WO2004008991A1 - Medizinisches implantat - Google Patents
Medizinisches implantat Download PDFInfo
- Publication number
- WO2004008991A1 WO2004008991A1 PCT/EP2003/007926 EP0307926W WO2004008991A1 WO 2004008991 A1 WO2004008991 A1 WO 2004008991A1 EP 0307926 W EP0307926 W EP 0307926W WO 2004008991 A1 WO2004008991 A1 WO 2004008991A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- implant
- guide wire
- microcatheter
- filaments
- implant according
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/962—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
- A61F2/966—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12099—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
- A61B17/12109—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
- A61B17/12113—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
- A61B17/12118—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm for positioning in conjunction with a stent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/221—Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/92—Stents in the form of a rolled-up sheet expanding after insertion into the vessel, e.g. with a spiral shape in cross-section
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B2017/1205—Introduction devices
- A61B2017/12054—Details concerning the detachment of the occluding device from the introduction device
- A61B2017/12063—Details concerning the detachment of the occluding device from the introduction device electrolytically detachable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/221—Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
- A61B2017/2215—Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions having an open distal end
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/3006—Properties of materials and coating materials
- A61F2002/3008—Properties of materials and coating materials radio-opaque, e.g. radio-opaque markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91525—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91533—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
- A61F2002/91541—Adjacent bands are arranged out of phase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91558—Adjacent bands being connected to each other connected peak to peak
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2002/9528—Instruments specially adapted for placement or removal of stents or stent-grafts for retrieval of stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2002/9534—Instruments specially adapted for placement or removal of stents or stent-grafts for repositioning of stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/005—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0058—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0008—Rounded shapes, e.g. with rounded corners elliptical or oval
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0096—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
- A61F2250/0098—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
Definitions
- the invention relates to a medical implant which is preformed to take a superordinate structure at the implantation site, but is present in a reduced-volume form during insertion.
- the invention further relates to the use of this implant as a neurostent, its combination with a guide wire and a system for using such implants in the treatment of aneurysms or other vascular malformations.
- vascular constrictions stenoses
- stents vascular endoprostheses, vascular supports
- vascular lumen open there due to their inherent rigidity.
- stents for closing vascular wall sacks (aneurysms) or fistulas.
- balloon-dilatable stents are used. These are crimped onto an unexpanded balloon for insertion in a non-dilated state, guided to the site to be treated via a catheter system and dilated there by expanding the balloon and thus anchored in the vessel. Since no elaborate support and sheathing is necessary to insert balloon-dilatable stents, they can also be inserted into very fine vessels. It is problematic, however, that due to their plastic deformability, they can simply be compressed by external pressure. Another disadvantage is that they For anchoring by means of high pressure, it must first be expanded to the extent that they ultimately take up. This widening to the extent necessary entails the risk of vascular injury, which can lead to the formation of thrombi.
- stents made of shape memory material which are initially in the form of an elongated filament and only when the catheter emerges through the change in temperature or the elimination of the constraint previously exerted from the catheter, the tubular structure of a stent accept.
- DE 197 03 482 A1 it is known to use a stent made of two elongated filaments for the treatment of aneurysms and the like, which are kept in the elongated form due to the mechanical constraint of the strand and, after this constraint is removed, when pushed out the catheter, take the actual stent shape. This made it possible for the first time to use stents with shape memory properties, even in very small-lumen vessels, as a result of the intracranial and cerebral vascular branches.
- these stents which are well suited for certain purposes, have a number of disadvantages, including their relatively difficult displaceability in the catheter and the fact that it cannot be returned to the catheter, the latter in the event of incorrect placement. Also, due to its very filigree structure, the stent is not very suitable for covering sacks and fistulas in the vessels in such a way that occlusion agents placed in them are retained.
- the object of the invention is to provide implants which can also be introduced into small-lumen intracranial vessels through conventional microcatheters, are easy to position and reposition, can be returned to the microcatheter if necessary, and are suitable for bridging vascular sacs and fistulas so that they can be filled with occlusion agents.
- implants that can adapt relatively freely to the vascular caliber, i. H. are not made to a special vessel caliber.
- a medical implant of the type mentioned at the outset which has the shape of a longitudinally open tube with webs or filaments connected to one another to form a mesh structure, which converge on one side to form a tapering structure in a connection point.
- the implant according to the invention consists of a flat object which, owing to the superordinate superimposed on it
- Structure takes the form of a slit tube or hose, the free legs preferably overlap. In its reduced-volume form, it is further rolled up, ie the diameter of the implant in its reduced-volume form is significantly reduced compared to that of the superordinate structure. After the implant has been released, it tries to adopt the structure imprinted on it and expands as far as the vessel surrounding the implant allows. This expansion in the manner of an expanding spiral spring leads to an automatic adaptation of the implant to the vessel caliber or lumen in such a way that it can be used in vessels of different calibres. In the case of narrow vessels, this results in a relatively strong overlap of the two free legs, in the case of wide vessels a slight overlap or a gap which remains free, which may even be desired in the case of vascular branches.
- the implant itself has a mesh structure made of interconnected webs or filaments. Bridges occur when the implant has cut structures, such as are often used for example in coronary stents, a mesh structure made of filaments when the implants are in the form of mats with a knitted or braided structure or made of individual filaments welded together.
- the implant is a surface structure that is rolled into a longitudinally open tubular structure that can fit tightly against the wall of the vessel to be loaded with it.
- the webs or filaments converging on one side into a tapering structure in a connection point allow the implant, which is still connected to a guide wire, to be pulled back into the catheter in the event of an incorrect placement or inadequate adaptation to the implantation location, in order to replace it with another implant or to replace it Reposition the catheter to implant again. Due to the tapered structure, the implant rolls closer together when it enters the microcatheter and takes on its reduced-volume shape again, whereby the tensile force of the guide wire and the forces exerted by the edge of the catheter interact. In the catheter itself, the implant is in its reduced-volume form, like rolled-up wire mesh.
- connection point of the medical implant at the end of the tapered structure is also the connection point to the guide wire, either directly or via a connection element.
- this is the point at which the webs of the implant converge.
- a mesh structure composed of individual filaments at least two filaments converge there and are connected to one another by welding or crimping.
- connection point is at the same time a connection element or a part thereof, which remains on the implant after the implant has been detached from the guide wire. It may be expedient to arrange this connection point in a platinum spiral or to connect it via a platinum spiral to a connecting element which can simultaneously serve as a radiopaque marker during positioning. Electrolytically corrodible connecting elements, as described for example in DE 100 10 840 A1, are particularly preferred. Such connecting elements make it possible to detach the implant from the guide wire after it has been correctly positioned by briefly acting on the current for, for example, 10 to 60 s.
- the medical implant consists of a flat structure that rolls up into a tube due to the superordinate structure specified for it.
- the free legs of the implant preferably overlap at least slightly.
- the implant itself can consist of a film which is provided with the corresponding web patterns, for example by laser technology.
- the web width is, for example, 0.05 to 0.2 mm.
- the manufacturing technique is the same as that used for tubular coronary stents.
- expanded metal foils can also be used, the web widths being of the same order of magnitude. It is preferred here to smooth the film afterwards so that all of the webs are in one plane.
- the film thickness is usually in the range of 0.02 to 0.2 mm.
- the larger film thicknesses also permit use in other areas, for example as coronary stents or in other areas of the body, for example in the bile duct or in the ureter.
- the mesh size is usually in the range of 0.5 to 4 mm and can vary within an implant. The same applies to the web width. It is generally preferred to use larger mesh sizes and lengths and / or larger web widths or thicker filaments in the area of the taper. In the area of the tapered structure, a particularly great support and covering of the vessel wall is generally not required, on the other hand increased tensile and shear strength.
- filaments When using mesh structures based on filaments, knitted or knitted structures can be used, as can filaments connected by welding.
- the filament thicknesses are generally in the range from 0.01 to 0.1 mm and preferably from 0.02 to 0.076 mm. What has already been said above applies to the mesh sizes.
- the mesh structure consists of individual filaments welded together, a laser welding technique is preferably used.
- a mesh of individual filaments braiding, knitting or knitting techniques known per se are used, as are known, for example, from wire mesh production or textile technology.
- Meshes are particularly preferred which have an active structure which, due to the production process, leads to rolled-up edges, because in this way the required superordinate structure can be produced via the active method.
- An active structure known to the textile specialist as "fluff" is particularly preferred.
- a particular advantage of the medical implants according to the invention over conventional expandable stents is that there is no longer any contraction in length when adapting to the vessel to be loaded.
- the longitudinally open structure with the specified "winding" has no influence on the length of the stent.
- the film structures themselves have also proven to be extremely dimensionally stable during positioning under shear and pulling effects. The same applies to the active structure and the mesh structure made of welded individual filaments ,
- Filaments can also be used which consist of a braid of individual strands, i.e. represent a rope. Braids made from 12 to 14 strands with a total thickness of 0.02 mm have proven to be useful.
- Such alloys are, for example, titanium and nickel-containing alloys, which have become known under the name Nitinol, iron-based or copper-based alloys.
- Shape memory properties can be based on a stress-induced martensitic transformation as well as on a temperature-induced martensitic transformation or combinations of the two.
- Platinum, platinum alloys, gold and stainless steel are particularly suitable as materials for the filaments.
- all permanent implant materials in medical technology that have the required properties can be used.
- the implants according to the invention in particular also have radiopaque markers which allow monitoring of the positioning and implantation.
- Spirals arranged proximally, in particular at the connection point of the webs or filaments, can serve as such markers.
- Radiopaque markers are preferably also located at the distal end of the implant, in particular in the form of worked into the mesh structure or platinum or platinum / iridium elements attached to the mesh structure.
- the meshes of the implant according to the invention can be provided distally with an eyelet or run out to an eyelet in which the marker element is arranged flush with the surface.
- the invention further relates to the combination of the implant described above with a guide wire which has the implant releasably arranged at its distal end.
- Solubility is brought about in particular by an element which can be corroded by the action of current, as is known from the prior art.
- the guidewire is an otherwise customary guidewire that is suitable for both pushing the implant through a catheter for use and also pulling it back into the catheter in the event of incorrect positioning.
- the corrosion site can also lie in the area of the guide wire itself or be based on a mechanical or thermal detaching technique known per se.
- the invention also relates to a system for use in the treatment of aneurysms or other vascular malformations, which has a first microcatheter, a first guidewire for placement of the first microcatheter, a second guidewire which is intended to guide the implant through the first microcatheter to transport and place and the implant, which is detachably arranged at the distal end of the second guide wire.
- the rolled-up structure of the implant and the combination with the guide wire make it possible to remove the first guide wire after placement of the first microcatheter and to insert and handle the second guide wire with the implant. Previous implants of this type were always placed using a so-called pusher technique, in which the retrieval of the implant was generally not possible.
- the system additionally has a second microcatheter, which is designed and intended for the second
- the first microcatheter is a microcatheter which is customary per se and is widely used in neuradiology, for example with a diameter / caliber of 0.51 mm (20 mil) to 0.36 mm (14 mil).
- the system can also have conventional electrical devices for electrolytically detaching the implant from the guide wire at a detachment point provided for this purpose.
- Fig. 1 An implant according to the invention with a
- FIG. 3 shows a third embodiment of a stent according to the invention with a honeycomb structure
- Fig. 5 a stent according to the invention together
- the implant according to FIG. 1 consists of a mesh or honeycomb structure, which in the present case consists of a plurality of filaments which have been connected to one another with the aid of laser welding technology.
- the implant is divided into an actual functional part A and the tapered proximal structure B, which u. a. differ by a different mesh size.
- the meshes 3 are relatively narrow in the functional part A, so that they are suitable for retaining occlusion spirals arranged in an aneurysm.
- the tapered proximal part B of the implant there is a wide mesh structure 4 which has been optimized for a minimal occlusion effect.
- the filaments preferably have a greater thickness in order to be able to better transmit the thrust and tensile forces of the guidewire which are applied at the connection point 5 when the implant is placed on the functional part A.
- Filament thicknesses in functional part A are generally on the order of 0.02 to 0.076 mm in part B 0.076 mm and above.
- the proximal part B preferably forms an angle of 45 ° to 120 °, in particular approximately 90 °, in the connection point 5.
- the filament thickness (or web width) as well as the mesh size and shape can vary widely depending on the requirements for stability, flexibility and the like. It goes without saying that the proximal part also leans against the vessel wall and does not hinder the blood flow in the vessel.
- the filaments 2 run out into a series of “tails” 6 that are suitable for carrying platinum markers that facilitate the positioning of the implant.
- the implant 1 is rolled up so that the edges 7 and 8 are at least close to one another, preferably even overlap in the edge area.
- the implant 2 is rolled up in the form of a wire mesh roll to such an extent that the roll formed can be easily inserted into a microcatheter and moved therein.
- the rolled-up structure After release from the microcatheter, the rolled-up structure jumps open and tries to take on the superimposed structure imprinted on it and thereby lies closely against the inner wall of the vessel to be acted upon, whereby a fistula, branching of the vessel or an aneurysm present there are covered superficially.
- the degree of "rolling up” is determined by the volume of the vessel; in narrower vessels there is a greater overlap of the edges 7 and 8 of the implant 1, in wide vessels a slight overlap or even undercoverage, whereby care must be taken to ensure that the implant still has a residual voltage.
- Alloys with shape memory properties are suitable as materials.
- the finished product is annealed at the temperatures customary for the material, so that the embossed structure is fixed.
- FIG. 2 shows a further embodiment of a stent 1 according to the invention with the honeycomb structure already described above, in which the tapering proximal part B is connected to the functional part A by additional filaments 9 in the peripheral region 10 and in the central region.
- the additional filaments 9 and 10 effect a more uniform transmission of tensile and shear forces from the proximal structure B to the functional part A, so that the tensile forces can be better transmitted by retracting into the microcatheter, in particular if the stent has to be repositioned. This makes it easier to roll up the stent again. In the same way, the transfer of thrust forces when the stent is extended and deployed is facilitated and gently released. Otherwise, the same numbers designate the same positions.
- FIG. 3 shows a further embodiment of a stent 1 according to the invention with a honeycomb structure in which the edges 7 and 8 are formed by filaments 9 which run essentially in a straight line.
- the thrust or pressure exerted by the guide wire via point 5 is transmitted very directly to the edges 7 and 8 of the functional stent part A, which further reinforces the effect described with reference to FIG.
- Laser cutting techniques for producing stents with a tubular structure are known and have been described many times.
- the processing of a film to produce a pattern suitable for a stent proceeds accordingly.
- the superimposed structure is stamped in the same way as for the filament.
- Films processed with cutting technology are preferably electrochemically reworked to remove burrs and other irregularities, to smooth the surface and to round edges.
- Such processing methods of an electrochemical nature are known to the person skilled in the art and are already being used to a large extent in medical technology.
- the stents according to the invention which are based on two-dimensional geometries and to which a three-dimensional structure is only imprinted later, are fundamentally easier to manufacture and process than the classic “tube” stents, which are already produced in a three-dimensional one Structure in place and require correspondingly complex processing methods / devices.
- the mesh structure of the implant according to the invention can consist of a mesh of individual filaments.
- Such a knitting structure is shown in FIG. 4, in which the individual filaments 2 are knitted into individual stitches 3 of a stitch structure 11 in the manner of a right-hand knitted fabric.
- Such right and left hand knitted fabrics are produced in a known manner from a row of needles.
- the right-left fabric has two different-looking fabric sides, the right and the left stitch side.
- a right and left knitted fabric is not very elastic in the transverse direction and is very light. It is particularly advantageous that the product edges of such a knitting structure roll up, as is the case, for example, with the "fluff", which is advantageous for the higher-level structure and the intended use required here. In this case, the higher-level structure can be impressed using the active method. Alternatively and additionally, the use of shape memory alloys is also possible and sensible.
- the implants according to the invention are extremely small in size - for example with a size of 2 x 1 cm - it has proven to be advantageous to produce the implants from textile, non-metallic filaments, for example in the form of a conventional knitted fabric or knitted fabric an edge made of the respective metallic filaments, which is either worked on or from which the knitted or knitted fabric originates.
- the arrangement of the metallic part of the knitted fabric or knitted fabric on the edge is important in order to achieve the curling effect.
- the non-metallic textile parts of the active structure are then removed by ashing, chemical destruction or dissolution in a suitable solvent.
- FIG. 5 shows a combination of a guide wire 21 with an implant 1 attached to it, which consists of individual filaments 2 welded together.
- the distal ends 6 and the connection point 5, at which the filaments of the implant converge in the tapered structure and which simultaneously establishes the connection to the guide wire 21, can be clearly seen.
- the guide wire 21 is guided into a microcatheter 22, which is a conventional product.
- the implant 1 By moving the guide wire 21 in the catheter 22, the implant 1 is pushed out or drawn in.
- the mesh structure seeks to take on the superordinate structure given to it, when it is pulled in, the mesh structure rolls or folds up again according to the spatial conditions in the microcatheter. Due to the stiffness of the mesh structure, the implant can be moved back and forth almost arbitrarily over the guide wire 21 until it has found its optimal arrangement in the vascular system.
- FIG. 6 schematically shows an implant according to the invention in its superordinate form and in its reduced-volume form.
- the implant 1 forms an annular structure with a slight overlap of the edges 7 and 8.
- the illustration shows the implant 1 from its proximal end in a top view, with the connection point 5 approximately opposite to the edges 7 and 8.
- the guide wire 21 follows at the connection point 5.
- FIG. 6a shows the same implant in its reduced-volume form as it is arranged, for example, rolled up in a microcatheter.
- the structure is maintained in the reduced volume form by the microcatheter 22; when the implant 1 is pushed out of the microcatheter 22, the latter jumps to the expanded form of FIG. 6a, comparable to a spiral spring.
- FIG. 7a shows a marker element 12 suitable for the implants according to the invention, as can be used at the distal end of the implant 1.
- the marker element 12 consists of an “eyelet” 13, which has a marker plate 15 made of a radiopaque material, for example platinum or platinum-iridium, in its interior (in the plane of the implant, without protruding elements).
- the marker plate 15 is also a part of laser welding techniques the surrounding implant structure.
- FIG. 7b gives an example of the arrangement of the marker elements 12 at the distal end of the implant 1 (see position 6 in FIG. 1).
- FIG. 8 shows schematically two variants of a detachment point 8a and 8b, via which the implant according to the invention is detachably connected to a guide wire.
- the separation point 23 consists of a dumbbell-shaped element that dissolves under the influence of current when it comes into contact with an electrolyte.
- the dumbbell-shaped element 23 according to FIG. 8a has a spiral structure 25 on its proximal (guide wire side) end, which cooperates with a reinforcement spiral 26 of the guide wire.
- a spherical element 27 which is connected by laser welding technology to a platinum spiral 28, which in turn is connected to the connection point 5 at the proximal end of the implant.
- the platinum spiral 28 also serves as a proximal radiopaque marker of the implant 1.
- a reinforcing wire 29 can be useful for strengthening the connection between the spherical element 27 and the connection point 5.
- the platinum spiral 28 can also be designed so that it can withstand the tensile and thrust forces exerted on it.
- the detachment element 23 which is susceptible to corrosion under the influence of current in an electrolyte. Structural or chemical weakening of the barbell makes sense, for example by grinding or thermal treatment, to accelerate corrosion and reduce the peeling time.
- the area of the dumbbell 23 accessible to the electrolyte has a length of 0.1 to 0.5 mm, in particular 0.3 mm.
- the spiral structure 25 is connected to the dumbbell-shaped element 23 as well as to the reinforcement spiral 26 of the guide wire 21 via welding points.
- the guide wire 21 itself is slidably mounted in the microcatheter 22.
- Fig. 8b shows a second embodiment, which differs from that of Fig. 8a in that the hand-shaped element 23 has at both ends a spherical element 27, which in turn distally with the connection point 5 of the implant and proximally with the guide wire 21 via spirals 28 and 26 are connected.
- release principles can be used, such as those based on mechanical principles or based on the melting of plastic compounds.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cardiology (AREA)
- Transplantation (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Neurosurgery (AREA)
- Reproductive Health (AREA)
- Prostheses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Surgical Instruments (AREA)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03765067.8A EP1542617B1 (de) | 2002-07-19 | 2003-07-21 | Kombination eines medizinischen Implantats und eines Führungsdrahts |
JP2004522529A JP4919217B2 (ja) | 2002-07-19 | 2003-07-21 | 医用移植物 |
AU2003254553A AU2003254553A1 (en) | 2002-07-19 | 2003-07-21 | Medical implant |
CA002492978A CA2492978A1 (en) | 2002-07-19 | 2003-07-21 | Medical implant |
US11/039,066 US7300458B2 (en) | 2002-07-19 | 2005-01-19 | Medical implant having a curlable matrix structure |
US11/935,252 US8632584B2 (en) | 2002-07-19 | 2007-11-05 | Medical implant having a curlable matrix structure and method of use |
US14/136,281 US10342683B2 (en) | 2002-07-19 | 2013-12-20 | Medical implant having a curlable matrix structure and method of use |
US16/420,814 US11426293B2 (en) | 2002-07-19 | 2019-05-23 | Medical implant |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10233085.9A DE10233085B4 (de) | 2002-07-19 | 2002-07-19 | Stent mit Führungsdraht |
DE10233085.9 | 2002-07-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/039,066 Continuation US7300458B2 (en) | 2002-07-19 | 2005-01-19 | Medical implant having a curlable matrix structure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004008991A1 true WO2004008991A1 (de) | 2004-01-29 |
Family
ID=29796487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2003/007926 WO2004008991A1 (de) | 2002-07-19 | 2003-07-21 | Medizinisches implantat |
Country Status (8)
Country | Link |
---|---|
US (4) | US7300458B2 (pt-PT) |
EP (4) | EP1542617B1 (pt-PT) |
JP (2) | JP4919217B2 (pt-PT) |
AU (1) | AU2003254553A1 (pt-PT) |
CA (1) | CA2492978A1 (pt-PT) |
DE (1) | DE10233085B4 (pt-PT) |
ES (3) | ES2552907T3 (pt-PT) |
WO (1) | WO2004008991A1 (pt-PT) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1600121A1 (en) * | 2004-05-25 | 2005-11-30 | William Cook Europe ApS | Stent and stent retrieval system; and a method of pulling a stent into a tubular member |
DE102007048794A1 (de) | 2007-10-10 | 2009-04-16 | Phenox Gmbh | Aspirationskatheter |
EP2208483A1 (en) * | 2009-01-19 | 2010-07-21 | Achieva Medical (Shanghai) Co., Ltd. | Delivery apparatus for a retractable self expanding neurovascular stent and its use |
WO2011066962A1 (de) * | 2009-12-01 | 2011-06-09 | Acandis Gmbh & Co. Kg | Medizinische vorrichtung |
WO2011110356A1 (de) * | 2010-03-10 | 2011-09-15 | Acandis Gmbh & Co. Kg | Medizinische vorrichtung zum entfernen von konkrementen aus körperhohlorganen und verfahren zum herstellen einer derartigen vorrichtung |
WO2012065748A1 (de) | 2010-11-19 | 2012-05-24 | Phenox Gmbh | Thrombektomievorrichtung |
WO2012101159A1 (de) * | 2011-01-25 | 2012-08-02 | Acandis Gmbh & Co.Kg | Medizinische vorrichtung mit einer gitterstruktur und ein behandlungsystem mit einer derartigen gitterstruktur |
WO2012126905A1 (de) * | 2011-03-21 | 2012-09-27 | Acandis Gmbh & Co. Kg | Medizinische vorrichtung zur behandlung von körperhohlorganen, system mit einer derartigen vorrichtung und verfahren zur herstellung einer derartigen vorrichtung |
DE102011101522A1 (de) | 2011-05-13 | 2012-11-15 | Phenox Gmbh | Thrombektomievorrichtung |
US8357178B2 (en) | 2009-07-08 | 2013-01-22 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US8357179B2 (en) | 2009-07-08 | 2013-01-22 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US8529596B2 (en) | 2009-07-08 | 2013-09-10 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US8632584B2 (en) | 2002-07-19 | 2014-01-21 | Dendron Gmbh | Medical implant having a curlable matrix structure and method of use |
US8679142B2 (en) | 2008-02-22 | 2014-03-25 | Covidien Lp | Methods and apparatus for flow restoration |
US8795345B2 (en) | 2009-07-08 | 2014-08-05 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US8795317B2 (en) | 2009-07-08 | 2014-08-05 | Concentric Medical, Inc. | Embolic obstruction retrieval devices and methods |
US9039749B2 (en) | 2010-10-01 | 2015-05-26 | Covidien Lp | Methods and apparatuses for flow restoration and implanting members in the human body |
US9072537B2 (en) | 2009-07-08 | 2015-07-07 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
EP2451378A4 (en) * | 2009-07-08 | 2015-10-28 | Concentric Medical Inc | DEVICES AND METHODS FOR TREATING VASCULAR AND PERSONAL CONDUITS |
US10052185B2 (en) | 2016-02-12 | 2018-08-21 | Covidien Lp | Vascular device marker attachment |
US10076399B2 (en) | 2013-09-13 | 2018-09-18 | Covidien Lp | Endovascular device engagement |
US10265089B2 (en) | 2016-02-12 | 2019-04-23 | Covidien Lp | Vascular device visibility |
US10413310B2 (en) | 2007-10-17 | 2019-09-17 | Covidien Lp | Restoring blood flow and clot removal during acute ischemic stroke |
US10722255B2 (en) | 2008-12-23 | 2020-07-28 | Covidien Lp | Systems and methods for removing obstructive matter from body lumens and treating vascular defects |
US11337714B2 (en) | 2007-10-17 | 2022-05-24 | Covidien Lp | Restoring blood flow and clot removal during acute ischemic stroke |
Families Citing this family (175)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8353948B2 (en) * | 1997-01-24 | 2013-01-15 | Celonova Stent, Inc. | Fracture-resistant helical stent incorporating bistable cells and methods of use |
US8663311B2 (en) * | 1997-01-24 | 2014-03-04 | Celonova Stent, Inc. | Device comprising biodegradable bistable or multistable cells and methods of use |
US8048104B2 (en) * | 2000-10-30 | 2011-11-01 | Dendron Gmbh | Device for the implantation of occlusion spirals |
US6799637B2 (en) | 2000-10-20 | 2004-10-05 | Schlumberger Technology Corporation | Expandable tubing and method |
NO335594B1 (no) | 2001-01-16 | 2015-01-12 | Halliburton Energy Serv Inc | Ekspanderbare anordninger og fremgangsmåte for disse |
US7655039B2 (en) * | 2003-05-23 | 2010-02-02 | Boston Scientific Scimed, Inc. | Stents with attached looped ends |
US7572228B2 (en) | 2004-01-13 | 2009-08-11 | Remon Medical Technologies Ltd | Devices for fixing a sensor in a lumen |
DE102004003265A1 (de) * | 2004-01-21 | 2005-08-11 | Dendron Gmbh | Vorrichtung zur Implantation von elektrisch isolierten Okklusionswendeln |
US7686825B2 (en) | 2004-03-25 | 2010-03-30 | Hauser David L | Vascular filter device |
ATE490736T1 (de) * | 2004-05-21 | 2010-12-15 | Micro Therapeutics Inc | Mit biologischen oder biologisch abbaubaren oder synthetischen polymeren oder fasern umschlungene metallspulen zur embolisierung einer körperhöhle |
US8617234B2 (en) | 2004-05-25 | 2013-12-31 | Covidien Lp | Flexible vascular occluding device |
AU2005247490B2 (en) | 2004-05-25 | 2011-05-19 | Covidien Lp | Flexible vascular occluding device |
WO2010120926A1 (en) | 2004-05-25 | 2010-10-21 | Chestnut Medical Technologies, Inc. | Vascular stenting for aneurysms |
US20060206200A1 (en) | 2004-05-25 | 2006-09-14 | Chestnut Medical Technologies, Inc. | Flexible vascular occluding device |
US8628564B2 (en) | 2004-05-25 | 2014-01-14 | Covidien Lp | Methods and apparatus for luminal stenting |
EP1793744B1 (de) | 2004-09-22 | 2008-12-17 | Dendron GmbH | Medizinisches implantat |
DE502004010411D1 (de) * | 2004-09-22 | 2009-12-31 | Dendron Gmbh | Vorrichtung zur implantation von mikrowendeln |
US10390714B2 (en) | 2005-01-12 | 2019-08-27 | Remon Medical Technologies, Ltd. | Devices for fixing a sensor in a lumen |
DE102005019782A1 (de) * | 2005-04-28 | 2006-11-09 | Dendron Gmbh | Vorrichtung zur Implantation von Okklusionswendeln mit innenliegendem Sicherungsmittel |
CA2604081C (en) | 2005-05-25 | 2013-11-26 | Chestnut Medical Technologies, Inc. | System and method for delivering and deploying a self-expanding device within a vessel |
US8060214B2 (en) | 2006-01-05 | 2011-11-15 | Cardiac Pacemakers, Inc. | Implantable medical device with inductive coil configurable for mechanical fixation |
US8152833B2 (en) | 2006-02-22 | 2012-04-10 | Tyco Healthcare Group Lp | Embolic protection systems having radiopaque filter mesh |
CA2649702C (en) | 2006-04-17 | 2014-12-09 | Microtherapeutics, Inc. | System and method for mechanically positioning intravascular implants |
US8777979B2 (en) | 2006-04-17 | 2014-07-15 | Covidien Lp | System and method for mechanically positioning intravascular implants |
JP5156749B2 (ja) * | 2006-09-15 | 2013-03-06 | カーディアック ペースメイカーズ, インコーポレイテッド | 植え込み型センサ用アンカー |
US8676349B2 (en) | 2006-09-15 | 2014-03-18 | Cardiac Pacemakers, Inc. | Mechanism for releasably engaging an implantable medical device for implantation |
US20080269774A1 (en) | 2006-10-26 | 2008-10-30 | Chestnut Medical Technologies, Inc. | Intracorporeal Grasping Device |
ES2437619T3 (es) | 2007-03-13 | 2014-01-13 | Covidien Lp | Un implante que incluye un arrollamiento helicoidal y un elemento resistente al estiramiento |
WO2008112436A2 (en) | 2007-03-13 | 2008-09-18 | Micro Therapeutics, Inc. | An implant, a mandrel, and a method of forming an implant |
US8545548B2 (en) * | 2007-03-30 | 2013-10-01 | DePuy Synthes Products, LLC | Radiopaque markers for implantable stents and methods for manufacturing the same |
US8204599B2 (en) | 2007-05-02 | 2012-06-19 | Cardiac Pacemakers, Inc. | System for anchoring an implantable sensor in a vessel |
EP2162185B1 (en) | 2007-06-14 | 2015-07-01 | Cardiac Pacemakers, Inc. | Multi-element acoustic recharging system |
JP5734650B2 (ja) | 2007-06-25 | 2015-06-17 | マイクロベンション インコーポレイテッド | 自己拡張プロテーゼ |
US9220522B2 (en) | 2007-10-17 | 2015-12-29 | Covidien Lp | Embolus removal systems with baskets |
US8926680B2 (en) | 2007-11-12 | 2015-01-06 | Covidien Lp | Aneurysm neck bridging processes with revascularization systems methods and products thereby |
US9198687B2 (en) | 2007-10-17 | 2015-12-01 | Covidien Lp | Acute stroke revascularization/recanalization systems processes and products thereby |
US20100022951A1 (en) * | 2008-05-19 | 2010-01-28 | Luce, Forward, Hamilton 7 Scripps, Llp | Detachable hub/luer device and processes |
US8585713B2 (en) | 2007-10-17 | 2013-11-19 | Covidien Lp | Expandable tip assembly for thrombus management |
US10123803B2 (en) | 2007-10-17 | 2018-11-13 | Covidien Lp | Methods of managing neurovascular obstructions |
US8066757B2 (en) | 2007-10-17 | 2011-11-29 | Mindframe, Inc. | Blood flow restoration and thrombus management methods |
US20100256600A1 (en) * | 2009-04-04 | 2010-10-07 | Ferrera David A | Neurovascular otw pta balloon catheter and delivery system |
US10517617B2 (en) | 2007-12-20 | 2019-12-31 | Angiodynamics, Inc. | Systems and methods for removing undesirable material within a circulatory system utilizing a balloon catheter |
US11589880B2 (en) | 2007-12-20 | 2023-02-28 | Angiodynamics, Inc. | System and methods for removing undesirable material within a circulatory system utilizing during a surgical procedure |
CN102036619B (zh) * | 2007-12-21 | 2014-07-23 | 微排放器公司 | 检测植入物的脱卸的系统 |
JP5366974B2 (ja) | 2007-12-21 | 2013-12-11 | マイクロベンション インコーポレイテッド | 分離可能なインプラントの分離域の位置を決定するシステムおよび方法 |
US8163004B2 (en) * | 2008-02-18 | 2012-04-24 | Aga Medical Corporation | Stent graft for reinforcement of vascular abnormalities and associated method |
AU2015245003B2 (en) * | 2008-02-22 | 2016-10-13 | Covidien Lp | Methods and apparatus for flow restoration |
AU2014200111B2 (en) * | 2008-02-22 | 2015-08-13 | Covidien Lp | Methods and apparatus for flow restoration |
JP2011514208A (ja) * | 2008-03-06 | 2011-05-06 | ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング | 椎間関節の干渉ねじ |
CN101977650A (zh) | 2008-04-11 | 2011-02-16 | 曼德弗雷姆公司 | 递送医疗器械以治疗中风的单轨神经微导管、其方法和产品 |
WO2010008936A1 (en) | 2008-07-15 | 2010-01-21 | Cardiac Pacemakers, Inc. | Implant assist apparatus for acoustically enabled implantable medical device |
US9402707B2 (en) | 2008-07-22 | 2016-08-02 | Neuravi Limited | Clot capture systems and associated methods |
US20100191168A1 (en) | 2009-01-29 | 2010-07-29 | Trustees Of Tufts College | Endovascular cerebrospinal fluid shunt |
WO2010093489A2 (en) * | 2009-02-13 | 2010-08-19 | Cardiac Pacemakers, Inc. | Deployable sensor platform on the lead system of an implantable device |
CN102458304B (zh) * | 2009-05-14 | 2016-07-06 | 奥巴斯尼茨医学公司 | 具有多边形过渡区的自膨式支架 |
US8986355B2 (en) | 2010-07-09 | 2015-03-24 | DePuy Synthes Products, LLC | Facet fusion implant |
EP2629684B1 (en) | 2010-10-22 | 2018-07-25 | Neuravi Limited | Clot engagement and removal system |
DE102011011869A1 (de) * | 2011-02-22 | 2012-08-23 | Phenox Gmbh | Implantat |
US12076037B2 (en) | 2011-03-09 | 2024-09-03 | Neuravi Limited | Systems and methods to restore perfusion to a vessel |
US11259824B2 (en) | 2011-03-09 | 2022-03-01 | Neuravi Limited | Clot retrieval device for removing occlusive clot from a blood vessel |
WO2012120490A2 (en) | 2011-03-09 | 2012-09-13 | Neuravi Limited | A clot retrieval device for removing occlusive clot from a blood vessel |
US9028540B2 (en) | 2011-03-25 | 2015-05-12 | Covidien Lp | Vascular stent with improved vessel wall apposition |
FR2979224B1 (fr) * | 2011-08-29 | 2014-03-07 | Newco | Systeme pour extraire la substance thromboembolique situee dans un vaisseau sanguin |
US9579104B2 (en) | 2011-11-30 | 2017-02-28 | Covidien Lp | Positioning and detaching implants |
US9011480B2 (en) | 2012-01-20 | 2015-04-21 | Covidien Lp | Aneurysm treatment coils |
US9687245B2 (en) | 2012-03-23 | 2017-06-27 | Covidien Lp | Occlusive devices and methods of use |
CN104717918B (zh) | 2012-06-20 | 2017-07-04 | 波士顿科学医学有限公司 | 在电生理标测期间增强的信号矢量分析以抑制全局激活 |
CN104394759B (zh) | 2012-06-20 | 2017-04-05 | 波士顿科学医学有限公司 | 多电极egm上使用多维信号空间矢量分析的远场对局部激活区别 |
US9326774B2 (en) | 2012-08-03 | 2016-05-03 | Covidien Lp | Device for implantation of medical devices |
US9254205B2 (en) | 2012-09-27 | 2016-02-09 | Covidien Lp | Vascular stent with improved vessel wall apposition |
US9114001B2 (en) | 2012-10-30 | 2015-08-25 | Covidien Lp | Systems for attaining a predetermined porosity of a vascular device |
US9456834B2 (en) | 2012-10-31 | 2016-10-04 | Covidien Lp | Thrombectomy device with distal protection |
US9452070B2 (en) | 2012-10-31 | 2016-09-27 | Covidien Lp | Methods and systems for increasing a density of a region of a vascular device |
US9943427B2 (en) | 2012-11-06 | 2018-04-17 | Covidien Lp | Shaped occluding devices and methods of using the same |
US8784434B2 (en) | 2012-11-20 | 2014-07-22 | Inceptus Medical, Inc. | Methods and apparatus for treating embolism |
US9681817B2 (en) | 2012-12-20 | 2017-06-20 | Boston Scientific Scimed, Inc. | Suppression of global activation signals during anatomical mapping |
CN104936509A (zh) | 2012-12-27 | 2015-09-23 | 波士顿科学医学有限公司 | 伪影消除以在电生理学映射期间抑制远场激活 |
US9439661B2 (en) | 2013-01-09 | 2016-09-13 | Covidien Lp | Connection of a manipulation member, including a bend without substantial surface cracks, to an endovascular intervention device |
US9157174B2 (en) | 2013-02-05 | 2015-10-13 | Covidien Lp | Vascular device for aneurysm treatment and providing blood flow into a perforator vessel |
US10201360B2 (en) | 2013-03-14 | 2019-02-12 | Neuravi Limited | Devices and methods for removal of acute blockages from blood vessels |
US9433429B2 (en) | 2013-03-14 | 2016-09-06 | Neuravi Limited | Clot retrieval devices |
ES2960917T3 (es) | 2013-03-14 | 2024-03-07 | Neuravi Ltd | Dispositivo de recuperación de coágulos para eliminar coágulos oclusivos de un vaso sanguíneo |
US8715314B1 (en) | 2013-03-15 | 2014-05-06 | Insera Therapeutics, Inc. | Vascular treatment measurement methods |
WO2014150288A2 (en) | 2013-03-15 | 2014-09-25 | Insera Therapeutics, Inc. | Vascular treatment devices and methods |
US8715315B1 (en) | 2013-03-15 | 2014-05-06 | Insera Therapeutics, Inc. | Vascular treatment systems |
US8679150B1 (en) | 2013-03-15 | 2014-03-25 | Insera Therapeutics, Inc. | Shape-set textile structure based mechanical thrombectomy methods |
JP5586742B1 (ja) | 2013-06-28 | 2014-09-10 | 株式会社World Medish | 高柔軟性ステント |
US9402708B2 (en) | 2013-07-25 | 2016-08-02 | Covidien Lp | Vascular devices and methods with distal protection |
US10383644B2 (en) | 2013-10-17 | 2019-08-20 | Covidien Lp | Mechanical thrombectomy with proximal occlusion |
WO2015061365A1 (en) | 2013-10-21 | 2015-04-30 | Inceptus Medical, Llc | Methods and apparatus for treating embolism |
WO2015073704A1 (en) | 2013-11-13 | 2015-05-21 | Covidien Lp | Galvanically assisted attachment of medical devices to thrombus |
WO2015095806A2 (en) | 2013-12-20 | 2015-06-25 | Microvention, Inc. | Device delivery system |
JP6637430B2 (ja) | 2014-01-15 | 2020-01-29 | タフツ メディカル センター, インク.Tufts Medical Center, Inc. | 血管内脳脊髄液シャント |
US9737696B2 (en) | 2014-01-15 | 2017-08-22 | Tufts Medical Center, Inc. | Endovascular cerebrospinal fluid shunt |
US20150297250A1 (en) | 2014-04-16 | 2015-10-22 | Covidien Lp | Systems and methods for catheter advancement |
US9713475B2 (en) | 2014-04-18 | 2017-07-25 | Covidien Lp | Embolic medical devices |
WO2015187371A1 (en) | 2014-06-03 | 2015-12-10 | Boston Scientific Scimed, Inc. | Medical devices for mapping cardiac tissue |
US10258764B2 (en) | 2014-07-30 | 2019-04-16 | Covidien Lp | Opening system for improving catheter delivery |
US9814466B2 (en) | 2014-08-08 | 2017-11-14 | Covidien Lp | Electrolytic and mechanical detachment for implant delivery systems |
US9808256B2 (en) | 2014-08-08 | 2017-11-07 | Covidien Lp | Electrolytic detachment elements for implant delivery systems |
US10729454B2 (en) * | 2014-09-10 | 2020-08-04 | Teleflex Life Sciences Limited | Guidewire capture |
JP6586172B2 (ja) | 2014-10-31 | 2019-10-02 | セレバスク, エルエルシーCereVasc, LLC | 水頭症の治療方法およびシステム |
US10617435B2 (en) * | 2014-11-26 | 2020-04-14 | Neuravi Limited | Clot retrieval device for removing clot from a blood vessel |
US11253278B2 (en) * | 2014-11-26 | 2022-02-22 | Neuravi Limited | Clot retrieval system for removing occlusive clot from a blood vessel |
CN106999196B (zh) | 2014-11-26 | 2020-07-28 | 尼尔拉维有限公司 | 从血管除去阻塞性血栓的取血栓装置 |
US10265515B2 (en) | 2015-03-27 | 2019-04-23 | Covidien Lp | Galvanically assisted aneurysm treatment |
US9757574B2 (en) | 2015-05-11 | 2017-09-12 | Rainbow Medical Ltd. | Dual chamber transvenous pacemaker |
US9717503B2 (en) | 2015-05-11 | 2017-08-01 | Covidien Lp | Electrolytic detachment for implant delivery systems |
CN108135619B (zh) | 2015-09-25 | 2021-08-13 | 柯惠有限合伙公司 | 医疗装置递送系统 |
US10537344B2 (en) | 2015-10-23 | 2020-01-21 | Covidien Lp | Rotatable connection between an intervention member and a manipulation member of an endovascular device |
EP4233744A3 (en) | 2015-10-23 | 2023-11-01 | Inari Medical, Inc. | Device for intravascular treatment of vascular occlusion |
JP6820612B2 (ja) | 2015-10-30 | 2021-01-27 | セレバスク,インコーポレイテッド | 水頭症の治療システムおよび方法 |
WO2017089424A1 (en) * | 2015-11-25 | 2017-06-01 | Neuravi Limited | A clot retrieval device for removing occlusive clot from a blood vessel |
CN108697423A (zh) | 2016-02-16 | 2018-10-23 | 伊瑟拉医疗公司 | 抽吸装置和锚定的分流装置 |
CN108882976B (zh) | 2016-03-24 | 2021-06-04 | 柯惠有限合伙公司 | 用于血管流动转向的薄壁配置 |
DE102016110199A1 (de) * | 2016-06-02 | 2017-12-07 | Phenox Gmbh | Vasospasmusbehandlung |
US10828037B2 (en) | 2016-06-27 | 2020-11-10 | Covidien Lp | Electrolytic detachment with fluid electrical connection |
US10828039B2 (en) | 2016-06-27 | 2020-11-10 | Covidien Lp | Electrolytic detachment for implantable devices |
US11051822B2 (en) | 2016-06-28 | 2021-07-06 | Covidien Lp | Implant detachment with thermal activation |
JP7046924B2 (ja) | 2016-09-06 | 2022-04-04 | ニューラヴィ・リミテッド | 血管から閉塞性血塊を除去するための血塊回収装置 |
US10245050B2 (en) | 2016-09-30 | 2019-04-02 | Teleflex Innovations S.À.R.L. | Methods for facilitating revascularization of occlusion |
US12036375B2 (en) | 2016-10-11 | 2024-07-16 | CereVasc, Inc. | Methods and systems for treating hydrocephalus |
FI3528717T3 (fi) | 2016-10-24 | 2024-08-09 | Inari Medical Inc | Laitteita verisuonitukoksen hoitamiseen |
CN110636805B (zh) | 2017-05-12 | 2023-02-10 | 柯惠有限合伙公司 | 从血管内腔取出材料 |
US10478322B2 (en) | 2017-06-19 | 2019-11-19 | Covidien Lp | Retractor device for transforming a retrieval device from a deployed position to a delivery position |
US10342686B2 (en) | 2017-08-10 | 2019-07-09 | Covidien Lp | Thin film mesh hybrid for treating vascular defects |
CA3074564A1 (en) | 2017-09-06 | 2019-03-14 | Inari Medical, Inc. | Hemostasis valves and methods of use |
US10835398B2 (en) | 2017-11-03 | 2020-11-17 | Covidien Lp | Meshes and devices for treating vascular defects |
WO2019096158A1 (zh) * | 2017-11-17 | 2019-05-23 | 杭州唯强医疗科技有限公司 | 血管支架 |
EP3723633B1 (en) | 2017-12-11 | 2024-04-10 | Covidien LP | Device for electrically enhanced retrieval of material from vessel lumens |
CN109965940B (zh) * | 2017-12-28 | 2022-05-10 | 先健科技(深圳)有限公司 | 一种取栓器 |
US11154314B2 (en) | 2018-01-26 | 2021-10-26 | Inari Medical, Inc. | Single insertion delivery system for treating embolism and associated systems and methods |
CN110090063B (zh) | 2018-01-30 | 2022-07-08 | 上海沃比医疗科技有限公司 | 血栓捕捉装置及其方法 |
US10092309B1 (en) | 2018-02-02 | 2018-10-09 | Highway 1 Medical, Inc. | Devices for retrieving an obstruction in a bodily duct of a patient |
US11013900B2 (en) | 2018-03-08 | 2021-05-25 | CereVasc, Inc. | Systems and methods for minimally invasive drug delivery to a subarachnoid space |
US20190388107A1 (en) | 2018-06-22 | 2019-12-26 | Covidien Lp | Electrically enhanced retrieval of material from vessel lumens |
AU2019321256B2 (en) | 2018-08-13 | 2023-06-22 | Inari Medical, Inc. | System for treating embolism and associated devices and methods |
US10842498B2 (en) | 2018-09-13 | 2020-11-24 | Neuravi Limited | Systems and methods of restoring perfusion to a vessel |
US11406416B2 (en) | 2018-10-02 | 2022-08-09 | Neuravi Limited | Joint assembly for vasculature obstruction capture device |
US12114863B2 (en) | 2018-12-05 | 2024-10-15 | Microvention, Inc. | Implant delivery system |
DE102018131269B4 (de) * | 2018-12-07 | 2021-08-05 | Acandis Gmbh | Medizinische Vorrichtung zur Einfuhr in ein Körperhohlorgan und Herstellungsverfahren |
US11612430B2 (en) | 2019-03-19 | 2023-03-28 | Covidien Lp | Electrically enhanced retrieval of material from vessel lumens |
CN113939238A (zh) | 2019-06-12 | 2022-01-14 | 柯惠有限合伙公司 | 从身体内腔中取出材料 |
RU2729439C1 (ru) * | 2019-07-10 | 2020-08-06 | Общество с ограниченной ответственностью "Ангиолайн Ресерч" | Устройство и способ удаления тромбов |
AU2020368528A1 (en) | 2019-10-16 | 2022-04-21 | Inari Medical, Inc. | Systems, devices, and methods for treating vascular occlusions |
DE102019128102A1 (de) * | 2019-10-17 | 2021-04-22 | Phenox Gmbh | Implantat zur Behandlung von Aneurysmen |
US11712231B2 (en) | 2019-10-29 | 2023-08-01 | Neuravi Limited | Proximal locking assembly design for dual stent mechanical thrombectomy device |
US11517340B2 (en) | 2019-12-03 | 2022-12-06 | Neuravi Limited | Stentriever devices for removing an occlusive clot from a vessel and methods thereof |
CN114786597A (zh) | 2019-12-12 | 2022-07-22 | 柯惠有限合伙公司 | 从血管内腔电增强取出材料 |
US11648020B2 (en) | 2020-02-07 | 2023-05-16 | Angiodynamics, Inc. | Device and method for manual aspiration and removal of an undesirable material |
US11730501B2 (en) | 2020-04-17 | 2023-08-22 | Neuravi Limited | Floating clot retrieval device for removing clots from a blood vessel |
US11871946B2 (en) | 2020-04-17 | 2024-01-16 | Neuravi Limited | Clot retrieval device for removing clot from a blood vessel |
US11717308B2 (en) | 2020-04-17 | 2023-08-08 | Neuravi Limited | Clot retrieval device for removing heterogeneous clots from a blood vessel |
US11738188B2 (en) | 2020-06-08 | 2023-08-29 | Covidien Lp | Connection of intravascular interventional elements and elongate manipulation members |
US11737771B2 (en) | 2020-06-18 | 2023-08-29 | Neuravi Limited | Dual channel thrombectomy device |
US11937836B2 (en) | 2020-06-22 | 2024-03-26 | Neuravi Limited | Clot retrieval system with expandable clot engaging framework |
US11439418B2 (en) | 2020-06-23 | 2022-09-13 | Neuravi Limited | Clot retrieval device for removing clot from a blood vessel |
US11395669B2 (en) | 2020-06-23 | 2022-07-26 | Neuravi Limited | Clot retrieval device with flexible collapsible frame |
US11864781B2 (en) | 2020-09-23 | 2024-01-09 | Neuravi Limited | Rotating frame thrombectomy device |
WO2022139998A1 (en) | 2020-12-21 | 2022-06-30 | Covidien Lp | Electrically enhanced retrieval of material from vessel lumens |
US11707290B2 (en) | 2020-12-23 | 2023-07-25 | Accumedical Beijing Ltd. | Stent retriever with radiopaque members |
US20220202431A1 (en) | 2020-12-29 | 2022-06-30 | Covidien Lp | Electrically enhanced retrieval of material from vessel lumens |
US11937837B2 (en) | 2020-12-29 | 2024-03-26 | Neuravi Limited | Fibrin rich / soft clot mechanical thrombectomy device |
US12029442B2 (en) | 2021-01-14 | 2024-07-09 | Neuravi Limited | Systems and methods for a dual elongated member clot retrieval apparatus |
US11918242B2 (en) | 2021-03-02 | 2024-03-05 | Covidien Lp | Retrieval of material from vessel lumens |
US12004803B2 (en) | 2021-03-15 | 2024-06-11 | Covidien Lp | Thrombectomy treatment system |
US12064130B2 (en) | 2021-03-18 | 2024-08-20 | Neuravi Limited | Vascular obstruction retrieval device having sliding cages pinch mechanism |
US20220387051A1 (en) | 2021-06-02 | 2022-12-08 | Covidien Lp | Medical treatment system |
US11963713B2 (en) | 2021-06-02 | 2024-04-23 | Covidien Lp | Medical treatment system |
US11974764B2 (en) | 2021-06-04 | 2024-05-07 | Neuravi Limited | Self-orienting rotating stentriever pinching cells |
US20220409258A1 (en) | 2021-06-25 | 2022-12-29 | Covidien Lp | Current generator for a medical treatment system |
US11944374B2 (en) | 2021-08-30 | 2024-04-02 | Covidien Lp | Electrical signals for retrieval of material from vessel lumens |
US20240081898A1 (en) | 2022-09-14 | 2024-03-14 | Covidien Lp | Retrieval of material from vessel lumens |
US20240206897A1 (en) | 2022-12-22 | 2024-06-27 | Covidien Lp | Systems and methods for restoring blood vessel patency |
WO2024177630A1 (en) * | 2023-02-22 | 2024-08-29 | eLum Technologies, Inc. | Systems and methods for customizable flow diverter implants |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996028116A1 (en) * | 1995-03-10 | 1996-09-19 | Cardiovascular Concepts, Inc. | Tubular endoluminar prosthesis having oblique ends |
DE19703482A1 (de) | 1997-01-31 | 1998-08-06 | Ernst Peter Prof Dr M Strecker | Stent |
WO2001032099A2 (en) * | 1999-10-25 | 2001-05-10 | Endotex Interventional Systems, Inc. | Stretchable anti-buckling coiled-sheet stent |
US6264686B1 (en) * | 1995-08-24 | 2001-07-24 | RIEU RéGIS | Intravascular stent intended in particular for angioplasty |
DE10010840A1 (de) | 1999-10-30 | 2001-09-20 | Dendron Gmbh | Vorrichtung zur Implantation von Occlusionswendeln |
Family Cites Families (314)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3996938A (en) | 1975-07-10 | 1976-12-14 | Clark Iii William T | Expanding mesh catheter |
US4046150A (en) | 1975-07-17 | 1977-09-06 | American Hospital Supply Corporation | Medical instrument for locating and removing occlusive objects |
FR2343488A1 (fr) | 1976-03-12 | 1977-10-07 | Adair Edwin Lloyd | Catheter avec dispositif d'etancheite et de blocage |
JPS5394515A (en) | 1977-01-31 | 1978-08-18 | Kubota Ltd | Method of producing glass fiber reinforced cement plate |
DE2821048C2 (de) | 1978-05-13 | 1980-07-17 | Willy Ruesch Gmbh & Co Kg, 7053 Kernen | Medizinisches Instrument |
US4299255A (en) | 1979-04-16 | 1981-11-10 | Miller John H | Emergency pipeline shut-off apparatus |
IT1126526B (it) | 1979-12-07 | 1986-05-21 | Enrico Dormia | Estrattore chirurgico per asportare corpi estranei che si trovano nelle vie naturali del corpo umano,come calcoli e simili |
US4403612A (en) | 1980-10-20 | 1983-09-13 | Fogarty Thomas J | Dilatation method |
JPS5774665A (en) | 1980-10-29 | 1982-05-10 | Toshiba Corp | Speed controlling device |
SE445884B (sv) | 1982-04-30 | 1986-07-28 | Medinvent Sa | Anordning for implantation av en rorformig protes |
US5190546A (en) | 1983-10-14 | 1993-03-02 | Raychem Corporation | Medical devices incorporating SIM alloy elements |
US4611594A (en) | 1984-04-11 | 1986-09-16 | Northwestern University | Medical instrument for containment and removal of calculi |
IT1176442B (it) | 1984-07-20 | 1987-08-18 | Enrico Dormia | Strumento per l'estrazione di corpi estranei da canali fisiologici dell'organismo |
DE8435489U1 (de) | 1984-12-04 | 1986-08-28 | Richard Wolf Gmbh, 7134 Knittlingen | Nephroskop |
SE450809B (sv) * | 1985-04-10 | 1987-08-03 | Medinvent Sa | Plant emne avsett for tillverkning av en spiralfjeder lemplig for transluminal implantation samt derav tillverkad spiralfjeder |
US4650466A (en) | 1985-11-01 | 1987-03-17 | Angiobrade Partners | Angioplasty device |
US5102417A (en) | 1985-11-07 | 1992-04-07 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4793348A (en) | 1986-11-15 | 1988-12-27 | Palmaz Julio C | Balloon expandable vena cava filter to prevent migration of lower extremity venous clots into the pulmonary circulation |
US4820298A (en) * | 1987-11-20 | 1989-04-11 | Leveen Eric G | Internal vascular prosthesis |
US4890611A (en) | 1988-04-05 | 1990-01-02 | Thomas J. Fogarty | Endarterectomy apparatus and method |
JP2604440B2 (ja) * | 1988-09-30 | 1997-04-30 | サミュエル・シバー | 機械式のアテローム除去装置 |
CA1322628C (en) | 1988-10-04 | 1993-10-05 | Richard A. Schatz | Expandable intraluminal graft |
JP2772665B2 (ja) * | 1989-03-29 | 1998-07-02 | 日本ゼオン株式会社 | 生体器官拡張具及び生体器官拡張器具 |
US5976131A (en) | 1990-03-13 | 1999-11-02 | The Regents Of The University At California | Detachable endovascular occlusion device activated by alternating electric current |
US5569245A (en) | 1990-03-13 | 1996-10-29 | The Regents Of The University Of California | Detachable endovascular occlusion device activated by alternating electric current |
US5122136A (en) | 1990-03-13 | 1992-06-16 | The Regents Of The University Of California | Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
US5851206A (en) | 1990-03-13 | 1998-12-22 | The Regents Of The University Of California | Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment |
US6425893B1 (en) | 1990-03-13 | 2002-07-30 | The Regents Of The University Of California | Method and apparatus for fast electrolytic detachment of an implant |
US5354295A (en) | 1990-03-13 | 1994-10-11 | Target Therapeutics, Inc. | In an endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
US6083220A (en) | 1990-03-13 | 2000-07-04 | The Regents Of The University Of California | Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
US5071407A (en) | 1990-04-12 | 1991-12-10 | Schneider (U.S.A.) Inc. | Radially expandable fixation member |
US5064435A (en) * | 1990-06-28 | 1991-11-12 | Schneider (Usa) Inc. | Self-expanding prosthesis having stable axial length |
US5100423A (en) | 1990-08-21 | 1992-03-31 | Medical Engineering & Development Institute, Inc. | Ablation catheter |
US5222971A (en) | 1990-10-09 | 1993-06-29 | Scimed Life Systems, Inc. | Temporary stent and methods for use and manufacture |
US5197978B1 (en) | 1991-04-26 | 1996-05-28 | Advanced Coronary Tech | Removable heat-recoverable tissue supporting device |
US5190058A (en) | 1991-05-22 | 1993-03-02 | Medtronic, Inc. | Method of using a temporary stent catheter |
US5217484A (en) | 1991-06-07 | 1993-06-08 | Marks Michael P | Retractable-wire catheter device and method |
ATE176999T1 (de) | 1991-06-17 | 1999-03-15 | Wilson Cook Medical Inc | Endoskopische extraktionsvorrichtung mit zusammengesetzter drahtkonstruktion |
US5192286A (en) | 1991-07-26 | 1993-03-09 | Regents Of The University Of California | Method and device for retrieving materials from body lumens |
CA2117088A1 (en) | 1991-09-05 | 1993-03-18 | David R. Holmes | Flexible tubular device for use in medical applications |
JPH0698939A (ja) | 1992-09-18 | 1994-04-12 | Nippon Shiruko Tex Kk | Pcta後における冠動脈閉塞防止器具 |
US5571122A (en) | 1992-11-09 | 1996-11-05 | Endovascular Instruments, Inc. | Unitary removal of plaque |
US5792157A (en) | 1992-11-13 | 1998-08-11 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5836868A (en) | 1992-11-13 | 1998-11-17 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5490859A (en) | 1992-11-13 | 1996-02-13 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5501694A (en) | 1992-11-13 | 1996-03-26 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5540707A (en) | 1992-11-13 | 1996-07-30 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5527326A (en) | 1992-12-29 | 1996-06-18 | Thomas J. Fogarty | Vessel deposit shearing apparatus |
WO1994018888A1 (en) | 1993-02-19 | 1994-09-01 | Boston Scientific Corporation | Surgical extractor |
JPH06246004A (ja) * | 1993-02-26 | 1994-09-06 | Raifu Technol Kenkyusho | カテーテル |
US5897567A (en) | 1993-04-29 | 1999-04-27 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5456667A (en) | 1993-05-20 | 1995-10-10 | Advanced Cardiovascular Systems, Inc. | Temporary stenting catheter with one-piece expandable segment |
US5464449A (en) | 1993-07-08 | 1995-11-07 | Thomas J. Fogarty | Internal graft prosthesis and delivery system |
US5411549A (en) | 1993-07-13 | 1995-05-02 | Scimed Life Systems, Inc. | Selectively expandable, retractable and removable stent |
US5624449A (en) | 1993-11-03 | 1997-04-29 | Target Therapeutics | Electrolytically severable joint for endovascular embolic devices |
US5423829A (en) | 1993-11-03 | 1995-06-13 | Target Therapeutics, Inc. | Electrolytically severable joint for endovascular embolic devices |
US6165213A (en) | 1994-02-09 | 2000-12-26 | Boston Scientific Technology, Inc. | System and method for assembling an endoluminal prosthesis |
DE69510986T2 (de) * | 1994-04-25 | 1999-12-02 | Advanced Cardiovascular Systems, Inc. | Strahlungsundurchlässige Stentsmarkierungen |
WO1995029646A1 (en) * | 1994-04-29 | 1995-11-09 | Boston Scientific Corporation | Medical prosthetic stent and method of manufacture |
US6582461B1 (en) | 1994-05-19 | 2003-06-24 | Scimed Life Systems, Inc. | Tissue supporting devices |
DE9409484U1 (de) | 1994-06-11 | 1994-08-04 | Naderlinger, Eduard, 50127 Bergheim | Vena-cava Thromben-Filter |
JP3625495B2 (ja) * | 1994-07-22 | 2005-03-02 | テルモ株式会社 | 管腔臓器治療具 |
US5658296A (en) | 1994-11-21 | 1997-08-19 | Boston Scientific Corporation | Method for making surgical retrieval baskets |
CA2163824C (en) | 1994-11-28 | 2000-06-20 | Richard J. Saunders | Method and apparatus for direct laser cutting of metal stents |
US6013093A (en) | 1995-11-28 | 2000-01-11 | Boston Scientific Corporation | Blood clot filtering |
US6214025B1 (en) | 1994-11-30 | 2001-04-10 | Boston Scientific Corporation | Self-centering, self-expanding and retrievable vena cava filter |
US5709704A (en) | 1994-11-30 | 1998-01-20 | Boston Scientific Corporation | Blood clot filtering |
IL116561A0 (en) | 1994-12-30 | 1996-03-31 | Target Therapeutics Inc | Severable joint for detachable devices placed within the body |
EP0812155B1 (en) | 1995-02-02 | 2003-12-17 | Boston Scientific Corporation | Surgical wire basket extractor |
NL1000105C2 (nl) | 1995-04-10 | 1996-10-11 | Cordis Europ | Catheter met filter en thrombi-afvoerinrichting. |
US5743905A (en) | 1995-07-07 | 1998-04-28 | Target Therapeutics, Inc. | Partially insulated occlusion device |
US5681335A (en) | 1995-07-31 | 1997-10-28 | Micro Therapeutics, Inc. | Miniaturized brush with hollow lumen brush body |
US5749883A (en) | 1995-08-30 | 1998-05-12 | Halpern; David Marcos | Medical instrument |
US5769882A (en) | 1995-09-08 | 1998-06-23 | Medtronic, Inc. | Methods and apparatus for conformably sealing prostheses within body lumens |
US5824037A (en) | 1995-10-03 | 1998-10-20 | Medtronic, Inc. | Modular intraluminal prostheses construction and methods |
US6193745B1 (en) | 1995-10-03 | 2001-02-27 | Medtronic, Inc. | Modular intraluminal prosteheses construction and methods |
US5827304A (en) | 1995-11-16 | 1998-10-27 | Applied Medical Resources Corporation | Intraluminal extraction catheter |
US5695519A (en) | 1995-11-30 | 1997-12-09 | American Biomed, Inc. | Percutaneous filter for carotid angioplasty |
US5895398A (en) | 1996-02-02 | 1999-04-20 | The Regents Of The University Of California | Method of using a clot capture coil |
US6254571B1 (en) | 1996-04-18 | 2001-07-03 | Applied Medical Resources Corporation | Remote clot management |
US5954743A (en) | 1996-04-26 | 1999-09-21 | Jang; G. David | Intravascular stent |
US6096053A (en) | 1996-05-03 | 2000-08-01 | Scimed Life Systems, Inc. | Medical retrieval basket |
US5935139A (en) | 1996-05-03 | 1999-08-10 | Boston Scientific Corporation | System for immobilizing or manipulating an object in a tract |
US5669933A (en) | 1996-07-17 | 1997-09-23 | Nitinol Medical Technologies, Inc. | Removable embolus blood clot filter |
CA2211249C (en) | 1996-07-24 | 2007-07-17 | Cordis Corporation | Balloon catheter and methods of use |
US6066158A (en) | 1996-07-25 | 2000-05-23 | Target Therapeutics, Inc. | Mechanical clot encasing and removal wire |
US5972019A (en) | 1996-07-25 | 1999-10-26 | Target Therapeutics, Inc. | Mechanical clot treatment device |
US6096034A (en) | 1996-07-26 | 2000-08-01 | Target Therapeutics, Inc. | Aneurysm closure device assembly |
US5980514A (en) | 1996-07-26 | 1999-11-09 | Target Therapeutics, Inc. | Aneurysm closure device assembly |
CA2263154A1 (en) | 1996-08-07 | 1998-02-12 | Darwin Discovery Limited | Hydroxamic and carboxylic acid derivatives having mmp and tnf inhibitory activity |
US5964797A (en) | 1996-08-30 | 1999-10-12 | Target Therapeutics, Inc. | Electrolytically deployable braided vaso-occlusion device |
US6254628B1 (en) * | 1996-12-09 | 2001-07-03 | Micro Therapeutics, Inc. | Intracranial stent |
US5690667A (en) | 1996-09-26 | 1997-11-25 | Target Therapeutics | Vasoocclusion coil having a polymer tip |
BR9604566A (pt) * | 1996-11-20 | 1998-09-01 | Aristides Lavini | Aperfeiçoamento em prótese de vaso |
WO1998025656A2 (en) | 1996-11-26 | 1998-06-18 | Medtronic, Inc. | System and methods for removing clots from fluid vessels |
US5807330A (en) | 1996-12-16 | 1998-09-15 | University Of Southern California | Angioplasty catheter |
US5925061A (en) | 1997-01-13 | 1999-07-20 | Gore Enterprise Holdings, Inc. | Low profile vascular stent |
US6241757B1 (en) | 1997-02-04 | 2001-06-05 | Solco Surgical Instrument Co., Ltd. | Stent for expanding body's lumen |
US5882329A (en) | 1997-02-12 | 1999-03-16 | Prolifix Medical, Inc. | Apparatus and method for removing stenotic material from stents |
US5814064A (en) | 1997-03-06 | 1998-09-29 | Scimed Life Systems, Inc. | Distal protection device |
US6152946A (en) | 1998-03-05 | 2000-11-28 | Scimed Life Systems, Inc. | Distal protection device and method |
US5911717A (en) | 1997-03-17 | 1999-06-15 | Precision Vascular Systems, Inc. | Catheter deliverable thrombogenic apparatus and method |
US5800454A (en) | 1997-03-17 | 1998-09-01 | Sarcos, Inc. | Catheter deliverable coiled wire thromboginic apparatus and method |
US6425915B1 (en) * | 1997-03-18 | 2002-07-30 | Endotex Interventional Systems, Inc. | Helical mesh endoprosthesis and methods of use |
US6451049B2 (en) | 1998-04-29 | 2002-09-17 | Sorin Biomedica Cardio, S.P.A. | Stents for angioplasty |
US5911734A (en) | 1997-05-08 | 1999-06-15 | Embol-X, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US5913895A (en) | 1997-06-02 | 1999-06-22 | Isostent, Inc. | Intravascular stent with enhanced rigidity strut members |
US5800525A (en) | 1997-06-04 | 1998-09-01 | Vascular Science, Inc. | Blood filter |
US5947995A (en) | 1997-06-06 | 1999-09-07 | Samuels; Shaun Lawrence Wilkie | Method and apparatus for removing blood clots and other objects |
US5848964A (en) | 1997-06-06 | 1998-12-15 | Samuels; Shaun Lawrence Wilkie | Temporary inflatable filter device and method of use |
US5904698A (en) | 1997-06-10 | 1999-05-18 | Applied Medical Resources Corporation | Surgical shaving device for use within body conduits |
US5916235A (en) | 1997-08-13 | 1999-06-29 | The Regents Of The University Of California | Apparatus and method for the use of detachable coils in vascular aneurysms and body cavities |
US6371696B1 (en) * | 1997-08-21 | 2002-04-16 | Russell James Eathorne | Pylon servicing apparatus |
US6156061A (en) | 1997-08-29 | 2000-12-05 | Target Therapeutics, Inc. | Fast-detaching electrically insulated implant |
US5984929A (en) | 1997-08-29 | 1999-11-16 | Target Therapeutics, Inc. | Fast detaching electronically isolated implant |
US5948016A (en) | 1997-09-25 | 1999-09-07 | Jang; G. David | Intravascular stent with non-parallel slots |
US6361545B1 (en) | 1997-09-26 | 2002-03-26 | Cardeon Corporation | Perfusion filter catheter |
JP3204379B2 (ja) * | 1997-09-29 | 2001-09-04 | エヌイーシーマイクロシステム株式会社 | 不揮発性半導体記憶装置 |
US6066149A (en) | 1997-09-30 | 2000-05-23 | Target Therapeutics, Inc. | Mechanical clot treatment device with distal filter |
US6099534A (en) | 1997-10-01 | 2000-08-08 | Scimed Life Systems, Inc. | Releasable basket |
US5893887A (en) * | 1997-10-14 | 1999-04-13 | Iowa-India Investments Company Limited | Stent for positioning at junction of bifurcated blood vessel and method of making |
DE29880158U1 (de) | 1997-11-07 | 2000-11-30 | Salviac Ltd | Embolieschutzgerät |
DE69839888D1 (de) | 1997-11-12 | 2008-09-25 | Genesis Technologies Llc | Vorrichtung zum entfernen von okklusionen in biologischen durchgängen |
US6443972B1 (en) | 1997-11-19 | 2002-09-03 | Cordis Europa N.V. | Vascular filter |
NL1007584C2 (nl) | 1997-11-19 | 1999-05-20 | Cordis Europ | Vena cava filter. |
FR2771921B1 (fr) | 1997-12-09 | 2000-03-24 | Jean Marie Lefebvre | Endoprothese en acier inoxydable destinee a etre implantee dans un conduit vasculaire au moyen d'un ballonnet gonflable |
US6129755A (en) | 1998-01-09 | 2000-10-10 | Nitinol Development Corporation | Intravascular stent having an improved strut configuration |
US6224626B1 (en) | 1998-02-17 | 2001-05-01 | Md3, Inc. | Ultra-thin expandable stent |
US6187017B1 (en) | 1998-02-17 | 2001-02-13 | Circon Corporation | Retrieval basket for a surgical device |
US6077260A (en) | 1998-02-19 | 2000-06-20 | Target Therapeutics, Inc. | Assembly containing an electrolytically severable joint for endovascular embolic devices |
US6063100A (en) | 1998-03-10 | 2000-05-16 | Cordis Corporation | Embolic coil deployment system with improved embolic coil |
CA2324012C (en) | 1998-03-20 | 2007-05-22 | Cook Urological Incorporated | Minimally invasive medical retrieval device |
CA2323623C (en) | 1998-03-27 | 2009-09-29 | Cook Urological Inc. | Minimally-invasive medical retrieval device |
US6887268B2 (en) * | 1998-03-30 | 2005-05-03 | Cordis Corporation | Extension prosthesis for an arterial repair |
US6520983B1 (en) | 1998-03-31 | 2003-02-18 | Scimed Life Systems, Inc. | Stent delivery system |
US6063111A (en) | 1998-03-31 | 2000-05-16 | Cordis Corporation | Stent aneurysm treatment system and method |
US20010029351A1 (en) * | 1998-04-16 | 2001-10-11 | Robert Falotico | Drug combinations and delivery devices for the prevention and treatment of vascular disease |
US6264687B1 (en) | 1998-04-20 | 2001-07-24 | Cordis Corporation | Multi-laminate stent having superelastic articulated sections |
US6450989B2 (en) | 1998-04-27 | 2002-09-17 | Artemis Medical, Inc. | Dilating and support apparatus with disease inhibitors and methods for use |
US6511492B1 (en) | 1998-05-01 | 2003-01-28 | Microvention, Inc. | Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders |
US7452371B2 (en) * | 1999-06-02 | 2008-11-18 | Cook Incorporated | Implantable vascular device |
US6241746B1 (en) | 1998-06-29 | 2001-06-05 | Cordis Corporation | Vascular filter convertible to a stent and method |
NL1009551C2 (nl) | 1998-07-03 | 2000-01-07 | Cordis Europ | Vena cava filter met verbeteringen voor beheerste ejectie. |
US6656218B1 (en) * | 1998-07-24 | 2003-12-02 | Micrus Corporation | Intravascular flow modifier and reinforcement device |
US6095990A (en) * | 1998-08-31 | 2000-08-01 | Parodi; Juan Carlos | Guiding device and method for inserting and advancing catheters and guidewires into a vessel of a patient in endovascular treatments |
US6277126B1 (en) | 1998-10-05 | 2001-08-21 | Cordis Neurovascular Inc. | Heated vascular occlusion coil development system |
US6277125B1 (en) | 1998-10-05 | 2001-08-21 | Cordis Neurovascular, Inc. | Embolic coil deployment system with retaining jaws |
US7128073B1 (en) | 1998-11-06 | 2006-10-31 | Ev3 Endovascular, Inc. | Method and device for left atrial appendage occlusion |
US6336937B1 (en) | 1998-12-09 | 2002-01-08 | Gore Enterprise Holdings, Inc. | Multi-stage expandable stent-graft |
US6179857B1 (en) | 1999-02-22 | 2001-01-30 | Cordis Corporation | Stretch resistant embolic coil with variable stiffness |
US6146396A (en) | 1999-03-05 | 2000-11-14 | Board Of Regents, The University Of Texas System | Declotting method and apparatus |
US6428558B1 (en) | 1999-03-10 | 2002-08-06 | Cordis Corporation | Aneurysm embolization device |
US6379329B1 (en) | 1999-06-02 | 2002-04-30 | Cordis Neurovascular, Inc. | Detachable balloon embolization device and method |
US6458139B1 (en) | 1999-06-21 | 2002-10-01 | Endovascular Technologies, Inc. | Filter/emboli extractor for use in variable sized blood vessels |
DE69913746T2 (de) * | 1999-08-27 | 2004-10-07 | Ev3 Inc | Verschiebbarer vaskulärer filter |
US6454775B1 (en) | 1999-12-06 | 2002-09-24 | Bacchus Vascular Inc. | Systems and methods for clot disruption and retrieval |
US6325815B1 (en) | 1999-09-21 | 2001-12-04 | Microvena Corporation | Temporary vascular filter |
US20010047200A1 (en) * | 1999-10-13 | 2001-11-29 | Raymond Sun | Non-foreshortening intraluminal prosthesis |
US6190394B1 (en) | 1999-11-05 | 2001-02-20 | Annex Medical, Inc. | Medical retrieval basket |
US6264671B1 (en) | 1999-11-15 | 2001-07-24 | Advanced Cardiovascular Systems, Inc. | Stent delivery catheter and method of use |
US6585758B1 (en) * | 1999-11-16 | 2003-07-01 | Scimed Life Systems, Inc. | Multi-section filamentary endoluminal stent |
US6443971B1 (en) | 1999-12-21 | 2002-09-03 | Advanced Cardiovascular Systems, Inc. | System for, and method of, blocking the passage of emboli through a vessel |
WO2001045566A1 (en) | 1999-12-22 | 2001-06-28 | Markman Barry S | Device and method for inserting implants into tissue |
US6660021B1 (en) | 1999-12-23 | 2003-12-09 | Advanced Cardiovascular Systems, Inc. | Intravascular device and system |
US6402771B1 (en) | 1999-12-23 | 2002-06-11 | Guidant Endovascular Solutions | Snare |
US6575997B1 (en) | 1999-12-23 | 2003-06-10 | Endovascular Technologies, Inc. | Embolic basket |
US20040010308A1 (en) * | 2000-01-18 | 2004-01-15 | Mindguard Ltd. | Implantable composite device and corresponding method for deflecting embolic material in blood flowing at an arterial bifurcation |
US6312463B1 (en) * | 2000-02-01 | 2001-11-06 | Endotex Interventional Systems, Inc. | Micro-porous mesh stent with hybrid structure |
US6514273B1 (en) | 2000-03-22 | 2003-02-04 | Endovascular Technologies, Inc. | Device for removal of thrombus through physiological adhesion |
US6468301B1 (en) | 2000-03-27 | 2002-10-22 | Aga Medical Corporation | Repositionable and recapturable vascular stent/graft |
US20010031981A1 (en) | 2000-03-31 | 2001-10-18 | Evans Michael A. | Method and device for locating guidewire and treating chronic total occlusions |
US7517352B2 (en) | 2000-04-07 | 2009-04-14 | Bacchus Vascular, Inc. | Devices for percutaneous remote endarterectomy |
US6702843B1 (en) | 2000-04-12 | 2004-03-09 | Scimed Life Systems, Inc. | Stent delivery means with balloon retraction means |
US7285126B2 (en) | 2000-06-29 | 2007-10-23 | Concentric Medical, Inc. | Systems, methods and devices for removing obstructions from a blood vessel |
EP1296728A4 (en) | 2000-06-29 | 2009-09-09 | Concentric Medical Inc | SYSTEMS, METHODS, AND DEVICES FOR REMOVING BLOCADES FROM A BLOOD VESSEL |
US7727242B2 (en) | 2000-06-29 | 2010-06-01 | Concentric Medical, Inc. | Systems, methods and devices for removing obstructions from a blood vessel |
US6663650B2 (en) | 2000-06-29 | 2003-12-16 | Concentric Medical, Inc. | Systems, methods and devices for removing obstructions from a blood vessel |
US7766921B2 (en) | 2000-06-29 | 2010-08-03 | Concentric Medical, Inc. | Systems, methods and devices for removing obstructions from a blood vessel |
US20070208371A1 (en) | 2000-06-29 | 2007-09-06 | Concentric Medical, Inc. | Devices and methods for removing obstructions from a patient and methods for making obstruction removing devices |
US6730104B1 (en) | 2000-06-29 | 2004-05-04 | Concentric Medical, Inc. | Methods and devices for removing an obstruction from a blood vessel |
US6572648B1 (en) | 2000-06-30 | 2003-06-03 | Vascular Architects, Inc. | Endoluminal prosthesis and tissue separation condition treatment method |
US6974473B2 (en) | 2000-06-30 | 2005-12-13 | Vascular Architects, Inc. | Function-enhanced thrombolytic AV fistula and method |
US20020016597A1 (en) * | 2000-08-02 | 2002-02-07 | Dwyer Clifford J. | Delivery apparatus for a self-expanding stent |
US6554849B1 (en) | 2000-09-11 | 2003-04-29 | Cordis Corporation | Intravascular embolization device |
US6723108B1 (en) | 2000-09-18 | 2004-04-20 | Cordis Neurovascular, Inc | Foam matrix embolization device |
US6679893B1 (en) | 2000-11-16 | 2004-01-20 | Chestnut Medical Technologies, Inc. | Grasping device and method of use |
JP5102931B2 (ja) | 2001-01-09 | 2012-12-19 | マイクロベンション インコーポレイテッド | 塞栓摘出用カテーテルおよび該カテーテルを有するシステム |
DE60225241T2 (de) | 2001-01-16 | 2009-02-19 | Cordis Neurovascular, Inc., Miami Lakes | Entfernbare, selbstexpandierende aneurysma-abdeckungsvorrichtung |
DE10118944B4 (de) * | 2001-04-18 | 2013-01-31 | Merit Medical Systems, Inc. | Entfernbare, im wesentlichen zylindrische Implantate |
US6716238B2 (en) * | 2001-05-10 | 2004-04-06 | Scimed Life Systems, Inc. | Stent with detachable tethers and method of using same |
US6953468B2 (en) | 2001-06-13 | 2005-10-11 | Cordis Neurovascular, Inc. | Occluding vasculature of a patient using embolic coil with improved platelet adhesion |
US6818013B2 (en) | 2001-06-14 | 2004-11-16 | Cordis Corporation | Intravascular stent device |
US6673106B2 (en) | 2001-06-14 | 2004-01-06 | Cordis Neurovascular, Inc. | Intravascular stent device |
US6702782B2 (en) | 2001-06-26 | 2004-03-09 | Concentric Medical, Inc. | Large lumen balloon catheter |
ES2294002T3 (es) | 2001-06-28 | 2008-04-01 | Lithotech Medical Ltd | Dispositivo de recuperacion de cuerpos extraños. |
JP4567918B2 (ja) | 2001-07-02 | 2010-10-27 | テルモ株式会社 | 血管内異物除去用ワイヤおよび医療器具 |
US6551342B1 (en) * | 2001-08-24 | 2003-04-22 | Endovascular Technologies, Inc. | Embolic filter |
US6811560B2 (en) | 2001-09-20 | 2004-11-02 | Cordis Neurovascular, Inc. | Stent aneurysm embolization method and device |
US6878151B2 (en) | 2001-09-27 | 2005-04-12 | Scimed Life Systems, Inc. | Medical retrieval device |
US7052500B2 (en) | 2001-10-19 | 2006-05-30 | Scimed Life Systems, Inc. | Embolus extractor |
US7749243B2 (en) | 2001-10-19 | 2010-07-06 | Boston Scientific Scimed, Inc. | Embolus extractor |
AU2002350164A1 (en) * | 2001-11-08 | 2003-05-19 | William D. Hare | Rapid exchange catheter with stent deployment, therapeutic infusion, and lesion sampling features |
US6989020B2 (en) | 2001-11-15 | 2006-01-24 | Cordis Neurovascular, Inc. | Embolic coil retrieval system |
US7351255B2 (en) | 2001-12-03 | 2008-04-01 | Xtent, Inc. | Stent delivery apparatus and method |
US6893413B2 (en) * | 2002-01-07 | 2005-05-17 | Eric C. Martin | Two-piece stent combination for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium |
US20040068314A1 (en) * | 2002-01-16 | 2004-04-08 | Jones Donald K. | Detachable self -expanding aneurysm cover device |
US7195648B2 (en) | 2002-05-16 | 2007-03-27 | Cordis Neurovascular, Inc. | Intravascular stent device |
US7549974B2 (en) | 2002-06-01 | 2009-06-23 | The Board Of Trustees Of The Leland Stanford Junior University | Device and method for medical interventions of body lumens |
US6833003B2 (en) | 2002-06-24 | 2004-12-21 | Cordis Neurovascular | Expandable stent and delivery system |
US7485122B2 (en) | 2002-06-27 | 2009-02-03 | Boston Scientific Scimed, Inc. | Integrated anchor coil in stretch-resistant vaso-occlusive coils |
DE10233085B4 (de) | 2002-07-19 | 2014-02-20 | Dendron Gmbh | Stent mit Führungsdraht |
US7058456B2 (en) | 2002-08-09 | 2006-06-06 | Concentric Medical, Inc. | Methods and devices for changing the shape of a medical device |
US7001422B2 (en) | 2002-09-23 | 2006-02-21 | Cordis Neurovascular, Inc | Expandable stent and delivery system |
US7481821B2 (en) | 2002-11-12 | 2009-01-27 | Thomas J. Fogarty | Embolization device and a method of using the same |
US7316692B2 (en) | 2003-08-12 | 2008-01-08 | Boston Scientific Scimed, Inc. | Laser-cut clot puller |
US7785653B2 (en) | 2003-09-22 | 2010-08-31 | Innovational Holdings Llc | Method and apparatus for loading a beneficial agent into an expandable medical device |
US7344550B2 (en) | 2003-10-21 | 2008-03-18 | Boston Scientific Scimed, Inc. | Clot removal device |
US7294123B2 (en) | 2003-12-17 | 2007-11-13 | Corris Neurovascular, Inc. | Activatable bioactive vascular occlusive device and method of use |
US20070179513A1 (en) | 2004-01-09 | 2007-08-02 | Deutsch Harvey L | Method and device for removing an occlusion |
US7338512B2 (en) | 2004-01-22 | 2008-03-04 | Rex Medical, L.P. | Vein filter |
US9655633B2 (en) | 2004-09-10 | 2017-05-23 | Penumbra, Inc. | System and method for treating ischemic stroke |
US7931659B2 (en) | 2004-09-10 | 2011-04-26 | Penumbra, Inc. | System and method for treating ischemic stroke |
US20060085065A1 (en) | 2004-10-15 | 2006-04-20 | Krause Arthur A | Stent with auxiliary treatment structure |
US7147659B2 (en) | 2004-10-28 | 2006-12-12 | Cordis Neurovascular, Inc. | Expandable stent having a dissolvable portion |
US7156871B2 (en) | 2004-10-28 | 2007-01-02 | Cordis Neurovascular, Inc. | Expandable stent having a stabilized portion |
US8109941B2 (en) | 2005-02-28 | 2012-02-07 | Boston Scientific Scimed, Inc. | Distal release retrieval assembly and related methods of use |
US7955345B2 (en) | 2005-04-01 | 2011-06-07 | Nexgen Medical Systems, Inc. | Thrombus removal system and process |
US7371252B2 (en) | 2005-06-02 | 2008-05-13 | Cordis Neurovascular, Inc. | Stretch resistant embolic coil delivery system with mechanical release mechanism |
US7377932B2 (en) | 2005-06-02 | 2008-05-27 | Cordis Neurovascular, Inc. | Embolic coil delivery system with mechanical release mechanism |
US7367987B2 (en) | 2005-06-02 | 2008-05-06 | Cordis Neurovascular, Inc. | Stretch resistant embolic coil delivery system with mechanical release mechanism |
US7371251B2 (en) | 2005-06-02 | 2008-05-13 | Cordis Neurovascular, Inc. | Stretch resistant embolic coil delivery system with mechanical release mechanism |
US7357809B2 (en) | 2005-06-30 | 2008-04-15 | Cordis Neurovascular, Inc. | Chemically based vascular occlusion device deployment with gripping feature |
CN101400309B (zh) | 2006-02-01 | 2012-05-09 | 克利夫兰临床医学基金会 | 用于增加通过被阻塞血管的血流的方法和设备 |
US20070225749A1 (en) | 2006-02-03 | 2007-09-27 | Martin Brian B | Methods and devices for restoring blood flow within blocked vasculature |
US7344558B2 (en) | 2006-02-28 | 2008-03-18 | Cordis Development Corporation | Embolic device delivery system |
US7582101B2 (en) | 2006-02-28 | 2009-09-01 | Cordis Development Corporation | Heated mechanical detachment for delivery of therapeutic devices |
DE602007003871D1 (de) | 2006-03-06 | 2010-02-04 | Terumo Corp | Atherektomiekatheter |
US7553321B2 (en) | 2006-03-31 | 2009-06-30 | Cordis Development Corporation | Chemically based vascular occlusion device deployment |
US20070266542A1 (en) | 2006-05-08 | 2007-11-22 | Cook Incorporated | Radiopaque marker for intraluminal medical device |
US20070288038A1 (en) | 2006-06-13 | 2007-12-13 | Frank Bimbo | Medical Retrieval Devices and Methods |
US20080082107A1 (en) | 2006-07-21 | 2008-04-03 | John Miller | Devices and methods for removing obstructions from a cerebral vessel |
US20080269774A1 (en) | 2006-10-26 | 2008-10-30 | Chestnut Medical Technologies, Inc. | Intracorporeal Grasping Device |
CN101578070A (zh) | 2006-10-26 | 2009-11-11 | 切斯纳特医学技术公司 | 体内抓取装置 |
US10064635B2 (en) | 2007-04-17 | 2018-09-04 | Covidien Lp | Articulating retrieval devices |
US8066757B2 (en) | 2007-10-17 | 2011-11-29 | Mindframe, Inc. | Blood flow restoration and thrombus management methods |
US20100174309A1 (en) | 2008-05-19 | 2010-07-08 | Mindframe, Inc. | Recanalization/revascularization and embolus addressing systems including expandable tip neuro-microcatheter |
US20090163851A1 (en) | 2007-12-19 | 2009-06-25 | Holloway Kenneth A | Occlusive material removal device having selectively variable stiffness |
EP2254485B1 (en) | 2008-02-22 | 2017-08-30 | Covidien LP | Apparatus for flow restoration |
CN106974691A (zh) | 2008-05-02 | 2017-07-25 | 斯昆特医疗公司 | 用于治疗血管缺损的丝状装置 |
EP2346431A4 (en) | 2008-11-03 | 2012-10-03 | Univ Ben Gurion | METHOD AND DEVICE FOR THROMBUS RESOLUTION / THROMBECTOMY THROUGH AN ELECTRODE CATHETER DEVICE |
US8357179B2 (en) | 2009-07-08 | 2013-01-22 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
CA2777841C (en) | 2009-11-02 | 2017-01-17 | Francis M. Creighton | Magnetomotive stator system and methods for wireless control of magnetic rotors |
US9039749B2 (en) | 2010-10-01 | 2015-05-26 | Covidien Lp | Methods and apparatuses for flow restoration and implanting members in the human body |
US8603014B2 (en) | 2010-10-05 | 2013-12-10 | Cerevast Therapeutics, Inc. | Hands-free operator-independent transcranial ultrasound apparatus and methods |
DE102010051740A1 (de) | 2010-11-19 | 2012-05-24 | Phenox Gmbh | Thrombektomievorrichtung |
DE102011101522A1 (de) | 2011-05-13 | 2012-11-15 | Phenox Gmbh | Thrombektomievorrichtung |
US11026708B2 (en) | 2011-07-26 | 2021-06-08 | Thrombx Medical, Inc. | Intravascular thromboembolectomy device and method using the same |
US10779855B2 (en) | 2011-08-05 | 2020-09-22 | Route 92 Medical, Inc. | Methods and systems for treatment of acute ischemic stroke |
US11311332B2 (en) | 2011-08-23 | 2022-04-26 | Magneto Thrombectomy Solutions Ltd. | Thrombectomy devices |
US8837800B1 (en) | 2011-10-28 | 2014-09-16 | The Board Of Trustees Of The Leland Stanford Junior University | Automated detection of arterial input function and/or venous output function voxels in medical imaging |
JP5907821B2 (ja) | 2012-06-26 | 2016-04-26 | 浜松ホトニクス株式会社 | 血栓除去装置 |
US9211132B2 (en) | 2012-06-27 | 2015-12-15 | MicoVention, Inc. | Obstruction removal system |
US9445828B2 (en) | 2012-07-05 | 2016-09-20 | Cognition Medical Corp. | Methods, devices, and systems for postconditioning with clot removal |
WO2014028528A1 (en) | 2012-08-13 | 2014-02-20 | Microvention, Inc. | Shaped removal device |
US9204887B2 (en) | 2012-08-14 | 2015-12-08 | W. L. Gore & Associates, Inc. | Devices and systems for thrombus treatment |
US9539022B2 (en) | 2012-11-28 | 2017-01-10 | Microvention, Inc. | Matter conveyance system |
US9585741B2 (en) | 2013-02-22 | 2017-03-07 | NeuroVasc Technologies, Inc | Embolus removal device with blood flow restriction and related methods |
US9642635B2 (en) | 2013-03-13 | 2017-05-09 | Neuravi Limited | Clot removal device |
US20140276074A1 (en) | 2013-03-13 | 2014-09-18 | W.L. Gore & Associates, Inc. | Flexible Driveshafts with Bi-Directionally Balanced Torsional Stiffness Properties |
US10201360B2 (en) | 2013-03-14 | 2019-02-12 | Neuravi Limited | Devices and methods for removal of acute blockages from blood vessels |
US9433429B2 (en) | 2013-03-14 | 2016-09-06 | Neuravi Limited | Clot retrieval devices |
ES2960917T3 (es) | 2013-03-14 | 2024-03-07 | Neuravi Ltd | Dispositivo de recuperación de coágulos para eliminar coágulos oclusivos de un vaso sanguíneo |
JP6098939B2 (ja) | 2013-04-08 | 2017-03-22 | 株式会社Gsユアサ | 蓄電モジュール |
JP6450752B2 (ja) | 2013-06-28 | 2019-01-09 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 画像誘導超音波血栓溶解のためのトランスデューサ配置及び位置合わせ |
US9265512B2 (en) | 2013-12-23 | 2016-02-23 | Silk Road Medical, Inc. | Transcarotid neurovascular catheter |
JP6246004B2 (ja) | 2014-01-30 | 2017-12-13 | キヤノン株式会社 | 固体撮像装置 |
JP6495241B2 (ja) | 2014-03-11 | 2019-04-03 | テルモ株式会社 | 医療用具の製造方法および医療用具 |
WO2015141317A1 (ja) | 2014-03-20 | 2015-09-24 | テルモ株式会社 | 異物除去用デバイス |
US9241699B1 (en) | 2014-09-04 | 2016-01-26 | Silk Road Medical, Inc. | Methods and devices for transcarotid access |
US10792056B2 (en) | 2014-06-13 | 2020-10-06 | Neuravi Limited | Devices and methods for removal of acute blockages from blood vessels |
US10441301B2 (en) | 2014-06-13 | 2019-10-15 | Neuravi Limited | Devices and methods for removal of acute blockages from blood vessels |
US10315007B2 (en) | 2014-07-15 | 2019-06-11 | Stryker Corporation | Vascular access system and method of use |
US9801643B2 (en) | 2014-09-02 | 2017-10-31 | Cook Medical Technologies Llc | Clot retrieval catheter |
KR101530828B1 (ko) | 2014-09-23 | 2015-06-24 | 윤성원 | 혈전제거 및 혈류 재개통용 혈관내 기구 |
WO2016089664A1 (en) | 2014-12-03 | 2016-06-09 | Stryker European Holdings I, Llc | Apparatus and methods for removing an obstruction form a bodily duct of a patient |
US10518066B2 (en) | 2015-01-09 | 2019-12-31 | Mivi Neuroscience, Inc. | Medical guidewires for tortuous vessels |
JP6943768B2 (ja) | 2015-03-30 | 2021-10-06 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 超音波血栓溶解処置およびモニタリングのための超音波トランスデューサ・アレイ |
ES2759930T3 (es) | 2015-04-10 | 2020-05-12 | Silk Road Medical Inc | Métodos y sistemas para establecer un flujo sanguíneo arterial carotídeo retrógrado |
JP6682555B2 (ja) | 2015-04-16 | 2020-04-15 | ストライカー コーポレイションStryker Corporation | 塞栓除去装置及び方法 |
US10912608B2 (en) | 2015-06-06 | 2021-02-09 | The Hong Kong University Of Science And Technology | Radio frequency electro-thrombectomy device |
ES2716926T3 (es) | 2015-09-21 | 2019-06-18 | Stryker Corp | Dispositivos de embolectomía |
US10292804B2 (en) | 2015-09-21 | 2019-05-21 | Stryker Corporation | Embolectomy devices |
US20170100143A1 (en) | 2015-10-07 | 2017-04-13 | Stryker Corporation | Multiple barrel clot removal devices |
US10485564B2 (en) | 2015-12-14 | 2019-11-26 | Mg Stroke Analytics Inc. | Systems and methods to improve perfusion pressure during endovascular intervention |
JP7032328B2 (ja) | 2016-02-10 | 2022-03-08 | マイクロベンション インコーポレイテッド | 血管内治療部位アクセス |
US10252024B2 (en) | 2016-04-05 | 2019-04-09 | Stryker Corporation | Medical devices and methods of manufacturing same |
US20200246036A1 (en) | 2016-05-06 | 2020-08-06 | Mayo Foundation For Medical Education And Research | Internal carotid artery thrombectomy devices and methods |
WO2018019829A1 (en) | 2016-07-26 | 2018-02-01 | Neuravi Limited | A clot retrieval system for removing occlusive clot from a blood vessel |
WO2018033401A1 (en) | 2016-08-17 | 2018-02-22 | Neuravi Limited | A clot retrieval system for removing occlusive clot from a blood vessel |
JP7046924B2 (ja) | 2016-09-06 | 2022-04-04 | ニューラヴィ・リミテッド | 血管から閉塞性血塊を除去するための血塊回収装置 |
US9993257B2 (en) | 2016-09-07 | 2018-06-12 | NeuroVarc Technologies Inc. | Clot retrieval device for ischemic stroke treatment |
JP6804916B2 (ja) | 2016-09-27 | 2020-12-23 | 浜松ホトニクス株式会社 | モニタ装置及びモニタ装置の作動方法 |
CN110662494A (zh) | 2016-11-16 | 2020-01-07 | O·O·扎伊达特 | 用于吞没血栓的系统和设备 |
EP4353164A3 (en) | 2016-11-23 | 2024-06-19 | Microvention, Inc. | Obstruction removal system |
US10709466B2 (en) | 2016-11-23 | 2020-07-14 | Microvention, Inc. | Obstruction removal system |
US10932802B2 (en) | 2017-01-26 | 2021-03-02 | Mg Stroke Analytics Inc. | Thrombus retrieval stents and methods of using for treatment of ischemic stroke |
US20190209189A1 (en) | 2017-01-26 | 2019-07-11 | Mayank Goyal | Thrombus retrieval stents and methods of using for treatment of ischemic stroke |
WO2018145212A1 (en) | 2017-02-09 | 2018-08-16 | Goyal Mayank | Catheter systems for accessing the brain for treatment of ischemic stroke |
ES2800498T3 (es) | 2017-02-24 | 2020-12-30 | Stryker Corp | Dispositivo de embolectomía con múltiples estructuras semitubulares para enganchar coágulos |
KR102024425B1 (ko) | 2017-03-08 | 2019-11-14 | 대구가톨릭대학교산학협력단 | 전자기장 발생 및 제어를 이용한 혈전제거 장치 |
JP7096600B2 (ja) | 2017-03-22 | 2022-07-06 | マグネト スロムベクトミィ ソリューションズ リミテッド | 静電気力と吸引力の両方を使用した血栓切除 |
JP7449222B2 (ja) | 2017-04-07 | 2024-03-13 | パルメラ メディカル、インコーポレイテッド | 治療上の器官冷却 |
JP6727245B2 (ja) | 2018-04-25 | 2020-07-22 | 浜松ホトニクス株式会社 | レーザ血栓溶解装置 |
-
2002
- 2002-07-19 DE DE10233085.9A patent/DE10233085B4/de not_active Expired - Lifetime
-
2003
- 2003-07-21 JP JP2004522529A patent/JP4919217B2/ja not_active Expired - Fee Related
- 2003-07-21 EP EP03765067.8A patent/EP1542617B1/de not_active Expired - Lifetime
- 2003-07-21 CA CA002492978A patent/CA2492978A1/en not_active Abandoned
- 2003-07-21 WO PCT/EP2003/007926 patent/WO2004008991A1/de active Application Filing
- 2003-07-21 ES ES14172529.1T patent/ES2552907T3/es not_active Expired - Lifetime
- 2003-07-21 EP EP15190138.6A patent/EP2995282B1/de not_active Expired - Lifetime
- 2003-07-21 EP EP14172529.1A patent/EP2781196B1/de not_active Expired - Lifetime
- 2003-07-21 EP EP11187263.6A patent/EP2415424B1/de not_active Expired - Lifetime
- 2003-07-21 ES ES15190138.6T patent/ES2641502T3/es not_active Expired - Lifetime
- 2003-07-21 ES ES11187263.6T patent/ES2527836T3/es not_active Expired - Lifetime
- 2003-07-21 AU AU2003254553A patent/AU2003254553A1/en not_active Abandoned
-
2005
- 2005-01-19 US US11/039,066 patent/US7300458B2/en not_active Expired - Lifetime
-
2007
- 2007-11-05 US US11/935,252 patent/US8632584B2/en active Active
-
2010
- 2010-07-02 JP JP2010151885A patent/JP5091985B2/ja not_active Expired - Fee Related
-
2013
- 2013-12-20 US US14/136,281 patent/US10342683B2/en not_active Expired - Lifetime
-
2019
- 2019-05-23 US US16/420,814 patent/US11426293B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996028116A1 (en) * | 1995-03-10 | 1996-09-19 | Cardiovascular Concepts, Inc. | Tubular endoluminar prosthesis having oblique ends |
US6264686B1 (en) * | 1995-08-24 | 2001-07-24 | RIEU RéGIS | Intravascular stent intended in particular for angioplasty |
DE19703482A1 (de) | 1997-01-31 | 1998-08-06 | Ernst Peter Prof Dr M Strecker | Stent |
WO2001032099A2 (en) * | 1999-10-25 | 2001-05-10 | Endotex Interventional Systems, Inc. | Stretchable anti-buckling coiled-sheet stent |
DE10010840A1 (de) | 1999-10-30 | 2001-09-20 | Dendron Gmbh | Vorrichtung zur Implantation von Occlusionswendeln |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8632584B2 (en) | 2002-07-19 | 2014-01-21 | Dendron Gmbh | Medical implant having a curlable matrix structure and method of use |
US10342683B2 (en) | 2002-07-19 | 2019-07-09 | Ussc Medical Gmbh | Medical implant having a curlable matrix structure and method of use |
US11426293B2 (en) | 2002-07-19 | 2022-08-30 | Ussc Medical Gmbh | Medical implant |
EP1600121A1 (en) * | 2004-05-25 | 2005-11-30 | William Cook Europe ApS | Stent and stent retrieval system; and a method of pulling a stent into a tubular member |
DE102007048794A1 (de) | 2007-10-10 | 2009-04-16 | Phenox Gmbh | Aspirationskatheter |
US11337714B2 (en) | 2007-10-17 | 2022-05-24 | Covidien Lp | Restoring blood flow and clot removal during acute ischemic stroke |
US10413310B2 (en) | 2007-10-17 | 2019-09-17 | Covidien Lp | Restoring blood flow and clot removal during acute ischemic stroke |
US9161766B2 (en) | 2008-02-22 | 2015-10-20 | Covidien Lp | Methods and apparatus for flow restoration |
US10456151B2 (en) | 2008-02-22 | 2019-10-29 | Covidien Lp | Methods and apparatus for flow restoration |
US11529156B2 (en) | 2008-02-22 | 2022-12-20 | Covidien Lp | Methods and apparatus for flow restoration |
US8940003B2 (en) | 2008-02-22 | 2015-01-27 | Covidien Lp | Methods and apparatus for flow restoration |
US8679142B2 (en) | 2008-02-22 | 2014-03-25 | Covidien Lp | Methods and apparatus for flow restoration |
US10722255B2 (en) | 2008-12-23 | 2020-07-28 | Covidien Lp | Systems and methods for removing obstructive matter from body lumens and treating vascular defects |
EP2208483A1 (en) * | 2009-01-19 | 2010-07-21 | Achieva Medical (Shanghai) Co., Ltd. | Delivery apparatus for a retractable self expanding neurovascular stent and its use |
US8357179B2 (en) | 2009-07-08 | 2013-01-22 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US8529596B2 (en) | 2009-07-08 | 2013-09-10 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
EP2451378A4 (en) * | 2009-07-08 | 2015-10-28 | Concentric Medical Inc | DEVICES AND METHODS FOR TREATING VASCULAR AND PERSONAL CONDUITS |
US8795345B2 (en) | 2009-07-08 | 2014-08-05 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US8795317B2 (en) | 2009-07-08 | 2014-08-05 | Concentric Medical, Inc. | Embolic obstruction retrieval devices and methods |
US8357178B2 (en) | 2009-07-08 | 2013-01-22 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US9044263B2 (en) | 2009-07-08 | 2015-06-02 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US9072537B2 (en) | 2009-07-08 | 2015-07-07 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
WO2011066962A1 (de) * | 2009-12-01 | 2011-06-09 | Acandis Gmbh & Co. Kg | Medizinische vorrichtung |
WO2011110356A1 (de) * | 2010-03-10 | 2011-09-15 | Acandis Gmbh & Co. Kg | Medizinische vorrichtung zum entfernen von konkrementen aus körperhohlorganen und verfahren zum herstellen einer derartigen vorrichtung |
US10426644B2 (en) | 2010-10-01 | 2019-10-01 | Covidien Lp | Methods and apparatuses for flow restoration and implanting members in the human body |
US9039749B2 (en) | 2010-10-01 | 2015-05-26 | Covidien Lp | Methods and apparatuses for flow restoration and implanting members in the human body |
WO2012065748A1 (de) | 2010-11-19 | 2012-05-24 | Phenox Gmbh | Thrombektomievorrichtung |
DE102010051740A1 (de) | 2010-11-19 | 2012-05-24 | Phenox Gmbh | Thrombektomievorrichtung |
WO2012101159A1 (de) * | 2011-01-25 | 2012-08-02 | Acandis Gmbh & Co.Kg | Medizinische vorrichtung mit einer gitterstruktur und ein behandlungsystem mit einer derartigen gitterstruktur |
WO2012126905A1 (de) * | 2011-03-21 | 2012-09-27 | Acandis Gmbh & Co. Kg | Medizinische vorrichtung zur behandlung von körperhohlorganen, system mit einer derartigen vorrichtung und verfahren zur herstellung einer derartigen vorrichtung |
DE102011101522A1 (de) | 2011-05-13 | 2012-11-15 | Phenox Gmbh | Thrombektomievorrichtung |
WO2012156069A1 (de) | 2011-05-13 | 2012-11-22 | Phenox Gmbh | Thornbektromievorrichtung |
CN103547224A (zh) * | 2011-05-13 | 2014-01-29 | 菲诺克斯有限公司 | 取栓设备 |
US11304712B2 (en) | 2013-09-13 | 2022-04-19 | Covidien Lp | Endovascular device engagement |
US10076399B2 (en) | 2013-09-13 | 2018-09-18 | Covidien Lp | Endovascular device engagement |
US10052185B2 (en) | 2016-02-12 | 2018-08-21 | Covidien Lp | Vascular device marker attachment |
US10799332B2 (en) | 2016-02-12 | 2020-10-13 | Covidien Lp | Vascular device marker attachment |
US11045215B2 (en) | 2016-02-12 | 2021-06-29 | Covidien Lp | Vascular device visibility |
US10265089B2 (en) | 2016-02-12 | 2019-04-23 | Covidien Lp | Vascular device visibility |
US11801116B2 (en) | 2016-02-12 | 2023-10-31 | Covidien Lp | Vascular device marker attachment |
Also Published As
Publication number | Publication date |
---|---|
EP2781196B1 (de) | 2015-10-14 |
DE10233085A1 (de) | 2004-01-29 |
EP2995282B1 (de) | 2017-07-05 |
EP2415424A3 (de) | 2013-10-02 |
ES2552907T3 (es) | 2015-12-03 |
JP5091985B2 (ja) | 2012-12-05 |
US20080125855A1 (en) | 2008-05-29 |
EP2415424B1 (de) | 2014-11-26 |
CA2492978A1 (en) | 2004-01-29 |
EP1542617B1 (de) | 2016-09-14 |
EP1542617A1 (de) | 2005-06-22 |
JP2005532887A (ja) | 2005-11-04 |
AU2003254553A1 (en) | 2004-02-09 |
US7300458B2 (en) | 2007-11-27 |
US20140371839A1 (en) | 2014-12-18 |
EP2781196A3 (de) | 2014-11-12 |
EP2995282A1 (de) | 2016-03-16 |
JP4919217B2 (ja) | 2012-04-18 |
US11426293B2 (en) | 2022-08-30 |
EP2415424A2 (de) | 2012-02-08 |
US10342683B2 (en) | 2019-07-09 |
US20190307585A1 (en) | 2019-10-10 |
ES2527836T3 (es) | 2015-01-30 |
JP2010264261A (ja) | 2010-11-25 |
US20050209678A1 (en) | 2005-09-22 |
US8632584B2 (en) | 2014-01-21 |
ES2641502T3 (es) | 2017-11-10 |
EP2781196A8 (de) | 2014-12-24 |
EP2781196A2 (de) | 2014-09-24 |
DE10233085B4 (de) | 2014-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2781196B1 (de) | Stent mit Führungsdraht | |
EP2613743B1 (de) | Implantat zur beeinflussung des blutflusses bei arteriovenösen fehlbildungen | |
EP2134302B1 (de) | Implantat zur beeinflussung des blutflusses | |
EP3834780B1 (de) | Stent zum schienen einer vene und system zum setzen eines stents | |
DE60313736T2 (de) | Prothese implantierbar in darmgefässe | |
DE602004012037T2 (de) | Abdeckvorrichtung für einen Aneurysemhals | |
EP2698130B1 (de) | Verfahren zum Herstellen eines Körperimplantats | |
WO2012156069A1 (de) | Thornbektromievorrichtung | |
EP3463206B1 (de) | Vasospasmusbehandlung | |
WO2016139357A1 (de) | Implantateinführsystem | |
EP3041439B9 (de) | Einführ- und ablösesystem für implantate | |
WO2019174988A1 (de) | Thrombektomievorrichtung | |
DE10301850B4 (de) | Stent | |
DE102018133285B4 (de) | Medizinische Vorrichtung, insbesondere Stent, und Set mit einer solchen Vorrichtung | |
DE10301600A1 (de) | Kombination von Stents | |
DE10362420B3 (de) | Stent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2492978 Country of ref document: CA Ref document number: 2004522529 Country of ref document: JP |
|
REEP | Request for entry into the european phase |
Ref document number: 2003765067 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003765067 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2003765067 Country of ref document: EP |