WO2004016693A1 - ポリアミド樹脂組成物及びその製造方法 - Google Patents

ポリアミド樹脂組成物及びその製造方法 Download PDF

Info

Publication number
WO2004016693A1
WO2004016693A1 PCT/JP2003/009306 JP0309306W WO2004016693A1 WO 2004016693 A1 WO2004016693 A1 WO 2004016693A1 JP 0309306 W JP0309306 W JP 0309306W WO 2004016693 A1 WO2004016693 A1 WO 2004016693A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
resin composition
composition according
swellable mica
weight
Prior art date
Application number
PCT/JP2003/009306
Other languages
English (en)
French (fr)
Inventor
Noriyuki Suzuki
Kazuhiro Hara
Yoshitaka Ono
Atsushi Miyano
Tetsuo Mekata
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to CNB038173786A priority Critical patent/CN1313537C/zh
Priority to US10/519,544 priority patent/US7259196B2/en
Priority to JP2005502024A priority patent/JP4542035B2/ja
Priority to CA2491746A priority patent/CA2491746C/en
Priority to DE60321370T priority patent/DE60321370D1/de
Priority to AU2003252236A priority patent/AU2003252236A1/en
Priority to EP03788013A priority patent/EP1553141B1/en
Publication of WO2004016693A1 publication Critical patent/WO2004016693A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene

Definitions

  • the present invention relates to a polyamide resin composition containing a polyamide resin and a swellable mica treated with a specific polyether compound.
  • Polyamide resins are used in many industrial applications as injection molding materials, fibers, and films because of their excellent heat resistance, chemical resistance, weather resistance, mechanical properties, and electrical properties.
  • a polyamide resin composition in which a swellable clay compound is finely dispersed in a polyamide resin as an inorganic particle is disclosed (Japanese Patent Application Laid-Open Nos. 62-79457 and 2-695662).
  • Japanese Patent Application Laid-Open No. 6-808073 Japanese Patent Application Laid-Open No. Hei 6-22843, Japanese Patent Application Laid-Open No. 11-34981, Japanese Patent Application Laid-open No. 6-24811 No. 76, Japanese Patent Application Laid-Open No. Hei 8-2836567, Japanese Patent Application Laid-Open No. Hei 9-241505, Japanese Patent Laid-Open No. 2001-29113).
  • Another problem of the above technique is that an organic ammonium salt is employed as a surface treatment agent used for uniform fine dispersion of the swellable clay compound.
  • the organic ammonium salt deteriorated when it stayed at the processing temperature of the polyamide resin for a long time, causing deterioration in mechanical properties and toughness. Improvement was also desired in this regard.
  • an interlayer compound is disclosed, a technique of cleaving the interlayer compound and finely dispersing the same in a polyamide resin is not disclosed, and a swellable clay compound is contained in a polyamide resin. It was difficult to finely disperse.
  • thermoplastic resin in order to cleave and finely disperse the swellable clay compound layer in thermoplastic resin, it is particularly effective to treat the swellable clay compound with a water-soluble compound to make it into a clay interlayer compound.
  • JP-A-10-259016, JP-A-10-310420 With this technology, the surface Although it was possible to increase the power factor and heat resistance, there was a strong demand for improving the various physical properties and improving the warpage during injection molding.
  • a method of alloying a polyamide resin and a styrene-based resin blending with an ABS resin, that is, polyamide / ABS alloy (Japanese Patent Publication No. 38-23476) is also used.
  • the method include a method of blending a modified copolymer obtained by copolymerizing unsaturated carboxylic acid with styrene and acrylonitrile (JP-A-63-179957, JP-A-64-158). It is disclosed. Further, a method by alloying with an inorganic filler and a specific styrenic resin (Japanese Patent Application Laid-Open Nos.
  • Japanese Patent Application Laid-Open No. 8-34339 discloses a method using a combination of a polyamide polymerized in the coexistence of a layered silicate and an ABS (Japanese Patent Application Laid-Open No. H8-3439).
  • JP-A-2000-212431 a method using a combination of a polyamide containing a swellable fluoromica-based mineral, a styrene-based hard polymer and a thermoplastic elastomer (JP-A-9-12873). ) Is disclosed.
  • the polyamide resin is used in various fields.
  • the physical properties tend to deteriorate after water absorption.
  • a method of polymer blending a resin which is difficult to absorb water, such as a polyolefin resin is generally known (Japanese Patent Application Laid-Open No. 05-0437974; Japanese Patent Application Laid-Open No. 06-13662). 59 No. 9 bulletin; Fumio Ide, Kazumasa Kamada, Akira Hasegawa, "Polymer Chemistry", The Society of Polymer Science, Feb. 25, 1996, Vol. 25, No. 27, p. 1 0 7— 1 1 5).
  • the carbon fiber in a material using carbon fiber for imparting conductivity, the carbon fiber easily floats on the surface of the molded product, but when it is used for a container or a tray for transport, the carbon fiber floating on the surface becomes an IC or a material. There is a problem of damaging other electronic components. Another problem is that the carbon fiber is oriented in the flow direction during molding to generate anisotropy, which causes another problem that the molded product is warped. When carbon black is used, an inorganic filler is used to impart rigidity and heat resistance. However, there has been a problem that the inorganic filler impairs surface properties and causes warpage.
  • An object of the present invention is to provide a polyamide resin composition which solves such conventional problems, has excellent dimensional stability, and has improved mechanical properties and heat resistance.
  • the object of the present invention is, in addition to the above objects, a thermoplastic resin composition further excellent in surface appearance (surface property, low sink property); a thermoplastic resin composition in which water absorption is suppressed;
  • An object of the present invention is to provide a thermoplastic resin composition having an inhibitory property.
  • the present inventors have conducted intensive studies to achieve the above object. As a result, swelling mica treated with a specific polyether compound is uniformly and finely dispersed in a polyamide resin by extrusion, and a polyamide resin having excellent properties is obtained. The composition was completed.
  • swellable mica treated with a specific polyether compound is uniformly differentiated and dispersed in a resin composition comprising a polyamide resin and a styrene-based resin by extrusion, and has excellent properties.
  • the resin composition was completed.
  • the present invention comprises a polyamide resin, and a swellable mica treated with a polyether compound, and the polyether compound has the following general formula (1):
  • one A- is, - O-one S-, -SO-, One S 0 2 -, -CO-, an alkylene group or a number of 6-2 0 alkylidene group having a carbon of a carbon number of 1-2 0
  • RR 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 may be the same or different, and each represents a hydrogen atom, a halogen atom, or a carbon number of 1 to 5.
  • the present invention relates to a polyamide resin composition having a structure represented by the following formula:
  • the present invention also relates to the polyamide resin composition described above, further comprising at least one selected from a styrene-based resin, an anhydride-containing olefin-based copolymer, and a carbon compound.
  • the present invention also relates to the above polyamide resin composition, further comprising a styrene resin.
  • the present invention is characterized in that the polyamide resin thread and the anhydride-containing olefin copolymer further comprise an anhydride-containing olefin copolymer.
  • the copolymer is obtained by copolymerizing or grafting an alicyclic dicarboxylic anhydride or ⁇ ,] 3-unsaturated dicarboxylic anhydride having a cis double bond in the ring.
  • the polyamide resin composition wherein a weight ratio of the anhydride-containing olefin copolymer in the polyamide resin composition is 1% by weight or more and 30% by weight or less. Related to the composition.
  • the present invention provides the polyamide resin yarn and the composition, further comprising a carbon compound, wherein the carbon compound is granular.
  • the carbon resin is in the form of fipril, and relates to the above-mentioned polyimide resin composition.
  • polyether compound is represented by the following general formula (2):
  • R 9 and R 1Q are the same or different.
  • m and n each represent the number of repeating oxyalkylene units, and 2 m + n ⁇ 50.
  • the polyamide resin is a polyamide resin composition, wherein the ratio of swellable mica having an equivalent area circle diameter [D] of B-pervious mica of 300 nm or less is 20% or more. Composition.
  • the present invention relates to the polyamide resin composition, wherein the average value of the equivalent area circle diameter [D] of the swellable mica is 500 nm or less in the polyamide resin composition.
  • the present invention relates to the polyamide resin composition, wherein the polyamide resin composition has an average layer thickness of swellable mica of 5 Onm or less.
  • the present invention relates to the above polyamide resin composition, wherein the polyamide resin composition has a maximum layer thickness of swellable mica of 200 nm or less.
  • the present invention relates to the polyamide resin composition, wherein the polyamide resin composition has a number of particles [N] per unit ratio of swellable mica of 30 or more.
  • the swellable mica in the polyamide resin composition is 10 to 300.
  • the present invention relates to the above polyamide resin composition, wherein the weight ratio of the swellable mica in the polyamide resin composition is 0.5% by weight or more and 30% by weight or less.
  • the present invention relates to the polyamide resin composition obtained by kneading the above components.
  • the present invention relates to a method for producing a polyamide resin composition, which comprises melting and kneading each component of the polyamide resin composition.
  • the present invention also relates to a resin molded article characterized in that the resin molded article is entirely or partially formed from the polyamide resin composition; and to the resin molded article, which is a component for an automobile.
  • the polyamide resin used in the present invention is a polymer containing an amide bond (1-NHCO—) in the main chain and capable of being melted by heating.
  • Specific examples include polycaprolamide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebacamide (nylon 610), Xamethylene dodecamide (nylon 612), polydecamethylene adipamide (nylon 116), polyundecane amide (nylon 11), poly dodecane amide (nylon 12), polytrimethylhexamethylene terephthalamide (nylon TMHT), polyhexamethylene terephthalamide (nylon 61), polyhexamethylene terephthal / isophthalamide (nylon 6T / 6I), polynonamethylene terephthalamide (nylon 9T), polybis ( 4—Aminocyclohexyl) methane dodecamide (nylon PACM12),
  • nylon 6, nylon 46, nylon 66, nylon 11, nylon 12, nylon 9T, nylon MX D6, and copolymers of these materials from the viewpoint of availability and handling, etc.
  • Polyamides and mixed polyamides are preferred.
  • Nylon 6, Nylon 46, Nylon 66, and Nylon MXD6 are more preferable in terms of strength, elastic modulus, cost, and the like.
  • the molecular weight of the above polyamide resin is not particularly limited, usually, a resin having a relative viscosity in the range of 0.5 to 5.0 measured in concentrated sulfuric acid at 25 ° C is preferably used.
  • the above-mentioned polyamide resins may be used alone or in combination of two or more of those having different yarn compositions or components and different Z or relative viscosity.
  • the polyamide resin can be produced, for example, by a general polyamide polymerization method or the like.
  • the swelling mica treated with polyether is used, whereby the swelling mica can be dispersed in the polyamide resin composition in a very fine and independent thin plate shape.
  • the swellable mica used in the present invention can be obtained by heat-treating a mixture containing talc, sodium and / or lithium silicofluoride or fluoride.
  • a specific method there is a method disclosed in Japanese Patent Application Laid-Open No. 2-149415. That is, this is a method in which sodium ions and / or lithium ions are interlaid with talc to obtain swellable mica. In this method, it is obtained by mixing talc with silicofluoride and / or fluoride, and treating the mixture at about 700 to 1200 ° C.
  • the swellable mica used in the present invention is particularly preferably produced by this method in view of purity and swellability. In order to obtain swellable mica, it is necessary to use sodium or lithium as the metal constituting silicide or fluoride. These may be used alone or in combination of two or more.
  • the amount of silicofluoride and / or fluoride mixed with talc is preferably from 10 to 35% by weight of the whole mixture from the viewpoint of the rate of formation of swellable mica.
  • the swellable mica produced by the above method has a structure represented by the following formula (3) as a general formula.
  • M represents sodium or lithium
  • ⁇ , ⁇ , y, a, and b each represent a coefficient. 0, l ⁇ a2, 2 ⁇ j3 ⁇ 3.5, 3 ⁇ y ⁇ 4, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇
  • the swellable mica has a property of swelling in water, a polar solvent compatible with water at an arbitrary ratio, and a mixed solvent of water and the polar solvent.
  • swelling property refers to a property in which the swelling mica absorbs the polar molecule between layers to increase the distance between eyebrows, or to swell to cause cleavage.
  • the polar solvent that is compatible with water at an arbitrary ratio include the same solvents as those described below for the polar solvent.
  • the swellable mica examples include lithium-type teniolite, sodium-type teolite, lithium-type tetrasilicate mica, sodium-type tetrasilicate mica, and the like, and substituted substances, derivatives, and mixtures thereof. It can be manufactured by the above method.
  • the initial state of aggregation of the swellable mica that is, the bottom surface interval of the swellable mica before swelling is about 1 to 1.7 nm, and the average particle size of the swellable mica before swelling is about 100 to 1 It is 0000 nm.
  • the polyether compound used in the present invention refers to a polyoxyalkylene compound such as a polyoxyethylene / polyoxyethylene / polyoxypropylene copolymer or the like, in a side chain and / or a main chain thereof, represented by the following general formula ( 1):
  • one A- is, - O-, - S-, One SO- one S 0 2 - one CO-, an alkylene group or a C 6 -C 2 0 alkylidene group having a carbon of a carbon number of 1-2 0
  • RR RR 4 , R 5 , R 6 , R and R 8 may be the same or different and each represent a hydrogen atom, a halogen atom or a monovalent hydrocarbon group having 1 to 5 carbon atoms. ).
  • R 9 , R 1 (> May be different, and represent a divalent hydrocarbon group having 1 to 5 carbon atoms, and R u and R 12 may be the same or different, and each may be a hydrogen atom or a carbon number of 1 to 20.
  • m and n each represent the number of repeating units of oxyalkylene units, and 2 ⁇ m + n ⁇ 50.
  • Those having a structure represented by the following formula can be particularly preferably used in terms of thermal stability, dispersibility of swellable mica, and availability.
  • alkylene group having 1 to 20 carbon atoms represented by A examples include, for example, methylene, ethylene, propylene, pheninolemethylene, 1-methylene / 1-phenylenolemethylene, and hexylmethylene It is preferably an alkylene group having 1 to 8 carbon atoms.
  • alkylidene group having 6 to 20 carbon atoms represented by A examples include cyclohexylidene, methylhexylhexidene, dimethylcyclohexylidene, trimethylcyclohexylidene, and the like, and preferably have 6 to 20 carbon atoms. 9 alkylidene groups.
  • Examples of the halogen atom represented by R 1 to R 4 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl groups and the like.
  • alkyl group having 1 to 5 carbon atoms For example, methyl, ethyl, propyl, butyl, pentyl and the like can be mentioned.
  • Examples of the divalent hydrocarbon group having 1 to 5 carbon atoms represented by R 9 and Rie include an alkylene group having 1 to 5 carbon atoms.
  • Examples of the alkylene group having 1 to 5 carbon atoms include methylene, ethylene, propylene, butylene, pentylene and the like.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R u and R 12 include an alkyl group having 1 to 20 carbon atoms.
  • Examples of the alkyl group having 1 to 20 carbon atoms include methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, decyl, dodecyl, and hexadecyl.
  • m and n indicate the number of repeating units of the oxyalkylene unit, m ⁇ l, n ⁇ l, and 2: m + n50.
  • polyether compound examples include a polyoxetylene chain having 1 to 25 repeating units at both ends of 2,2-bis (4-hydroxypropyl) propane (“bisphenol A”).
  • 2,2-bis (4-hydroxyphenyl) propane (“bisfuynol A”) with a polyoxypropylene chain of 1 to 25 repeating units added to both ends
  • bis (4 -Hydroxyphenyl) methane with a polyoxyethylene chain of 1 to 25 repeating units added to both ends
  • Polyoxypropylene chains added, 1,1-bis (4-hydroxyphenyl) ethane with polyoxyethylene chains of 1 to 25 repeating units added to both ends 1,1-bis ( 4- 1,2-bis (4-hydroxyphenyl) -1,3,3,5-trimethylcyclohexane (“bisphenol TMC”) with a polyoxypropylene chain having 1 to 25 repeating units added to both ends of droxyphenyl) ethane
  • bisphenol A 2,2-bis (4-hydroxyphenyl) propane
  • bisphenol AJ 2,2-bis (4-Hydroxyphen- ⁇ propane
  • bisphenol TM C 2,2-bis (4-hydroxyphenyl) propane
  • Those having an ethylene oxide chain added, and those having a nonaethylene oxide chain added to both terminals of bis (4-hydroxyphenyl) methane can be preferably used.
  • the above polyether compound may have a substituent.
  • the divalent hydrocarbon group having 1 to 5 carbon atoms represented by R 9 and Rie may further have a substituent.
  • the substituent are not particularly limited as long as they do not adversely affect the polyamide resin and the swellable mica, and include, for example, a saturated or unsaturated monovalent or polyvalent aliphatic hydrocarbon group.
  • composition ratio of the substituents in the polyether compound is not particularly limited as long as the polyether compound is soluble in water or a polar solvent containing water.
  • solubility of the polyether compound in 100 g of water at room temperature is preferably 1 g or more, more preferably 2 g or more, still more preferably 5 g or more, particularly preferably 1 Og or more, and most preferably Preferably it is 20 g or more.
  • polar solvent examples include alcohols such as methanol, ethanol, and isopropanol; dalicols such as ethylene glycol, propylene glycol, and 1,4-butanediol; ketones such as acetone and methylethyl ketone; Aethenoles such as getyl ether and tetrahydrofuran; amide compounds such as N, N-dimethylformamide and N, N-dimethylacetoamide; diester carbonates such as dimethyl carbonate and getyl carbonate; pyridine, dimethyl sulfoxide, N-methyl And pyrrolidone. These polar solvents may be used alone or in combination of two or more.
  • the amount of the polyether compound used can be adjusted so that the affinity between the swellable mica and the polyamide resin and the dispersibility of the swellable mica in the polyamide resin composition are sufficiently increased. If necessary, plural kinds of polyether compounds having different functional groups may be used in combination. Therefore, the amount of the polyether compound used is not necessarily limited by numerical values, but the lower limit of the amount of the polyether conjugate used to 100 parts by weight of the swellable mica is determined by the amount of the swellable mica. From the viewpoint of the fine dispersion effect, the amount is preferably 1 part by weight, more preferably 2 parts by weight, and still more preferably 5 parts by weight.
  • the upper limit of the amount of the polyether compound to 100 parts by weight of the swellable mica is not particularly limited, but is preferably 200 parts by weight from the viewpoint of the effect of finely dispersing the swellable mica. is there.
  • the method of treating the swellable mica with the polyether compound is not particularly limited, but may be, for example, the method described below.
  • the dispersion medium is intended to be water or a polar solvent containing water.
  • the polar solvent containing water include the same polar solvents as described above for the polar solvent.
  • the method of stirring the swellable mica and the dispersion medium is not particularly limited.
  • the stirring is performed using a conventionally known wet stirrer.
  • the wet stirrer include a high-speed stirrer in which stirring blades rotate at a high speed to stir, a wet mill for wet-grinding a sample in a gap between a rotor and a stator at a high shearing speed, and a mechanical mill using a hard medium.
  • Examples include wet mills, wet impact mills that collide a sample at high speed with a jet nozzle, and wet ultrasonic mills using ultrasonic waves.
  • the agitation speed should be at least 100 rpm, preferably at least 150 rpm, more preferably at least 200 rpm, or 5 rpm.
  • a shear rate of at least 100 (1 / s), preferably at least 100 (1Zs), more preferably at least 150 (1 s) is applied.
  • the upper limit of the number of revolutions is about 250 000 rpm, and the upper limit of the shear rate is about 500 000 (l / s). It is not necessary to stir at a value greater than the upper limit, because stirring the mixture at a value higher than the upper limit or applying shear tends to keep the stirring effect unchanged.
  • the time required for mixing is preferably 10 minutes or more.
  • the mixing method can also be performed using a conventionally known kneader.
  • a batch type and a continuous type kneader examples include an open roll, a closed type Banbury type kneader, a kneader type kneader, and the like.
  • a single-screw rotor kneader, a twin-screw kneader, a single-screw kneader, a twin-screw kneader, a multi-screw kneader, and the like can be given. Then, dry and pulverize if necessary.
  • the lower limit of the ash content of the polyamide resin composition derived from the swellable mica is preferably 0.5% by weight, more preferably 1.0% by weight from the viewpoint of the mechanical properties and the effect of improving the warpage. Be prepared.
  • the upper limit of the ash content is determined based on the surface appearance of the compact. From 30% by weight, more preferably 25% by weight, further preferably 20% by weight, particularly preferably 15% by weight. Further, the ash content can be measured according to JISK7502.
  • the ash content of the polyamide resin composition derived from the swellable mica is equivalent to the weight ratio of the swellable mica in the polyamide resin composition (not including the weight of the polyether compound treated with the mica). It is.
  • the structure of the swellable mica dispersed in the polyamide resin composition of the present invention is completely different from the aggregated structure of a large number of layers / im size, which the swellable mica had before use. That is, by treating the swellable mica with a polyether compound, the layers are cleaved and subdivided independently of each other. As a result, the swellable mica is dispersed in the polyamide resin composition in a very fine and independent thin plate shape, and the number thereof is significantly increased as compared with the swellable mica before use.
  • the dispersion state of such a swellable mica in the form of a thin plate is expressed by the equivalent area circle diameter [D], the number of dispersed particles, the maximum layer thickness, the average layer thickness, and the aspect ratio (layer length Ratio).
  • the equivalent area circle diameter [D] is determined by the diameter of a circle having an area equal to the area on the microscope image of each swellable mica dispersed in various shapes in the image obtained by a microscope or the like. Defined to be.
  • the ratio of the number of swellable mica having an equivalent area circle diameter [D] of 300 nm or less is determined by the mechanical properties of the polyamide resin composition. From the viewpoint of the effect of improving the warpage, it is preferably at least 20%, more preferably at least 35%, further preferably at least 50%, particularly preferably at least 65%.
  • the upper limit of the ratio is not particularly limited, but is preferably 100%.
  • the average value of the equivalent area circle diameter [D] of the swelling mica is determined from the viewpoint of the mechanical properties and the effect of improving the warpage of the polyamide resin composition and the surface appearance of the molded article. It is preferably at most 500 nm, more preferably at most 450 nm, further preferably at most 400 nm, particularly preferably at most 350 nm.
  • the lower limit is not particularly limited, the effect hardly changes below about 10 nm, so that it is not particularly necessary to set the lower limit to less than 10 nm.
  • the equivalent area circle diameter [D] can be measured using melt-kneaded products, injection molded products or hot pressed products. On an image photographed using a microscope, etc., to select an arbitrary area including 100 or more layers of swelling mica, to image it using an image processing device, etc., and to perform computer processing. Yes, and can be quantified.
  • the [N] value is defined as the number of dispersed particles per unit weight ratio of swellable mica present in an area of 100 / im 2 of the polyamide resin composition.
  • the [N] value of the swellable mica in the polyamide resin composition of the present invention is preferably 30 or more, more preferably 45 or more, and still more preferably 60 or more.
  • the upper limit is not particularly limited, but when the [N] value exceeds about 1000, the effect does not change any more. Therefore, it is not particularly necessary to make the value larger than 100.
  • the [N] value can be obtained, for example, as follows. That is, cut polyamide resin sets Narubutsu about 5 0 ⁇ m ⁇ 1 0 0 / xm thick ultrathin sections, The sections on an image obtained by shooting by TEM or the like, area 1 0 0 m any of 2 It can be determined by dividing the number of swellable mica particles present in the area by the weight ratio of swellable mica used. Alternatively, on the TEM image, an arbitrary region (area is measured) where 100 or more particles are present is selected, and the number of particles present in the region is divided by the weight ratio of the swellable mica used. Then, the value converted to the area of 100 ⁇ 2 may be used as the [ ⁇ ] value. Therefore, the [ ⁇ ] value can be quantified by using a photograph of the polyimide resin composition.
  • the average layer thickness is defined as the number average value of the layer thickness of the swellable mica dispersed in a thin plate shape.
  • the upper limit of the average layer thickness of the swellable mica is preferably 50 nm or less, from the viewpoint of the effect of improving the mechanical properties and the like of the polyamide resin composition. Preferably it is 45 nm or less, more preferably 40 nm or less.
  • the lower limit of the average layer thickness is not particularly limited, even if it is 5 nm or less, the effect does not change any more, so that it is not particularly necessary to make it 5 nm or less.
  • the maximum layer thickness is defined as the maximum value of the layer thickness of the swellable mica dispersed in the form of a thin plate in the polyamide resin composition of the present invention.
  • the upper limit of the maximum layer thickness of the swellable mica is preferably 200 nm or less, more preferably 180 nm or less, and still more preferably, from the viewpoint of the mechanical properties and surface appearance of the polyamide resin composition. It is less than 150 nm.
  • the lower limit of the maximum layer thickness of the swellable mica is not particularly limited, but is preferably 10 nm or more, more preferably 15 nm or more, and still more preferably 20 nm or more. is there.
  • the average aspect ratio is defined as the number average value of the ratio of the layer length / employee thickness of the swellable mica dispersed in the shelf.
  • the lower limit of the average aspect ratio of the swellable mica is preferably 10 or more from the viewpoint of improving the mechanical properties and the like of the polyamide resin composition. It is preferably 20 and more preferably 30. Further, even if the average aspect ratio is larger than 300, the effect does not change any more. Therefore, it is not particularly necessary to make the average aspect ratio larger than 300. Therefore, the preferable range of the average aspect ratio is 10 to 300.
  • the layer thickness and the layer length are determined by heating and melting the polyamide resin composition of the present invention, and then applying a hot press molding or stretching molding to a film, and a thin molded product obtained by injection molding a molten resin. Can be determined from images taken using a microscope or the like. That is, it is assumed that a thin plate-shaped injection-molded test piece having a thickness of about 0.5 to 2 mm of the film prepared by the above method is placed on the XY plane. . Place the above film or specimen on a plane parallel to the XZ or YZ plane for about 50 ⁇ !
  • the polyamide resin composition of the present invention may further comprise, in addition to the swellable mica treated with the polyamide resin and the polyether compound, a styrene resin, an anhydride-containing olefin copolymer, and a carbon compound. It may contain at least one selected from.
  • the polyamide resin composition of the present invention further contains a styrene resin in addition to the swellable mica treated with the polyamide resin and the polyether compound will be described.
  • a styrene-based resin By including a styrene-based resin, the surface appearance (surface properties, low sink marks) is particularly improved.
  • the styrenic resin used in the present invention is not particularly limited.
  • polystyrene rubber modified ⁇ 4 polystyrene (HIPS resin), styrene-atalylonitride Ryl copolymer, styrene-rubber polymer-atalyloetrile copolymer, and the like.
  • examples of the styrene-rubber polymer-attrile ethryl copolymer include ABS (atryl ethryl-butadiene-styrene) resin, AES (acrylotrilyl-ethylene-propylene-gene-styrene) resin, and AAS (atarilonitrile).
  • ABS atryl ethryl-butadiene-styrene
  • AES acrylotrilyl-ethylene-propylene-gene-styrene
  • AAS atarilonitrile
  • styrene and a part or the whole of the styrene or acrylonitrile are:-methizolestyrene,-methynolestyrene, p-t-butynolestyrene; methyl (meth) acrylate, (meth) acrylate (Meth) acrylate compounds such as propyl (meth) acrylate and n-butyl (meth) acrylate; maleimide, N-methylmaleimide, N-hexylhexylmaleide, N-phenylmaleimide, etc.
  • Maleimide monomers those substituted with Bier monomers that can be copolymerized with styrene, such as unsaturated carboxylic acid monomers such as atarilic acid, methacrylic acid, maleic acid, fumaric acid, and itaconic acid Is also included. These can be used alone or in combination of two or more.
  • ABS resin polystyrene, HIPS resin, AES resin, AAS resin, ACS resin, MBS (methacrylate butadiene-styrene) resin, and more preferably, a part of styrene is unsaturated carboxylic acid.
  • An ABS resin and polystyrene substituted with a monomer are more preferable, and an ABS resin and polystyrene substituted with methacrylic acid are more preferable.
  • the method for producing the styrene resin is not particularly limited, and ordinary methods such as a bulk polymerization method, a suspension polymerization method, an emulsion polymerization method, and a bulk-suspension polymerization method can be used.
  • the styrenic resin used in the present invention is not particularly limited as long as the effects of the present invention are not impaired.However, the physical property balance of the polyamide resin composition obtained in the present invention and the compatibility of the polyamide with the polyamide are not limited. Unsaturation power which is particularly preferably used from an economic point of view Examples of the rubonic acid-modified ABS resin include an aromatic vinyl compound of 40 to 80% by weight. / 0 , 15 to 50% by weight of a cyanogenated compound, 0.1 to 20% by weight of an unsaturated carboxylic acid compound, and 0 to 30% by weight of another copolymerizable vinyl compound.
  • a graft compound which can be graft-copolymerized in the presence of an acid-containing copolymer and 30 to 95% by weight of a gen-based rubber having an average particle diameter of 0.01 to 5.0 ⁇ % Of an unsaturated carboxylic acid-modified ABS resin comprising a graft copolymer obtained by graft copolymerization of an unsaturated carboxylic acid.
  • the unsaturated carboxylic acid-containing copolymer used in the ABS resin is 80% by weight of the aromatic vinyl compound. If it exceeds / 0 , chemical resistance and impact resistance may decrease, and if it is less than 40% by weight, moldability may decrease. If the content of the cyanide biel compound exceeds 50% by weight, the thermal stability at the time of molding may be reduced, or coloring may be caused by heating. If it is less than 15% by weight, chemical resistance and impact resistance may be obtained. May decrease. If the content of the unsaturated carboxylic acid compound exceeds 20% by weight, the thermal stability during molding and processing may decrease, or coloring may occur due to heating. If the content is less than 0.1% by weight, compatibility with the polyamide is obtained. In some cases, and may cause delamination on the surface of the molded product. If the amount of the other copolymerizable bule compound exceeds 30% by weight, the balance between heat resistance and impact resistance may be insufficient.
  • Examples of the aromatic biel compound used in the unsaturated carboxylic acid-containing copolymer include styrene, ⁇ -methinolestyrene, chloronostyrene, and methylstyrene. Particularly, from the viewpoint of improving heat resistance, it is preferable to use ⁇ -methylstyrene. Acrylonitrile, methacrylonitrile, and the like are exemplified as the cyanated butyl compound. Examples of the unsaturated carboxylic acid compound include acrylic acid and methacrylic acid.
  • copolymerizable bule-based compounds include methacrylic acid such as methyl methacrylate, ethyl methacrylate, methyl acrylate, and ethyl acrylate, and anoalkyl ester of acrylic acid; and maleic acid such as maleimide and fermaleimide.
  • methacrylic acid such as methyl methacrylate, ethyl methacrylate, methyl acrylate, and ethyl acrylate, and anoalkyl ester of acrylic acid
  • maleic acid such as maleimide and fermaleimide.
  • Examples include imid compounds.
  • the aromatic vinyl compound, vinyl cyanide compound, unsaturated carboxylic acid compound and other copolymerizable vinyl compounds are used alone or in combination of two or more.
  • the unsaturated carboxylic acid-containing copolymer can be produced, for example, as follows. That is, ⁇ -methylstyrene is first charged together with water and an emulsifier, sufficiently emulsified, and then atarilonitrile and other monomers are continuously added in very small amounts in small amounts. Is always 80% by weight or more, preferably 90% by weight By keeping the amount 0/0 or more ⁇ - methylstyrene large excess, it is possible to obtain a co-polymer of interest.
  • the unsaturated carboxylic acid compound may be initially charged together with ⁇ -methylstyrene, or may be added by mixing with acrylonitrile. It is also possible to divide and add after the initial preparation.
  • ⁇ -methyl styrene a part of ⁇ -methyl styrene can be added.
  • the amount of ⁇ -methylstyrene to be charged in advance is 50% by weight or more and 90% by weight or less of 100% by weight of all monomers. preferable.
  • the graft copolymer is obtained by graft copolymerizing 70 to 5% by weight of a graft copolymerizable butyl compound in the presence of 30 to 95% by weight of a gen-based rubber having an average particle diameter of 0.01 to 5.0 ⁇ .
  • the graft copolymer obtained by the above is preferably used.
  • an aromatic compound a vinyl cyanide compound, an unsaturated carboxylic acid compound, or another copolymerizable-based compound
  • an aromatic compound a vinyl cyanide compound, an unsaturated carboxylic acid compound, or another copolymerizable-based compound
  • the same ones as those used in the containing copolymer are exemplified. These are used alone or in combination of two or more.
  • the gen-based rubber exceeds 95% by weight, impact resistance and oil resistance may decrease, and if it is less than 30% by weight, impact resistance may decrease.
  • the gen-based rubber include butadiene and the like.
  • the gen-based rubber used in the graft copolymer preferably has an average particle diameter of 0.01 to 5.0 ⁇ m from the viewpoint of the impact resistance of the polyamide resin yarn and the appearance of the molded product. Used. Those having an average particle diameter of 0.02 to 2.0 im are particularly preferred. Furthermore, for the purpose of improving impact strength, a gen-based rubber latex obtained by coagulating and enlarging a small-particle gen-based rubber latex can be used. As a method of coagulating and enlarging the small particle gen-based rubber latex, a conventionally known method, for example, a method of adding an acidic substance (Japanese Patent Publication No. Sho 42-3112, Japanese Patent Publication No.
  • 26 30 No. 1 JP-A-8-59 No. 704, Japanese Patent Application Laid-Open No. 9-17505 can be adopted, and there is no particular limitation.
  • the unsaturated carboxylic acid-containing copolymer and the graft copolymer are preferably obtained by emulsion polymerization, but are not necessarily limited to emulsion polymerization.
  • examples include bulk polymerization, suspension polymerization, solution polymerization, and combinations thereof, that is, emulsion-suspension polymerization and emulsion-bulk polymerization.
  • a usual method can be applied to the emulsion polymerization. That is, the compound may be reacted in an aqueous medium in the presence of a radical initiator. At that time, the compound may be used as a mixture or, if necessary, may be used in a divided form.
  • the method of adding the compound may be either the whole amount charged at once or the sequential addition, and is not particularly limited.
  • the radical initiator include water-soluble or oil-soluble peroxyacids such as potassium persulfate, ammonium persulfate, cumene hydroperoxide, and paramenthane hydroperoxide. Are used alone or in combination of two or more.
  • a polymerization accelerator, a polymerization degree regulator, and an emulsifier may be appropriately selected from those used in known emulsion polymerization methods.
  • a method for obtaining a dry resin from the obtained latex may be a known method.
  • a dry resin may be obtained after mixing the latex of the unsaturated rugonic acid-containing copolymer and the graft copolymer, or the resins may be separately obtained and mixed in a powder state.
  • a method of obtaining a resin from the latex for example, a method of adding an acid such as hydrochloric acid, sulfuric acid, acetic acid, or a metal salt such as calcium chloride, magnesium chloride, or aluminum sulfate to latex, coagulating the latex, and then dehydrating and drying. Used.
  • the mixed resin of the unsaturated carboxylic acid-containing copolymer and the graft copolymer produced as described above can exhibit high compatibility with the polyamide resin while maintaining the properties of the ABS resin. .
  • composition ratio (parts by weight) of the polyamide resin and the styrene resin used in the present invention is not particularly limited, but from the viewpoint of a balance of properties such as heat resistance and impact resistance, polyamide resin: styrene resin Preferably 95: 5 to 5:95, more preferably 90:10 to 30:70, even more preferably 85:15 to 45:55. ,is there.
  • the dispersion state of the swellable mica is It depends on the polarity of the mid resin and styrene resin, the type of swelling mica, and the type of polyether compound.
  • the number density of the swelling mica is uniform in each resin phase, when it is present at a higher density in the polyamide phase than in the styrene resin phase, or when it is present in the styrene resin phase at a higher density than the polyamide phase
  • the polyamide resin composition of the present invention may further contain an anhydride-containing olefin copolymer in addition to the swellable mica treated with the polyamide resin and the polyether compound. This makes it possible to suppress water absorption of the polyamide resin.
  • the anhydride-containing olefinic copolymer is defined as an alicyclic dicarboxylic acid anhydride having a cis double bond in the ring or a Q ;, ⁇ -unsaturated dicarboxylic acid anhydride in an olefin or an olefinic copolymer. Is obtained by copolymerization or graft addition.
  • olefin or olefin-based copolymer examples include homopolymers of olefins such as polyethylene, polypropylene, and polybutene; ethylene-propylene copolymer, ethylene-butene copolymer, propylene-butene copolymer, and Copolymers of different olefins such as a copolymer of ethylene and propylene; and copolymers of different olefins and different monomers.
  • Examples of the different types of monomers include methacrylates such as methyl methacrylate, methyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, 2-hydroxyhexyl methacrylate, ethyl acrylate, and acryl.
  • the form of the above copolymer may be any of a random copolymer, a block copolymer, a graft copolymer, and an alternating copolymer.
  • ethylene The propylene copolymer, ethylene-butene copolymer, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-propylene-gen copolymer provide toughness and cost. It is preferable from the viewpoint of handling efficiency.
  • the above polyolefins can be used as a mixture of two or more.
  • Examples of the alicyclic dicarboxylic anhydride having a cis-type double bond in the ring include, for example, cis-1-cyclohexene-1,2-dicarboxylic acid, endo-bicyclo- (2,2,1 ) — 5-heptene — 2,3-dicarboxylic acid, methyl-endo-cis —bicyclo- (2,2,1) — 5-heptene-1,2,3-dicarboxylic acid, endo-bicyclo- (2,2,1) 1 1 , 2,3,4,7,7-Hexachloro-12-heptene-1,5,6-dicarboxylic acid and other anhydrides.
  • endo-1-bicyclo (2,2,1) -15-heptene_2,3-dicarboxylic anhydride is preferred.
  • these derivatives for example, dicarboxylic acids, metal salts of dicarboxylic acids, esters, amidates, and acid halides can also be used.
  • R a and R b represent a hydrogen atom, an alkyl group, an alkenyl group, an alkiel group, or a halogen atom.
  • R a and R b together with an adjacent carbon atom form a cyclic group.
  • the bond between the carbon atoms adjacent to each of Ra and Rb may be a single bond instead of a double bond.
  • Specific examples thereof include maleic anhydride, methyl maleic anhydride, black maleic anhydride, butynyl succinic anhydride, and tetrahydrophthalic anhydride.
  • an alicyclic dicarboxylic anhydride or an ⁇ , ⁇ -unsaturated dicarboxylic acid anhydride having a cis-type double bond in the ring is copolymerized or
  • the lower limit of the grafting ratio is determined from the viewpoint of the effect of imparting toughness.
  • Olefin or Olefin copolymer 100 mol 0 /. Relative, preferably 0. 0 5 mol 0/0, more preferably 0. 1 mol 0/0, more preferably 0. 2 mol 0/0.
  • the upper limit of the ratio of copolymerization or graft addition from the viewpoint of processability, preferably 8 0 mole 0/0, more preferably 5 0 mole 0/0, more preferably 3 0 mol%.
  • a method for producing the anhydride-containing olefin copolymer a so-called known radical copolymerization method is used.
  • a radical generator is present in the olefin homopolymer or the olefin copolymer, and A method of subjecting one or more of the monomers to a radical graft reaction in the presence or absence of a solvent or a dispersion medium can be used.
  • the lower limit of the caloric content of the anhydride-containing olefin copolymer based on 100 parts by weight of the polyamide resin is preferably 1 part by weight, more preferably 2 parts by weight, and still more preferably 3 parts by weight from the viewpoint of the water absorption suppressing effect. Department.
  • the upper limit is preferably 50 parts by weight, more preferably 30 parts by weight, still more preferably 20 parts by weight, and particularly preferably 15 parts by weight, from the viewpoint of moldability and rigidity. is there.
  • the weight ratio of the anhydride-containing olefin copolymer in the polyamide resin composition is preferably 1% by weight or more and 30% by weight or less.
  • the polyamide resin composition of the present invention may further contain a carbon compound in addition to the swellable mica treated with the polyamide resin and the polyester compound. Thereby, antistatic properties can be imparted.
  • the carbon compound used in the present invention is not particularly limited as long as it is other than carbon fiber, and a commercially available carbon compound can be used.However, from the viewpoint of the surface properties and warpage of a molded product, a granular or fine fibril is preferable. . Further, the carbon compound is preferably conductive.
  • Examples of the granular carbon compound include acetylene black and various furnace-based conductive carbon blacks, and various commercially available ones can be used.
  • Ketjen Black International manufactured by Ketjen Black International and the like can be mentioned.
  • Examples of the fine fibril-like carbon compound include a fine fibril-like carbon compound having a diameter of about 3.5 nm to 75 nm. No tube, and various commercially available tubes can be used.
  • the product name Hyperion manufactured by Neuvirion Power Talisin International Co., Ltd. may be mentioned. These may be used alone or in combination of two or more.
  • the lower limit of the amount of the carbon compound added to 100 parts by weight of the polyamide resin is preferably 0.5 part by weight, more preferably 1.0 part by weight, and still more preferably 1.5 parts by weight from the viewpoint of conductivity. Department.
  • the upper limit of the amount of carbon compound added to the carbon compound is preferably 12 parts by weight, more preferably 11 parts by weight, and still more preferably 10 parts by weight, in terms of extrusion pelletization and mechanical strength of the resin composition. Parts by weight.
  • the method for producing the polyamide resin composition of the present invention is not particularly limited.
  • a polyamide resin and swellable mica treated with a polyether compound are melted using various general kneaders.
  • the method of kneading can be mentioned.
  • the components are melt-kneaded in the same manner as described above to produce a polyamide resin composition.
  • the melt-kneading temperature is not particularly limited, but is preferably from 200 to 360 ° C, more preferably from 200 to 300 ° C.
  • Examples of the kneading machine include a single-screw extruder, a twin-screw extruder, a roll, a Banbury mixer, a kneader, and the like. Particularly, a kneader having a high shearing efficiency is preferable.
  • the polyamide resin, the swellable mica treated with the polyether compound, and each component added as necessary may be put into the above kneading machine at a time and melt-kneaded, or the polyamide resin previously melted may be used. Swelling mica may be added to the mixture and melt-kneaded.
  • the polyamide resin composition of the present invention may contain, as necessary, polybutadiene, butadiene-styrene copolymer, acryl rubber, ionomer, ethylene-propylene copolymer, ethylene-propylene-gen copolymer, natural rubber, chlorinated butyl rubber. , Homoolefin copolymers, copolymers of two or more ⁇ -olefins (including any copolymers such as random, block, graft, etc., and mixtures thereof may be used), olefin-based elastomers, etc. Can be added. These may be modified with an acid compound such as maleic anhydride or an epoxy compound such as glycidyl methacrylate.
  • thermoplastic resin or thermosetting resin for example, unsaturated polyester resin, polyester carbonate resin, liquid crystal polyester resin, polyolefin resin, thermoplastic polyester resin, rubber material, as long as the mechanical properties are not impaired.
  • a polymer-reinforced styrene resin, a polyphenylene sulfide resin, a polyphenylene ether resin, a polyacetal resin, a polysulfone resin, a polyarylate resin and the like can be used alone or in combination of two or more.
  • additives such as pigments and dyes, heat stabilizers, antioxidants, ultraviolet absorbers, light stabilizers, lubricants, plasticizers, flame retardants, and antistatic agents can be added according to the purpose.
  • the polyamide resin composition obtained by the present invention may be molded by injection molding or hot press molding, and can also be used for blow molding.
  • the resulting molded article has excellent appearance, excellent mechanical properties and heat deformation resistance, and is suitably used for, for example, automobile parts, household electric parts, household daily necessities, packaging materials, and other general industrial materials.
  • the polyamide resin composition containing the anhydride-containing olefin copolymer can be more preferably used as a molded article obtained by injection molding.
  • the molded article is excellent in thermal stability, surface properties, and rigidity, and changes in physical properties due to water absorption are suppressed.
  • a front fender, a rear fender, a hood vanorage, a side garnish, a rear garnish, a back door panel of an automobile It can be suitably used for automobile exterior materials such as wheel caps.
  • automobile exterior materials such as wheel caps.
  • when used for front filters, rear fenders, food vanes, hoods, rear garnishes, and rear door panels they are preferably used particularly for parts related to appearance, and wheel caps. It is preferable to use all of them, but it is not limited to them.
  • a polyamide resin yarn containing a carbon compound can be more preferably used as a molded product obtained by injection molding.
  • the molded article has conductivity and antistatic properties and has little anisotropy in molding shrinkage, so that even if a molded article having a complicated shape is injection molded, there is little warpage.
  • Anti-static tray for transporting HDD internal components such as magazines, head gimbal assemblies, sliders and slider arms, HDD internal components such as seeking arm storage components, and anti-static transport for other electronic components It can be suitably used for trays and the like.
  • Polyamide resin A4 (nylon MXD6): Reny 6002 (made by Asahi Kasei Corporation)
  • Styrene-based resin B 1 (ABS resin): The luster obtained by the method described in Reference Example 1 below 'Styrene-based resin B 2 (styrene-methacrylic acid copolymer): G—9001 (Asahi Kasei Corporation )
  • Anhydrous-containing olefin copolymer C 1 Bondyne AX 8930 (manufactured by Sumitomo Chemical Co., Ltd.) (Polyolefin copolymerized with maleic anhydride)
  • 'Anhydrous-containing olefin copolymer C 2 Tuffmer MH7020 (manufactured by Mitsui Chemicals, Inc.) (Polyolefin copolymerized with maleic anhydride)
  • -Polyether compound F1 Bisol 18 EN (Toho Chemical Co., Ltd.)
  • -Polyether compound F2 Bisol 20PN (Toho Chemical Co., Ltd.)
  • 'Carbon compound G1 Ketjen Black Pluck International Co., Ltd.
  • Carbon compound G 2 Masterbatch pellet in which a fibril-like carbon compound is dispersed at a concentration of 2% in PA6, trade name MB 4020-00 (manufactured by Hypillion Power Tallysis International, Inc.)
  • Carbon compound G 3 Masterbatch pellet in which a fibril-like carbon compound is dispersed at a concentration of 20% in PA66, trade name MB4620-00 (manufactured by Hyplion Catharsis International Co., Ltd.) Measurement of physical properties in Examples and Comparative Examples The method is described below.
  • Ultrathin sections with a thickness of 50 to 100 ⁇ m obtained by the frozen section method were used.
  • a transmission electron microscope (JEOL JEM-1200EX)
  • the dispersion state of the swelling mica was observed and photographed at an acceleration voltage of 80 kV and a magnification of 40,000 to 100,000.
  • the TEM photograph select an arbitrary area where 100 or more dispersed particles are present, and measure the layer thickness, layer length, and number of particles ([N] value) by manual measurement using a graduated ruler or by Interquest. The measurement was performed by processing using an image analyzer PIA SIII.
  • the equivalent area circle diameter [D] was measured by processing using an image analyzer PIASIII from Intertaest.
  • [N] value was measured as follows. First, the number of swellable mica particles present in the selected area was determined on the TEM image. Separately, the ash content of the resin composition derived from the swellable mica was measured. The value obtained by dividing the number of particles by the ash content and converting the result into an area ⁇ ⁇ ⁇ ⁇ 2 was defined as a [ ⁇ ] value. The average layer thickness was the number average of the layer thickness of each swelling mica, and the maximum layer thickness was the maximum value of the layer thickness of each swelling mica. If the dispersed particles are too large to be suitable for observation with ⁇ , use an optical microscope (Olympus Optical Co., Ltd.) [N] value was determined by the same method as above using an optical microscope BH-2).
  • the sample was melted at 250 to 270 ° C (using a hot stage THM600 manufactured by LINKAM), and the state of the dispersed particles was measured in the molten state.
  • the aspect ratio of the dispersed particles that do not disperse in a plate shape is the value of major axis / minor axis. In a microscopic image, etc., assuming a rectangle / shape with the smallest area among the rectangles circumscribing the target particle, the long side of the rectangle is intended. The short side of the rectangle is intended.
  • the polyamide resin of the present invention was dried (90 ° C, 10 hours). Using an injection molding machine with a mold clamping pressure of 75 t. Resin temperature 240 to 300 C (Nylon 6: 240 ° C, Nylon 66: 260 ° C, Nylon MXD 6: 280 ° C, Nylon 46: 300 ° In C), a test piece having a size of about 10 ⁇ 100 ⁇ 6 mm was injection-molded. According to ASTM D-7790, the bending strength and the flexural modulus of the obtained test piece were measured.
  • test piece was measured for a deflection temperature under load of 1.86 MPa.
  • the resin temperature is 240 to 300 ° C (nylon 6: 240 ° C, nylon 66: 260.C, nylon MXD 6: 280 ° C, Nylon 46: 300 ° C.)
  • a flat test piece having a size of about 120 ⁇ 120 ⁇ 1 mm was injection molded.
  • the flat test piece was placed on a flat surface, and one of the four corners of the test piece was pressed. One of the remaining three corners was measured with a vernier caliper at the largest distance from the flat surface. Each of the four corners was pressed, and the average of the obtained warpage values was determined. ' (Mold shrinkage)
  • the resin temperature is 240 to 300 ° C (nylon 6: 240 ° C, nylon 66: 260 ° C, nylon MXD 6: 280).
  • MD indicates the flow direction of the resin
  • TD indicates the direction perpendicular to the flow of the resin.
  • the center line roughness was measured using a surface roughness meter surfcom 150 OA manufactured by Tokyo Seimitsu Co., Ltd.
  • the ash content of the polyamide resin composition derived from swellable mica was measured.
  • the polyamide resin composition of the present invention was dried (90 ° C., 10 hours). Using a flow tester manufactured by Shimadzu Corporation, the flow method B values were measured after 5 minutes and 15 minutes at a temperature of 280 ° C and a load of 10 kg. The smaller the change in flow value after 5 minutes and 15 minutes, the better the melt stability.
  • the resin temperature is 240 to 280 ° C. (nylon 6: 240 ° C., nylon 66: 260 ° C., Nymouth MXD 6: 280 ° C.) Under the conditions of C), the diameter 0.8 mm, 1.0, 1.2, 1.4, 1.6, 1.8 x 35 x 10 mm
  • a molded product having six ribs radially from the center of the circular plate was injection-molded, and it was visually observed whether sinks occurred on the plane opposite to the side having the ribs.
  • the sink is of the molded body
  • the unevenness of the thickness and the shrinkage of the resin at the time of molding cause recesses on the surface, which impair the appearance of the molded product.
  • the evaluation is expressed in terms of the thickness of the rib that does not cause sink marks. The larger the rib portion thickness, the more easily the sink marks are generated. (Water absorption)
  • the resin temperature is 240 to 280 ° C (nylon 6: 240 ° C, nylon 66: 260.C, nylon MXD 6: 280 ° C).
  • an ASTM No. 1 dumbbell specimen was obtained. The obtained test piece was immersed in distilled water at 23 ° C. for 24 hours according to the method described in JIS K7209, and the water absorption was measured.
  • the resin temperature is 240 to 260.
  • C nylon 6: 240; C, nylon 66: 260 ° C
  • a flat test piece having a size of about 120 ⁇ 120 ⁇ 1 mm was injection molded.
  • the test piece was immersed in water at 23 ° C. for 24 hours, and the warpage was measured.
  • the above-mentioned flat test piece was placed on a flat surface, one of the four corners of the test piece was pressed down, and the remaining three corners were measured with a vernier caliper at the largest distance from the flat surface. Each of the four corners was pressed, and the average of the obtained warpage values was obtained.
  • the surface roughness of the test piece was measured using a three-dimensional surface structure analysis microscope (Zygo New View 5030, manufactured by Zygo). (Melting heat stability)
  • the polyamide resin composition of the present invention was dried (90 ° C., 10 hours). Using a flow tester manufactured by Shimadzu Corporation under the conditions of a temperature of 260 ° C and a load of 100 kg, the flow values of the B method after 5 minutes and 15 minutes were measured, and at the same time, the coloring was visually evaluated. It can be said that the smaller the change in flow value after 5 minutes and 15 minutes, the better the melting heat stability. (Volume specific resistance)
  • a resistance measuring instrument R 834 OA manufactured by Advantest was used. The same test piece as that used for the molding shrinkage was used, and the measurement was performed after 24 hours at 25 ° (50% RH).
  • ion-exchanged water, polyether compound, and swellable mica were mixed for 15 to 30 minutes. After that, it was dried and powdered to obtain swellable mica (clays J-1 to J-16) treated with a polyether compound.
  • the unit of the number is parts by weight
  • the unit of the number is parts by weight
  • a polyamide resin Al having a weight ratio shown in Table 3, the swellable mica obtained in Production Example 1, the swellable mica obtained in Production Example 2, and the swellable mica E1 were subjected to a twin-screw extruder (manufactured by Nippon Steel Works, Ltd.). , TEX44), the temperature from the initial stage of kneading to the die was set at 220 to 250 ° C, and the mixture was melt-kneaded to obtain a polyamide resin composition, and various physical properties were evaluated. Table 3 shows the results.
  • Table 3 shows that swelling mica treated with PVP or ammonium salt did not have a sufficient reinforcing effect, had little improvement in warpage or molding shrinkage, and severely deteriorated at the processing temperature.
  • test pieces that could be used for measurement could not be formed.
  • a polyamide resin composition was obtained by melt-kneading the polyamide resin A1, talc, my force, and glass fiber reinforcement having the weight ratios shown in Table 4 in the same manner as in Example 1 to evaluate various physical properties. Table 4 shows the results.
  • the polyamide resin A1 having the weight ratio shown in Table 5 and the swellable mica obtained in Production Example 1 were used in the same manner as in Example 1 using a twin-screw extruder (TEX44, manufactured by Nippon Steel Works, Ltd.). By melt-kneading, a polyamide resin composition was obtained, and various physical properties were evaluated. Table 5 shows the results.
  • Example 7-: L 1 The polyamide resin A2 having the weight ratio shown in Table 6 and the swellable mica obtained in Production Example 1 were mixed from the initial stage of kneading with a twin-screw extruder (TEX44, manufactured by Sanbon Steel Works, Ltd.). The temperature was set at 230 ° C. to 260 ° C., and the mixture was melt-kneaded to obtain a polyamide resin composition, and various physical properties were evaluated. Table 6 shows the results.
  • a polyamide resin composition was obtained by melting and kneading the polyamide resin A2, talc, my force, and glass fiber reinforcing material having the weight ratios shown in Table 7 in the same manner as in Example 7, and various physical properties were evaluated. Table 7 shows the results. Table 7
  • the polyamide resin A4 and the swellable mica or talc obtained in Production Example 1 in the weight ratio shown in Table 9 were mixed from the beginning of kneading using a twin-screw extruder (TEX44, manufactured by Nippon Steel Works, Ltd.).
  • the polyamide resin composition was obtained by setting the temperature up to the die at 250 ° C to 290 ° C and melt-kneading, and evaluated various physical properties. Table 9 shows the results. Table 9
  • the unsaturated carboxylic acid-containing copolymer (i) obtained above and the graft copolymer (filtration) ) was uniformly mixed in the proportions shown in Table 12, a phenolic antioxidant was added, the mixture was coagulated with an aqueous magnesium chloride solution, washed with water, dehydrated and dried to obtain an ABS resin.
  • the polyamide resin A1, styrene resin Bl, B2, polyphenylene ether resin, the swellable mica obtained in Production Example 1, and the swellable mica obtained in Production Example 2 in the weight ratio shown in Table 13 were used.
  • a twin-screw extruder manufactured by Nippon Steel Works Co., Ltd., TEX44
  • the temperature from the initial stage of kneading to the die is set at 220 to 250 ° C, and the polyamide is melt-kneaded.
  • a resin composition was obtained, and various physical properties were evaluated. Table 13 shows the results.
  • Table 13 shows that when swelling mica treated with PVP or ammonium salt was used, the reinforcing effect was not sufficient, the warpage was hardly improved, and the deterioration at the processing temperature was severe.
  • untreated swelling mica does not have a sufficient reinforcing effect, has almost no warpage improvement effect, and significantly deteriorates surface properties.
  • a styrene resin is used, it is superior in sinkability and water absorption as compared with a resin not using the styrene resin.
  • Those using a polyphenylene ether resin instead of the styrene resin do not provide excellent surface properties, and those using no polyphenylene ether resin have better surface properties.
  • test pieces that could be used for measurement could not be formed.
  • Polyamide resin composition was obtained by melt-kneading polyamide resin A1, styrene resin Bl, talc, mica, and glass fiber reinforcement in the weight ratio shown in Table 14 in the same manner as in Example 14. Various physical properties were evaluated. The results are shown in Table 14.
  • the polyamide resin A1, the styrene resin Bl, and the swellable mica obtained in Production Example 1 having the weight ratios shown in Table 15 were converted into a twin-screw extruder (TEX44, manufactured by Tetsumoto Steel Works, Ltd.).
  • the temperature from the initial stage of kneading to the die was set at 220 to 250 ° C, and a polyamide resin composition was obtained by melt-kneading, and various physical properties were evaluated.
  • Table 15 shows the results. Table 15
  • Example 23 to 26 The polyamide resin A2, styrene resin Bl, and the swellable mica obtained in Production Example 1 in the weight ratio shown in Table 16 were kneaded using a twin-screw extruder (TEX44, manufactured by Nippon Steel Works, Ltd.) in the early stage of kneading. The temperature from the die to the die was set at 230 ° C and 260 ° C, and the mixture was melted and kneaded to obtain a polyamide resin composition, and various physical properties were evaluated. Table 16 shows the results. Table 16
  • a polyamide resin composition was obtained by melt-kneading polyamide resin A2, styrene-based resin B1, tanolek, mica, and glass fiber reinforcing material in the weight ratio shown in Table 17 in the same manner as in Example 23, and obtained various physical properties. evaluated. Table 17 shows the results. Table 17
  • the polyamide resin A4, styrene resin Bl, and the swellable mica or talc obtained in Production Example 1 having the weight ratios shown in Table 18 were used with a twin-screw extruder (TEX44, manufactured by S-Steel Steel Works, Ltd.). , Set the temperature from the initial stage of kneading to the die to 280 ° C 300 ° C, The polyamide resin composition was obtained by melt-kneading, and various physical properties were evaluated. Results are shown in 18.
  • Polyamide resin Al anhydride-containing olefin copolymer C2, ethylene-propylene-one-gen copolymer (EP966, manufactured by Nippon Synthetic Rubber Co., Ltd.) in the weight ratio shown in Table 19, obtained in Production Example 1
  • the swelling mica, the swelling mica obtained in Production Example 2, glass fiber, and mica were heated at 240 ° C using a twin-screw extruder (TEX44, manufactured by Nippon Steel Works, Ltd.).
  • the polyamide resin composition was obtained by melt-kneading, and various physical properties were evaluated. The results are shown in Table 19.
  • a polyamide resin Al having a weight ratio shown in Table 20, an anhydride-containing olefin copolymer C2, and the swellable mica obtained in Production Example 1 were mixed with a twin-screw extruder (TEX44, manufactured by Nippon Steel Works, Ltd.). The resulting mixture was melt-kneaded to obtain a polyamide resin composition, and various physical properties were evaluated. The results are shown in Table 20.
  • the polyamide resin Al, anhydride-containing olefin copolymer C1, C3, and the swellable mica obtained in Production Example 1 having the weight ratios shown in Table 21 were converted into a twin-screw extruder (TEX44, manufactured by Nippon Steel Works, Ltd.). ) was melt-kneaded at 240 ° C to obtain a polyamide resin composition, and various physical properties were evaluated. The results are shown in Table 21.
  • the polyamide resin A2, the anhydride-containing olefin copolymer C2, and the swellable mica obtained in Production Example 1 having the weight ratios shown in Table 22 were converted into a twin-screw extruder (TEX44, manufactured by Nippon Steel Works, Ltd.). The mixture was melt-kneaded at 260 ° C. to obtain a polyamide resin yarn composition, and various physical properties were evaluated. The results are shown in Table 22. Table 22
  • the swellable mica treated with the ammonium salt suffered from deterioration in the heat stability of the melt, the flow value of the resin was not stabilized, and the resin was colored. Glass fiber and my strength impaired the surface properties and warped.
  • the olefin copolymer containing no anhydride did not show sufficient deformation due to water absorption warpage.
  • the polyamide resin composition shown in the examples exhibited an excellent balance of physical properties, but the comparative example did not show an excellent balance of physical properties.
  • the polyamide resin A1 having the weight ratio shown in Table 23, the swellable mica obtained in Production Example 1, and the carbon compounds Gl and G2 were kneaded using a twin-screw extruder (TEX44, manufactured by Nippon Steel Works, Ltd.). The temperature from the initial stage to the die was set at 220 to 250 ° C, and the mixture was melt-kneaded to obtain a polyamide resin composition, and various physical properties were evaluated. The results are shown in Table 23. ho Example
  • a polyamide resin composition was obtained by melt-kneading the polyamide resin A1, talc, My force, glass fiber, and carbon compound G1 in the weight ratios shown in Table 24 in the same manner as in Example 44, and various physical properties were evaluated. did. The results are shown in Table 24.
  • Polyamide resin A2 in weight ratio shown in Table 25 swellable mica obtained in Production Example 1, carbon Compounds Gl and G3 are melt-kneaded using a twin-screw extruder (TEX44, manufactured by Nippon Steel Works Co., Ltd.) by setting the temperature from the initial stage of kneading to the die to 230 ° C to 260 ° C. A polyamide resin composition was obtained, and various physical properties were evaluated. The results are shown in Table 25. Table 25
  • a polyamide resin composition was obtained by melt-kneading the polyamide resin A2, talc, My force, glass fiber, and carbon compound G1 in the weight ratio shown in Table 26 in the same manner as in Example 50, and various physical properties were evaluated. . The results are shown in Table 26. Table 26
  • the polyamide resin A3 having the weight ratio shown in Table 27, the swellable mica obtained in Production Example 1, and the carbon compounds Gl and G3 were kneaded using a twin-screw extruder (TEX44, manufactured by Nippon Steel Works, Ltd.).
  • the temperature from the initial stage to the die was set at 280 ° C to 300 ° C, and a polyamide resin composition was obtained by melt-kneading, and various physical properties were evaluated.
  • Table 27 Table 27
  • a polyamide resin composition was obtained by melt-kneading the polyamide resin A3, talc, My force, glass fiber, and carbon compound G1 in the weight ratio shown in Table 28 in the same manner as in Example 53 to obtain various properties. Was evaluated. The results are shown in Table 28.
  • the polyamide resin A4 having the weight ratio shown in Table 29, the swellable mica obtained in Production Example 1, and the carbon compounds Gl and G3 were kneaded using a twin-screw extruder (TEX44, manufactured by Nippon Steel Works Co., Ltd.)
  • the temperature from the die to the die was set at 280 ° C to 300 ° C, and the mixture was melt-kneaded to obtain a polyamide resin composition, and various physical properties were evaluated.
  • Table 29 Table 29
  • the swellability treated with the polyether compound in the present invention Since mica is uniformly finely dispersed in a polyamide resin, a polyamide resin composition having low warpage, excellent dimensional stability, good surface appearance, improved mechanical properties and heat resistance, and an excellent balance of physical properties can be obtained.
  • a polyamide resin composition having a particularly excellent surface appearance can be obtained.
  • the polyamide resin composition in which water absorption is particularly suppressed in addition to the above-mentioned effect;
  • a carbon compound By further containing a carbon compound, the polyamide resin composition particularly having antistatic property in addition to the above-mentioned effect is obtained, respectively. can get.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 本発明は、成形後の反りが抑制され、成形品の表面外観が良好でかつ機械的特性や耐熱性が高く、各種物性のバランスに優れるポリアミド樹脂組成物及びその製造方法を提供することを目的とする。 本発明は、ポリアミド樹脂及びビスフェノール構造を有するポリエーテル化合物で処理された膨潤性雲母を含有するポリアミド樹脂組成物、及びポリアミド樹脂とポリエーテル化合物を溶融混練する事を特徴とするポリアミド樹脂組成物の製造方法である。

Description

明細書
ポリアミド樹脂組成物及びその製造方法 技術分野
本発明は、 ポリアミド樹脂、 及び特定のポリエーテル化合物で処理された膨潤 性雲母を含有するポリアミド樹脂組成物に関する。 背景技術
ポリアミド樹脂は、 耐熱性、 耐薬品性、 耐候性、 機械的特性、 電気的特性等に 優れる為、 射出成形材料、 繊維、 フィルムとして多くの工業的用途に使用されて いる。
しかしながら、 結晶性が高いために、 肉厚が薄い成形体や肉厚が不均一で形状 が複雑な成形体等を射出成形すると、 反りが生じて成形体が変形する等の問題が あった。 その様な問題に対しては、 一般的に様々な無機粒子の配合による改良が 試みられてきたが、 それによつて製品の表面外観が損なわれたり、 あるいは繊維 状無機物が配向することによって異方性が生じ、 やはり成形体が変形する問題が あった。
こうした無機粒子の欠点は、 一般に無機粒子の分散不良や分散粒子サイズが大 きすぎることに起因するものと考えられており、 無機粒子を微分散化する技術が 望まれていた。
無機粒子として、 膨潤性粘土化合物をポリアミド樹脂に微分散させたポリアミ ド樹脂組成物が開示されている (特開昭 6 2— 7 4 9 5 7号公報、 特開平 2— 6 9 5 6 2号公報、 特開平 6— 8 0 8 7 3号公報、 特開平 6— 2 2 8 4 3 5号公報、 特開平 1 1— 3 4 9 8 1 1号公報、 特開平 6— 2 4 8 1 7 6号公報、 特開平 8— 2 8 3 5 6 7号公報、 特開平 9一 2 4 1 5 0 5号公報、 特開 2 0 0 1— 2 9 1 3 号公報) 。 これらの技術は、 ポリアミド樹脂の重合時にモンモリロナイト等の膨 潤性粘土化合物を添加して得られるものである。 し力、しながら、 粘土化合物によ つて重合物の溶融粘度が高まり、 重合の攪拌不良が起こる。 従って、 重合法では 数%程度の少量し力粘土化合物を用いることができないために、 製品設計が制限 されていた。 また、 難燃剤や安定剤等の副原料をコンパウンデイングするには、 工程を余分に設ける必要があったり、 工程が煩雑になること等、 改善が望まれて いた。
上記技術の別の問題としては、 膨潤性粘土化合物の均一微分散化のために用い られる表面処理剤として、 有機アンモニゥム塩が採用されている点である。 有機 アンモユウム塩は、 ポリアミド樹脂の加工温度で長時間滞留すると劣化を起こし、 機械物性ゃ靭性等の品質低下の原因となっていた。 この点でも改善が望まれてい た。
一方、 押出によってポリアミド樹脂に膨潤性粘土化合物を微分散させたポリア ミド樹脂組成物の開示もある (特開平 8— 31 9417号公報、 特開 2000— 212432号公報、 特開 2000— 290500号公報、 特開 2001— 30 2845号公報、 国際公開 97- 1 1998号公報等) 。 しかしながら、 上記の 発明では分散が不十分であるので、 物性への改善効果が不十分であった。 また、 粘土化合物の表面処理剤として有機アンモニゥム塩が採用されている為に、 加工 中に劣化を起こす可能性があり、 機械物性ゃ靭性等の品質低下の原因となってい た。 さらに、 上記発明の中で特開 2000— 2 1 2432号公報では末端が封止 されたナイロンが必須であること、 国際公開 97- 1 1 998号公報ではビシク 口環を有する有機アンモニゥム塩が必須であることから、 工業的に不適であった。 上記の方法とは別に、 膨潤性粘土化合物の層を劈開し易くして微分散化し易く する技術として、 ポリビニルピロリ ドン等の高分子化合物 (インターカラントポ リマー) を層状ケィ酸塩の層間にインター力レートして層間化合物とする技術 ( 特開平 9一 1 1 8518号公報) が開示されている。 しかしながら、 この発明で は、 層間化合物は開示されているものの、 該層間化合物を劈開してポリアミ ド樹 脂へ微分散化する技術は開示されておらず、 ポリアミド樹脂中に膨潤性粘土化合 物を微分散させる事は困難であった。
一方、 熱可塑性樹脂中で膨潤性粘土化合物の層を劈開して微分散化するために は、 膨潤性粘土化合物を水溶性化合物で処理して粘土層間化合物にする事が特に 有効であるという技術がある (特開平 10— 259016号公報、 特開平 10— 310420号公報) 。 該技術によって、 表面外観の低下を生じることなく、 弾 性率や耐熱性を高めることができたが、 各種物性をさらに高めることに加え、 射 出成形時の反りを改善することへの強い要求があった。
以上のように、 溶融混練等の簡便な方法によって、 ポリアミド樹脂中に膨潤性 粘土化合物を均一微分散させること、 それによつて優れた特性を有するポリアミ ド樹脂組成物を得る技術は未だ見出されていないのが現状である。
また、 上記のポリアミド樹脂の結晶性が高いために生じる、 肉厚が薄い成形体 や肉厚が不均一で形状が複雑な成形体等を射出成形すると反りが生じて成形体が 変形する等の問題に対して、 無機粒子の配合による改良以外に、 ポリカーボネー ト系樹脂ゃスチレン系樹脂、 ポリフエ-レン系樹脂等の非晶性樹脂とのァロイ化 が試みられてきた。 しかしながら、 それによつて製品の表面性外観や耐熱性が損 なわれたり、 あるいは繊維状無機物が配向することによって異方性が生じ、 やは り成形体が変形する問題があった。
なお、 ポリアミド樹脂とスチレン系樹脂とをァロイ化する方法として、 ABS 樹脂とのプレンド、 即ち、 ポリアミド /AB Sァロイ (特公昭 38-23476 号公報) 力 また、 AB S樹脂との相溶性を改良する方法として、 不飽和カルボ ン酸をスチレン、 ァクリロニトリルと共に共重合してなる変性共重合体を配合す る方法 (特開昭 63— 179957号公報、 特開昭 64— 1 58号公報) 等が開 示されている。 さらに、 無機充填剤及び特定スチレン系樹脂によるァロイ化によ る方法 (特開平 4一 1 20167号公報、 特開平 4— 332758号公報、 特開 平 8— 143768号公報、 特開平 9— 217006号公報) 、 層状ケィ酸塩の 共存下で重合したポリアミドと ABSの組み合わせによる方法 (特開平 8— 34 39号公報) 、 微細分散した層状ケィ酸塩含有ポリアミドと特定なスチレン系化 合物、 タルクとの組み合わせによる方法 (特開 2000— 21 2431号公報) 、 膨潤性フッ素雲母系鉱物を含有するポリアミドとスチレン系硬質ポリマー及び熱 可塑性エラストマ一との組み合わせによる方法 (特開平 9一 1 2873号公報) が開示されている。
しかしながら、 いずれも表面外観 (表面性、 低ヒケ性) が得られなかったり、 吸水により機械的特性や熱特性に悪影響を及ぼしたり、 優れた耐熱性が得られな い等、 これら技術では優れた成形体の外観、 変形、 耐熱性、 機械的特性を兼備す ることができなかった。
上述のように種々の分野で利用されているポリアミド樹脂であるが、 吸水性が 高いが故に吸水後に物性が低下し易くなる傾向がある。 吸水を抑制するために、 ポリオレフィン樹脂等、 吸水し難い樹脂をポリマープレンドする方法が一般に知 られている (特開平 0 5— 0 4 3 7 9 4号公報;特開平 0 6— 1 3 6 2 5 9号公 報;井出文雄、 釜田和正、 長谷川章、 「高分子化学」 、 高分子学会、 1 9 6 8年 2月 2 5日、 第 2 5巻、 第 2 7 4号、 p . 1 0 7— 1 1 5 ) 。 しかしながら、 ポ ' リマーブレンドによって耐熱性や剛性が損なわれる場合があった。 剛性を保持す るために、 繊維状強化材ゃ無機充填材を加える方法が一般に知られている (特開 平 0 6— 2 0 0 0 8 7号公報、 特開平 0 6— 2 3 4 8 9 6号公報、 特開平 0 7— 1 0 8 6 1 9号公報) 。 しかしながら、 繊維状強化材を加えると異方性のために 成形品が反り若しくは変形したり、 無機充填材のために表面性が損なわれる問題 がある。 表面性を損なわない技術としては、 アンモニゥム塩で処理した膨潤性ケ ィ酸塩を加える方法が開示されている (特開平 1 0— 2 7 9 7 5 2号公報、 特開 平 1 1— 1 8 1 2 7 7号公報) 。 しかしながら、 アンモニゥム塩は耐熱性が高く ないので、 ポリアミド榭脂の加工温度で長い時間熱履歴を受けると熱劣化を起こ し、 着色等の不具合の原因になり得る問題があった。
以上のように、 ポリアミド樹脂の溶融加工時に着色等の熱劣化を起こさずに、 表面性、 低反り、 剛性に優れ、 吸水が抑制されたポリアミド樹脂系材料を得る技 術は未だ見出されていないのが現状である。
ところで、 最近の電子技術の発展に伴い、 静電記録シート、 電子機器ハウジン グ、 静電コンテナー、 静電フィルム、 クリーンルームの床材ゃ壁材ゃ間仕切り材、 電子機器のカバー材、 I C等のマガジンの需要が増加している。 それらの材料に は、 寸法精度や低反り性、 表面性、 剛性、 耐熱性が要求されている。 一方、 ポリ アミド樹脂は耐熱性、 機械的特性等に優れる為、 射出成形材料、 シート、 フィル ムとして多くの工業的用途に利用されているが、 通常静電気を帯び易く、 そのた めフィルム、 シート又は板でできた容器等は静電気の蓄積を嫌う用途にはそのま までは使用できない。 そのため、 合成樹脂に導電性を付与する技術が広く利用さ れており、 一般に炭素繊維 (特開平 7— 2 0 5 3 1 0号公報、 特開平 1 0— 2 3 7 3 1 6号公報) やカーボンブラック (特開平 1 1— 3 1 0 7 0 1号公報、 特開 平 7— 3 3 1 0 2 9号公報) 等が利用されている。
しかしながら、 導電性を付与するために炭素繊維を用いた材料では、 炭素繊維 が成形品表面に浮き易いが、 それがコンテナや搬送用トレイ等に用いられると、 表面に浮いた炭素繊維が I Cやその他の電子部品を傷つける問題がある。 また、 その他の問題としては成形時に炭素繊維が流動方向に配向して異方性が生じる力 そのために成形品が反ってしまう別の問題もある。 また、 カーボンブラックを使 う場合は剛性や耐熱性を付与するために無機充填材を用 、るが、 無機充填材が表 面性を損なったり、 反りを生じさせたりする問題があった。
以上のように、 耐熱性や剛性、 表面性に優れ反りが少ない導電性ポリアミド樹 脂組成物を得る技術は未だ見出されていないのが現状である。 発明の要約
本発明の目的は、 このような従来の問題を改善し、 寸法安定性に優れ、 機械的 物性や耐熱性を高めたポリアミド樹脂組成物を提供することにある。
また、 本発明の目的は、 上記目的に加えて、 さらに表面外観 (表面性、 低ヒケ 性) に優れた熱可塑性樹脂組成物; さらに吸水が抑制された熱可塑性樹脂組成物 ;又は、 さらに帯電防止性を有する熱可塑性樹脂組成物を提供することにある。 本発明者らは、 上記目的を達成する為に鋭意検討した結果、 特定のポリエーテ ル化合物で処理した膨潤性雲母が、 押出によってポリアミド樹脂中に均一微分散 し、 優れた特性を有するポリアミ ド樹脂組成物を完成させるに至った。
また、 本発明者らは、 特定のポリエーテル化合物で処理した膨潤性雲母が、 押 出によってポリアミド樹脂とスチレン系樹脂とからなる樹脂組成物中に均一微分 散し、 優れた特性を有する熱可塑性樹脂組成物を完成させるに至った。
さらに、 本発明者らは、 無水物含有ォレフィン系共重合体を含有し、 かつ特定 のポリエーテル化合物で処理された膨潤性雲母を含有するポリアミド樹脂組成物 力 優れた特性を有することを見出し、 本発明を完成させるに至った。
また、 本宪明者らは、 炭素化合物を含有し、 かつ特定のポリエーテル化合物で 処理した膨潤性雲母を押出によってポリアミド樹脂中に均一微分散することによ つて、 優れた特性を有するポリアミ ド樹脂組成物を完成させるに至った。
即ち、 本発明は、 ポリアミド樹脂、 及ぴ、 ポリエーテル化合物で処理された膨 潤性雲母を含有し、 かつ、 前記ポリエーテル化合物が、 下記一般式 (1 ) :
Figure imgf000007_0001
(式中、 一 A—は、 — O—、 一 S—、 —S O—、 一 S 02—、 —C O—、 炭素数 1〜2 0のアルキレン基又は炭素数 6〜 2 0のアルキリデン基を示し、 R R2、 R3、 R4、 R 5、 R6、 R 7、 及び R 8は、 それぞれ同一であっても異なっていても良 く、 水素原子、 ハロゲン原子又は炭素数 1〜5の 1価の炭化水素基を示す。 ) で表される構造を有することを特徴とする、 ポリアミド樹脂組成物に関する。 また、 本発明は、 さらに、 スチレン系樹脂、 無水物含有ォレフィン系共重合体、 及び、 炭素化合物から選ばれる少なくとも一種を含有することを特徴とする、 上 記ポリアミド樹脂組成物に関する。
また、 本発明は、 さらにスチレン系樹脂を含有することを特徴とする、 上記ポ リアミド樹脂組成物に関する。
また、 本発明は、 さらに無水物含有ォレフィン系共重合体を含有することを特 徴とする、 上記ポリアミド樹脂糸且成物;無水物含有ォレフィン系共重合体が、 ォ レフイン又はォレフィン系共重合体に、 シス型 2重結合を環内に有する脂環式ジ カルボン酸無水物又は α, ]3—不飽和ジカルボン酸無水物を、 共重合又はグラフ ト付加して得られるものであることを特徴とする、 上記ポリアミド樹脂組成物; ポリアミド樹脂組成物中の無水物含有ォレフィン系共重合体の重量比が、 1重量 %以上、 3 0重量%以下であることを特徴とする、 上記ポリアミド樹脂組成物に 関する。
また、 本発明は、 さらに炭素化合物を含有することを特徴とする、 上記ポリア ミド樹脂糸且成物;前記炭素化合物が粒状であることを特徴とする、 上記ポリアミ ド樹脂組成物;前記炭素化合物がフィプリル状であることを特徴とする、 上記ポ リアミ ド樹脂組成物に関する。
好ましい実施態様としては、 前記ポリエーテル化合物が下記一般式 (2 ) :
R )
Figure imgf000008_0001
(式中、 A、 R \ R2、 R3、 R R5、 R6、 R7、 及び R8は、 前記と同じであり、 R9、 R1Qは、 それぞれ同一であっても異なっていても良く、 炭素数 1〜 5の 2価 の炭化水素基を示し、 R u、 R 12は、 それぞれ同一であっても異なっていても良 く、 水素原子、 炭素数 1〜2 0の 1価の炭化水素基を示し、 m及び nはォキシァ ルキレン単位の繰り返し単位数を示し、 2 m + n≤ 5 0である。 )
で表される構造を有することを特徴とする、 上記ポリアミド樹脂組成物に関する。 より好ましい実施態様としては、 ポリアミド樹脂組成物中の B彭潤性雲母の等価 面積円直径 [D ] が 3 0 0 n m以下である膨潤性雲母の比率が 2 0 %以上である、 上記ポリァミド樹脂組成物に関する。
さらに好ましい実施態様としては、 前記ポリアミド樹脂組成物中で、 膨潤性雲 母の等価面積円直径 [D] の平均値が 5 0 0 n m以下である、 上記ポリアミド樹 脂組成物に関する。
さらに好ましい実施態様としては、 前記ポリアミド樹脂組成物中で、 膨潤性雲 母の平均層厚が 5 O n m以下である、 上記ポリアミド樹脂組成物に関する。 さらに好ましい実施態様としては、 前記ポリアミド樹脂組成物中で、 膨潤性雲 母の最大層厚が 2 0 0 n m以下である、 上記ポリアミド樹脂組成物に関する。 さらに好ましい実施態様としては、 前記ポリアミド樹脂組成物中で、 膨潤性雲 母の単位比率当たりの粒子数 [N] 値が 3 0以上である、 上記ポリアミド樹脂組 成物に関する。
さらに好ましい実施態様としては、 前記ポリアミド樹脂組成物中の膨潤性雲母 の平均アスペクト比 (層長さ/層厚の比) が 10〜300である、 上記ポリアミ ド樹脂組成物に関する。
さらに好ましい実施態様としては、 ポリアミド樹脂組成物中の膨潤性雲母の重 量比が、 0. 5重量%以上、 30重量%以下である、 上記ポリアミド樹脂組成物 に関する。
さらに好ましい実施態様としては、 前記各成分を混練することによって得られ る、 上記ポリアミド樹脂組成物に関する。
また、 本発明は、 上記ポリアミド樹脂組成物の各成分を溶融混練することを特 徴とする、 ポリアミド樹脂組成物の製造方法に関する。
また、 本発明は、 上記ポリアミド樹脂組成物により、 全部又は一部を形成され ていることを特徴とする樹脂成形体;自動車用の部品であることを特徴とする、 上記樹脂成形体に関する。 発明の詳細な開示
本発明で用いられるポリアミド樹脂とは、 主鎖中にアミド結合 (一NHCO— ) を含み加熱溶融できる重合体である。 具体例としては、 ポリ力プロアミド (ナ ィロン 6) 、 ポリテトラメチレンアジパミ ド (ナイロン 46) 、 ポリへキサメチ レンアジパミ ド (ナイロン 66) 、 ポリへキサメチレンセバカミ ド (ナイロン 6 10) 、 ポリへキサメチレンドデカミ ド (ナイロン 61 2) 、 ポリゥンデカメチ レンアジパミ ド (ナイロン 1 16) 、 ポリウンデカンァミ ド (ナイロン 1 1) 、 ポリ ドデカンアミ ド (ナイロン 12) 、 ポリ トリメチルへキサメチレンテレフタ ルアミ ド (ナイロン TMHT) 、 ポリへキサメチレンイソフタルアミ ド (ナイ口 ン 6 1) 、 ポリへキサメチレンテレフタル/イソフタルアミ ド (ナイロン 6 T/ 6 I ) 、 ポリノナメチレンテレフタルアミ ド (ナイロン 9 T) 、 ポリビス (4— アミノシクロへキシル) メタンドデカミ ド (ナイロン PACM12) 、 ポリビス ( 3—メチルー 4ーァミノシク口へキシル) メタンドデカミ ド (ナイ口ンジメチ ゾレ P A CM 1 2) 、 ポリメタキシリレンアジパミ ド (ナイロン MXD6) 、 ポリ ゥンデカメチレンテレフタルアミ ド (ナイロン 1 1 T) 、 ポリゥンデカメチレン へキサヒドロテレフタルアミド (ナイロン 11 T (H) ) 、 及びこれらの共重合 ポリアミ ド、 混合ポリアミド等が挙げられる。
中でも、 入手のし易さ、 取扱性等の点から、 ナイロン 6、 ナイロン 4 6、 ナイ ロン 6 6、 ナイロン 1 1、 ナイロン 1 2、 ナイロン 9 T、 ナイロン MX D 6、 及 ぴこれらの共重合ポリアミド、 混合ポリアミドが好ましい。 また、 強度、 弾性率、 コスト等の点から、 ナイロン 6、 ナイロン 4 6、 ナイロン 6 6、 ナイロン MX D 6がより好ましい。
上記ポリアミド樹脂の分子量は、 特に制限はないが、 通常、 2 5 °Cの濃硫酸中 で測定した相対粘度が 0 . 5〜5 . 0の範囲のものが好ましく用いられる。 上記ポリアミド樹脂は、 単独で、 又は、 糸且成あるいは成分の異なるもの及ぴ Z 又は相対粘度の異なるものを 2種以上組み合わせて使用し得る。
上記ポリアミド樹脂は、 例えば、 一般的なポリアミドの重合法等により製造す ることができる。
次に、 本発明では、 ポリエーテル処理した膨潤性雲母を用いるが、 これにより、 膨澗性雲母はポリアミド樹脂組成物中で非常に細かく互いに独立した薄板状で分 散することができる。
本発明で用いられる膨潤性雲母は、 タルクとナトリゥム及び/又はリチウムの 珪フッ化物又はフッ化物を含む混合物を加熱処理することにより得る事ができる。 その具体的な方法としては、 特開平 2— 1 4 9 4 1 5号公報に開示された方法が ある。 即ち、 タルクにナトリウムイオン及び/又はリチウムイオンをインター力 レーシヨンして膨潤性雲母を得る方法である。 この方法ではタルクに珪フッ化物 及び/又はフッ化物を混合し、 約 7 0 0〜 1 2 0 0 °Cで処理することによって得 られる。 本発明で用いる膨潤性雲母は、 純度、 膨潤性の点から、 この方法で製造 されたものが特に好ましい。 膨潤性雲母を得るには、 珪フッ化物又はフッ化物を 構成する金属を、 ナトリウム又はリチウムとすることが必要である。 これらは単 独で用いても 2種以上を併用してもよい。
タルクと混合する珪フッ化物及び/又はフッ化物の量は、 膨潤性雲母の生成率 の点から、 混合物全体の 1 0〜3 5重量%が好ましい。
上記方法で製造された膨潤性雲母は、 一般式として下式 (3 ) で表される構造 を有する。 a (MF) · β (a Mg F 2 - bMg O) · 7 S i 02 ( 3) (式中、 Mはナトリウム又はリチウムを表し、 α, β , y , a及ぴ bは各々係数 を表し、 0. l≤ a 2, 2≤ j3≤ 3. 5 , 3≤ y≤ 4, 0≤ a≤ 1 , 0≤ b≤
1 , a + b = lである)
また、 本発明で用いる膨潤性雲母を製造する工程において、 アルミナ (A 1 2
03) を少量配合し、 生成する膨潤性雲母の膨潤性を調整することも可能である。 当該膨潤性雲母は、 水、 水と任意の割合で相溶する極性溶媒、 及び水と該極性 溶媒の混合溶媒中で膨潤する性質を有する物である。 本発明でいう 「膨潤性」 と は、 膨潤性雲母が上記極性分子を層間に吸収することにより眉間距離が拡がり、 あるいはさらに膨潤することにより劈開する特性である。 なお、 水と任意の割合 で相溶する極性溶媒としては、 後述の極性溶媒での例示と同じものが挙げられる。 当該膨潤性雲母としては、 例えば、 リチウム型テニオライト、 ナトリウム型テ 二オライト、 リチウム型四ケィ素雲母、 ナトリウム型四ケィ素雲母等や、 これら の置換体、 誘導体、 これらの混合物等が挙げられ、 上記方法で製造することがで きる。
前記膨潤性雲母の初期の凝集状態、 つまり膨潤前の膨潤性雲母における底面間 隔は、 おおよそ 1 ~ 1. 7 n mであり、 膨潤前の膨潤性雲母の平均粒径は約 1 0 0〜 1 0 0 0 0 0 nmである。
本発明で用いられるポリエーテル化合物とは、 ポリォキシエチレンゃポリォキ シエチレン一ポリオキシプロピレン共重合体等のようなポリオキシアルキレン化 合物の側鎖及びノ又は主鎖中に、 下記一般式 (1 ) :
Figure imgf000011_0001
(式中、 一 A—は、 — O—、 — S—、 一 S O—、 一 S 02—、 一 CO—、 炭素数 1〜2 0のアルキレン基又は炭素数 6~ 2 0のアルキリデン基を示し、 R R R R4、 R 5、 R6、 R 及び R8は、 それぞれ同一であっても異なっていても良 く、 水素原子、 ハロゲン原子又は炭素数 1〜5の 1価の炭化水素基を示す。 ) で表される構造を有するものである。
上記ポリエーテル化合物の中でも、 下記一般式 (2 ) :
R1 ~ R12 (2)
Figure imgf000012_0001
(式中、 A、 R \ R2、 R3、 R R5、 R6、 R7、 及ぴ R8は、 前記と同じであり、 R9、 R1(>は、 それぞれ同一であっても異なっていても良く、 炭素数 1 ~ 5の 2価 の炭化水素基を示し、 R u、 R 12は、 それぞれ同一であっても異なっていても良 く、 水素原子、 炭素数 1〜2 0の 1価の炭化水素基を示し、 m及び nはォキシァ ルキレン単位の繰り返し単位数を示し、 2≤m + n≤ 5 0である。 )
で表される構造を有するものが、 熱安定性、 膨潤性雲母の分散性、 入手の容易さ の点から特に好ましく用いられ得る。
上記 Aで表される炭素数 1〜 2 0のアルキレン基としては、 例えば、 メチレン、 エチレン、 プロピレン、 フエニノレメチレン、 1ーメチ /レー 1一フエニノレメチレン、 シク口へキシルメチレン等が挙げられ、 好ましくは炭素数 1〜 8のアルキレン基 である。
上記 Aで表される炭素数 6〜2 0のアルキリデン基としては、 例えば、 シクロ へキシリデン、 メチルシク口へキシリデン、 ジメチルシク口へキシリデン、 トリ メチルシク口へキシリデン等が挙げられ、 好ましくは炭素数 6〜 9のアルキリデ ン基である。
上記 R 1〜 で表されるハロゲン原子としては、 例えば、 フッ素原子、 塩素原 子、 臭素原子、 ヨウ素原子が挙げられる。
上記 R 1〜 で表される炭素数 1〜5の 1価の炭化水素基としては、 例えば、
〜 5のアルキル基等が挙げられる。 炭素数 1〜 5のアルキル基としては、 例えば、 メチル、 ェチル、 プロピル、 ブチル、 ペンチル等が挙げられる。
上記 R9、 Rieで表される炭素数 1〜 5の 2価の炭化水素基としては、 例えば、 炭素数 1〜 5のアルキレン基等が挙げられる。 炭素数 1〜5のアルキレン基とし ては、 例えば、 メチレン、 エチレン、 プロピレン、 プチレン、 ペンチレン等が挙 げられる。
上記 R u、 R12で表される炭素数 1〜2 0の 1価の炭化水素基としては、 例え ば、 炭素数 1 ~ 2 0のアルキル基等が挙げられる。 炭素数 1〜2 0のアルキル基 としては、 例えば、 メチル、 ェチル、 プロピル、 ブチル、 ペンチル、 へキシル、 ォクチル、 デシル、 ドデシル、 へキサデシル等が挙げられる。
また、 式 (2 ) において、 m及ぴ nはォキシアルキレン単位の操り返し単位数 を示し、 m≥l、 n≥ lであり、 2 :m + n 5 0である。
前記ポリエーテル化合物としては、 具体的には、 2, 2—ビス (4ーヒドロキ シフヱ-ル) プロパン ( 「ビスフエノール A」 ) の両末端に繰り返し単位数 1〜 2 5のポリォキシェチレン鎖が付カ卩したもの、 2 , 2—ビス ( 4ーヒ ドロキシフ ヱニル) プロパン ( 「ビスフユノール A」 ) の両末端に繰り返し単位数 1〜 2 5 のポリオキシプロピレン鎖が付加したもの、 ビス (4ーヒドロキシフエニル) メ タンの両末端に繰り返し単位数 1〜 2 5のポリオキシェチレン鎖が付加したもの、 ビス (4—ヒドロキシフエニル) メタンの両末端に繰り返し単位数 1〜2 5のポ リオキシプロピレン鎖が付加したもの、 1, 1一ビス (4ーヒドロキシフエニル ) ェタンの両末端に繰り返し単位数 1〜2 5のポリオキシエチレン鎖が付加した もの、 1, 1一ビス (4ーヒドロキシフエニル) ェタンの両末端に繰り返し単位 数 1〜2 5のポリオキシプロピレン鎖が付加したもの、 1 , 1一ビス (4ーヒド ロキシフエニル) 一 3 , 3 , 5—トリメチルシクロへキサン ( 「ビスフエノール TMC」 ) の両末端に繰り返し単位数 1〜2 5のポリオキシエチレン鎖が付加し たもの、 1 , 1一ビス ( 4—ヒドロキシフエニル) 一 3 , 3 , 5—トリメチノレシ クロへキサン ( 「ビスフエノール TMC」 ) の両末端に繰り返し単位数 1〜2 5 のポリオキシプロピレン鎖が付加したもの、 ビス (4—ヒドロキシフエニル) シ ク口へキシルメタンの両末端に繰り返し単位数 1〜 2 5のポリォキシエチレン鎖 が付加したもの、 ビス ( 4ーヒ ドロキシフエニル) シク口へキシルメタンの両末 端に繰り返し単位数 1〜2 5のポリオキシプロピレン鎖が付加したもの、 ビス ( 4ーヒドロキシ一 3 , 5—ジメチルフエニル) メタンの両末端に繰り返し単位数 1〜2 5のポリオキシエチレン鎖が付加したもの、 ビス (4ーヒ ドロキシ一 3, 5—ジメチルフエュル) メタンの両末端に繰り返し単位数 1〜2 5のポリオキシ プロピレン鎖が付加したもの、 2 , 2—ビス (4ーヒドロキシ一 3 , 5—ジメチ ルフエ-ル) プロパンの両末端に繰り返し単位数 1〜 2 5のポリオキシエチレン 鎖が付加したもの、 2 , 2—ビス (4ーヒ ドロキシ一 3, 5—ジメチルフエニル ) プロパンの両末端に繰り返し単位数 1〜 2 5のポリオキシプロピレン鎖が付カロ したもの、 ビス (4ーヒ ドロキシフエニル) スルフォンの両末端に繰り返し単位 数 1〜2 5のポリオキシエチレン鎖が付加したもの、 ビス (4ーヒ ドロキシフエ ニル) スルフォンの両末端に繰り返し単位数 1 ~ 2 5のポリオキシプロピレン鎖 が付加したもの、 ビス (4—ヒドロキシフエ-ル) スルフイドの両末端に繰り返 し単位数 1〜 2 5のポリオキシエチレン鎖が付加したもの、 及びビス (4—ヒ ド ロキシフエニル) スルフィ ドの両末端に操り返し単位数 1〜2 5のポリオキシプ ロピレン鎖が付加したもの等が例示される。
中でも入手の容易さ、 取扱性の点から、 2, 2—ビス (4ーヒドロキシフエ二 ル) プロパン ( 「ビスフエノール A」 ) の両末端にペンタエチレンォキシド鎖が 付加したもの、 2, 2—ビス (4—ヒ ドロキシフエ-^^ プロパン ( 「ビスフエ ノール AJ ) の両末端にノナエチレンォキシド鎖が付加したもの、 2 , 2—ビス ( 4—ヒ ドロキシフエ-ル) プロパン ( 「ビスフエノール A」 ) の両末端にデカ プロピレンォキシド鎖が付加したもの、 1 , 1一ビス (4—ヒ ドロキシフエニル ) —3 , 3 , 5—トリメチルシクロへキサン ( 「ビスフ.ェノール TM C」 ) の両 末端にノナエチレンォキシド鎖が付加したもの、 ビス (4—ヒ ドロキシフエニル ) メタンの両末端にノナエチレンォキシド鎖が付加したものが好ましく用いられ 得る。
上記のポリエーテル化合物は、 置換基を有していても良い。 特に、 R9、 R ieの 炭素数 1〜5の 2価の炭化水素基が、 さらに置換基を有していても良い。 該置換 基の例としては、 上記ポリアミド樹脂や膨潤性雲母に悪影響を与えない限り、 特 に限定されないが、 例えば、 飽和又は不飽和の一価又は多価の脂肪族炭化水素基 (アルキル基、 アルケニル基等) 、 エステル結合で結合している基 (アルキルェ ステル基等) 、 エポキシ基、 アミノ基、 力ルポキシル基、 末端にカルボ二ル基を 有する基、 アミド基、 メルカプト基、 スルホエル結合で結合している基、 スルフ ィニル結合で結合している基、 ニトロ基、 ニトロソ基、 二トリノレ基、 ハロゲン原 子 (フッ素原子、 塩素原子、 臭素原子、 ヨウ素原子) 及び水酸基等が挙げられる。 これらの内の 1種で置換されていても良く、 2種以上で置換されていても良い。 前記ポリエーテル化合物が水又は水を含有する極性溶媒に可溶であれば、 ポリ エーテル化合物中の置換基の組成比は特に制限されるものではない。 具体的には、 室温の水 1 0 0 gに対する前記ポリエーテル化合物の溶解度は、 好ましくは 1 g 以上、 より好ましくは 2 g以上、 さらに好ましくは 5 g以上、 特に好ましくは 1 O g以上、 最も好ましくは 2 0 g以上である。
上記の極性溶媒としては、 例えば、 メタノール、 ェタノール、 イソプロパノー ノレ等のアルコール類;エチレングリ コール、 プロピレングリ コール、 1 , 4ーブ タンジオール等のダリコール類;ァセトン、 メチルェチルケトン等のケトン類; ジェチルエーテル、 テトラヒ ドロフラン等のエーテノレ類; N , N—ジメチルホル ムアミド、 N, N—ジメチルァセトアミド等のアミド化合物;炭酸ジメチル、 炭 酸ジェチル等の炭酸ジエステル; ピリジン、 ジメチルスルホキシド、 N—メチル ピロリ ドン等が挙げられる。 これらの極性溶媒は、 単独で用いても良く 2種類以 上組み合わせて用いても良い。
前記ポリエーテル化合物の使用量は、 膨潤性雲母とポリアミド樹脂との親和性、 ポリアミド樹脂組成物中での膨潤性雲母の分散性が十分に高まるように調整し得 る。 また、 必要に応じて、 異種の官能基を有する複数種のポリエーテル化合物を 併用し得る。 従って、 前記ポリエーテル化合物の使用量は、 一概に数値で限定さ れるものではないが、 前記膨潤性雲母 1 0 0重量部に対する前記ポリエーテルィ匕 合物の使用量の下限値は、 膨潤性雲母の微分散化効果の点から、 好ましくは 1重 量部、 より好ましくは 2重量部、 さらに好ましくは 5重量部である。 また、 前記 膨潤性雲母 1 0 0重量部に対する前記ポリエーテル化合物の使用量の上限値は、 特に限定されないが、 膨潤性雲母の微分散化効果の点から、 好ましくは 2 0 0重 量部である。 本発明において、 前記ポリエーテル化合物で前記膨潤性雲母を処理する方法と しては、 特に限定されないが、 例えば以下に示す方法で行い得る。
まず、 膨潤性雲母と分散媒を撹拌混合する。 前記分散媒とは、 水又は水を含有 する極性溶媒を意図する。 水を含有する極性溶媒としては、 前述の極性溶媒での 例示と同じものが挙げられる。
膨潤性雲母と分散媒との攪拌の方法は特に限定されないが、 例えば、 従来公知 の湿式撹拌機を用いて行われる。 該湿式撹拌機としては、 撹拌翼が高速回転して 撹拌する高速撹拌機、 高剪断速度がかかっているローターとステーター間の間隙 で試料を湿式粉砕する湿式ミル類、 硬質媒体を利用した機械的湿式粉碎機類、 ジ エツトノズル等で試料を高速度で衝突させる湿式衝突粉碎機類、 超音波を用いる 湿式超音波粉砕機等が挙げられる。
より効率的に混合したい場合は、 撹拌の回転数を 1 0 0 0 r p m以上、 好まし くは 1 5 0 0 r p m以上、 より好ましくは 2 0 0 0 r p m以上にする力、 あるい は、 5 0 0 ( 1 / s ) 以上、 好ましくは 1 0 0 0 ( 1 Z s ) 以上、 より好ましく は 1 5 0 0 ( 1ノ s ) 以上の剪断速度を加える。 回転数の上限値は約 2 5 0 0 0 r p mであり、 剪断速度の上限値は約 5 0 0 0 0 0 ( l / s ) である。 上限値よ りも大きい値で撹拌を行ったり剪断を加えても、 攪拌効果がそれ以上変わらない 傾向があるため、 上限値よりも大きい値で撹拌を行う必要はない。 また、 混合に 要する時間は、 好ましくは 1 0分以上である。
次いで、 ポリエーテル化合物を加えて、 さらに撹拌を続け、 十分に混合する。 混合の方法は、 従来公知の混練機を用いてもなし得る。 混練機としてはバッチ 式及び連続式があり、 バッチ式混練機は、 例えば、 開放形のロール、 密閉形のバ ンバリータイプ混練機、 ニーダタイプ混練機等が挙げられ、 連続式混練機は、 例 えば、 単軸ロータ式混練機、 2軸ロータ式混練機、 単軸スクリュー混練機、 2軸 スクリュー混練機、 多軸スクリュー混練機等が挙げられる。 その後、 乾燥して、 必要に応じて粉体化する。
膨潤性雲母に由来するポリアミド樹脂組成物の灰分率の下限値は、 機械的特性、 反りの改善効果の点から、 好ましくは 0 . 5重量%、 より好ましくは 1 . 0重量 %となるように調製される。 また、 灰分率の上限値は、 成形体の表面外観等の点 から、 好ましくは 3 0重量%、 より好ましくは 2 5重量%、 さらに好ましくは 2 0重量%、 特に好ましくは 1 5重量%となるように調製される。 また、 当該灰分 率は、 J I S K 7 0 5 2に従って測定することができる。
なお、 上記膨潤性雲母に由来するポリアミド樹脂組成物の灰分率とは、 ポリア ミド樹脂組成物における前記膨潤性雲母の重量比 (これを処理したポリエーテル 化合物の重量は含まない) に相当するものである。
本発明のポリアミド樹脂組成物中で分散している膨潤性雲母の構造は、 使用前 の膨潤性雲母が有していたような、 層が多数積層した/ i mサイズの凝集構造とは 全く異なる。 即ち、 膨潤性雲母をポリエーテル化合物で処理する事によって、 層 同士が劈開し、 互いに独立して細分化する。 その結果、 膨潤性雲母はポリアミド 樹脂組成物中で非常に細かく互いに独立した薄板状で分散し、 その数は、 使用前 の膨潤性雲母に比べて著しく増大する。 この様な薄板状の膨潤性雲母の分散状態 は、 以下に述べる等価面積円直径 [D] 、 分散粒子数、 最大層厚、 平均層厚、 ァ スぺクト比 (層長さノ層厚の比) で表現され得る。
まず、 等価面積円直径 [D] を、 顕微鏡等で得られる像内で様々な形状で分散 している個々の膨潤性雲母の該顕微鏡像上での面積と等しい面積を有する円の直 径であると定義する。 この場合、 ポリアミド樹脂組成物中に分散した膨潤性雲母 のうち、 等価面積円直径 [D] が 3 0 0 n m以下である膨潤性雲母の数の比率は、 ポリアミ ド樹脂組成物の機械的特性や反りの改良効果の点から、 好ましくは 2 0 %以上、 より好ましくは 3 5 %以上、 さらに好ましくは 5 0 %以上、 特に好まし くは 6 5 %以上である。 当該比率の上限値は特に限定されないが、 好ましくは 1 0 0 %である。
また、 本発明のポリアミド樹脂組成物中で、 膨潤性雲母の等価面積円直径 [D ] の平均値は、 ポリアミド樹脂組成物の機械的特性や反りの改良効果、 成形品の 表面外観の点から、 好ましくは 5 0 0 n m以下、 より好ましくは 4 5 0 n m以下、 さらに好ましくは 4 0 0 n m以下、 特に好ましくは 3 5 0 n m以下である。 下限 値は特に限定されないが、 おおよそ 1 0 n m未満では効果はほとんど変わらなく なるので、 1 0 n m未満にする必要は特にない。
等価面積円直径 [D ] の測定は、 溶融混練物や射出成形品あるいは熱プレス品 を顕微鏡等を用いて撮影した像上で、 1 0 0個以上の膨潤性雲母の層を含む任意 の領域を選択し、 画像処理装置等を用いて画像化して計算機処理することにより 行うことが可能で、 これにより定量化できる。
また、 [N] 値を、 ポリアミド樹脂組成物の面積 1 0 0 /i m 2中に存在する、 膨潤性雲母の単位重量比率当たりの分散粒子数であると定義する。 この場合、 本 発明のポリアミド樹脂組成物における膨潤性雲母の [N] 値は、 好ましくは 3 0 以上、 より好ましくは 4 5以上、 さらに好ましくは 6 0以上である。 上限値は特 に限定されないが、 [N] 値が 1 0 0 0程度を越えると、 それ以上効果は変わら なくなるので、 1 0 0 0より大きくする必要は特にない。
[N] 値は、 例えば、 次のようにして求められ得る。 即ち、 ポリアミド樹脂組 成物を約 5 0 μ m〜 1 0 0 /x m厚の超薄切片に切り出し、 該切片を T E M等で撮 影した像上で、 面積が 1 0 0 m 2の任意の領域に存在する膨潤性雲母の粒子数 を、 用いた膨潤性雲母の重量比率で除すことによって求められ得る。 あるいは、 T E M像上で、 1 0 0個以上の粒子が存在する任意の領域 (面積は測定しておく ) を選んで該領域に存在する粒子数を、 用いた膨潤性雲母の重量比率で除し、 面 積 1 0 0 μ ιη 2に換算した値を [Ν] 値としてもよい。 従って、 [Ν] 値はポリ ァミ ド樹脂組成物の Τ Ε Μ写真等を用いることにより定量化できる。
また、 平均層厚を、 薄板状で分散した膨潤性雲母の層厚みの数平均値であると 定義する。 この場合、 本発明のポリアミド樹脂組成物中で、 膨潤性雲母の平均層 厚の上限値は、 ポリアミド樹脂組成物の機械的特性等の改良効果の点から、 好ま しくは 5 0 n m以下、 より好ましくは 4 5 n m以下、 さらに好ましくは 4 0 n m 以下である。 平均層厚の下限値は特に限定されないが、 5 n m以下にしてもそれ 以上は効果は変わらないので、 5 n m以下にする必要は特にない。
また、 最大層厚を、 本発明のポリアミド樹脂組成物中に薄板状に分散した膨潤 性雲母の層厚みの最大値であると定義する。 この場合、 膨潤性雲母の最大層厚の 上限値は、 ポリアミド樹脂組成物の機械的特性、 表面外観の点から、 好ましくは 2 0 0 n m以下、 より好ましくは 1 8 0 n m以下、 さらに好ましくは 1 5 0 n m 以下である。 膨潤性雲母の最大層厚の下限値は特に限定されないが、 好ましくは 1 0 n m以上、 より好ましくは 1 5 n m以上、 さらに好ましくは 2 0 n m以上で ある。
また、 平均ァスぺクト比を、 棚旨中に分散した膨潤性雲母の層長さ/雇厚の比 の数平均値であると定義する。 この場合、 本発明のポリアミド樹脂組成物中で、 膨潤性雲母の平均ァスぺクト比の下限値は、 ポリアミド樹脂組成物の機械的特性 等の改善効果の点から、 好ましくは 1 0、 より好ましくは 2 0、 さらに好ましく は 3 0である。 また、 平均アスペクト比は 3 0 0より大きくても効果はそれ以上 変わらないため、 平均アスペク ト比を 3 0 0より大きくする必要は特にない。 よ つて、 平均ァスぺクト比の好ましい範囲は 1 0〜 3 0 0である。
層厚及び層長さは、 本発明のポリアミド樹脂組成物を加熱溶融した後に、 熱プ レス成形あるいは延伸成形して得られるフィルム、 及び溶融樹脂を射出成形して 得られる薄肉の成形品等を、 顕微鏡等を用いて撮影される像から求めることがで きる。 即ち、 いま仮に、 X— Y面上に上記の方法で調製したフィルムの、 あるい は肉厚が約 0 . 5〜 2 mm程度の薄い平板状の射出成形した試験片を置いたと仮 定する。 上記のフィルム又は試験片を、 X— Z面又は Y—Z面と平行な面で約 5 0 μ π!〜 1 0 0 μ m厚の超薄切片を切り出し、 該切片を透過型電子顕微鏡等を用 い、 約 4〜 1 0万倍以上の高倍率で観察して求められ得る。 測定は、 上記の方法 で得られた透過型電子顕微鏡の像上において、 1 0 0個以上の膨潤性雲母を含む 任意の領域を選択し、 画像処理装置等で画像化し、 計算機処理する事等によって 行い、 定量化できる。 あるいは、 定規等を用いて計測しても求めることもできる。 ここで、 本発明のポリアミド樹脂組成物は、 上記ポリアミド樹脂及びポリエー テル化合物で処理された膨潤性雲母以外に、 さらに、 スチレン系樹脂、 無水物含 有ォレフイン系共重合体、 及び、 炭素化合物から選ばれる少なくとも一種を含有 することができる。
まず、 本発明のポリアミド樹脂組成物に、 上記ポリアミド樹脂及びポリエーテ ル化合物で処理された膨潤性雲母以外に、 さらにスチレン系樹脂を含有する場合 について説明する。 スチレン系樹脂を含有させることにより、 特に表面外観 (表 面性、 低ヒケ性) がより優れたものとなる。
本発明で用いられるスチレン系樹脂としヤは、 特に限定されないが、 例えばポ リスチレン、 ゴム変^ 4ポリスチレン (H I P S樹脂) 、 スチレン -アタリロニト リル共重合体、 スチレン - ゴム質重合体 -アタリロェトリル共重合体等が挙げら れる。 また、 スチレン - ゴム質重合体-アタリ口エトリル共重合体としては、 A B S (アタリ口エトリル一ブタジエン一スチレン) 樹脂、 AE S (ァクリロュト リル一エチレン一プロピレン一ジェン一スチレン) 樹脂、 AAS (アタリロニト リル—アクリルスチレン) 樹脂、 AC S (アクリロニトリル一塩素化ポリエチレ ンースチレン) 樹脂等が挙げられる。 これらは単独で用いても 2種以上を併用す ることもできる。
さらに、 これらのスチレンの一部、 及びノ又はァクリロニトリルの一部又は全 部が、 - メチゾレスチレン、 -メチノレスチレン、 p - t -ブチノレスチレン ; ( メタ) アクリル酸メチル、 (メタ) アクリル酸ェチル、 (メタ) アクリル酸プロ ピル、 (メタ) ァクリル酸 n -プチル等の (メタ) ァクリル酸エステル化合物; マレイミ ド、 N - メチルマレイミ ド、 N -シク口へキシルマレイミ ド、 N - フエ ニルマレイミ ド等のマレイミ ド系単量体; アタリル酸、 メタタリル酸、 マレイン 酸、 フマル酸、 ィタコン酸等の不飽和カルボン酸単量体等の、 スチレンと共重合 可能なビエル系単量体で置換されているものも含まれる。 これらは、 1種でも 2 種以上でも用いることができる。
好ましくは、 AB S樹脂、 ポリスチレン、 H I P S樹脂、 AE S樹脂、 AAS 樹脂、 AC S樹脂、 MB S (メタクリレートーブタジエン一スチレン) 樹脂等で あり、 より好ましくは、 スチレンの一部を不飽和カルボン酸単量体で置換した、 AB S樹脂、 ポリスチレンであり、 さらに好ましくは、 メタクリル酸で置換した、 AB S樹脂、 ポリスチレンである。
スチレン系樹脂の製造法としては、 特に制限はなく、 塊状重合法、 懸濁重合法、 乳化重合法、 塊状一懸濁重合法等の通常の方法を用いることができる。
本発明で用いられるスチレン系樹脂は、 本宪明の効果を損なわない限り特に制 限されるものではないが、 本発明で得られるポリアミ ド樹脂組成物の物性バラン スとポリアミ ドとの相溶性、 経済的観点から、 特に好ましく用いられる不飽和力 ルボン酸変性 AB S樹脂としての例は、 芳香族ビニル化合物 40〜80重量。 /0、 シァン化ビュル化合物 1 5〜 50重量%、 不飽和カルボン酸化合物 0. 1〜 20 重量%、 他の共重合可能なビニル系化合物 0〜 30重量%からなる不飽和カルボ ン酸含有共重合体と、 平均粒子径 0 . 0 1〜5 . 0 μ πιのジェン系ゴム 3 0 ~ 9 5重量%の存在下に、 グラフト共重合可能なビュル系化合物 7 0〜 5重量%をグ ラフト共重合して得られるグラフト共重合体とからなる不飽和カルボン酸変性 A B S樹脂が挙げられる。
不飽和カルボン酸変性 A B S樹脂に用いられる不飽和カルボン酸含有共重合体 の芳香族ビュル化合物が 8 0重量。 /0を越えると、 耐薬品性、 耐衝撃性が低下する 場合があり、 4 0重量%未満では成形加工性が低下する場合がある。 シアン化ビ エル化合物が 5 0重量%を越えると成形加工時の熱安定性が低下したり、 あるい は加熱による着色がある場合があり、 1 5重量%未満では耐薬品性、 耐衝擊性が 低下する場合がある。 また不飽和カルボン酸化合物が 2 0重量%を越えると成形 加工時の熱安定性が低下したり、 あるいは加熱による着色がある場合があり、 0 . 1重量%未満ではポリアミドとの相溶性が得られにくくなり、 成形品表面に層状 剥離等を生ずる場合がある。 他の共重合可能なビュル系化合物が 3 0重量%を越 えると、 耐熱性と耐衝撃性とのバランスが不十分となる場合がある。
不飽和カルボン酸含有共重合体で使用される芳香族ビエル化合物としては、 ス チレン、 α—メチノレスチレン、 クロノレスチレン、 メチルスチレン等が例示される。 特に耐熱性を向上させる観点から、 α—メチルスチレンの使用が好ましい。 シァ ン化ビュル化合物としては、 アクリロニトリル、 メタアクリロニトリル等が例示 される。 不飽和カルボン酸化合物としてはアクリル酸、 メタクリル酸等が挙げら れる。 他の共重合可能なビュル系化合物としては、 メチルメタタリレート、 ェチ ルメタタリ レート、 メチルァクリレート、 ェチルァクリ レート等のメタァクリル 酸、 アクリル酸のァノレキルエステル;マレイミ ド、 フエュルマレイミ ド等のマレ ィミド系化合物等が例示される。 上記芳香族ビュル化合物、 シアン化ビニル化合 物、 不飽和カルボン酸化合物、 他の共重合可能なビニル系化合物は、 それぞれ単 独又は 2種以上の組み合わせで用いられる。
不飽和カルボン酸含有共重合体は、 例えば次のようにして製造することができ る。 即ち、 α—メチルスチレンを水、 乳化剤とともに先に仕込み、 十分に乳化状 態にしたのち、 アタリロニトリル及びその他の単量体を極少量ずつ連続的に滴下 し、 重合系内ではびーメチルスチレンが常に 8 0重量%以上、 好ましくは 9 0重 量0 /0以上の α—メチルスチレン大過剰量にしておくことにより、 目的とする共重 合体を得ることができる。 この場合、 不飽和カルボン酸化合物は、 α—メチルス チレンとともに先に仕込んでも、 ァクリロニトリルと混合して追加してもよい。 また先仕込みした後、 追加で分割して仕込むことも可能である。 また α—メチル スチレンの一部を追加することもできる。 この場合、 先に仕込む α—メチルスチ レンの量は、 耐薬品性、 耐衝擊性や耐熱変形性の観点から、 全モノマー 1 00重 量%のうち 5 0重量%以上、 9 0重量%以下が好ましい。
グラフト共重合体は、 平均粒子径 0. 0 1〜5. 0 μι のジェン系ゴム 30〜 9 5重量%の存在下に、 グラフト共重合可能なビュル系化合物 70〜 5重量%を グラフト共重合して得られるグラフト共重合体が好ましく用いられる。
グラフト共重合可能なビュル系化合物としては、 芳香族ビュル化合物、 シアン 化ビニル化合物、 不飽和カルボン酸化合物、 他の共重合可能なビュル系化合物を 用いることができ、 これらは、 上記不飽和カルボン酸含有共重合体で用いられる ものと同じものが例示される。 これらは、 いずれも単独又は 2種以上の組み合わ せで用いられる。
ジェン系ゴムが 9 5重量%を越えると耐衝擊性、 耐油性が低下する場合があり、 30重量%未満では耐衝撃性が低下する場合がある。 ジェン系ゴムとしては、 例 えば、 ブタジエン等が挙げられる。
グラフト共重合体で使用されるジェン系ゴムには、 ポリアミド樹脂糸且成物の耐 衝撃性や成形体外観の観点から、 平均粒子径 0. 0 1〜 5. 0 μ mのものが好ま しく用いられる。 平均粒子径 0. 0 2〜2. 0 imのものが特に好ましい。 さら に、 衝撃強度を向上する目的で、 小粒子ジェン系ゴムラテックスを凝集肥大化さ せたジェン系ゴムラテックスを使用することができる。 小粒子ジェン系ゴムラテ ックスを凝集肥大化する方法としては、 従来公知の方法、 例えば酸性物質を添加 する方法 (特公昭 42— 3 1 1 2号公報、 特公昭 5 5— 1 9 246号公報、 特公 平 2— 9 60 1号公報、 特開昭 63— 1 1 7005号公報、 特開昭 6 3— 1 3 2 90 3号公報、 特開平 7— 1 5 750 1号公報、 特開平 8— 2 5 9 7 77号公報 ) 、 酸基含有ラテックスを添加する方法 (特開昭 5 6— 1 6 6 20 1号公報、 特 開昭 5 9— 9 370 1号公報、 特開平 1— 1 26 30 1号公報、 特開平 8— 5 9 7 0 4号公報、 特開 9一 2 1 7 0 0 5号公報) 等を採用することができ、 特に制 限はない。
不飽和カルボン酸含有共重合体及ぴグラフト共重合体は、 好ましくは乳化重合 によって得られるが、 必ずしも乳化重合に限定されない。 例えば塊状重合、 懸濁 重合、 溶液重合及びそれらの組合せ、 即ち乳化一懸濁重合、 乳化一塊状重合が挙 げられる。 乳化重合は通常の方法が適用可能である。 即ち、 前記化合物を水性媒 体中、 ラジカル開始剤の存在下に反応させればよい。 その際、 前記化合物を混合 物として使用しても、 また必要に応じ、 分割して使用してもよい。 さらに、 前記 化合物の添カ卩方法としては一度に全量仕込んでも、 また逐次添加してもよく、 特 に制限されるものではない。 ラジカル開始剤としては、 過硫酸カリ、 過硫酸アン モニゥム、 キュメンハイドロパーォキサイド、 パラメンタンハイドロバーオキサ ィド等の水溶性又は油溶性の過酸ィヒ物を例示することができ、 これらは単独又は 2種以上組み合わせて用いられる。 その他、 重合促進剤、 重合度調節剤、 乳化剤 も、 公知の乳化重合法で使用されているものを適宜選択して使用してもよい。 得られたラテックスから乾燥樹脂を得る方法は公知の方法でよい。 その際、 不 飽和力ルポン酸含有共重合体及びグラフト共重合体のラテックスを混合した後、 乾燥樹脂を得てもよく、 別々に樹脂を得て粉末状態で混合してもよい。 ラテック スから樹脂を得る方法としては、 例えばラテックスに塩酸、 硫酸、 酢酸等の酸、 塩化カルシウム、 塩化マグネシウム、 硫酸アルミニウム等の金属塩を加え、 ラテ ックスを凝固したのち、 脱水、 乾燥する方法が用いられる。 以上のようにして製 造された不飽和カルボン酸含有共重合体とグラフト共重合体の混合樹脂は A B S 樹脂の特性を保持しながら、 なおかつポリアミド樹脂との高い相溶性を発現でき るものである。
本発明で用いられるポリアミド樹脂とスチレン系樹脂の構成割合 (重量部) は、 特に制限されるものではないが、 耐熱性と耐衝撃性等の特性バランスの観点から、 ポリアミド樹脂:スチレン系樹脂として、 好ましくは 9 5 : 5〜5 : 9 5、 より 好ましくは 9 0 : 1 0 - 3 0 : 7 0、 さらに好ましくは 8 5 : 1 5〜4 5 : 5 5 。、ある。
本発明のポリアミド樹脂組成物中において、 膨潤性雲母の分散状態は、 ポリア ミ ド樹脂とスチレン系樹脂の極性、 膨潤性雲母の種類、 ポリエーテル化合物の種 類によって異なる。 膨潤性雲母の個数密度が、 各樹脂相に均一である場合、 スチ レン系樹脂相に比べポリアミド相に高密度で存在する場合、 又は、 ポリアミド相 に比べスチレン系樹脂相に高密度で存在する場合があるが、 耐熱性及び機械的特 性のバランスから、 膨潤性雲母がポリアミド樹脂組成物中のポリアミド樹脂相に 高密度で分散することが好ましい。
また、 本発明のポリアミド樹脂組成物には、 上記ポリアミド樹脂及びポリエー テル化合物で処理された膨潤性雲母以外に、 さらに無水物含有ォレフィン系共重 合体を含有することができる。 これにより、 ポリアミド樹脂の吸水を抑制するこ と等ができる。
上記無水物含有ォレフィン系共重合体とは、 ォレフィン又はォレフィン系共重 合体に、'シス型 2重結合を環内に有する脂環式ジカルボン酸無水物又は Q;, β— 不飽和ジカルボン酸無水物を、 共重合又はグラフト付加して得られるものである。 上記ォレフィン又はォレフィン系共重合体としては、 例えば、 ポリエチレン、 ポリプロピレン、 ポリプテン等のォレフィン類の単独重合体;エチレン一プロピ レン共重合体、 エチレン一ブテン共重合体、 プロピレン一ブテン共重合体、 ェチ レン一プロピレン一ジェン共重合体等の異種のォレフィン類の共重合体;ォレフ ィン類と異種の単量体との共重合体等が挙げられる。
前記異種の単量体としては、 例えば、 メタタリル酸メチル、 メタタリル酸ェチ ル、 メタクリル酸プチル、 メタクリル酸 2—ェチルへキシル、 メタクリル酸 2— ヒ ドロキシェチル等のメタクリル酸エステル、 ァクリル酸ェチル、 アクリル酸ブ チル、 アクリル酸 2—ェチルへキシル、 アクリル酸 2—ヒ ドロキシェチル等のァ クリル酸エステル等の α , j3一不飽和カルボン酸エステル;スチレン、 α—メチ ルスチレン、 ビュルトルエン等のスチレン系化合物;アクリロニトリル、 メタク リロ二トリル等の Q!, ]3—不飽和二トリル;アクリル酸、 メタクリル酸等の a;, ]3一不飽和カルボン酸;酢酸ビュル、 ビュルエーテル; これらの混合物等が挙げ られる。 これらも必要に応じて共重合することができる。
上記共重合体の様式は、 ランダム共重合体、 ブロック共重合体、 グラフト共重 合体、 交互共重合体のいずれであってもよい。 上記の中では特に、 エチレンープ ロピレン共重合体、 エチレンープテン共重合体、 エチレン—酢酸ビニル共重合体、 エチレン一ァクリル酸ェチル共重合体、 エチレン一メタクリル酸メチル共重合体、 エチレン一プロピレン一ジェン共重合体が、 靭性付与、 コスト及ぴ取り扱い性の 点から好ましい。 なお、 上記のポリオレフイン類は 2種以上混合して用いること ができる。
上記のシス型 2重結合を環内に有する脂環式ジカルボン酸無水物としては、 例 えば、 シス一 4—シク口へキセン一 1 , 2ージカルボン酸、 エンド一ビシクロ一 ( 2 , 2 , 1 ) — 5—ヘプテン _ 2, 3ージカルボン酸、 メチル一エンド一シス —ビシクロー ( 2 , 2, 1 ) ― 5—ヘプテン一 2 , 3—ジカルボン酸、 エンド一 ビシクロー (2, 2 , 1 ) 一 1 , 2, 3 , 4, 7, 7 —へキサクロロ一 2—ヘプ テン一 5, 6ージカルボン酸等の無水物が挙げられる。 特に靭性付与の点から、 エンド一ビシクロ一 ( 2 , 2 , 1 ) 一 5—ヘプテン _ 2, 3—ジカルボン酸無水 物が好ましい。 また場合によっては、 これらの誘導体、 例えば、 ジカルボン酸、 ジカルボン酸金属塩、 エステル化物、 アミド化物、 酸ハロゲン化物も用いること ができる。
上記の α, —不飽和ジカルボン酸無水物は、 下記一般式 (4 ) :
Figure imgf000025_0001
(式中、 R a 、 R bは、 水素原子、 アルキル基、 アルケニル基、 アルキエル基、 又は、 ハロゲン原子を示す。 また、 R aと R bが隣り合う炭素原子と一緒になつ て環状の基を示してもよい。 さらに、 R aと R bがそれぞれ隣り合う炭素原子同 士の結合は二重結合ではなく単結合であってもよい。 ) で表される化合物である。 その具体例としては、 無水マレイン酸、 メチル無水マレイン酸、 クロ口無水マレ イン酸、 プチニル無水コハク酸、 テトラヒドロ無水フタル酸等が挙げられる。 本発明で用いられる無水物含有ォレフィン系共重合体において、 シス型 2重結 合を環内に有する脂環式ジカルボン酸無水物又は α, β一不飽和ジカルボン酸無 水物を、 共重合又はグラフト付加する比率の下限値は、 靭性の付与効果の点から、 ォレフィン又はォレフィン系共重合体 1 0 0モル0 /。に対して、 好ましくは 0 . 0 5モル0 /0、 より好ましくは 0 . 1モル0 /0、 さらに好ましくは 0 . 2モル0 /0である。 また、 共重合又はグラフト付加する比率の上限値は、 加工性の点から、 好ましく は 8 0モル0 /0、 より好ましくは 5 0モル0 /0、 さらに好ましくは 3 0モル%である。 上記の無水物含有ォレフィン系共重合体を製造する方法は、 いわゆる公知のラ ジカル共重合法が用いられるほか、 ォレフィン単独重合体あるいはォレフィン系 共重合体にラジカル発生剤を存在させ、 上記の異種単量体の 1種以上を、 溶媒あ るいは分散媒の存在下又は非存在下で、 ラジカルグラフト反応させる方法を挙げ る事ができる。 中でも、 溶融状態でグラフト反応させる場合は、 押出機、 ニーダ 一等の溶融混練機を用いることによって効率的に得ることができるため好ましい。 ポリアミド樹脂 1 0 0重量部に対する無水物含有ォレフィン系共重合体の添カロ 量の下限値は、 吸水抑制効果の点から、 好ましくは 1重量部、 より好ましくは 2 重量部、 さらに好ましくは 3重量部である。 また、 上限値は、 成形加工性及ぴ剛 性の点から、 好ましくは 5 0重量部、 より好ましくは 3 0重量部、 さらに好まし くは 2 0重量部、 特に好ましくは 1 5重量部である。
また、 ポリアミド樹脂組成物中の無水物含有ォレフィン系共重合体の重量比は、 1重量%以上、 3 0重量%以下であることが好ましい。
ここで、 本発明のポリアミド樹脂組成物には、 上記ポリアミド樹脂及びポリェ 一テル化合物で処理された膨潤性雲母以外に、 さらに炭素化合物を含有させるこ とができる。 これにより、 帯電防止性を付与することができる。
本発明で用いられる炭素化合物としては、 炭素繊維以外であれば特に限定され ず市販のものが用いられ得るが、 成形品の表面性や反り変形等の点から、 粒状や 微細なフィブリル状が好ましい。 また、 当該炭素化合物は、 導電性であるものが 好ましい。
粒状の炭素化合物としては、 アセチレンブラックや各種ファーネス系の導電性 カーボンブラック等が挙げられ、 市販の各種のものが使用できる。 例えば、 ケッ チェンブラックィンターナショナル社製の商品名ケッチェンブラック等が挙げら れる。 また、 微細なフィプリル状の炭素化合物の例としては、 直径が約 3 . 5 n m~ 7 5 n mの微細糸状のフィプリル状炭素化合物であり、 いわゆるカーボンナ ノチューブと称させるものであり、 市販の各種のものが使用できる。 例えば、 ノヽ イビリオン力タリシスィンターナショナル社製の商品名ハイペリオン等が挙げら れる。 これらは単独で用いても、 2種以上を組み合わせて用いてもよい。
ポリアミ ド樹脂 1 0 0重量部に対する炭素化合物の添加量の下限値は、 導電性 の点から、 好ましくは 0 . 5重量部、 より好ましくは 1 . 0重量部、 さらに好ま しくは 1 . 5重量部である。 また、 炭素化合物の添カ卩量の上限値は、 樹脂組成物 の押出ペレッ ト化や機械的強度の点から、 好ましくは 1 2重量部、 より好ましく は 1 1重量部、 さらに好ましくは 1 0重量部である。
本発明のポリアミド樹脂組成物の製造方法は、 特に制限されるものではなく、 例えば、 ポリアミド樹脂と、 ポリエーテル化合物で処理した膨潤性雲母とを、 種 々の一般的な混練機を用いて溶融混練する方法を挙げることができる。 さらに、 スチレン系樹脂、 無水物含有ォレフィン系共重合体及び炭素化合物から選ばれる 少なくとも一種を添加する場合にも、 上記と同様に各成分を溶融混練して、 ポリ アミド樹脂組成物を製造することができる。
溶融混練温度としては、 特に限定されないが、 好ましくは 2 0 0〜 3 6 0 °C、 より好ましくは 2 0 0〜 3 0 0 °Cである。
混練機の例としては、 一軸押出機、 二軸押出機、 ロール、 バンバリ一ミキサー、 ニーダ一等が挙げられ、 特に、 剪断効率の高い混練機が好ましい。 ポリアミド樹 脂、 ポリエーテル化合物で処理した膨潤性雲母、 さらに必要に応じて添加した各 成分は、 上記の混練機に一括投入して溶融混練しても良いし、 あるいは予め溶融 状態にしたポリアミド樹脂に膨潤性雲母を添加して溶融混練しても良い。
本発明のポリアミド樹脂組成物には、 必要に応じて、 ポリブタジエン、 プタジ ェンースチレン共重合体、 ァクリルゴム、 アイオノマー、 エチレン一プロピレン 共重合体、 エチレン一プロピレン—ジェン共重合体、 天然ゴム、 塩素化プチルゴ ム、 ーォレフインの単独重合体、 2種以上の α—ォレフィンの共重合体 (ラン ダム、 ブロック、 グラフト等、 いずれの共重合体も含み、 これらの混合物であつ ても良い) 、 ォレフィン系エラストマ一等の耐衝撃性改良剤を添加することがで きる。 これらは無水マレイン酸等の酸化合物、 又はグリシジルメタタリレート等 のエポキシ化合物で変性されていても良い。 また、 機械的特性等を損なわない範囲で、 他の任意の熱可塑性樹脂あるいは熱 硬化性樹脂、 例えば、 不飽和ポリエステル樹脂、 ポリエステルカーボネート樹脂、 液晶ポリエステル樹脂、 ポリオレフイン樹脂、 熱可塑性ポリエステル樹脂、 ゴム 質重合体強化スチレン系樹脂、 ポリフエ二レンスルフイ ド樹脂、 ポリフエ二レン エーテル樹脂、 ポリアセタール樹脂、 ポリサルフォン樹脂、 ポリアリレート樹脂 等を、 単独又は 2種以上組み合わせて使用し得る。
さらに、 目的に応じて、 顔料や染料、 熱安定剤、 酸化防止剤、 紫外線吸収剤、 光安定剤、 滑剤、 可塑剤、 難燃剤、 帯電防止剤等の添加剤を添加することができ る。
本発明で得られるポリアミド榭脂組成物は、 射出成形や熱プレス成形で成形し ても良く、 ブロー成形にも使用できる。 得られる成形品は外観に優れ、 機械的特 性や耐熱変形性等に優れる為、 例えば、 自動車部品、 家庭用電気製品部品、 家庭 日用品、 包装資材、 その他一般工業用資材に好適に用いられる。
なお、 無水物含有ォレフィン系共重合体を含有するポリアミド樹脂組成物は、 射出成形して得られる成形品としてより好ましく用いられ得る。 該成形品は、 熱 安定性や表面性、 剛性に優れ、 吸水による物性変化も抑制されるので、 例えば自 動車のフロントフェンダー、 リアフェンダー、 フードバノレジ、 サイ ドガーニッシ ュ、 リァガ一二ッシュ、 バック ドアパネル、 ホイールキヤップ等の自動車外装材 料に好適に利用され得る。 前記自動車外装材料の中で、 フロントフユンダ一、 リ ァフェンダー、 フードバノレジ、 サイ ドガ一二ッシュ、 リアガーニッシュ、 バック ドアパネルに用いる場合では、 特に外観に関わる部位に好適に用いられ、 また、 ホイールキヤップ等では全部に用いる事が好ましいが、 それらに限定されるもの ではない。
また、 炭素化合物を含有するポリアミド樹脂糸且成物は、 射出成形して得られる 成形品としてより好ましく用いられ得る。 該成形品は、 導電性ゃ静電防止性を有 し、 成形収縮の異方性が少ないので、 複雑な形状の成形品を射出成形しても反り 変形が少ない。 また、 ポリアミド樹脂の表面性を損なわず、 かつ剛性と耐熱性に 優れるので、 静電記録シート、 電子機器ハウジング、 静電コンテナー、 静電フィ ルム、 クリーンルームの床材ゃ壁材ゃ間仕切り材、 電子機器のカバー材、 I C等 のマガジン、 へッドジンバルアッセンブル、 スライダ及びスライダアーム等の H DD内部品の搬送用静電防止トレイ、 シーキングアームの格納部品等の HDD内 部品、 及び他の電子部品の搬送用静電防止トレイ等に好適に利用され得る。 発明を実施するための最良の形態
以下、 実施例により本発明をさらに詳細に説明するが、 本発明はこれらによつ て何ら限定されるものではない。 実施例及び比較例で使用する主要原料を以下にまとめて示す。 なお、 特に断ら ない場合は、 原料の精製は行っていない。
(原料)
'ポリアミド樹脂 A 1 (ナイロン 6) :ュニチカナイロン 6 A1030BRL (ュニチカ (株) 社製)
'ポリアミド樹脂 A2 (ナイロン 66) :ュニチカナイロン 66 A 1 25 N ( ュニチカ (株) 社製)
'ポリアミド樹脂 A 3 (ナイロン 46) : S t a n y l TS 300 (DSM— J SR社製)
•ポリアミド樹脂 A4 (ナイロン MXD6) : レニー 6002 (旭化成 (株) 社 製)
·スチレン系樹脂 B 1 (AB S樹脂) :下記参考例 1記載の方法で得られた樹月旨 'スチレン系樹脂 B 2 (スチレンーメタクリル酸共重合体) : G— 9001 (旭 化成 (株) 社製)
-ポリフエ二レンエーテル樹脂 (P P E) : I UP I ACE YPX— 100L
(三菱エンプラ (株) 社製)
·無水物含有ォレフィン系共重合体 C 1 :ボンダイン AX 8930 (住友化学 ( 株) 社製) (無水マレイン酸が共重合したポリオレフイン)
'無水物含有ォレフィン系共重合体 C 2 :タフマー MH7020 (三井化学 (株 ) 製) (無水マレイン酸が共重合したポリオレフイン)
-無水物含有ォレフィン系共重合体 C 3 :タフテック Ml 943 (旭化成 (株) 製) (無水マレイン酸が共重合したポリオレフイン)
•膨潤性雲母 E 1 : ソマシフ ME 100 (コープケミカル (株) 社製)
-ポリエーテル化合物 F 1 : ビスオール 18 EN (東邦化学 (株) 社製) -ポリエーテル化合物 F 2 : ビスオール 20 PN (東邦化学 (株) 社製) '炭素化合物 G 1 :ケッチェンブラック (ケツチエンプラックインターナショナ ル (株) 社製)
•炭素化合物 G 2 : PA6にフイブリル状炭素化合物が 2◦%濃度で分散された マスターバッチペレッ ト、 商品名 MB 4020— 00 (ハイピリオン力タリシス ィンターナショナル社製)
·炭素化合物 G 3 : PA66にフイブリル状炭素化合物が 20%濃度で分散され たマスターバッチペレッ ト、 商品名 MB4620— 00 (ハイピリオンカタリシ スインターナショナル社製) 実施例及び比較例における各物性の測定方法を以下に示す。
(分散状態の測定)
凍結切片法で得た厚み 50〜 100 μ mの超薄切片を用いた。 透過型電子顕微 鏡 (日本電子 J EM- 1200 EX) を用い、 加速電圧 80 k Vで倍率 4万〜 1 00万倍で膨潤性雲母の分散状態を観察撮影した。 TEM写真において、 100 個以上の分散粒子が存在する任意の領域を選択し、 層厚、 層長、 粒子数 ( [N] 値) を、 目盛り付きの定規を用いた手計測又はインタークェスト社の画像解析装 置 P I A SIIIを用いて処理する事により測定した。
等価面積円直径 [D] はインタータエスト社の画像解析装置 P I ASIIIを用 いて処理する事により測定した。
[N] 値の測定は以下のようにして行った。 まず、 TEM像上で、 選択した領 域に存在する膨潤性雲母の粒子数を求めた。 これとは別に、 膨潤性雲母に由来す る樹脂組成物の灰分率を測定した。 上記粒子数を灰分率で除し、 面積 Ι Ο Ο μπι 2に換算した値を [Ν] 値とした。 平均層厚は個々の膨潤性雲母の層厚の数平均 値、 最大層厚は個々の膨潤性雲母の層厚の中で最大の値とした。 分散粒子が大き く、 ΤΕΜでの観察が不適当である場合は、 光学顕微鏡 (ォリンパス光学 (株) 製の光学顕微鏡 BH— 2) を用いて上記と同様の方法で [N] 値を求めた。 ただ し、 必要に応じて、 サンプルは L I NKAM製のホットステージ THM600を 用いて 250〜270°(Cで溶融させ、 溶融状態のままで分散粒子の状態を測定し た。 平均ァスぺクトお は個々の膨潤性雲母の層長と層厚の比の数平均値とした。 板状に分散しない^散粒子のアスペク ト比は、 長径/短径の値とした。 ここで、 長径とは、 顕微鎭像等において、 対象となる粒子の外接する長方形のうち面積が 最小となる長方/形を仮定すれば、 その長方形の長辺を意図する。 また、 短径とは、 上記最小とな/る長方形の短辺を意図する。 (曲げ特 ' )
本発!のポリアミド樹脂,祖成物を乾燥 (90°C、 10時間) した。 型締圧 75 tの.射出成形機を用い、 樹脂温度 240〜300 C (ナイロン 6 : 240°C、 ナ ィロン 66 : 260°C、 ナイ口ン MXD 6 : 280°C、 ナイロン 46 : 300°C ) で、 寸法約 10 X 100 X 6mmの試験片を射出成形した。 ASTM D— 7 90に従い、 得られた試験片の曲げ強度及び曲げ弾性率を測定した。
(荷重たわみ温度)
曲げ特性で用いた試験片と同じ試験片を用いた。 ASTM D— 648に従い、 得られた試験片について 1. 86 MP aの荷重たわみ温度を測定した。
(反り)
本発明のポリアミド樹脂組成物を乾燥 (90°C、 10時間) した後、 樹脂温度 240〜300°C (ナイロン 6 : 240 °C、 ナイロン 66 : 260。C、 ナイロン MXD 6 : 280°C、 ナイロン 46 : 300 °C) の条件で、 寸法約 120X 12 0 X 1 mmの平板状試験片を射出成形した。 平面上に上記の平板状試験片を置き、 試験片の 4隅の内、 1力所を押さえ、 残り 3隅の内、 平面からの距離が最も大き い値をノギスで測定した。 4隅それぞれを押さえ、 得られた反り値の平均値を求 めた。 ' (成形収縮率)
本発明のポリアミド榭脂,袓成物を乾燥 (90°C、 10時間) した後、 樹脂温度 240〜300°C (ナイロン 6 : 240 °C、 ナイロン 66 : 260 °C、 ナイロン MXD 6 : 280°C、 ナイロン 46 : 300°C) の条件で、 寸法約 120 X 12 0 X 2 mmの平板状試験片を射出成形し、 次式により成形収縮率を測定した。 収縮率 (%) = (金型寸法一成形品実寸法) ÷ (金型寸法) X 100
なお、 下記表中、 MDは樹脂の流れ方向を、 TDは樹脂の流れと直角方向を示す。
(中心線平均粗さ)
上記成形収縮率で用いた試験片と同じものを用い、 東京精密 (株) 製の表面粗 さ計 s u r f c om 1 50 OAを用いて、 中心線粗さを測定した。
(灰分率)
J I S K 7052に準じ、 膨潤性雲母に由来するポリアミド樹脂組成物の 灰分率を測定した。
(B法フロー)
本発明のポリアミド樹脂組成物を乾燥 (90°C、 10時間) した。 島津製作所 (株) 製のフローテスターを用い、 温度 280°C、 荷重 10 O k gの条件で、 5 分後及び 15分後の B法フロ一値を測定した。 5分後と 1 5分後のフロ一値の変 化が少ないほど、 溶融安定性に優れている。
(ヒケ評価)
本発明のポリアミド樹脂組成物を乾燥 (90°C、 10時間) した後、 樹脂温度 240〜280°C (ナイロン 6 : 240 °C、 ナイロン 66 : 260 °C、 ナイ口ン MXD 6 : 280 °C) の条件で、 寸法 φ約 100X2. 5 mm厚の円形板の片面 に、 厚み 0. 8、 1. 0、 1. 2、 1. 4、 1. 6、 1. 8 X 35 X 10mmの リブを円形板中心部より放射線状に 6枚有する成形品を射出成形し、 リブを有す る面と反対側の平面にヒケが発生するかどうかを目視観察した。 ヒケは成形体の 厚みの偏肉と成形時の樹脂収縮により表面凹部として生じるため成形品外観を損 なう。 評価は、 ヒケが発生しないリブの厚みで表し、 リブ部厚みが大きいほどヒ ケが発生しやすい。 (吸水率)
本発明のポリアミド樹脂組成物を乾燥 (90°C、 10時間) した後、 樹脂温度 240〜280°C (ナイロン 6 : 240°C、 ナイロン 66 : 260。C、 ナイロン MXD 6 : 280 °C) の条件で、 ASTM 1号ダンベル試験片を得た。 得られ た試験片を、 J I S K7209記載の方法に準じて、 23°C蒸留水中に 24時 間浸水後、 その吸水率を測定した。
(吸水時の反り変形)
本発明のポリアミド樹脂組成物を乾燥 (90°C、 10時間) した後、 樹脂温度 240〜260。C (ナイロン 6 : 240。C、 ナイロン 66 : 260 °C) の条件で、 寸法約 1 20 X 120X 1 mmの平板状試験片を射出成形した。 この試験片を 2 3 °Cの水中に 24時間浸した後の反りを測定した。 反りは、 平面上に上記の平板 状試験片を置き、 試験片の 4隅の内、 1力所を押さえ、 残り 3隅の内、 平面から の距離が最も大きい値をノギスで測定した。 4隅それぞれを押さえ、 得られた反 り値の平均値を求めた。
(表面性)
3次元表面構造解析顕微鏡 (Z y g o New V i ew 5030、 Z y g o社製) を用いて、 上記試験片の表面粗さを測定した。 (溶融熱安定性)
本発明のポリアミド樹脂組成物を乾燥 (90°C、 10時間) した。 島津製作所 (株) 製のフローテスターを用い、 温度 260°C、 荷重 100 k gの条件で、 5 分後及び 1 5分後の B法フロー値を測定し、 同時に着色を目視評価した。 5分後、 1 5分後のフロ一値の変化が少ないほど溶融熱安定性に優れて 、るといえる。 (体積固有抵抗値)
ァドバンテスト社製の抵抗値測定器 R 834 OAを用いた。 試験片は、 成形収 縮率で用いたものと同じものを用い、 25° (、 50%RHで 24時間経ってから 測定した。
(製造例 1 )
表 1に示した重量比で、 イオン交換水、 ポリエーテル化合物、 膨潤性雲母を 1 5〜 30分間混合した。 その後、 乾燥 ·粉体化して、 ポリエーテル化合物で処理 した膨潤性雲母 (粘土 J— 1〜J一 6) を得た。
Figure imgf000034_0001
数字の単位は重量部
(製造例 2 )
表 2に示した重量比で、 イオン交換水、 膨潤性雲母、 ポリビュルピロリ ドン ( P VP) 、 メチルステアリルビス 〔PEG〕 アンモ-ゥムクロライド (ライオン ■ァクゾ (株) 製のェソカード) 、 トリオクチルメチルアンモニゥムクロライド を 1 5〜30分間混合した。 その後、 乾燥 ·粉体化した (粘土 K— 1〜K— 4) c 表 2
Figure imgf000035_0001
数字の単位は重量部
(実施例 1〜2、 比較例 1〜4)
表 3に示す重量比のポリアミド樹脂 Al、 製造例 1で得た膨潤性雲母、 製造例 2で得た膨潤性雲母、 膨潤性雲母 E 1を、 二軸押出機 ( (株) 日本製鋼所製、 T EX44) を用いて、 混練初期からダイスまでの温度を 220°C〜 250°Cに設 定し、 溶融混練することによりポリアミド樹脂組成物を得、 各種物性を評価した。 結果を表 3に示す。
表 3より、 P VPやアンモニゥム塩で処理した膨潤性雲母では補強効果は十分 ではなく、 反りや成形収縮の改善効果はほとんど無く、 加工温度での劣化も激し かった。
(比較例 5 )
5000 gの ε—力プロラタタム、 l l O O gの水、 550 gの膨潤性雲母を、 加圧できる反応機に入れ、 攪拌しながら 250°Cに昇温した。 水蒸気を放出しな がら反応機内の圧力を 4 k g/cm2〜1 5 k gZcm2にした。 ついで、 圧力 を約 2 k g/cm2、 温度を約 260°Cにした。 以上の条件で重合法によって、 膨潤性雲母を約 10 %含むポリアミド組成物の重合を試みた。 ところが、 重合の 途中で反応機の攪拌機にかかるモーター負荷電流値が不安定になり、 ついには過 負荷で攪拌不能となったので、 重合を中断した。 即ち、 ポリアミド組成物を重合 で得ようと試みたが、 溶融粘度が増加したために重合できなかった。 t O
CO
Figure imgf000036_0001
09306
36
上記表中の各記号の説明は以下のとおり。
※:溶融加工時の劣化が激しいため、 測定に使用できる試験片は成形できなかつ た。
※※:劣化が激しいため、 測定できなかった。
※※※:溶融粘度が増加したので、 反応機の撹拌モーターが過負荷になり、 重合 を中断した。
(* 1) 板状に分散しなかったので、 分散粒子の長径/短径比とした。
(* 2) 板状に分散しなかったので、 分散粒子の短径の数平均値とした (* 3) 板状に分散しなかったので、 分散粒子の短径の最大値とした。
(比較例 6〜 8 )
表 4に示す重量比のポリアミド樹脂 A 1、 タルク、 マイ力、 ガラス繊維強化材 を、 実施例 1と同様に溶融混練することによりポリアミド樹脂組成物を得、 各種 物性を評価した。 結果を表 4に示す。
表 4
比較例
6 フ 8 ポリアミド樹脂 A1 重量部 100
タルク 11
マイ力 11
ガラス繊維 11 灰分率 wt% 10.0 9.9 9.9
[D]≤300nmの比率 % 0 0 測定せず
[D]の平均値 nm 2420 2580 測定せず 分散粒子数 [N] 個/ %'100 0^ 5 2 測定せず 平均アスペクト比 1.5(*1) 1.5(*1) 測定せず 平均層厚 nm 約 3000(*2) 約 3000(*2) 測定せず 最大層厚 nm 約 9万 (*3) 約 9万 (*3) 測定せず 曲げ弾性率 MPa 3010 4250 5400 曲げ強度 Pa 95 120 130 i¾r たわみ;皿 。C 72 90 148 反り mm 7.8 7.1 14.2 成形収縮率 MD % 1.43 1.40 0.56
TD 1.59 1.55 1.78 中心線平均粗さ nm 210 430 690 ( * 1 ) 板状に分散しなかったので、 分散粒子の長径/短径比とした。
( * 2 ) 板状に分散しなかったので、 分散粒子の短径の数平均値とした, 3 ) 板状に分散しなかったので、 分散粒子の短径の最大値とした。 表 4より、 従来から用いられているタルクやマイ力の補強効果は十分ではなく、 反りや成形収縮の改善効果はほとんど見られなかった。 また表面性も損なわれた。 ガラス繊維を添加すれば補強効果は得られるが、 反り、 表面性が損なわれた。 従 つて、 比較例 6〜8はバランスに優れるものは得られなかった。
(実施例 3〜 6 )
表 5に示す重量比のポリアミド樹脂 A 1及び製造例 1で得た膨潤性雲母を、 二 軸押出機 ( (株) 日本製鋼所製、 T E X 4 4 ) を用いて、 実施例 1と同様にして 溶融混練することによりポリアミド樹脂組成物を得、 各種物性を評価した。 結果 を表 5に示す。
表 5
Figure imgf000038_0001
(実施例 7〜: L 1 ) 表 6に示す重量比のポリアミド樹脂 A 2及び製造例 1で得た膨潤性雲母を、 二 軸押出機 ( (株) 3本製鋼所製、 T E X 4 4 ) を用いて、 混練初期からダイスま での温度を 2 3 0 °C〜 2 6 0 °Cに設定し、 溶融混練することによりポリアミド樹 脂組成物を得、 各種物性を評価した。 結果を表 6に示す。
表 6
Figure imgf000039_0001
(比較例 9〜 1 1 )
表 7に示す重量比のポリアミド樹脂 A 2、 タルク、 マイ力、 ガラス繊維強化材 を、 実施例 7と同様に溶融混練することによりポリアミド樹脂組成物を得、 各種 物性を評価した。 結果を表 7に示す。 表 7
Figure imgf000040_0001
(* 1) 板状に分散しなかったので、 分散粒子の長径/短径比とした。
(* 2) 板状に分散しなかったので、 分散粒子の短径の数平均値とした (* 3) 板状に分散しなかったので、 分散粒子の短径の最大値とした。 表 7より、 従来から用いられているタルクやマイ力の補強効果は十分ではなく、 反りや成形収縮の改善効果はほとんど見られなかつた。 また表面性も損なわれた。 ガラス繊維を添加すれば補強効果は得られるが、 反り、 表面性が損なわれた。 従 つて、 比較例 9 1 1ではバランスに優れるものは得られなかった。 (実施例 12、 比較例 12 )
表 8に示す重量比のポリアミド樹脂 A 3及び製造例 1で得た膨潤性雲母あるい はタルクを、 二軸押出機 ( (株) 3本製鋼所製、 TEX44) を用いて、 混練初 期からダイスまでの温度を 280°C 300°Cに設定し、 溶融混練することによ りポリアミ ド樹脂組成物を得、 各種物性を評価した。 結果を表 8に示す。 表 8
Figure imgf000041_0001
(* 1) 板状に分散しなかったので、 分散粒子の長径 Z短径比とした。
(* 2) 板状に分散しなかったので、 分散粒子の短径の数平均値とした, (* 3) 板状に分散しなかったので、 分散粒子の短径の最大値とした。 表 8より、 従来から用いられているタルクの補強効果は十分ではなく、 反りや 成形収縮の改善効果はほとんど見られなかった。 また表面性も損なわれた。
(実施例 13、 比較例 13 )
表 9に示す重量比のポリアミド樹脂 A 4及び製造例 1で得た膨潤性雲母あるい はタルクを、 二軸押出機 ( (株) 日本製鋼所製、 TEX44) を用いて、 混練初 期からダイスまでの温度を 250°C〜290°Cに設定し、 溶融混練することによ りポリアミド樹脂組成物を得、 各種物性を評価した。 結果を表 9に示す。 表 9
Figure imgf000042_0001
(* 1) 板状に分散しなかったので、 分散粒子の長径 Z短径比とした。 (* 2) 板状に分散しなかったので、 分散粒子の短径の数平均値とした, (* 3) 板状に分散しなかったので、 分散粒子の短径の最大値とした。 表 9より、 従来から用いられているタルクの補強効果は十分ではなく、 反りや 成形収縮の改善効果はほとんど見られなかつた。 また表面性も損なわれた。
(参考例 1 )
攪拌機及び還流冷却器の設置された反応缶に、 窒素気流中で下記の物質を仕込 んだ。 水 250部、 ナトリウムホルムアルデヒドスルホキシレート 0. 4部、 硫 酸第一鉄 0. 0025部、 エチレンジァミン四酢酸ニナトリウム 0. 01部、 ジ ォクチルスルホコハク酸ナトリウム 2. 0部を 60°Cに加熱攪拌後、 表 10に示 す割合の単量体混合物を、 開始剤のキュメンハイド口パーオキサイド、 重合度調 節剤の t一ドデシルメルカブタンとともに 6時間かけて連続的に滴下添加した。 滴下終了後、 さらに 6 0 °Cで 1時間攪拌を続け、 重合を終了させ、 不飽和力ルポ ン酸含有共重合体 (い) を得た。
表 1 0
Figure imgf000043_0001
次に、 攪拌機及び還流冷却器の設置された反応缶に、 窒素気流中で下記の物質 を仕込んだ。 水 2 5 0部、 過硫酸カリウム 0 . 5部、 ブタジエン 1 0 0部、 t一 ドデシルメルカブタン 0 . 3部、 不均化ロジン酸ナトリウム 3 . 0部を、 重合温 度 6 0 °Cで重合し、 ブタジエンの重合率が 8 0 °Zoになった時点で重合を停止して 未反応ブタジエンを除去し、 ゴム状重合体であるポリブタジエンのラテックス ( X) を得た。 この時ポリブタジエンゴムの平均粒子径は 0 . 3 0 μ πιであった。 さらに、 攪拌機及び還流冷却器の設置された反応缶に、 窒素気流中で下記の物 質を仕込んだ。 水 2 5 0部、 ナトリゥムホルムアルデヒドスルホンキシレート 0 . 4部、 硫酸第一鉄 0. 0 0 2 5部、 エチレンジァミン四酢酸ニナトリウム 0 . 0 1部、 表 1 1に記載の量のポリブタジエン 〔上記で得られた (X) 〕 を 6 0 °Cに 加熱攪拌後、 表 1 1に示す割合の単量体混合物を、 開始剤のキュメンハイドロパ ーォキサイド、 重合度調節剤の t一ドデシルメルカブタンとともに 5時間かけて 連続的に滴下添加した。 滴下終了後、 さらに 6 0 °Cで 1時間攪拌を続け、 重合を 終了させ、 グラフト共重合体 (ろ) を得た。
Figure imgf000043_0002
上記で得られた不飽和カルボン酸含有共重合体 (い) 、 グラフト共重合体 (ろ ) のラテックスを表 1 2に示す割合で均一に混合し、 フヱノ一ル系抗酸化剤を加 え、 塩化マグネシウム水溶液で凝固した後、 水洗、 脱水、 乾燥し、 A B S樹脂を 得た。
表 1 2
Figure imgf000044_0001
(実施例 1 4〜 1 8、 比較例 1 4〜 1 7 )
表 1 3に示す重量比のポリアミド樹脂 A 1、 スチレン系樹脂 B l、 B 2、 ポリ フニ二レンエーテル樹脂、 製造例 1で得た膨潤性雲母、 製造例 2で得た膨潤性雲 母を、 二軸押出機 ( (株) 日本製鋼所製、 T E X 4 4 ) を用いて、 混練初期から ダイスまでの温度を 2 2 0〜 2 5 0 °Cに設定し、 溶融混練することによりポリア ミド樹脂組成物を得、 各種物性を評価した。 結果を表 1 3に示す。
表 1 3より、 P V Pやアンモニゥム塩で処理した膨潤性雲母を用いると、 補強 効果は十分ではなく、 反りの改善効果はほとんど無く、 加工温度での劣化も激し かった。 また、 未処理の膨潤性雲母では、 補強効果は十分ではなく、 反りの改善 効果はほとんど無く、 表面性を著しく悪化させる。 スチレン系樹脂を用いると、 これを用いないものに比べると、 ヒケ性や吸水率により優れる。 スチレン系樹脂 の代わりにポリフエ-レンエーテル樹脂を用いたものは、 優れた表面性が得られ ず、 また、 ポリフエ二レンエーテル樹脂を用いないものの方が表面性に優れる。
実施例 比較例
14 15 16 17 18 t4 15 16 17
CO
ポリアミド樹脂 A1 重量部 55 55 55 100 55 55 55 55 55 スチレン系樹脂 B1 45 45 45 45 45 45 スチレン系樹脂 B2 45
ポリフヱニレンエーテル 45
粘土 J - 2 8 8 8 8
粘土 J-4 9
粘土 K-1 10
粘土 K-2 14
粘土 K - 3 10 膨潤性雲母 E1 6.5
灰分率 wt% 6.2 6.3 6.2 6.2 6.2 6.1 6.1 6.1 6.1
[D]≤300nmの比率 % 90 83 87 93 90 0 6 15 3
[D]の平均値 nm 101 124 109 98 103 2490 1060 520 1430 分散粒子数 [N] 個/ %' 100/ 012 137 110 131 141 142 3 9 26 8 平均アスペクト比 一 127 111 130 142 129 1.5(*1) 7 8 4(*1 ) 平均層厚 nm 8.3 9.8 8.5 8 8.2 約 2000(*2) 86 56 約 300(*2) 最大層厚 nm 40 41 36 33 39 約 7万 (*3) 480 240 約 1000(*3) 曲げ弾性率 MPa 3800 3600 3900 4300 4000 2800 - ¾ 2650 2800 曲げ強度 MPa 110 106 1 11 118 115 87 ※ 45 75 荷重たわみ温度 。C 163 158 159 192 168 132 ※ 125 136 反り mm 0.8 1.1 0.7 1.6 0.8 4.2 3.7 3.9 中心線平均粗さ nm 3.0 4.0 3.0 4 260 190 92 220
B法フロー値 5分後 10"2ml/sec 16 18 29 30 10 15 '※ 82 62
15分後 16 18 28 29 10 15 ※ ※※ ヒケ評価 mm 1.6 1.6 1.6 0.8 1.6 1.4 ※ 1.6 1.6 吸水率 1 % 0.8 0.8 0.8 1.9 0.8 0.8 ※ 1.0 0.8 備考 溶融混練 溶融混練 溶融混練 溶融混練 溶融混練 溶融混練 溶融混練 溶融混練 溶融混線
※:溶融加工時の劣化が激しいため、 測定に使用できる試験片は成形できなかつ た。
※※:劣化が激しいため、 測定できなかった。
( * 1 ) 板状に分散しなかったので、 分散粒子の長径/短径比とした。
( * 2 ) 板状に分散しなかったので、 分散粒子の短径の数平均値とした ( * 3 ) 板状に分散しなかったので、 分散粒子の短径の最大値とした。
(比較例 1 9〜 2 1 )
表 1 4に示す重量比のポリアミド樹脂 A 1、 スチレン系樹脂 B l、 タルク、 マ イカ、 ガラス繊維強化材を、 実施例 1 4と同様に溶融混練することによりポリア ミド樹脂組成物を得、 各種物性を評価した。 結果を表 1 4に示す。
表 1 4
比較例
19 20 21 ポリアミド樹脂 A1 M部 55 55 55 スチレン系樹脂 B1 45 45 45 タルク 6.5
マイ力 6.5
ガラス繊維 6.5 灰分率 wt% 6.1 6.1 6.1
[D]≤300nmの比率 % 0 0 測定せず
[D]の平均値 nm 2420 5200 測定せず 分散粒子数 [N] 5 1 測定せず 平均アスペクト比 1.5(*1) 2.0(*1) 測定せず 平均層厚 nm 約 3000(*2) 約 5000(*2) 測定せず 最大層厚 nm 約 9万 (*3) 約 12万 (*3) 測定せず 曲げ弾性率 MPa 2650 2800 3800 曲げ強度 MPa 95 102 115 荷重たわみ温度 。C 132 128 155 反り mm 3.8 4.3 7.5 中心線平均粗さ nm 230 410 650 ヒケ評価 mm 2 2 2 吸水率 % 0.8 0.9 0.8 (氺 1) 板状に分散しなかったので、 分散粒子の長径 短径比とした。
(* 2) 板状に分散しなかったので、 分散粒子の短径の数平均値とした (* 3) 板状に分散しなかったので、 分散粒子の短径の最大値とした。 表 14より、 従来から用いられているタルクやマイ力の補強効果、 耐熱性、 反 りの改善効果は十分でなく、 表面性を著しく損なう。 ガラス繊維を添加すれば耐 熱性、 補強効果は得られるが、 反りの改善効果は十分でなく、 表面性を著しく損 なう。 従って、 比較例 19〜 21ではバランスに優れるものは得られなかった。 (実施例 19〜 22 )
表 1 5に示す重量比のポリアミド樹脂 A 1、 スチレン系樹脂 B l、 製造例 1で 得た膨潤性雲母を、 二軸押出機 ( (株) 曰本製鋼所製、 TEX44) を用いて、 混練初期からダイスまでの温度を 220 ~ 250 °Cに設定し、 溶融混練すること によりポリアミド樹脂組成物を得、 各種物性を評価した。 結果を表 15に示す。 表 1 5
Figure imgf000047_0001
(実施例 23〜 26 ) 表 16に示す重量比のポリアミド樹脂 A 2、 スチレン系樹脂 B l、 製造例 1で 得た膨潤性雲母を、 二軸押出機 ( (株) 日本製鋼所製、 TEX44) を用いて、 混練初期からダイスまでの温度を 230°C 260°Cに設定し、 溶融 練するこ とによりポリアミド樹脂組成物を得、 各種物性を評価した。 結果を表 16に示す。 表 16
Figure imgf000048_0001
(比較例 22 24 )
表 17に示す重量比のポリアミド樹脂 A2、 スチレン系樹脂 B l、 タノレク、 マ イカ、 ガラス繊維強化材を、 実施例 23と同様に溶融混練することによりポリア ミド樹脂組成物を得、 各種物性を評価した。 結果を表 17に示す。 表 17
Figure imgf000049_0001
(* 1) 板状に分散しなかったので、 分散粒子の長径/短径比とした。
(* 2) 板状に分散しなかったので、 分散粒子の短径の数平均値とした (* 3) 板状に分散しなかったので、 分散粒子の短径の最大値とした。 表 17より、 従来から用いられているタルクやマイ力の捕強効果、 耐熱性、 反 りの改善効果は十分でなく、 表面性を著しく損なう。 ガラス繊維を添加すれば耐 熱性、 補強効果は得られるが、 反りの改善効果は十分でなく、 表面性を著しく損 なう。 従って、 比較例 22 24はバランスに優れるものは得られなかった。
(実施例 27、 比較例 25 )
表 18に示す重量比のポリアミド樹脂 A4、 スチレン系樹脂 B l、 製造例 1で 得た膨潤性雲母あるいはタルクを、 二軸押出機 ( (株) S本製鋼所製、 TEX4 4) を用いて、 混練初期からダイスまでの温度を 280°C 300°Cに設定し、 溶融混練することによりポリアミド樹脂組成物を得、 各種物性を評価した。 結果 18に示す。
8
Figure imgf000050_0001
(* 1) 板状に分散しなかったので、 分散粒子の長径/短径比とした。
O 2) 板状に分散しなかったので、 分散粒子の短径の数平均値とした。 (* 3) 板状に分散しなかったので、 分散粒子の短径の最大値とした。 表 18より、 従来から用いられているタルクの捕強効果、 反り改善の効果は十 分ではなく、 表面性が損なわれる。 (実施例 28〜 31、 比較例 26〜 29 )
表 19に示す重量比のポリアミド樹脂 Al、 無水物含有ォレフィン系共重合体 C 2、 エチレン一プロピレン一ジェン共重合体 (日本合成ゴム (株) 製、 EP 9 6) 、 製造例 1で得た膨潤性雲母、 製造例 2で得た膨潤性雲母、 ガラス繊維、 マ イカを、 二軸押出機 ( (株) 日本製鋼所製、 TEX44) を用いて、 240°Cで 溶融混練することによりポリアミド樹脂組成物を得、 各種物性を評価した。 結果 を表 1 9に示す。
b
実施例 比較例
28 29 30 31 26 27 28 29 ホリア ト樹脂 A1 重量部 85 83.6 85 83.6 81 81 85 85 無水物含有ォレフィン系共 合体 C2 5 5 5 5 c
Ό 5 エチレンーフロヒレンーンェン共重合 ί本 5 5
粘: tJ— 2 1U lU
Λ ,* Ar 11 A ェ 謹 *t
刀フ入概 ί¾ U
7ノ " l IU
LDJ≥300nmの £C半 ゾ n yu OR
木/别疋 木/划疋 木/ n u
LDJCj- -Jglil nm H
yy 11/ yy 1 lU 木/ 疋 木/ ¾l疋 木/則 £
マ^ fr Γ π
7) si¾∑于 LNJ J
flg/wt%"100 m Λ Ό 1 I 10/ 1 n 木/ A'JJb 木/則疋 木/ A'JJh 0
5Ιΐ マ^? に!"レ
+ ァスへク卜比 IU0 i 40 I U/ 不 /則疋 木 Ι』疋 し0、予り
3十Ζ ϊ¾ /眉睡匿 nm Q Q c Q Q c
木/則疋 木
县女睡 nm 30 41 29 40 5fe測定 来測定 未測定 約 7万 (*3)
WlJ ι牛-ΰ(^曲μΏ【 >十 Trr- ャノ Q 4450 4210 4400 4150 3480 3620 4780 3360 吸水時の反り変形 mm 1.5 1.6 5.9 7.8 3.1 3.4 24.3 5.7 表面性 (表面粗さ) nm 4.4 6,8 5.0 6.0 10.2 9.5 650 230 溶融熱安定性 フロ-値 5分後 10"2ml/sec 27.3 28.6 28.7 30.1 45.6 38.9 34.5 37.6
フロー値 15分後 10"2ml/sec 27.9 29.0 29.1 30.4 89.5 68.3 35.2 38.0
15分後の着色状態 着色なし 着色なし 着色なし 着色なし 黄色 黄色 着色なし 着色なし
姍 91 (* 1) 板状に分散しなかったので、 分散粒子の長径/短径比とした。
O 2) 板状に分散しなかったので、 分散粒子の短径の数平均値とした, 3) 板状に分散しなかったので、 分散粒子の短径の最大値とした。
(実施例 32〜 37 )
表 20に示す重量比のポリアミド樹脂 Al、 無水物含有ォレフィン系共重合体 C 2、 製造例 1で得た膨潤性雲母を、 二軸押出機 ( (株) 日本製鋼所製、 TEX 44 ) を用いて溶融混練することによりポリアミド樹脂組成物を得、 各種物性を 評価した。 結果を表 20に示す。
t
o
Figure imgf000054_0001
^ 02 (実施例 38〜 41 )
表 21に示す重量比のポリアミド樹脂 Al、 無水物含有ォレフィン系共重合体 C l、 C 3、 製造例 1で得た膨潤性雲母を、 二軸押出機 ( (株) 日本製鋼所製、 TEX44) を用いて、 240 °Cで溶融混練することによりポリアミド樹脂組成 物を得、 各種物性を評価した。 結果を表 2 1に示す。
表 2 1
Figure imgf000055_0001
(実施例 42〜43)
表 22に示す重量比のポリアミド樹脂 A 2、 無水物含有ォレフィン系共重合体 C 2、 製造例 1で得た膨潤性雲母を、 二軸押出機 ( (株) 日本製鋼所製、 TEX 44) を用いて、 260 °Cで溶融混練することによりポリアミド樹脂糸且成物を得、 各種物性を評価した。 結果を表 22に示す。 表 22
Figure imgf000056_0001
上記結果において、 アンモニゥム塩で処理された膨潤性雲母では溶融熱安定性 が損なわれ、 樹脂のフロー値が安定せず、 着色した。 ガラス繊維やマイ力では表 面性が損なわれ反り変形した。 また、 無水物を含有しないォレフィン系共重合体 では吸水反り変形が充分ではなかった。 以上より、 実施例で示したポリアミ ド樹 脂組成物は優れた物性バランスを示すが、 比較例では物性バランスに優れるもの は得られなかった。
(実施例 44〜 49 )
表 23に示す重量比のポリアミド樹脂 A 1、 製造例 1で得た膨潤性雲母、 炭素 化合物 G l、 G2を、 二軸押出機 ( (株) 日本製鋼所製、 TEX44) を用いて、 混練初期からダイスまでの温度を 220°C〜250°Cに設定し、 溶融混練するこ とによりポリアミド樹脂組成物を得、 各種物性を評価した。 結果を表 23に示す。 ho 実施例
44 45 46 47 ポリアミド樹脂 A1 Μ部 100 100 100 100 粘土 J-2 6.6 6.6 13.6
粘土 vi-6 18 灰素化合物 G1 3.5 4.5 4.5 4.5 灰素化合物 G2
灰分率 wt% 5.0 5.0 9.9 10.2
[D]≤300nmの比率 % 93 92 90 81
[D]の平均値 nm 98 99 104 1 17 分散粒子数 [N] 個/ %' 100 012 146 144 135 113 平均アスペクト比 一 125 125 140 108 平均層厚 nm 8 8 8.5 9.5 最大層厚 nm 30 31 33 39 曲け弾性率 MPa 4200 4150 5450 5100 曲け強度 MPa 105 104 130 130 荷重たわみ温度 °C 130 131 145 139 体積固有抵抗値 Q - cm 1.9 X 1011 3.2 X 105 9.4 X 104 7.5 X 105 反り mm 1.6 1.5 1.3 1.6 成形収縮率 MD % 0.67 0.65 0.44 0.47
TD 0.69 0.68 0.49 0.53 中心線平均粗さ nm 2.5 2.6 4.0 4.0
(* 1) 板状に分散しなかったので、 分散粒子の長径 Z短径比とした。
(* 2) 板状に分散しなかったので、 分散粒子の短径の数平均値とした。 (* 3) 板状に分散しなかったので、 分散粒子の短径の最大値とした。
(比較例 30〜 34 )
表 24に示す重量比のポリアミド樹脂 A 1、 タルク、 マイ力、 ガラス繊維、 炭 素化合物 G 1を、 実施例 44と同様に溶融混練することによりポリアミド樹脂組 成物を得、 各種物性を評価した。 結果を表 24に示す。
表 24
Figure imgf000058_0001
(* 1) 板状に分散しなかったので、 分散粒子の長径 短径比とした。 (* 2) 板状に分散しなかったので、 分散粒子の短径の数平均値とした c (* 3) 板状に分散しなかったので、 分散粒子の短径の最大値とした。
(実施例 50〜 52 )
表 25に示す重量比のポリアミド樹脂 A 2、 製造例 1で得た膨潤性雲母、 炭素 化合物 Gl、 G3を、 二軸押出機 ( (株) 日本製鋼所製、 TEX44) を用いて、 混練初期からダイスまでの温度を 230°C〜260°Cに設定し、 溶融混練するこ とによりポリアミド榭脂組成物を得、 各種物性を評価した。 結果を表 25に示す。 表 25
Figure imgf000059_0001
(比較例 35〜 39 )
表 26に示す重量比のポリアミド樹脂 A2、 タルク、 マイ力、 ガラス繊維、 炭 素化合物 G 1を、 実施例 50と同様に溶融混練することによりポリアミド樹脂組 成物を得、 各種物性を評価した。 結果を表 26に示す。 表 26
Figure imgf000060_0001
(* 1) 板状に分散しなかったので、 分散粒子の長径 Z短径比とした。
(* 2) 板状に分散しなかったので、 分散粒子の短径の数平均値とした (* 3) 板状に分散しなかったので、 分散粒子の短径の最大値とした。 (実施例 53〜 55 )
表 27に示す重量比のポリアミド樹脂 A 3、 製造例 1で得た膨潤性雲母、 炭素 化合物 G l、 G3を、 二軸押出機 ( (株) 日本製鋼所製、 TEX44) を用いて、 混練初期からダイスまでの温度を 280°C〜300°Cに設定し、 溶融混練するこ とによりポリアミド樹脂組成物を得、 各種物性を評価した。 結果を表 27に示す。 表 2 7
Figure imgf000061_0001
(比較例 4 0 4 4 )
表 2 8に示す重量比のポリアミド樹脂 A 3、 タルク、 マイ力、 ガラス繊維、 炭 素化合物 G 1を、 実施例 5 3と同様に溶融混練することによりポリアミド樹脂組 成物を得、 各種物性を評価した。 結果を表 2 8に示す。
表 28
Figure imgf000062_0001
(* 1) 板状に分散しなかったので、 分散粒子の長径 Z短径比とした。
(* 2) 板状に分散しなかったので、 分散粒子の短径の数平均値とした, (* 3) 板状に分散しなかったので、 分散粒子の短径の最大値とした。 (実施例 5 6〜 5 8 )
表 29に示す重量比のポリアミド樹脂 A4、 製造例 1で得た膨潤性雲母、 炭素 化合物 G l、 G3を、 二軸押出機 ( (株) 日本製鋼所製、 TEX44) を用いて、 混練初期からダイスまでの温度を 280°C〜300°Cに設定し、 溶融混練するこ とによりポリアミド樹脂組成物を得、 各種物性を評価した。 結果を表 29に示す。 表 2 9
Figure imgf000063_0001
(比較例 4 5 4 9 )
表 30に示す重量比のポリアミド樹脂 A 4、 タルク、 マイ力、 ガラス繊維、 炭 素化合物 G 1を二軸押出機 ( (株) 曰本製鋼所製、 TEX44) を用いて、 実施 例 5 6と同様に溶融混練することによりポリアミド樹脂組成物を得、 各種物性を 評価した。 結果を表 3 0に示す。 表 3 0
Figure imgf000064_0001
( * 1 ) 板状に分散しなかったので、 分散粒子の長径/短径比とした。
( * 2 ) 板状に分散しなかったので、 分散粒子の短径の数平均値とした, ( * 3 ) 板状に分散しなかったので、 分散粒子の短径の最大値とした。 実施例及び比較例から、 ポリアミド樹脂に炭素化合物を配合すれば抵抗値は下 がるが、 耐熱性や寸法安定性のバランスは良くない。 また、 耐熱性を付与するた めにガラス繊維を配合すると、 収縮の異方性が生じるために反りがおこり寸法安 定性や表面性を損なう。 導電性と寸法安定性を付与するために炭素化合物とタル クゃマイ力を組み合わせると、 表面性が損なわれる。 したがって、 従来技術では、 導電性と機械強度、 耐熱性、 成形品の表面性、 成形収縮に異方性や反り等の寸法 安定性がバランスがとれた導電性材料は得られないことが判る。 産業上の利用可能性
以上詳述したように、 本発明におけるポリエーテル化合物で処理された膨潤性 雲母は、 ポリアミド樹脂中で均一微分散するため、 低反りで寸法安定性に優れ、 表面外観良好で、 かつ機械的特性や耐熱性を高め、 物性のバランスに優れるポリ アミ ド樹脂組成物が得られる。
また、 さらにスチレン系樹脂を含有させることにより、 上記効果に加えて、 特 に表面外観 (表面性、 低ヒケ性) がより優れたポリアミド樹脂組成物が; さらに 無水物含有ォレフィン系共重合体を含有させることにより、 上記効果に加えて、 特に吸水が抑制されたポリアミド樹脂組成物が; さらに炭素化合物を含有させる ことにより、 上記効果に加えて、 特に帯電防止性を有するポリアミド樹脂組成物 がそれぞれ得られる。

Claims

請求の範囲
1 . ポリアミド榭脂、 及び、 ポリエーテル化合物で処理された膨潤性雲母を含 有し、 かつ、 前記ポリエーテル化合物が、 下記一般式 (1 ) :
Figure imgf000066_0001
(式中、 一 A—は、 一 O—、 — S—、 — S O—、 一 S〇2—、 — C O—、 炭素数 1〜2 0のアルキレン基又は炭素数 6〜 2 0のアルキリデン基を示し、 R R2、 R3、 R4、 R5、 R6、 R 及び R8は、 それぞれ同一であっても異なっていても良 く、 水素原子、 ハロゲン原子又は炭素数 1〜5の 1価の炭化水素基を示す。 ) で表される構造を有することを特徴とする、 ポリアミド樹脂組成物。
2 . さらに、 スチレン系樹脂、 無水物含有ォレフィン系共重合体、 及び、 炭素 化合物から選ばれる少なくとも一種を含有することを特徴とする、 請求の範囲第 1項に記載のポリアミ ド樹脂組成物。
3 . さらにスチレン系樹脂を含有することを特徴とする、 請求の範囲第 1項に 記載のポリアミ ド樹脂組成物。
4 . さらに無水物含有ォレフィン系共重合体を含有することを特徴とする、 請 求の範囲第 1項に記載のポリアミド樹脂組成物。
5 . 無水物含有ォレフィン系共重合体が、
体に、 シス型 2重結合を環内に有する脂環式ジカルボン酸無水物又は α, 不 飽和ジカルボン酸無水物を、 共重合又はグラフト付加して得られるものであるこ とを特徴とする、 請求の範囲第 4項に記載のポリアミド樹脂組成物。
6 . ポリアミド樹脂組成物中の無水物含有ォレフィン系共重合体の重量比が、 1重量%以上、 3 0重量%以下であることを特徴とする、 請求の範囲第 4項に記 載のポリアミド樹脂組成物。
7 . さらに炭素化合物を含有することを特徴とする、 請求の範囲第 1項に記載 のポリアミ ド樹脂組成物。
8 . 前記炭素化合物が粒状であることを特徴とする、 請求の範囲第 7項に記载 のポリアミ ド樹脂組成物。
9 . 前記炭素化合物がフィブリル状であることを特徴とする、 請求の範囲第 7 項に記載のポリアミ ド樹脂組成物。
1 0 . 前記ポリエーテル化合物が、 下記一般式 (2 ) :
)
Figure imgf000067_0001
(式中、 A、 R R2、 R3、 R4、 R5、 R6、 R7、 及び R8は、 前記と同じであり、 R9、 R1()は、 それぞれ同一であっても異なっていても良く、 炭素数 1〜5の 2価 の炭化水素基を示し、 Ru、 R 12は、 それぞれ同一であっても異なっていても良 く、 水素原子、 炭素数 1〜2 0の 1価の炭化水素基を示し、 m及び nはォキシァ ルキレン単位の繰り返し単位数を示し、 2≤m + n≤ 5 0である。 )
で表される構造を有することを特徴とする、 請求の範囲第 1〜 9項のいずれかに 記載のポリアミド樹脂組成物。
1 1 . 前記ポリアミド樹脂組成物中の膨潤性雲母の等価面積円直径 [D] が 3 0 0 n m以下であるものの比率が 2 0 %以上であることを特徴とする、 請求の範 .〜 1 0項のいずれかに記載のポリァミ ド樹脂組成物。
1 2 . 前記ポリアミド樹脂組成物中で、 膨潤性雲母の等価面積円直径 [D] の 平均値が 5 0 0 n m以下であることを特徴とする、 請求の範囲第 1 ~ 1 1項のい ずれかに記載のポリアミド樹脂組成物。
1 3 . 前記ポリアミド樹脂組成物中で、 膨潤性雲母の平均層厚が 5 0 n m以下 であることを特徴とする、 請求の範囲第 1〜1 2項のいずれかに記載のポリアミ ド樹脂組成物。
1 4 . 前記ポリアミド樹脂組成物中で、 膨潤性雲母の最大層厚が 2 0 0 n m以 下であることを特徴とする、 請求の範囲第 1〜1 3項のいずれかに記載のポリア ミ ド樹脂組成物。
1 5 . 前記ポリアミド樹脂組成物中で、 膨潤性雲母の単位比率当たりの粒子数 [N] 値が 3 0以上であることを特徴とする、 請求の範囲第 1〜1 4項のいずれ かに記載のポリアミド樹脂組成物。
1 6 . 前記ポリアミド樹脂 ¾L成物中で、 膨潤性雲母の平均ァスぺクト比 (層長 さ Z層厚の比) が 1 0 ~ 3 0 0であることを特徴とする、 請求の範囲第 1〜1 5 項のいずれかに記載のポリアミ ド樹脂組成物。
1 7 . ポリアミド樹脂組成物中の膨潤性雲母の重量比が、 0 . 5重量%以上、 3 0重量%以下であることを特徴とする、 請求の範囲第 1〜1 6項のいずれかに 記載のポリアミド樹脂組成物。
1 8 . 前記各成分を混練することによって得られることを特徴とする、 請求の 範囲第 1又は 2項に記載のポリアミ ド樹脂組成物。
1 9 . 請求の範囲第 1又は 2項に記載のポリァミド樹脂 a成物の各成分を溶融 混練することを特徴とする、 ポリアミド樹脂組成物の製造方法。
2 0 . 請求の範囲第 1〜 1 8項のいずれかに記載のポリアミド樹脂組成物によ り、 全部又は一部を形成されていることを特徴とする樹脂成形体。
2 1 . 自動車用の部品であることを特徴とする、 請求の範囲第 2 0項に記載の 樹脂成形体。
PCT/JP2003/009306 2002-07-23 2003-07-23 ポリアミド樹脂組成物及びその製造方法 WO2004016693A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CNB038173786A CN1313537C (zh) 2002-07-23 2003-07-23 聚酰胺树脂组合物及其制造方法
US10/519,544 US7259196B2 (en) 2002-07-23 2003-07-23 Polyamide resin composition and process for producing the same
JP2005502024A JP4542035B2 (ja) 2002-07-23 2003-07-23 ポリアミド樹脂組成物及びその製造方法
CA2491746A CA2491746C (en) 2002-07-23 2003-07-23 Polyamide resin composition and process for producing the same
DE60321370T DE60321370D1 (de) 2002-07-23 2003-07-23 Polyamidharzzusammensetzung und herstellungsverfahren dafür
AU2003252236A AU2003252236A1 (en) 2002-07-23 2003-07-23 Polyamide resin composition and process for producing the same
EP03788013A EP1553141B1 (en) 2002-07-23 2003-07-23 Polyamide resin composition and process for producing the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2002214446 2002-07-23
JP2002-214446 2002-07-23
JP2002-301567 2002-10-16
JP2002301567 2002-10-16
JP2002-303843 2002-10-18
JP2002303843 2002-10-18
JP2003-47358 2003-02-25
JP2003047358 2003-02-25

Publications (1)

Publication Number Publication Date
WO2004016693A1 true WO2004016693A1 (ja) 2004-02-26

Family

ID=31892180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009306 WO2004016693A1 (ja) 2002-07-23 2003-07-23 ポリアミド樹脂組成物及びその製造方法

Country Status (8)

Country Link
US (1) US7259196B2 (ja)
EP (1) EP1553141B1 (ja)
JP (1) JP4542035B2 (ja)
CN (1) CN1313537C (ja)
AU (1) AU2003252236A1 (ja)
CA (1) CA2491746C (ja)
DE (1) DE60321370D1 (ja)
WO (1) WO2004016693A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062740B2 (en) * 2005-04-01 2011-11-22 Toyo Boseki Kabushiki Kaisha Polyamide based mixed resin film roll and process for producing the same
WO2012098840A1 (ja) * 2011-01-17 2012-07-26 株式会社クラレ 樹脂組成物およびそれを含む成形品
US8354159B2 (en) * 2005-06-22 2013-01-15 Toyo Boseki Kabushiki Kaisha Polyamide based mixed resin laminated film roll and a process for producing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4750470B2 (ja) * 2005-05-25 2011-08-17 住友ゴム工業株式会社 インナーライナー用ゴム組成物
FR2922552B1 (fr) * 2007-10-19 2013-03-08 Rhodia Operations Composition polyamide chargee par des fibres
US9902854B2 (en) 2015-12-14 2018-02-27 Hyundai Motor Company Polyamide composite resin composition for fuel filler pipe
WO2019017926A1 (en) 2017-07-19 2019-01-24 Hewlett-Packard Development Company, L.P. THREE DIMENSIONAL PRINTING (3D)
CN111621144B (zh) * 2020-05-18 2022-09-13 中广核俊尔(浙江)新材料有限公司 一种耐氯化钙的尼龙复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219150A (ja) * 2000-02-10 2001-08-14 Seiwa Denko Kk 有機廃棄物の分解処理システム
JP2001302911A (ja) * 2000-02-15 2001-10-31 Asahi Kasei Corp ポリアミド樹脂組成物
JP2003041051A (ja) * 2001-07-25 2003-02-13 Kanegafuchi Chem Ind Co Ltd 表面処理層状化合物

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3134746A (en) 1961-06-09 1964-05-26 Borg Warner Blends of epsilon caprolactam polymer and graft copolymer alkenyl cyanide and alkenyl substituted aromatic hydrocarbon on polybutadiene
US3267175A (en) 1961-07-21 1966-08-16 Borg Warner Blends of epsilon caprolactam, low butadiene acrylonitrile-butadiene-styrene graft copolymer and high butadiene acrylonitrile-butadiene-styrene graft copolymer
US3218371A (en) 1961-07-31 1965-11-16 Borg Warner Blends of (1) epsilon caprolactam, (2) rubbery butadiene-acrylonitrile copolymers, and (3) resinous styrene-acrylonitrile copolymers
JPH0822946B2 (ja) 1985-09-30 1996-03-06 株式会社豊田中央研究所 複合材料
JPS63179957A (ja) 1987-01-22 1988-07-23 Toray Ind Inc 熱可塑性樹脂組成物
JPS64158A (en) 1987-02-13 1989-01-05 Sumitomo Naugatuck Co Ltd Thermoplastic resin composition
JPH0739540B2 (ja) 1988-09-06 1995-05-01 宇部興産株式会社 液体または気体バリヤー性を有する成形品用材料
JP3017233B2 (ja) * 1990-01-19 2000-03-06 宇部興産株式会社 樹脂組成物
JPH04120167A (ja) 1990-09-11 1992-04-21 Mitsubishi Rayon Co Ltd 耐衝撃性、耐熱安定性に優れた熱可塑性樹脂組成物
JPH04332758A (ja) 1991-05-08 1992-11-19 Mitsubishi Rayon Co Ltd 耐衝撃性、耐熱安定性に優れた樹脂組成物
JP3135298B2 (ja) 1991-08-15 2001-02-13 旭化成工業株式会社 熱可塑性樹脂成形体
JPH06200087A (ja) 1992-02-26 1994-07-19 Tonen Chem Corp 繊維強化ポリマー組成物
JPH0680873A (ja) 1992-08-28 1994-03-22 Ube Ind Ltd フィルム用ポリアミド樹脂組成物
JP3403433B2 (ja) 1992-10-29 2003-05-06 旭化成株式会社 ウエルド強度の改良された樹脂組成物及びその製法
JP2941159B2 (ja) 1992-12-29 1999-08-25 ユニチカ株式会社 強化ポリアミド樹脂組成物およびその製造法
JPH06228435A (ja) 1993-02-02 1994-08-16 Mitsubishi Kasei Corp ポリアミド樹脂組成物及びその製造方法
JPH06234896A (ja) 1993-02-09 1994-08-23 Showa Denko Kk 強化ポリアミド樹脂組成物
JP2821976B2 (ja) 1993-06-30 1998-11-05 日工株式会社 アスファルトプラントの印字記録による品質管理方法
JPH07108619A (ja) 1993-10-08 1995-04-25 Tonen Chem Corp 繊維強化ポリマー組成物及びそれを用いた樹脂製ラジエータタンク
CN1035771C (zh) * 1993-12-23 1997-09-03 旭化成工业株式会社 聚酰胺树脂组合物
JPH07205310A (ja) 1994-01-18 1995-08-08 Mitsubishi Rayon Co Ltd 炭素繊維複合材料
JPH08134345A (ja) * 1994-03-28 1996-05-28 Unitika Ltd 樹脂組成物
JPH07331029A (ja) 1994-06-01 1995-12-19 Mitsubishi Eng Plast Kk ポリアセタール樹脂組成物
JP3385103B2 (ja) 1994-06-24 2003-03-10 ユニチカ株式会社 樹脂組成物
JPH08143768A (ja) 1994-11-16 1996-06-04 Kanegafuchi Chem Ind Co Ltd 耐熱性熱可塑性樹脂組成物
JPH08283567A (ja) 1995-04-13 1996-10-29 Unitika Ltd ガスバリヤー性ポリアミド樹脂成形品
JP3458528B2 (ja) 1995-05-26 2003-10-20 三菱化学株式会社 ポリアミド樹脂組成物、及びフィルム
US5760121A (en) 1995-06-07 1998-06-02 Amcol International Corporation Intercalates and exfoliates formed with oligomers and polymers and composite materials containing same
JPH0912873A (ja) 1995-07-05 1997-01-14 Unitika Ltd 熱可塑性樹脂組成物
US5932634A (en) 1995-09-26 1999-08-03 Showa Denko K.K. Method of producing resin composition containing inorganic filler
JPH09217006A (ja) 1996-02-10 1997-08-19 Kanegafuchi Chem Ind Co Ltd 耐熱性熱可塑性樹脂組成物
JPH09241505A (ja) 1996-03-04 1997-09-16 Unitika Ltd ポリアミド樹脂組成物
JPH10237316A (ja) 1997-02-27 1998-09-08 Mitsubishi Eng Plast Kk 導電性樹脂組成物
JP3720161B2 (ja) * 1997-03-18 2005-11-24 株式会社カネカ 粘土層間化合物、粘土層間化合物と熱可塑性樹脂からなる熱可塑性樹脂組成物、およびそれらの製法
JPH10279752A (ja) 1997-04-03 1998-10-20 Mitsui Chem Inc 樹脂組成物
JP3720164B2 (ja) * 1997-05-01 2005-11-24 株式会社カネカ 膨潤性雲母層間化合物およびそれを含む熱可塑性樹脂組成物
EP1026203B1 (en) * 1997-10-30 2004-09-08 Kaneka Corporation Polyester resin compositions and processes for the preparation thereof
JPH11181277A (ja) 1997-12-17 1999-07-06 Showa Denko Kk ポリアミド系樹脂組成物
JPH11310701A (ja) 1998-04-28 1999-11-09 Mitsubishi Eng Plast Corp ポリアミド樹脂組成物
JPH11349811A (ja) 1998-06-10 1999-12-21 Toyobo Co Ltd ポリエステルアミドエラストマー組成物及びその製造方法
JP3715813B2 (ja) 1999-01-22 2005-11-16 日本エイアンドエル株式会社 車両用外装部品
JP2000212432A (ja) 1999-01-28 2000-08-02 Toray Ind Inc ポリアミド樹脂組成物およびその製造方法
JP2000290500A (ja) 1999-04-07 2000-10-17 Mitsubishi Gas Chem Co Inc ポリアミド成形物
JP2001002913A (ja) 1999-06-17 2001-01-09 Unitika Ltd ポリアミド樹脂組成物
ATE239057T1 (de) 2000-02-15 2003-05-15 Asahi Chemical Ind Polyamidzusammensetzung
FR2807761B1 (fr) * 2000-04-12 2002-06-21 Rhodia Engineering Plastics Sa C0mpositions polymeriques thermoplastiques
JP2001302845A (ja) 2000-04-20 2001-10-31 Toray Ind Inc ポリアミド樹脂組成物
WO2001088035A1 (fr) * 2000-05-19 2001-11-22 Kaneka Corporation Composition de resine polyester et processus de preparation de cette composition
JP2001329150A (ja) * 2000-05-22 2001-11-27 Kanegafuchi Chem Ind Co Ltd ポリエステル樹脂組成物
US20040197561A1 (en) 2001-07-24 2004-10-07 Noriyuki Suzuki Process for producing surface-treated inorganic particle and surface-treated inogranic particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219150A (ja) * 2000-02-10 2001-08-14 Seiwa Denko Kk 有機廃棄物の分解処理システム
JP2001302911A (ja) * 2000-02-15 2001-10-31 Asahi Kasei Corp ポリアミド樹脂組成物
JP2003041051A (ja) * 2001-07-25 2003-02-13 Kanegafuchi Chem Ind Co Ltd 表面処理層状化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1553141A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062740B2 (en) * 2005-04-01 2011-11-22 Toyo Boseki Kabushiki Kaisha Polyamide based mixed resin film roll and process for producing the same
TWI404750B (zh) * 2005-04-01 2013-08-11 Toyo Boseki Polyamide-based mixed resin film roll and its manufacturing method
US8354159B2 (en) * 2005-06-22 2013-01-15 Toyo Boseki Kabushiki Kaisha Polyamide based mixed resin laminated film roll and a process for producing the same
WO2012098840A1 (ja) * 2011-01-17 2012-07-26 株式会社クラレ 樹脂組成物およびそれを含む成形品
US10090077B2 (en) 2011-01-17 2018-10-02 Kuraray Co., Ltd. Resin composition and molded article containing the same

Also Published As

Publication number Publication date
AU2003252236A1 (en) 2004-03-03
CA2491746C (en) 2010-09-28
EP1553141A4 (en) 2005-09-21
EP1553141B1 (en) 2008-05-28
CN1313537C (zh) 2007-05-02
US20060058424A1 (en) 2006-03-16
DE60321370D1 (de) 2008-07-10
CA2491746A1 (en) 2004-02-26
EP1553141A1 (en) 2005-07-13
US7259196B2 (en) 2007-08-21
JPWO2004016693A1 (ja) 2005-12-02
CN1671797A (zh) 2005-09-21
JP4542035B2 (ja) 2010-09-08

Similar Documents

Publication Publication Date Title
JP2007224287A (ja) 熱可塑性樹脂組成物
JP2005097598A (ja) 帯電防止性樹脂組成物
WO2004016693A1 (ja) ポリアミド樹脂組成物及びその製造方法
KR20020089387A (ko) 열가소성 수지 조성물
JP2005506431A (ja) 耐衝撃性改良ポリマー組成物
JP2009079174A (ja) 熱可塑性重合体組成物および成形品
JP5397977B2 (ja) 共連続構造を有する樹脂組成物
JP5798788B2 (ja) 複写機内部部品
JP5450167B2 (ja) 軋み音を低減した自動車内装部品
JP2011057719A (ja) 高性能ポリフェニレンスルフィド系樹脂組成物およびその製造方法
JPWO2020137843A1 (ja) 樹脂組成物及び成形体
WO2005056678A1 (ja) ポリエステル樹脂組成物および成形体
JPH0788449B2 (ja) 熱可塑性樹脂組成物
JP2007039489A (ja) グラフト共重合体、熱可塑性樹脂組成物、および成形品
JP5726977B2 (ja) 軋み音を低減した自動車内装部品
JP4118342B2 (ja) シンジオタクチックポリスチレンと、他の熱可塑性ポリマーとの相溶化ブレンド
JP2006265533A (ja) 電気機器の製造方法
JPH037752A (ja) 熱可塑性樹脂組成物
JP3475503B2 (ja) 樹脂組成物
JP2884180B2 (ja) 熱可塑性樹脂組成物
JPH08302154A (ja) 熱可塑性樹脂組成物
JP2884181B2 (ja) 熱可塑性樹脂組成物
JP2005002162A (ja) ポリアミド樹脂組成物
JP5041691B2 (ja) 熱可塑性樹脂組成物及び成形品
JPH04311760A (ja) 熱可塑性樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502024

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006058424

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10519544

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2491746

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003788013

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038173786

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003788013

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10519544

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003788013

Country of ref document: EP