WO2004035333A1 - 捩り剛性力制御装置 - Google Patents

捩り剛性力制御装置 Download PDF

Info

Publication number
WO2004035333A1
WO2004035333A1 PCT/JP2003/013030 JP0313030W WO2004035333A1 WO 2004035333 A1 WO2004035333 A1 WO 2004035333A1 JP 0313030 W JP0313030 W JP 0313030W WO 2004035333 A1 WO2004035333 A1 WO 2004035333A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid pressure
pressure
moment
stabilizer
cylinder
Prior art date
Application number
PCT/JP2003/013030
Other languages
English (en)
French (fr)
Inventor
Tatsuya Masamura
Shinichi Hagidaira
Original Assignee
Kayaba Kogyo Kabusiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Kogyo Kabusiki Kaisha filed Critical Kayaba Kogyo Kabusiki Kaisha
Priority to ES03769896T priority Critical patent/ES2399632T3/es
Priority to US10/503,760 priority patent/US7162945B2/en
Priority to EP03769896A priority patent/EP1475256B1/en
Publication of WO2004035333A1 publication Critical patent/WO2004035333A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • B60G21/0551Mounting means therefor
    • B60G21/0553Mounting means therefor adjustable
    • B60G21/0558Mounting means therefor adjustable including means varying the stiffness of the stabiliser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/06Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • B60G21/0551Mounting means therefor
    • B60G21/0553Mounting means therefor adjustable
    • B60G21/0555Mounting means therefor adjustable including an actuator inducing vehicle roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/413Hydraulic actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/442Rotary actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0523Yaw rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/02Supply or exhaust flow rates; Pump operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • B60G2800/0122Roll rigidity ratio; Warping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/24Steering, cornering

Definitions

  • the present invention relates to a torsional stiffness control device for providing moment to a member against external moment applied to the member, and more specifically, to a stabilizer for a stabilizer mounted on a vehicle or the like and connected to a stabilizer.
  • the present invention relates to a torsional stiffness control device for a slider that can adjust the torsional stiffness.
  • the torsional stiffness control device of a variable hydraulic pressure type stabilizer disclosed in Japanese Patent Application Laid-Open No. 9-115633 is disclosed.
  • a variable hydraulic pressure type stabilizer disclosed in Japanese Patent Application Laid-Open No. 9-115633.
  • this device divides the suspension stabilizers connecting the suspension arms of the left and right wheels of the front and rear wheels into two parts at the center of the torsion bar, and one of the two divided parts is used to change the stiffness of each stabilizer. It is fixed to the housing side of the hydraulic rotor actuator (hereinafter referred to as actuator) and the other to the rotor side.
  • actuator hydraulic rotor actuator
  • Each of the pressure chambers on both sides of the front and rear wheels is connected to the differential pressure control valve by a pipe, and one of the pipes connected to each differential pressure control valve is connected to the corresponding pressure chamber. It communicates with the hydraulic pressure source through a fail-safe valve and a diverter valve, and the other pipeline communicates with the hydraulic pressure source through a fail-safe valve.
  • the electromagnetic solenoids for switching the differential pressure control valve and the fail-safe valve are connected to a control device that outputs a vehicle lateral acceleration signal according to the direction and magnitude of the lateral acceleration generated on the vehicle body. .
  • the control device detects a direction and a magnitude of the lateral acceleration as a vehicle lateral acceleration signal when a lateral acceleration acts on the vehicle body while the vehicle is running, and uses the vehicle lateral acceleration signal to move the fail-safe valve to the normal position. To the offset position, and the differential pressure control valve is switched and controlled according to the direction and magnitude of the vehicle lateral acceleration signal.
  • the X-safe valve is energized based on the vehicle lateral acceleration signal detected by the control device. Then, the fail-safe valve is switched to the offset position to turn on the hydraulic power source, and the differential pressure control valve is connected to each actuator.
  • control device generates a control signal current shifted from the reference value to the plus or minus side in accordance with the direction and the magnitude of the lateral acceleration.
  • the control signal current causes the differential pressure control valve to perform a predetermined amount of switching operation in a predetermined direction corresponding to the direction and magnitude of the lateral acceleration applied to the vehicle body. And independently added to the factories on the front and rear wheel stabilizers.
  • each actuator generates moments in a direction corresponding to the direction and magnitude of the vehicle lateral acceleration, and these moments cause the momentum to be twisted to the front and rear wheel stabilizers.
  • the hydraulic pressure supply to each pressure chamber is controlled by using a differential pressure control valve, and therefore, the direction of the vehicle lateral acceleration in which each actuator must be generated. In some cases, it may not be possible to generate moment in the direction corresponding to the size.
  • the purpose of the present invention is to stabilize the fluid pressure in the pressure chamber, thereby exhibiting a stable torsional stiffness, and providing the vehicle with a stable torsional rigidity. It is an object of the present invention to provide a torsional stiffness control device that improves the riding center when the vehicle rolls even when it is mounted.
  • a basic measure of the present invention is to provide a torsional rigidity for controlling a moment applied to a member by staking the external moment based on the external moment applied to or externally applied to the member.
  • the member is adjusted by adjusting a fluid pressure supplied from a fluid pressure source driving a cylinder coupled to an intermediate or one end of the member or a cylinder coupled to one end of the member.
  • a variable mechanism that changes the moment applied to the rotor, calculates the required fluid pressure value for driving the rotary actuator or the cylinder based on the value of the external moment, and outputs the value to the rotary actuator or the cylinder.
  • the fluid pressure value supplied is compared with the required fluid pressure value, and the moment is controlled by adjusting the fluid pressure based on the comparison result.
  • a specific means in which the member is applied as a stabilizer is a torsional stiffness control device that controls the moment applied to the stabilizer by being piled on the moment based on an external moment applied to the stabilizer from the outside.
  • the stabilizer connected to the middle or one end of the stabilizer by adjusting the fluid pressure supplied from the fluid pressure source that drives the cylinder coupled to one end of the mouth or the stabilizer connected to one end of the stabilizer.
  • a variable mechanism that changes the moment applied to the cylinder, calculates the required fluid pressure value for driving the rotary actuator or the cylinder based on the value of the external moment, and supplies the value to the rotary actuator or the cylinder.
  • the supplied fluid pressure value is compared with the required fluid pressure value, and based on the comparison result, The moment is controlled by adjusting the body pressure.
  • a plurality of stabilizers are provided, and a rotary actuator is connected to the middle or one end of each stabilizer, or a cylinder is connected to one end of each stabilizer, and each stabilizer is opposed to an external moment. Controls the moment given to the stabilizer.
  • a diverting valve is provided between the fluid pressure source and the rotary actuator or cylinder, and the variable mechanism is provided for each member ⁇ on the rotor side or cylinder side of the diverting valve. Controls moment applied to each member.
  • a variable mechanism is connected to each of the supply flow path connected to the fluid pressure source, the discharge flow path connected to the reservoir, and the two pressure chambers provided in the cylinder, the reactor and the cylinder.
  • Two supply / discharge flow paths, a solenoid pressure control valve connected between the supply flow path and the discharge flow path, and one of the two supply / discharge flow paths connecting the supply flow path and the discharge flow path Similarly, the pressure control valve has a maximum opening area when the solenoid is not energized, and the opening area is adjusted according to the applied current when the solenoid is energized.
  • the directional control valve shuts off the fluid pressure when the solenoid is not energized, and supplies the fluid pressure when energized.
  • a check valve and a relief valve that allow fluid flow only from the supply channel side to the discharge channel side are provided between the supply channel and the discharge channel in parallel with the pressure control valve.
  • the value of the fluid pressure supplied to the rotary actuator or cylinder is detected by a pressure detector, and the controller drives the reactor or cylinder based on the value of the above external moment.
  • the required fluid pressure value is calculated, the detected fluid pressure value is compared with the required fluid pressure value, and based on the comparison result, the pressure control valve and the directional control valve are switched to control the external moment. I do.
  • the external moment is calculated based on one of the vehicle lateral acceleration, the vehicle lateral acceleration, the vehicle speed, and the steering angle, or the vehicle lateral acceleration, the vehicle speed, the steering angle, and the vehicle speed.
  • a more specific means is to provide a pressure chamber having two pressure chambers facing each other at the middle or one end of the stabilizer, or to a reactor or one end of the stabilizer.
  • the cylinder with two pressure chambers facing each other is connected and hydraulic fluid is supplied to or discharged from each pressure chamber and the rotary actuator or the cylinder is driven to adjust the torsional rigidity of the stabilizer.
  • a solenoid directional switching valve that selectively connects or disconnects each pressure chamber to the supply flow path or the discharge flow path, and between the supply flow path and the discharge flow path
  • a pressure control valve provided to maximize the opening area in a non-energized state and adjust the opening area in an energized state; and a controller, wherein the controller controls a pressure in the pressure chamber, a lateral acceleration of the vehicle, A current is applied to the solenoid directional control valve and the pressure control valve based on the steering angle, the vehicle speed, and the yaw rate, and the opening area of the pressure control valve is adjusted in proportion to the current and the solenoid is controlled.
  • the directional control valve is switched to a communication or shut-off position.
  • FIG. 1 is a hydraulic circuit diagram systematically showing a torsional rigidity control device according to the present invention.
  • FIG. 2 is a hydraulic circuit diagram systematically showing a torsional rigidity control device according to a second embodiment of the present invention in another embodiment.
  • Fig. 3 is a vertical cross-sectional view of the event.
  • FIG. 1 is a system diagram showing an embodiment in which the torsional rigidity control device according to the present invention is applied to control of a stabilizer.
  • the front wheel stabilizer 1f which is a member, is formed by dividing the portion of the torsion bar into two parts at the center, and one of the divided parts is a hydraulic port-type actuator for the front wheel. It is fixed to the housing side of 2f per night and the other side to the rotor side. Therefore, in the present embodiment, the fluid pressure is hydraulic pressure.
  • the rear stabilizer bar 1r for the rear wheel is also divided into two parts at the center of the torsion bar portion, and one of the divided portions is a mouth-to-rear actuating device on the rear wheel side. It is constructed by connecting the housing 2r to the housing and the other to the rotor.
  • the front wheel side rotary actuator 2f and the rear wheel side rotary actuator 2r as shown in FIG. A housing 4 having two partition walls 3a and 3b formed at an interval, and two vanes formed at an equal interval of 180 degrees on the outer peripheral surface with respect to the inside of the housing 4.
  • the rotor 6 having 5a and 5b is rotatably housed.
  • the outer periphery of the rotor 6 is in sliding contact with the ends of the partition walls 3 a and 3 b provided on the inner wall of the housing 4, and the outer periphery of the ends of the vanes 5 a and 5 b is in sliding contact with the inner wall of the housing 4.
  • the inside of the nozzle 4 is partitioned into four pressure chambers 7 a, 7 b, 8 a, and 8 b by the rotor 6.
  • each actuator 2f, 2r applies hydraulic pressure, which is a fluid pressure, to the pressure chambers 7a, 7b or the pressure chambers 8a, 8b through the ports 10 and 11 respectively.
  • the stabilizer 1 applies a torsional force in the predetermined direction to f and 1 r.
  • the actuator 2f on the front wheel side acts as an actuator for varying the stiffness of the stabilizer 1f for the front wheel
  • the actuator 2r on the rear wheel side is rearward. It acts to act as a rigid force variable actuator for the wheel stabilizer 1r.
  • the front wheel side actuator 2f is connected to the ports 10 and 11 of the pressure chambers via the supply and discharge passages 25 and 26 connected to the push-pull type software.
  • the directional control valve 12 is connected to the solenoid directional valve, and the rear wheel side actuator 2r is connected to the supply / discharge passages 25, 2 connected to the ports 10 and 11 of each pressure chamber, respectively. It is connected to the directional control valve 12 via supply / discharge flow paths 24 and 28 branched from 6.
  • the supply and discharge passages 25 and 26 are communicated with each other via a bypass passage 27, and an extremely small diameter orifice 23 is provided in the middle of the bypass passage 27. .
  • the ports 10 and 11 of the actuary 2f and 2r are connected to each other. Are connected to the control ports A and B of the directional control valve 12. That is, the supply / drain passages 25 and 26 are connected to the ports A and B of the directional switching valve 12 respectively, and the supply passage 30 and the discharge flow are connected via the directional switching valve 12. It is designed to selectively communicate with or block Road 29. Further, a solenoid pressure control valve 15, a check valve 16, and a relief valve 17 are provided between the supply flow path 30 and the discharge flow path 29.
  • the supply port T in the directional control valve 12 is connected to the upstream side of the pressure control valve 15 through the supply flow path 30, and is further supplied to the supply flow path 30 as it goes upstream. It communicates with the upstream side of the check valve 16 for blocking the flow of hydraulic oil from the flow path 30 side, the upstream side of the relief valve 17 and the hydraulic pump 20 as a fluid pressure source.
  • discharge port P of the directional control valve 12 is connected to the downstream side of the pressure control valve 15 through the discharge flow path 29, and this discharge flow path is sequentially connected to the check valve 16 Downstream of the relief valve, downstream of the relief valve 1 mm and reservoir R.
  • the reservoir R and the hydraulic pump 20 are communicated with each other via a suction pipe 31.
  • the hydraulic oil supplied from the hydraulic pump 20 is finally guided to the reservoir R and is supplied to each of the flow paths 30 and 2 9, 24, 25, 26, 28
  • the directional control valve 12 includes a communication position for connecting the supply port T connected to the supply flow path 30 to the control port A, a communication port for communicating the discharge port P to the control port B, and each port. And a communication position that connects the supply port T connected to the supply flow path 30 to the control port B and the discharge port P to the control port A. It is a three-position, four-port valve equipped with Panels are provided at both ends of the direction switching valve 12, and a solenoid 13 facing one of the panels is provided at one end. As a result, when a current is applied to one of the coils (not shown) of the solenoid 13, the port T and the port A and the port P and the port B communicate with each other, and the other coil is connected.
  • port T and port B and port P and port A are connected, respectively.
  • each port T , P, A, and B are cut off, and are usually set to take any of the communication positions described above when a current is applied.
  • the pressure control valve 15 has a communication position that connects the supply flow path 30 and the discharge flow path 29 and a shutoff position that shuts off the supply flow path 30 and the discharge flow path 29, and has a panel (not shown) at one end and the other end.
  • the solenoid 14 is provided with a solenoid 14 facing the panel.When the solenoid 14 is excited, the solenoid 14 can be switched to the cutoff position, and the valve is changed in proportion to the current applied to the solenoid 14. This is a valve whose opening area can be proportionally controlled. Therefore, when current is not applied to the solenoid 14, the valve is in the communication position due to the panel force and the valve opening area is maximized.
  • the shutoff position is set when the solenoid 14 is applied. ing.
  • the relief valve 17 is provided in the middle of the communication path 36 connecting the supply flow path 30 and the discharge flow path 29, and shuts off from the communication position communicating the communication path 36.
  • a shut-off position for opening the supply flow passage 30 so that when the internal pressure of the supply flow passage 30 rises abnormally, it is opened by the pilot pressure to allow the hydraulic oil to escape to the reservoir R.
  • the communication path 36 may be provided separately and separately, instead of providing the connection between the supply flow path 30 and the discharge flow path 29 described above.
  • check valve 16 those generally used widely in various hydraulic equipments may be used as they are, and their configurations are well known. Detailed description is omitted.
  • a pressure detector 22 for detecting the oil pressure applied to the actuators 2f and 2r is provided in the supply passage 30 to detect the oil pressure in the supply passage 30. If the pressure detector 22 is provided at such a position, the pressure in the pressure chambers 7a and 8a of the actuators 2f and 2 can be reduced while the directional control valve 12 communicates with each port. It is possible to detect.
  • variable mechanism includes the supply flow path 30, the discharge flow path 29, the actuator 2 f, 2 r, the directional control valve 12, and the supply / discharge flow paths 25, 2. 6, 24, 28 and the pressure control valve 15.
  • the valve opening area of the pressure control valve 15 is adjusted based on the lateral acceleration, steering angle, vehicle speed, and oil pressure signal applied to the vehicle body, and the directional control valve 12 is controlled while switching.
  • An ECU 21 is provided as a controller for controlling the torsional rigidity of the devices 1f and 1r. If the purpose is to suppress the roll of the vehicle, the control can be performed based only on the lateral acceleration.
  • the ECU 21 includes, for example, a lateral acceleration detector (not shown, for example, a lateral acceleration sensor provided at a corresponding portion of the vehicle body) for detecting the direction and magnitude of the lateral acceleration acting on the vehicle body as a lateral acceleration signal. ), A steering angle detector (not shown) for detecting the steering angle as a signal, a vehicle speed detector (not shown) for detecting the vehicle speed as a signal, and the pressure detector 22 described above.
  • lateral acceleration signals, steering angle signals, vehicle speed signals, and pressure signals are processed, and a current is applied to each of the solenoids 13 and 14 to control the directional control valve 12 and the pressure control valve 15. .
  • the ECU 21 has two output terminals (not shown), and these output terminals are connected to the solenoid 13 of the directional control valve 12 and the pressure control valve 15 by signal lines 33 and 34.
  • the ECU 21 controls the directional control valve 12 and the pressure control valve 15.
  • the vehicle when the vehicle is traveling straight on a flat road, that is, when there is no detection signal X from the lateral acceleration detector and the steering angle detector, the vehicle does not roll, and the torsional rigidity of the stabilizer, which is a member, is used. Raising the ride quality will make the ride worse.
  • the ECU 21 suppresses the supply of current to the solenoid 14 of the pressure control valve 15 to reduce the function of the sun stabilizer and increases the valve opening area.
  • the hydraulic oil from the hydraulic pump 20 returns to the reservoir R via the discharge passage 29 according to the valve opening area through the communication position of the pressure control valve 15.
  • the ECU 21 recognizes that the momentum loaded on the snow stabilizer is zero because the vehicle is traveling straight on a flat road, and as described above, To reduce the torsional rigidity to reduce In this case, it is calculated that no hydraulic pressure should be applied to each of the pressure chambers 2 f and 2 r, that is, the required hydraulic pressure value is zero. Then, the ECU 21 stops the supply of the hydraulic pressure to each pressure chamber, and suppresses the current supply to the pressure control valve 15 as described above. If the detected oil pressure is larger than the calculated oil pressure value by comparing the oil pressure value detected in step 2 with the above calculated oil pressure value, the oil pressure is further supplied to the pressure control valve 15.
  • the current flowing is reduced, the valve opening area of the pressure control valve 15 is increased, and control is performed so that the calculated hydraulic pressure value is the same as the detected hydraulic pressure value.
  • current is supplied to the directional control valve 12 such that the ports communicate with each other as described above. Accordingly, in this case, as described above, the hydraulic oil supplied from the hydraulic pump 20 preferentially passes through the pressure control valve 15 and flows into the reservoir R, and then flows into the actuators 2f and 2r. Can be controlled so that no oil pressure is applied.
  • the valve opening height area may be unconditionally maximized without supplying any current to the pressure control valve 15.
  • the hydraulic pressure applied to each of the pressure chambers 2 f and 2 r of the actuator can be reduced to zero, and suddenly while the vehicle is traveling straight, Even if there is an input from the engine, there is no oil pressure in each pressure chamber, so it is possible to effectively prevent the function of the stabilizer from appearing.
  • a differential pressure control valve is used as in a conventional torsional stiffness control device, only the differential pressure is controlled, so control is performed to eliminate the differential pressure in each pressure chamber during straight running.
  • the torsional stiffness control device of the present invention is different from the conventional differential pressure control.
  • the ECU 21 when the vehicle enters cornering and lateral acceleration occurs in the vehicle body, such as when cornering or when the vehicle speed is high and the steering angle is large, the ECU 21 includes a lateral acceleration detector and a steering angle detector. And the signals X and Y detected by the vehicle speed detector are input.
  • the ECU 21 is energized based on these detected signals ⁇ and ⁇ ⁇ so that the current supplied from the output terminal to the solenoid 14 of the pressure control valve 15 through the signal line 33 is increased. And adjust so that the valve opening area of the pressure control valve 15 becomes smaller or larger.
  • the ECU 21 determines the magnitude and direction of the external moment that is applied to the stabilizer acting on the vehicle body at that time. Correspondingly, the moment to be applied to the stabilizer and its direction are calculated, and a control signal according to this is output from each output terminal as a current.
  • the control signal currents output from the respective output terminals of the ECU 21 are individually connected to the solenoids 14 of the corresponding pressure control valves 15 and the directional control valves 1 2 through their respective signal lines 33, 34.
  • the solenoid 13 is energized to control the pressure control valve 15 and the directional control valve 12 separately.
  • the directional control valve 12 has a function to load the moment to the stabilizer against the external moment corresponding to the direction of the external moment loaded to the stabilizer. Switch to one of the above communication positions, and connect port ⁇ to port ⁇ and port ⁇ to port ⁇ or connect port T to port B and port P to port A In this way, the hydraulic oil supplied from the hydraulic pump 20 is supplied from the supply / drain passages 25, 26, 24, 28 to the ports 10 f, 2 r of the actuators 2 f, 2 r. 1 Flow into one of 1.
  • the hydraulic pressure in the pressure chamber on the hydraulic oil inflow side increases due to the hydraulic oil flowing into one of the ports 10 and 11 respectively.
  • the vanes 5a, 5b rotate clockwise
  • the other pressure chamber 8 When hydraulic oil is supplied to a and 8b, vanes 5a and 5b rotate counterclockwise, and as a result, clockwise or counterclockwise moment is applied to actuators 2f and 2r.
  • control suitable for the characteristics of the vehicle on which the torsional rigidity control device is mounted may be performed. Therefore, the magnitude of the moment applied to the stabilizer with respect to the external moment is adjusted to the characteristics of the vehicle. What is necessary is just to let the ECU calculate the values so that they match.
  • the specific processing of the ECU 21 at the time of rolling the vehicle body is as follows. First, the ECU 21 recognizes that the vehicle body is rolling based on the lateral acceleration, the vehicle speed, and the steering angle, and increases the torsional rigidity so as to exhibit the function of the stabilizer as described above. In this case, it is necessary to apply hydraulic pressure to either of the pressure chambers 2 f and 2 r of the actuator and apply moment to the stabilizer, that is, to generate the moment to be applied. Calculate the appropriate hydraulic pressure value.
  • the ECU 21 supplies a current to the pressure control valve 15 as described above in order to supply the required hydraulic pressure to either of the pressure chambers 2 f and 2 r.
  • the value of the oil pressure detected by the pressure detector 22 is compared with the value of the oil pressure calculated above, and the detected oil pressure is compared with the value of the calculated oil pressure. If it is larger, the current supplied to the pressure control valve 15 is reduced, the valve opening area of the pressure control valve 15 is increased, and conversely, the detected hydraulic pressure is If it is smaller than the value, the current supplied to the pressure control valve 15 is increased, the valve opening area of the pressure control valve 15 is reduced, and the calculated oil pressure value and the detected oil pressure Control so that the value is the same.
  • the pressure sensor detects the oil pressure in the pressure chamber of the factory overnight.
  • the pressure control is performed if the capacity of the hydraulic pump is determined in advance.
  • the amount of hydraulic pressure being applied to the pressure chamber can be determined from the valve opening area of the valve.In this case, the ECU is made to recognize the value of the hydraulic pressure based on how much power is supplied to the pressure control valve. May be.
  • the hydraulic pressure applied to each of the pressure chambers 2 f and 2 r can be optimized, and the pressure control valve can be opened. Since the area can be changed, the hydraulic pressure applied to each pressure chamber can be finely controlled. That is, highly accurate control is possible.
  • the hydraulic pressure applied to each pressure chamber is controlled directly, so that it is connected to the snow stabilizer by sudden input from the road surface. Even if the oil pressure in each pressure chamber fluctuates overnight, the hydraulic pressure applied to each pressure chamber can be grasped in real time, so that the moment to be applied can be maintained and controlled.
  • control is not a differential pressure control that is difficult to control, the control is simplified, and it is possible to stably supply the hydraulic pressure to the actuator. Therefore, it is possible to supply a stable oil pressure all over the actuator, so that the roll suppressing effect is high and the riding comfort when the vehicle rolls is improved.
  • the ECU 21 detects this and stops the operation of the directional control valve 12 and the pressure control valve 15.
  • the pressure control valve 15 maximizes the valve opening area by the panel force, and the directional control valve 12 shifts to a position where each port is shut off by the panel force. Then, the hydraulic oil supplied from the hydraulic pump 20 passes through the pressure control valve 15 and flows into the reservoir R, and flows back between the hydraulic pump 20 and the reservoir R. No oil pressure is applied to 2f and 2r overnight. Under these circumstances, even if the hydraulic pressure is increased in one of the pressure chambers at 2 f and 2 r, and the 2 f and 2 r are twisted, the bypass The passage 27 is connected to the supply / drain passages 25, 26, 24, 28 via the orifice 23, and the hydraulic pressure in each hydraulic chamber is eventually equalized.
  • the orifice 23 is provided in the middle of the binos road 27, so that the ports 10 to 11 of the facsimile 2f and 2r can be used. Since the movement of hydraulic oil to the vehicle is suppressed, the stabilizers 1 f and 1 r can be used even when the vehicle rolls in one direction, while at the same time, it is possible to realize the sun stabilizer function. Reverse operation on the front and rear wheels is prevented, and even if the front and rear wheel side stabilizers are on uneven roads that are twisted in the opposite direction, ports 10 and 1 of Actuyue 2F and 2 can be used.
  • the first and second vibrators 1 f and 1 r block the flow of the hydraulic oil with the directional valve 12.
  • the actuators 2f, 2r are kept in a block state to stabilize the front and rear wheels 1f, 1f. Maintain the torsional rigidity of r under control.
  • FIG. 2 is a system diagram showing another embodiment of the torsional rigidity control device according to the present invention. Note that the description of the same members as those in the above-described embodiment will be repeated, and therefore only the same reference numerals will be given, and detailed description thereof will be omitted.
  • the torsional stiffness control device includes two locks having, for example, two opposed pressure chambers at one end of stabilizers 50f, 50r, which are members provided on the front and rear wheel sides of the vehicle. And the same variable mechanism as in the above-described embodiment is connected to each of the cylinders 51 f and 51 r. f, 30 r are connected to the diversion valve 35, the upstream of the diversion valve 35 is connected to the supply flow path 40 connected to the hydraulic pump 20, and the discharge flow paths 29 f, 29 r are discharged A communication path 36 is connected to the reservoir R via the flow path 41 to provide communication between the supply flow path 40 and the discharge flow path 41, and a relief valve 17 is provided in the middle of the communication path 36. It is provided.
  • variable mechanism is a cylinder on the front and rear wheel side.
  • flow path 30 f is provided upstream of the variable mechanism, and the ECU 21 is mounted horizontally. It is to calculate the moment to be applied to the stabilizers 50 f and 5 Or by taking in the acceleration rate, steering angle and vehicle speed as well as the yaw rate.
  • Each port T in the directional control valve 12 f, 12 r is connected to the outlet of the branch valve 35 through each supply flow path 30 f, 30 r therefrom.
  • Ports D and E are connected to each other, and the inlet port C of the flow dividing valve 35 communicates with the hydraulic pump 20 through the supply flow path 40.
  • a connection connecting the supply flow path 40 upstream of the flow dividing valve 35 and the discharge flow path 41 on the discharge side is performed.
  • a relief valve 17 is provided in the middle of the passage 36.
  • the flow dividing valve 35 may be the one generally used widely in various hydraulic equipments as it is, and the configuration thereof is well known. Is omitted.
  • the operation is basically the same as that of the above-described embodiment.
  • the hydraulic oil supplied from the hydraulic pump 20 is divided by the dividing valve 35. As a result, they are sent to the pressure ports T of the directional valves 12 f and 12 r.
  • the diverting valve 35 divides the hydraulic oil supplied from the hydraulic pump 20 at a constant flow rate ratio, and divides the diverted hydraulic oil into the directional switching valves 12 f and 1 2. It is distributed to each act 2f and 2r through r.
  • the flow ratio divided by the flow dividing valve 35 depends on the situation where the torsional stiffness control device is used, and in the present embodiment, a module capable of generating the cylinders 51 f and 51 r. May be determined so as to be suitable for the vehicle on which the vehicle is mounted.
  • the ECU 21 is loaded on the current stabilizers 50f, 5Or at that time based on signals from the lateral acceleration detector, the steering angle detector, the vehicle speed detector, and the yore detector.
  • the direction and magnitude of the external moment are calculated, and the moments to be applied to the stabilizers 50 f and 5 Or corresponding to this are calculated one after another, and these values are calculated.
  • the ECU 21 applies a load to one of the cylinders 51 f and 51 r required to generate the moment to be loaded.
  • the same hydraulic pressure is applied to the front and rear side stabilizers 1 f and 1 r, so that only the same moment can be applied.
  • the front and rear sides can be controlled independently, so that a moment more suitable for the running state of the vehicle can be obtained by the stabilizers 50 f and 50 f. It is possible to load r.
  • the front and rear wheel stabilizers 50 f and 50 r are twisted in a direction to tilt the vehicle body to the opposite side in accordance with the magnitude of the lateral acceleration. Therefore, the stabilizers 50 f and 50 r suppress the roll motion that is likely to occur in the vehicle body due to an increase in the torsional rigidity in that direction, according to the above-described embodiment. Is the same as
  • the torsional stiffness of the front and rear wheel stabilizers 50f and 5Or can be controlled independently of each other. This improves the turning and convergence of the vehicle during cornering, while keeping the steering characteristics agile and driving the vehicle in a stable state.
  • the flow dividing valve is provided and the variable mechanism is provided independently of the front and rear, the front and rear stabilizers can be controlled independently. Control is possible and power consumption can be reduced because multiple hydraulic pumps are not required.
  • the ECU 21 detects this and detects the directional control valves 12 f and 12 r and the pressure control valves 15 f and 1
  • a bypass passage 27 f connecting each of the supply / drain passages 25 f, 26 f, 25 r, 26 r connected to each of the cylinders 51 f, 51 r is provided. It is needless to say that the hydraulic pressures in the pressure chambers of the cylinders 5 f and 15 r are averaged by the cylinders 27 and 27r, and at the same time, the cylinder stabilizers can be used. Since the pressure chambers at 1 f and 51 r are completely independent on the front and rear sides, the stabilizer function is provided even when the stabilizers 50 f and 50 r are twisted in opposite directions on the front and rear wheel sides. It can be demonstrated.
  • a cylinder in order to apply moment to the member, the stabilizer, a cylinder can be used in addition to the mouth and the reactor, and the torsional stiffness control device is generally provided externally. Needless to say, it can be used in a situation where the torsional rigidity of the member needs to be changed for the moment to be loaded. And, when used for other than a vehicle, it will be set to calculate the moment to be applied to the member based on other factors instead of the lateral acceleration, the vehicle speed, and the like.
  • negative pressure is applied to each pressure chamber of the actuator or cylinder.
  • the fluid pressure to be loaded can be reduced to zero, and even if there is a sudden input to a member such as a stabilizer, there is no fluid pressure in each pressure chamber. It can move freely and freely, which is advantageous compared to the conventional method that cannot move the member freely without complete resistance.
  • the fluid pressure in the pressure chamber can be stabilized. It is possible to generate good torsional rigidity.
  • the control is not a differential pressure control that is difficult to control, the control is simplified, and it is possible to stably supply the fluid pressure to the actuator cylinder. Therefore, a stable moment can be given to the member, and a stable torsional rigidity can be exhibited.
  • the power consumption can be reduced.
  • each member can be controlled independently, so that an independent moment can be given to each member. Therefore, it is possible to apply a different torsional rigidity force to each member. Even if the torsional stiffness control device becomes abnormal and becomes uncontrollable and cannot conduct electricity to each valve, the pressure control valve maximizes the valve opening area, the directional control valve shuts off fluid pressure, The two pressure chambers are communicated with each other by a bypass having an orifice in the middle, so that the torsional rigidity of the member itself is not hindered. Further, since the opening area of the pressure control valve can be changed, it is possible to finely adjust the fluid pressure and to perform highly accurate control.
  • the fluid can be supplied from the check valve side. Negative pressure does not occur, and the device does not generate abnormal noise, and at the same time, fluid pressure applied to the pressure chamber of the actuator cylinder is stabilized. That is, the moment applied to the member is stabilized, so that a more stable torsional rigidity can be exhibited.
  • the torsional stiffness control device becomes abnormal and becomes uncontrollable and cannot conduct electricity to each valve, even if the pressure control valve is closed due to contamination etc.
  • the fluid supplied from the fluid pressure source increases the fluid pressure in the supply channel, so that the relief valve in the communication passage is opened and flows into the reservoir, so that the torsional rigidity control device is damaged. Is prevented.
  • the pressure detector detects the fluid pressure value in the pressure chamber of the cylinder or cylinder in real time, recognizes the fluid pressure value detected by the controller, and controls it while comparing it with the required fluid pressure value. Fine control is possible, and it is possible to stabilize the fluid pressure in the pressure chamber of the cylinder or cylinder more than the conventional torsional rigidity control device.
  • This torsional stiffness control device is applied to a vehicle and changes the torsional stiffness of the sunset stabilizer, so that the roll of the vehicle can be suppressed and controlled. Further, as described above, since a stable fluid pressure can be applied to the actuator or the cylinder, the moment applied to the dust stabilizer can be stabilized. It has a high roll suppressing effect and improves ride comfort.
  • the moment applied to the stabilizer is controlled based on the lateral acceleration of the vehicle to change the torsional rigidity of the stabilizer, so that the roll of the vehicle body can be effectively suppressed.
  • the fluid pressure in the pressure chamber of the actuator or the cylinder can be stabilized, so that the riding comfort can be further improved.
  • the fail-safe operation even if the fail-safe operation is performed, the roll rigidity and steering characteristics before and after the fail-safe operation do not change, and the fail-safe operation can be reliably performed without largely changing the steering characteristics of the vehicle.
  • Load stabilizer based on vehicle speed and steering angle as well as lateral acceleration Since the moment is calculated, control suitable for the running state of the vehicle can be performed, and the riding comfort of the vehicle is improved.
  • the moment applied to the stabilizer is calculated based on the lateral acceleration, vehicle speed, steering angle, and yaw rate. If the torsional rigidity of the front and rear wheel stabilizers is controlled independently, the vehicle This improves the turning performance and convergence of the vehicle during cornering by coping with the jogging that acts on the vehicle, and keeps the vehicle running in a stable state while maintaining the steering characteristics quickly. Furthermore, even if the load on the rear wheel increases due to the load and the amount of load movement on the rear wheel increases, the reaction force moment on the rear wheel is insufficient and the roll It is no longer possible for the steel to remain or for the steering characteristics to change due to the magnitude of the load. Therefore, control suitable for the traveling state of the vehicle can be performed, and the riding comfort of the vehicle is improved.
  • the torsional stiffness of the stabilizer is changed based on the lateral acceleration, vehicle speed, steering angle, and rate, the roll of the vehicle body can be effectively suppressed. Further, since the fluid pressure in the pressure chamber of the actuator or the cylinder can be stabilized as compared with the conventional torsional rigidity control device, the riding comfort can be further improved. Furthermore, at the time of so-called fuel safety, it is possible to maintain and exhibit at least the stabilizer function while preventing damage to the torsional rigidity control device, and to achieve more normal steering characteristics. Keep the body close and suppress the roll of the body. Controlling the torsional stiffness of the front and rear wheel stabilizers independently of each other also improves the turning and convergence of the vehicle during cornering by coping with shoring acting on the vehicle body.
  • the vehicle will run in a stable state with the ring characteristics maintained rapidly. Furthermore, even if the load on the rear wheel side increases due to the loaded load and the load movement amount on the rear wheel side increases, the reaction force moment on the rear wheel side is insufficient, and the roll rolls. It does not remain or change the steering characteristics depending on the load. Therefore, control suitable for the running state of the vehicle can be performed, and the riding comfort of the vehicle is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

圧力室の流体圧力を安定させることにより、安定した捩り剛性力を発揮し、車両へ搭載した場合に合っても車両のローリング時の乗り心地を向上する捩り剛性力制御装置を提供する。 スタビライザ(1f),(1r)に外部から負荷される外部モーメントに基づいて、当該モーメントに抗してスタビライザ(1f),(1r)に与えるモーメントを制御する捩り剛性力制御装置において、スタビライザ(1f),(1r)の中間または一端に結合したロータリアクチュエータ(2f),(2r)もしくはスタビライザ(1f),(1r)の一端に結合したシリンダ(51f),(51r)を駆動させる流体圧源から供給される流体圧を調整することによりスタビライザ(1f),(1r)に負荷するモーメントを変化させる可変機構を具備し、上記外部モーメントの値に基づいてロータリアクチュエータ(2f),(2r)もしくはシリンダ(51f),(51r)を駆動する必要流体圧値を算出し、ロータリアクチュエータ(2f),(2r)もしくはシリンダ(51f),(51r)に供給されている流体圧値と必要流体圧値とを比較して、その比較結果に基づき上記流体圧を調節してモーメントを制御することを特徴とする。

Description

明細書
捩り剛性力制御装置
技術分野
この発明は、 部材に負荷される外部モーメン トに抗して部材にモーメン トを 与える捩り剛性力制御装置に関し、 具体的には、 車両等に搭載されると共にス 夕ビライザに連繋されてスタビライザの捩り剛性力を調節可能にするス夕ビ ライザの捩り剛性力制御装置に関する。
背景技術
従来、 この種の形式の捩り剛性力制御装置と しては、 例えば、 日本国特 開平 9 一 1 5 6 3 3号公報に開示された油圧可変型のス夕 ビライザの捩り 剛性力制御装置が知られている。
すなわち、 このものは、 前後輪における各左右の車輪のサスペンショ ン アームを連結するス夕 ビライザをそれぞれ トーショ ンバーの中央部分で二 分割し、 これら二分割した部分の一方を各スタビライザの剛性力可変用油 圧式ロータ リアクチユエ一夕 (以下ァクチユエ一夕 という) のハウジング 側に、 また、 他方をロータ側にそれぞれ固定している。
そして、 前後輪側における両ァクチユエ一夕の各対応する圧力室は、 そ れそれ管路によって差圧制御バルブに連通されてお り、 かつ、 各差圧制御 バルブに連通する一方の管路をフェールセーフバルブと分流弁とを通して 油圧源に連通させるとともに、 他方の管路をフェールセーフバルブを通し て油圧源に連通している。
また、 差圧制御バルブとフェールセーフバルブの各切換用電磁ソレノィ ドは、 車体側に発生した横加速度の方向と大きさに対応して車体横加速度 信号を出力する制御装置へと結ばれている。
上記制御装置は、 車両の走行中において車体に横加速度が作用したとき に当該横加速度の方向と大きさを車体横加速度信号と して検出し、 この車 体横加速度信号でフェール ーフバルブをノーマル位置からオフセッ ト位 置に切換えると共に、 車体横加速度信号の方向と大きさに対応して差圧制 御バルブを切換え制御するようにしてある。
そして、 直進走行時のように車体に横加速度が作用しないときには、 制 御装置が基準電流によ り差圧制御バルブを差圧零の状態である中立位置に 保ったまま、 フェールセーフバルブへの通電を断って当該フェールセ一フ バルブをノーマル位置に保持し、 フェールセーフバルブが前後輪用のス夕 ビライザに設けたァクチユエ一夕をブロ ック し、 各スタ ビライザを通常の スタビライザとして作用させることになる。
それに対して、 車両が旋回走行 (コーナリ ング) に入って車体に横加速 度が作用するようになると、 制御装置で検出した車体横加速度信号に基づ いてフ X—ルセ一フバルブに通電が行われ、 フェールセーフバルブをオフ セッ ト位置に切換えて油圧源をオンロー ド状態にすると共に、 差圧制御バ ルブを各ァクチユエ一夕へと連通する。
また、 これと併せて、 制御装置が当該横加速度の方向と大きさに対応し て基準値からプラスまたはマイナス側にずれた制御信号電流を発生する。
この制御信号電流によ り差圧制御バルブが車体に作用した横加速度の方 向と大きさに対応して所定の方向に所定の量だけ切換え動作し、 これら差 圧制御バルブで発生する差圧を制御して前後輪のスタ ビライザに設けたァ クチユエ一夕に独立して加える。
これによ り、 各ァクチユエ一夕が車体横加速度の方向と大きさに対応し た方向のモーメ ン ト を発生し、 これらモ一メ ン トによ り前後輪用のス夕 ビ ライザに捩り剛性力を与えてそのとき遠心力で車体に作用するロールモー メ ン ト と拮抗する反対方向のロールモーメ ン ト を車体に加え、 当該車体に 生じるロール運動を効果的に抑制する。
しかしながら、 上述の捩り剛性力制御装置では、 機能面で問題があるわけで はないが、 以下の不具合の改善が望まれている。
すなわち、 上記スタビライザの捩り剛性力制御装置では、 各圧力室への油圧 供給を差圧制御バルブを使用して制御しているため、 各ァクチユエ一夕が発 生しなければならない車体横加速度の方向と大きさに対応した方向のモ一 メン トを発生させようとしても発生できない場合がある。
つま り、 制御可能なのは各圧力室の差圧であり、 差圧は相対的なものである ので、 路面からの入力によってス夕ビライザに接続されているァクチユエ一夕 の各圧力室内の油圧は変動するから、 常に発生モーメン トに対応する各圧力室 内の差圧を維持制御する必要があり、 また、 この場合差圧であるから必要な油 圧は一意的には定まらないので、 制御が煩雑となり、 その結果油圧力が不安定 になる恐れがある。
発明の開示
そこで、 本発明は、 上記不具合を改善するために創案されたものであって、 その目的とするところは、 圧力室の流体圧力を安定することにより、 安定した 捩り剛性力を発揮し、 車両へ搭載した場合にあっても車両のロール時の乗り心 地を向上する捩り剛性力制御装置を提供することである。
上記した目的を達成するために、 本発明の基本的手段は、 部材に外部か 負荷される外部モーメン トに基づいて、 当該外部モーメン トに杭して部材に与 えるモーメン トを制御する捩り剛性力制御装置において、 部材の中間または一 端に結合した口一夕 リアクチユエ一夕も しくは部材の一端に結合したシリ ン ダを駆動させる流体圧源から供給される流体圧を調節することにより部材に 負荷するモーメントを変化させる可変機構を具備し、 上記外部モーメン トの値 に基づいてロータ リアクチユエ一夕も しくはシリ ンダを駆動する必要流体圧 値を算出し、 ロータリアクチユー夕もしくはシリ ンダに供給されている流体圧 値と必要流体圧値とを比較して、 その比較結果に基づき上記流体圧を調節して モーメントを制御することを特徴とする。
この場合、 部材がスタビラィザとして適用される具体的手段は、 スタビライザ に外部から負荷される外部モーメン トに基づいて、 当該モーメン トに杭してス タビラィザに与えるモーメン トを制御する捩り剛性力制御装置において、 ス夕 ビライザの中間または一端に結合した口一夕 リアクチユエ一夕も しくはス夕 ビライザの一端に結合したシリ ンダを駆動させる流体圧源から供給される流 体圧を調節することによりスタビライザに負荷するモ一メ ン トを変化させる 可変機構を具備し、 上記外部モーメン トの値に基づいてロータ リアクチユエ一 夕もしくはシリ ンダを駆動する必要流体圧値を算出し、 ロータ リアクチユー夕 もしくはシリンダに供給されている流体圧値と必要流体圧値とを比較して、 そ の比較結果に基づき上記流体圧を調節してモーメ ン トを制御することを特徴 とする。 上記具体的手段において、 スタビライザを複数設け、 各スタビライザの中間ま たは一端にロータ リァクチユエ一夕を結合するか、 または各スタビライザの一 端にシリ ンダを結合し、 外部モーメン トに抗して各スタビライザに与えるモー メン トを制御する。
同じく、 流体圧源とロータリアクチユエ一夕もしくはシリンダとの間に分流弁 を設けるとともに、 分流弁より ロー夕 リアクチユエ一夕もしくはシリ ンダ側に 上記可変機構を各部材每に具備してなり、 各部材毎に負荷するモーメン トを制 御する。
同じく、 可変機構が、 流体圧源に接続された供給流路と、 リザ一バに接続され た排出流路と、 口一夕 リアクチユエ一夕もしくはシリンダに設けた二つの圧力 室の各々に接続された二つの給排流路と、 供給流路と排出流路との間に接続さ れたソレノィ ド圧力制御弁と、 上記供給流路と排出流路を上記二つの給排流路 のいずれか一方に選択的に接続するソレノィ ド方向切換弁とで構成されてい 同じく、 上記圧力制御弁はソレノ ィ ドに通電されない状態では開口面積が最大 となり、 通電状態では印加電流に応じて開口面積が調節され、 上記方向切換弁 はソレノィ ドに通電されない状態では流体圧を遮断し、 通電した時流体圧を供 給するする。
同じく、 供給流路と排出流路との間に圧力制御弁と並列に供給流路側から排出 流路側へのみ流体の流れを許容する逆止弁とリ リーフ弁を設けちる。
同じく、 ロータ リアクチュ一タも しくはシリンダに供給されている流体圧値を 圧力検出器で検出し、 コントローラが上記外部モ一メン トの値に基づいて口一 夕 リアクチユエ一夕又はシリ ンダを駆動する必要流体圧値を算出し、 検出した 流体圧値と必要流体圧値とを比較して、 その比較結果に基づき、 上記圧力制御 弁および方向切換弁を切換制御して上記外部モーメン トを制御する。
同じく、 車両横加速度、 車両横加速度と車速と舵角、 又は車両横加速度と車速 と舵角とョーレー卜のいずれかに基づいて外部モ一メン トを算出する。
更に、 より具体的手段は、 スタビライザの中間または一端に相対向する二つの 圧力室を備えた口一夕 リアクチユエ一夕も しくはスタビライザの一端に相対 向する二つの圧力室を備えたシリンダを結合し、 各圧力室に作動油を供給また は排出してロータ リアクチユエ一夕も しくはシリ ンダを駆動させることによ りスタビラィザの捩り剛性を調整するス夕 ビライザの捩り剛性力制御装置に おいて、 各圧力室を供給流路または排出流路に選択的に連通または遮断させる ソレノィ ド方向切換弁と、 供給流路と排出流路との間に設けられた通電されな い状態で開口面積を最大にし通電状態で開口面積を調節可能な圧力制御弁と、 コン トローラとを備え、 上記コン トローラが上記圧力室内の圧力と、 車両横加 速度と、 舵角と、 車速と、 ョーレートとに基づいて、 上記ソレノィ ド方向切換 弁と圧力制御弁とに電流を印加し、 電流に比例して圧力制御弁の開口面積を調 整するとともにソレノィ ド方向切換弁を連通または遮断ポジションに切換え ることを特徴とする。
図面の簡単な説明
図 1はこの発明による捩り剛性力制御装置を系統的に示す油圧回路図であ る。
図 2はこの発明の他の実施の形態における第 2の実施の形態における捩り 剛性力制御装置を系統的に示す油圧回路図である。
図 3はァクチユエ一夕の縦断面図である。
発明を実施するための最良の形態
図 1 は、 この発明に係る捩り剛性力制御装置をス夕 ビライザの制御に適用 した一実施の形態を系統図として示したものである。
すなわち、 部材たる前輪用のスタ ビライザ 1 f は、 トーシヨ ンバーの部 分を中央で二つに分割して構成し、 この分割した部分の一方を前輪側にお ける油圧口一タ リ式のァクチユエ一夕 2 f のハウジング側に、 また、 他方 をロータ側に固定して構成してある。 したがって、 本実施の形態において、 流体圧は油圧ということになる。
同様に、 部材たる後輪用のス夕 ビライザ 1 r もまた、 それを ト一シヨ ン バー部分の中央で二分割し、 この分割した部分の一方を後輪側における口 一夕 リ式のァクチユエ一夕 2 rのハウジング側に、 また、 他方をロータ側 に結合することによって構成してある。 この実施の形態の場合、 上記した前輪側のロータ リ式ァクチユエ一夕 2 f と後輪側のロータ リ式ァクチユエ一夕 2 rは、 図 3に示すように、 内壁 面に 1 8 0度の間隔を保って構成した二つの隔壁 3 a , 3 bをもつハウジ ング 4と、 このハウジング 4の内部に対して外周面に同じ く 1 8 0度の間 隔を置いて構成した二枚のベーン 5 a , 5 bをもつロータ 6を回動自在に 納めて構成してある。
ロータ 6は、 中心部分の外周をハウジング 4の内壁に設けた隔壁 3 a, 3 bの先端に摺接し、 かつ、 ベ一ン 5 a , 5 bの先端の外周をハウジング 4の内壁に摺接させることによって、 ノヽウジング 4内をロータ 6で四つの 圧力室 7 a, 7 b , 8 a , 8 bに区画している。
これら四つの圧力室 7 a , 7 b , 8 a , 8 bのう ち対角位置にある圧力 室 7 aと 7 bおよび圧力室 8 aと 8 bは、 ロータ 6の中心部に穿った通孔 9 a, 9 bでそれぞれ互いに連通しており、 かつ、 ノヽウジング 4には、 圧 力室 7 a, 8 aに開口するポート 1 0 , 1 1が穿設してある。
これによ り、 各ァクチユエ一夕 2 f , 2 rは、 ポー ト 1 0 , 1 1 を通し て圧力室 7 a, 7 bまたは圧力室 8 a, 8 bに流体圧たる油圧を加えるこ とでスタビライザ 1 : f , 1 rに所定の方向の捩り力を与える。
このように して、 前輪側におけるァクチユエ一夕 2 f は、 前輪用のスタ ビライザ 1 f に対する剛性力可変用のァクチユエ一夕 として作用すると共 に、 後輪側のァクチユエ一夕 2 rは、 後輪用のスタ ビライザ 1 rに対する 剛性力可変用ァクチユエ一夕としてそれぞれ作用するようにしてある。
図 1に戻って、 前輪側のァクチユエ一夕 2 f は、 各圧力室のポー ト 1 0、 1 1 にそれそれ接続された給排流路 2 5、 2 6 を介してプッシュプル型の ソ レ ノイ ド方向切換弁 1 2に接続されており、 後輪側のァクチユエ一夕 2 rは、 各圧力室のポー ト 1 0、 1 1にそれぞれ接続された上記給排流路 2 5、 2 6から分岐する給排流路 2 4、 2 8を介して方向切換弁 1 2に接続 されている。 また、 給排流路 2 5、 2 6は互いにバイ パス路 2 7を介して 連通されてお り、 バイパス路 2 7の途中には、 極小径のオリ フ ィ ス 2 3が 設けられている。
そ して、 これらァクチユエ一夕 2 f , 2 rの各ポー ト 1 0 , 1 1は、 互 に対応するもの同志即ち同じ方向のロール反力が働く もの同志を方向切換 弁 1 2の制御ポー ト A, Bへと接続されている。 つま り、 給排流路 2 5、 2 6は、 それぞれ方向切換弁 1 2のポー ト A、 Bに接続されており、 また、 方向切換弁 1 2 を介して供給流路 3 0 と排出流路 2 9 と選択的に連通また は遮断されるようになっている。 さらに、 供給流路 3 0 と排出流路 2 9 と の間にはソレノィ ド圧力制御弁 1 5 と逆止弁 1 6 と リ リーフ弁 1 7が設け られている。
すなわち、 上記方向切換弁 1 2 における供給ポー ト Tは、 供給流路 3 0 を通して圧力制御弁 1 5の上流側へと結ばれてお り、 さらに供給流路 3 0 を上流に遡ると順に供給流路 3 0側からの作動油の流れを阻止する逆止弁 1 6の上流側、 リ リーフ弁 1 7の上流側および流体圧源たる油圧ポンプ 2 0 に通じている。
また、 方向切換弁 1 2の排出ポー ト Pは、 排出流路 2 9 を通して圧力制 御弁 1 5の下流側へと結ばれており、 さ らにこの排出流路は順に逆止弁 1 6の下流側、 リ リーフ弁 1 Ίの下流側およびリザーバ Rに通じている。
そして、 リザーバ Rと油圧ポンプ 2 0 とは吸込み管路 3 1 とで連通され ており、 油圧ポンプ 2 0から供給される作動油は、 最終的にはリザーバ R に導かれ各流路 3 0、 2 9、 2 4、 2 5、 2 6、 2 8 を遗流することとな o
また、 方向切換弁 1 2は、 供給流路 3 0 に接続される供給ポ一 卜 Tを制 御ポート Aに、 排出ポー ト Pを制御ポー ト Bに連通する連通ポジショ ンと、 各ポー トを遮断する遮断ポジショ ンと、 供給流路 3 0 に接続される供給ポ 一 卜 Tを制御ポー ト Bに、 排出ポー ト Pを制御ポー ト Aに連通する連通ポ ジシヨ ンの三つのポジショ ンを備えた 3位置 4ポー ト弁である。 この方向 切換弁 1 2の両端にはパネが設けられ、 更に一端には一方のパネに対向す るソレノィ ド 1 3が設けられている。 これによ り、 ソ レノィ ド 1 3の一方 のコイル (付示せず) に電流を印加すると、 ポー ト T とポー ト Aおよびポ 一 卜 Pとポー ト Bをそれそれ連通し、 他方のコイル (付示せず) に電流を 印加すると、 ポー ト Tとポー ト Bおよびポー ト P とポー ト Aをそれぞれ連 通し、 電流を印加しない状態では図示のようにパネ力によ り各ポー ト T、 P、 A、 Bを遮断するようになってお り、 通常は電流が印加した状態で上 記したいずれかの連通ポジションをとるように設定されている。
さらに、 圧力制御弁 1 5は、 供給流路 3 0 と排出流路 2 9 とを連通する連 通ポジションと遮断する遮断ポジションとを有し、 一端にパネ (付示せず) を 備え、 他端にこのパネに対向するソレノイ ド 1 4を備えており、 このソレノィ ド 1 4が励磁されると、 遮断ポジシヨンに切換えることが可能であり、 ソレノ ィ ド 1 4に印加する電流に比例して弁開口面積を比例制御可能な弁である。 し たがって、 ソレノイ ド 1 4に電流を印加しない状態では、 パネ力によって連通 ポジションにあり弁開口面積は最大となり、 通常はソレノイ ド 1 4に印加した 状態で、 遮断ポジションをとるように設定されている。
また、 リ リーフ弁 1 7は、 公知のように供給流路 3 0 と排出流路 2 9 と を接続する連通路 3 6の途中に設けられ、連通路 3 6 を連通する連通ポジシ ヨンと遮断する遮断ポジションとを有し、 供給流路 3 0の内圧が異常に上昇し たときパイロッ ト圧で開いて作動油をリザーバ Rに逃がすようになつている。 なお、 連通路 3 6は、 上記した供給流路 3 0 と排出流路 2 9 とを接続する ように設ける替わりに、 別途独立して設けても良い。
なお、 逆止弁 1 6 と しては、 従来から各種の油圧機器において広く一般 に用いられているものをそのまま適用すればよく、 それらの構成について はよく知られていることであるのでここでは詳細な説明を省略する。
さらに、 ァクチユエ一夕 2 f , 2 rに負荷される油圧力を検出するため の圧力検出器 2 2が供給流路 3 0の途中に設けられ、 供給流路 3 0内の油 圧力を検出する。 このような位置に圧力検出器 2 2 を設ければ方向切換弁 1 2が各ポ一 トを連通している状態においてァクチユエ一夕 2 f , 2 の 圧力室 7 a、 8 a内の圧力を検出することが可能である。
したがって、 上述したところでは、 可変機構は、 供給流路 3 0 と、 排出流 路 2 9 と、 ァクチユエ一夕 2 f 、 2 rと、 方向切換弁 1 2 と、 給排流路 2 5、 2 6、 2 4、 2 8と、 圧力制御弁 1 5とで構成されていることになる。 一方、 これらと併せて、 車体に作用 した横加速度、 舵角、 車速および油 圧力信号によ り圧力制御弁 1 5 の弁開口面積を調節するとともに、 方向切 換弁 1 2 を切換制御しつつァクチユエ一夕 2 f , 2 rを通してス夕 ビライ ザ 1 f , 1 rの捩り剛性力を制御するためのコン ト ローラたる E C U 2 1 が設けてある。 なお、 車両のロール抑制を目的とする場合にあっては、 横 加速度のみに基づいて制御することも可能である。
上記 E C U 2 1は、 たとえば車体に作用する横加速度の方向および大き さを横加速度信号と して検出する横加速度検出器 (図示はしないが、 例え ば、 車体の該当部位に設けた横加速度センサ) と、 舵角を信号と して検出 する舵角検出器 (図示せず) と、 車速を信号と して検出する車速検出器 (図 示せず) と上述の圧力検出器 2 2 とに接続され、 これら横加速度信号、 舵 角信号、 車速信号、 圧力信号を処理し、 電流を各ソレノィ ド 1 3、 1 4に 印加して、 方向切換弁 1 2 と圧力制御弁 1 5を制御動作させる。
すなわち、 E C U 2 1 は、 2つの出力端子 (図示せず) を備え、 これら の出力端子を信号線 3 3、 3 4 で方向切換弁 1 2 のソ レノイ ド 1 3 と圧力 制御弁 1 5のソ レノイ ド 1 4に結び、 当該 E C U 2 1 で方向切換弁 1 2 と 圧力制御弁 1 5 とを制御するようにしてある。
次に、 以上のように構成したこの発明の実施の形態である捩り剛性力制 御装置の作動について説明する。
例えば、 車両が平坦路を直進走行を しているとき、 すなわち、 横加速度 検出器および舵角検出器からの検出信号 X がないときには、 車体はローリ ングしないので、 部材たるスタ ビライザの捩り剛性力を高めると乗り心地 が悪く なる。 そのような状態の場合には、 E C U 2 1 は、 ス夕 ビライザの 機能を減殺するべく、 圧力制御弁 1 5 のソ レノ ィ ド 1 4への電流の供給を 抑制して弁開口面積を大き く する。 その結果、 油圧ポンプ 2 0からの作動 油は圧力制御弁 1 5の連通ポジショ ンを介し、 弁開口面積に応じて排出流 路 2 9 よ り リザーバ Rへ還流する。 さ らに、 方向 換弁 1 2 のソ レ ノイ ド 1 3へに電流を供給して上述の各ポー トを連通するようにする。 このとき、 方向切換弁 1 2の各ポー トは連通されている状態であれば良いので、 ポ一 ト Tとポー ト Aおよびポー ト P とポー ト Bをそれぞれ連通させても良いし、 ポー ト Tとポー ト Bおよびポー ト Pとポー ト Aをそれそれ連通しても良い ( 上述の場合の E C U 2 1の具体的処理は、 以下のようになる。 先ず、 横 加速度および舵角がゼ口であることを、 各検出器からの信号の入力がない ことをもって、 E C U 2 1は車両が平坦路を直進走行していることから、 ス夕 ビライザに負荷されるモーメ ン 卜がゼロであることを認識して、 上述 のように、 ス夕 ビライザの機能を減殺するべく捩り剛性力を低く する。 こ の場合、 ァクチユエ一夕 2 f 、 2 rの各圧力室に何等油圧力が負荷されな い状態にするべきであること、 すなわち必要油圧値がゼロであるこ とを算 出する。 そ して、 E C U 2 1は、 各圧力室に油圧力の供給をス ト ップする ベく、 上述のように圧力制御弁 1 5への電流供給を抑制するが、 このとき 圧力検出器 2 2で検出した油圧力の値と上述の算出した油圧力の値と比較 して、 検出した油圧力が算出した油圧力の値よ り大きい場合には、 さ らに 圧力制御弁 1 5 に供給している電流を小さ く し、 圧力制御弁 1 5の弁開口 面積を大き く し、 算出した油圧力値と検出した油圧力値とが同一になるよ うに制御する。 また、 一方では方向切換弁 1 2 を上述のように各ポー トが 連通するように電流供給を行う。 したがって、 この場合には、 上述のよう に油圧ポンプ 2 0から供給される作動油は圧力制御弁 1 5 を優先的に通過 して、 リザーバ Rに流入し、 ァクチユエ一夕 2 f 、 2 rには何等油圧力が 負荷されない状態に制御することができることとなる。
なお、 上述のような車両が平坦路を直進走行中の場合には、 圧力制御弁 1 5 に電流を一切供給せずに弁開高面積を無条件に最大にするようにして も良い。 ' 以上よ り、 本発明の捩り剛性力制御装置では、 ァクチユエ一夕 2 f 、 2 rの各圧力室に負荷される油圧力をゼロにすることができ、 車両が直進走 行中に突然路面からの入力があっても、 各圧力室の油圧力が何等生じてな い状態になっているので、 スタ ビライザの機能が発現することを効果的に 防止するこ とが可能である.。 これに対して、 従来の捩り剛性力制御装置の ように差圧制御バルブを使用した場合、 差圧のみの制御となるので、 直進 走行時には各圧力室内の差圧をな く するように制御するが、 この場合に路 面からの突然の入力によ りァクチユエ一夕が強制的に動かされると、 各圧 力室の油圧力に偏りができて しまい、 ス夕 ビライザの機能を減殺するべき ところが逆にスタ ビライザの機能が発現して しまい乗り心地が悪く なる。 すなわち、 本発明の捩り剛性力制御装置にあっては、 従来の差圧制御に比 '
較して乗り心地を向上することが可能である。
他方、 コーナリ ング時や車速が高速であって舵角が大きい時等のように 車両が旋回走行に入って車体に横加速度が発生すると、 E C U 2 1 には横 加速度検出器、 舵角検出器および車速検出器が検出した各信号 X,Y が入力 される。
E C U 2 1は、 これら各検出した信号 Χ,Υ に基づいて出力端子から信号 線 3 3を通して圧力制御弁 1 5のソレ ノ ィ ド 1 4に供給している電流を大 き く するように通電を行い、 当該圧力制御弁 1 5の弁開口面積を小さ く す るか大き くするように調節する。
E C U 2 1 は、 横加速度検出器、 舵角検出器および車速検出器からの各 信号に基づいて、 そのとき車体に作用 しているス夕 ビライザに負荷される 外部モーメ ン トの大きさと向きに対応してス夕 ビライザに負荷すべきモー メ ン 卜 とその向きを演算し、 これに準じた制御信号を電流と して各出力端 子から出力する。
上記 E C U 2 1 の各出力端子から個々に出力された制御信号電流は、 そ れそれの信号線 3 3、 3 4を通して対応する圧力制御弁 1 5のソレノ ィ ド 1 4および方向切換弁 1 2のソレノィ ド 1 3に通電され、 これら圧力制御 弁 1 5および方向切換弁 1 2を別々に制御する。
これに伴い、 方向切換弁 1 2は、 スタ ビライザに負荷される外部モーメ ン トの向きに対応して、 ス夕 ビライザにその外部モーメ ン 卜に対抗する向 きにモーメ ン トを負荷すべく、 上記した連通ポジショ ンのいずれかに切換 わりポー ト Τとポー ト Αおよびポー ト Ρ とポー ト Βを連通も しく はポー ト Tとポー ト Bおよびポー ト Pとポー ト Aを連通するように切換え動作して、 油圧ポンプ 2 0から供給される作動油を給排流路 2 5、 2 6、 2 4、 2 8 からァクチユエ一夕 2 f , 2 rのそれぞれのポー ト 1 0 , 1 1 のどちらか に流入させる。
かく して、 ァクチユエ一タ 2 f , 2 rには、 それぞれのポート 1 0 , 1 1の どちらかに流入させた作動油によ り作動油流入側の圧力室の油圧力が高まり、 たとえば、 図 3において、 ァクチユエ一夕 2 f 、 2 rの圧力室 7 a、 7 bに作 動油が供給されると、 ベーン 5 a、 5 bが時計方向に回転し、 他方の圧力室 8 a、 8 bに作動油が供給されると、 ベーン 5 a、 5 bが反時計方向に回転し、 その結果ァクチユエ一夕 2 f 、 2 rには時計方向または反時計方向のモ一メン 卜が発生し、 これらモーメン トにより前後輪用のス夕ビライザ 1 f , l rに対 しスタビライザに作用した外部モーメ ン トの向きと大きさに対抗する捩り剛 性力を加えることが可能となり、 ひいては、 車体のロールを抑えることが可能 となる。 つま り、 車体にロールが発生しょうとすると、 前後輪用のス夕ビライ ザ 1 f , 1 rが横加速度の大きさに合わせて当該車体を反対側に傾けようとす る方向に捩られる。 これにより、 ス夕ビライザ l f , l rは、 その方向への捩 り剛性力がアツプして車体に生じよう とするロール運動を抑制することにな る。 なお、 この捩り剛性力制御装置が搭載される車両の特性に適した制御を行 えるようにすればよいので、 外部モーメン トに対しスタビライザに負荷するモ —メン 卜の大きさを車両の特性に適合するような値となるように E C Uに算 出させればよい。
また、 上述の車体ロール時の E C U 2 1の具体的処理は、以下のようになる。 先ず、 横加速度、 車速および舵角に基づいて、 E C U 2 1が車体がロールして いることを認識して、 上述のように、 スタビライザの機能を発現するべく捩り 剛性力高くする。 この場合ァクチユエ一夕 2 f 、 2 rの各圧力室のどちらかに 油圧力を負荷してスタビライザにモーメン トを負荷すべきであること、 すなわ ち負荷すべきモ一メン卜の発生に必要な油圧値を算出する。
そして、 E C U 2 1 は、 ァクチユエ一夕 2 f 、 2 rのそれぞれの各圧力 室のどちらかに必要とされる油圧力を供給するべく、 上述のように圧力制 御弁 1 5への電流供給を大き く するか小さ く するが、 このとき圧力検出器 2 2で検出した油圧力の値と上述の算出した油圧力の値と比較して、 検出 した油圧力が算出した油圧力の値よ り大きい場合には、 圧力制御弁 1 5 に 供給している電流を小さ く して、 圧力制御弁 1 5の弁開口面積を大き く し、 逆に、 検出した油圧力が算出した油圧力の値よ り小さい場合には、 圧力制 御弁 1 5 に供給している電流を大き く して、 圧力制御弁 1 5の弁開口面積 を小さ く し、 算出した油圧力値と検出した油圧力値とが同一になるように 制御する。 また、 一方では方向切換弁 1 2 を上述のように各ポー トが連通 するように電流供給を行う。 したがって、 この場合には、 油圧ポンプ 2 0 から供給される作動油は圧力制御弁 1 5 を通過する作動油とァクチユエ一 夕 2 f 、 2 rへ流入する作動油とに分けられ、 ァクチユエ一タ 2 f 、 2 r には E C U 2 1 が算出した油圧力が負荷される状態に制御するこ とができ しとと る。
なお、 本実施の形態においては圧力検出器でァクチユエ一夕の圧力室内 の油圧力を検出しているが、 圧力検出器を使用せずとも、 あらかじめ油圧 ポンプの容量が決められていれば圧力制御弁の弁開口面積によって油圧力 がどの程度圧力室に負荷されているかが把握できるので、 この場合には圧 力制御弁にどの程度電力を供給しているかによって油圧力の値を E C Uに 認識させても良い。
以上よ り、 本発明の捩り剛性力制御装置では、 ァクチユエ一夕 2 f 、 2 rの各圧力室に負荷される油圧力を最適なものとするこ とができ、 また圧 力制御弁は開口面積を変化可能であるので、 各圧力室に負荷されている油 圧力をきめ細かに制御可能である。 すなわち、 精度の高い制御が可能とな る。 つま り、 従来のように各圧力室の差圧制御ではなく、 直接各圧力室に負 荷されている油圧力を制御しているので、 路面からの突然の入力によってス夕 ビライザに接続されているァクチユエ一夕の各圧力室内の油圧は変動しても、 リアルタイムで各圧力室内に負荷されている油圧力を把握できるので、 負荷す べきモーメントを維持制御することが可能である。 また、 その制御も制御しず らい差圧制御ではないので、 制御が簡易となり、 安定的にァクチユエ一夕に油 圧力を供給することが可能である。 したがって、 ァクチユエ一夕に安定的な油 圧力を供給することが可能であるので、 ロール抑制効果が高く、 車両のロール 時の乗り心地が向上する。
また、 この場合に、路面入力によりァクチユエ一夕が強制的に動かされると、 油圧源の吐出量以上の作動油の供給が必要となる場合があるが、 その場合には、 供給流路 3 0内が負圧となって、 供給流路 3 0 と排出流路 2 9とを接続する逆 止弁 1 6を作動油が押し開き、 不足する作動油を供給流路 3 0内に供給するこ とが可能であるので、 従来の捩り剛性力制御装置にあるような異音を発生する 事もなく、 各圧力室の油圧力をより一層安定なものとすることが可能である。 すなわち、 安定したス夕ビライザ機能を発揮可能である。 さらに、 この捩り剛性力制御装置やこれを搭載している車両に何らかの 異常が発生し制御不能な状態になった場合や方向切換弁 1 2および圧力制 御弁 1 5 に対するそれぞれの信号線 3 3、 3 4の断線など制御システムに 異常が発生したときには、 これを E C U 2 1 が検知して方向切換弁 1 2 と 圧力制御弁 1 5の動作を停止する。
すると、 圧力制御弁 1 5はパネ力によって弁開口面積を最大に し、 方向 切換弁 1 2はパネ力によって各ポー ト を遮断するポジショ ンに移行する。 そうすると、 油圧ポンプ 2 0から供給されている作動油は圧力制御弁 1 5 を通過して リザ一バ Rへ流入することとなり、 油圧ポンプ 2 0 と リザーバ R間を還流することとな り、 ァクチユエ一夕 2 f 、 2 rには一切油圧力が 負荷されない状態となる。 この状況下で、 仮にァクチユエ一夕 2 f 、 2 r の各圧力室のどちらかに油圧力が高まった状態となって、 ァクチユエ一夕 2 f 、 2 rが捩れた状態となっても、 バイパス路 2 7は各給排流路 2 5、 2 6、 2 4、 2 8 とオリ フ ィ ス 2 3 を介して接続してお り、 やがては各油 圧室の油圧は同圧化されると同時に、 車両が直進状態となっても傾いた り せず、 通常の車体姿勢を維持可能である。 また、 車体がロールした場合に あっても、 オリ フィ ス 2 3 をバイノ ス路 2 7の途中に設けているので、 ァ クチユエ一夕 2 f 、 2 rのポー ト 1 0からポー ト 1 1への作動油の移動は 抑制されることから、 ス夕 ビライザ機能を発現することが可能であるとと もに、 車体が一方向にロールする場面にあってもスタ ビライザ 1 f 、 1 r が前後輪側で逆向きの動作をするこ とが防止され、 前後輪側のスタ ピライ ザが逆方向に捩られる不整路面にあっても、 ァクチユエ一夕 2 f 、 2 の ポー ト 1 0、 1 0およびポー ト 1 1、 1 1は互いに連通されているので、 ス夕ビライザ 1 f 、 1 rは抵抗なく 自由に捩れて、 車体に路面からの入力 を伝達することがな く乗り心地も確保される。 なお、 通常の状態では上記 オリフィス 2 3は極小径であるので、 作動油は給排流路 2 5、 2 6、 2 4、 2 8を優先的に通過してバイパス路 2 7 を通過することが妨げられている c そして、 異常時にあって、 圧力制御弁 1 5が万が一コンタ ミネーシヨ ン 等によ り閉じた状態となっても、 油圧ポンプ 2 0から供給される作動油は、 供給流路 3 0内の油圧力が高まるので、 連通路 3 6のリ リーフ弁 1 7が開 放されリザーバ Rへと流入することとなるので、 捩り剛性力制御装置が損 傷することが防止される。
したがって、 ス夕 ビライザ 1 f , 1 rに対してそれらを捩るような外力 が働いたと しても、 これらス夕 ビライザ 1 f , 1 rは、 方向切換弁 1 2で 作動油の流れをブロ ックすることによって剛体化されたァクチユエ一夕 2 f , 2 rを通して少な く とも通常のスラ ビライザと しての機能を保持しつ つ、 かつ、 よ り通常のステアリ ング特性に近い状態を保って車体のロール を抑制する。
このように して、 コーナリ ングでの車体のロール制御中における制御系 の異常発生に際しては、 ァクチユエ一夕 2 f , 2 rをブロ ック状態に保つ て前後輪用のスタ ビライザ 1 f , 1 rの捩り剛性力を制御中の状態に維持 する。
かく して、 フェールセーフ動作が行われたと しても、 その前後での車体 ロール剛性やステアリ ング特性は変わらず、 車両の操縦特性に大きな変化 をきたすことなく確実にフェールセーフ動作が行われることになる。
つづいて、 本発明の他の実施の形態について説明する。 図 2は、 この発 明による捩り剛性力制御装置の他の実施の形態を系統図と して示したもの である。 なお、 上述した実施の形態と同様の部材については説明が重複す るので、 同一の符号を付するのみとして、 その詳しい説明を省略すること とする。
この実施の形態における捩り剛性力制御装置は、 車両の前後輪側に設け られた部材たるスタ ビライザ 5 0 f 、 5 0 rの一端に、 たとえば二つの対 向する圧力室を備えた両ロ ッ ド型のシ リ ンダ 5 1 f 、 5 1 rを接続し、 上 述の実施の形態と同様の可変機構を各シリ ンダ 5 1 f 、 5 1 r毎に接続し、 さらに供給流路 3 0 f 、 3 0 rを分流弁 3 5 に接続し、 分流弁 3 5の上流 を油圧ポンプ 2 0に接続する供給流路 4 0 に接続するとともに、 排出流路 2 9 f 、 2 9 rを排出流路 4 1 を介して リザーバ Rに接続し、 供給流路 4 0 と排出流路 4 1 を連通するように連通路 3 6 を設け、 その連通路 3 6の 途中にリ リーフ弁 1 7を設けたものである。
ここで、 上述の実施の形態と異なるのは、 可変機構が前後輪側のシ リ ン ダ 5 1 f 、 5 1 r毎に対応して設けられているこ と、 供給流路 3 0 f 可変機 構の上流に分流弁 3 5が設けられているこ と、 および E C U 2 1 が横加速 度、 舵角、 車速のほかにョーレー ト をも取り込んでスタ ビライザ 5 0 f 、 5 O rに負荷するモーメン トを算出することである。
以下、 上記した異なる点について詳細に説明すると、 方向切換弁 1 2 f 、 1 2 rにおける各ポー ト Tは、 それそれからの各供給流路 3 0 f 、 3 0 r を通して分流弁 3 5の出口ポー 卜 D、 Eへと結ばれており、 この分流弁 3 5の入口ポート Cが供給流路 4 0で油圧ポンプ 2 0に通じている。
さらに、 当該実施の形態にあっては、 異常発生時のフェールセーフを行 うために、 分流弁 3 5の上流側における供給流路 4 0 と排出側である排出 流路 4 1 とを結ぶ連通路 3 6の途中には、 リ リーフ弁 1 7が設けてある。
なお、 分流弁 3 5は、 従来から各種の油圧機器において広く一般に用い られているものをそのまま適用すればよ く、 それらの構成についてはよ く 知られていることであるのでここでは詳細な説明を省略する。
さてその動作であるが、 基本的には上述した実施の形態と同様である力 、 本実施の形態においては、 油圧ポンプ 2 0から供給された作動油は、 分流 弁 3 5 によ り分流されて方向切換弁 1 2 f 、 1 2 rのそれぞれの圧力ポー ト Tに送り込まれることとなる。
なお、 上記において、 分流弁 3 5は、 油圧ポンプ 2 0から供給された作 動油を一定の流量比率の下で分流し、 これら分流された作動油を各方向切 換弁 1 2 f , 1 2 r を通してそれぞれのァクチユエ一夕 2 f , 2 rに分配 する。
このとき、 分流弁 3 5で分流される流量比率は、 この捩り剛性力制御装 置が使用される状況、 本実施の形態においてはシリ ンダ 5 1 f 、 5 1 rが 発生可能なモ一メン トを搭載される車両に適するように決定すればよい。
一方、 E C U 2 1 は、 横加速度検出器、 舵角検出器、 車速検出器および ョーレー ト検出器からの各信号に基づいて、 そのときのス夕ビライザ 5 0 f 、 5 O rに負荷される外部モーメ ン ト (車体から負荷される) の方向と 大きさ とを算出し、 これに対応したスタ ビライザ 5 0 f 、 5 O rに負荷す べきモーメ ン トを次々と演算し、 これらの値を制御信号電流と して出力端 子 (付示せず) から出力する。
そして、 上述した実施の形態と同様に E C U 2 1 は、 負荷すべきモ一メ ン トを発生するのに必要なシ リ ンダ 5 1 f 、 5 1 rの各圧力室のどちらか に負荷すべき前後輪側それぞれの油圧力を算出し、 この各油圧力の値とそ れに対応する各圧力検出器 2 2 f 、 2 2 rが検出した油圧力の値とを比較 して、 各圧力制御弁 1 5 f 、 1 5 rおよび方向切換弁 1 2 f 、 1 2 rに供 給する電流を増減して、 算出した各油圧力の値と検出した各油圧力の値と を同一にするように制御する。
すなわち、 上述した実施の形態では、 前後側のス夕 ビライザ 1 f 、 1 r には同一の油圧力を負荷しているので、 同一のモーメ ン ト しか負荷出来な かったが、 本実施の形態では、 上述の実施の形態の作用効果を奏するこ と に加え、 前後側を独立した制御が可能となるので、 よ り車両の走行状態に 適したモーメ ン トをスタ ビラィザ 5 0 f 、 5 0 rに負荷するこ とが可能と なる。
そして、 車体にロールが発生しょう とすると、 前後輪用のス夕 ビライザ 5 0 f 、 5 0 rが横加速度の大きさに合わせて当該車体を反対側に傾けよ う とする方向に捩られ、 これによ り、 スタ ビライザ 5 0 f 、 5 0 rは、 そ の方向への捩り剛性力がアップして車体に生じよう とするロール運動を抑 制することになるのは、 上述の実施の形態と同様である。
また、 上記したように、 前後輪用のス夕 ビライザ 5 0 f 、 5 O rの捩り 剛性力をそれぞれ独立して制御し得ることから、 車体に作用したョ一イ ン グにも対処してコーナリ ング時における車両の回頭性や収斂性を向上させ つつ、 ステアリ ング特性を俊敏に保って車両を安定した状態で走行させる ことになる。
さらに、 積載荷重によ り後輪側の負担荷重が増して当該後輪側の荷重移 動量が大き く なつたと しても、 後輪側の反力モーメ ン 卜が不足してロール が残って しまった り、 或いは、 積載荷重の大小によってステア リ ング特性 が変わってしまったりするようなこともなくなる。
したがって、 分流弁を設け可変機構を前後独立して設けたので、 前後の スタ ビライザを独立して制御できるので、 車両の走行状態によ り適した制 御が可能であるとともに、 油圧ポンプを複数必要と しないので、 消費出力も 小さくすることが可能である。
また一方、 直進走行やコーナ リ ング時を問わず、 この捩り剛性力制御装 置やこれを搭載している車両に何らかの異常が発生し制御不能な状態にな つた場合や捩り剛性力制御装置の異常や方向切換弁 1 2 f , 1 2 rおよび 圧力制御弁 1 5 f 、 1 5 rに対するそれそれの信号線 3 3 f 、 3 3 r、 3
4 f 、 3 4 rの断線など制御システムに異常が発生したときには、 これを E C U 2 1 が検知して方向切換弁 1 2 f , 1 2 r と圧力制御弁 1 5 f 、 1
5 rの動作を停止するので、 上述の実施の形態と同様に圧力制御弁 1 5 f 、 1 5 rの弁開口面積は最大とな り、 方向切換弁 1 2 f 、 1 2 rは遮断ポジ シヨンをとる。
本実施の形態においては、 各シリ ンダ 5 1 f 、 5 1 rに接続される各給 排流路 2 5 f 、 2 6 f 、 2 5 r , 2 6 rをそれぞれ接続するバイパス路 2 7 f 、 2 7 rによ り シリ ンダ 5 1 f 、 1 5 rの各圧力室の油圧が平均化さ れると同時に、 ス夕 ビライザ機能を発揮可能なこ とは言う までもないが、 各シリ ンダ 5 1 f 、 5 1 rの各圧力室は前後側で完全に独立しているので、 ス夕ビライザ 5 0 f 、 5 0 rが前後輪側で逆方向に捩られる状況にあって もスタビライザ機能を発揮可能となる。
また、 上述したように、 部材たるス夕 ビライザにモーメ ン トを負荷する には、 口一夕 リ アクチユエ一夕以外にもシ リ ンダが使用できるとともに、 おおよそ、 捩り剛性力制御装置は外部から負荷されるモーメ ン ト に対し、 部材の捩り剛性力を変化させる必要がある状況で使用可能なことは言う ま でもない。 そ して、 車両以外に使用される場合には、 横加速度、 車速等に 換えて他の要素に基づいて部材に負荷するモーメ ン ト を算出するように設 定されるであろう。
なお、 本実施の形態においては、 本発明の捩り剛性力制御装置を車両のス夕 ビライザとして使用した場合について説明したが、 本発明の範囲は図示されま たは説明された詳細そのものには限定されないことは勿論である。
本発明によれば次の効果がある 各請求項の発明によれば、 ァクチユエ一夕またはシリ ンダの各圧力室に負 荷される流体圧力をゼロにすることができ、 ス夕 ビライザ等の部材に突然 の入力があっても、 各圧力室の流体圧力が何等生じてない状態になってい るので、 部材は抵抗な く 自由に移動することができるので、 従来のように 部材を完全に抵抗な く 自由に移動させることができないものに比べ有利で ある。
また、 従来のように差圧制御バルブを使用せずに直接流体圧を圧力室に 供給し、 かつ、 圧力室内の流体圧力をリアルタィムで把握可能であるので、 圧力室内の流体圧力を安定でき、 良好な捩り剛性力を発生することが可能 である。 さらに、 その制御も制御しずらい差圧制御ではないので、 制御が簡易 となり、 安定的にァクチユエ一夕ゃシリンダに流体圧力を供給することが可能 である。 したがって、 部材に安定したモーメン トを与えることができるから、 安定した捩り剛性力を発揮可能である。
複数の部材の捩り剛性力を 1つの流体圧源で制御可能であるので、 消費出力 も小さくすることが可能である。
分流弁を設け可変機構を前後独立して設けたので、 各部材を独立して制 御できるので、 各部材に独立したモーメ ン ト を与えることが可能である。 したがって、 各部材毎に異なる捩り剛性力を作用させることが可能である。 捩り剛性力制御装置に異常が生じて、 制御不能な状態となり、 各弁に通 電できない状態となっても、 圧力制御弁は弁開口面積を最大とし、 方向切換 弁は流体圧を遮断し、 二つの圧力室は途中にオリフィスを設けたバイパス路で 連通されているので、 部材自体が有する捩り剛性の発揮を妨げることはない。 また、 圧力制御弁は開口面積を変化させることができるので、 きめ細かい流体 圧の調節が可能であり、 精度の高い制御が可能となる。 部材に大きなモーメントゃ部材が速い速度で動かされ、 流体圧源からの流体 供給量が不足した場合にあっても、 逆止弁側から流体を供給することが可能と なるので、 供給流路が負圧になることがなく、 当該装置が異音を発生すること が抑制されると同時に、 ァクチユエ一夕ゃシリンダの圧力室に負荷する流体圧 力が安定する。 すなわち、 部材に与えるモーメン トが安定するので、 より一層 安定した捩り剛性力を発揮可能である。 捩り剛性力制御装置に異常が生じて、 制御不能な状態となり、 各弁に通 電できない状態となった場合であって、 圧力制御弁がコンタ ミネーシヨ ン 等によ り閉じた状態となっても、 流体圧源から供給される流体は、 供給流 路内の流体圧力が高まるので、 連通路のリ リーフ弁が開放されリザーバへ と流入することとなるので、 捩り剛性力制御装置が損傷することが防止さ れる。
圧力検出器がリアルタイムにァクチユエ一夕またはシリ ンダの圧力室内の 流体圧力値を検出し、 コン トローラが検出した流体圧力値を認識して、 必要流 体圧力値と比較しながら制御するので、 よりきめ細かな制御が可能であるとと もに、 従来の捩り剛性力制御装置より一層ァクチユエ一夕またはシリ ンダの圧 力室内の流体圧力を安定させることが可能である。
この捩り剛性力制御装置が車両に適用され、 ス夕ビライザの捩り剛性力を変 化させるので、 車両のロールを抑制制御することが可能となる。 そして、 上述 したようにァクチユエ一夕も しくはシリ ンダに安定した流体圧力を負荷する ことが可能であるので、 ス夕ビライザに与えるモーメン トを安定させることが できるので、 従来に比較して、 車両のロール抑制効果が高く、 乗り心地が向上 する。
車両の横加速度に基づいてスタビライザに与えるモーメ ン トを制御しスタ ビライザの捩り剛性力を変化させるので、 車体のロールを効果的に抑制する事 が可能となる。 また、 従来の捩り剛性制御装置に比較して、 ァクチユエ一夕ま たはシリンダの圧力室内の流体圧力を安定させることができるので、 より一層 乗り心地の向上が可能である。 さらに、 いわゆるフェールセーフ時にも、 この 捩り剛性力制御装置の損傷を防止しつつ、 少なく ともス夕ビライザ機能を維持 発揮することが可能であり、 かつ、 よ り通常のステアリ ング特性に近い状態 を保って車体のロールを抑制する。
また、 フェールセーフ動作が行われたと しても、 その前後での車体ロー ル剛性やステアリ ング特性は変わらず、 車両の操縦特性に大きな変化をき たすことなく確実にフェールセーフ動作が行える。
横加速度だけでなく車速および舵角に基づいてスタ ビライザに負荷する モーメ ン トを算出するので、 よ り車両の走行状態に適した制御が可能とな り、 車両の乗り心地が向上する。
横加速度、 車速、 舵角、 ョーレー トに基づきスタ ビライザに負荷するモ —メ-ン トを算出するので、 前後輪用のスタ ビライザの捩り剛性力をそれそ れ独立して制御すれば、 車体に作用したョーィ ングにも対処してコーナリ ング時における車両の回頭性や収斂性を向上させつつ、 ステアリ ング特性 を俊敏に保って車両を安定した状態で走行させることになる。 さ らに、 積 載荷重によ り後輪側の負担荷重が増して当該後輪側の荷重移動量が大き く なったと しても、 後輪側の反力モーメ ン トが不足してロールが残ってしま つたり、 或いは、 積載荷重の大小によってステアリ ング特性が変わって し まった りするようなこともなく なる。 したがって、 よ り車両の走行状態に 適した制御が可能となり、 車両の乗り心地が向上する。
横加速度、 車速、 舵角、 ョ一レー トに基づきス夕ビライザの捩り剛性を 変化させるので、 車体のロールを効果的に抑制する事が可能となる。 また、 従 来の捩り剛性制御装置に比較して、 ァクチユエ一夕またはシリンダの圧力室内 の流体圧力を安定させることができるので、 より一層乗り心地の向上が可能で ある。 さらに、 いわゆるフエ一ルセ一フ時にも、 この捩り剛性力制御装置の損 傷を防止しつつ、 少なく ともスタビライザ機能を維持発揮することが可能であ り、 かつ、 よ り通常のステアリ ング特性に近い状態を保って車体のロールを 抑制する。 また、 前後輪用のス夕 ビライザの捩り剛性力をそれぞれ独立し て制御すれば、 車体に作用したョーィ ングにも対処してコーナリ ング時に おける車両の回頭性や収斂性を向上させつつ、 ステア リ ング特性を俊敏に 保って車両を安定した状態で走行させることになる。 さ らに、 積載荷重に よ り後輪側の負担荷重が増して当該後輪側の荷重移動量が大き く なつたと しても、 後輪側の反力モーメ ン 卜が不足してロールが残って しまった り、 或いは、 積載荷重の大小によってステアリ ング特性が変わって しまった り するようなこ ともなく なる。 したがって、 よ り車両の走行状態に適した制 御が可能となり、 車両の乗り心地が向上する。

Claims

請求の範囲
1 . 部材に外部から負荷される外部モーメントに基づいて、 当該外部モーメ ン トに抗して部材に与えるモーメン トを制御する捩り剛性力制御装置におい て、 部材の中間または一端に結合したロータ リアクチユエ一タもしくは部材の 一端に結合したシリ ンダを駆動させる流体圧源から供給される流体圧を調節 することにより部材に負荷するモーメン トを変化させる可変機構を具備し、 上 記外部モーメン 卜の値に基づいてロー夕 リアクチユエ一夕も しくはシリ ンダ を駆動する必要流体圧値を算出し、 口一夕 リアクチユー夕もしくはシリンダに 供給されている流体圧値と必要流体圧値とを比較して、 その比較結果に基づき 上記流体圧を調節してモーメ ン トを制御することを特徴とする捩り剛性力制 御装置。
2 . スタビライザに外部から負荷される外部モーメントに基づいて、 当該 モ一メン トに抗してス夕ビライザに与えるモーメン トを制御する捩り剛性力 制御装置において、 スタビライザの中間または一端に結合したロータリアクチ ユエ一夕も しくはスタビライザの一端に結合したシリ ンダを駆動させる流体 圧源から供給される流体圧を調節することによ りスタビライザに負荷するモ ーメン トを変化させる可変機構を具備し、 上記外部モーメン 卜の値に基づいて ロータ リアクチユエ一夕もしくはシリ ンダを駆動する必要流体圧値を算出し、 口一夕 リアクチユー夕も しくはシリ ンダに供給されている流体圧値と必要流 体圧値とを比較して、 その比較結果に基づき上記流体圧を調節してモーメン ト を制御することを特徴とする捩り剛性力制御装置。
3 . スタビライザを複数設け、 各スタビライザの中間または一端にロータリ ァクチユエ一夕を結合するか、 または各スタビライザの一端にシリンダを結合 し、 外部モーメン トに抗して各スタビライザに与えるモーメン トを制御する請 求項 2に記載の捩り剛性力制御装置。
4 . 流体圧源とロータ リアクチユエ一夕もしくはシリ ンダとの間に分流弁を 設けるとともに、 分流弁よりロータ リアクチユエ一夕もしくはシリ ンダ側に上 記可変機構を各部材毎に具備してなり、 各部材毎に負荷するモーメン トを制御 する請求項 2に記載の捩り剛性力制御装置。
5 . 可変機構が、 流体圧源に接続された供給流路と、 リザ一バに接続された 排出流路と、 ロー夕 リアクチユエ一夕もしくはシリ ンダに設けた二つの圧力室 の各々に接続された二つの給排流路と、 供給流路と排出流路との間に接続され たソレノィ ド圧力制御弁と、 上記供給流路と排出流路を上記二つの給排流路の いずれか一方に選択的に接続するソレノィ ド方向切換弁とで構成されたこと を特徴とする請求項 2記載の捩り剛性力制御装置。
6 . 上記圧力制御弁はソレノィ ドに通電されない状態では開口面積が最大 となり、 通電状態では印加電流に応じて開口面積が調節され、 上記方向切換弁 はソレノィ ドに通電されない状態では流体圧を遮断し、 通電した時流体圧を供 給するする請求項 5に記載の捩り剛性力制御装置。
7 . 供給流路と排出流路との間に圧力制御弁と並列に供給流路側から排出 流路側へのみ流体の流れを許容する逆止弁と リ リーフ弁を設けたことを特徴 とする請求項 5記載の捩り剛性力制御装置。
8 . ロータリアクチユー夕もしくはシリンダに供給されている流体圧値を 圧力検出器で検出し、 コン トロ一ラが上記外部モーメン 卜の値に基づいて口一 夕リアクチユエ一夕又はシリンダを駆動する必要流体圧値を算出し、 検出した 流体圧値と必要流体圧値とを比較して、 その比較結果に基づき、 上記圧力制御 弁および方向切換弁を切換制御して上記外部モーメン トを制御することを特 徴とする請求項 5に記載の捩り剛性力制御装置。
9 . 車両横加速度、 車両横加速度と車速と舵角、 又は車両横加速度と車速と 舵角とョーレー トのいずれかに基づいて外部モーメン トを算出する請求項 1 , 2 , 3 , 4 , 5 , 6 , 7又は 8に記載の捩り剛性力制御装置。
1 0 . スタビライザの中間または一端に相対向する二つの圧力室を備えた口一 夕 リアクチユエ一夕もしくはスタ ビライザの一端に相対向する二つの圧力室 を備えたシリンダを結合し、 各圧力室に作動油を供給または排出してロータ リ ァクチユエ一夕も しくはシリ ンダを駆動させることによりス夕ビライザの捩 り剛性を調整するス夕ビライザの捩り剛性力制御装置において、 各圧力室を供 給流路または排出流路に選択的に連通または遮断させるソレノィ ド方向切換 弁と、 供給流路と排出流路との間に設けられた通電されない状態で開口面積を WO 2004/035333 - · - PCT/JP2003/013030 最大にし通電状態で開口面積を調節可能な圧力制御弁と、 コン トローラとを備 え、 上記コントローラが上記圧力室内の圧力と、 車両横加速度と、 舵角と、 車 速と、 ョーレートとに基づいて、 上記ソレノィ ド方向切換弁と圧力制御弁とに 電流を印加し、 電流に比例して圧力制御弁の開口面積を調整するとともにソレ ノィ ド方向切換弁を連通または遮断ポジションに切換えることを特徴とする ス夕ビライザの捩り剛性力制御装置。
PCT/JP2003/013030 2002-10-18 2003-10-10 捩り剛性力制御装置 WO2004035333A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES03769896T ES2399632T3 (es) 2002-10-18 2003-10-10 Dispositivo de control de la rigidez torsional
US10/503,760 US7162945B2 (en) 2002-10-18 2003-10-10 Torsional rigidity control device
EP03769896A EP1475256B1 (en) 2002-10-18 2003-10-10 Torsional rigidity control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002304488A JP2004136814A (ja) 2002-10-18 2002-10-18 捩り剛性力制御装置
JP2002-304488 2002-10-18

Publications (1)

Publication Number Publication Date
WO2004035333A1 true WO2004035333A1 (ja) 2004-04-29

Family

ID=32105113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013030 WO2004035333A1 (ja) 2002-10-18 2003-10-10 捩り剛性力制御装置

Country Status (6)

Country Link
US (1) US7162945B2 (ja)
EP (1) EP1475256B1 (ja)
JP (1) JP2004136814A (ja)
KR (1) KR20050047503A (ja)
ES (1) ES2399632T3 (ja)
WO (1) WO2004035333A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025807B4 (de) 2004-05-24 2009-01-22 Zf Friedrichshafen Ag Stabilisatoranordnung für ein Kraftfahrzeug
DE102004056425A1 (de) * 2004-11-23 2006-06-01 Daimlerchrysler Ag Aktive hydraulische Wankstabilisierung mit einer Zylinderkolbeneinheit
JP4404018B2 (ja) * 2005-06-16 2010-01-27 トヨタ自動車株式会社 車両用スタビライザシステム
DE102007003979B4 (de) * 2007-01-26 2017-06-01 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug mit einem geteilten Stabilisator
US7722055B2 (en) * 2007-06-18 2010-05-25 Arvinmeritor Technology, Llc Failsafe valve for active roll control
DE102007034840A1 (de) * 2007-07-26 2009-01-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Fahrwerkssystem für ein Kraftfahrzeug und Verfahren zur Fahrdynamikregelung
GB2454013B (en) * 2007-10-26 2009-12-30 Lotus Car A land vehicle suspension system
DE102007063543A1 (de) * 2007-12-21 2009-06-25 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hydraulisches System zur Wankstabilisierung eines Kraftfahrzeugs
US10774672B2 (en) * 2013-02-12 2020-09-15 Raytheon Technologies Corporation Rotary actuator for variable vane adjustment system
JP6443395B2 (ja) * 2016-06-06 2018-12-26 トヨタ自動車株式会社 スタビライザ制御装置
DE102017215526B3 (de) * 2017-09-05 2019-03-07 Bayerische Motoren Werke Aktiengesellschaft Schaltbare Stabilisatoranordnung eines Fahrzeuges
FR3070901B1 (fr) * 2017-09-12 2021-03-12 Psa Automobiles Sa Dispositif anti-devers a moyens d’action pilotes par un circuit de controle hydraulique, pour un train de vehicule automobile
JP7264126B2 (ja) 2020-07-28 2023-04-25 トヨタ自動車株式会社 スタビライザシステム
US11807061B2 (en) * 2022-03-07 2023-11-07 GM Global Technology Operations LLC Variable adaptive hydro-mechanical spring

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0512358A1 (en) 1991-05-06 1992-11-11 FIAT AUTO S.p.A. A system for controlling the load on an antiroll stabiliser bar associated with an independent suspension system for a motor vehicle
JPH06320930A (ja) * 1993-05-13 1994-11-22 Toyota Motor Corp 流体圧式アクティブサスペンション
JPH07246823A (ja) 1994-03-11 1995-09-26 Nissan Diesel Motor Co Ltd 車両のスタビライザ装置
JPH07300010A (ja) * 1995-04-10 1995-11-14 Mazda Motor Corp 車両のサスペンション装置
DE19622964A1 (de) 1996-06-07 1997-06-05 Fichtel & Sachs Ag Aktiver Wagenheber
JPH09156338A (ja) * 1995-12-06 1997-06-17 Kayaba Ind Co Ltd 車両のロール制御装置
JP2000071739A (ja) * 1998-08-26 2000-03-07 Honda Motor Co Ltd スタビライザの効力制御装置
US6039326A (en) 1996-07-16 2000-03-21 Luk Fahrzeug-Hydraulik Gmbh & Co. Kg Device for roll stabilization of a motor vehicle
JP2002013502A (ja) * 2000-06-29 2002-01-18 Tokico Ltd 油圧システムの制御弁

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4337765A1 (de) * 1993-11-05 1995-05-11 Fichtel & Sachs Ag Zweikreishydrauliksystem für eine aktive Fahrwerksregelung zur Unterdrückung der Rollbewegung eines Kraftfahrzeuges
GB2304652B (en) * 1995-08-24 1999-08-18 Delphi France Automotive Sys Vehicle roll control system
EP1103396B1 (en) * 1999-11-26 2009-04-22 Delphi Technologies, Inc. Vehicle roll control system
DE10210306A1 (de) * 2002-03-08 2003-09-18 Volkswagen Ag Anordnung zur aktiven Rollstabilisierung eines Kraftfahrzeugs

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0512358A1 (en) 1991-05-06 1992-11-11 FIAT AUTO S.p.A. A system for controlling the load on an antiroll stabiliser bar associated with an independent suspension system for a motor vehicle
JPH06320930A (ja) * 1993-05-13 1994-11-22 Toyota Motor Corp 流体圧式アクティブサスペンション
JPH07246823A (ja) 1994-03-11 1995-09-26 Nissan Diesel Motor Co Ltd 車両のスタビライザ装置
JP2981109B2 (ja) * 1994-03-11 1999-11-22 日産ディーゼル工業株式会社 車両のスタビライザ装置
JPH07300010A (ja) * 1995-04-10 1995-11-14 Mazda Motor Corp 車両のサスペンション装置
JPH09156338A (ja) * 1995-12-06 1997-06-17 Kayaba Ind Co Ltd 車両のロール制御装置
DE19622964A1 (de) 1996-06-07 1997-06-05 Fichtel & Sachs Ag Aktiver Wagenheber
US6039326A (en) 1996-07-16 2000-03-21 Luk Fahrzeug-Hydraulik Gmbh & Co. Kg Device for roll stabilization of a motor vehicle
JP2000071739A (ja) * 1998-08-26 2000-03-07 Honda Motor Co Ltd スタビライザの効力制御装置
JP2002013502A (ja) * 2000-06-29 2002-01-18 Tokico Ltd 油圧システムの制御弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1475256A4 *

Also Published As

Publication number Publication date
JP2004136814A (ja) 2004-05-13
EP1475256B1 (en) 2012-11-21
ES2399632T3 (es) 2013-04-02
EP1475256A1 (en) 2004-11-10
US7162945B2 (en) 2007-01-16
EP1475256A4 (en) 2009-07-22
KR20050047503A (ko) 2005-05-20
US20050079066A1 (en) 2005-04-14

Similar Documents

Publication Publication Date Title
WO2004035333A1 (ja) 捩り剛性力制御装置
US7722055B2 (en) Failsafe valve for active roll control
JP3682330B2 (ja) 車両のロール制御装置
JPS63188574A (ja) パワ−ステアリングの油圧制御装置
JP4368735B2 (ja) 車両のロール制御装置
JP4275543B2 (ja) スタビライザ装置
JPH09183306A (ja) 車両のロール制御装置
JPH1044803A (ja) 油圧式四駆車両
JP2008013097A (ja) ロール制御装置
JP4939132B2 (ja) ロール制御装置
JP4204987B2 (ja) スタビライザ装置
JP2005225267A (ja) スタビライザ装置
JP2005212495A (ja) スタビライザ装置
JP4704285B2 (ja) ロール制御装置
JP3682333B2 (ja) 車両のロール制御装置
JP4898326B2 (ja) ロール制御装置
JP4630569B2 (ja) 車両のロール制御装置
JP3652510B2 (ja) 上部旋回体を有する機械の油圧制御装置
JP3748401B2 (ja) パワーステアリング装置
JP3243076B2 (ja) 車両のロール制御装置
JP5394284B2 (ja) 負荷圧感応型油圧回路
JPS6080973A (ja) 車両の液圧操向装置
KR0172637B1 (ko) 차량의 능동 롤 제어장치
JP3301544B2 (ja) 油圧回路
JPH0263911A (ja) アクティブサスペンションの油圧回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047011222

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10503760

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003769896

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003769896

Country of ref document: EP