WO2003106539A1 - 生分解性樹脂、生分解性樹脂組成物、生分解性成形体、生分解性樹脂の製造方法 - Google Patents

生分解性樹脂、生分解性樹脂組成物、生分解性成形体、生分解性樹脂の製造方法 Download PDF

Info

Publication number
WO2003106539A1
WO2003106539A1 PCT/JP2003/007594 JP0307594W WO03106539A1 WO 2003106539 A1 WO2003106539 A1 WO 2003106539A1 JP 0307594 W JP0307594 W JP 0307594W WO 03106539 A1 WO03106539 A1 WO 03106539A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
biodegradable resin
functional group
biodegradable
functional
Prior art date
Application number
PCT/JP2003/007594
Other languages
English (en)
French (fr)
Inventor
井上 和彦
山城 緑
位地 正年
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to AU2003241667A priority Critical patent/AU2003241667A1/en
Priority to EP03736219A priority patent/EP1541616B1/en
Priority to JP2004513363A priority patent/JP4120832B2/ja
Priority to US10/518,859 priority patent/US8258254B2/en
Priority to DE60331745T priority patent/DE60331745D1/de
Publication of WO2003106539A1 publication Critical patent/WO2003106539A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/247Heating methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/40Chemical modification of a polymer taking place solely at one end or both ends of the polymer backbone, i.e. not in the side or lateral chains

Definitions

  • Biodegradable resin biodegradable resin composition, biodegradable molded product
  • the present invention relates to a biodegradable resin and a resin composition which facilitates material recycling by using a thermoreversible cross-linking method, is excellent in heat resistance and molding processability, and a production method thereof.
  • Plastics are widely used in a wide range of industrial fields because of their excellent properties such as easy shaping, light weight, low cost, and low corrosion resistance. However, due to its non-corrosive nature, used plastics are not decomposed even if disposed of in the natural world, which may cause environmental problems. In addition, since it cannot be disposed of in the natural world, it is necessary to incinerate it after use.However, since the calorific value during combustion is large, there is a risk of damaging the incinerator during incineration, or when dioxin is generated due to incineration. There is also. From such a viewpoint, there is a demand for a biodegradable plastic that is recyclable and is decomposed into microorganisms when it is disposed of naturally after use. In particular, from the viewpoint of reduction of production energy and reduction of carbon dioxide emission. Biodegradable plastics that can recycle materials rather than thermal recycling are desired.
  • biodegradable plastics may have insufficient properties such as heat resistance. Therefore, biodegradable plus For the purpose of improving the heat resistance and other properties of tics, for example, in Japanese Patent Application Laid-Open No. 6-192375%, polycaprolactone is crosslinked with isocyanate, and a biodegradable plastic is introduced by introducing a covalently crosslinked structure. Technologies for improving the heat resistance of steel have been proposed.
  • the heat resistance of the biodegradable plastic is improved by the crosslinked structure, but the fluidity during heating and melting may be reduced, the moldability may be insufficient, or the biodegradable plastic may be degraded. There is a possibility that the property is reduced. Also, especially in the case of highly crosslinked biodegradable plastic, once molded, it behaves like a thermosetting resin, and even if it is collected and recycled, it is heated sufficiently during the second and subsequent molding. It does not melt and may be difficult to recycle.
  • thermoreversible crosslinked structure For the purpose of improving recyclability, it has been proposed to introduce a covalent thermoreversible crosslinked structure into plastics.
  • covalent thermoreversible reactions include Engle et al., J. Macromol. Sci. Re. Macromo 1 Chem. Phys., C33, No. 3, pp. 239-257.
  • Diels-Alder reaction, nitrosoni quantification reaction, esterification reaction, vonionization reaction, urethane reaction, and azlactone-phenol addition reaction are described.
  • Yoshinori Nakane and Masahiro Ishidoya et al. Color Materials, Vol. 67, No. 12, pp. 766-774, published in 1994
  • Yoshinori Nakane and Masahiro Ishidoya et al. Color Materials, Vol. 69, No. 11, 735- 742, 1996
  • JP-A-11-35675 discloses a thermoreversible crosslinked structure utilizing a vinyl ether group.
  • thermoreversible cross-linking structure examples include the following.
  • Japanese Patent Application Laid-Open No. 7-247364 discloses a method using reversible crosslinkable oligosaccharide. It describes a method of separating and collecting oligomers and recycling them chemically, and describes a method of irradiating ultraviolet rays and a method of thermal dissociation using the Diels-Alder reaction as a method of dissociating crosslinked portions.
  • a method of irradiating ultraviolet rays and a method of thermal dissociation using the Diels-Alder reaction as a method of dissociating crosslinked portions.
  • it is difficult to ensure transparency to light with the molded product as it is, and it is necessary to perform the dissolution reaction in an organic solvent by diluting and dissolving it. Is significantly inefficient compared to resin material recycling.
  • the dissociation reaction due to heat occurs at 90 ° C.
  • This dissociation temperature is lower than the glass transition temperature (90 to 105 ° C) of the resin (polyacrylate) as the base material, and rather impairs the heat resistance.
  • the dissociation reaction of the crosslinked portion needs to occur at least at a temperature exceeding 120 ° C. Therefore, it is necessary to select a reversible crosslinking site having an appropriate dissociation reaction temperature and apply this to the resin.
  • 2,5-dialkyl-substituted furans are introduced into resin to achieve recyclability.
  • a copolymer of carbon monoxide and olefin is dehydrated with a strong acid.
  • a biodegradable resin it is polymerized by an easily hydrolyzed functional group such as an ester bond. It is very difficult to introduce a furan ring by such a method because it causes the decomposition of the resin.
  • the dissociation temperature of the bridge and the thermal stability of the gen greatly depend on the polarity and concentration of the reaction field.
  • the Diels-Alder reaction need not be limited to those using 2,5-dialkyl-substituted furans.
  • JP-A No. 11-106578 An example in which a reversible reaction by an esterification reaction of an acid anhydride is used to improve heat resistance and recyclability is described in JP-A No. 11-106578, for example.
  • An anhydride-introduced linker having a hydroxy group A cross-linking approach is shown.
  • biodegradable resins have a carboxylic acid-catalyzed hydrolyzable bond, such as an ester bond, in the main chain.
  • thermoreversible cross-linking structure by electrostatic bonding is introduced into the biodegradable resin.
  • electrostatic coupling are disclosed in JP-A-2000-281805 and Shin Yano, Physical properties and industrial application of ionomers; MR Tant et al., Ionomers (ISBN: 0-7514-0392). -X).
  • Japanese Patent Application Laid-Open No. 2000-281805 discloses an example of using a thermoreversible crosslinked structure by electrostatic bonding in a biodegradable resin, in order to improve strength, such as carboxymethylcellulose having a carboxyl group and starch containing a carboxyl group.
  • a thermoreversible crosslinked structure by electrostatic bonding in a biodegradable resin in order to improve strength, such as carboxymethylcellulose having a carboxyl group and starch containing a carboxyl group.
  • an ion-crosslinked film in which a lipoxyl group of a polysaccharide is crosslinked with a polyvalent metal ion such as Mgion.
  • electrostatic bonding is inferior in bonding strength to covalent bonding, so that the viscosity and elastic modulus of the resin are significantly improved, but sufficient improvement in heat resistance cannot be expected.
  • thermoreversible cross-linking structure has been introduced into a biodegradable resin material to provide a recyclable biodegradable resin material having performance that can withstand actual use. It is an object of the present invention.
  • an object of the present invention is to provide a resin and a resin composition having sufficient heat resistance, moldability, recyclability, and biodegradability.
  • thermoreversible crosslinked structure that is covalently bonded by cooling and is cleaved by heating.
  • a method for producing a biodegradable resin including a step of reacting the biodegradable resin material with a biodegradable resin material having a reactive site.
  • the present invention provides a method for producing a biodegradable resin, comprising a step of crosslinking a linker having two or more second functional groups that form a thermoreversible crosslinked structure that is cleaved by the above.
  • the crosslinked structure of a biodegradable resin having a thermoreversible crosslinked structure is cleaved during melt molding. For this reason, even if the required number of cross-linked structure sites for introducing sufficient properties such as heat resistance are introduced, they have an appropriate viscosity at the time of melting and can achieve good moldability. Also, even if this is molded once, the molded body does not behave like a thermosetting resin, and when it is collected and recycled, it is sufficiently heated and melted even in the second and subsequent moldings, and a good Recyclability can be realized. In addition, when cooled, the solidified product forms a crosslinked structure again, so that the molded product has sufficient heat resistance.
  • thermoreversible crosslinked structure has a moderate bonding force compared to a thermoreversible crosslinked structure formed by electrostatic bonding, by introducing this into a biodegradable material, During molding, the crosslinked structure is cleaved to ensure high fluidity, and in an application environment, the crosslinked structure can improve the heat resistance and strength, which are the drawbacks of conventional biodegradable resin materials.
  • thermoreversible crosslinked structure After the crosslinked portion is cleaved at a high temperature, the crosslinked portion is formed again by a subsequent cooling operation. For this reason, cleavage and re-formation of the crosslinked site can be repeated as many times as the temperature changes.
  • a crosslinked structure into a biodegradable resin material, an excellent resin and resin composition can be obtained.
  • the temperature range where a molded body is used such as room temperature, higher order It is possible to form a cross-linked structure and improve heat resistance and strength.In the region above the melting temperature such as the molding temperature, the cross-linked structure is lost and the resin becomes low molecular weight. Material recyclability can be improved.
  • the molded body mainly contains a resin cross-linked by a covalent bond when it is solidified, but since the cross-linking site is broken when it is melted, it becomes a composition containing two or more resins. Or a composition containing a resin and a linker. For this reason, when it is not necessary to particularly distinguish the resin and the resin composition, these are also referred to as a resin material.
  • a thermosetting and thermoreversible bridge structure into the biodegradable resin in addition to a covalent and thermoreversible crosslinked structure, even higher performance and a wider range of physical properties can be realized.
  • Specific examples include a method of introducing a functional group forming a covalent cross-linking structure and a functional group forming an electrostatic bonding cross-linking structure into the same biodegradable resin material; A method of mixing a biodegradable resin material into which a functional group to be formed is introduced and a biodegradable resin material into which a functional group to form an electrostatically crosslinkable structure is introduced; Examples include a method of introducing a functional group that forms a crosslinked structure having both properties.
  • the electrostatically-bonded cross-linked structure is rapidly biodegraded in the presence of moisture, for example, when buried in soil.
  • thermoreversible cross-linking structure can be introduced into the biodegradable resin material, and the recyclable biodegradable resin material can achieve performance that can withstand actual use.
  • the biodegradable resin material used as the raw material of the biodegradable resin is selected in due consideration of the properties of the functional groups introduced to form a thermoreversible crosslinked structure.
  • biodegradable resin materials are mainly biodegradable monomers, oligomers and polymers which can be synthesized and obtained artificially; biodegradable monomer derivatives which can be synthesized and obtained mainly, or oligomers Modified products and modified polymers; mainly biosynthetic monomers and oligosaccharides and polymers that can be synthesized and obtained in nature; mainly derivatives of biodegradable monomers and oligomers that can be synthesized and obtained in nature And modified polymers and the like are used.
  • artificially synthesized biodegradable oligomers and polymers include, for example, polylactic acid (manufactured by Shimadzu Corporation, trade name: Lacti 1 etc.), polyalphahydroxy acids such as polyglycolic acid, and polyomegahydroxyalkanoates such as polyepsilon-based prolactone.
  • polyalkylene alkanoate which is a polymer of butylene succinate and / or ethylene succinate
  • polybutylene succinate And polyamino acids such as polyesters and polyamino acids (trade name: polymethylminic acid, manufactured by Ajinomoto Co.), and polyols such as polyvinyl alcohol and polyethylene glycol.
  • these artificially synthesized biodegradable oligomers and modified polymers are also preferably used. Can be used.
  • Examples of natural synthetic biodegradable polymers and polymers include starch, amylose, cellulose, cellulose ester, chitin, chitosan, gellan gum, carboxyl-containing cellulose, carboxyl-containing starch, pectic acid, and alginic acid.
  • biodegradable oligosaccharides and modified polymers can also be suitably used.
  • Lignin is a dehydrogenated polymer of coniferyl alcohol and sinapyr alcohol contained in wood at 20 to 30% and is biodegraded.
  • biodegradable resin materials as described above, artificially synthesized biodegradable oligomers and polymers, modified products of artificially synthesized biodegradable oligomers and polymers, and modified products of naturally synthesized biodegradable oligomers and polymers are molecules. Since the bonding force between them is appropriate, it is excellent in thermoplasticity, the viscosity at the time of melting does not increase remarkably, and it has good moldability, so that it is preferable.
  • modified polyesters and polyesters are preferred, and aliphatic polyesters and modified aliphatic polyesters are more preferred.
  • polyamino acids and modified products of polyamino acids are preferred, and aliphatic polyamino acids and modified products of aliphatic polyamino acids are more preferred.
  • polyol And aliphatic polyols are preferred, and aliphatic polyols and aliphatic polyols are more preferred.
  • the number-average molecular weight of the biodegradable resin material used as the raw material is determined from the viewpoint of the performance of the obtained biodegradable resin (processability, heat resistance of the molded body, mechanical properties of the molded body, etc.)
  • 100 or more is preferable, while 1, 000, 000 or less is preferable, 500, 000 or less is more preferable, 100, 000 or less is more preferable, and 100, 0 or less is preferable. Most preferably, it is not more than 00.
  • thermoreversible crosslinkable biodegradable resin can be produced by introducing a functional group that forms a thermoreversible crosslinked structure into the above biodegradable resin material, its derivative, or its modified product.
  • the functional group required for thermoreversible cross-linking may be introduced into the molecular chain terminal of the biodegradable resin material, or may be introduced into the molecular chain.
  • an addition reaction, a condensation reaction, a copolymerization reaction, or the like can be used.
  • Many biodegradable resin materials have functional groups such as hydroxyl group, carboxyl group, and amino group. Therefore, these functional groups can be used directly as thermoreversible crosslinking sites, or these functional groups can be derived into functional groups that form thermoreversible crosslinking.
  • Polyesters have a hydroxyl group and / or a carboxyl group at the molecular chain terminal.
  • polyesters having hydroxyl groups at both ends of the molecular chain include hydroxy PBS at both ends (polybutylene succinate).
  • 1,2-butanediol and succinic acid may have a 1,4-butanediol / succinic acid (molar ratio) of more than 1, more preferably 1.05 or more. More preferably, it should be 1.1 or more.
  • a dehydration condensation reaction may be a dehydration condensation reaction.
  • polyesters having a carboxyl group at the terminal of the molecular chain can be obtained by sealing the carboxyl group with a hydroxyl group to obtain polyesters having a hydroxyl group at both ends.
  • the compound used for sealing is preferably a compound having two or more hydroxyl groups such as diol / polyol, and a compound having three or more hydroxyl groups can form a cross-linking point of a three-dimensional cross-linked structure. Especially desirable.
  • a polyester having a hydroxyl group at both ends of a molecular chain can be obtained.
  • capping with a hydroxyl group means, for example, that the terminal is derived into a hydroxyl-containing xyl group.
  • esterification reaction it is possible to use a reagent such as a carpoimide in addition to an acid or an alkali. Further, it is also possible to induce the carboxyl group into an acid chloride using thionyl chloride chloride or the like, and then to esterify the carboxyl group by reacting with the hydroxyl group.
  • a reagent such as a carpoimide
  • carboxyl group into an acid chloride using thionyl chloride chloride or the like
  • esterify the carboxyl group by reacting with the hydroxyl group.
  • the raw material diol Z dicarboxylic acid used is used. By making the molar ratio of more than 1, it is possible to make all the terminal groups of the molecular chain hydroxyl groups.
  • the terminal can be converted to a hydroxyl group by transesterification. is there. That is, by transesterifying a polyester resin with a compound having two or more hydroxyl groups, a polyester resin having a hydroxyl group at a terminal can be obtained.
  • a polyester having a total of four hydroxyl groups at the terminal of the molecular chain is obtained.
  • the resin having a carboxylic acid at the terminal or a compound having an unreacted hydroxyl group can be easily purified and removed.
  • the hydroxyl group can be modified into a phenol hydroxyl group.
  • a carboxyl group is required, it can be modified into a carboxyl group by bonding a compound having a bifunctional or more carboxylic acid to the hydroxyl group of the biodegradable resin material by the esterification reaction described above.
  • an acid anhydride a biodegradable resin material having a carboxyl group can be easily prepared.
  • the acid anhydride pyromellitic anhydride, trimellitic anhydride, hydrofluoric anhydride, hexahydrofluoric anhydride, maleic anhydride and derivatives thereof can be used.
  • the cross-linking site is composed of two first and second functional groups that are cleaved by heating and covalently bonded by cooling.
  • the first functional group and the second functional group form a crosslink by covalent bond, and at a predetermined temperature such as the melt processing temperature, the first functional group and the second functional group Cleavage to the second functional group.
  • Frame The binding and cleavage reactions at the bridge site proceed reversibly due to temperature changes.
  • the first functional group and the second functional group may be different functional groups or the same functional group.
  • the same functional group can be used as the first functional group and the second functional group.
  • the reversible reaction form in which the bond is formed by heating to form a cross-linking site and the cleavage is performed by cooling is not particularly limited, but the productivity of the resin material, the moldability of the resin material, and the performance of the molded product (mechanical properties and heat resistance For example, it is desirable to select from the following.
  • Diels-Alder [4 + 2] Utilizes a cyclization reaction.
  • conjugated gen and genophil as functional groups, a biodegradable resin that forms thermoreversible crosslinks is obtained.
  • the conjugated diene include a furan ring, a thiophene ring, a pyrrole ring, a cyclopentene ring, a 1,3-butadiene, a thiophene-1-oxide ring, a thiophene-1,1-dioxide ring, and a cyclopentene ring.
  • cyclopentene can be used for the crosslinking reaction.
  • Jishikuropen evening Jen c having both effects of conjugated diene and dienophile
  • Dicyclopentene dicarboxylic acid a dimer of cyclopentene carboxylic acid, can be easily obtained from commercially available cyclopentene genenyl sodium (E. Rukcenstein et al., J. Polyni. Sci. Part A Chem., Vol. 38, pp. 818-825, 2000).
  • the dicyclopentene dicarboxylic acid is introduced into a biodegradable resin material having a hydroxyl group, a biodegradable resin material modified with a hydroxyl group, or the like as a crosslinking site at a site where a hydroxyl group is present by an esterification reaction.
  • a biodegradable resin material having a hydroxyl group, a biodegradable resin material modified with a hydroxyl group, or the like as a crosslinking site at a site where a hydroxyl group is present by an esterification reaction.
  • 3-maleimidopropionic acid and 3-furylpropionic acid are used, a hydroxyl group-containing biodegradable resin material, a biodegradable resin material modified with a hydroxyl group, and the like are converted into a hydroxyl group by an esterification reaction.
  • a cross-linking site can be easily introduced into a site where a chromosome exists.
  • a catalyst such as a carpoimide may be used in addition to an acid and an alkali. It is also possible to introduce a carboxyl group into an acid chloride using thionyl chloride or aryl chloride, etc., followed by esterification by reacting with a hydroxyl group.
  • an acid chloride it can easily react with an amino group and can be introduced into the amino group of amino acids and derivatives thereof.
  • thermoreversible crosslinked structure as shown by the following general formula (I).
  • nitrosobenzene is used for the crosslinking reaction.
  • nitrosobenzene for example, dinitrosopropane, dinitrosohexane, dinitrosobenzene, dinitrosotoluene and the like are used.
  • a dimer of 4-nitroso 3,5-pentylic acid U.S. Pat. No. 3,872,057 discloses a dimer of 4,122 troso 3,5, cyclopentabenzoyl chloride) Which reacts with a hydroxyl group of a biodegradable resin material having a hydroxyl group, a hydroxyl group of a biodegradable resin material modified with the hydroxyl group, and the like.
  • thermoreversible cross-linking site into the site where the hydroxyl group is present.
  • an acid chloride when used, it can easily react with an amino group, so that it can be introduced into the amino group of amino acids and derivatives thereof.
  • thermoreversible crosslinked structure as shown by the following general formula (II).
  • Acid anhydrides and hydroxyl groups can be used in the crosslinking reaction.
  • Acid anhydride For example, aliphatic carboxylic anhydride and aromatic carboxylic anhydride are used. Further, any of a cyclic acid anhydride group and a non-cyclic anhydride group can be used, but a cyclic acid anhydride group is preferably used.
  • the cyclic acid anhydride group include a maleic anhydride group, a phthalic anhydride group, a succinic anhydride group, and a glutaric anhydride group.
  • Examples of the acyclic acid anhydride group include an acetic anhydride group and a propionic anhydride. And benzoic anhydride groups.
  • maleic anhydride group fluoric anhydride group, succinic anhydride group, glutaric anhydride group, pyromellitic anhydride group, trimellitic anhydride group, hexahydrofluoric anhydride group, acetic anhydride group, and anhydride
  • Propionic acid groups, benzoic anhydride groups, and substituted products thereof are preferred as the acid anhydride which reacts with the hydroxyl group to form a crosslinked structure.
  • hydroxyl group a hydroxyl group of a biodegradable resin material having a hydroxyl group or a hydroxyl group of a biodegradable resin material having a hydroxyl group introduced by various reactions is used.
  • hydroxy compounds such as diols and polyols may be used as the crosslinking agent.
  • diamine and polyamine can be used as a crosslinking agent.
  • an acid anhydride having two or more acid anhydrides such as pyromellitic anhydride
  • a biodegradable resin material having a hydroxyl group, a biodegradable resin material modified with a hydroxyl group, etc. Can be used as a crosslinking agent.
  • a compound having two or more maleic anhydrides can be easily obtained by copolymerizing maleic anhydride with an unsaturated compound by vinyl polymerization (Japanese Patent Application Laid-Open No. 11-106578, (Opened 200 0—3 437 76).
  • This can also be used as a crosslinking agent for a biodegradable resin material having a hydroxyl group, a biodegradable resin material modified with a hydroxyl group, and the like.
  • thermoreversible crosslinked structure is formed.
  • the acid anhydride group and the hydroxyl group form an ester to form a crosslink upon cooling. This crosslink is broken by heating.
  • thermoreversible crosslink site can be formed from polyamine, tetramethylhexanediamine, or the like, and an alkyl halide.
  • an ester bond of a halide having a carboxyl group such as 4-bromomethylbenzoic acid to a biodegradable resin material having a hydroxyl group or a biodegradable resin material modified with a hydroxyl group. Can obtain a halide.
  • a biodegradable resin capable of forming a thermo-reversible cross-link is obtained.
  • halogenated alkyl group examples include alkyl bromide, alkyl chloride, phenyl bromide, phenyl chloride, benzyl bromide, and benzyl chloride.
  • a tertiary amino group is preferable, and examples thereof include a dimethylamino group, a getylamino group, and a diphenylamino group. Among them, a dimethylamino group is preferable.
  • the combination of the halogenated alkyl group and the tertiary amino group is not particularly limited. For example, a combination of benzyl bromide and dimethylamino group Can be exemplified.
  • thermoreversible crosslinked structure as shown by the following general formula (IV).
  • the alkyl halide group and the tertiary amine upon cooling, form a quaternary ammonium salt covalent bond to form a crosslink. This crosslink is broken by heating.
  • thermoreversible cross-linking site can be formed from the isocyanate and active hydrogen.
  • polyisocyanate is used as a crosslinking agent to react with hydroxyl groups, amino groups, and phenolic hydroxyl groups of biodegradable resin materials and derivatives thereof.
  • a molecule having two or more functional groups selected from a hydroxyl group, an amino group and a phenolic hydroxyl group can be added as a crosslinking agent.
  • a catalyst can be added to bring the cleavage temperature into a desired range.
  • dihydroxybenzene, dihydroxybiphenyl, phenolic resin, etc. can be added as a crosslinking agent.
  • polyvalent isocyanate is used as a cross-linking agent to react with the hydroxyl group, amino group, and phenolic hydroxyl group of the biodegradable resin material and its derivatives.
  • Crosslinking agent for dihydroxybenzene, dihydroxybiphenyl, phenolic resin, etc. Can also be added.
  • polyvalent isocyanates examples include tolylene diisocyanate (TDI) and its polymers, 4,4, diphenylmethane thiocyanate (MDI), hexamethylene diisocyanate (HMDI), 1,4-phenylene diisocyanate Isocyanate (DPDI), 1,3-phenylene diisocyanate, 4,4,4 "-triphenylmethane triisocyanate, xylylene diisocyanate and the like can be used.
  • TDI tolylene diisocyanate
  • MDI 4,4, diphenylmethane thiocyanate
  • HMDI hexamethylene diisocyanate
  • DPDI 1,4-phenylene diisocyanate Isocyanate
  • 1,3-phenylene diisocyanate 1,3-phenylene diisocyanate
  • 4,4,4 "-triphenylmethane triisocyanate xylylene diisocyanate and the like
  • an organic compound such as 1,3-diacetoxytetrabutyldisoxane, an amine, or a metal powder may be used as a cleavage catalyst.
  • thermoreversible crosslinked structure as shown by the following general formula (V).
  • the phenolic hydroxyl group and the isocyanate group form urethane upon cooling to form a crosslink.
  • This crosslink is cleaved by heating.
  • aryl groups include phenyl, tolyl, xylyl, biphenyl, naphthyl, anthryl, phenanthryl, and groups derived from these groups, and phenolic hydroxyl bonded to these groups.
  • the group reacts with the azlactone structure contained in the group forming the bridge structure.
  • Phenolic As a material having a hydroxyl group, a biodegradable resin material having a phenolic hydroxyl group, a biodegradable resin material modified with hydroxylphenols, and the like are used.
  • azlactone structure examples include polyvalents such as 1,4- (4,4'-dimethylazlactyl) butane, poly (2-vinyl-1,4,4,1-dimethylazalactone), bisazuractonbenzene, and bisazlactonehexane.
  • Azlactone is preferred ⁇ Also, azazlactone-phenol reaction-crosslinked bisazlactylbutane and the like can be used, and these are described, for example, in Engle et al., J. Macrom. 1. Sc i. Re.Macrom. 1. Chem. Phys., Vol. C33, No. 3, pp. 239-257, 1993.
  • thermoreversible crosslinked structure as shown by the following general formula (VI).
  • a biodegradable resin material having a carboxyl group As the material having a carboxyl group, a biodegradable resin material having a carboxyl group, a biodegradable resin material modified with a carboxyl group, or the like is used.
  • the alkenyloxy structure includes vinyl ether, aryl ether and And those having two or more alkenyloxy structures can also be used.
  • alkenyl ether derivatives such as bis [4- (vinyloxy) butyl] adipate and bis [4- (vinyloxy) butyl] succinate can be used as the crosslinking agent.
  • thermoreversible crosslinked structure as shown by the following general formula (VII). Cooling 0.' ⁇ / ⁇
  • the carboxyl group and the vinyl ether group form a mesyl ester by cooling to form a crosslink.
  • This cross-link is cleaved by heating (JP-A-11-35675, JP-A-60-179479).
  • a compound having two or more functional groups capable of forming a thermoreversible crosslinking site in a molecule can be a crosslinking agent.
  • cross-linking agent having an acid anhydride group examples include a bis-fluoric anhydride compound, a bis-succinic anhydride compound, a bis-glutaric anhydride compound, and a bis-maleic anhydride compound.
  • crosslinking agent for forming a hydroxyl group examples include ethylene glycol and diethylene.
  • Glycols such as glycols and triethylene glycol; 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, trimethylolethane, trimethylolpropane
  • alcohol compounds such as pentaerythritol.
  • crosslinking agent having a carboxyl group examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, phthalic acid, maleic acid, and fumaric acid.
  • crosslinking agent having a vinyl ether group examples include bis [4- (vinyloxy) butyl] adipate, bis [4- (vinyloxy) butyl] succinate, ethylene glycol divinyl ether, butanediol divinyl ether, 22 —Bis [ ⁇ — (2-vinyloxyethoxy) phenyl] propane.
  • cross-linking agent having an alkyl halide group include, but are not limited to, a, b, m-xylene, a, b, dichloroxylene, and bis.
  • crosslinking agent having a tertiary amino group examples include tetramethylethylenediamine, tetramethylhexanediamine, and bisdimethylaminobenzene.
  • crosslinking agent having a phenolic hydroxyl group examples include dihydroxybenzene, dihydroxybiphenyl, resole-type phenolic resin, and novolak-type phenolic resin.
  • crosslinking agent having an isocyanate group examples include 2,4-tolylenediene Aromatic diisocyanates such as succinate, 2,6-tolylene diisocyanate, 4,4,1-diphenylmethyl diisocyanate, 2,4,1-diphenylmethane diisocyanate, and p-phenylenediisocyanate And aliphatic diisocyanates such as hexamethylene diisocyanate; alicyclic diisocyanates such as isophorone diisocyanate; and aryl aryl diisocyanates such as xylylene disocyanate.
  • Aromatic diisocyanates such as succinate, 2,6-tolylene diisocyanate, 4,4,1-diphenylmethyl diisocyanate, 2,4,1-diphenylmethane diisocyanate, and p-phenylenediisocyanate
  • aliphatic diisocyanates such as hexamethylene diisocyanate
  • crosslinking agent having an azlactone group examples include bisazlactone butane, bisazlactone benzene, and bisazlactone hexane.
  • crosslinking agent having a nitroso group examples include dinitrosopropane, dinitrosohexane, dinitrosobenzene, and dinitrosotoluene.
  • the dissociation temperature of the cross-linked portion is preferably higher than 120 ° C. in order to form a sufficient cross-link in the operating temperature range of 100 ° C. or lower of the molded article.
  • the melting temperature is preferably 280 ° C or lower, more preferably 250 ° C or lower, because the melt processing can be performed at an appropriate temperature.
  • thermoreversible bond that forms a covalent bond at the temperature used as a molded product, and cleaves at a temperature exceeding the glass transition temperature (Tg), a temperature exceeding the heat resistance temperature required for the resin, and a temperature below the molding temperature.
  • Tg glass transition temperature
  • thermoreversible bond that forms a covalent bond at the temperature used as a molded product, and cleaves at a temperature exceeding the glass transition temperature (Tg), a temperature exceeding the heat resistance temperature required for the resin, and a temperature below the molding temperature.
  • the temperature exceeding the glass transition temperature (Tg) and the temperature exceeding the heat resistance temperature required for the resin are, for example, 120 ° C. If the temperature is 120 ° C or more, the decomposition of the biodegradable resin is not promoted and the crosslinking is performed.
  • the structure can be selected from Diels-Alder type, carboxyl-alkenyloxy type and the like, and nitroso dimer type, urethane type and azlactone-hydroxyaryl type are also applicable.
  • the dissociation reaction of dicyclopentane proceeds at 150 ° C or higher and 250 ° C or lower, so it is possible to impart high heat resistance and excellent moldability to the biodegradable resin. .
  • the dissociation temperature of this cross-linking site for example, in the reaction between franc and maleimide, Chujo et al. (Chuichi 1 et al., Macromo 1 ecu 1es Vol. 23, pp. 2636-2641, 1990) The dissociation reaction in the solution is introduced at 80 ° C.
  • Stéphen A. C et al. ((JPS PartA: Poylm.
  • the dissociation reaction of nitroso dimer crosslinking proceeds at 110 ° C or higher and 150 ° C or lower, so that high heat resistance and excellent moldability can be imparted to the biodegradable resin. is there.
  • the dissociation reaction of urethane-type cross-linking proceeds at 120 ° C or more and 250 ° C or less by selecting the above catalyst and adjusting the amount of addition, so that high heat resistance and excellent moldability are biodegraded. It is possible to give to the resin.
  • the dissociation reaction of the azlactone-hydroxyaryl crosslink proceeds at a temperature of 100 ° C. or more and 200 ° C. or less, so that high heat resistance and excellent moldability can be imparted to the biodegradable resin. It is possible.
  • a resin cross-linked by carboxyl-alkenyloxy-type cross-linking is preferable because free carboxylic acid does not exist at room temperature and does not lower the moisture resistance of the biodegradable resin. Since the dissociation reaction of the carboxyl-alkenyloxy type crosslink proceeds at a temperature of 100 ° C. or more and 250 ° C. or less for the carboxyl group, it is possible to impart high heat resistance and excellent moldability to the biodegradable resin. It is possible.
  • the Diels-Alder type and the carboxyl-alkenyloxy type are preferable because the biodegradable resin hardly deteriorates and the moisture resistance is high, and the functional groups include a hydroxyl group, a carboxyl group, an alkenyl group and an alkenyl group. Roxy groups and groups having a conjugated double bond are preferred.
  • a three-dimensional crosslinked structure is preferable as the crosslinked structure.
  • the crosslinking density of the three-dimensional crosslinking structure is set to a desired value by setting the number of functional groups of the biodegradable resin, the mixing ratio of each member, and the like to predetermined values.
  • the crosslinking density of the three-dimensionally crosslinked structure is represented by the number of moles of the three-dimensionally crosslinked point contained in 100 g of the resin material. 0.001 or more is preferable, 0.01 or more is more preferable, and 0.02 or more is more preferable in order to realize adequate heat resistance. If it exceeds, the number of portions forming the crosslinked portion becomes larger than the portion forming the biodegradable resin, and the viscosity at the time of molding is reduced, so that a good molded product cannot be obtained. In addition, since biodegradability is not exhibited, it is preferably 1 or less, more preferably 0.2 or less, in order to realize recyclability and biodegradability.
  • At least one of the functional groups described above is contained in the first biodegradable resin, and two or more first functional groups and two or more second functional groups are contained in the first biodegradable resin. In some cases.
  • the first functional group may be present at the molecular chain terminal of the first biodegradable resin, or may be present at a position other than the terminal such as a side chain.
  • the first functional group is a hydroxyl group
  • polybutylene succinate having hydroxyl groups at both ends is an example of the first biodegradable resin having the first functional group at the terminal.
  • the first functional group is present at both ends of the first biodegradable resin, but may be present at only one end.
  • first functional group is a hydroxyl group
  • amines and cellulose having both ends methylated are examples of the first biodegradable resin in which the first functional group is present at a position other than the terminal. .
  • the main chain of the first biodegradable resin may be either linear or branched, for example, an ester in which 4 mol parts of polylactic acid are radially bonded to 1 mol part of pen-erythritol.
  • a branched first biodegradable resin When the first functional group is present at the terminal, there are cases where the first functional group is present at all terminals, and when the first functional group is present only at some terminals. is there. Furthermore, there may be a case where a plurality of first functional groups are bonded to the same site in the molecular chain of the first biodegradable resin.For example, phenol erythritol is ester-bonded to a carboxyl group terminal of polylactic acid.
  • this is an example in which three hydroxyl groups are bonded to the carboxyl group end of polylactic acid.
  • the carbon originating from methane in the center of Penyu erythritol is the same site, and a hydroxyl group, which is the first functional group, is bonded to this carbon via methylene.
  • the phrase “a plurality of first functional groups are bonded to the same site” means that a plurality of first functional groups are bonded via 0 to 5 atoms counted from one atom. From the viewpoint of the performance of the obtained thermoreversible crosslinkable biodegradable resin, it is preferable that a plurality of first functional groups are bonded via 0 to 3 atoms.
  • the first biodegradable resin having the first functional group at the terminal of the molecular chain is preferable.
  • the interaction between the first functional groups of different molecular chains is appropriate during melt processing, good fluidity and processability can be realized.
  • the first biodegradable resin having a branched shape or the first biodegradable resin in which a plurality of first functional groups are bonded to the same site. is preferred.
  • a three-dimensional crosslink is formed in the molded body, a molded body having good mechanical properties and heat resistance can be obtained.
  • the first functional group when there are two or more covalent functional groups, one of the functional groups (the first functional group) is present in the biodegradable resin (the first biodegradable resin) and the other functional group (the first functional group).
  • the second functional group is present, while the second functional group is a biodegradable resin (first biodegradable resin) different from the biodegradable resin (first biodegradable resin) in which the first functional group is present.
  • first biodegradable resin a biodegradable resin (first biodegradable resin) different from the biodegradable resin (first biodegradable resin) in which the first functional group is present.
  • 2-aminoethyl vinyl ether is ester-bonded to a part of the carboxylic acid of this resin with carbodiimides.
  • a carboxylic acid structure (first functional group) and a vinyl ether group (second functional group) exist in the same biodegradable resin (first biodegradable resin), and carboxyl-alkenyloxy is present.
  • the first and second functional groups are the same. 1,2-Gen-1-yl group of cyclopentyl in which the first and second functional groups are present in the same first biodegradable resin to form a Diels-Alder cross-link I do. Crosslinks are formed at both ends of the molecular chain of the first biodegradable resin.
  • the first and second functional groups are the same.
  • the two-terminal sopenzyl group of the first functional group and the second functional group Are present in the same first biodegradable resin and form nitroso dimer-type crosslinks. Crosslinks are formed at both ends of the first biodegradable resin.
  • the resin products of (1) and (2) above are obtained by introducing a first functional group and a second functional group into a first biodegradable resin material.
  • the first functional group and the second functional group forming the cross-linking site are covalently bonded in advance, and the first functional group and the second functional group are formed.
  • a compound having a group that reacts with the first biodegradable resin material in addition to the bifunctional group for example, a dimer of dicyclopentenedicarboxylic acid and nitrosobenzoic acid
  • a crosslinking agent for example, a dimer of dicyclopentenedicarboxylic acid and nitrosobenzoic acid
  • a crosslinking agent and the first biodegradable resin material are mixed and reacted, and the cross-linking agent is bonded to the first biodegradable resin material, a resin having a cross-linked site in a cross-linked state can be obtained with good productivity.
  • the dicyclopentene dicarbonate is formed.
  • Dimers with symmetrically linked functional groups such as dimers of acids and nitrosobenzoic acids, can be used as crosslinking agents.
  • the cross-linking agent contains a plurality of functional groups, it is preferable if the functional groups are of the same type, since the cross-linking agent can be easily produced and the cross-linking reaction can be easily controlled.
  • the second functional group may be present in a second biodegradable resin different from the first biodegradable resin in which the first functional group is present.
  • An example of such an example is the first ester in which 3-merimidopropionic acid is further ester-bonded to the four hydroxyl groups at both ends, although pen-erythritol is ester-bonded to the ruboxyl group of polylactic acid.
  • Biodegradable resin and polylactic acid have penicillin erythritol ester-bonded to the carboxyl group terminal, but 3-hydroxyfurylpropionic acid is further ester-bonded to the four hydroxyl groups at both ends. Combination with water-soluble resin Can be mentioned.
  • the first functional group has a maleimide structure
  • the second functional group is a furyl group
  • these functional groups crosslink in a Diels-Alder type.
  • Crosslinks are formed between the molecular chain terminals of the first biodegradable resin and the molecular chain terminals of the second biodegradable resin.
  • the resin material can also be composed of a mixture containing a first biodegradable resin having only one of the groups, a second biodegradable resin having only one of the first functional group and the second functional group, and the like.
  • the first functional group and the second functional group forming the cross-linking site are covalently bonded in advance, and the first functional group and the second functional group are not limited to the first functional group.
  • a compound having a group that reacts with the degradable resin material can be used as a crosslinking agent.
  • Such a crosslinking agent is mixed with the first biodegradable resin material and the second biodegradable resin material and reacted to bind the crosslinking agent to the first biodegradable resin material and the second biodegradable resin material. If this is the case, it is possible to obtain a resin product having a crosslinked site crosslinked with good productivity.
  • the second functional group may be present in the linker.
  • at least a resin material is composed of a first biodegradable resin having a first functional group and a linker having a second functional group, and the linker is a biodegradable resin of the first biodegradable resin. Those that do not impair the properties are used.
  • a linker By using a linker, a wider range of resin materials can be realized, so that flexibility in resin product productivity, resin product moldability, and molded product performance (mechanical characteristics and heat resistance, etc.) is increased. Become wider.
  • the linker is a monomer, an oligomer or a polymer having two or more second functional groups in one molecule, and the second functional group of the linker is the first functional group of the first biodegradable resin.
  • the linker may be used in combination with a monomer, oligomer, polymer, or the like having two or more first functional groups in one molecule.
  • two or more first biodegradable resins are crosslinked via one or more linkers.
  • the cross-linking site is cleaved during melting, and the bonding and cleavage of the cross-linking site are related to a thermoreversible reaction.
  • a linker having two or more second functional groups in one molecule may be referred to as a cross-linking agent. Such a linker and the first biodegradable resin are mixed and reacted. To produce resin products. If necessary, a plurality of linkers may be used in combination, or a plurality of first biodegradable resins may be used in combination.
  • a method of introducing a biodegradable resin into a biodegradable resin and (2) a method of using a linker as a functional group for cross-linking have been described.
  • a technique of incorporating a cross-linking system between each other can also be used.
  • a resin that polymerizes by the Diels-Alder reaction is partially mixed with a commercially available biodegradable resin.
  • the linker described above or the like can be used as the resin that undergoes a Diels-Alder reaction.
  • Examples of the monomeric linker include the following.
  • Toluene diisocyanate is used as a linker.
  • the second functional group is an isocyanate group
  • the first biodegradable resin for example, a biodegradable polyester having a phenolic hydroxyl group is used.
  • the first functional group is a phenolic hydroxyl group
  • the isocyanate group of the toluene diisocyanate forms a crosslink with the phenolic hydroxyl group of the biodegradable polyester by urethane bond
  • Biodegradable polyesters having phenolic hydroxyl groups are cross-linked via toluenedisocyanate.
  • the second functional group has a maleimide structure
  • the first biodegradable resin for example, polylactic acid in which formic acid is ester-bonded to a hydroxyl group terminal is used.
  • the first functional group is a furyl group
  • the maleimide structure of N, N'-bismaleimide-4,4, diphenylmethane has a frill group bonded to polylactic acid and a dilus-alda-type to form a crosslinked, polylactic acid, N, N 5 one Bisumareimi dough 4, 4, - via diphenylmethane, Ru crosslinked with one terminal.
  • the linker contains a plurality of functional groups
  • the functional groups are of the same kind because the linker can be easily produced and the crosslinking reaction can be easily controlled.
  • the electrostatic bond is an electrostatic bond, which means a bond formed by electrostatic attraction, and includes an ionic bond, a hydrogen bond, and the like. These bonds are formed when a functional group and a functional group are directly formed, when a functional group and a functional group are formed through an ion, or when a functional group and a functional group are formed through a polyion. and so on. Examples of the electrostatic bond directly formed between the functional groups include a case where the electrostatic bond is formed between ion pairs between the ionizable functional groups. In addition, as the electrostatic bond formed between a functional group and a functional group via an ion, there is a case where two or more ionizable functional groups are coordinated to one counter ion by electrostatic attraction. it can. Further, as an electrostatic bond formed between a functional group and a functional group via a polyion, a case where two or more ionic functional groups are coordinated to one ionic polymer by electrostatic attraction is cited. be able to.
  • the biodegradable resin obtained from the biodegradable resin material has a functional group.
  • the functional group As a mode of electrostatic bonding, when the functional group forms an ion pair, the functional group is When coordinated by electrostatic attraction, the functional group It may be coordinated.
  • a functional group forms an ion pair is an example in which an electrostatic bond is directly formed between a functional group and a functional group.
  • a carboxyl group in a biodegradable resin is a carboxy resin. Dion, the amino group in the biodegradable resin becomes an ammonium cation, and these form an ion pair to form an organic salt.
  • a functional group is coordinated to a counter ion by electrostatic attraction
  • an electrostatic bond is formed between a functional group and a functional group via an ion.
  • a biodegradable resin This is the case, for example, when two or more carboxyl groups are ionically bonded to one metal cation.
  • a form in which a functional group is coordinated to a polyion by electrostatic attraction is an example in which an electrostatic bond is formed between a functional group and a functional group via a polyion.
  • a biodegradable resin If two or more carboxyl groups in the biodegradable resin are ionically bonded to one polycation, such as pentaethylene hexamine / polyamine, the two or more carboxyl groups in the biodegradable resin For example, it is ionically bonded to one polyadione such as acrylic acid.
  • the polyion a monomer having one or more, preferably two or more ionic functional groups; an oligomer having one or more, preferably two or more ionic functional groups; One or more, preferably two or more polymers can be used.
  • the zwitterionic functional group is a functional group that dissociates with an ion or binds to an ion to become itself an ion.
  • the electrostatically-bonded cross-linking structure formed from the cationic functional group can be formed from the cationic functional group and the anionic functional group using electrostatic bonding.
  • As the cationic functional group an amino group, an imino group, and the like are used.
  • ionic functional groups such as an alkali metal ion, an alkaline earth metal ion, a transition metal ion, an anion, a polycation, and a polyanion, instead of the cationic functional group and the anionic functional group.
  • ionic crosslinking A crosslinked structure by electrostatic bonding via ions is called ionic crosslinking.
  • a biodegradable resin material having an anionic functional group such as a carboxyl group is used.
  • an anionic functional group introduced.
  • the biodegradable resin material having a carboxyl group as described above is used.
  • the functional group can be introduced as a counter ion of the anionic functional group.
  • one or more salts selected from the above salts may be directly added to the biodegradable resin material in a molten state, or may be added as an aqueous solution.
  • one or more salts selected from the above salts may be added.
  • the form of the biodegradable resin obtained in this way is a structure in which two or more cations are electrostatically bonded via one anion, and two or more anions are electrostatically bonded via one cation. There is a structure and the like which are connected together.
  • the ions used for ionic crosslinking include alkali metal ions, alkaline earth metal ions, transition metal ions, organic ammonium, halide ions, carboxylate anions, alcoholic anions, phenolate anions, and thiocals. Boxile anion, sulfonate anion and the like, and if necessary, two or more types can be used in combination.
  • ions having two or more valences are preferable from the viewpoint of heat resistance.
  • C From the viewpoint of the performance (mechanical properties and heat resistance, etc.) of the obtained resin product and molded product, biodegradation having a carboxyl group is preferred.
  • a combination of a conductive resin and a metal ion is preferable, and the metal ion is preferably a sodium ion, a calcium ion, a zinc ion, a magnesium ion, a copper ion, or the like. If necessary, two or more metal ions can be used in combination.
  • the neutralization ratio of the carboxyl group is preferably 1% or more, more preferably 5% or more, further preferably 10% or more, and most preferably 15% or more.
  • the neutralization ratio of the carboxyl group is 100% or less, but preferably 95% or less.
  • poly-ion cross-linking A cross-linked structure by electrostatic bonding via poly ions is called poly-ion cross-linking.
  • poly-ions used in poly-ion cross-linking polycation monomers having one or more, preferably two or more ionic functional groups
  • polycation monomers having one or more, preferably two or more ionic functional groups In addition to ethylenehexamine, tetraethylenepentamine, hexanediamine, 2,4,6-triaminotoluene and the like can be used.
  • polyadione monomer having one or more, preferably two or more ionic functional groups examples include, in addition to benzenetricarboxylic acid, 2,3-dimethylbutane-1,2,3-tricarboxylic acid. Can be used.
  • polycation oligomers and polymers having one or more, preferably two or more ionic functional groups besides polyamines, polyvinylamine and Polyamines such as polyethyleneimine can be used.
  • polyadione oligomer and polymer having one or more, preferably two or more ionic functional groups besides polyacrylic acid, polystyrene sulfonic acid, polyphosphoric acid and the like can be used.
  • a crosslinking site can be formed using a bond formed electrostatically between a cationic functional group such as an amino group and an anionic functional group such as a carboxyl group.
  • thermoreversible crosslinks obtained as described above
  • inorganic fillers, organic fillers, reinforcing materials, coloring agents, stabilizers (radical scavengers) , Antioxidants, etc.), antibacterial agents, fungicides, flame retardants, etc. can be used in combination if necessary.
  • the inorganic filler silica, alumina, talc, sand, clay, slag, and the like can be used.
  • Organic fibers such as plant fibers can be used as the organic filler.
  • glass fiber, carbon fiber, acicular inorganic substance, fibrous Teflon resin, and the like can be used.
  • antibacterial agent silver ion, copper ion, zeolite containing these, and the like can be used.
  • the flame retardant a silicone flame retardant, a bromine flame retardant, a phosphorus flame retardant and the like can be used.
  • the dissociation temperature of the crosslinked portion must exceed 120 ° C in order to form a sufficient crosslink in the operating temperature range of the molded body.
  • thermal degradation of the biodegradable resin is a problem.
  • the temperature is preferably 280 ° C. or less, more preferably 250 ° C. or less, so that melt processing can be performed at a temperature that does not occur.
  • the biodegradable resin material is cooled and shaped.
  • the cooling temperature is preferably 0 ° C. or higher in order to form a sufficient crosslink. 10 ° C. or higher is more preferable, while 100 ° C. or lower is preferable, and 80 ° C. or lower is more preferable.
  • the molded body may be held at a predetermined temperature, if necessary, in order to form sufficient cross-links and exhibit sufficient characteristics of the molded body.
  • a predetermined temperature if necessary, in order to form sufficient cross-links and exhibit sufficient characteristics of the molded body.
  • the melting temperature (flow starting temperature) of the biodegradable resin material needs to be higher than 120 ° C, but is preferably 280 ° C or lower, more preferably 250 ° C or lower.
  • the resins and resin compositions as described above are used in the injection molding, film molding, blow molding, foam molding, etc., and are used for electrical and electronic equipment such as housing for electrical appliances, building materials, and automotive parts. , For daily necessities, medical use, agricultural use, etc.
  • the thermoreversible crosslinked structure can be used for a shape memory resin.
  • a shape memory resin is Masahiro Irie et al., Material Development of Shape Memory Polymer (ISBN 4-88231-064-3).
  • the shape memory phenomenon generally refers to a phenomenon in which after deforming in a predetermined temperature range and then reheating, it recovers its original shape. That is, the deformation is performed at a temperature higher than the glass transition temperature of the resin, and the deformation is fixed by cooling the resin to a temperature lower than the glass transition temperature. (To use a resin immobilized in the normal temperature range, the glass transition temperature must be higher than normal temperature.) To recover the shape, the resin is heated to a temperature higher than the glass transition temperature and changes in the glass state.
  • thermoreversible crosslinked structure As a method for fixing the deformation of the resin, a thermoreversible crosslinked structure can be used.
  • the temperature at which the crosslinks dissociate must be set to a temperature below the glass transition temperature. This makes it possible to recover the original shape above the glass transition temperature.
  • U.S. Pat. No. 5,043,396 An example of this is U.S. Pat. No. 5,043,396.
  • thermoreversible cross-linked structures as fixed points for shape memory.
  • Shape memory resins require a fixed point (or frozen phase) to prevent resin flow (creep phenomenon). Polymers that use the entanglement of polymers are called thermoplastic shape memory resins, and can be recycled by melting.
  • thermosetting shape memory resins which cannot be melted and cannot be recycled, but have strong shape recovery power and a fast recovery speed.
  • a thermoreversible bridge structure is used as the fixing point, a shape memory resin that has a strong recovery force, a high recovery speed, and can be melted and recyclable can be obtained.
  • polyester resins are preferable among the biodegradable resins, for example, polylactic acid is preferable, and polybutylene succinate is also preferable.
  • a crosslinking site to be introduced into these biodegradable resins a Diels-Alder crosslinking or a carboxyl-alkenyloxy crosslinking is preferable.
  • the crosslink site may have a three-dimensional crosslink point.
  • the crosslinking density at the three-dimensional crosslinking point is preferably 0.0025 to 0.110.
  • the dissociation temperature of the crosslinking site is preferably 120 ° C. or higher.
  • Diels-Alda-type bridges and carboxyl-alkenyloxy-type bridges are not ionic in the operating temperature range of 10 ° C or lower, so that the main chain of polylactic acid-polybutyrene succinate is not hydrolyzed. Does not promote decomposition. This requires durability (moisture resistance) when used for durable materials such as the housing of electronic equipment. In such applications, the biodegradable resin should be used favorably. Can be done.
  • the resin formed by the cross-linked product has a three-dimensional structure, thereby exhibiting heat resistance. Further, the heat resistance can be remarkably improved by the presence of a sufficient amount of crosslinking points. On the other hand, if the crosslink density is too high, the proportion of the reversible crosslinked portion in the biodegradable resin increases, so that the function as the biodegradable resin may be insufficient.
  • the heat resistance of the biodegradable resin can be set to 10 ° C or higher.
  • the present invention will be described in more detail by way of examples. It does not limit the light in any way.
  • the reagents and the like used were plates of high purity.
  • the number average molecular weight and the weight average molecular weight were measured by a gel permeation chromatogram method and converted using standard polystyrene.
  • Heat resistance Using a Shimadzu TMA measuring device (trade name: TMA-40), perform a penetration test (conforms to JISK 7196, load: 0.2 g, needle diameter: 3 mm). Those with deformation were marked with X, those with substantially no deformation were marked with ⁇ , and those without any deformation were marked with ⁇ . The test pieces were measured after being kept at 100 ° C for 2 hours.
  • Dissociation temperature Measurement was performed at a heating rate of 10 ° C / min using a DSC measuring device (trade name: DSC 6000) manufactured by Seiko Instruments Inc., and the endothermic peak was taken as the dissociation temperature.
  • Biodegradability A molded body (0.1 mm thick) was prepared by hot pressing (200 ° C) and buried in the soil.
  • Recyclability Heated to 200 C to form a molten state, followed by cooling to room temperature 5 times (5 cycles between 200 ° C and room temperature), then perform the heat resistance test described above to 100 ° C
  • X with the deformation was marked as X
  • was marked as ⁇ .
  • Formability A test piece of 6.4 mm x 12.5 mm x 125 mm was injection-molded at 200 ° C.
  • Moisture resistance The test piece was left for 6 months at 20 ° C under 60% RH, and then dried under reduced pressure at 80 ° C. Measure the viscosity of the resin at the molding temperature, and measure the viscosity before the moisture resistance test. And compared.
  • composition (1) 100 parts by mass of the aliphatic polyester (Al) having hydroxyl groups at both ends obtained in this manner and 1,2,3,4-butanetetracarboxylic dianhydride (trade name: manufactured by Shin Nippon Rika Co., Ltd.) (Licasid BT-100, also called compound (B1)) 6.6 parts by mass was melt-kneaded at 200 ° C with Toyo Seiki Minimax Mixer (trade name) to obtain composition (1). .
  • composition (3) Same as composition (1) except that methyl vinyl ether maleic anhydride copolymer (B2) (number average molecular weight: 900,000) 10.4 parts by mass was used instead of compound (B1) Thus, a composition (3) was obtained (the crosslinking point at which three-dimensional crosslinking was possible was about 0.60 per 100 g of the resin material).
  • compositions (1) to (3) were excellent in all the properties of heat resistance, biodegradability, recyclability and moldability.
  • PBS polybutylene succinate: 1,4-butanediol and succinic acid, 1,4-butanediol / succinic acid (molar ratio) is more than 1, more preferably It is charged to 1.05 or more, more preferably 1.1 or more, and dehydration-condensation reaction is carried out to obtain PBS having a number average molecular weight of 100 to 1,000,000 and a hydroxyl group at both ends.
  • a catalyst such as tetraisopropoxytitanium
  • (M-2) PLA polylactic acid: Polylactide having a number average molecular weight of 100 to 1,000,000 is obtained by ring-opening polymerization of lactide (dimer of lactic acid). By setting the reaction temperature to 120 to 220 ° C, the ring opening reaction proceeds. Further, by using 0.01 to 1 part by mass of stannous octoate as a catalyst per 100 parts by mass of monomer as a catalyst, the dehydration condensation reaction can be further advanced to increase the molecular weight.
  • the esterification reaction can be advanced by using equimolar amounts of pyridine and 1-ethyl-3- (3'-dimethylaminopropyl) carbodiimide hydrochloride as a dehydration catalyst in a solvent in the form of a solvent. It can be purified by washing with water.
  • One-terminal phenolic hydroxy PLA One-terminal phenolic hydroxy PLA with a number-average molecular weight of 100 to 1,000,000 is formed by ester bonding PLA (M-2) with hydroxybenzoic acid. M-5) is obtained.
  • ester bonding PLA (M-2) with hydroxybenzoic acid M-5 is obtained.
  • pyridine and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride in a chloroform solvent in an equimolar amount as a dehydration catalyst the esterification reaction can proceed. It can be purified by washing with water.
  • Terminal phenolic hydroxy PLA The terminal phenolic hydroxy PLA having a number average molecular weight of 100 to 1,000,000 is formed by ester-bonding the terminal hydroxy PLA (M-3) and hydroxybenzoic acid. M— 6) is obtained.
  • the esterification reaction can be advanced by using pyridine and 1-ethyl-3- (3'-dimethylaminopropyl) carbodiimide hydrochloride in equimolar form in a solvent in the form of a solvent. In addition, Can be manufactured.
  • PBS having pyromellitic acid ester-bonded to both terminals is obtained.
  • the esterification reaction can proceed by refluxing both ends of hydroxy PBS (M-1) and pyromellitic acid in a mixed solvent of pore-form and THF or toluene solvent.
  • pyromellitic acid used in excess Can be removed by hot water washing after removing the solvent.
  • (M-10) polyvalent carboxylic acid PLA hydroxy-terminated PLA (M-3) and pyromellitic acid are ester-bonded to form a polyvalent compound having a number average molecular weight of 100 to 0000, 0000.
  • the carboxylic acid PLA (M-10) is obtained. Esterification is achieved by refluxing terminal hydroxy PLA (M-3) and a large excess (10 to 100 mole times) of pyromellitic acid in a mixed solvent of chloroform and THF or toluene. The reaction can proceed. The pyromellitic acid used in excess can be removed by washing with hot water after removing the solvent.
  • a dicyclopentene-crosslinked polyester resin having dicyclopentene as a crosslinking site is obtained.
  • the dehydrochlorination reaction proceeds at room temperature under a nitrogen atmosphere in a well-formed form solvent, and the polyester resin cross-linked with dicyclopentene can be recovered by reprecipitation with a poor solvent.
  • the dissociation temperature of the cross-linking site by dicyclopentane is 100 to 250 ° C, but the temperature at which moldable fluidity is obtained depends on the molecular weight, hydroxyl group density and crosslink density of the polyester resin used. It can be adjusted by the bridge density (the amount of cross-linking agent used).
  • the dissociation temperature of the cross-linking site due to nitroso dimer is 110 to 150 ° C, but the temperature at which moldable fluidity is obtained depends on the molecular weight of the polyester resin used, the phenolic hydroxyl machine density, and the cross-link density (of the cross-linking agent). It can be adjusted depending on the amount used.
  • a bifunctional or higher acid anhydride is used as a crosslinking agent.
  • acid anhydrides include, for example, a copolymer of maleic anhydride with a weight average molecular weight of 900,000 and methyl vinyl ether (VEMA manufactured by Daicel), pyromellitic anhydride, 1, 2, 3, 4 —Butanetetracarboxylic anhydride (manufactured by Shin Nippon Rika Co., Ltd., trade name: Jamaicaditol®-100), (5-dioxotetrahydro-3-zolanyl) —3-methylol 3-cyclohexene-1,2— Use dicarboxylic anhydride (manufactured by DIC, trade name: EPICLON-4400) or the like.
  • the dissociation temperature of the crosslinked site by the acid anhydride ester is 100 to 250 ° C, but the temperature at which moldable fluidity is obtained depends on the molecular weight of the polyester resin used, hydroxyl group density and crosslink density ( It can be adjusted depending on the amount used.
  • the hydroxy group of the polyester resins (M-1) to (M-3) is ester-bonded to the carboxyl group of 4-bromomethylbenzodioxide to obtain a no-open-genated polyester resin.
  • a crosslinking agent By reacting them with tetramethylhexanediamine as a crosslinking agent, a halogen-amine crosslinked polyester resin having an ammonium bond as a crosslinking site is obtained.
  • the dissociation temperature of the crosslinking site due to the halogen-amine bond is 100 to 200 ° C., but the temperature at which moldable fluidity is obtained depends on the molecular weight, hydroxyl group density and crosslink density of the polyester resin used. The amount of the crosslinking agent used) can be adjusted.
  • Polyester resins having phenolic hydroxyl groups (M-4), (M-5) and (M-6), using toluene diisocyanate and phenyl methyl di-isocyanate as cross-linking agents The mixture is melted and mixed at 0 to 250 ° C. to obtain a urethane-type crosslinked polyester resin having a urethane bond as a crosslinking site.
  • the dissociation temperature of the cross-linking sites due to urethane bonds is 120 to 250 ° C, but the temperature at which moldable fluidity is obtained depends on the molecular weight of the polyester resin used, the phenolic hydroxyl group density, and the cross-link density (of the cross-linking agent). It can be adjusted depending on the amount used.
  • the dissociation temperature can also be adjusted by using a dissociation catalyst such as sethoxytetrabutyldisoxane.
  • Polyester resins (M-4), (M-5) and (M-6) having phenolic hydroxyl groups are melted at 150-250 ° C using bisazlactyl butane etc. as a cross-linking agent.
  • a polyester resin having an azlactone-phenol bond as a crosslinking site is obtained.
  • the dissociation temperature of the crosslinked site due to the azlactone-phenol bond is 100 to 200 ° C, but the temperature at which moldable fluidity is obtained depends on the molecular weight of the polyester resin used, the phenolic hydroxyl group density and the crosslink density ( It can be adjusted depending on the amount used.
  • Carboxyl-vinyl ether-type cross-linked resin Bis [4- (vinyloxy) butyl] adipate or the like is used as a cross-linking agent, and carboxyl-containing polyester resins (M-7) to (M-10), and 150
  • the mixture is melted and mixed at ⁇ 250 ° C to obtain a carboxyl-vinyl ether type crosslinked polyester resin having a hemiacetal ester bond as a crosslinking site.
  • the dissociation temperature of the crosslinked site due to the hemiacetal ester bond is 100 to 250 ° C, but the temperature at which moldable fluidity is obtained depends on the molecular weight of the polyester resin used, carboxyl group density, addition of acid catalyst and crosslink density. (Use amount of cross-linking agent) can be adjusted.
  • the polyester resin (M-7) to (M-10) obtained above was Melt at 0 ° C and add ions.
  • an ion source (cation) Cu, Na, Mg, Ca or the like is used.
  • An aqueous solution of copper acetate, sodium acetate, calcium acetate, magnesium acetate or the like is added so that the degree of neutralization is preferably 1% or more, more preferably 10% or more, while 100% or less, more preferably 95% or less. Water is immediately distilled off under reduced pressure.
  • the dissociation temperature of the crosslinked portion is 100 to 200 ° C, but the temperature at which moldable fluidity is obtained is adjusted according to the molecular weight of the polyester resin used, the carboxyl group density, the degree of neutralization of the carboxyl groups by metal ions, etc. it can.
  • composition thus obtained is mixed with, for example, the above-mentioned carboxyl-vinyl ether-type crosslinked resin, and a covalent crosslinked structure and an electrostatically bonded crosslinked structure are used in combination.
  • the above carboxyl-vinyl ether type crosslinked resin is melted at 100 to 20 ° C., ions are added, and the covalent crosslink structure and the electrostatic crosslink structure are used in combination.
  • an ion source (cation) Cu, Na, Mg, Ca or the like is used.
  • Diels-Alder-type crosslinked biodegradable resin 1 Ring opening of lactide (lactic acid dimer) at a reaction temperature of 200 ° C using 0.05 parts by mass of stannous octoate as a catalyst per 100 parts by mass PLA having a number average molecular weight of 100,000 was obtained by polymerization (C-11). Glycerin (0.5 mol, 46 g) was added to PLA (1000 g), and transesterification was performed at 180 ° C for 6 hours. This was dissolved in chloroform and washed with an aqueous alkaline solution, and the solvent was distilled off to give a terminal hydroxy PL A (C- 2) was obtained.
  • lactide lactic acid dimer
  • Dicyclopentene genenyl sodium (1.6 L THF solution, 1 L) was reacted with dry ice (2 kg) to obtain dicyclopentene dicarboxylic acid.
  • Oxaaryl chloride was added to obtain dicyclopentene carboxylic acid chloride.
  • the solvent was distilled off at 60 ° C. under reduced pressure.
  • the above-mentioned terminal hydroxy PLA (100 g) was dissolved in chloroform (3 L), dicyclopentenecarboxylic acid chloride (0.038 mol) and an equimolar amount of pyridine were added, and the mixture was reacted at room temperature for 24 hours. The reactants and impurities were washed away.
  • dicyclopentene-crosslinked polyester resin was recovered (crosslinking points capable of forming three-dimensional crosslinks were about 0.023 per 100 g of the resin material).
  • Diels-Alda type cross-linked biodegradable resin 2 Glycerin (2 moles, 184 g) was added to 1 mole of PLA (C-1) obtained in the same manner as Diels-Alder type cross-linked biodegradable resin 1 In addition, transesterification was performed at 180 ° C for 6 hours. This was dissolved in chloroform and washed with an aqueous alkaline solution, and the solvent was distilled off to obtain a terminal hydroxy PLA (C-3) having a number average molecular weight of 1,000.
  • Carboxyl-alkenyloxy-type cross-linked biodegradable resin 1 Dissolve 100 g of PLA (C-2) obtained in the case of Diels-Alder cross-linked biodegradable resin 1 in chloroform (3 L). Succinic anhydride (0.075 mol) and pyridine (0.05 g) were added as a catalyst, and the mixture was refluxed for 6 hours. After the reaction, the pyridine was extracted and washed, and the solvent was removed to obtain a terminal carboxylic acid PLA resin (C-4).
  • Carboxyl-alkenyloxy-type crosslinked biodegradable resin 2 Dissolve 100 g of PLA (C-3) obtained in the case of Diels-Alder type crosslinked biodegradable resin 2 in chloroform (3 L). Succinic anhydride (0.30 mol) and pyridine (0.05 g) as a catalyst were added, and the mixture was refluxed for 6 hours. After the reaction, the pyridine was extracted and washed, and the solvent was removed to obtain a terminal carboxylic acid PLA resin (C-4).
  • Diels-Alder cross-linked biodegradable resin (no three-dimensional cross-linking) PLA (C-1) obtained in the same manner as Diels-Alder cross-linked biodegradable resin 1 butanediol (0.5) Mol, 45 g) and add 180. Transesterification was performed at C for 6 hours. This was dissolved in chloroform and washed with an aqueous alkaline solution, and the solvent was distilled off to obtain terminal hydroxy PLA (C-6) having a number average molecular weight of 3000.
  • Example 2 The above-mentioned terminal hydroxy PL A (100 g) was dissolved in black form (3 L), and dicyclopentene carboxylic acid chloride (0.033 mol) obtained in Example 1 was added, followed by reaction at room temperature for 24 hours. Thereafter, the solvent was removed by distillation to recover a polyester resin having a di-six-opening pen-crosslinker (does not include a cross-linking point capable of forming a three-dimensional cross-link).
  • Table 2 shows the above evaluation results. Table 2. Evaluation results

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

 生分解性樹脂に共有結合性の熱可逆的架橋構造を導入することで、生分解性を損なうことなく、十分な耐熱性、成形性およびリサイクル性を有する生分解性樹脂を得ることができる。必要に応じて、架橋構造の解離温度を所定の範囲とし、架橋構造の種類を選択し、架橋構造を三次とすることで、耐熱性、成形性、リサイクル性および生分解性を更に向上できる。

Description

明 細 書 生分解性樹脂、 生分解性樹脂組成物、 生分解性成形体、
生分解性樹脂の製造方法 技術分野
本発明は、 熱可逆的な架橋方法を用いることにより、 マテリアルリサイクル を容易にし、 耐熱性および成形加工性に優れ、 生分解可能な樹脂および樹脂組 成物、 及びこれらの製造方法に関する。 背景技術
プラスチックは、 賦形が容易であり、 軽量であり、 安価であり、 腐食し難い 等の優れた特性を有することから、 広範な産業分野において多量に使用されて いる。 しかしながら、 腐食し難い性質のため、 使用済みのプラスチヅクを自然 界に廃棄しても分解されず、 環境問題を引起す場合がある。 また、 自然界に廃 棄できないため、 使用後に焼却処分などを行う必要があるが、 燃焼時の発熱量 が大きいため、 焼却の際に焼却炉を傷める恐れや、 焼却にともないダイォキシ ンを発生する場合もある。 この様な観点から、 リサイクル可能で、 使用後に自 然界に廃棄されると、 微生物などに分解される生分解性のプラスチヅクが望ま れている。 特に、 製造エネルギーの削減や二酸化炭素の排出量を低減の面から. サーマルリサイクルよりもマテリアルリサイクルの可能な生分解性プラスチヅ クが望まれている。
しかしながら、 一般のプラスチヅクと比較して、 従来の生分解性プラスチヅ クでは、 耐熱性などの特性が不十分な場合がある。 このため、 生分解性プラス チックの耐熱性などの特性向上を目的に、 例えば、 特開平 6— 192375% 公報では、 ポリ力プロラクトンをイソシァネートで架橋しており、 共有結合性 の架橋構造を導入して生分解性ブラスチックの耐熱性を向上させる技術が提案 されている。
しかし、 上記の従来技術では、 架橋構造によって生分解性プラスチックの耐 熱性などが向上するが、 加熱溶融時の流動性の低下する恐れや、 成形性が不十 分となる恐れ、 或いは、 生分解性が低下する恐れがある。 また、 特に高度に架 橋された生分解性プラスチックの場合、 これを一度成形すると、 あたかも熱硬 化性樹脂の様に振舞い、 これを回収しリサイクルしょうとしても、 2度目以降 の成形時に十分加熱溶融せず、 リサイクルが困難になることもある。
リサイクル性の向上を目的として、 共有結合性熱可逆架橋構造をプラスチッ クに導入することが提案されている。 まず、 共有結合性熱可逆反応の例として は、 Eng l eら、 J. Mac romo l. S c i. Re. Macromo 1 Chem. Phy s. 、 第 C33巻、 第 3号、 第 239〜 257頁、 1993 年刊に、 ディールスアルダー反応、 ニトロソニ量化反応、 エステル化反応、 ァ ィォネン化反応、 ウレタン化反応、 ァズラクトン一フエノール付加反応が記載 されている。
また、 中根喜則および石戸谷昌洋ら、 色材、 第 67巻、 第 12号、 第 766 〜774頁、 1994年刊;中根喜則および石戸谷昌洋ら、 色材、 第 69巻、 第 11号、 第 735〜742頁、 1996年刊;特開平 11— 35675号公 報には、 ビニルエーテル基を利用する熱可逆架橋構造が記載されている。
更に、 共有結合性熱可逆架橋構造利用し、 リサイクル性を得ている例として は、 次のようなものがある。
特開平 7— 247364号公報には、 可逆架橋が可能なォリゴマ一を利用し て、 オリゴマーを分別回収し、 ケミカルリサイクルする方法が記載されており、 架橋部分の解離方法として紫外線を照射する手法とディ一ルスアルダー反応を 利用した熱による解離手法が記載されている。 しかしながら、 光を利用した解 離反応を均一に行なう為には、 成形物のままでは光に対する透明性を確保する ことは難しく、 有機溶媒に希釈溶解した状態で行なう必要があり、 通常の加熱 溶融による樹脂のマテリアルリサイクルに比べ著しく効率が悪い。 また、 当該 公報の実施例 3によれば、 熱による解離反応が 9 0 °Cで起こっている。 この解 離温度は、 母材となる樹脂 (ポリアクリレート) のガラス転移温度 (9 0〜1 0 5 °C) 以下であり、 むしろ耐熱性を損なっている。 1 0 0 °C以上の十分な耐 熱性を向上することを目的とする場合、 架橋部分の解離反応は少なくとも 1 2 0 °Cを超えた温度で起こる必要がある。 従って、 適切な解離反応温度を有する 可逆架橋部位を選定し、 これを樹脂に適用する必要がある。
特表平 1 0— 5 0 8 6 5 5号公報には、 2, 5—ジアルキル置換フランを樹 脂に導入しリサイクル性を達成している。 フランの導入方法として一酸化炭素 とォレフインの共重合体を強酸による脱水反応により実施されている。 しかし ながら、 生分解性樹脂の場合、 エステル結合等容易に加水分解する官能基によ り重合している。 このような手法でフラン環を導入することは、 樹脂の分解を 引き起こすため非常に困難である。 また、 架橋部の解離温度やジェンの熱安定 性は、 反応場の極性や濃度に大きく依存する。 生分解樹脂の場合、 ディールス アルダー反応を 2, 5ージアルキル置換フランを用いたものに限定する必要は ない。
また、 酸無水物のエステル化反応による可逆反応を耐熱性向上とリサイクル 性向上に利用した例が特開平 1 1— 1 0 6 5 7 8号公報などに記載されており ビニル重合化合物にカルボン酸無水物を導入し、 ヒドロキシ基を有するリンカ 一で架橋する手法が示されている。 しかしながら、 生分解性樹脂の多くはエス テル結合のような、 カルボン酸が触媒となる加水分解性の結合を主鎖に有して いる。 酸無水物のエステル化反応を生分解性樹脂に導入した場合、 架橋部を形 成した状態でフリーのカルボン酸が生じており、 成形前の樹脂の保存時或いは、 成型物の使用時において母材となる生分解性樹脂の加水分解速度が著しく速く なる為、 樹脂の耐湿性 ·耐久性が必要以上に低下し、 実用に供しえなくなる。 一方、 カルボキシル—アルケニルォキシ型の場合は、 結合解離温度を 12 0°C以上のものを使用すれば、 100°C以下の実用温度域では、 フリーのカル ボン酸は生じ無い。 また、 成形に際し、 予め十分樹脂を乾燥しておけば、 加水 分解は起こらずその耐久性を損なう事はない。 また、 ニトロソ 2量体型、 ウレ タン型、 およびァズラクトンーヒドロキシァリール型も適用可能である。
また、 静電結合による熱可逆架橋構造を生分解性樹脂に導入している例もあ る。 まず、 静電結合の例としては、 特開 2000-281805号公報や矢野 紳ー著、 アイオノマーの物性と工業的応用; M. R. T antら著、 I ono me r s (I SBN : 0-7514-0392 -X) がある。
静電結合による熱可逆架橋構造を生分解性樹脂に利用した例として、 特開 2 000-281805号公報には、 強度を向上する目的で、 カルボキシル基を 有するカルボキシメチルセルロースやカルボキシル基含有澱粉等の多糖類の力 ルポキシル基を M gィォン等の多価金属ィオンで架橋したィォン架橋フイルム が開示されている。 しかしながら、 一般に静電結合は共有結合に比べ結合強度 に劣るため樹脂の粘度や弾性率は著しく向上するものの、 耐熱性については、 充分な向上は望めない。
以上の様に、 樹脂材料に共有結合性熱可逆架橋構造を導入し、 樹脂材料のリ サイクル性を実現する試みは多数なされているものの、 これを生分解性樹脂材 料に適用した例は余り見受けられない。 また、 生分解性樹脂材料に共有結合性 熱可逆架橋構造を導入するには技術的困難があり、 リサイクル性の生分解性樹 脂材料で実際の使用に耐え得るだけの性能を実現することは、 従来、 困難であ つ 7こ o 発明の開示
以上の様な状況に鑑み、 生分解性樹脂材料に共有結合性熱可逆架橋構造を導 入し、 実際の使用に耐え得るだけの性能を有するリサイクル性の生分解性樹脂 材料を提供することを、 本発明の目的とする。
より具体的には、 十分な耐熱性、 成形性、 リサイクル性および生分解性を有 する樹脂および樹脂組成物を提供することを目的とする。
上記目的を達成するための本発明によれば、 冷却により共有結合し、 加熱に より開裂する熱可逆的な架橋構造を形成する官能基を有する生分解性樹脂が提 供される。
また、 冷却により共有結合し、 加熱により開裂する熱可逆的な架橋構造を形 成する第 1官能基を有する第 1生分解性樹脂と、 冷却により該第 1官能基と共 有結合し、 加熱により開裂する熱可逆的な架橋構造を形成する第 2官能基を有 する第 2生分解性樹脂とを含む生分解性樹脂組成物が提供される。
また、 冷却により共有結合し、 加熱により開裂する熱可逆的な架橋構造を形 成する第 1官能基を有する第 1生分解性樹脂と、 冷却により該第 1官能基と共 有結合し、 加熱により開裂する熱可逆的な架橋構造を形成する第 2官能基を有 するリンカーとを含む生分解性樹脂組成物が提供される。
また、 冷却により共有結合し加熱により開裂する第 1官能基および第 2官能 基が該共有結合した構造と、 第 3官能基とを有する架橋剤と、 該第 3官能基の 反応する部位を有する生分解性樹脂材料とを該反応させる工程を含む生分解性 樹脂の製造方法が提供される。
また、 冷却により共有結合し、 加熱により開裂する熱可逆的な架橋構造を形 成する第 1官能基を有する第 1生分解性樹脂と、 冷却により該第 1官能基と共 有結合し、 加熱により開裂する熱可逆的な架橋構造を形成する第 2官能基を 2 以上有するリンカーとを該架橋させる工程を含む生分解性樹脂の製造方法が提 供される。
熱可逆的な架橋構造を有する生分解性樹脂の架橋構造は、 溶融成形時には開 裂する。 このため、 耐熱性などの特性を十分なものとするに必要な数の架橋構 造の部位を導入しても、 溶融時には適度な粘度を有し、 良好な成形加工性を実 現できる。 また、 これを一度成形しても、 成形体が熱硬ィ匕性樹脂の様に振舞う ことは無く、 これを回収しリサイクルする際、 2度目以降の成形時にも十分に 加熱溶融し、 良好なリサイクル性を実現できる。 また、 冷却すれば固化して再 び架橋構造が形成されるため、 成形体は十分な耐熱性を有する。
特に、 共有結合性の熱可逆的な架橋構造は静電結合による熱可逆的な架橋構 造に比べ結合力が適度であるため、 これを生分解性の材料に導入することによ り、 高温成形時には架橋構造が開裂し高い流動性を確保しつつ、 利用環境下で は架橋構造により従来の生分解性樹脂材料の欠点である耐熱性および強度など を向上できる。
熱可逆的な架橋構造の場合、 高温において架橋部位が閧裂した後、 引き続き 行われる冷却操作により架橋部位が再度形成する。 このため、 温度変化により 何度でも架橋部位の開裂および再形成を繰り返すことができる。 この様な架橋 構造を生分解性樹脂材料に導入することにより、 優れた樹脂および樹脂組成物 を得ることができる。 即ち、 常温などの成形体を利用する温度領域では、 高次 架橋構造を形成し耐熱性および強度を向上することが可能であり、 成形温度な どの溶融温度以上の領域では、 架橋構造を失い樹脂が低分子化するため、 流動 性が向上し、 成形性およびマテリアルリサィクル性を向上できる。
なお、 成形体は、 固化している際には、 共有結合で架橋された樹脂を主に含 むが、 溶融時には架橋部位が閧裂するため、 2種以上の樹脂を含む組成物とな つたり、 樹脂およびリンカ一を含む組成物となる場合がある。 このため、 樹脂 および樹脂組成物を特に区別する必要がない場合、 これらを樹脂物とも呼ぶ。 また、 共有結合性で熱可逆的な架橋構造に加え、 静電結合性で熱可逆的な架 橋構造を生分解性樹脂に導入することにより、 更に高性能で広範囲な物性を実 現できる。 この具体例としては、 共有結合性架橋構造を形成する官能基と、 静 電結合性架橋構造を形成する官能基とを同一の生分解性樹脂材料に導入する方 法;共有結合性架橋構造を形成する官能基が導入された生分解性樹脂材料と、 静電結合性架橋構造を形成する官能基が導入された生分解性樹脂材料とを混合 する方法;共有結合性および静電結合性の両方の性質を有する架橋構造を形成 する官能基を導入する方法などを挙げることができる。
なお、 静電結合性の架橋構造は、 水分の存在下、 土壌埋設時などにおいて、 急速に生分解される。
以上の結果、 生分解性樹脂材料に共有結合性熱可逆架橋構造を導入でき、 リ サイクル性の生分解性樹脂材料で実際の使用に耐え得るだけの性能を実現でき る。
よって、 十分な耐熱性、 成形性、 リサイクル性および生分解性を有する樹脂 および樹脂組成物を実現できる。
更に、 生分解性樹脂材料の種類を注意深く選択したり、 架橋構造の解離温度 を所定の範囲としたり、 架橋構造の種類を注意深く選択したり、 架橋構造を三 次とすることで、 耐熱性、 成形性、 リサイクル性および生分解性を更に向上で きる。 発明を実施するための最良の形態
以下に本発明を詳細に説明する。
(生分解性樹脂材料)
生分解性樹脂の原料となる生分解性樹脂材料は、 熱可逆的な架橋構造を形成 するために導入される官能基の性質を十分に考慮して選択する。
この様な生分解性樹脂材料としては、 主に人工的に合成され入手できる生分 解性のモノマ一、 ォリゴマー及びポリマー;主に人工的に合成され入手できる 生分解性のモノマーの誘導体、 ォリゴマーの変性体およびポリマーの変性体; 主に天然で合成され入手できる生分角军性のモノマー、 ォリゴマ一及びポリマ ―;主に天然で合成され入手できる生分解性のモノマーの誘導体、 オリゴマー の変性体およびポリマーの変性体などを使用する。
人工合成生分解性オリゴマー及びポリマーとしては、 例えば、 ポリ乳酸 (島 津製作所製、 商品名:ラクティ一等) 、 ポリグリコール酸などのポリアルファ ヒドロキシ酸、 ポリィプシロン力プロラクトン等のポリオメガヒドロキシアル カノエート (ダイセル社製、 商品名:プラクセル等) 、 ブチレンサクシネート 及び/又はェチレンサクシネートの重合体であるポリアルキレンアルカノエー ト (昭和高分子社製、 商品名: ピオノーレなど) 、 ポリブチレンサクシネート 等のポリエステル類、 ポリ—ァ—グル夕メート (味の素社製、 商品名:ポリグ ル夕ミン酸など) 等のポリアミノ酸類、 ポリビニルアルコール、 ポリエチレン グリコール等のポリオール類などを挙げることができる。
なお、 これらの人工合成生分解性ォリゴマー及びポリマーの変性体も好適に 使用できる。
また、 天然合成生分解性ォリゴマ一及びポリマーとしては、 澱粉、 アミロー ス、 セルロース、 セルロースエステル、 キチン、 キトサン、 ゲランガム、 カル ボキシル基含有セルロース、 カルボキシル基含有デンプン、 ぺクチン酸、 アル ギン酸などの多糖類;微生物により合成されるヒドロキシプチレート及び/又 はヒドロキシノ リレートの重合体であるポリべ一夕ヒドロキシアルカノエート
(ゼネ力社製、 商品名:バイオポール等) などを挙げることができ、 中でも、 澱粉、 アミロース、 セルロース、 セルロースエステル、 キチン、 キトサン、 微 生物により合成されるヒドロキシプチレート及び/又はヒドロキシバリレート の重合体であるポリべ一夕ヒドロキシアル力ノエ一ト等が好ましい。
なお、 天然合成生分解性ォリゴマ一及びポリマ一の変性体も好適に使用でき る。
更に、 天然合成生分解性オリゴマー及びポリマーの変性体としては、 リグ二 ン等を使用できる。 リグニンは、 木材中に 2 0〜3 0 %含有されるコニフェリ ルアルコール及びシナピルアルコールの脱水素重合体で、 生分解される。
以上の様な生分解性樹脂材料の中でも、 人工合成生分解性ォリゴマー及びポ リマ一、 人工合成生分解性オリゴマー及びポリマーの変性体、 天然合成生分解 性ォリゴマ一及びポリマーの変性体が、 分子間の結合力が適度であるため熱可 塑性に優れ、 溶融時の粘度が著しく上昇することは無く、 良好な成形加工性を 有するため好ましい。
なかでも、 ポリエステル類おょぴポリエステル類の変性体が好ましく、 脂肪 族ポリエステル類および脂肪族ポリエステル類の変性体が更に好ましい。 また、 ポリアミノ酸類およびポリアミノ酸類の変性体が好ましく、 脂肪族ポリアミノ 酸類および脂肪族ポリアミノ酸類の変性体が更に好ましい。 また、 ポリオール 類およびポリオール類の変性体が好ましく、 脂肪族ポリオール類および脂肪族 ポリオール類の変性体が更に好ましい。
なお、 原料となる生分解性樹脂材料の数平均分子量は、 得られる生分解性樹 脂の性能 (加工性、 成形体の耐熱性、 成形体の機械的特性など) の観点から、
1 0 0以上が好ましく、 一方、 1 , 0 0 0 , 0 0 0以下が好ましく、 5 0 0, 0 0 0以下がより好ましく、 1 0 0, 0 0 0以下が更に好ましく、 1 0 , 0 0 0以下が最も好ましい。
以上の様な生分解性樹脂材料、 その誘導体またはその変性体に対して熱可逆 的な架橋構造を形成する官能基を導入することにより、 熱可逆架橋性生分解性 樹脂を製造できる。
熱可逆的架橋に必要な官能基は、 生分解性樹脂材料の分子鎖末端に導入して もよいし、 分子鎖中に導入してもよい。 また、 導入の方法としては、 付加反応、 縮合反応、 共重合反応などを用いることができる。 生分解性樹脂材料の多くは、 ヒドロキシル基、 カルボキシル基、 アミノ基等の官能基を有している。 従って、 これらの官能基を直接、 熱可逆架橋部位として利用することもできれば、 これ らの官能基を、 熱可逆架橋を形成する官能基に誘導することもできる。
例えば、 ヒドロキシル基が必要な場合は下記のような方法が可能である。 (ァ) 多糖類およびポリオール類はヒドロキシル基を既に有している。
(ィ) ポリエステル類は、 分子鎖末端部にヒドロキシル基およびまたはカルボ キシル基を有している。 分子鎖の両末端がヒドロキシル基のポリエステル類と しては、 例えば、 両末端ヒドロキシ P B S (ポリブチレンサクシネート) を挙 げることができる。 両末耑ヒドロキシ P B Sは、 例えば、 1 , 4—ブ夕ンジォ —ル及びコハク酸を、 1, 4—ブタンジオール/コハク酸 (モル比) が 1より 多く、 より好ましくは 1 . 0 5以上、 更に好ましくは 1 . 1以上となるよう仕 込み、 脱水縮合反応を行うことにより得られる。
(ゥ) 一方、 分子鎖の末端にカルボキシル基が存在するポリエステル類につい ては、 カルボキシル基をヒドロキシル基で封止することにより、 両末端がヒド 口キシル基のポリエステル類を得ることができる。 封止に用いる化合物として はジオールゃポリオールなど 2つ以上のヒド口キシル基を持つものが望ましく、 3つ以上ヒドロキシル基をもつ化合物を用いれば、 3次元架橋構造の架橋点を 形成する事が出来るので特に望ましい。 例えば、 ラクチドを開環重合して得ら れるポリ乳酸のカルボキシル基をペン夕エリスリ トールでエステル化して封止 することにより、 分子鎖の両末端にヒド口キシル基が存在するポリエステルが 得られる。 なお、 「ヒドロキシル基により封止する」 とは、 例えば末端をヒド 口キシル基に誘導することを言う。
(ェ) また、 C h a n— M i n g D . らの手法 (P o l y m e r 第 4 2卷、 第 6 8 9 1頁、' 2 0 0 1年刊) に従い、 多官能ヒドロキシル化合物を中核とし てラクチドを開環重合により順次付加することにより、 末端がヒドロキシル基 となるポリエステルを調製することも可能である。
エステル化反応には、 酸やアルカリの他にカルポジイミ ド類などの試薬を用 いることも可能である。 また、 カルボキシル基を塩化チォニルゃァリルクロラ ィ ドなどを用いて酸塩ィ匕物に誘導した後、 ヒドロキシル基と反応する事により エステル化することも可能である。 また、 ポリブチレンサクシネートゃポリエ チレンサクシネートやポリブチレンサクシネートアジぺー卜のようなジカルボ ン酸およびジォ一ルを原料として合成されているものについては、 使用する原 料のジオール Zジカルボン酸のモル比率を 1より多くすることにより、 分子鎖 の末端基をすべてヒドロキシル基にすることが可能である。
また、 エステル交換反応により、 末端をヒドロキシル基にすることが可能で ある。 即ち、 ポリエステル樹脂にたいし、 2つ以上のヒドロキシル基を有する 化合物によりエステル交換することにより、 末端がヒドロキシル基を有するポ リエステル樹脂が得られる。
ヒドロキシル基を持つ化合物として、 3つ以上ヒドロキシル基をもつ化合物 を用いれば、 3次元架橋構造の架橋点を形成する事が出来るので特に望ましい c 例えば、 ポリ乳酸のエステル結合をペン夕エリスリ トールでエステル交換する ことにより、 分子鎖の末端にヒド口キシル基が合計で 4つ存在するポリエステ ルが得られる。 なお、 末端部にカルボン酸を有する樹脂や未反応のヒドロキシ ル基を有する化合物は容易に精製除去可能である。
生分解性樹脂材料およびヒドロキシル基で修飾された生分解性樹脂材料にヒ ドロキシベンゾィックァシッドでエステル反応を行えば、 ヒドロキシル基をフ ェノール水酸基に変性することが可能である。
カルボキシル基が必要な場合は、 生分解性樹脂材料が有するヒドロキシル基 に対し、 2官能以上カルボン酸を有する化合物を上述のエステル化反応により 結合させれば、 カルボキシル基に変性する事が可能である。 特に酸無水物を用 いれば、 容易にカルボキシル基を有する生分解性樹脂材料を調製する事が可能 である。 酸無水物としては、 無水ピロメリヅト酸、 無水トリメリット酸、 無水 フ夕ル酸、 へキサヒドロ無水フ夕ル酸、 無水マレイン酸やこれらの誘導体を利 用することが可能である。
(架橋部位の化学構造)
架橋部位は、 加熱により閧裂し冷却により共有結合する 2つの第 1官能基お よび第 2官能基より構成される。 溶融加工温度より低温で固化している際には、 第 1官能基および第 2官能基は共有結合により架橋を形成しており、 溶融加工 温度などの所定の温度以上では、 第 1官能基および第 2官能基に開裂する。 架 橋部位の結合反応および開裂反応は温度変化により可逆的に進行する。 なお、 第 1官能基および第 2官能基は、 異なる官能基でも良いし同じ官能基でも良い。 同一の 2つの官能基が対称的に結合して架橋を形成する場合、 同一の官能基を 第 1官能基および第 2官能基として使用できる。
加熱により結合して架橋部位を形成し、 冷却により開裂する可逆的な反応形 式は特に制限されないが、 樹脂物の生産性、 樹脂物の成形性、 成形体の性能 (機械的特性および耐熱性など) などの観点から、 以下より選択されることが 望ましい。
( 1 ) ディ一ルス—アルダー型架橋
ディールス一アルダー [ 4 + 2 ] 環化反応を利用する。 共役ジェン及びジェ ノフィルを官能基として導入することにより、 熱可逆的架橋を形成する生分解 性樹脂を得る。 共役ジェンとしては、 例えば、 フラン環、 チォフェン環、 ピロ —ル璟、 シクロペン夕ジェン環、 1 , 3—ブタジエン、 チオフェェン _ 1ーォ キサイ ド環、 チオフェェン一 1 , 1ージオキサイド環、 シクロペン夕一 2 , 4 —ジェノン環、 2 Hピラン環、 シクロへキサ一 1 , 3—ジェン環、 2 Hピラン 1—オキサイ ド環、 1, 2—ジヒドロピリジン環、 2 Hチォピラン一 1, 1一 ジオキサイ ド環、 シクロへキサ一 2 , 4—ジェノン環、 ピラン一 2—オン環お よびこれらの置換体などを官能基として用いる。 ジエノフィルとしては、 共役 ジェンと付加的に反応して環式化合物を与える不飽和化合物を用いる。 例えば、 ビニル基、 アセチレン基、 ァリル基、 ジァゾ基、 ニトロ基およびこれらの置換 体などを官能基として用いる。 また、 上記共役ジェンもジエノフィルとして作 用する場合がある。
これらの中でも、 例えば、 シクロペン夕ジェンを架橋反応に用いることがで きる。 ジシクロペン夕ジェンは共役ジェン及びジエノフィルの両作用を有する c シクロペン夕ジェンカルボン酸の 2量体であるジシクロペン夕ジェンジカルボ ン酸は、 市販のシクロペン夕ジェニルナトリゥムから容易に得ることができる (E . Ru k c e n s t e i nら、 J. Po l yni. Sci. Part A: Po 1 m. Chem. 、 第 38卷、 第 818〜 825頁、 2000年刊) 。 このジシクロペン夕ジェンジカルボン酸は、 ヒドロキシル基を有する生分解性 樹脂材料、 ヒドロキシル基で修飾された生分解性樹脂材料などに、 エステルイ匕 反応によりヒドロキシル基の存在している部位に架橋部位として導入される。 また、 例えば、 3—マレイミドプロピオン酸および 3—フリルプロピオン酸 を用いれば、 ヒドロキシル基を有する生分解性樹脂材料、 ヒドロキシル基で修 飾された生分解性樹脂材料などに、 エステル化反応によりヒドロキシル基の存 在している部位に容易に架橋部位を導入できる。
架橋部位の導入に利用する上記のエステル化反応については、 酸およびアル カリ等の他にカルポジィミド類などの触媒を用いることも可能である。 また、 カルボキシル基を塩化チォニル又はァリルクロライ ド等を用いて酸塩化物に誘 導した後、 ヒドロキシル基と反応する事によりエステル化することも可能であ る。 酸塩化物を用いれば、 アミノ基とも容易に反応するためアミノ酸類および その誘導体のァミノ基側にも導入できる。
これらの官能基は、 以下の一般式 (I) で示す様に、 熱可逆性の架橋構造を 形成する。
Figure imgf000015_0001
( 2 ) ニトロソ 2量体型架橋
例えば、 ニトロソベンゼンを架橋反応に用いる。 ニトロソベンゼンとしては、 例えば、 ジニトロソプロパン、 ジニトロソへキサン、 ジニトロソベンゼン、 ジ ニトロソトルエン等を用いる。 例えば、 4—ニトロソー 3 , 5—ペンジル酸の 2量体 (米国特許第 3 , 8 7 2 , 0 5 7号公報に、 4一二トロソー 3 , 5—ジ クロ口ペンゾイルク口ライドの 2量体の合成方法が記載されている。 ) を用い、 ヒド口キシル基を有する生分解性樹脂材料のヒド口キシル基、 ヒド口キシル基 で修飾された生分解性樹脂材料のヒドロキシル基などと反応する事により、 ヒ ドロキシル基の存在している部位に容易に熱可逆的架橋部位を導入できる。 ま た、 酸塩化物を用いれば、 アミノ基とも容易に反応するためアミノ酸類および その誘導体のァミノ基側にも導入できる。
これらの官能基は、 以下の一般式 (I I ) で示す様に、 熱可逆性の架橋構造 を形成する。
Figure imgf000016_0001
一般式 (I I ) においては、 冷却により 2つのニトロソ基がニトロソニ量体 を形成して架橋となる。 この架橋は加熱により開裂する。
( 3 ) 酸無水物エステル型架橋
酸無水物およびヒドロキシル基を架橋反応に用いることができる。 酸無水物 としては、 脂肪族無水カルボン酸および芳香族無水カルボン酸などを用いる。 また、 環状酸無水物基および非環状無水物基のいずれも用いることができるが、 環状酸無水物基が好適に用いられる。 環状酸無水物基は、 例えば、 無水マレイ ン酸基、 無水フタル酸基、 無水コハク酸基、 無水グルタル酸基が挙げられ、 非 環状酸無水物基は、 例えば、 無水酢酸基、 無水プロピオン酸基、 無水安息香酸 基が挙げられる。 中でも、 無水マレイン酸基、 無水フ夕ル酸基、 無水コハク酸 基、 無水グルタル酸基、 無水ピロメリット酸基、 無水トリメリヅト酸基、 へキ サヒドロ無水フ夕ル酸基、 無水酢酸基、 無水プロピオン酸基、 無水安息香酸基 およびこれらの置換体などが、 ヒドロキシル基と反応して架橋構造を形成する 酸無水物として好ましい。
ヒドロキシル基は、 ヒドロキシル基を有する生分解性樹脂材料のヒドロキシ ル基、 各種の反応によりヒドロキシル基が導入された生分解性樹脂材料などの ヒドロキシル基を使用する。 また、 ジオール及びポリオール等のヒドロキシ化 合物を架橋剤として用いても良い。 更に、 ジァミン及びポリアミンを架橋剤と して用いることもできる。 酸無水物として、 例えば、 無水ピロメリット酸のよ うな酸無水物を 2つ以上有するものを用いれば、 ヒドロキシル基を有する生分 解性樹脂材料、 ヒドロキシル基で修飾された生分解性樹脂材料などに対し架橋 剤として使用できる。
また、 無水マレィン酸をビニル重合により不飽和化合物と共重合することに より 2つ以上の無水マレイン酸を有する化合物が容易に得られる (特開平 1 1 - 1 0 6 5 7 8号公報、 特開 2 0 0 0— 3 4 3 7 6号公報) 。 これも、 ヒドロ キシル基を有する生分解性樹脂材料、 ヒドロキシル基で修飾された生分解性樹 脂材料などに対する架橋剤として使用できる。
以上の様な酸無水物とヒドロキシル基とは、 以下の一般式 (I I I ) で示す 様に、 熱可逆性の架橋構造を形成する。
Figure imgf000018_0001
一般式 (I I I ) においては、 冷却により酸無水物基と水酸基とがエステル を形成して架橋となる。 この架橋は加熱により閧裂する。
( 4 ) ハロゲンーァミン型架橋
ポリアミン及びテトラメチルへキサンジァミン等とハロゲン化アルキルとか ら、 熱可逆的架橋部位を形成できる。 例えば、 ヒドロキシル基を有する生分解 性樹脂材料、 ヒドロキシル基で修飾された生分解性樹脂材料などに、 4—プロ モメチルベンゾィヅクァシッドのようなカルボキシル基を有するハロゲン化物 をエステル結合する事によりハロゲン化物を得ることができる。 これに、 例え ば、 テトラメチルへキサンジァミンを架橋剤として添加することにより、 熱可 逆的な架橋を形成する生分解性樹脂を得る。
ハロゲン化アルキル基は、 例えば、 アルキルプロミ ド、 アルキルクロリ ド、 フエニルブロミド、 フエニルクロリド、 ベンジルブロミド、 ベンジルクロリ ド が挙げられる。
また、 アミノ基としては第三級ァミノ基が好ましく、 例えば、 ジメチルアミ ノ基、 ジェチルァミノ基、 ジフエニルァミノ基が挙げられる。 中でも、 ジメチ ルァミノ基が好ましい。 ハロゲン化アルキル基と第三級ァミノ基との組み合わ せは、 特に限定されないが、 例えば、 ベンジルブロミ ドとジメチルァミノ基と の組み合わせを例示できる。
これらの官能基は、 以下の一般式 (I V) で示す様に、 熱可逆性の架橋構造 を形成する。
Figure imgf000019_0001
一般式 (I V) においては、 冷却によりハロゲン化アルキル基と第三級アミ ンとが、 第四級アンモニゥム塩性の共有結合を形成して架橋となる。 この架橋 は加熱により閧裂する。
( 5 ) ウレタン型架橋
ィソシァネ一トと活性水素とから熱可逆的な架橋部位を形成できる。 例えば、 多価ィソシァネ一トを架橋剤として用い、 生分解性樹脂材料およびその誘導体 のヒドロキシル基、 アミノ基、 フエノール性水酸基と反応する。 また、 ヒドロ キシル基、 アミノ基およびフエノール性水酸基から選ばれた 2つ以上の官能基 を有する分子を架橋剤として加えることもできる。 更に、 開裂温度を所望の範 囲とするために、 触媒を添加することもできる。 また、 ジヒドロキシベンゼン、 ジヒドロキシビフェニル、 フエノ一ル樹脂などを架橋剤として加えることもで きる。
また、 多価イソシァネートを架橋剤として用い、 生分解性樹脂材料およびそ の誘導体のヒドロキシル基、 アミノ基、 フエノール性水酸基と反応させる。 ジ ヒドロキシベンゼン、 ジヒドロキシビフエニル、 フエノール樹脂などを架橋剤 として加えることもできる。 多価イソシァネートとしては、 トリレンジイソシ ァネート (TD I)およびその重合体、 4, 4, ージフエニルメタンシイソシ ァネート (MDI)、 へキサメチレンジイソシァネート (HMDI)、 1, 4 —フエ二レンジイソシァネート (DPDI) 、 1, 3—フエ二レンジイソシァ ネート、 4, 4, , 4 " —トリフエニルメタントリイソシァネート、 キシリレ ンジイソシァネート等を用いることができる。
また、 開裂温度を調整するために、 1、 3—ジァセトキシテトラプチルジス 夕ノキサン等の有機化合物、 アミン類、 金属石験などを閧裂触媒として用いて も良い。
以上の官能基は、 以下の一般式 (V)で示す様に、 熱可逆性の架橋構造を形 成する。
Figure imgf000020_0001
一般式 (V) においては、 冷却によりフエノール性水酸基とイソシァネート 基とがウレタンを形成して架橋となる。 この架橋は加熱により開裂する。
( 6 ) ァズラクトン一ヒドロキシァリ一ル型架橋
ァリール基としては、 フエニル基、 トリル基、 キシリル基、 ビフエ二ル基、 ナフチル基、 アントリル基、 フエナントリル基およびこれらの基より誘導され る基が挙げられ、 これらの基に結合するフエノール性のヒドロキシル基が、 架 橋構造を形成する基に含まれるァズラクトン構造と反応する。 フエノール性の ヒドロキシル基を有するものとしては、 フエノール性のヒドロキシル基を有す る生分解性樹脂材料、 ヒドロキシルフェノール類で修飾された生分解性樹脂材 料などを使用する。
ァズラクトン構造としては、 1, 4— (4, 4' —ジメチルァズラクチル) ブタン、 ポリ (2—ビニル一4, 4, 一ジメチルァザラクトン) 、 ビスァズラ クトンベンゼン、 ビスァズラクトンへキサン等の多価ァズラクトンが好ましい < また、 ァズラクトン一フヱノール反応架橋のビスァズラクチルブタン等も使 用でき、 これらは、 例えば、 Engleら、 J. Mac r omo 1. Sc i. Re. Mac r omo 1. Chem. Phy s . 、 第 C33卷、 第 3号、 第 2 39〜257頁、 1993年刊に記載されている。
これらの官能基は、 以下の一般式 (VI)で示す様に、 熱可逆性の架橋構造 を形成する。
Figure imgf000021_0001
一般式 (VI) においては、 冷却によりァズラクトン基とフエノール性水酸 基とが共有結合を形成して架橋となる。 この架橋は加熱により開裂する。
(7) カルボキシルーアルケニルォキシ型架橋
カルボキシル基を有するものとしては、 カルボキシル基を有する生分解性樹 脂材料、 カルボキシル基で修飾された生分解性樹脂材料などを使用する。 また、 アルケニルォキシ構造としては、 ビニルエーテル、 ァリルエーテル及びこれら の構造より誘導される構造が挙げられ、 2以上のアルケニルォキシ構造を有す るものも使用できる。
また、 ビス [4— (ビニ口キシ) プチル] アジペート及びビス [4— (ビニ 口キシ) プチル] サクシネート等のアルケニルエーテル誘導体を架橋剤として 用いることもできる。
これらの官能基は、 以下の一般式 (VI I) で示す様に、 熱可逆性の架橋構 造を形成する。 冷却 0. 'Ο /νν
一 COOH+ C, (Μ)
Figure imgf000022_0001
一般式 (VI I) においては、 冷却によりカルボキシル基とビニルエーテル 基とがへミアセ夕一ルエステルを形成して架橋となる。 この架橋は加熱により 開裂する (特開平 11— 35675号公報、 特開昭 60— 179479号公 報) 。
(8) 架橋剤
以上で説明した様に、 熱可逆的な架橋部位を形成し得る官能基を 2つ以上分 子中に有する化合物は架橋剤となり得る。
酸無水物基を有する架橋剤としては、 例えば、 ビス無水フ夕ル酸化合物、 ビ ス無水コハク酸化合物、 ビス無水グル夕ル酸ィ匕合物、 ビス無水マレイン酸ィ匕合 物が挙げられる。
水酸基を^^する架橋剤としては、 例えば、 エチレングリコール、 ジエチレン グリコール、 トリエチレングリコール等のグリコール類; 1 , 4—ブタンジォ —ル、 1 , 6 —へキサンジオール、 1 , 8—オクタンジオール、 1 , 1 0—デ カンジオール、 トリメチロールェタン、 トリメチロールプロパン、 ペン夕エリ スリ トール等のアルコール化合物が挙げられる。
カルボキシル基を有する架橋剤としては、 例えば、 シユウ酸、 マロン酸、 コ ハク酸、 グルタル酸、 アジピン酸、 フタル酸、 マレイン酸、 フマル酸が挙げら れる。
ビニルエーテル基を有する架橋剤としては、 例えば、 ビス [ 4一 (ビニロキ シ) プチル] アジペート、 ビス [ 4— (ビニ口キシ) ブチル] サクシネート、 エチレングリコールジビニルエーテル、 ブタンジオールジビニルェ一テル、 2 2—ビス 〔ρ— (2—ビニロキシエトキシ) フエニル〕 プロパンが挙げられる, ハロゲン化アルキル基を有する架橋剤としては、 例えば、 ひ, ひ' 一ジブ口 モキシレン、 a , ひ, ージクロロキシレン、 ビスブロモメチルビフエニル、 ビ スクロロメチルビフエニル、 ビスプロ乇ジフエニルメタン、 ビスクロロジフエ ニルメタン、 ビスブロモメチルベンゾフエノン、 ビスクロロメチルペンゾフエ ノン、 ビスブロモジフエニルプロパン、 ビスクロロジフエニルプロパンが挙げ られる。
第三級アミノ基を有する架橋剤としては、 例えば、 テトラメチルエチレンジ ァミン、 テトラメチルへキサンジァミン、 ビスジメチルァミノベンゼンが挙げ られる。
フエノール性水酸基を有する架橋剤としては、 例えば、 ジヒドロキシベンゼ ン、 ジヒドロキシビフエニル、 レゾール型フエノール樹脂、 ノボラック型フエ ノール樹脂が挙げられる。
イソシァネート基を有する架橋剤としては、 例えば、 2 , 4—トリレンジィ ソシァネート、 2 , 6—トリレンジイソシァネート、 4, 4, 一ジフエニルメ 夕ンジイソシァネート、 2 , 4, 一ジフエニルメタンジイソシァネート、 p— フエ二レンジイソシァネート等の芳香族ジイソシァネート、 へキサメチレンジ ィソシァネ一ト等の脂肪族ジィソシァネ一ト、 ィソホロンジィソシァネート等 の脂環式ジィソシァネート、 キシリレンジィソシァネート等のァリール脂肪族 ジイソシァネート等が挙げられる。
ァズラクトン基を有する架橋剤としては、 例えば、 ビスァズラクトンブタン、 ビスァズラクトンベンゼン、 ビスァズラクトンへキサンが挙げられる。
ニトロソ基を有する架橋剤としては、 例えば、 ジニトロソプロパン、 ジニト 口ソへキサン、 ジニトロソベンゼン、 ジニトロソトルエンが挙げられる。
(架橋構造の選択)
加熱により結合して架橋部位を形成し、 冷却により開裂する可逆的な反応の 形式としては、 上述の様に、 ディールス—アルダー型、 ニトロソ 2量体型、 酸 無水物エステル型、 ハロゲン一アミン型、 ウレタン型、 ァズラクトン一ヒドロ キシァリール型およびカルボキシル—アルケニルォキシ型などを利用できるが、 熱分解および加水分解などで生分解性樹脂の主鎖が劣化する化学反応は避けた 方が良い場合もある。 特に、 酸無水物エステル型のような架橋を形成する際に、 フリーのカルボン酸を生成するような反応は避けた方が良い場合もある。 しか しながら、 生分解速度を早くしたい場合は、 むしろカルボン酸を生じるような 反応の方が好ましい場合もある。 また、 ハロゲンーァミン型の反応の場合、 ノヽ ロゲンを含むことから焼却時にダイォキシン類を生じる恐れもある。 何れにし ても、 反応形式の選択は、 注意深く行う必要がある。
架橋部分の解離温度は、 成形体の 1 0 0 °C以下の使用温度領域において十分 な架橋が形成されるために、 1 2 0 °Cを越えることが好ましい。 一方、 生分解 性樹脂物の熱劣化の観点から、 適度な温度で溶融加工できるために、 280°C 以下が好ましく、 250°C以下がより好ましい。
より具体的には、 成型物として使用する温度において共有結合し、 ガラス転 移温度 (Tg) を超える温度、 樹脂に必要な耐熱温度を超える温度、 かつ成形 温度以下の温度において開裂する熱可逆的な架橋構造を形成する官能基を有す る生分解性樹脂が提供される。
ガラス転移温度 (Tg) を超える温度、 樹脂に必要な耐熱温度を超える温度 としては例えば 120°Cであり、 120°C以上であれば、 生分解性樹脂の分解 が促進されることなく、 架橋構造として、 ディールス一アルダー型、 カルボキ シルーアルケニルォキシ型などから選択することが可能であり、 ニトロソ 2量 体型、 ウレタン型およびァズラクトン—ヒドロキシァリール型なども適用可能 である。
ディールス一アルダ一型の場合、 ジシクロペンタンの解離反応は、 150 °C 以上 250°C以下で進行するため、 高い耐熱性と優れた成形性を生分解性樹脂 に付与することが可能である。 この架橋部位の解離温度については、 例えばフ ラン-マレイミ ド間の反応において、 中條らの文献 (中ィ1条ら、 Macromo 1 e cu 1 e s 第 23卷、 第 2636~2641頁、 1990年刊) で、 溶 液中の解離反応について 80°Cと紹介されている。 一方、 St ephen A. Cらは ( (J. P. S. PartA : Poylm. Chem. , 30, 177 5, ( 1992) ) 、 150°Cで解離反応が最大になるものや、 210°Cで最 大になるものが存在することを紹介しており、 官能基の導入方法により立体障 害の度合いが異なるため解離反応の開始温度が大きく異なると述べている。 ま た、 結合部位を安定化し、 解離温度を上昇する手法としては、 電子吸引性の官 能基をマレイミ ド環に付与する手法および、 またはフラン環に電子供与性の官 能基を付与する手法がある。 これにより結合反応を容易にし、 解離温度が高く 耐熱性に優れる架橋部位を得ることも可能である。
また、 ニトロソ 2量体型架橋の解離反応は、 1 1 0 °C以上 1 5 0 °C以下で進 行するため、 高い耐熱性と優れた成形性を生分解性樹脂に付与することが可能 である。
また、 ウレタン型架橋の解離反応は、 上記触媒の選定及び添加量の調整によ り 1 2 0 °C以上 2 5 0 °C以下で進行するため、 高い耐熱性と優れた成形性を生 分解性樹脂に付与することが可能である。
また、 ァズラクトン—ヒドロキシァリール型架橋の解離反応は、 1 0 0 °C以 上 2 0 0 °C以下で進行するため、 高い耐熱性と優れた成形性を生分解性樹脂に 付与することが可能である。
また、 カルボキシルーアルケニルォキシ型架橋により架橋された樹脂には常 温でフリ一のカルボン酸は存在しないため、 生分解性樹脂の耐湿性を低下する ことがないため好ましい。 カルボキシル—アルケニルォキシ型架橋の解離反応 は、 カルボキシル基に対する 1 0 0 °C以上 2 5 0 °C以下で進行するため、 高い 耐熱性と優れた成形性を生分解性樹脂に付与することが可能である。
以上の中でも、 生分解性樹脂の劣化が少なく、 耐湿性が高い等の理由から、 ディールス—アルダー型およびカルボキシルーアルケニルォキシ型が好ましく 官能基としては、 ヒドロキシル基、 カルボキシル基、 アルケニル基、 アルケニ ルォキシ基、 共役二重結合を有する基が好ましい。
また、 耐熱性の観点から、 架橋構造としては、 3次元架橋構造が好ましい。
3次元架橋構造の架橋密度は、 生分解性樹脂の官能基の数、 各部材の混合比 などを所定の値とすることで、 所望の値とされる。 3次元架橋構造の架橋密度 は樹脂物 1 0 0 g当たりに含まれる 3次元構造の架橋点のモル数で表され、 十 分な耐熱性を実現するために 0 . 0 0 0 1以上が好ましく、 0 . 0 0 1以上が より好ましく、 0 . 0 0 2以上が更に好ましく、 一方、 架橋部位のモル数が 1 0を超えると、 生分解性樹脂を形成する部分よりも架橋部分を形成する部分の 方が多くなり、 成形時の粘度が低下し良好な成形物を得ることができない。 ま た、 生分解性を示さなくなることから、 リサイクル性および生分解性を実現す るために 1以下が好ましく、 0 . 2以下が更に好ましい。
(架橋体の構造)
以上に説明してきた官能基の少なくとも何れかが第 1生分解性樹脂に含まれ ており、 2種類以上の第 1官能基および 2種類以上の第 2官能基が第 1生分解 性樹脂に含まれている場合もある。
第 1官能基は第 1生分解性樹脂の分子鎖末端に存在している場合もあれば、 例えば側鎖などの末端以外に存在している場合もある。 例えば、 第 1官能基が ヒドロキシル基の場合、 両末端がヒドロキシル基のポリプチレンサクシネート 等は、 第 1官能基が末端に存在している第 1生分解性樹脂の例である。 この場 合、 第 1生分解性樹脂の両末端に第 1官能基が存在しているが、 片末端のみに 存在する場合もある。
また、 第 1官能基がヒドロキシル基の場合、 両末端がメチル化されたアミ口 ース及びセルロース等は、 第 1官能基が末端以外に存在している第 1生分解性 樹脂の例である。
また、 第 1生分解性樹脂の主鎖は直線状および分岐状の何れでも構わず、 例 えば 4モル部のポリ乳酸が 1モル部のペン夕エリスリトールを中心として放射 線状に結合したエステル体は、 分岐状の第 1生分解性樹脂の例である。 なお、 第 1官能基が末端に存在している場合、 全ての末端に第 1官能基が存在してい る場合もあれば、 一部の末端のみに第 1官能基が存在している場合もある。 更に、 第 1生分解性樹脂の分子鎖中の同一部位に複数の第 1官能基が結合し ている場合もあり、 例えば、 ポリ乳酸のカルボキシル基末端にペン夕エリスリ トールがエステル結合している場合、 ポリ乳酸のカルボキシル基末端に 3つの ヒドロキシル基が結合している例である。 この場合、 ペン夕エリスリトールの 中央のメタンに由来する炭素が同一部位であり、 この炭素にメチレンを介して 第 1官能基であるヒドロキシル基が結合している。 なお、 同一部位に複数の第 1官能基が結合しているとは、 1つの原子から数えて 0〜 5個の原子を介して 複数の第 1官能基が結合していることを言い、 得られる熱可逆架橋性生分解性 樹脂の性能上の理由から、 0 ~ 3個の原子を介して複数の第 1官能基が結合し ていることが好ましい。
なお、 樹脂物の生産性、 樹脂物の成形性などの観点からは、 分子鎖の末端に 第 1官能基が存在している第 1生分解性樹脂が好ましい。 この場合、 溶融加工 時において異なる分子鎖の第 1官能基間の相互作用が適度であるため、 良好な 流動性および加工性を実現できる。 また、 成形体の性能 (機械的特性および耐 熱性など) の観点からは、 分岐状の第 1生分解性樹脂または同一部位に複数の 第 1官能基が結合している第 1生分解性樹脂が好ましい。 この場合、 成形体中 で 3次元的な架橋が形成されるため、 良好な機械的特性および耐熱性を有する 成形体を得ることができる。
ここで、 共有結合性の官能基が 2つ以上ある場合、 一方の官能基(第 1官能 基) が存在している生分解性樹脂 (第 1生分解性樹脂) に他の官能基 (第 2官 能基) が存在している場合もあれば、 第 2官能基は、 第 1官能基が存在してい る生分解性樹脂 (第 1生分解性樹脂) とは異なる生分解性樹脂 (第 2生分解性 樹脂) に存在している場合もある。 以下に、 第 1官能基および第 2官能基の何 れもが同一の第 1生分解性樹脂に存在している例を挙げる。 ( 1 ) アミロース及びセルロースのヒドロキシル基が無水マレイン酸とエス テル結合を形成している多価カルボン酸樹脂を調製する。 この樹脂のカルボン 酸の一部に 2—アミノエチルビ二ルエーテルをカルボジィミ ド類でエステル結 合する。 この場合、 同一の生分解性樹脂 (第 1生分解性樹脂) にカルボン酸構 造 (第 1官能基) とビニルエーテル基 (第 2官能基) とが存在しており、 カル ボキシル一アルケニルォキシ型の架橋を形成する。
( 2 ) ポリ乳酸のカルボキシル末端にペン夕エリスリ トールがエステル結合 しているものの両末端にある 4つのヒドロキシル基に対し、 更にシクロペン夕 ジェンカルボン酸とマレイミドのディールスアルダー反応物 ( 3 , 5—ジォキ ソー 4—ァザ一トリシクロ [ 5 . 2 . 1 . 0 2, 6 ] デカ一 8—ェン一 1 0— カルボン酸) がエステル結合された第 1生分解性樹脂の場合、 第 1官能基およ び第 2官能基 が同一のシクロペン夕ジェン誘導体で、 第 1官能基および第 2 官能基が同一の第 1生分解性樹脂に存在しており、 減圧下加熱によりマレイミ ドを除去することによりシクロペン夕ジェン同士のディ一ルス一アルダー型の 架橋を形成する。 なお、 架橋は第 1生分解性樹脂の両末端で形成される。
( 3 ) 両末端がヒドロキシル基のポリプチレンサクシネートの両末端にシク 口ペン夕ジェンカルボン酸がエステル結合された第 1生分解性樹脂の場合、 第 1官能基および第 2官能基が同一のシクロペン夕一 2 , 4—ジェン— 1—ィル 基で、 第 1官能基および第 2官能基が同一の第 1生分解性樹脂に存在しており ディ一ルス—アルダー型の架橋を形成する。 なお、 架橋は第 1生分解性樹脂の 分子鎖の両末端で形成される。
( 4 ) 両末端がヒドロキシル基のポリプチレンサクシネートの両末端にニト 口ソ安息香酸がエステル結合された第 1生分解性樹脂の場合、 第 1官能基およ び第 2官能基が同一の二ト口ソペンゾィル基で、 第 1官能基および第 2官能基 が同一の第 1生分解性樹脂に存在しており、 ニトロソ 2量体型の架橋を形成す る。 なお、 架橋は第 1生分解性樹脂の両末端で形成される。
上記の (1 ) 及び(2 ) の樹脂物は、 第 1生分解性樹脂材料に第 1官能基お よび第 2官能基を導入して得られる。
また、 上記の (3 ) 及び (4 ) の樹脂物を製造する際には、 架橋部位を形成 する第 1官能基と第 2官能基とが予め共有結合しており、 第 1官能基および第 2官能基以外に第 1生分解性樹脂材料と反応する基を有している化合物 (例え ば、 ジシクロペン夕ジェンジカルボン酸およびニトロソ安息香酸の 2量体な ど) を架橋剤として用いることができる。 この様な架橋剤と第 1生分解性樹脂 材料とを混合し反応させ、 架橋剤を第 1生分解性樹脂材料に結合すれば、 架橋 部位が架橋した状態の樹脂物を生産性良好に得ることができる。 特に、 上記の ( 3 ) 及び (4 ) の様に、 第 1官能基および第 2官能基が同一で、 同一の官能 基が対称的に結合して架橋部位を形成する場合、 ジシクロペン夕ジェンジカル ボン酸、 ニトロソ安息香酸の 2量体などの、 官能基が対称的に結合した 2量体 を架橋剤として使用できる。
なお、 架橋剤が複数の官能基を含む場合、 官能基が同種であれば、 架橋剤の 製造が容易であり、 架橋反応を制御し易いため、 好ましい。
一方、 第 2官能基は、 第 1官能基の存在している第 1生分解性樹脂と異なる 第 2生分解性樹脂に存在していても良い。 この様な例としては、 ポリ乳酸の力 ルボキシル基末端にペン夕エリスリ トールがエステル結合しているものの両末 端の 4つのヒドロキシル基に、 更に 3—マレイミドプロピオン酸がエステル結 合された第 1生分解性樹脂と、 ポリ乳酸のカルボキシル基末端にペン夕エリス リトールがエステル結合しているものの両末端の 4つのヒドロキシル基に、 更 に 3—フリルプロビオン酸がエステル結合された第 2生分解性樹脂との組み合 わせを挙げることができる。 第 1官能基はマレイミド構造であり、 第 2官能基 はフリル基であり、 これらの官能基はディールス—アルダー型で架橋する。 な お、 架橋は第 1生分解性樹脂の分子鎖末端と、 第 2生分解性樹脂の分子鎖末端 とで形成される。
また、 第 1官能基および第 2官能基の何れも有する第 1生分解性樹脂、 第 1 官能基および第 2官能基の何れも有する第 2生分解性樹脂、 第 1官能基および 第 2官能基の何れかのみを有する第 1生分解性樹脂、 第 1官能基および第 2官 能基の何れかのみを有する第 2生分解性樹脂などを含む混合物より樹脂物を構 成することもできる。
この様な樹脂物を製造する際にも、 架橋部位を形成する第 1官能基と第 2官 能基とが予め共有結合しており、 第 1官能基および第 2官能基以外に第 1生分 解性樹脂材料と反応する基を有している化合物を架橋剤として用いることがで き'る。 この様な架橋剤と第 1生分解性樹脂材料および第 2生分解性樹脂材料と を混合し反応させ、 架橋剤を第 1生分解性樹脂材料および第 2生分解性樹脂材 料に結合すれば、 架橋部位が架橋した状態の樹脂物を生産性良好に得ることが できる。
一方、 第 2官能基はリンカ一に存在している場合もある。 この場合、 少なく とも、 第 1官能基を有する第 1生分解性樹脂と、 第 2官能基を有するリンカ一 とから樹脂物は構成され、 リンカ一としては、 第 1生分解性樹脂の生分解性を 損なわないものが使用される。 リンカ一を使用することにより、 より広範な樹 脂物を実現できるため、 樹脂物の生産性、 樹脂物の成形性、 成形体の性能 (機 械的特性および耐熱性など) などの自由度が広くなる。
リンカ一は 1分子中に 2つ以上の第 2官能基を有しているモノマー、 オリゴ マー及びポリマ一等で、 リンカーの第 2官能基は第 1生分解性樹脂の第 1官能 基と架橋部位を形成する。 また、 リンカ一は 1分子中に 2つ以上の第 1官能基 を有しているモノマー、 オリゴマー及びポリマー等を併用してもよい。 この結 果、 成形体においては、 2以上の第 1生分解性樹脂が 1以上のリンカ一を介し て架橋された状態となる。 また、 溶融時には架橋部位は閧裂し、 架橋部位の結 合および開裂は熱可逆反応の関係にある。 なお、 1分子中に 2つ以上の第 2官 能基を有しているリンカ一を、 架橋剤と呼ぶ場合もあり、 この様なリンカ一と 第 1生分解性樹脂とを混合し反応して、 樹脂物を製造する。 なお、 必要に応じ て、 複数のリンカ一を併用する場合もあれば、 複数の第 1生分解性樹脂を併用 する場合もある。
以上、 架橋用の官能基として、 ( 1 ) 生分解性樹脂に導入する方法、 ( 2 ) リンカ一も使用する方法を説明したが、 その他の方法として、 通常の生分解性 樹脂に、 リンカ一同士の架橋システムを入れる手法も利用できる。 例えば、 巿 販の生分解性樹脂に、 ディールス一アルダー反応により重合する樹脂を一部混 合する。 ディ一ルス一アルダー反応する樹脂としては、 以上に説明したリンカ —等を使用できる。
モノマ一 '性のリンカ一としては、 以下を例示できる。
( 1 ) トルエンジイソシァネートをリンカ一として使用する。 この場合、 第 2官能基はイソシァネート基であり、 第 1生分解性樹脂としては、 例えば、 フ ェノール性水酸基を有する生分解性ポリエステルを使用する。 第 1官能基はフ エノ一ル性のヒドロキシル基であり、 トルエンジイソシァネートのイソシァネ —ト基は、 生分解性ポリエステルのフエノール性のヒドロキシル基と、 ウレ夕 ン結合により架橋を形成し、 フエノール性水酸基を有する生分解性ポリエステ ルはトルエンジィソシァネートを介して架橋される。
( 2 ) N, N, —ビスマレイミ ドー 4, 4, ージフエニルメタンをリンカ一 として使用する。 この場合、 第 2官能基はマレイミド構造であり、 第 1生分解 性樹脂としては、 例えば、 フル酸がヒドロキシル基末端にエステル結合したポ リ乳酸を使用する。 第 1官能基はフリル基であり、 N , N ' —ビスマレイミド —4 , 4, ージフエニルメタンのマレイミド構造は、 ポリ乳酸に結合している フリル基と、 ディ一ルス一アルダ一型の架橋を形成し、 ポリ乳酸は、 N , N5 一ビスマレイミ ドー 4 , 4, —ジフエニルメタンを介して、 片末端で架橋され る。
なお、 リンカ一が複数の官能基を含む場合、 官能基が同種であれば、 リンカ 一の製造が容易であり、 架橋反応を制御し易いため、 好ましい。
(静電結合性架橋構造の併用)
静電結合とは、 静電的な結合であり、 静電引力により形成される結合を意味 し、 イオン結合および水素結合などが含まれる。 これらの結合は、 官能基と官 能基とで直接形成される場合、 官能基と官能基とでイオンを介して形成される 場合、 官能基と官能基とでポリイオンを介して形成される場合などがある。 官能基と官能基とで直接形成される静電結合としては、 ィォン性官能基間の イオン対間で形成される場合を挙げることができる。 また、 官能基と官能基と でイオンを介して形成される静電結合としては、 2つ以上のィォン性官能基が 1つのカウンターイオンに静電引力で配位されている場合を挙げることができ る。 更に、 官能基と官能基とでポリイオンを介して形成される静電結合として は、 2つ以上のイオン性官能基が 1つのイオン性高分子に静電引力で配位され ている場合を挙げることができる。
生分解性樹脂材料から得られる生分解性樹脂は官能基を有しており、 静電結 合の様式としては、 官能基がイオン対を形成している場合、 官能基がカウン夕 —イオンに静電引力で配位されている場合、 官能基がポリイオンに静電引力で 配位されている場合などがある。
官能基がイオン対を形成している形態は、 官能基と官能基との間で静電結合 が直接形成されている例であり、 例えば、 生分解性樹脂中のカルボキシル基が カルボキシレ一トァ二オンとなり、 生分解性樹脂中のアミノ基がアンモニゥム カチオンとなり、 これらがイオン対を形成し有機塩となっている場合などであ る
また、 官能基がカウンターイオンに静電引力で配位されている形態は、 官能 基と官能基との間でイオンを介して静電結合が形成される例であり、 例えば、 生分解性樹脂中の 2つ以上のカルボキシル基が 1つの金属カチオンにイオン結 合している場合などである。
更に、 官能基がポリイオンに静電引力で配位されている形態は、 官能基と官 能基との間でポリイオンを介して静電結合が形成される例であり、 例えば、 生 分解性樹脂中の 2つ以上のカルボキシル基がペン夕エチレンへキサミンゃポリ ァミンの様な 1つのポリカチオンにイオン結合している場合、 生分解性樹脂中 の 2つ以上のァミノ基がベンゼントリカルボン酸やポリアクリル酸の様な 1つ のポリア二オンにイオン結合している場合などである。 なお、 ポリイオンとし ては、 イオン性官能基を 1つ以上、 好ましくは 2つ以上有する単量体;イオン 性官能基を 1つ以上、 好ましくは 2つ以上有するオリゴマ一;イオン性官能基 を 1つ以上、 好ましくは 2つ以上有するポリマー等を使用できる。
ィォン性官能基とは、 イオンに解離またはイオンと結合して自身がイオンと なる官能基である。 ィォン性官能基から形成される静電結合性の架橋構造は、 カチォン性官能基とァニォン性官能基とから静電結合を利用して形成できる。 カチオン性官能基としては、 アミノ基およびイミノ基などを用いる。 ァニオン 性官能基としては、 カルボキシル基、 スルフォニル基、 燐酸基、 ハロゲン化物 イオンを含む基、 水酸基、 フエノール性水酸基、 チォカルボキシル基などを用 いる。 また、 カチオン性官能基ゃァニオン性官能基に替えて、 アルカリ金属ィ オン、 アルカリ土類金属イオン、 遷移金属イオン、 陰イオン、 ポリカチオン、 ポリア二オン等 1つ以上のイオン性官能基を有する分子を用いることにより、 静電結合性の架橋構造を形成することもできる。
以下に、 静電結合の形式の具体例を説明する。
( 1 ) イオンを介する結合
イオンを介する静電結合による架橋構造をイオン架橋と言い、 イオン架橋の 場合、 例えば、 カルボキシル基などのァニオン性官能基を有する生分解性樹脂 材料を用いたり、 生分解性樹脂材料にカルボキシル基などのァニオン性官能基 が導入されたものを用いる。 そして、 カチオン性官能基として、 ハロゲン化物、 無機酸塩、 硫酸塩、 硝酸塩、 リン酸塩、 有機酸塩、 カルボン酸塩などを用いて、 上記のようなカルボキシル基を有する生分解性樹脂材料を中和することにより、 力チォン性官能基をァニオン性官能基の対ィオンとして導入できる。 中和処理 としては、 溶融状態の生分解性樹脂材料に上述の塩類から選ばれた 1種類以上 の塩類を直接添加してもよいし、 水溶液として添加してもよい。 また、 生分角牟 性樹脂材料を水および/または有機溶媒に溶解した後、 上述の塩類から選ばれ た 1種類以上の塩類を添加しても良い。
この様にして得られる生分解性樹脂の形態としては、 1つのァニオンを介し て 2つ以上のカチオンが静電的に結合された構造、 1っカチオンを介して 2つ 以上のァニオンが静電的に結合された構造などがある。
イオン架橋に使用されるイオンは、 アルカリ金属イオン、 アルカリ土類金属 イオン、 遷移金属イオン、 有機アンモニゥム、 ハロゲン化物イオン、 カルボキ シレートァニオン、 アルコラ一トァニオン、 フエノラートァニオン、 チォカル ボキシレ一トァニオン、 スルフォネートァニオン等であり、 必要に応じて 2種 以上を併用することもできる。
これらのイオンの中でも、 2価以上のイオンが、 耐熱性の観点から好ましい c また、 得られる樹脂物および成形体の性能 (機械的特性および耐熱性など) の観点から、 カルボキシル基を有する生分解性樹脂と、 金属イオンとの組み合 わせが好ましく、 金属イオンとしては、 ナトリウムイオン、 カルシウムイオン、 亜鉛イオン、 マグネシウムイオン、 銅イオン等が好ましい。 なお、 必要に応じ て、 2種以上金属のイオンを併用することもできる。
また、 カルボキシル基の中和率は 1 %以上が好ましく、 5 %以上がより好ま しく、 1 0 %以上が更に好ましく、 1 5 %以上が最も好ましい。 また、 カルボ キシル基の中和率は 1 0 0 %以下であるが、 9 5 %以下が好ましい。
この様にして得られた生分解性樹脂の場合、 金属イオンを介して、 2つ以上 の力ルポキシル基が静電的に結合された構造となる。
( 2 ) ポリイオンを介する結合
ポリイオンを介する静電結合による架橋構造をポリイオン架橋と言い、 ポリ イオン架橋で使用されるポリイオンの内、 イオン性官能基を 1つ以上、 好まし くは 2つ以上有するポリカチオン単量体としては、 ペン夕エチレンへキサミン 以外にも、 テトラエチレンペン夕ミン、 へキサンジァミン、 2, 4, 6—トリ ァミノ トルエン等を使用できる。
また、 イオン性官能基を 1つ以上、 好ましくは 2つ以上有するポリア二オン 単量体としては、 ベンゼントリカルボン酸以外にも、 2 , 3—ジメチルプタン — 1 , 2, 3—トリカルボン酸などを使用できる。
また、 イオン性官能基を 1つ以上、 好ましくは 2つ以上有するポリカチオン ォリゴマー及びポリマ一としては、 ポリアミン以外にも、 ポリビニルァミンや ポリエチレンイミン等のポリアミン類などを使用できる。
また、 イオン性官能基を 1つ以上、 好ましくは 2つ以上有するポリア二オン オリゴマー及びポリマーとしては、 ポリアクリル酸以外にも、 ポリスチレンス ルホン酸、 ポリリン酸などを使用できる。
( 3 ) 有機塩の形成による結合
例えば、 アミノ基などのカチオン性官能基と、 カルボキシル基などのァニォ ン性官能基との間で静電的に形成される結合を利用して、 架橋部位を形成でき る。
(成形加工)
以上の様にして得られた熱可逆的な架橋を形成する生分解樹脂物を用いて成 形体を作製する際には、 無機フィラー、 有機フィラー、 補強材、 着色剤、 安定 剤 (ラジカル補足剤、 酸化防止剤など) 、 抗菌剤、 防かび材、 難燃剤などを、 必要に応じて併用できる。
無機フイラ一としては、 シリカ、 アルミナ、 タルク、 砂、 粘土、 鉱滓などを 使用できる。 有機フイラ一としては、 植物繊維などの有機繊維を使用できる。 補強材としては、 ガラス繊維、 炭素繊維、 針状無機物、 繊維状テフロン樹脂な どを使用できる。 抗菌剤としては、 銀イオン、 銅イオン、 これらを含有するゼ ォライ トなどを使用できる。 難燃剤としては、 シリコーン系難燃剤、 臭素系難 燃剤、 燐系難燃剤などを使用できる。
なお、 架橋部分の解離温度は、 成形体の使用温度領域において十分な架橋が 形成されるために、 1 2 0 °Cを越える必要があり、 一方、 生分解性樹脂物の熱 劣化が問題とならない温度で溶融加工できるために、 2 8 0 °C以下が好ましく 2 5 0 °C以下がより好ましい。 そして、 溶融後、 生分解性樹脂物は冷却され賦 形される。 冷却温度は、 十分な架橋が形成されるために、 0 °C以上が好ましく 10°C以上がより好ましく、 一方、 100°C以下が好ましく、 80°C以下がよ り好ましい。 なお、 冷却工程中および冷却工程後に、 十分な架橋を形成し成形 体の十分な特性を発現するために、 必要に応じて、 成形体を所定の温度で保持 する場合もある。 成形体を保温することにより、 架橋の形成が更に進み、 成形 体の特性を向上することができる。
また、 同様の観点から、 生分解性樹脂物の溶融温度 (流動開始温度) も、 1 20°Cを越える必要があり、 一方、 280°C以下が好ましく、 250°C以下が より好ましい。
以上の様な樹脂および樹脂組成物は、 射出成形法、 フィルム成形法、 ブロー 成形法、 発泡成形法などの方法により、 電化製品の筐体などの電気 ·電子機器 用途、 建材用途、 自動車部品用途、 日用品用途、 医療用途、 農業用途などの成 形体に
加工できる。
熱可逆的な架橋構造は、 形状記憶樹脂に利用することが可能である。形状記 憶樹脂の例としては、 入江正浩ら著、 形状記憶ポリマーの材料開発 (I SBN 4-88231-064-3) がある。形状記憶現象とは、 一般的には、 所定 の温度域で変形加工した後、 再加熱すると元の形状に回復する現象をいう。 即 ち、 変形加工は、 樹脂のガラス転移温度以上で行い、 ガラス転移温度以下に冷 却することにより変形を固定ィ匕する。 (常温域において固定化した樹脂を使用 するためには、 ガラス転移温度は常温より高い必要がある。 ) 形状を回復する には、 樹脂をガラス転移温度以上に加熱することにより、 ガラス状態による変 形の固定化を解除する。 ここで、 この樹脂の変形を固定する方法として熱可逆 的な架橋構造を利用することが可能である。 熱可逆的な架橋構造を変形の固定 化に利用した場合は、 架橋が解離する温度をガラス転移温度以下に設定するこ とにより、 ガラス転移温度以上で元の形状に回復することが可能になる。 この 例として、 米国特許第 5 , 0 4 3 , 3 9 6号がある。 また、 熱可逆的な架橋構 造を形状の記憶の為の固定点として利用することも可能である。 形状記憶樹脂 は樹脂の流動 (クリープ現象) を防ぐための固定点 (或いは凍結相) が必要で ある。 ポリマー同士の絡まり合いを利用したものは、 熱可塑性形状記憶樹脂と 呼ばれ、 溶融する事によりリサイクル可能となる。 しかしながら、 形状回復力 が弱く、 回復速度も遅い。 これに対し、 固定点に共有結合を用いたものは、 熱 硬化性形状記憶樹脂と呼ばれ、 溶融が出来なくなり、 リサイクル不能となるも のの、 形状回復力が強く、 回復速度も速い。 この固定点として熱可逆可能な架 橋構造を利用した場合、 回復力が強く、 回復速度も速く、 かつ溶融可能でリサ ィクル可能な形状記憶樹脂を得ることが出来る。
以上を踏まえ、 生分解性樹脂の中でもポリエステル系樹脂が好ましく、 例え ばポリ乳酸が好ましく、 ポリブチレンサクシネートも好ましい。 また、 これら の生分解性樹脂に導入される架橋部位としては、 ディ一ルス一アルダー型架橋 またはカルボキシルーアルケニルォキシ型架橋が好ましい。 この様に、 ポリ乳 酸などのポリエステル系の生分解性樹脂にディ一ルス一アルダー型架橋または カルボキシル—アルケニルォキシ型架橋が導入されている場合、 架橋部位は三 次元架橋点を有することが特に好ましく、 三次元架橋点の架橋密度は 0 . 0 0 2 5〜0 . 1 1 0であることが好ましい。 また、 架橋部位の解離温度は、 1 2 0 °C以上が好ましい。
以上の様な化学構造を選択することで、 生分解性を損なうことなく、 耐熱性 を向上でき、 生分解性樹脂の十分なマテリアルリサイクル性を実現でき、 良好 な成形性を実現でき、 耐湿性など耐久性を十分なものとすることができる。 以上の理由としては、 以下の様に推察できる。 (ァ) ポリ乳酸やポリプチレンサクシネートを初めとする人工合成生分解性 樹脂は、 一般に天然合成生分解性樹脂の多糖類に比べ成形性に優れる。
(ィ) ポリ乳酸ゃポリプチレンサクシネートを初めとする人工合成生分解性 樹脂は、 一般に天然合成生分解性樹脂の微生物により合成される樹脂に比べ量 産性に優れる。
(ゥ) ポリ乳酸は人工合成生分解性樹脂の中でも、 乳酸という植物由来原料 を使用出来るため、 化石燃料の消費を抑える事が可能であり、 c o 2発生量を 抑制できる。
(ェ) ディールス—アルダ一型架橋やカルボキシル—アルケニルォキシ型架 橋は、 1 0 o °c以下の使用温度域においてイオン性で無いため、 ポリ乳酸ゃポ リブチレンサクシネートの主鎖の加水分解を促進しない。 これは、 電子機器の 筐体などの耐久材料用途に用いる場合、 耐久性 (耐湿性) が要求されるが、 こ の様な用途分野においても、 上記の生分解性樹脂を好適に使用することができ る。
(ォ) 三次元架橋点を導入することにより、 架橋物により生成した樹脂が三 次元構造を持っため、 耐熱性を発現する。 また、 十分量の架橋点の存在により 著しく耐熱性を向上できる。 一方、 架橋密度が高すぎると、 可逆架橋部分が生 分解性樹脂に占める割合が多くなるため、 生分解樹脂として機能が不足する場 合がある。
(力) 架橋部分の解離温度を 1 2 0 °C以上とすれば、 生分解性樹脂の耐熱性 を 1 0 o °c以上とできる。
(キ)解離温度を 2 5 0 °C以下とすれば、 生分解樹脂の主鎖の熱分解を引き 起こすことなく成形できる。
以下では、 実施例によって本発明を更に詳細に説明するが、 これらは、 本発 明を何ら限定するものではない。 なお、 以下特に明記しない限り、 試薬等は巿 版の高純度品を用いた。 なお、 数平均分子量および重量平均分子量はゲルパー メ一シヨンクロマトグラム法により測定し、 標準ポリスチレンを用いて換算し た。
また、 以下の方法で性能を評価した。
耐熱性:島津製作所製 TMA測定装置 (商品名: TMA— 40) を用いて針 入れ度試験 (J I S K 7196に準拠、 荷重 0. 2 g、 針径 3mm) を行 い、 100°C以下において、 変形の有ったものを X、 変形の実質的に無かった ものを〇、 変形が全くないものを◎とした。 なお、 試験片は 100°Cにて 2時 間保持した後測定した。
解離温度:セイコーインスヅルメント社製 D S C測定装置 (商品名: D S C 6000) をもちいて、 昇温速度 10°C/分で測定を行ない、 吸熱ピークを解 離温度とした。
生分解性:熱プレス ( 200 °C) により成形体 (厚み 0. 1ミリ) を作製し、 土壌に埋設した後、 6ヶ月後に分解性が認められたものを〇、 認められなかつ たものを Xとした。
リサイクル性: 200 Cまで加熱して溶融状態とし、 これに続く常温までの 冷却を 5回繰り返した (200°Cと常温とを 5サイクル) 後、 上記の耐熱性試 験を行い、 100°C以下において、 変形の有ったものを X、 変形の無かったも のを〇とした。
成形性: 6. 4mmx 12. 5mmX 125 mmの試験片を 200°Cの射出 成形し、 成形できたものを〇、 できなかったものを Xとした。
耐湿性: 20°Cにて 60%RHの条件下で試験片を 6ヶ月放置した後 80°C で減圧乾燥した。 樹脂物の成形温度における粘度を測定し、 耐湿試験前の粘度 と比較した。
実施例 1一 1
攪拌機、 分流コンデンサー、 温度計、 窒素導入管を付した 3 Lのセパラブル フラスコに、 コハク酸 716 g (6. 1モル) 、 1, 4—ブタンジオール 6 1 3 g (6. 8モル) を仕込み、 窒素雰囲気下 180〜 220 °Cで 3時間脱水縮 合を行った。 続いて、 減圧下 180〜220°Cで 3時間脱グリコール反応を行 い、 水およびビニルグリコールを留去して、 数平均分子量 3, 000の両末端 ヒド口キシル基脂肪族ポリエステル ( A 1 ) を得た。
この様にして得られた両末端ヒドロキシル基脂肪族ポリエステル (Al) 1 00質量部と、 新日本理化 (株) 社製 1, 2, 3, 4—ブタンテトラカルボン 酸二無水物 (商品名: リカシヅド BT— 100、 化合物 (B 1) とも呼ぶ) 6. 6質量部とを東洋精機社製ミニマクスミクストルーダー (商品名) により 200°Cにて溶融混練し、 組成物 ( 1) を得た。
串施例 1 一 2
両末端ヒドロキシル基脂肪族ポリエステル (A1) 100質量部と、 無水ピ ロメリット酸 7. 3質量部とを東洋精機社製ミニマクスミクストルーダー (商 品名) により 200°Cにて溶融混練し、 組成物 (2) を得た。
ま纏 1 一
化合物 (B 1) に代えて、 メチルビニルエーテル無水マレイン酸共重合体 ( B 2) (数平均分子量: 900, 000) 10. 4質量部を使用した以外は、 組成物 ( 1) の場合と同様にして組成物 (3) を得た (三次元架橋を形成可能 な架橋点は樹脂物 100 g当たり、 約 0. 060) 。
以上で得られた組成物につき性能を評価し、 結果を表 1に示した。 表 1. 評価結果
Figure imgf000043_0001
表 1より、 組成物 (1)〜(3) は、 耐熱性、 生分解性、 リサイクル性およ び成形性の全の性能に優れていることが分かつた。
ポ 1)エステル樹脂 M— 1〜M— 1 0
(M— 1) 両末端ヒドロキシ; PB S (ポリブチレンサクシネート) : 1, 4 —ブタンジオール及びコハク酸を、 1, 4—ブタンジオール/コハク酸 (モル 比) が 1より多く、 より好ましくは 1. 05以上、 更に好ましくは 1. 1以上 となるよう仕込み、 脱水縮合反応を行うことにより数平均分子量 100〜1, 000, 000の両末端がヒド口キシル基の P B Sを得る。 反応温度を 1 10 ~250°Cとして減圧することにより、 脱水縮合反応が進行し分子量が増大す る。 また、 テトライソプロポキシチタン等の触媒を、 モノマー混合物 100質 量部に対し 0. 1~5質量部加えることによつても、 脱水縮合反応が進行し分 子量が増大する。
(M-2) PLA (ポリ乳酸) :ラクチド (乳酸の 2量体) を開環重合する ことにより、 数平均分子量 100〜1, 000, 000のポリ乳酸を得る。 反 応温度を 120~220°Cとすることにより、 開環反応が進行する。 また、 モ ノマ一 100質量部に対し 0. 01〜1質量部のオクタン酸第一スズを触媒と して使用することにより、 更に脱水縮合反応を進行させ分子量を増大できる。 (M- 3)末端ヒドロキシ PLA: PLA (M— 2) と、 ペン夕エリスリ ト —ルとをエステル結合することにより、 数平均分子量 100〜1, 000, 0 00の末端ヒドロキシ PL A (M- 3) を得る。 クロ口ホルム溶媒中で、 ピリ ジン及び 1一ェチル—3— (3' ージメチルァミノプロピル) カルポジイミ ド ヒドロクロライドを脱水触媒として等モル用いることにより、 エステル化反応 を進行できる。 また、 水洗により精製できる。
(M-4)両末端フエノール性ヒドロキシ PB S:両末端ヒドロキシ PBS
(M— 1) と、 ヒドロキシ安息香酸とをエステル結合することにより、 数平均 分子量 100~1, 000, 000の両末端フエノール性ヒドロキシ PB S
(M-4) を得る。 クロ口ホルム溶媒中で、 ピリジン及び 1—ェチル _ 3—
( 3, ージメチルァミノプロピル) カルボジィミドヒドロクロライ ドを脱水触 媒として等モル用いることにより、 エステル化反応を進行できる。
(M— 5) 片末端フエノール性ヒドロキシ PLA: PLA (M— 2) と、 ヒ ドロキシ安息香酸とをエステル結合することにより、 数平均分子量 100〜1 000, 000の片末端フエノール性ヒドロキシ PL A (M- 5) を得る。 ク ロロホルム溶媒中で、 ピリジン及び 1 _ェチル一 3— (3, ージメチルァミノ プロピル) カルポジイミ ドヒドロクロライ ドを脱水触媒として等モル用いるこ とにより、 エステル化反応を進行できる。 また、 水洗により精製できる。
(M- 6)末端フエノール性ヒドロキシ PLA:末端ヒドロキシ PLA (M -3) と、 ヒドロキシ安息香酸とをエステル結合することにより、 数平均分子 量 100〜1, 000, 000の末端フエノール性ヒドロキシ PLA (M— 6) を得る。 クロ口ホルム溶媒中で、 ピリジン及び 1—ェチル一3— (3' - ジメチルァミノプロピル) カルボジィミ ドヒドロクロライ ドを脱水触媒として 等モル用いることにより、 エステル化反応を進行できる。 また、 水洗により精 製できる。
(M-7)両末端カルボン酸 PBS: 1, 4—ブタンジオール及びコハク酸 を、 1, 4—ブタンジオール/コハク酸 (モル比) が 1より小さく、 より好ま しくは 0. 95以下、 更に好ましくは 0. 9以下となるよう仕込み、 脱水縮合 反応を行うことにより数平均分子量 100〜1, 000, 000の両末端が力 ルポキシル基の PBSを得る。 反応温度を 110~250°Cとして減圧するこ とにより、 脱水縮合反応が進行し分子量が増大する。 また、 テトライソプロボ キシチタン等の触媒を、 モノマー混合物 10◦質量部に対し 0. 1~5質量部 加えることによつても、 脱水縮合反応が進行し分子量が増大する。
(M- 8)多価カルボン酸 PBS:両末端ヒドロキシ; PB S (M- 1) と、 ピロメリット酸とをエステル結合することにより、 数平均分子量 100〜: L , 000, 000の多価カルボン酸 PB S (M— 8) を得る。 ヒドロキシル基に 対して、 ピロメリヅト酸を大過剰 (10-100モル倍) 用いることにより、 両端末にピロメリヅト酸がエステル結合した P B Sを得る。 クロ口ホルム及び THFの混合溶媒またはトルエン溶媒中で、 両末端ヒドロキシ PBS (M— 1) とピロメリット酸とを還流することにより、 エステル化反応を進行できる, なお、 過剰に用いたピロメリット酸は、 溶媒除去後に熱水洗浄することにより 除去できる。
(M— 9) 多価カルボン酸 PLA: PLA (M— 2) と、 ピロメリット酸と をエステル結合することにより、 数平均分子量 100〜1, 000, 000の 多価カルボン酸 PL A (M— 9) を得る。 ヒドロキシル基に対して、 ピロメリ ット酸を大過剰 (10〜100モル倍) 用いることにより、 片端末にピロメリ ヅト酸がエステル結合した PL Aを得る。 クロ口ホルム及び THFの混合溶媒 またはトルエン溶媒中で、 PLA (M-2) とピロメリット酸とを還流するこ とにより、 エステル化反応を進行できる。 なお、 過剰に用いたピロメリヅト酸 は、 溶媒除去後に熱氷洗浄することにより除去できる。
(M— 1 0 ) 多価カルボン酸 P L A:末端ヒドロキシ P L A (M— 3 ) と、 ピロメリット酸とをエステル結合することにより、 数平均分子量 1 0 0〜 0 0 0, 0 0 0の多価カルボン酸 P L A (M- 1 0 ) を得る。 クロ口ホルム及 び T H Fの混合溶媒またはトルエン溶媒中で、 末端ヒドロキシ P L A (M— 3 ) と大過剰 ( 1 0〜1 0 0モル倍) のピロメリヅト酸とを還流することによ り、 エステル化反応を進行できる。 なお、 過剰に用いたピロメリット酸は、 溶 媒除去後に熱水洗浄することにより除去できる。
rn m 1一 4
ディ一ルス一アルダー型架橋樹脂
シクロペン夕ジェニルナトリゥムと過剰のドライアイスとを反応させ、 ジシ クロペン夕ジェンジカルボン酸を得る。 これに、 T H F中でカルボン酸と等モ ル以上のォキサァリルクロライ ドを加え、 ジシクロペン夕ジェンカルボン酸ク 口ライ ドを得る。 なお、 溶媒は 6 0 °Cで減圧により留去する。 これを架橋剤と して、 ポリエステル樹脂 (M— 1 ) 〜 (M— 3 ) を、 それぞれ反応させる。 ポ リエステル樹脂の水酸基とジシクロペン夕ジェンカルボン酸クロライ ドとから 脱塩酸し、 ポリエステル樹脂の水酸基にジシクロペン夕ジェンカルボン酸をェ ステル結合させる。 結果として、 ジシクロペン夕ジェンを架橋部位とする、 ジ シクロペン夕ジェン架橋のポリエステル樹脂を得る。 脱塩酸反応はク口口ホル ム溶媒中で窒素雰囲気下において常温で進行し、 貧溶媒で再沈殿することによ りジシクロペン夕ジェン架橋のポリエステル樹脂を回収できる。 ジシクロペン タンによる架橋部位の解離温度は 1 0 0〜2 5 0 °Cであるが、 成形可能な流動 性が得られる温度は、 用いるポリエステル樹脂の分子量、 水酸基密度および架 橋密度 (架橋剤の使用量) などにより調整できる。
実施例 1一 5
ニトロソ 2量体型架橋樹脂
4一二トロソー 3, 5—ジクロロべンゾイルク口ライ ドの 2量体を架橋剤と して用い、 フエノール性水酸基を有するポリエステル樹脂 (M— 4)、 (M— 5)及び (M—6) と、 それそれ 150~250°Cで溶融混合して、 ニトロソ 2量体構造を架橋部位とするニトロソ 2量体型架橋樹脂を得る。 ニトロソ 2量 化物による架橋部位の解離温度は 110〜150°Cであるが、 成形可能な流動 性が得られる温度は、 用いるポリエステル樹脂の分子量、 フエノール性水酸機 密度および架橋密度 (架橋剤の使用量) などにより調整できる。
串施例 1一 β
酸無水物エステル型架橋樹脂
2官能以上の酸無水物を架橋剤として用いる。 この様な酸無水物としては、 例えば、 重量平均分子量 900, 000の無水マレイン酸とメチルビニルエー テルとの共重合体 (ダイセル社製 VEMA)、 無水ピロメリット酸、 1, 2, 3, 4—ブタンテトラカルボン酸無水物 (新日本理化社製、 商品名: リカジヅ ト ΒΤ - 100)、 (5—ジォキソテトラヒドロー 3—ゾラニル) ― 3ーメチ ルー 3—シクロへキセン一 1、 2—ジカルボン酸無水物 (DIC製、 商品名: EPICLON Β 4400)等を用いる。 これらの酸無水物と、 ポリエステ ル樹脂 (Μ- 1 )〜 (Μ— 3) とを、 それぞれ反応させ、 ポリエステル樹脂の 水酸基と酸無水物とからエステル結合を生成させる。 結果として、 酸無水物か ら得られるエステル結合を架橋部位とする、 酸無水物エステル架橋のポリエス テル樹脂を得る。 エステル化反応は、 クロ口ホルムと THFの混合溶媒または トルエン溶媒中において窒素雰囲気下で還流することで進行し、 貧溶媒のへキ サンで再沈殿することにより酸無水物エステル架橋のポリエステル樹脂を回収 できる。 酸無水物エステルによる架橋部位の解離温度は 1 0 0〜2 5 0 °Cであ るが、 成形可能な流動性が得られる温度は、 用いるポリエステル樹脂の分子量 水酸基密度および架橋密度 (架橋剤の使用量) などにより調整できる。
卖施例 1 二 1
ハロゲンーァミン型架橋樹脂
ポリエステル樹脂 (M— 1 ) 〜 (M— 3 ) のヒドロキシ基を、 4—プロモメ チルベンゾィヅクァシヅドのカルボキシル基とエステル結合することによりノヽ 口ゲン化ポリエステル樹脂を得る。 これらに、 テトラメチルへキサンジァミン を架橋剤として反応させることにより、 アンモニゥム結合を架橋部位とするハ ロゲン一アミン型架橋のポリエステル樹脂を得る。 ハロゲン—ァミン結合によ る架橋部位の解離温度は 1 0 0〜2 0 0 °Cであるが、 成形可能な流動性が得ら れる温度は、 用いるポリエステル樹脂の分子量、 水酸基密度および架橋密度 (架橋剤の使用量) などにより調整できる。
串施例 1一 8
ウレタン型架橋樹脂
トルエンジィソシァネート及びフェニルメ夕ンジィソシァネート等を架橋剤 として用い、 フエノール性水酸基を有するポリエステル樹脂 (M- 4 ) 、 (M — 5 ) 及び (M— 6 ) と、 それそれ 1 5 0〜2 5 0 °Cで溶融混合して、 ウレ夕 ン結合を架橋部位とするウレタン型架橋のポリエステル樹脂を得る。 ウレタン 結合による架橋部位の解離温度は 1 2 0〜2 5 0 °Cであるが、 成形可能な流動 性が得られる温度は、 用いるポリエステル樹脂の分子量、 フエノール性水酸基 密度および架橋密度 (架橋剤の使用量) などにより調整できる。 また、 ウレ夕 ン型架橋樹脂 1 0 0質量部に対して、 0 . 0 1〜ί . 0質量部の 1 , 3—ジァ セトキシテトラプチルジス夕ノキサン等の解離触媒を用いることによつても、 解離温度を調整できる。
卖施例 1二 9
ァズラクトン一フエノ一ル型架橋樹脂
ビスァズラクチルブタン等を架橋剤として用い、 フエノール性水酸基を有す るポリエステル樹脂 (M-4) 、 (M— 5) 及び (M— 6) と、 それそれ 15 0〜250°Cで溶融混合して、 ァズラクトン一フエノール結合を架橋部位とす るポリエステル樹脂を得る。 ァズラクトン一フエノール結合による架橋部位の 解離温度は 100~200°Cであるが、 成形可能な流動性が得られる温度は、 用いるポリエステル樹脂の分子量、 フヱノ一ル性水酸基密度および架橋密度 (架橋剤の使用量) などにより調整できる。
実施例 1— 10
カルボキシル一ビニルェ一テル型架橋樹脂 ビス [4— (ビニ口キシ) プチル] アジペート等を架橋剤として用い、 カル ボキシル基を有するポリエステル樹脂 (M-7) 〜 (M— 10) と、 それそれ 150〜250°Cで溶融混合して、 へミアセタールエステル結合を架橋部位と するカルボキシルービニルエーテル型架橋のポリエステル樹脂を得る。 へミア セタールエステル結合による架橋部位の解離温度は 100〜250°Cであるが、 成形可能な流動性が得られる温度は、 用いるポリエステル樹脂の分子量、 カル ボキシル基密度、 酸触媒の添加および架橋密度 (架橋剤の使用量) などにより 調整できる。
卖施例 1 - 1 1
静電結合性架橋構造の併用
以上で得られたポリエステル樹脂 (M-7) 〜 (M— 10) を 100〜20 0°Cで溶融し、 イオンを加える。 イオン源 (カチオン) としては、 Cu、 Na、 Mg及び Ca等を用いる。 酢酸銅、 酢酸ナトリウム、 酢酸カルシウム及び酢酸 マグネシウム等の水溶液を、 中和度が好ましく 1%以上、 より好ましくは 1 0%以上、 一方、 100%以下、 より好ましくは 95%以下となるよう添加し、 直ちに減圧下にて水を留去する。 架橋部分の解離温度は 100〜200°Cであ るが、 成形可能な流動性が得られる温度は、 用いるポリエステル樹脂の分子量、 カルボキシル基密度、 金属イオンによるカルボキシル基の中和度などにより調 整できる。
この様にして得られた組成物を、 例えば、 上記のカルボキシル—ビニルェ一 テル型架橋樹脂と混合し、 共有結合性架橋構造と静電結合性架橋構造とを併用 する。
m 1 - 2
静電結合性架橋構造の併用
上記のカルボキシル—ビニルェ一テル型架橋樹脂を 100~20 o°cで溶融 し、 イオンを加え、 共有結合性架橋構造と静電結合性架橋構造とを併用する。 イオン源 (カチオン) としては、 Cu、 Na、 Mg及び Ca等を用いる。
荬施,例 2 - 1
ディ一ルス―アルダー型架橋生分解性樹脂 1 ラクチド (乳酸の 2量体) を 100質量部に対し 0. 05質量部のオクタン 酸第一スズを触媒として、 反応温度 200°Cにて開環重合することにより、 数 平均分子量 100, 000の PL Aを得た (C一 1) 。 PLA ( 1000 g) にグリセリン (0. 5モル、 46g) を加え、 180°Cで 6時間エステル交換 反応した。 これをクロ口ホルムに溶解し、 アルカリ水溶液で洗浄した後、 溶媒 を留去することにより、 数平均分子量 4000の末端ヒドロキシ PL A (C- 2) を得た。
シクロペン夕ジェニルナトリウム (1. 6モルの THF溶液、 1L) とドラ ィアイス (2 kg) とを反応させ、 ジシクロペン夕ジェンジカルボン酸を得た c これに、 THF中でカルボン酸と等モル以上のォキサァリルクロライ ドを加え、 ジシクロペン夕ジェンカルボン酸クロライ ドを得た。 なお、 溶媒は 60°Cで減 圧により留去した。 上述の末端ヒドロキシ PLA ( 100 g) をクロ口ホルム (3L) に溶解し、 ジシクロペン夕ジェンカルボン酸クロライ ド (0. 038 モル) および等モルのピリジンを加え、 常温で 24時間反応した後、 未反応物 および不純物を洗浄除去した。 溶媒を留去することによりジシクロペン夕ジェ ン架橋のポリエステル樹脂を回収した (三次元架橋を形成可能な架橋点は樹脂 物 100 g当たり、 約 0. 023) 。
^ 2-2
ディールス—アルダ一型架橋生分解性樹脂 2 ディ一ルス一アルダー型架橋生分解性樹脂 1の場合と同様にして得られた P LA (C-1) 1モルにグリセリン (2モル、 184g) を加え、 180°Cで 6時間エステル交換反応した。 これをクロ口ホルムに溶解し、 アルカリ水溶液 で洗浄した後、 溶媒を留去することにより、 数平均分子量 1000の末端ヒド ロキシ PLA (C-3) を得た。
上述の末端ヒドロキシ PLA ( 100 g) をクロ口ホルム (3L) に溶解し、 ディ一ルス一アルダー型架橋生分解性樹脂 1の場合で得られたジシクロペン夕 ジェンカルボン酸クロライ ド (0. 15モル) 等モルのピリジンを加え、 常温 で 24時間反応した後、 未反応物および不純物を洗浄除去した。 溶媒を留去す ることによりジシクロペン夕ジェン架橋のポリエステル樹脂を回収した (三次 元架橋を形成可能な架橋点は樹脂物 100g当たり、 約 0. 078) 。 卖施例 2— 3
ディ一ルス—アルダー型架橋生分解性樹脂 3
Chan-Ming D. らの手法 (Po lymer, 第 42卷、 第 689 1頁、 2001年刊) と同様に、 ラクチドを 100質量部に対し、 トリメチロ ールプロパン 0. 16質量部、 オクタン酸第一スズを触媒として 0. 06質量 部用いて 110°Cにて 100時間開環重合することにより、 数平均分子量 40: 000の PL Aを得た (C— 4) 。
上述の末端ヒドロキシ: P L A ( 100 g) をクロ口ホルム (3L) に溶解し、 ディールス—アルダー型架橋生分解性樹脂 1の場合で得られたジシクロペン夕 ジェンカルボン酸クロライ ド (0. 0038モル) 等モルのピリジンを加え、 常温で 24時間反応した後、 未反応物および不純物を洗浄除去した。 溶媒を留 去することによりジシクロペン夕ジェン架橋のポリエステル樹脂を回収した (三次元架橋を形成可能な架橋点は樹脂物 100g当たり、 約 0. 0025) ,
串施例 2-4
カルボキシルーアルケニルォキシ型架橋生分解性樹脂 1 ディ一ルス―アルダー型架橋生分解性樹脂 1の場合で得られた P L A ( C— 2) 100 gをクロ口ホルム (3 L) に溶解し、 無水コハク酸 (0. 075モ ル) 、 および触媒としてピリジン (0. 05g) を加え、 6時間還流した。 反 応後ピリジンを抽出洗浄した後、 溶媒を除去し末端カルボン酸 PL A樹脂 (C —4) を得た。 この樹脂 (A— 4) 100 gにリンカ一として、 トリス [4— (ビニ口キシ) プチル] トリメリテート 11. 7 gを東洋精機社製ミニマクス ミクストル一ダ一 (商品名) により 200°Cにて溶融混練し、 組成物を得た (三次元架橋を形成可能な架橋点は樹脂物 100g当たり、 約 0. 034) 。 串施例 2— 5
カルボキシル—アルケニルォキシ型架橋生分解性樹脂 2 ディ一ルス一アルダー型架橋生分解性樹脂 2の場合で得られた P L A ( C— 3) 100 gをクロ口ホルム (3 L) に溶解し、 無水コハク酸 (0. 30モ ル) 、 および触媒としてピリジン (0. 05 g) を加え、 6時間還流した。 反 応後ピリジンを抽出洗浄した後、 溶媒を除去し末端カルボン酸 PL A樹脂 (C —4) を得た。 この樹脂 (C— 5) 100 gにリンカ一として、 トリス [4— (ビニ口キシ) プチル] トリメリテート 38. 8 gを東洋精機社製ミニマクス ミクストルーダー (商品名) により 200°Cにて溶融混練し、 組成物を得た (三次元架橋を形成可能な架橋点は樹脂物 100 g当たり、 約 0. 110) 。
串施例 2-6
ディ一ルス―アルダー型架橋生分解性樹脂 (三次元架橋なし) ディールス一アルダー型架橋生分解性樹脂 1の場合と同様にして得られた P LA (C- 1) にブタンジオール (0. 5モル、 45 g) を加え、 180。Cで 6時間エステル交換反応した。 これをクロ口ホルムに溶解し、 アルカリ水溶液 で洗浄した後、 溶媒を留去することにより、 数平均分子量 3000の末端ヒド ロキシ PL A (C- 6) を得た。
上述の末端ヒドロキシ PL A ( 100 g) をクロ口ホルム (3L) に溶解し、 実施例 1で得られたジシクロペン夕ジェンカルボン酸クロライ ド (0. 033 モル) を加え、 常温で 24時間反応した後、 溶媒を留去することによりジシク 口ペン夕ジェン架橋のポリエステル樹脂を回収した (三次元架橋を形成可能な 架橋点を含まない) 。
以上の評価結果を表 2に示した。 表 2. 評価結果
讓離 リサイク mm mm ディ—ルス一アルダー^^ 0. 023 190°C © 〇 〇 〇 95% ディールス一アルダー 1» 0. 078 190。C ◎ 〇 〇 〇 95% ディールス一アルダ^^ 0. 0025 190°C ◎ 〇 o 〇 95% カルボキシルーァリ ニルォキシ 0. 034 195°C ◎ 0 〇 〇 95% カルポキシルーァゾ 1^7 "ニルォキシ 0. 110 195°C ◎ 〇 〇 0 95% ディールス -アルダー 0 190°C 0 〇 〇 〇 95% (ヨ^ し)
0. 060 180。C O 〇 o 〇 50%
(糸励 3)
A-1 0 なし X 〇 〇 〇 90%
C-1 0 なし X o 〇 〇 99%
表 2より明らかなとおり、 全ての生分解性樹脂が十分な性能を有しているが、 特に、 三次元架橋が導入された樹脂の場合、 耐熱性が特に高い。 また、 架橋構 造がディ一ルス一アルダー型およびカルボキシル—アルケニルォキシ型の場合、 耐熱性および耐湿性が高い。

Claims

請 求 の 範 囲
1 . 冷却により共有結合し、 加熱により開裂する熱可逆的な架橋構造を形成す る官能基を有する生分解性樹脂。
2 . 前記共有結合は、 ディ一ルス—アルダー型、 ニトロソ 2量体型、 酸無水物 エステル型、 ハロゲンーァミン型、 ウレタン型、 ァズラクトンーヒドロキシァ リール型およびカルボキシルーアルケニルォキシ型からなる群より選ばれる 1 種以上の形式であることを特徴とする請求項 1記載の生分解性樹脂。
3 . 前記官能基は、 ヒドロキシル基、 カルボキシル基、 アミノ基、 ヒドロキシ ァリール基、 アルケニル基、 アルケニルォキシ基、 ニトロソ基、 ハロゲン、 共 役二重結合を有する基、 酸無水物構造を有する基、 イソシアナ一ト構造を有す る基およびァズラクトン構造を有する基からなる群より選ばれる 1種以上の基 であることを特徴とする請求項 1又は 2記載の生分解性樹脂。
4 . 前記官能基は、 成型物として使用する温度において共有結合し、 1 2 0 °C を越えかつ成形温度以下の温度において開裂する熱可逆的な前記架橋構造を形 成することを特徴とする請求項 1記載の生分解性樹脂。
5 . 前記共有結合は、 ディールス—アルダー型およびカルボキシル—アルケニ ルォキシ型の少なくとも何れか一方であることを特徴とする請求項 4記載の生 分解性樹脂。
6 . 前記官能基は、 ヒドロキシル基、 カルボキシル基、 アルケニル基、 ァルケ ニルォキシ基、 共役二重結合を有する基からなる群より選ばれる 1種以上の基 であることを特徴とする請求項 4又は 5記載の生分解性樹脂。
7 . 前記生分解性樹脂は、 ヒドロキシル基、 カルボキシル基およびアミノ基か らなる群より選ばれる 1種以上の官能基を有するポリエステル類または該ポリ エステル類の変性体であることを特徴とする請求項 1乃至 6何れかに記載の生 分解性樹脂。
8 . 前記生分解性樹脂は、 ヒドロキシル基、 カルボキシル基およびアミノ基か らなる群より選ばれる 1種以上の官能基を有するポリアミノ酸類または該ポリ ァミノ酸類の変性体であることを特徴とする請求項 1乃至 6何れかに記載の生 分解性樹脂。
9 . 前記生分解性樹脂は、 ヒドロキシル基、 力ルポキシル基おょぴァミノ基か らなる群より選ばれる 1種以上の官能基を有する多糖類または該多糖類の変性 体であることを特徴とする請求項 1乃至 6何れかに記載の生分解性樹脂。
1 0 . 前記生分解性樹脂は、 ヒドロキシル基、 カルボキシル基およびアミノ基 からなる群より選ばれる 1種以上の官能基を有するポリオール類または該ポリ オール類の変性体であることを特徴とする請求項 1乃至 6何れかに記載の生分 解性樹脂。
1 1 . 前記生分解性樹脂は 3次元架橋構造を有しており、 該 3次元架橋構造の 架橋密度は 0 . 0 0 0 1〜1であることを特徴とする請求項 1乃至 1 0何れか に記載の生分解性樹脂。
1 2 . 前記生分解性樹脂の主鎖は、 直線状または分岐状の少なくとも何れか一 方の構造を有することを特徴とする請求項 1乃至 1 1何れかに記載の生分解性 樹脂。
1 3 . 前記生分解性樹脂の末端または側鎖の少なくとも何れか一方で、 同一部 位に 1つ又は 2つ以上の前記官能基が存在していることを特徴とする請求項 1 乃至 1 2何れかに記載の生分解性樹脂。
1 4 . 静電結合性で熱可逆的な架橋構造を併用することを特徴とする請求項 1 乃至 1 3何れかに記載の生分解性樹脂。
1 5 . 冷却により共有結合し、 加熱により開裂する熱可逆的な架橋構造を形成 する第 1官能基を有する第 1生分解性樹脂と、
冷却により該第 1官能基と共有結合し、 加熱により開裂する熱可逆的な架橋構 造を形成する第 2官能基を有する第 2生分解性樹脂と
を含む生分解性樹脂組成物。
1 6 . 前記第 1官能基および前記第 2官能基は、 同一であることを特徴とする 請求項 1 5記載の生分解性樹脂組成物。
1 7 . 冷却により共有結合し、 加熱により開裂する熱可逆的な架橋構造を形成 する第 1官能基を有する第 1生分解性樹脂と、
冷却により該第 1官能基と共有結合し、 加熱により開裂する熱可逆的な架橋構 造を形成する第 2官能基を有するリンカ一と
を含む生分解性樹脂組成物。
1 8 . 前記リンカ一は同一の第 2官能基を 2以上有することを特徴とする請求 項 1 7記載の生分解性樹脂組成物。
1 9 . 請求項 1乃至 1 4何れかに記載の生分 f 性樹脂、 又は請求項 1 5乃至 1 8何れかに記載の生分解性樹脂組成物を含む生分解性成形体。
2 0 . 冷却により共有結合し加熱により開裂する第 1官能基および第 2官能基 が該共有結合した構造と、 第 3官能基とを有する架橋剤と、
該第 3官能基の反応する部位を有する生分解性樹脂材料と
を該反応させる工程を含む生分解性樹脂の製造方法。
2 1 . 冷却により共有結合し、 加熱により開裂する熱可逆的な架橋構造を形成 する第 1官能基を有する第 1生分解性樹脂と、
冷却により該第 1官能基と共有結合し、 加熱により開裂する熱可逆的な架橋構 造を形成する第 2官能基を 2以上有するリンカ一と
を該架橋させる工程を含む生分解性樹脂の製造方法。
PCT/JP2003/007594 2002-06-17 2003-06-16 生分解性樹脂、生分解性樹脂組成物、生分解性成形体、生分解性樹脂の製造方法 WO2003106539A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2003241667A AU2003241667A1 (en) 2002-06-17 2003-06-16 Biodegradable resin, biodegradable resin composition, biodegradable molded object, and process for producing biodegradable resin
EP03736219A EP1541616B1 (en) 2002-06-17 2003-06-16 Biodegradable resin, biodegradable resin composition, biodegradable molded object, and process for producing biodegradable resin
JP2004513363A JP4120832B2 (ja) 2002-06-17 2003-06-16 生分解性樹脂、生分解性樹脂組成物、生分解性成形体、生分解性樹脂の製造方法
US10/518,859 US8258254B2 (en) 2002-06-17 2003-06-16 Biodegradable resin, biodegradable resin composition, biodegradable molded object, and process for producing biodegradable resin
DE60331745T DE60331745D1 (de) 2002-06-17 2003-06-16 Biologisch abbaubares harz, biologisch abbaubare harzzusammensetzung, biologisch abbaubarer formkörper und verfahren zur herstellung von biologisch abbaubarem harz

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-175646 2002-06-17
JP2002175646 2002-06-17

Publications (1)

Publication Number Publication Date
WO2003106539A1 true WO2003106539A1 (ja) 2003-12-24

Family

ID=29728048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007594 WO2003106539A1 (ja) 2002-06-17 2003-06-16 生分解性樹脂、生分解性樹脂組成物、生分解性成形体、生分解性樹脂の製造方法

Country Status (7)

Country Link
US (1) US8258254B2 (ja)
EP (1) EP1541616B1 (ja)
JP (1) JP4120832B2 (ja)
CN (2) CN101602847B (ja)
AU (1) AU2003241667A1 (ja)
DE (1) DE60331745D1 (ja)
WO (1) WO2003106539A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344042A (ja) * 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd 難燃剤を配合した植物資源を原料とする組成物
JP2006342297A (ja) * 2005-06-10 2006-12-21 Nec Corp 再成形可能かつ2段階に優れた形状回復能を持つ形状記憶性樹脂および該樹脂の架橋物からなる成形体
JP2006342298A (ja) * 2005-06-10 2006-12-21 Nec Corp 2段階に優れた形状回復能を持つ形状記憶性樹脂および該樹脂の架橋物からなる成形体
JP2007186684A (ja) * 2005-12-14 2007-07-26 Nec Corp 再成形可能かつ優れた形状回復能を有する形状記憶樹脂の高強度化
JP2007284643A (ja) * 2006-04-20 2007-11-01 Nec Corp 多官能マレイミド化合物、その製造方法及びそれを含む形状記憶性樹脂
JP2008121004A (ja) * 2006-10-17 2008-05-29 Nec Corp 形状記憶樹脂及びこれを用いた成形体
JP2009500468A (ja) * 2005-07-04 2009-01-08 エルジー・ケム・リミテッド 形状記憶効果を有するポリ(3−ヒドロキシアルカノエート)ブロックコポリマー
JP2010265377A (ja) * 2009-05-14 2010-11-25 National Institute Of Advanced Industrial Science & Technology 熱可逆反応型高分子化合物
WO2013042677A1 (ja) * 2011-09-20 2013-03-28 東洋紡株式会社 ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂水分散体、水性接着剤、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432123C (zh) * 2003-12-12 2008-11-12 日本电气株式会社 能重新成型和形状恢复性优异的形状记忆树脂和由交联树脂组成的成型产品
DE102006006904A1 (de) * 2006-02-09 2007-08-23 Universität Rostock Neue Mittel zur Blutstillung und Klebstoffe für medizinische Anwendungen
US20100048859A1 (en) * 2006-06-23 2010-02-25 Kohei Mase Pdc-lactic acid copolyester and molded product thereof
WO2009045564A1 (en) * 2007-10-01 2009-04-09 Arkema Inc. Blends of biodegradable polymers and acrylic copolymers
US8470935B2 (en) * 2007-11-16 2013-06-25 Nec Corporation Shape-memory resin, molded product composed of the resin, and method of using the molded product
JP5759987B2 (ja) 2009-06-11 2015-08-05 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング 多官能ジエンおよびジエノファイル化合物を含有する熱可逆的ホットメルト接着剤組成物
JP5493945B2 (ja) * 2010-02-08 2014-05-14 富士ゼロックス株式会社 ポリ乳酸系樹脂組成物、ポリ乳酸系樹脂組成物の製造方法及びポリ乳酸系樹脂成形体
FR2956672B1 (fr) * 2010-02-24 2013-04-12 Centre Nat Rech Scient Procede de preparation de biomateriaux hydrophobises, biomateriaux hydrophobises tels qu'obtenus et leurs utilisations
EP2740755A1 (en) 2012-12-07 2014-06-11 Fonds de l'ESPCI - Georges Charpak Processable semi-crystalline polymer networks
WO2015042461A1 (en) * 2013-09-19 2015-03-26 Microvention, Inc. Polymer particles
US9408916B2 (en) 2013-09-19 2016-08-09 Microvention, Inc. Polymer films
CA2929235C (en) 2013-11-08 2018-07-17 Terumo Corporation Polymer particles
CN103739835B (zh) * 2013-12-20 2015-08-19 苏州市万泰真空炉研究所有限公司 一种羧甲基壳聚糖改性的聚羟基丁酸酯生物降解材料的制备方法
US9918570B2 (en) 2014-10-31 2018-03-20 RNS Packaging Corporation Biodegradable mannequin and method of making same
WO2016154592A1 (en) 2015-03-26 2016-09-29 Microvention, Inc. Embiolic particles
US10647810B2 (en) * 2015-08-11 2020-05-12 Arizona Board Of Regents On Behalf Of The University Of Arizona Method of forming of a robust network of epoxy material through Diels-Alder reaction
US10683400B1 (en) * 2015-12-18 2020-06-16 Hrl Laboratories, Llc Chemically or environmentally responsive polymers with reversible mechanical properties
WO2017117157A1 (en) * 2015-12-28 2017-07-06 Hrl Laboratories, Llc Reversible, chemically or environmentally responsive polymers, and coatings containing such polymers
WO2017132497A1 (en) 2016-01-29 2017-08-03 The Arizona Board Of Regents On Behalf Of The University Of Arizona Coumarin-modified epoxy adhesives
WO2018054684A1 (de) 2016-09-20 2018-03-29 Evonik Degussa Gmbh Neuartiger vernetzer-baustein für die verwendung in reversibel vernetzenden polymersystemen
WO2018064390A1 (en) 2016-09-28 2018-04-05 Microvention, Inc. Polymer particles
US10482365B1 (en) * 2017-11-21 2019-11-19 Wells Fargo Bank, N.A. Transaction instrument containing metal inclusions
CN110790958B (zh) * 2018-08-01 2021-02-05 北京化工大学 一种热可逆交联橡胶及其制备方法
SG11202102426TA (en) * 2018-09-11 2021-04-29 Mitsui Chemicals Tohcello Inc Pressure sensitive adhesive film and method for manufacturing electronic device
MX2021004721A (es) 2018-10-25 2021-08-05 Mycoworks Inc Penetración y adhesión mejorada de acabados para materiales fúngicos mediante solubilización, emulsión o dispersión en materiales solubles en agua y uso de surfactantes.
CN113337909B (zh) * 2021-08-04 2021-10-19 江苏恒力化纤股份有限公司 一种抗蠕变聚酯工业丝及其制备方法
CN115873494B (zh) * 2022-12-09 2024-02-09 福建东泰高分子材料有限公司 一种有机硅改性水性聚氨酯防污涂层及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0134649A2 (en) * 1983-07-07 1985-03-20 National Research Development Corporation Gel-forming polysaccharides
JPS61205447A (ja) * 1985-03-07 1986-09-11 Fuji Oil Co Ltd 熱可逆性を有する食品または食品素材の製造法
WO1995020629A1 (fr) * 1994-01-26 1995-08-03 Michelin Recherche Et Technique S.A. Composition contenant du formiate de cellulose et pouvant former un gel elastique et thermoreversible
US5489451A (en) * 1991-11-30 1996-02-06 Roehm Gmbh Chemische Fabrik Reversibly crosslinked orientable liquid crystalline polymers
US5491210A (en) * 1989-04-21 1996-02-13 Kimberly-Clark Corporation Thermally reversible polymers
WO1996015159A1 (en) * 1994-11-15 1996-05-23 Shell Internationale Research Maatschappij B.V. A cross-linked resin
WO1998015347A1 (en) * 1996-10-07 1998-04-16 Coöperatieve Verkoop- En Productievereniging Van Aardappelmeel En Derivaten Avebe B.A. Use of modified starch as an agent for forming a thermoreversible gel
EP0870793A2 (en) * 1997-04-11 1998-10-14 Nippon Shokubai Co., Ltd. Thermally reversible crosslinked matter and its use
WO1998055147A2 (en) * 1997-06-06 1998-12-10 Battelle Memorial Institute Reversible geling co-polymer and method of making
JP2000001529A (ja) * 1998-06-16 2000-01-07 Yokohama Rubber Co Ltd:The リサイクル性エラストマー
JP2000281805A (ja) * 1999-03-31 2000-10-10 Daicel Chem Ind Ltd イオン架橋フィルム及びその製造方法
JP2001081240A (ja) * 1999-09-16 2001-03-27 Yokohama Rubber Co Ltd:The 熱可逆架橋性エラストマーおよびその組成物
JP2003183348A (ja) * 2001-12-14 2003-07-03 Yokohama Rubber Co Ltd:The 硬化性化合物およびそれを含む硬化性樹脂組成物

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3458460A (en) 1967-11-27 1969-07-29 Hooker Chemical Corp Unsaturated polyesters cross-linked by diels-alder reaction
US3872057A (en) 1971-11-02 1975-03-18 Du Pont Polymers coupled by nitroso groups
FR2558845B1 (fr) 1984-01-31 1986-05-16 Atochem Compositions adhesives a reticulation thermoreversible, leur procede de fabrication et leurs applications
US4661558A (en) * 1986-03-11 1987-04-28 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Process for crosslinking and extending conjugated diene-containing polymers
US5043396A (en) 1988-12-28 1991-08-27 Nippon Zeon Co., Ltd. Novel crosslinked polymer having shape memorizing property, method of its use, and molded article having shape memory
US5178989A (en) 1989-07-21 1993-01-12 Board Of Regents, The University Of Texas System Pattern forming and transferring processes
JPH06192375A (ja) 1992-12-25 1994-07-12 Nippon Unicar Co Ltd ポリマー組成物の架橋体及びその製造方法
JPH07247364A (ja) 1994-03-10 1995-09-26 Toyota Central Res & Dev Lab Inc オリゴマー分解性高分子、その製造方法、回収方法及び再生方法
EP0780437A4 (en) 1995-07-10 2000-03-01 Daicel Chem CROSSLINKABLE OR CURABLE POLYACTEON COMPOSITION, CROSSLINKED OR HARDENED MOLDING MATERIAL THEREOF AND METHOD FOR THE PRODUCTION THEREOF
JP3434622B2 (ja) 1995-07-20 2003-08-11 昭和高分子株式会社 生分解性脂肪族ポリエステルの製造方法
JP2000063511A (ja) 1997-02-07 2000-02-29 Mitsui Chemicals Inc 架橋ポリアミノ酸の製造方法
US6018033A (en) * 1997-05-13 2000-01-25 Purdue Research Foundation Hydrophilic, hydrophobic, and thermoreversible saccharide gels and forms, and methods for producing same
JPH1135675A (ja) 1997-07-18 1999-02-09 Sanyo Chem Ind Ltd 可逆的熱開裂性樹脂組成物
US6146655A (en) * 1997-08-29 2000-11-14 Softy-Flex Inc. Flexible intra-oral bandage and drug delivery system
JP3598764B2 (ja) 1997-10-08 2004-12-08 三菱化学株式会社 オレフィン系樹脂組成物
JP2000034376A (ja) 1998-05-15 2000-02-02 Mitsubishi Chemicals Corp オレフィン系重合体組成物
JP2001040078A (ja) 1999-08-03 2001-02-13 Canon Inc 糖鎖高分子化合物及びその熱成形体
DE10046024A1 (de) * 1999-09-16 2001-04-19 Yokohama Rubber Co Ltd Thermoreversibel vernetzbares Elastomer und seine Zusammensetzung
JP2002060422A (ja) * 2000-08-11 2002-02-26 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー
ATE431165T1 (de) * 2000-01-25 2009-05-15 Edwards Lifesciences Corp Bioaktive beschichtungen zur vermeidung von gewebewachstum auf künstlichen herzklappen
DE10041221A1 (de) * 2000-08-22 2002-03-14 Deutsches Krebsforsch Verfahren zur Herstellung von wasserlöslichen Saccharidkonjugaten und Saccharidmimetika durch Diels-Alder-Reaktion und ihre Verwendung als Therapeutika oder Diagnostika
US20030049320A1 (en) 2000-12-18 2003-03-13 Wockhardt Limited Novel in-situ forming controlled release microcarrier delivery system
JP3744800B2 (ja) 2001-02-13 2006-02-15 独立行政法人科学技術振興機構 反応性置換基を有する生分解性重合体
JP2003064246A (ja) 2001-08-29 2003-03-05 Toray Ind Inc ポリ乳酸含有樹脂組成物およびそれからなる成形品

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0134649A2 (en) * 1983-07-07 1985-03-20 National Research Development Corporation Gel-forming polysaccharides
JPS61205447A (ja) * 1985-03-07 1986-09-11 Fuji Oil Co Ltd 熱可逆性を有する食品または食品素材の製造法
US5491210A (en) * 1989-04-21 1996-02-13 Kimberly-Clark Corporation Thermally reversible polymers
US5489451A (en) * 1991-11-30 1996-02-06 Roehm Gmbh Chemische Fabrik Reversibly crosslinked orientable liquid crystalline polymers
WO1995020629A1 (fr) * 1994-01-26 1995-08-03 Michelin Recherche Et Technique S.A. Composition contenant du formiate de cellulose et pouvant former un gel elastique et thermoreversible
WO1996015159A1 (en) * 1994-11-15 1996-05-23 Shell Internationale Research Maatschappij B.V. A cross-linked resin
WO1998015347A1 (en) * 1996-10-07 1998-04-16 Coöperatieve Verkoop- En Productievereniging Van Aardappelmeel En Derivaten Avebe B.A. Use of modified starch as an agent for forming a thermoreversible gel
EP0870793A2 (en) * 1997-04-11 1998-10-14 Nippon Shokubai Co., Ltd. Thermally reversible crosslinked matter and its use
WO1998055147A2 (en) * 1997-06-06 1998-12-10 Battelle Memorial Institute Reversible geling co-polymer and method of making
JP2000001529A (ja) * 1998-06-16 2000-01-07 Yokohama Rubber Co Ltd:The リサイクル性エラストマー
JP2000281805A (ja) * 1999-03-31 2000-10-10 Daicel Chem Ind Ltd イオン架橋フィルム及びその製造方法
JP2001081240A (ja) * 1999-09-16 2001-03-27 Yokohama Rubber Co Ltd:The 熱可逆架橋性エラストマーおよびその組成物
JP2003183348A (ja) * 2001-12-14 2003-07-03 Yokohama Rubber Co Ltd:The 硬化性化合物およびそれを含む硬化性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1541616A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344042A (ja) * 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd 難燃剤を配合した植物資源を原料とする組成物
JP4691908B2 (ja) * 2004-06-04 2011-06-01 パナソニック株式会社 電化製品の外装体
JP2006342297A (ja) * 2005-06-10 2006-12-21 Nec Corp 再成形可能かつ2段階に優れた形状回復能を持つ形状記憶性樹脂および該樹脂の架橋物からなる成形体
JP2006342298A (ja) * 2005-06-10 2006-12-21 Nec Corp 2段階に優れた形状回復能を持つ形状記憶性樹脂および該樹脂の架橋物からなる成形体
JP2009500468A (ja) * 2005-07-04 2009-01-08 エルジー・ケム・リミテッド 形状記憶効果を有するポリ(3−ヒドロキシアルカノエート)ブロックコポリマー
JP2007186684A (ja) * 2005-12-14 2007-07-26 Nec Corp 再成形可能かつ優れた形状回復能を有する形状記憶樹脂の高強度化
JP2007284643A (ja) * 2006-04-20 2007-11-01 Nec Corp 多官能マレイミド化合物、その製造方法及びそれを含む形状記憶性樹脂
JP2008121004A (ja) * 2006-10-17 2008-05-29 Nec Corp 形状記憶樹脂及びこれを用いた成形体
JP2010265377A (ja) * 2009-05-14 2010-11-25 National Institute Of Advanced Industrial Science & Technology 熱可逆反応型高分子化合物
WO2013042677A1 (ja) * 2011-09-20 2013-03-28 東洋紡株式会社 ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂水分散体、水性接着剤、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法
JPWO2013042677A1 (ja) * 2011-09-20 2015-03-26 東洋紡株式会社 ポリ乳酸系ポリエステル樹脂、ポリ乳酸系ポリエステル樹脂水分散体、水性接着剤、及びポリ乳酸系ポリエステル樹脂水分散体の製造方法

Also Published As

Publication number Publication date
CN1662583A (zh) 2005-08-31
EP1541616A1 (en) 2005-06-15
AU2003241667A1 (en) 2003-12-31
JP4120832B2 (ja) 2008-07-16
EP1541616B1 (en) 2010-03-17
US20060025560A1 (en) 2006-02-02
US8258254B2 (en) 2012-09-04
CN101602847A (zh) 2009-12-16
EP1541616A4 (en) 2007-06-27
CN100567373C (zh) 2009-12-09
CN101602847B (zh) 2013-03-20
DE60331745D1 (de) 2010-04-29
JPWO2003106539A1 (ja) 2005-10-13

Similar Documents

Publication Publication Date Title
WO2003106539A1 (ja) 生分解性樹脂、生分解性樹脂組成物、生分解性成形体、生分解性樹脂の製造方法
JP5651952B2 (ja) 形状記憶樹脂及びこれを用いた成形体及び成形体の使用方法
JP5040112B2 (ja) 再成形可能かつ形状回復能に優れた形状記憶性樹脂および該樹脂の架橋物からなる成形体
JP5793497B2 (ja) 生分解ポリエステル
JP4888095B2 (ja) 再成形可能かつ優れた形状回復能を有する形状記憶樹脂の高強度化
WO2017182571A1 (en) New polyester and compositions containing it
JP5114864B2 (ja) 多官能マレイミド化合物の製造方法
JP4760149B2 (ja) 再成形可能かつ2段階に優れた形状回復能を持つ形状記憶性樹脂および該樹脂の架橋物からなる成形体
JP2004018680A (ja) 生分解性樹脂、生分解性樹脂組成物、生分解性成形体、生分解性樹脂組成物の製造方法
JP4752339B2 (ja) 2段階に優れた形状回復能を持つ形状記憶性樹脂および該樹脂の架橋物からなる成形体
WO2006112398A1 (ja) ポリエーテルエステルブロック共重合体
JP5298495B2 (ja) 形状記憶樹脂及びこれを用いた成形体
JPS6026027A (ja) ポリエステルエラストマ−の製造法
JP5504559B2 (ja) 形状記憶樹脂及びこれを用いた成形体
KR102069509B1 (ko) 생분해성 폴리(부틸렌테트라메틸렌글루타레이트-코-부틸렌테레프탈레이트) 지방족/방향족 폴리에스테르 수지 및 그 제조방법
KR101941123B1 (ko) 생분해성 수지 및 이로부터 제조된 생분해성 필름
Rihab et al. Biobased Semi-Crystalline Polyesteramides from 2, 5-Furandicarboxylic Acid and 5, 5′-Isopropylidene Bis (2-furfurylamine): Synthesis toward Crystallinity and Chemical Stability
JP5522513B2 (ja) 形状記憶樹脂組成物、形状記憶樹脂成形体、及び形状記憶樹脂成形体の製造方法
JP3289595B2 (ja) 生分解性脂肪族ポリエステル共重合体及びその製造方法
JP3374617B2 (ja) 脂肪族ポリエステル共重合体の製造法
JPH09157364A (ja) 生分解性ポリエステル
JPH09249868A (ja) 生分解性接着剤及びその製造方法
JPH09241365A (ja) 脂肪族ポリエステル及びその製造方法
BR112012010494B1 (pt) poliéster alifático-aromático biodegradável, combinação compreendendo o poliéster, filmes, artigos de moldagem por injeção, revestimentos e aplicação do poliéster
JP2564463C (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004513363

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038139650

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006025560

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10518859

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003736219

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003736219

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10518859

Country of ref document: US