂B之酸型樹脂之5質量%乙醇溶液添加平均粒徑(1次粒子徑)1 μm之氧化鋯20質量%並使其分散而調製懸浮液,藉由懸浮液噴射法對上述複合膜之兩面進行噴霧,於複合膜之表面形成氧化鋯之塗層,而獲得離子交換膜。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.5 mg/cm
2
。再者,平均粒徑係利用粒度分佈計(例如,島津製作所製造之「SALD(註冊商標)2200」)進行測定。
使用上述電解池進行食鹽之電解。陽極室之鹽水濃度(氯化鈉濃度)係調整為205 g/L。陰極室之氫氧化鈉濃度係調整為32質量%。以各電解池內之溫度成為90℃之方式調節陽極室及陰極室之各溫度。於電流密度6 kA/m
2
下實施食鹽電解,測定電壓、電流效率。此處,所謂電流效率係所生成之苛性鈉之量相對於流通之電流之比率,若藉由流通之電流,雜質離子或氫氧化物離子而非鈉離子於離子交換膜中移動,則電流效率降低。電流效率係藉由一定時間所生成之苛性鈉之莫耳數除以其間流通之電流之電子之莫耳數而求出。苛性鈉之莫耳數係藉由將由電解生成之苛性鈉回收於聚合物槽中,對其質量進行測定而求出。
(2)操作性(感應評價)
(A)將上文所述之離子交換膜(隔膜)切割成170 mm見方之尺寸,將下文所述之實施例及比較例中獲得之電極切割成95×110 mm。將離子交換膜與電極積層,靜置於鐵氟龍板上。將電解評價所使用之陽極池與陰極池之間隔設為約3 cm,提起靜置之積層體而實施插入並夾於其間之操作。於實施該操作時一邊操作一邊確認電極是否偏離、掉落。
(B)與上述(A)同樣地將積層體靜置於鐵氟龍板上。手持積層體之膜部分之相鄰的兩處之角,以積層體成為鉛直之方式提起。從該狀態起,以將手持之兩處之角靠近之方式移動,使膜成為凸狀、凹狀。將該操作再重複1次,確認電極對膜之追隨性。基於以下之指標,按照1~4之4個等級對該結果進行評價。
1:操作良好
2:能夠操作
3:操作困難
4:大體無法操作
此處,對於實施例3-4、3-6之樣品,如下文所述,即使為與大型電解池相同之尺寸亦對操作性進行評價。實施例3-4、3-6之評價結果係作為對上述(A)、(B)之評價與製成大型尺寸時之不同進行評價之指標。即,於對小型之積層體進行評價所獲得之結果為「1」、「2」之情形時,評價為即使於製成大型尺寸之情形時操作性亦良好。
(3)固定區域之比率
以離子交換膜中之與電解用電極相反之面之面積(與通電面相對應之部分及與非通電面相對應之部分之合計)作為面積S1而算出。繼而,以電解用電極之面積作為通電面之面積S2而算出。面積S1及S2係以從電解用電極側觀察離子交換膜與電解用電極之積層體時(參照圖57)之面積特定出。再者,由於電解用電極之形狀即使具有開孔,開孔率亦未達90%,因此將該電解用電極視為平板(開孔部分亦算入面積)。
關於固定區域之面積S3,亦如圖57般作為俯視積層體時之面積而特定出(僅與通電面相對應之部分之面積S3'亦同樣)。再者,於將下文所述之PTFE膠帶作為固定用構件進行固定之情形時,膠帶之重複部分並不算入面積中。又,於將下文所述之PTFE紗或接著劑作為固定用構件進行固定之情形時,亦將存在於電極、隔膜之背面側之面積包含在內算入面積中。
如上所述,作為離子交換膜中之固定區域之面積相對於與電解用電極相反之面之面積的比率α(%),算出100×(S3/S1)。進而,作為固定區域之僅與通電面相對應之部分之面積相對於通電面之面積之比率β,算出100×S3'/S2。
[實施例3-1]
準備量規厚度為22 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.96 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。
藉由打孔加工於該鎳箔開出圓形之孔而製成多孔箔。開孔率為44%。
按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。實施例3-1中所製作之電極之厚度為24 μm。含有氧化釕與氧化鈰之觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。塗層亦形成於未經粗面化之面。
為了將藉由上述方法所製作之電極用於電解評價而將其切成縱95 mm、橫110 mm之尺寸。使電極之經粗面化之面與利用0.1 N之NaOH水溶液平衡之離子交換膜(尺寸為160 mm×160 mm)之羧酸層側的大致中央之位置相對向而配置。使用PTFE膠帶(日東電工製造),如圖57所示般(但圖57僅為用以說明之概要圖,尺寸未必準確。以下之圖亦同樣),以夾著離子交換膜與電極之方式將4邊固定。於實施例3-1中,PTFE膠帶係固定用構件,比率α為60%,比率β為1.0%。
即使抓持膜與電極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極剝落或偏離之情況。又,即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極剝落或偏離之情況。
將上述膜一體電極以附著有電極之面成為陰極室側之方式夾於陽極池與陰極池之間。剖面結構係從陰極室側起依序排列集電體、墊、鎳網饋電體、電極、膜、陽極而形成零間距結構。
對所獲得之電極進行評價。將其結果示於表5。
表現出較低之電壓、較高之電流效率。操作性亦為「2」而相對較良好。
[實施例3-2]
如圖58所示,除了增加PTFE膠帶重疊於電解面之面積以外,與實施例3-1同樣地實施評價。即,於實施例3-2中,由於設為PTFE膠帶之面積沿電解用電極之面內方向增加,因此電解用電極中之電解面之面積與實施例3-1相比有所減少。於實施例3-2中,比率α為69%,比率β為23%。將評價之結果示於表5。
表現出較低之電壓、較高之電流效率。操作性亦為「1」而較良好。
[實施例3-3]
如圖59所示,除了增加PTFE膠帶重疊於電解面之面積以外,與實施例3-1同樣地實施評價。即,於實施例3-3中,由於設為PTFE膠帶之面積沿電解用電極之面內方向增加,因此電解用電極中之電解面之面積與實施例3-1相比有所減少。於實施例3-3中,比率α為87%,比率β為67%。將評價之結果示於表5。
表現出較低之電壓、較高之電流效率。操作性亦為「1」而較良好。
[實施例3-4]
準備與實施例3-1相同之電極,為了用於電解評價而切成縱95 mm、橫110 mm之尺寸。使電極之經粗面化之面與利用0.1 N之NaOH水溶液平衡之離子交換膜(尺寸為160 mm×160 mm)之羧酸層側的大致中央之位置相對向而配置。使用PTFE製之紗,如圖60所示,以使電極之左側縱向延伸之方式縫製離子交換膜與電極。從距電極之角部縱向10 mm、橫向10 mm之部分起,使PTFE紗從圖60之紙面背面側向正面側貫通,於縱向35 mm、橫向10 mm之部分從紙面正面側向背面側貫通,於縱向60 mm、橫向10 mm之部分再次使紗從紙面背面側向正面側貫通,於縱向85 mm、橫向10 mm之部分從紙面正面側向背面側貫通。於紗貫通離子交換膜之部分塗佈將以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
2
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.03 mg當量/g之樹脂之酸型樹脂S以成為5質量%之方式分散於乙醇中而成之溶液。
如上所述,於實施例3-4中,比率α為0.35%,比率β為0.86%。
即使抓持膜與電極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極掉落之情況。即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極掉落之情況。
對所獲得之電極進行評價。將其結果示於表5。
表現出較低之電壓、較高之電流效率。操作性亦為「2」而相對較良好。
進而,於實施例3-4中,準備變更為大型尺寸之離子交換膜、電極。準備4片縱1.5 m、橫2.5 m之離子交換膜、及縱0.3 m、橫2.4 m之陰極。以無間隙之方式將陰極排列於離子交換膜之羧酸層側,藉由PTFE紗將陰極與離子交換膜接著而製作積層體。於該例中,比率α為0.013%,比率β為0.017%。
實施將膜與電極成為一體之膜一體電極安裝於大型電解槽之操作,能夠順利地安裝。
[實施例3-5]
準備與實施例3-1相同之電極,為了用於電解評價而切成縱95 mm、橫110 mm之尺寸。使電極之經粗面化之面與利用0.1 N之NaOH水溶液平衡之離子交換膜(尺寸為160 mm×160 mm)之羧酸層側的大致中央之位置相對向而配置。使用圖61所示之聚丙烯製之固定用樹脂,將離子交換膜與電極加以固定。即,設置於距電極之角部縱向20 mm、橫向20 mm之部分中1處、距位於其下方之角部縱向20 mm、橫向20 mm之部分中進而1處之合計2處。於固定用樹脂貫通離子交換膜之部分塗佈與實施例3-4相同之溶液。
如上所述,於實施例3-5中,固定用樹脂及樹脂S成為固定用構件,比率α為0.47%,比率β為1.1%。
即使抓持膜與電極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極掉落之情況。即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極掉落之情況。
對所獲得之電極進行評價。將其結果示於表5。
表現出較低之電壓、較高之電流效率。操作性亦為「2」而相對較良好。
[實施例3-6]
準備與實施例3-1相同之電極,為了用於電解評價而切成縱95 mm、橫110 mm之尺寸。使電極之經粗面化之面與利用0.1 N之NaOH水溶液平衡之離子交換膜(尺寸為160 mm×160 mm)之羧酸層側的大致中央之位置相對向而配置。如圖62所示,使用氰基丙烯酸酯系接著劑(商品名:Aron Alpha,東亞合成股份有限公司),將離子交換膜與電極加以固定。即,藉由接著劑於電極之縱向之1邊中5處(均為等間隔)、及電極之橫向之1邊中8處(均為等間隔)進行固定。
如上所述,於實施例3-6中,接著劑成為固定用構件,比率α為0.78%,比率β為1.9%。
即使抓持膜與電極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極掉落之情況。即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極掉落之情況。
對所獲得之電極進行評價。將其結果示於表5。
表現出較低之電壓、較高之電流效率。操作性為「1」,亦相對較良好。
進而,於實施例3-6中,準備變更為大型尺寸之離子交換膜、電極。準備4片縱1.5 m、橫2.5 m之離子交換膜、及縱0.3 m、橫2.4 m之陰極。藉由上述接著劑將4片陰極之橫向之1邊彼此之緣部分相連,製成1片大型陰極(縱1.2 m、橫2.4 m)。藉由Aron Alpha將該大型陰極接著於離子交換膜之羧酸層側中央部分而製作積層體。即,與圖62同樣地,藉由接著劑於電極之縱向之1邊中5處(均為等間隔)、及於電極之橫向之1邊中8處(均為等間隔)進行固定。於該例中,比率α為0.019%,比率β為0.024%。
實施將膜與電極成為一體之膜一體電極安裝於大型電解槽之操作,能夠順利地安裝。
[實施例3-7]
準備與實施例3-1相同之電極,為了用於電解評價而切成縱95 mm、橫110 mm之尺寸。使電極之經粗面化之面與利用0.1 N之NaOH水溶液平衡之離子交換膜(尺寸為160 mm×160 mm)之羧酸層側的大致中央之位置相對向而配置。塗佈與實施例3-4相同之溶液,將離子交換膜與電極固定。即,設置於距電極之角部縱向20 mm、橫向20 mm之部分中1處、距位於其下方之角部縱向20 mm、橫向20 mm之部分進而1處之合計2處(參照圖61)。
如上所述,於實施例3-7中,樹脂S成為固定用構件,比率α為2.0%,比率β為4.8%。
即使抓持膜與電極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極掉落之情況。即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極掉落之情況。
對所獲得之電極進行評價。將其結果示於表5。
表現出較低之電壓、較高之電流效率。操作性亦為「2」而相對較良好。
[比較例3-1]
除了增加PTFE膠帶重疊於電解面之面積以外,與實施例3-1同樣地實施評價。即,於比較例3-1中,由於設為PTFE膠帶之面積沿電解用電極之面內方向增加,因此電解用電極中之電解面之面積與實施例3-1相比有所減少。於比較例3-1中,比率α為93%,比率β為83%。將評價之結果示於表5。
電壓較高,電流效率亦較低。操作性為「1」,較良好。
[比較例3-2]
除了增加PTFE膠帶重疊於電解面之面積以外,與實施例3-1同樣地實施評價。將評價之結果示於表5。即,於比較例3-2中,使PTFE膠帶之面積沿電解用電極之面內方向增加。
於比較例3-2中,比率α及比率β為100%,電解面整個面為由PTFE覆蓋之固定區域,因此無法供給電解液而無法進行電解。操作性為「1」,較良好。
[比較例3-3]
除了不使用PTFE膠帶、即比率α及比率β為0%以外,與實施例3-1同樣地實施評價。將評價之結果示於表5。
表現出較低之電壓、較高之電流效率。另一方面,由於不存在隔膜與電極之固定區域,因此無法將隔膜與電極作為積層體(一體物)進行處理,操作性為「4」。
將實施例3-1~7及比較例3-1~3之評價結果合併示於下述之表5。
[表5]
<第4實施形態之驗證>
如下所述準備與第4實施形態相對應之實驗例(於以下之<第4實施形態之驗證>之項中簡稱為「實施例」)、及不與第4實施形態相對應之實驗例(於以下之<第4實施形態之驗證>之項中簡稱為「比較例」),藉由以下方法對該等進行評價。一邊適當參照圖79~90一邊對其詳細內容進行說明。
[評價方法]
(1)開孔率
將電極切成130 mm×100 mm之尺寸。使用電子數顯厚度計(Mitutoyo股份有限公司製造,最少顯示0.001 mm)於面內均勻地測定10點,並算出平均值。以其作為電極之厚度(量規厚度)而算出體積。其後,利用電子天平測定質量,根據金屬之比重(鎳之比重=8.908 g/cm
3
、鈦之比重=4.506 g/cm
3
)算出開孔率或空隙率。
開孔率(空隙率)(%)=(1-(電極質量)/(電極體積×金屬之比重))×100
(2)每單位面積之質量(mg/cm
2
)
將電極切成130 mm×100 mm之尺寸,利用電子天平測定質量。用該值除以面積(130 mm×100 mm)而算出每單位面積之質量。
(3)每單位質量·單位面積所承受之力(1)(接著力)(N/mg・cm
2
))
[方法(i)]
測定係使用拉伸壓縮試驗機(今田製作所股份有限公司,試驗機本體:SDT-52NA型 拉伸壓縮試驗機,負荷計:SL-6001型負荷計)。
藉由粒編號320之氧化鋁對厚度1.2 mm、200 mm見方之鎳板實施噴擊加工。噴擊處理後之鎳板之算術平均表面粗糙度(Ra)為0.7 μm。此處,表面粗糙度測定係使用觸針式之表面粗糙度測定機SJ-310(Mitutoyo股份有限公司)。將測定樣品設置於與地面平行之平台上,於下述之測定條件下測定算術平均粗糙度Ra。將測定實施6次時,記載其平均值。
<觸針之形狀>圓錐,錐角度=60°,前端半徑=2 μm,靜態測定力=0.75 mN
<粗糙度標準>JIS2001
<評價曲線>R
<濾波>GAUSS
<臨界值 λc>0.8 mm
<臨界值 λs>2.5 μm
<區間數>5
<前掃、後掃>有
將該鎳板以成為鉛直之方式固定於拉伸壓縮試驗機之下側之夾頭。
使用下述之離子交換膜A作為隔膜。
作為強化芯材,使用聚四氟乙烯(PTFE)製且90丹尼之單絲(以下稱為PTFE紗)。作為犧牲紗,使用35丹尼、6根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。首先,以沿TD及MD之兩方向之各方向以24根/英吋配置PTFE紗、且於鄰接之PTFE紗間配置2根犧牲紗之方式進行平織而獲得織布。藉由滾筒將所獲得之織布進行壓接而獲得厚度70 μm之織布。
繼而,準備以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
COOCH
3
之共聚物計離子交換容量為0.85 mg當量/g之乾燥樹脂之樹脂A、以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.03 mg當量/g之乾燥樹脂之樹脂B。
使用該等樹脂A及B,藉由共擠出T模法獲得樹脂A層之厚度為15 μm、樹脂B層之厚度為104 μm之2層膜X。
繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙(高度50 μm之圓錐形狀之壓紋加工)、補強材及膜X,於加熱板表面溫度223℃、減壓度0.067 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。
藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)30質量%、氫氧化鉀(KOH)15質量%之80℃之水溶液中浸漬20分鐘而進行皂化。其後,於含有氫氧化鈉(NaOH)0.5 N之50℃之水溶液中浸漬1小時,將離子交換基之抗衡離子置換為Na,繼而進行水洗。進而於60℃下加以乾燥。
進而,於樹脂B之酸型樹脂之5質量%乙醇溶液中添加1次粒徑1 μm之氧化鋯20質量%並使其分散而調製懸浮液,藉由懸浮液噴射法對上述複合膜之兩面進行噴霧,於複合膜之表面形成氧化鋯之塗層,而獲得離子交換膜A。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.5 mg/cm
2
。再者,平均粒徑係利用粒度分佈計(島津製作所製造之「SALD(註冊商標)2200」)進行測定。
將上述所獲得之離子交換膜(隔膜)於純水中浸漬12小時以上後用於試驗。使其與以純水充分濡濕之上述鎳板接觸,藉由水之張力進行接著。此時,以鎳板與離子交換膜之上端之位置對齊之方式設置。
測定所使用之電解用電極樣品(電極)係切成130 mm見方。離子交換膜A係切成170 mm見方。以2塊不鏽鋼板(厚度1 mm、縱9 mm、橫170 mm)夾著電極之一邊,以不鏽鋼板、電極之中心對齊之方式對位後,藉由4個夾具均勻地固定。將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。此時,將對試驗機承受之荷重設為0 N。暫時從拉伸壓縮試驗機卸下不鏽鋼板、電極、夾具一體物,為了利用純水將電極充分濡濕,而浸漬於裝有純水之槽中。其後,再次將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。
使拉伸壓縮試驗機之上側夾頭下降,利用純水之表面張力使電解用電極樣品接著於離子交換膜表面。此時之接著面係橫130 mm、縱110 mm。將裝入至洗瓶中之純水吹送至電極及離子交換膜整體,製成隔膜、電極再次充分濡濕之狀態。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從上向下滾動,從而將多餘之純水去除。輥僅施加1次。
以10 mm/分鐘之速度使電極上升,開始負荷測定,記錄電極與隔膜之重疊部分成為橫130 mm、縱100 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極與離子交換膜之重疊部分之面積、及與離子交換膜重疊之部分之電極質量,而算出每單位質量·單位面積所承受之力(1)。與離子交換膜重疊之部分之電極質量係根據上述(2)之每單位面積之質量(mg/cm
2
)中所獲得之值,藉由比例計算而求出。
測定室之環境係溫度23±2℃、相對濕度30±5%。
再者,實施例、比較例中所使用之電極於接著於藉由表面張力接著於鉛直地固定之鎳板之離子交換膜時,可不下垂或剝離而獨立地接著。
再者,將承受力(1)之評價方法之模式圖示於圖79。
再者,拉伸試驗機之測定下限為0.01(N)。
(4)每單位質量·單位面積所承受之力(2)(接著力)(N/mg・cm
2
))
[方法(ii)]
測定係使用拉伸壓縮試驗機(今田製作所股份有限公司,試驗機本體:SDT-52NA型 拉伸壓縮試驗機,負荷計:SL-6001型負荷計)。
將與方法(i)相同之鎳板以成為鉛直之方式固定於拉伸壓縮試驗機之下側之夾頭。
測定所使用之電解用電極樣品(電極)係切成130 mm見方。離子交換膜A係切成170 mm見方。以2塊不鏽鋼板(厚度1 mm、縱9 mm、橫170 mm)夾著電極之一邊,以不鏽鋼板、電極之中心對齊之方式對位後,藉由4個夾具均勻地固定。將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。此時,將對試驗機承受之荷重設為0 N。暫時從拉伸壓縮試驗機卸下不鏽鋼板、電極、夾具一體物,為了利用純水將電極充分濡濕,而浸漬於裝有純水之槽中。其後,再次將不鏽鋼板之中心夾於拉伸壓縮試驗機之上側之夾頭,將電極懸掛。
使拉伸壓縮試驗機之上側夾頭下降,藉由溶液之表面張力使電解用電極樣品接著於鎳板表面。此時之接著面係橫130 mm、縱110 mm。將裝入至洗瓶中之純水吹送至電極及鎳板整體,製成鎳板、電極再次充分濡濕之狀態。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從上向下滾動,從而將多餘之溶液去除。輥僅施加1次。
以10 mm/分鐘之速度使電極上升,開始負荷測定,記錄電極與鎳板之縱向之重疊部分成為100 mm時之負荷。將該測定實施3次並算出平均值。
該平均值除以電極與鎳板之重疊部分之面積、及與鎳板重疊之部分之電極質量,而算出每單位質量·單位面積所承受之力(2)。與隔膜重疊之部分之電極質量係根據上述(2)之每單位面積之質量(mg/cm
2
)中所獲得之值,藉由比例計算而求出。
又,測定室之環境係溫度23±2℃、相對濕度30±5%。
再者,實施例、比較例中所使用之電極於藉由表面張力接著於鉛直地固定之鎳板時,可不下垂或剝離而獨立地接著。
再者,拉伸試驗機之測定下限為0.01(N)。
(5)直徑280 mm圓柱捲繞評價方法(1)(%)
(膜與圓柱)
按照以下之順序實施評價方法(1)。
將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸。將離子交換膜於純水中浸漬12小時以上後用於試驗。實施例33及34中電極藉由熱壓製而與離子交換膜成為一體,因此準備離子交換膜與電極之一體物(電極係130 mm見方)。將離子交換膜於純水中充分浸漬後,置於外徑280 mm之塑膠(聚乙烯)製之管之曲面上。其後,藉由將厚度5 mm之獨立發泡型之EPDM海綿橡膠捲繞於氯乙烯管(外徑38 mm)而成之輥將多餘之溶液去除。輥係從圖80所示之模式圖之左側向右側於離子交換膜上滾動。輥僅施加1次。1分鐘後,測定離子交換膜與外徑280 mm之塑膠製之管電極密接之部分之比率。
(6)直徑280 mm圓柱捲繞評價方法(2)(%)
(膜與電極)
按照以下之順序實施評價方法(2)。
將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成130 mm見方。將離子交換膜於純水中浸漬12小時以上後用於試驗。將離子交換膜與電極於純水中充分浸漬後進行積層。將該積層體以電極成為外側之方式置於外徑280 mm之塑膠(聚乙烯)製之管之曲面上。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從圖81所示之模式圖之左側向右側滾動,從而將多餘之溶液去除。輥僅施加1次。1分鐘後,測定離子交換膜與電極密接之部分之比率。
(7)直徑145 mm圓柱捲繞評價方法(3)(%)
(膜與電極)
按照以下之順序實施評價方法(3)。
將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成130 mm見方。將離子交換膜於純水中浸漬12小時以上後用於試驗。將離子交換膜與電極於純水中充分浸漬後進行積層。將該積層體以電極成為外側之方式置於外徑145 mm之塑膠(聚乙烯)製之管之曲面上。其後,將於氯乙烯管(外徑38 mm)捲繞厚度5 mm之獨立發泡型之EPDM海綿橡膠而成之輥從電極上方輕輕按壓,並且從圖82所示之模式圖之左側向右側滾動,從而將多餘之溶液去除。輥僅施加1次。1分鐘後,測定離子交換膜與電極密接之部分之比率。
(8)操作性(感應評價)
(A)將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成95×110 mm。將離子交換膜於純水中浸漬12小時以上後用於試驗。於各實施例中將離子交換膜與電極於碳酸氫鈉水溶液、0.1 N之NaOH水溶液、純水之三種溶液中充分浸漬後進行積層,靜置於鐵氟龍板上。將電解評價所使用之陽極池與陰極池之間隔設為約3 cm,提起靜置之積層體而實施插入並夾於其間之操作。於實施該操作時一邊操作一邊確認電極是否偏離、掉落。
(B)將[方法(i)]中製作之離子交換膜A(隔膜)切割成170 mm見方之尺寸,將電極切割成95×110 mm。將離子交換膜於純水中浸漬12小時以上後用於試驗。於各實施例中將離子交換膜與電極於碳酸氫鈉水溶液、0.1 N之NaOH水溶液、純水之三種溶液中充分浸漬後進行積層,靜置於鐵氟龍板上。手持積層體之膜部分之相鄰的兩處之角,以積層體成為鉛直之方式提起。從該狀態起,以將手持之兩處之角靠近之方式移動,使膜成為凸狀、凹狀。將該操作再重複1次,確認電極對膜之追隨性。基於以下之指標,按照1~4之4個等級對該結果進行評價。
1:操作良好
2:能夠操作
3:操作困難
4:大體無法操作
此處,對於實施例4-28之樣品,以與電極為1.3 m×2.5 m、離子交換膜為1.5 m×2.8 m之尺寸之大型電解池相同之尺寸實施操作。實施例28之評價結果(如下文所述為「3」)係作為對上述(A)、(B)之評價與製成大型尺寸時之不同進行評價之指標。即,於對小型之積層體進行評價所獲得之結果為「1」、「2」之情形時,評價為即使於製成大型尺寸之情形時操作性亦無問題。
(9)電解評價(電壓(V)、電流效率(%)、苛性鈉中食鹽濃度(ppm,50%換算))
藉由下述電解實驗評價電解性能。
使具有設置有陽極之陽極室之鈦製的陽極池(陽極終端池)與具有設置有陰極之鎳製的陰極室(陰極終端池)之陰極池相對。於池間配置一對墊片,將積層體(離子交換膜A與電解用電極之積層體)夾於一對墊片間。此處,使離子交換膜A與電解用電極之兩者直接夾於墊片間。然後,使陽極池、墊片、積層體、墊片及陰極密接而獲得電解池,準備包含該電解池之電解槽。
作為陽極,係藉由將氯化釕、氯化銥及四氯化鈦之混合溶液塗佈於已實施噴擊及酸蝕刻處理作為預處理之鈦基材上並進行乾燥、燒成而製作。陽極係藉由焊接而固定於陽極室。作為陰極,使用各實施例、比較例所記載者。作為陰極室之集電體,使用鎳製多孔金屬。集電體之尺寸為縱95 mm×橫110 mm。作為金屬彈性體,使用以鎳細線編織而成之墊。將作為金屬彈性體之墊置於集電體上。於其上覆蓋以40目之網眼將直徑150 μm之鎳線平織而成之鎳網,藉由利用鐵氟龍(註冊商標)製作之繩將Ni網之四角固定於集電體。以該Ni網作為饋電體。於該電解池中,利用作為金屬彈性體之墊之反彈力而成為零間距結構。作為墊片,使用EPDM(乙烯丙烯二烯)製之橡膠墊片。作為隔膜,使用[方法(i)]中製作之離子交換膜A(160 mm見方)。
使用上述電解池進行食鹽之電解。陽極室之鹽水濃度(氯化鈉濃度)係調整為205 g/L。陰極室之氫氧化鈉濃度係調整為32質量%。以各電解池內之溫度成為90℃之方式調節陽極室及陰極室之各溫度。於電流密度6 kA/m
2
下實施食鹽電解,測定電壓、電流效率、苛性鈉中食鹽濃度。此處,所謂電流效率係所生成之苛性鈉之量相對於流通之電流之比率,若藉由流通之電流,雜質離子或氫氧化物離子而非鈉離子於離子交換膜中移動,則電流效率降低。電流效率係藉由一定時間所生成之苛性鈉之莫耳數除以其間流通之電流之電子之莫耳數而求出。苛性鈉之莫耳數係藉由將由電解生成之苛性鈉回收於聚合物槽中,對其質量進行測定而求出。苛性鈉中食鹽濃度表示將苛性鈉濃度換算為50%所得之值。
再者,將實施例、比較例中所使用之電極及饋電體之規格示於表6。
(11)觸媒層之厚度、電解用電極基材、電極之厚度測定
電解用電極基材之厚度係使用電子數顯厚度計(Mitutoyo股份有限公司製造,最少顯示0.001 mm)於面內均勻地測定10點並算出平均值。以此作為電解用電極基材之厚度(量規厚度)。電極之厚度係與電極基材同樣地藉由電子數顯厚度計於面內均勻地測定10點並算出平均值。以此作為電極之厚度(量規厚度)。觸媒層之厚度係藉由電極之厚度減去電解用電極基材之厚度而求出。
(12)電極之彈性變形試驗
將[方法(i)]中製作之離子交換膜A(隔膜)及電極切割成110 mm見方之尺寸。將離子交換膜於純水中浸漬12小時以上後用於試驗。於溫度23±2℃、相對濕度30±5%之條件下,將離子交換膜與電極重疊而製作積層體後,如圖83所示般以不產生間隙之方式捲繞至外徑ϕ32 mm、長度20 cm之PVC製管。為了避免捲繞之積層體從PVC製管剝離或鬆動,而使用聚乙烯製之捆束帶加以固定。於該狀態下保持6小時。其後,去除捆束帶,將積層體從PVC製管解捲。僅將電極置於平台上,測定從平台隆起之部分之高度L
1
、L
2
並求出平均值。以該值作為電極變形之指標。即,值較小意指難以變形。
再者,於使用多孔金屬之情形時,於捲繞時存在SW方向、LW方向之兩種。於本試驗中係沿SW方向捲繞。
又,對於產生變形之電極(未恢復為原來平坦之狀態之電極),藉由如圖84所示之方法對塑性變形後之柔軟程度進行評價。即,將產生變形之電極置於在純水中充分浸漬之隔膜上,將一端固定,將浮起之相反之端部壓抵於隔膜,將力解除,對產生變形之電極是否追隨隔膜進行評價。
(13)膜損傷評價
使用下述之離子交換膜B作為隔膜。
作為強化芯材,使用為聚四氟乙烯(PTFE)且將100丹尼之帶狀紗線以900次/m撚絞而製成紗狀者(以下稱為PTFE紗)。作為經紗之犧牲紗,使用將35丹尼、8根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。又,作為緯紗之犧牲紗,使用將35丹尼、8根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗。首先,以將PTFE紗以24根/英吋配置、將犧牲紗於鄰接之PTFE紗間配置2根之方式進行平織,而獲得厚度100 μm之織布。
繼而,準備以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
COOCH
3
之共聚物計離子交換容量為0.92 mg當量/g之乾燥樹脂之聚合物(A1)、以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.10 mg當量/g之乾燥樹脂之聚合物(B1)。使用該等聚合物(A1)及(B1),藉由共擠出T模法獲得聚合物(A1)層之厚度為25 μm、聚合物(B1)層之厚度為89 μm之2層膜X。再者,各聚合物之離子交換容量表示將各聚合物之離子交換基前驅物水解而轉換為離子交換基時之離子交換容量。
又,另行準備以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.10 mg當量/g之乾燥樹脂之聚合物(B2)。將該聚合物單層擠出而獲得20 μm之膜Y。
繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙、膜Y、補強材及膜X,於加熱板溫度225℃、減壓度0.022 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)與氫氧化鉀(KOH)之水溶液中浸漬1小時而進行皂化後,於0.5 N之NaOH中浸漬1小時,將離子交換基所附離子取代為Na,繼而進行水洗。進而於60℃下加以乾燥。
又,將以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.05 mg當量/g之乾燥樹脂之聚合物(B3)水解後,藉由鹽酸使其成為酸型。於將該酸型之聚合物(B3')以5質量%之比率溶解於水及乙醇之50/50(質量比)混合液中而成之溶液中,以聚合物(B3')與氧化鋯粒子之質量比成為20/80之方式添加一次粒子之平均粒徑為0.02 μm之氧化鋯粒子。其後,藉由球磨機使其於氧化鋯粒子之懸浮液中分散而獲得懸浮液。
利用噴射法將該懸浮液塗佈於離子交換膜之兩表面並加以乾燥,藉此獲得具有含有聚合物(B3')與氧化鋯粒子之塗佈層之離子交換膜B。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.35 mg/cm
2
。
陽極係使用與(9)電解評價相同者。
陰極係使用各實施例、比較例所記載者。陰極室之集電體、墊及饋電體係使用與(9)電解評價相同者。即,以Ni網作為饋電體,利用作為金屬彈性體之墊之反彈力而成為零間距結構。墊片亦使用與(9)電解評價相同者。作為隔膜,使用藉由上述方法所製作之離子交換膜B。即,除了將離子交換膜B與電解用電極之積層體夾持於一對墊片間以外,準備與(9)相同之電解槽。
使用上述電解池進行食鹽之電解。陽極室之鹽水濃度(氯化鈉濃度)係調整為205 g/L。陰極室之氫氧化鈉濃度係調整為32質量%。以各電解池內之溫度成為70℃之方式調節陽極室及陰極室之各溫度。於電流密度8 kA/m
2
下實施食鹽電解。從電解開始起12小時後停止電解,取出離子交換膜B並觀察損傷狀態。
「○」意指無損傷。「×」意指於離子交換膜之大致整個面存在損傷。
(14)電極之通氣阻力
使用通氣性試驗機KES-F8(商品名,Kato Tech股份有限公司)測定電極之通氣阻力。通氣阻力值之單位為kPa・s/m。將測定實施5次,將其平均值記載於表7。測定係於以下之兩個條件下實施。再者,測定室之溫度設為24℃,相對濕度設為32%。
・測定條件1(通氣阻力1)
活塞速度:0.2 cm/s
通氣量:0.4 cc/cm
2
/s
測定範圍:SENSE L(低)
樣品尺寸:50 mm×50 mm
・測定條件2(通氣阻力2)
活塞速度:2 cm/s
通氣量:4 cc/cm
2
/s
測定範圍:SENSE M(中)或H(高)
樣品尺寸:50 mm×50 mm
[實施例4-1]
作為陰極電解用電極基材,準備量規厚度為16 μm之電解鎳箔。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。
藉由打孔加工於該鎳箔開出圓形之孔而製成多孔箔。開孔率為49%。
按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。實施例4-1中所製作之電極之厚度為24 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。塗層亦形成於未經粗面化之面。又,為氧化釕與氧化鈰之合計厚度。
將藉由上述方法所製作之電極之接著力之測定結果示於表7。觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。
為了將藉由上述方法所製作之電極用於電解評價而將其切成縱95 mm、橫110 mm之尺寸。使電極之經粗面化之面與利用0.1 N之NaOH水溶液平衡之[方法(i)]中所製作之離子交換膜A(尺寸為160 mm×160 mm)之羧酸層側的大致中央之位置相對向,藉由水溶液之表面張力使其等密接。
即使抓持膜與電極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極剝落或偏離之情況。又,即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極剝落或偏離之情況。
將上述膜一體電極以附著有電極之面成為陰極室側之方式夾於陽極池與陰極池之間。剖面結構係從陰極室側起依序排列集電體、墊、鎳網饋電體、電極、膜、陽極而形成零間距結構。
對所獲得之電極進行電解評價。將其結果示於表7。
表現出較低之電壓、較高之電流效率及較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
又,若藉由XRF(螢光X射線分析)測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。
[實施例4-2]
實施例4-2係使用量規厚度為22 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.96 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為44%。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
電極之厚度為29 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。塗層亦形成於未經粗面化之面。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0033(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。
[實施例4-3]
實施例4-3係使用量規厚度為30 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為1.38 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為44%。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
電極之厚度為38 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。塗層亦形成於未經粗面化之面。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。
[實施例4-4]
實施例4-4係使用量規厚度為16 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為75%。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
電極之厚度為24 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0023(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
又,若藉由XRF測定電解後之塗佈量,則經粗面化之面中殘存大致100%塗層,未經粗面化之面中塗層減少。由此說明,與膜相對向之面(經粗面化之面)有助於電解,即使不與膜相對向之相反面中塗層較少或不存在亦能夠發揮出良好之電解性能。
[實施例4-5]
實施例4-5係準備量規厚度為20 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之兩面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.96 μm。兩面均為相同之粗糙度。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。開孔率為49%。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
電極之厚度為30 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。塗層亦形成於未經粗面化之面。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0023(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
又,若藉由XRF測定電解後之塗佈量,則兩面均殘存大致100%塗層。若對比實施例4-1~4-4進行考慮,則說明即使不與膜相對向之相反面中塗層較少或不存在,亦能夠發揮出良好之電解性能。
[實施例4-6]
實施例4-6除了藉由離子鍍敷實施對陰極電解用電極基材之塗佈以外,與實施例4-1同樣地實施評價,並將結果示於表7。再者,離子鍍敷係於加熱溫度200℃下使用Ru金屬靶,於氬氣/氧氣環境下以成膜壓力7×10
-2
Pa進行製膜。所形成之塗層為氧化釕。
電極之厚度為26 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例4-7]
實施例4-7係藉由電成形法製作陰極電解用電極基材。光罩之形狀係設為將0.485 mm×0.485 mm之正方形以0.15 mm為間隔縱、橫排列而成之形狀。藉由依序實施曝光、顯影、電鍍,獲得量規厚度為20 μm、開孔率56%之鎳多孔箔。表面之算術平均粗糙度Ra為0.71 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
電極之厚度為37 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為17 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0032(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例4-8]
實施例4-8中作為陰極電解用電極基材,係藉由電成形法製作,量規厚度為50 μm,開孔率為56%。表面之算術平均粗糙度Ra為0.73 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
電極之厚度為60 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0032(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例4-9]
實施例4-9係使用量規厚度為150 μm、空隙率為76%之鎳不織布(NIKKO TECHNO股份有限公司製造)作為陰極電解用電極基材。不織布之鎳纖維直徑約為40 μm,單位面積重量為300 g/m
2
。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
電極之厚度為165 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為15 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為29 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0612(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。
[實施例4-10]
實施例4-10係使用量規厚度為200 μm、空隙率為72%之鎳不織布(NIKKO TECHNO股份有限公司製造)作為陰極電解用電極基材。不織布之鎳纖維直徑約為40 μm,單位面積重量為500 g/m
2
。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
電極之厚度為215 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為15 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為40 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0164(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。
[實施例4-11]
實施例4-11係使用量規厚度為200 μm、空隙率為72%之發泡鎳(Mitsubishi Materials股份有限公司製造)作為陰極電解用電極基材。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
又,電極之厚度為210 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為17 mm,未恢復為原來平坦之狀態。因此,對塑性變形後之柔軟程度進行評價,結果電極藉由表面張力而追隨隔膜。由此確認,即使經塑性變形,亦能夠藉由較小之力使其與隔膜接觸,該電極之操作性良好。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0402(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價為「0」而較良好。
[實施例4-12]
實施例4-12係使用線徑50 μm、200目、量規厚度為100 μm、開孔率為37%之鎳網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。即使實施噴擊處理,開孔率亦不變化。由於難以測定金屬絲網表面之粗糙度,因此於實施例4-12中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。1根金屬絲網之算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
電極之厚度為110 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0.5 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0154(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例4-13]
實施例4-13係使用線徑65 μm、150目、量規厚度為130 μm、開孔率為38%之鎳網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。即使實施噴擊處理,開孔率亦不變化。由於難以測定金屬絲網表面之粗糙度,因此於實施例4-13中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.66 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施上述評價,並將結果示於表7。
電極之厚度為133 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為3 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為6.5 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0124(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性為「2」,可判斷能夠作為大型積層體進行操作。膜損傷評價亦為「0」而較良好。
[實施例4-14]
實施例4-14係使用與實施例4-3相同之基材(量規厚度30 μm,開孔率44%)作為陰極電解用電極基材。除了未設置鎳網饋電體以外,以與實施例4-1相同之構成實施電解評價。即,電解池之剖面結構係從陰極室側起依序排列集電體、墊、膜一體電極、陽極而形成零間距結構,墊作為饋電體發揮功能。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例4-15]
實施例4-15係使用與實施例4-3相同之基材(量規厚度30 μm,開孔率44%)作為陰極電解用電極基材。設置參考例1中使用之劣化且電解電壓變高之陰極代替鎳網饋電體。除此以外,以與實施例4-1相同之構成實施電解評價。即,電解池之剖面結構從陰極室側起,依序排列集電體、墊、劣化且電解電壓變高之陰極(作為饋電體發揮功能)、陰極、隔膜、陽極而形成零間距結構,劣化且電解電壓變高之陰極作為饋電體發揮功能。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例4-16]
作為陽極電解用電極基材,準備量規厚度為20 μm之鈦箔。對鈦箔之兩面實施粗面化處理。對該鈦箔實施打孔加工,開出圓形之孔而製成多孔箔。孔之直徑為1 mm,開孔率為14%。表面之算術平均粗糙度Ra為0.37 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。
按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素、銥元素及鈦元素之莫耳比成為0.25:0.25:0.5之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、銥濃度為100 g/L之氯化銥(田中貴金屬工業股份有限公司)、四氯化鈦(和光純藥工業股份有限公司)加以混合。將該混合液充分攪拌,以其作為陽極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。於鈦多孔箔塗佈上述塗佈液後,於60℃下實施10分鐘之乾燥,於475℃下實施10分鐘之燒成。重複實施該等塗佈、乾燥、預燒成、燒成之一系列之操作後,於520℃下進行1小時之燒成。
為了將藉由上述方法所製作之電極用於電解評價而將其切成縱95 mm、橫110 mm之尺寸。藉由水溶液之表面張力使其密接於利用0.1 N之NaOH水溶液平衡之[方法(i)]中製作之離子交換膜A(尺寸為160 mm×160 mm)之磺酸層側的大致中央之位置。
陰極係按照以下之順序製備。首先,準備線徑150 μm、40目之鎳製金屬絲網作為基材。作為預處理而藉由氧化鋁實施噴擊處理後,於6 N之鹽酸中浸漬5分鐘,並利用純水充分洗淨、乾燥。
繼而,以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、氯化鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於300℃下實施3分鐘之預燒成,於550℃下實施10分鐘之燒成。其後,於550℃下實施1小時之燒成。重複進行該等塗佈、乾燥、預燒成、燒成之一系列之操作。
作為陰極室之集電體,使用鎳製多孔金屬。集電體之尺寸為縱95 mm×橫110 mm。作為金屬彈性體,使用以鎳細線編織而成之墊。將作為金屬彈性體之墊置於集電體上。於其上覆蓋藉由上述方法製作之陰極,藉由利用鐵氟龍(註冊商標)製作之繩將網之四角固定於集電體。
即使抓持膜與陽極成為一體之膜一體電極之膜部分之四角,使電極成為地面側而將膜一體電極以與地面平行之方式懸吊,亦不存在電極剝落或偏離之情況。又,即使抓持1邊之兩端而將膜一體電極以垂直於地面之方式懸吊,亦不存在電極剝落或偏離之情況。
藉由焊接將參考例3中所使用之劣化且電解電壓變高之陽極固定於陽極池,將上述膜一體電極以附著有電極之面成為陽極室側之方式夾於陽極池與陰極池之間。即,電解池之剖面結構係從陰極室側起,依序排列集電體、墊、陰極、隔膜、鈦多孔箔陽極、劣化且電解電壓變高之陽極,形成零間距結構。劣化且電解電壓變高之陽極作為饋電體發揮功能。再者,鈦多孔箔陽極與劣化且電解電壓變高之陽極之間僅係物理接觸,並未藉由焊接進行固定。
藉由該構成,與實施例4-1同樣地實施評價,並將結果示於表7。
電極之厚度為26 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為6 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為4 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0060(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例4-17]
實施例4-17係使用量規厚度20 μm、開孔率30%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.37 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-16同樣地實施評價,並將結果示於表7。
電極之厚度為30 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為5 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0030(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例4-18]
實施例4-18係使用量規厚度20 μm、開孔率42%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.38 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-16同樣地實施評價,並將結果示於表7。
電極之厚度為32 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為12 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為2.5 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0022(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例4-19]
實施例4-19係使用量規厚度50 μm、開孔率47%之鈦箔作為陽極電解用電極基材。表面之算術平均粗糙度Ra為0.40 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-16同樣地實施評價,並將結果示於表7。
電極之厚度為69 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為19 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為8 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0024(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例4-20]
實施例4-20係使用量規厚度100 μm、鈦纖維直徑約為20 μm、單位面積重量為100 g/m
2
、開孔率78%之鈦不織布作為陽極電解用電極基材。除此以外,與實施例4-16同樣地實施評價,並將結果示於表7。
電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為2 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0228(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例4-21]
實施例4-21係使用量規厚度120 μm、鈦纖維直徑約為60 μm、150目之鈦金屬絲網作為陽極電解用電極基材。開孔率為42%。藉由粒編號320之氧化鋁實施噴擊處理。由於難以測定金屬絲網表面之粗糙度,因此於實施例4-21中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.60 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-16同樣地實施評價,並將結果示於表7。
電極之厚度為140 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為20 μm。
觀測到充分之接著力。
實施電極之變形試驗,結果L
1
、L
2
之平均值為10 mm。可知為彈性變形區域較廣之電極。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0132(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。膜損傷評價亦為「0」而較良好。
[實施例4-22]
實施例4-22係與實施例4-16同樣地使用劣化且電解電壓變高之陽極作為陽極饋電體,使用與實施例4-20相同之鈦不織布作為陽極。與實施例4-15同樣地使用劣化且電解電壓變高之陰極作為陰極饋電體,使用與實施例4-3相同之鎳箔電極作為陰極。電解池之剖面結構係從陰極室側起,依序排列集電體、墊、劣化且電壓變高之陰極、鎳多孔箔陰極、隔膜、鈦不織布陽極、劣化且電解電壓變高之陽極而形成零間距結構,劣化且電解電壓變高之陰極及陽極作為饋電體發揮功能。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
電極(陽極)之厚度為114 μm,觸媒層之厚度係電極(陽極)之厚度減去電解用電極基材之厚度而為14 μm。又,電極(陰極)之厚度為38 μm,觸媒層之厚度係電極(陰極)之厚度減去電解用電極基材之厚度而為8 μm。
於陽極及陰極均觀測到充分之接著力。
實施電極(陽極)之變形試驗,結果L
1
、L
2
之平均值為2 mm。實施電極(陰極)之變形試驗,結果L
1
、L
2
之平均值為0 mm。
測定電極(陽極)之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0228(kPa・s/m)。測定電極(陰極)之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。
又,表現出較低之電壓、較高之電流效率、較低之苛性中食鹽濃度。操作性亦為「1」而較良好。陽極及陰極中膜損傷評價均亦為「0」而較良好。再者,於實施例4-22中,於隔膜之單面貼附陰極,於相反之面貼附陽極,將陰極及陽極組合進行膜損傷評價。
[實施例4-23]
於實施例4-23中係使用Agfa公司製造之微多孔膜「Zirfon Perl UTP 500」。
Zirfon膜係於純水中浸漬12小時以上後用於試驗。除此以外,與實施例4-3同樣地實施上述評價,並將結果示於表7。
實施電極之變形試驗,結果L
1
、L
2
之平均值為0 mm。可知為彈性變形區域較廣之電極。
與使用離子交換膜作為隔膜時相同,觀測到充分之接著力,微多孔膜與電極藉由表面張力而密接,操作性為「1」而較良好。
[參考例1]
於參考例1中,作為陰極而使用於大型電解槽中使用8年、劣化且電解電壓變高之陰極。於陰極室之墊上設置上述陰極代替鎳網饋電體,隔著[方法(i)]中製作之離子交換膜A實施電解評價。於參考例1中不使用膜一體電極,電解池之剖面結構係從陰極室側起,依序排列集電體、墊、劣化且電解電壓變高之陰極、離子交換膜A、陽極而形成零間距結構。
藉由該構成實施電解評價,結果電壓為3.04 V,電流效率為97.0%,苛性鈉中食鹽濃度(50%換算值)為20 ppm。由於陰極劣化,因此結果為電壓較高
[參考例2]
於參考例2中,使用鎳網饋電體作為陰極。即,藉由未形成觸媒塗層之鎳網實施電解。
將鎳網陰極設置於陰極室之墊上,隔著[方法(i)]中製作之離子交換膜A實施電解評價。參考例2之電池之剖面結構係從陰極室側起,依序排列集電體、墊、鎳網、離子交換膜A、陽極而形成零間距結構。
藉由該構成實施電解評價,結果電壓為3.38 V,電流效率為97.7%,苛性鈉中食鹽濃度(50%換算值)為24 ppm。由於未塗佈陰極觸媒,因此結果為電壓較高。
[參考例3]
於參考例3中,作為陽極而使用於大型電解槽中使用約8年、劣化且電解電壓變高之陽極。
參考例3之電解池之剖面結構係從陰極室側起,依序排列集電體、墊、陰極、[方法(i)]中製作之離子交換膜A、劣化且電解電壓變高之陽極而形成零間距結構。
藉由該構成實施電解評價,結果電壓為3.18 V,電流效率為97.0%,苛性鈉中食鹽濃度(50%換算值)為22 ppm。由於陽極劣化,因此結果為電壓較高。
[實施例4-24]
於實施例4-24中,使用全滾筒加工後之量規厚度100 μm、開孔率33%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例4-24中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.68 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。
每單位面積之質量為67.5(mg/cm
2
)。每單位質量·單位面積所承受之力(1)為0.05(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為64%,直徑145 mm圓柱捲繞評價(3)之結果為22%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為13 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0168(kPa・s/m)。
[實施例4-25]
於實施例4-25中,使用全滾筒加工後之量規厚度100 μm、開孔率16%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例4-25中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
電極之厚度為107 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。
每單位面積之質量為78.1(mg/cm
2
)。每單位質量·單位面積所承受之力(1)為0.04(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為37%,直徑145 mm圓柱捲繞評價(3)之結果為25%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為18.5 mm。測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0176(kPa・s/m)。
[實施例4-26]
實施例4-26係使用全滾筒加工後之量規厚度為100 μm、開孔率為40%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例4-26中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.70 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。對電解用電極基材之塗佈係藉由與實施例4-6同樣之離子鍍敷實施。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
電極之厚度為110 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
每單位質量·單位面積所承受之力(1)為0.07(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為80%,直徑145 mm圓柱捲繞評價(3)之結果為32%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「3」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為11 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0030(kPa・s/m)。
[實施例4-27]
實施例4-27係使用全滾筒加工後之量規厚度為100 μm、開孔率為58%之鎳多孔金屬作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例4-27中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
電極之厚度為109 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為9 μm。
每單位質量·單位面積所承受之力(1)為0.06(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果為69%,直徑145 mm圓柱捲繞評價(3)之結果為39%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等問題。操作性為「3」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為11.5 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0028(kPa・s/m)。
[實施例4-28]
實施例4-28係使用量規厚度為300 μm、開孔率為56%之鎳金屬絲網作為陰極電解用電極基材。由於難以測定金屬絲網之表面粗糙度,因此於實施例4-28中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。算術平均粗糙度Ra為0.64 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施評價,並將結果示於表7。
電極之厚度為308 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。
每單位面積之質量為49.2(mg/cm
2
)。因此,直徑280 mm圓柱捲繞評價(2)之結果為88%,直徑145 mm圓柱捲繞評價(3)之結果為42%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況,操作性為「3」,存在問題。實際中以大型尺寸進行操作,可評價為「3」。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為23 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0034(kPa・s/m)。
[實施例4-29]
於實施例4-29中使用量規厚度200 μm、開孔率37%之鎳金屬絲網作為陰極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定金屬絲網之表面粗糙度,因此於實施例4-29中在噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.65 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-1同樣地實施電極電解評價、接著力之測定結果、密接性。將結果示於表7。
電極之厚度為210 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為10 μm。
每單位面積之質量為56.4 mg/cm
2
。因此,直徑145 mm圓柱捲繞評價方法(3)之結果為63%,電極與隔膜之密接性較差。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況,操作性為「3」,存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為19 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0096(kPa・s/m)。
[實施例4-30]
於實施例4-30中使用全滾筒加工後之量規厚度500 μm、開孔率17%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例4-30中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.60 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-16同樣地實施評價,並將結果示於表7。
又,電極之厚度為508 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。
每單位面積之質量為152.5(mg/cm
2
)。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L
1
、L
2
之值。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0072(kPa・s/m)。
[實施例4-31]
於實施例4-31中,使用全滾筒加工後之量規厚度800 μm、開孔率8%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例4-31中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.61 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-16同樣地實施上述評價,並將結果示於表7。
電極之厚度為808 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。
每單位面積之質量為251.3(mg/cm
2
)。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L
1
、L
2
之值。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0172(kPa・s/m)。
[實施例4-32]
於實施例4-32中,使用全滾筒加工後之量規厚度1000 μm、開孔率46%之鈦多孔金屬作為陽極電解用電極基材。藉由粒編號320之氧化鋁實施噴擊處理。噴擊處理後開孔率亦未變化。由於難以測定多孔金屬之表面粗糙度,因此於實施例4-32中在噴擊時同時對厚度1 mm之鈦板進行噴擊處理,以該鈦板之表面粗糙度作為金屬絲網之表面粗糙度。算術平均粗糙度Ra為0.59 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。除此以外,與實施例4-16同樣地實施上述評價,並將結果示於表7。
又,電極之厚度為1011 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為11 μm。
每單位面積之質量為245.5(mg/cm
2
)。每單位質量·單位面積所承受之力(1)為0.01(N/mg・cm
2
),為較小之值。因此,直徑280 mm圓柱捲繞評價(2)之結果未達5%,直徑145 mm圓柱捲繞評價(3)之結果未達5%,將電極與隔膜剝離之部分變多。其存在於處理膜一體電極時,電極容易被剝離,於操作中電極從膜剝離掉落等情況。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果電極係捲曲為PVC製管之形狀之狀態而未恢復,無法測定L
1
、L
2
之值。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0027(kPa・s/m)。
[實施例4-33]
實施例4-33中,以先前文獻(日本專利特開昭58-48686之實施例)為參考,製作將電極熱壓接於隔膜而成之膜電極接合體。
使用量規厚度100 μm、開孔率33%之鎳多孔金屬作為陰極電解用電極基材,與實施例4-1同樣地實施電極塗佈。其後,按照下述之順序對電極之單面實施惰性化處理。於電極之單面貼附聚醯亞胺黏著帶(中興化成股份有限公司),於相反面塗佈PTFE分散液(DuPont-Mitsui Fluorochemicals股份有限公司,31-JR(商品名)),於120℃之馬弗爐中乾燥10分鐘。將聚醯亞胺膠帶剝離,於設定為380℃之馬弗爐中實施10分鐘燒結處理。將該操作重複2次,對電極之單面進行惰性化處理。
製作由末端官能基為「-COOCH
3
」之全氟碳聚合物(C聚合物)與末端基為「-SO
2
F」之全氟碳聚合物(S聚合物)之2層所形成之膜。C聚合物層之厚度為3密耳(mil),S聚合物層之厚度為4密耳(mil)。對該2層膜實施皂化處理,藉由水解對聚合物之末端導入離子交換基。C聚合物末端被水解為羧酸基,S聚合物末端被水解為磺基。以磺酸基計之離子交換容量為1.0 meq/g,以羧酸基計之離子交換容量為0.9 meq/g。
使具有羧酸基作為離子交換基之面與經惰性化之電極面相對向,並實施熱壓製,而將離子交換膜與電極一體化。熱壓接後電極之單面亦為露出之狀態,不存在電極貫通膜之部分。
其後,為了抑制電解中產生之氣泡對膜之附著,將導入有氧化鋯與磺基之全氟碳聚合物混合物塗佈於兩面。由此製作實施例4-33之膜電極接合體。
使用該膜電極接合體,測定每單位質量·單位面積所承受之力(1),結果由於藉由熱壓接將電極與膜強力接合,因此電極未向上方移動。因此,以不移動離子交換膜與鎳板之方式進行固定,藉由更強之力將電極向上方拉拽,結果於承受1.50(N/mg・cm
2
)之力時,膜之一部分破裂。實施例4-33之膜電極接合體之每單位質量·單位面積所承受之力(1)至少為1.50(N/mg・cm
2
),被強力地接合。
實施直徑280 mm圓柱捲繞評價(1),結果與塑膠製管之接觸面積未達5%。另一方面,實施直徑280 mm圓柱捲繞評價(2),結果雖然電極與膜100%接合,但最初隔膜並未捲繞至圓柱。直徑145 mm圓柱捲繞評價(3)之結果亦相同。該結果意指膜之操作性因一體化之電極而受損,而難以捲繞為滾筒狀、或加以彎折。操作性為「3」,存在問題。膜損傷評價為「0」。又,實施電解評價,結果電壓變高,電流效率變低,苛性鈉中之食鹽濃度(50%換算值)變高,電解性能變差。
又,電極之厚度為114 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為14 μm。
實施電極之變形試驗,結果L
1
、L
2
之平均值為13 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0168(kPa・s/m)。
[實施例4-34]
實施例4-34係使用線徑150 μm、40目、量規厚度300 μm、開孔率58%之鎳網作為陰極電解用電極基材。除此以外,與實施例4-33同樣地製作膜電極接合體。
使用該膜電極接合體,測定每單位質量·單位面積所承受之力(1),結果由於藉由熱壓接將電極與膜強力接合,因此電極未向上方移動。因此,以不移動離子交換膜與鎳板之方式進行固定,藉由更強之力將電極向上方拉拽,結果於承受1.60(N/mg・cm
2
)之力時,膜之一部分破裂。實施例4-34之膜電極接合體之每單位質量·單位面積所承受之力(1)至少為1.60(N/mg・cm
2
),被強力地接合。
使用該膜電極接合體實施直徑280 mm圓柱捲繞評價(1),結果與塑膠製管之接觸面積未達5%。另一方面,實施直徑280 mm圓柱捲繞評價(2),結果雖然電極與膜100%接合,但最初隔膜並未捲繞至圓柱。直徑145 mm圓柱捲繞評價(3)之結果亦相同。該結果意指膜之操作性因一體化之電極而受損,而難以捲繞為滾筒狀、或加以彎折。操作性為「3」,存在問題。又,實施電解評價,結果電壓變高,電流效率變低,苛性鈉中之食鹽濃度變高,電解性能變差。
又,電極之厚度為308 μm。觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為8 μm。
實施電極之變形試驗,結果L
1
、L
2
之平均值為23 mm。
測定電極之通氣阻力,結果於測定條件1下為0.07(kPa・s/m)以下,於測定條件2下為0.0034(kPa・s/m)。
[實施例4-35]
準備量規厚度為150 μm之鎳線作為陰極電解用電極基材。實施利用該鎳線之粗面化處理。由於難以測定鎳線之表面粗糙度,因此於實施例4-35中於噴擊時同時對厚度1 mm之鎳板進行噴擊處理,以該鎳板之表面粗糙度作為鎳線之表面粗糙度。藉由粒編號320之氧化鋁實施噴擊處理。算術平均粗糙度Ra為0.64 μm。
按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088(商品名),厚度10 mm)而成之塗佈滾筒與上述塗佈液始終相接之方式設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。實施例4-35中所製作之鎳線1根之厚度為158 μm。
將藉由上述方法所製作之鎳線切成110 mm及95 mm之長度。如圖85所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由Aron Alpha將交點部分接著而製作電極。對電極實施評價,將其結果示於表7。
電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為99.7%。
電極之每單位面積之質量為0.5(mg/cm
2
)。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為15 mm。
測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力值為0.0002(kPa・s/m)。
又,對於電極,使用圖86所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓成為3.16 V,較高。
[實施例4-36]
於實施例4-36中,使用實施例4-35中所製作之電極,如圖87所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由Aron Alpha將交點部分接著而製作電極。對電極實施評價,將其結果示於表7。
電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為99.4%。
電極之每單位面積之質量為0.9(mg/cm
2
)。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為16 mm。
測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力為0.0004(kPa・s/m)。
又,對於電極,使用圖88所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓為3.18 V,較高。
[實施例4-37]
於實施例4-37中,使用實施例4-35中所製作之電極,如圖89所示,以110 mm之鎳線與95 mm之鎳線於各鎳線之中心垂直重疊之方式放置,藉由Aron Alpha將交點部分接著而製作電極。對電極實施評價,將其結果示於表7。
電極中鎳線重疊之部分最厚,電極之厚度為306 μm。觸媒層之厚度為6 μm。開孔率為98.8%。
電極之每單位面積之質量為1.9(mg/cm
2
)。每單位質量·單位面積所承受之力(1)及(2)均為拉伸試驗機之測定下限以下。因此,直徑280 mm圓柱捲繞評價(1)之結果未達5%,將電極與隔膜剝離之部分變多。操作性為「4」,亦存在問題。膜損傷評價為「0」。
實施電極之變形試驗,結果L
1
、L
2
之平均值為14 mm。
又,測定電極之通氣阻力,結果於測定條件2下為0.001(kPa・s/m)以下。於測定條件2下,將通氣阻力測定裝置之SENSE(測定範圍)設為H(高)進行測定,結果通氣阻力為0.0005(kPa・s/m)。
又,對於電極,使用圖90所示之結構體,將電極(陰極)設置於Ni網饋電體上,藉由(9)電解評價所記載之方法實施電解評價。其結果為,電壓為3.18 V,較高。
[比較例4-1]
(觸媒之製備)
將硝酸銀(和光純藥股份有限公司)0.728 g、硝酸鈰6水合物(和光純藥股份有限公司)1.86 g添加至純水150 ml中,製作金屬鹽水溶液。於15%氫氧化四甲基銨水溶液(和光純藥股份有限公司)100 g中添加純水240 g而製作鹼性溶液。一邊使用磁攪拌器攪拌鹼性溶液,一邊使用滴定管以5 ml/分鐘滴加添加上述金屬鹽水溶液。對含有所生成之金屬氫氧化物微粒之懸浮液進行抽氣過濾後,進行水洗而去除鹼性成分。其後,將過濾物轉移至200 ml之2-丙醇(Kishida Chemical股份有限公司)中,藉由超音波分散機(US-600T,日本精機製作所股份有限公司)再分散10分鐘,而獲得均勻之懸浮液。
將疏水性碳黑(DENKA BLACK(註冊商標)AB-7(商品名),電氣化學工業股份有限公司)0.36 g、親水性碳黑(科琴黑(註冊商標)EC-600JD(商品名),三菱化學股份有限公司)0.84 g分散於2-丙醇100 ml中,藉由超音波分散機分散10分鐘,而獲得碳黑之懸浮液。將金屬氫氧化物前驅物之懸浮液與碳黑之懸浮液混合,藉由超音波分散機分散10分鐘。將該懸浮液進行抽氣過濾,於室溫下乾燥半天,而獲得分散固定有金屬氫氧化物前驅物之碳黑。繼而,使用惰性氣體燒成爐(VMF165型,山田電機股份有限公司),於氮氣環境、400℃下進行1小時之燒成,而獲得將電極觸媒分散固定化之碳黑A。
(反應層用之粉末製作)
於將電極觸媒分散固定化之碳黑A 1.6 g中添加利用純水稀釋為20重量%之界面活性劑Triton(註冊商標)X-100(商品名,ICN Biomedical公司)0.84 ml、純水15 ml,藉由超音波分散機分散10分鐘。於該分散液中添加PTFE(聚四氟乙烯)分散液(PTFE30J(商品名),DuPont-Mitsui Fluorochemicals股份有限公司)0.664 g,並攪拌5分鐘後,進行抽氣過濾。進而,於乾燥機中在80℃下乾燥1小時,藉由研磨機進行粉碎,而獲得反應槽用粉末A。
(氣體擴散層用粉末之製作)
藉由超音波分散機將疏水性碳黑(DENKA BLACK(註冊商標)AB-7(商品名))20 g、利用純水稀釋為20重量%之界面活性劑Triton(註冊商標)X-100(商品名)50 ml、純水360 ml分散10分鐘。於所獲得之分散液中添加PTFE分散液22.32 g,並攪拌5分鐘後,進行過濾。進而,於80℃之乾燥機中乾燥1小時,藉由研磨機實施粉碎,而獲得氣體擴散層用粉末A。
(氣體擴散電極之製作)
於氣體擴散層用粉末A 4 g中添加乙醇8.7 ml,進行混練而製成飴狀。藉由滾筒成形機將該製成飴狀之氣體擴散層用粉末成形為片狀,埋入銀網(SW=1,LW=2,厚度=0.3 mm)作為集電體,最終成形為1.8 mm之片狀。於反應層用粉末A 1 g中添加乙醇2.2 ml,進行混練而製成飴狀。藉由滾筒成形機將該製成飴狀之反應層用粉末成形為厚度0.2 mm之片狀。進而,將所製作之使用氣體擴散層用粉末A所獲得之片材及使用反應層用粉末A所獲得之片材之2片片材進行積層,藉由滾筒成形機成形為1.8 mm之片狀。將該積層而成之片材於室溫下乾燥一晝夜,而將乙醇去除。進而,為了將殘存之界面活性劑去除,於空氣中在300℃下進行1小時之熱分解處理。包於鋁箔中,藉由熱壓機(SA303(商品名),TESTER SANGYO股份有限公司),於360℃下以50 kgf/cm
2
進行1分鐘熱壓,而獲得氣體擴散電極。氣體擴散電極之厚度為412 μm。
使用所獲得之電極,進行電解評價。電解池之剖面結構係從陰極室側起依序排列集電體、墊、鎳網饋電體、電極、膜、陽極而形成零間距結構。將其結果示於表7。
實施電極之變形試驗,結果L
1
、L
2
之平均值為19 mm。
測定電極之通氣阻力,結果於測定條件1下為25.88(kPa・s/m)。
又,操作性為「3」,存在問題。又,實施電解評價,結果電流效率變低,苛性鈉中之食鹽濃度變高,電解性能顯著變差。膜損傷評價為「3」,亦存在問題。
根據該等結果可知,若使用比較例4-1中獲得之氣體擴散電極,則電解性能顯著較差。又,於離子交換膜之大致整個面確認到損傷。認為其原因在於:由於比較例4-1之氣體擴散電極之通氣阻力顯著較大,因此電極中產生之NaOH滯留於電極與隔膜之界面而成為高濃度。
[表6]
[表7]
於表7中,全部樣品於「每單位質量·單位面積所承受之力(1)」及「每單位質量·單位面積所承受之力(2)」之測定前可藉由表面張力而自立(即,不存在下垂之情況)。
<第5實施形態之驗證>
如下所述準備與第5實施形態相對應之實驗例(於以下之<第5實施形態之驗證>之項中簡稱為「實施例」)、及不與第5實施形態相對應之實驗例(於以下之<第5實施形態之驗證>之項中簡稱為「比較例」),藉由以下方法對該等進行評價。一邊適當參照圖93~94,100~102一邊對其詳細內容進行說明。
使用以下述方式製造之離子交換膜A作為隔膜。
作為強化芯材,使用聚四氟乙烯(PTFE)製且90丹尼之單絲(以下稱為PTFE紗)。作為犧牲紗,使用35丹尼、6根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。首先,以沿TD及MD之兩方向之各方向以24根/英吋配置PTFE紗、且於鄰接之PTFE紗間配置2根犧牲紗之方式進行平織而獲得織布。藉由滾筒將所獲得之織布進行壓接而獲得厚度70 μm之織布。
其次,準備以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
COOCH
3
之共聚物計離子交換容量為0.85 mg當量/g之乾燥樹脂之樹脂A、以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.03 mg當量/g之乾燥樹脂之樹脂B。
使用該等樹脂A及B,藉由共擠出T模法獲得樹脂A層之厚度為15 μm、樹脂B層之厚度為104 μm之2層膜X。
繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙(高度50 μm之圓錐形狀之壓紋加工)、補強材及膜X,於加熱板表面溫度223℃、減壓度0.067 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。
藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)30質量%、氫氧化鉀(KOH)15質量%之80℃之水溶液中浸漬20分鐘而進行皂化。其後,於含有氫氧化鈉(NaOH)0.5 N之50℃之水溶液中浸漬1小時,將離子交換基之抗衡離子置換為Na,繼而進行水洗。進而於60℃下加以乾燥。
進而,於樹脂B之酸型樹脂之5質量%乙醇溶液中添加1次粒徑1 μm之氧化鋯20質量%並使其分散,而調製懸浮液,藉由懸浮液噴射法對上述複合膜之兩面進行噴霧,於複合膜之表面形成氧化鋯之塗層,而獲得離子交換膜A。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.5 mg/cm
2
。此處,平均粒徑係利用粒度分佈計(島津製作所製造之「SALD(註冊商標)2200」)進行測定。
使用下述之陰極、陽極作為電極。
準備量規厚度為22 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.95 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。
藉由打孔加工於該鎳箔開出圓形之孔而製成多孔箔。開孔率為44%。
按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。所製作之電極之厚度為29 μm。含有氧化釕與氧化鈰之觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。塗層亦形成於未經粗面化之面。
使用量規厚度100 μm、鈦纖維直徑約為20 μm、單位面積重量為100 g/m
2
、開孔率78%之鈦不織布作為陽極電解用電極基材。
按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素、銥元素及鈦元素之莫耳比成為0.25:0.25:0.5之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、銥濃度為100 g/L之氯化銥(田中貴金屬工業股份有限公司)、四氯化鈦(和光純藥工業股份有限公司)加以混合。將該混合液充分攪拌,以其作為陽極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。於鈦多孔箔塗佈上述塗佈液後,於60℃下實施10分鐘之乾燥,於475℃下實施10分鐘之燒成。重複實施該等塗佈、乾燥、預燒成、燒成之一系列之操作後,於520℃下進行1小時之燒成。
[實施例5-1]
(使用陰極-膜積層體之例)
以下述方式預先製作捲繞體。首先,藉由上述所記載之方法準備縱1.5 m、橫2.5 m之離子交換膜。又,藉由上述所記載之方法,準備4片縱0.3 m、橫2.4 m之陰極。
將離子交換膜於2%之碳酸氫鈉溶液中浸漬一晝夜後,將陰極無間隙地排列於羧酸層側,而製作陰極與離子交換膜之積層體(參照圖100)。若將陰極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陰極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。如圖101所示,將所獲得之積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。捲繞體之尺寸成為外徑84 mm、長度1.7 m之圓柱形狀,能夠減小積層體之尺寸。
繼而,於既有之大型電解槽(具有與圖93、94所示者相同之結構之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陰極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。
與先前相比,能夠容易地更換電極、隔膜。若於電解運轉中預先準備積層體之捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。
[實施例5-2]
(使用陽極-膜積層體之例)
以下述方式預先製作捲繞體。首先,藉由上述所記載之方法準備縱1.5 m、橫2.5 m之離子交換膜。又,藉由上述所記載之方法準備4片縱0.3 m、橫2.4 m之陽極。
將離子交換膜於2%之碳酸氫鈉溶液中浸漬一晝夜後,按照與實施例5-1相同之要領將陽極無間隙地排列於磺酸層側,而製作陽極與離子交換膜之積層體。若將陰極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陰極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。按照與實施例5-1相同之要領將所獲得之積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。捲繞體之尺寸成為外徑86 mm、長度1.7 m之圓柱形狀,能夠減小積層體之尺寸。
繼而,於既有之大型電解槽(與實施例5-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陽極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。
與先前相比,能夠容易地更換電極、隔膜。若於電解運轉中預先準備積層體之捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。
[實施例5-3]
(使用陽極/陰極-膜積層體之例)
以下述方式預先製作捲繞體。首先,藉由上述所記載之方法準備縱1.5 m、橫2.5 m之離子交換膜。又,藉由上述所記載之方法各準備4片縱0.3 m、橫2.4 m之陽極及陽極。
將離子交換膜於2%之碳酸氫鈉溶液中浸漬一晝夜後,按照與實施例5-1相同之要領,將陰極無間隙地排列於羧酸層側,將陽極無間隙地排列於磺酸層側,而製作陰極、陽極與離子交換膜之積層體。若將陰極、陽極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陰極、陽極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。按照與實施例5-1相同之要領將所獲得之積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。捲繞體之尺寸成為外徑88 mm、長度1.7 m之圓柱形狀,能夠減小積層體之尺寸。
繼而,於既有之大型電解槽(與實施例5-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陽極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。
與先前相比,能夠容易地更換電極、隔膜。若於電解運轉中預先準備積層體之捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。
[實施例5-4]
(使用陰極之例)
以下述方式預先製作捲繞體。首先,藉由上述所記載之方法,準備4片縱0.3 m、橫2.4 m之陰極。以成為縱1.2 m、橫2.4 m之尺寸之方式將4片陰極無間隙地排列。為了避免陰極彼此分開,如圖102所示般,使PTFE繩通過陰極之開孔部分(未圖示),藉此將相鄰之陰極彼此繫結而加以固定。於該操作中,不施加壓力,溫度為23℃。按照與實施例5-1相同之要領將該陰極捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。捲繞體之尺寸成為外徑78 mm、長度1.7 m之圓柱形狀,能夠減小積層體之尺寸。
繼而,於既有之大型電解槽(與實施例5-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之陰極之方式解除捲繞狀態。此時,係將陰極維持為大致垂直於地面,但不存在陰極剝落等情況。繼而,將陰極插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。
與先前相比,能夠容易地更換陰極。若於電解運轉中預先準備陰極捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成陰極之更新。
[實施例5-5]
(使用陽極之例)
以下述方式預先製作捲繞體。首先,藉由上述所記載之方法準備4片縱0.3 m、橫2.4 m之陽極。以成為縱1.2 m、橫2.4 m之尺寸之方式將4片陽極無間隙地排列。為了避免陽極彼此分開,按照與實施例5-4相同之要領,藉由PTFE繩將相鄰之陽極彼此繫結而加以固定。於該操作中,不施加壓力,溫度為23℃。按照與實施例5-1相同之要領將該陽極捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。捲繞體之尺寸成為外徑81 mm、長度1.7 m之圓柱形狀,能夠減小積層體之尺寸。
繼而,於既有之大型電解槽(與實施例5-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之陽極之方式解除捲繞狀態。此時,係將陽極維持為大致垂直於地面,但不存在陽極剝落等情況。繼而,將陽極插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。
與先前相比,能夠容易地更換陽極。若於電解運轉中預先準備陽極捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成陽極之更新。
[比較例5-1]
(先前之電極更新)
於既有之大型電解槽(與實施例5-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,藉由升降機從大型電解槽吊起電解池。將取出之電解池搬運至能夠進行焊接施工之工場。
將藉由焊接固定於電解池之肋部之陽極剝離取下後,使用磨機等研磨所剝離取下之部分之毛邊等,使其變得平滑。關於陰極,將折入集電體中並固定之部分去除而剝離陰極。
其後,於陽極室之肋部上設置新陽極,藉由點焊將新陽極固定於電解池。關於陰極,亦同樣地將新陰極設置於陰極側,折入集電體中並加以固定。
將完成更新之電解池搬運至大型電解槽之場所,使用升降機將電解池放回電解槽中。
從將電解池及離子交換膜之固定狀態解除起至再次固定電解池所需之時間為1天以上。
<第6實施形態之驗證>
如下所述準備與第6實施形態相對應之實驗例(於以下之<第6實施形態之驗證>之項中簡稱為「實施例」)、及不與第6實施形態相對應之實驗例(於以下之<第6實施形態之驗證>之項中簡稱為「比較例」),藉由以下方法對該等進行評價。一邊適當參照圖105~106一邊對其詳細內容進行說明。
使用以下述方式製造之離子交換膜b作為隔膜。
作為強化芯材,使用聚四氟乙烯(PTFE)製且90丹尼之單絲(以下稱為PTFE紗)。作為犧牲紗,使用35丹尼、6根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。首先,以沿TD及MD之兩方向之各方向以24根/英吋配置PTFE紗、且於鄰接之PTFE紗間配置2根犧牲紗之方式進行平織而獲得織布。藉由滾筒將所獲得之織布進行壓接而獲得厚度70 μm之織布。
繼而,準備以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
COOCH
3
之共聚物計離子交換容量為0.85 mg當量/g之乾燥樹脂之樹脂A、以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.03 mg當量/g之乾燥樹脂之樹脂B。
使用該等樹脂A及B,藉由共擠出T模法獲得樹脂A層之厚度為15 μm、樹脂B層之厚度為104 μm之2層膜X。
繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙(高度50 μm之圓錐形狀之壓紋加工)、補強材及膜X,於加熱板表面溫度223℃、減壓度0.067 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。
藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)30質量%、氫氧化鉀(KOH)15質量%之80℃之水溶液中浸漬20分鐘而進行皂化。其後,於含有氫氧化鈉(NaOH)0.5 N之50℃之水溶液中浸漬1小時,將離子交換基之抗衡離子置換為Na,繼而進行水洗。進而於60℃下加以乾燥。
進而,於樹脂B之酸型樹脂之5質量%乙醇溶液中添加1次粒徑1 μm之氧化鋯20質量%並使其分散而調製懸浮液,藉由懸浮液噴射法對上述複合膜之兩面進行噴霧,於複合膜之表面形成氧化鋯之塗層,而獲得離子交換膜A。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.5 mg/cm
2
。此處,平均粒徑係利用粒度分佈計(島津製作所製造之「SALD(註冊商標)2200」)進行測定。
使用下述之陰極、陽極作為電極。
準備量規厚度為22 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.95 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。
藉由打孔加工於該鎳箔開出圓形之孔而製成多孔箔。開孔率為44%。
按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。所製作之電極之厚度為29 μm。含有氧化釕與氧化鈰之觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。塗層亦形成於未經粗面化之面。
使用量規厚度100 μm、鈦纖維直徑約為20 μm、單位面積重量為100 g/m
2
、開孔率78%之鈦不織布作為陽極電解用電極基材。
按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素、銥元素及鈦元素之莫耳比成為0.25:0.25:0.5之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、銥濃度為100 g/L之氯化銥(田中貴金屬工業股份有限公司)、四氯化鈦(和光純藥工業股份有限公司)加以混合。將該混合液充分攪拌,以其作為陽極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。於鈦多孔箔塗佈上述塗佈液後,於60℃下實施10分鐘之乾燥,於475℃下實施10分鐘之燒成。重複實施該等塗佈、乾燥、預燒成、燒成之一系列之操作後,於520℃下進行1小時之燒成。
[實施例6-1]
(使用陰極-膜積層體之例)
以下述方式預先製作捲繞體。首先,藉由上述所記載之方法,準備縱1.5 m、橫2.5 m之離子交換膜b。又,藉由上述所記載之方法,準備4片縱0.3 m、橫2.4 m之陰極。
將離子交換膜b於2%之碳酸氫鈉溶液中浸漬一晝夜後,將陰極無間隙地排列於羧酸層側,而製作陰極與離子交換膜b之積層體。若將陰極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陰極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。將該積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。再者,為了將離子交換膜b熔融,必須為200℃以上,於本實施例中進行一體化時離子交換膜不熔融。
繼而,於既有之大型電解槽(具有與圖105、106所示者相同之結構之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陰極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。
與先前相比,能夠容易地更換電極、隔膜。評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。
[實施例6-2]
(使用陽極-膜積層體之例)
以下述方式預先製作捲繞體。首先,藉由上述所記載之方法,準備縱1.5 m、橫2.5 m之離子交換膜b。又,藉由上述所記載之方法準備4片縱0.3 m、橫2.4 m之陽極。
將離子交換膜b於2%之碳酸氫鈉溶液中浸漬一晝夜後,將陽極無間隙地排列於磺酸層側,而製作陽極與離子交換膜之積層體。若將陽極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陽極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。將該積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。
繼而,於既有之大型電解槽(與實施例6-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陽極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。
與先前相比,能夠容易地更換電極、隔膜。評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。
[實施例6-3]
(使用陽極/陰極-膜積層體之例)
以下述方式預先製作捲繞體。首先,藉由上述所記載之方法,準備縱1.5 m、橫2.5 m之離子交換膜b。又,藉由上述所記載之方法各準備4片縱0.3 m、橫2.4 m之陽極及陽極。
將離子交換膜b於2%之碳酸氫鈉溶液中浸漬一晝夜後,將陰極無間隙地排列於羧酸層側,將陽極無間隙地排列於磺酸層側,而製作陰極、陽極與離子交換膜b之積層體。若將陰極、陽極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陰極、陽極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。將該積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。
繼而,於既有之大型電解槽(與實施例6-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陽極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。
與先前相比,能夠容易地更換電極、隔膜。評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。
[比較例6-1]
如下所述,以日本專利特開昭58-48686號公報之實施例作為參考,製作將電極熱壓接於隔膜而成之膜電極積層體。
使用量規厚度100 μm、開孔率33%之鎳多孔金屬作為陰極電解用電極基材,與實施例6-1同樣地實施電極塗佈。電極之尺寸為200 mm×200 mm,片數為72片。其後,按照下述之順序對電極之單面實施惰性化處理。於電極之單面貼附聚醯亞胺黏著帶(中興化成股份有限公司),於相反面塗佈PTFE分散液(DuPont-Mitsui Fluorochemicals股份有限公司,31-JR(商品名)),於120℃之馬弗爐中乾燥10分鐘。將聚醯亞胺膠帶剝離,於設定為380℃之馬弗爐中實施10分鐘燒結處理。將該操作重複2次,對電極之單面進行惰性化處理。
製作由末端官能基為「-COOCH
3
」之全氟碳聚合物(C聚合物)與末端基為「-SO
2
F」之全氟碳聚合物(S聚合物)之2層所形成之膜。C聚合物層之厚度為3密耳(mil),S聚合物層之厚度為4密耳(mil)。對該2層膜實施皂化處理,藉由水解對聚合物之末端導入離子交換基。C聚合物末端被水解為羧酸基,S聚合物末端被水解為磺基。以磺酸基計之離子交換容量為1.0 meq/g,以羧酸基計之離子交換容量為0.9 meq/g。所獲得之離子交換膜之大小與實施例6-1相同。
使具有羧酸基作為離子交換基之面與上述電極之經惰性化之電極面相對向,並實施熱壓製(熱壓接),而將離子交換膜與電極一體化。即,於離子交換膜熔融之溫度下,對1片縱1500 mm、橫2500 mm之離子交換膜進行200 mm見方之電極72片之一體化。熱壓接後電極之單面亦為露出之狀態,不存在電極貫通膜之部分。
於1500 mm×2500 mm之大型尺寸下,藉由熱壓接將離子交換膜與電極進行一體化之步驟需要一天以上之時間。即,於電極更新及隔膜之更換時,於比較例6-1中評價為需要多於實施例之時間。
<第7實施形態之驗證>
如下所述準備與第7實施形態相對應之實驗例(於以下之<第7實施形態之驗證>之項中簡稱為「實施例」)、及不與第7實施形態相對應之實驗例(於以下之<第7實施形態之驗證>之項中簡稱為「比較例」),藉由以下方法對該等進行評價。一邊適當參照圖114~115一邊對其詳細內容進行說明。
使用以下述方式製造之離子交換膜作為隔膜。
作為強化芯材,使用聚四氟乙烯(PTFE)製且90丹尼之單絲(以下稱為PTFE紗)。作為犧牲紗,使用35丹尼、6根長絲之聚對苯二甲酸乙二酯(PET)以200次/m撚絞而成之紗(以下稱為PET紗)。首先,以沿TD及MD之兩方向之各方向以24根/英吋配置PTFE紗、且於鄰接之PTFE紗間配置2根犧牲紗之方式進行平織而獲得織布。藉由滾筒將所獲得之織布進行壓接而獲得厚度70 μm之織布。
繼而,準備以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
COOCH
3
之共聚物計離子交換容量為0.85 mg當量/g之乾燥樹脂之樹脂A、以CF
2
=CF
2
與CF
2
=CFOCF
2
CF(CF
3
)OCF
2
CF
2
SO
2
F之共聚物計離子交換容量為1.03 mg當量/g之乾燥樹脂之樹脂B。
使用該等樹脂A及B,藉由共擠出T模法獲得樹脂A層之厚度為15 μm、樹脂B層之厚度為104 μm之2層膜X。
繼而,於內部具有加熱源及真空源、其表面具有微細孔之加熱板上依序積層脫模紙(高度50 μm之圓錐形狀之壓紋加工)、補強材及膜X,於加熱板表面溫度223℃、減壓度0.067 MPa之條件下加熱減壓2分鐘後,去除脫模紙,藉此獲得複合膜。
藉由將所獲得之複合膜於含有二甲基亞碸(DMSO)30質量%、氫氧化鉀(KOH)15質量%之80℃之水溶液中浸漬20分鐘而進行皂化。其後,於含有氫氧化鈉(NaOH)0.5 N之50℃之水溶液中浸漬1小時,將離子交換基之抗衡離子置換為Na,繼而進行水洗。進而於60℃下加以乾燥。
進而,於樹脂B之酸型樹脂之5質量%乙醇溶液中添加1次粒徑1 μm之氧化鋯20質量%並使其分散而調製懸浮液,藉由懸浮液噴射法對上述複合膜之兩面進行噴霧,於複合膜之表面形成氧化鋯之塗層,而獲得離子交換膜A。藉由螢光X射線測定對氧化鋯之塗佈密度進行測定,結果為0.5 mg/cm
2
。此處,平均粒徑係利用粒度分佈計(島津製作所製造之「SALD(註冊商標)2200」)進行測定。
使用下述之陰極、陽極作為電極。
準備量規厚度為22 μm之電解鎳箔作為陰極電解用電極基材。對該鎳箔之單面實施利用電解鍍鎳之粗面化處理。經粗面化之表面之算術平均粗糙度Ra為0.95 μm。表面粗糙度之測定係於與實施噴擊處理之鎳板之表面粗糙度測定相同之條件下實施。
藉由打孔加工於該鎳箔開出圓形之孔而製成多孔箔。開孔率為44%。
按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素與鈰元素之莫耳比成為1:0.25之方式將釕濃度為100 g/L之硝酸釕溶液(FURUYA METAL股份有限公司)、硝酸鈰(Kishida Chemical股份有限公司)加以混合。將該混合液充分攪拌,以其作為陰極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。其後,於50℃下實施10分鐘之乾燥,於150℃下實施3分鐘之預燒成,於350℃下實施10分鐘之燒成。重複該等塗佈、乾燥、預燒成、燒成之一系列之操作直至成為特定之塗佈量為止。所製作之電極之厚度為29 μm。含有氧化釕與氧化鈰之觸媒層之厚度係電極之厚度減去電解用電極基材之厚度而為7 μm。塗層亦形成於未經粗面化之面。
使用量規厚度100 μm、鈦纖維直徑約為20 μm、單位面積重量為100 g/m
2
、開孔率78%之鈦不織布作為陽極電解用電極基材。
按照以下之順序製備用以形成電極觸媒之塗佈液。以釕元素、銥元素及鈦元素之莫耳比成為0.25:0.25:0.5之方式將釕濃度為100 g/L之氯化釕溶液(田中貴金屬工業股份有限公司)、銥濃度為100 g/L之氯化銥(田中貴金屬工業股份有限公司)、四氯化鈦(和光純藥工業股份有限公司)加以混合。將該混合液充分攪拌,以其作為陽極塗佈液。
於滾筒塗佈裝置之最下部設置裝有上述塗佈液之槽。以於PVC(聚氯乙烯)製之筒上捲繞有獨立氣泡型之發泡EPDM(乙烯-丙烯-二烯橡膠)製之橡膠(Inoac Corporation,E-4088,厚度10 mm)之塗佈滾筒與塗佈液始終相接之方式進行設置。於其上部設置同樣捲繞有EPDM之塗佈滾筒,進而於其上設置PVC製之輥。使電極基材通過第2個塗佈滾筒與最上部之PVC製之輥之間而塗佈塗佈液(滾筒塗佈法)。於鈦多孔箔塗佈上述塗佈液後,於60℃下實施10分鐘之乾燥,於475℃下實施10分鐘之燒成。重複實施該等塗佈、乾燥、預燒成、燒成之一系列之操作後,於520℃下進行1小時之燒成。
[實施例7-1]
(使用陰極-膜積層體之例)
以下述方式預先製作捲繞體。首先,藉由上述所記載之方法準備縱1.5 m、橫2.5 m之離子交換膜。又,藉由上述所記載之方法,準備4片縱0.3 m、橫2.4 m之陰極。
將離子交換膜於2%之碳酸氫鈉溶液中浸漬一晝夜後,將陰極無間隙地排列於羧酸層側,而製作陰極與離子交換膜之積層體。若將陰極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陰極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。將該積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。
繼而,於既有之大型電解槽(具有與圖114、115所示者相同之結構之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陰極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。
與先前相比,能夠容易地更換電極、隔膜。若於電解運轉中預先準備積層體之捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。
[實施例7-2]
(使用陽極-膜積層體之例)
以下述方式預先製作捲繞體。首先,藉由上述所記載之方法準備縱1.5 m、橫2.5 m之離子交換膜。又,藉由上述所記載之方法準備4片縱0.3 m、橫2.4 m之陽極。
將離子交換膜於2%之碳酸氫鈉溶液中浸漬一晝夜後,將陽極無間隙地排列於磺酸層側,而製作陽極與離子交換膜之積層體。若將陽極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陽極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。將該積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。
繼而,於既有之大型電解槽(與實施例7-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陽極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。
與先前相比,能夠容易地更換電極、隔膜。若於電解運轉中預先準備積層體之捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。
[實施例7-3]
(使用陽極/陰極-膜積層體之例)
以下述方式預先製作捲繞體。首先,藉由上述所記載之方法準備縱1.5 m、橫2.5 m之離子交換膜。又,藉由上述所記載之方法各準備4片縱0.3 m、橫2.4 m之陽極及陽極。
將離子交換膜於2%之碳酸氫鈉溶液中浸漬一晝夜後,將陰極無間隙地排列於羧酸層側,將陽極無間隙地排列於磺酸層側,而製作陰極、陽極與離子交換膜之積層體。若將陰極、陽極置於膜上,則因與碳酸氫鈉水溶液之接觸,界面張力發揮作用,陰極、陽極與膜以吸附之方式成為一體。於以上述方式進行一體化時不施加壓力。又,一體化時之溫度為23℃。將該積層體捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。
繼而,於既有之大型電解槽(與實施例7-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之積層體之方式解除捲繞狀態。此時,係將積層體維持為大致垂直於地面,但不存在陽極剝落等情況。繼而,將積層體插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。
與先前相比,能夠容易地更換電極、隔膜。若於電解運轉中預先準備積層體之捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成電極更新及隔膜更換。
[實施例7-4]
(使用陰極之例)
以下述方式預先製作捲繞體。首先,藉由上述所記載之方法,準備4片縱0.3 m、橫2.4 m之陰極。以成為縱1.2 m、橫2.4 m之尺寸之方式將4片陰極無間隙地排列。為了避免陰極彼此分開,藉由PTFE繩將相鄰之陰極繫結而加以固定。於該操作中,不施加壓力,溫度為23℃。將該陰極捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。
繼而,於既有之大型電解槽(與實施例7-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之陰極之方式解除捲繞狀態。此時,係將陰極維持為大致垂直於地面,但不存在陰極剝落等情況。繼而,將陰極插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。
與先前相比,能夠容易地更換陰極。若於電解運轉中預先準備陰極捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成陰極之更新。
[實施例7-5]
(使用陽極之例)
以下述方式預先製作捲繞體。首先,藉由上述所記載之方法準備4片縱0.3 m、橫2.4 m之陽極。以成為縱1.2 m、橫2.4 m之尺寸之方式將4片陽極無間隙地排列。為了避免陽極彼此分開,藉由PTFE繩將相鄰之陽極繫結而加以固定。於該操作中,不施加壓力,溫度為23℃。將該陽極捲繞於外徑76 mm、長度1.7 m之聚氯乙烯(PVC)管而製作捲繞體。
繼而,於既有之大型電解槽(與實施例7-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,將上述捲繞體搬運至大型電解槽上。於大型電解槽上,從立設PVC管之狀態,以拉出所捲繞之陽極之方式解除捲繞狀態。此時,係將陽極維持為大致垂直於地面,但不存在陽極剝落等情況。繼而,將陽極插入至電解池間後,移動電解池,利用電解池彼此將該積層體夾住。
與先前相比,能夠容易地更換陽極。若於電解運轉中預先準備陽極捲繞體,則評價為對於每個電解池,能夠於數十分鐘左右完成陽極之更新。
[比較例7-1]
(先前之電極更新)
於既有之大型電解槽(與實施例7-1相同之電解槽)中,將利用壓製器所形成之鄰接之電解池及離子交換膜之固定狀態加以解除,取出既有隔膜而成為電解池間有空隙之狀態。其後,藉由升降機從大型電解槽吊起電解池。將取出之電解池搬運至能夠進行焊接施工之工場。
將藉由焊接固定於電解池之肋部之陽極剝離取下後,使用磨機等研磨所剝離取下之部分之毛邊等,使其變得平滑。關於陰極,將折入集電體中並固定之部分去除而剝離陰極。
其後,於陽極室之肋部上設置新陽極,藉由點焊將新陽極固定於電解池。關於陰極,亦同樣地將新陰極設置於陰極側,折入集電體中並加以固定。
將完成更新之電解池搬運至大型電解槽之場所,使用升降機將電解池放回電解槽中。
從將電解池及離子交換膜之固定狀態解除起至再次固定電解池所需之時間為1天以上。
本申請案係基於2017年3月22日提出申請之日本專利申請案(日本專利特願2017-056524號及日本專利特願2017-056525號)、以及2018年3月20日提出申請之日本專利申請案(日本專利特願2018-053217號、日本專利特願2018-053146號、日本專利特願2018-053144號、日本專利特願2018-053231號、日本專利特願2018-053145號、日本專利特願2018-053149號及日本專利特願2018-053139號),該等之內容係作為參照而併入至本文。