WO2002100971A1 - Heat-expandable microsphere and process for producing the same - Google Patents

Heat-expandable microsphere and process for producing the same Download PDF

Info

Publication number
WO2002100971A1
WO2002100971A1 PCT/JP2002/005737 JP0205737W WO02100971A1 WO 2002100971 A1 WO2002100971 A1 WO 2002100971A1 JP 0205737 W JP0205737 W JP 0205737W WO 02100971 A1 WO02100971 A1 WO 02100971A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
heat
silicon compound
organic silicon
polymer
Prior art date
Application number
PCT/JP2002/005737
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Tasaki
Genzo Asai
Yoshikatsu Satake
Original Assignee
Kureha Chemical Industry Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19016159&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002100971(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kureha Chemical Industry Company, Limited filed Critical Kureha Chemical Industry Company, Limited
Priority to DE60235165T priority Critical patent/DE60235165D1/de
Priority to EP02733441A priority patent/EP1408097B2/en
Priority to US10/480,207 priority patent/US7931967B2/en
Priority to AT02733441T priority patent/ATE455593T1/de
Publication of WO2002100971A1 publication Critical patent/WO2002100971A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • D21H21/54Additives of definite length or shape being spherical, e.g. microcapsules, beads
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/59Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • Y10T428/2985Solid-walled microcapsule from synthetic polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating

Definitions

  • the present invention relates to a thermo-foamable microsphere having a structure in which a foaming agent is enclosed in a shell formed of a polymer, and more particularly, to an adhesive property with another material such as an inorganic substance and / or an organic substance. It relates to excellent heat-expandable microspheres and a method for producing the same.
  • the heat-expandable microspheres of the present invention can be applied to a wide range of industrial fields including the field of paints and inks.
  • the heat-expandable microspheres are also called heat-expandable microcapsules, and are being used in a variety of fields, including applications for foamed inks and paints and plastic fillers for weight reduction. ing.
  • the heat-expandable microsphere is usually obtained by microencapsulating a volatile liquid blowing agent with a polymer.
  • Such a heat-expandable microsphere can be generally produced by a method of suspension-polymerizing a polymerizable mixture containing at least a foaming agent and a polymerizable monomer in an aqueous medium. As the polymerization proceeds, an outer shell is formed by the resulting polymer, and a heat-expandable microsphere having a structure in which a foaming agent is enclosed in the outer shell is obtained.
  • One of the required properties of the heat-expandable microspheres is that there is little aggregation due to fusion between the foam particles during and after the heating expansion, and furthermore, there is almost no aggregation.
  • One of the further required properties for heat-expandable microspheres One is that it shows a sharp foaming start behavior even when subjected to a high temperature thermal history during drying.
  • Thermoexpandable microspheres are not only used in inks, paints, plastics, etc. in an unexpanded state, but may also be used in an expanded state. Since the foam particles are hollow plastic balloons, they are extremely lightweight. For example, when they are used as a filler for paint, the weight of an object to be coated can be reduced. However, if the foam particles agglomerate with each other, it becomes difficult to mix them with a base material such as paint, and in severe cases, the foam particles are broken during mixing.
  • a method of coating the surface of unfoamed heat-expandable microspheres with inorganic fine particles can be considered.
  • the inorganic fine particles cannot be uniformly attached to the surface of the heat-expandable microsphere, uniform foaming becomes difficult.
  • the amount of the inorganic fine particles is too small, it is not possible to sufficiently prevent fusion during heating and foaming. If the amount of the attached inorganic fine particles is too large, it is difficult to sufficiently expand the particles, and in the worst case, the expansion may not be possible.
  • the heat-expandable microspheres are required to have sharp foaming and be capable of forming foam particles having a uniform shape and size.
  • selection of a polymerizable monomer and improvement of suspension polymerization conditions have been carried out (for example, Japanese Patent Application Laid-Open No. 11-209504).
  • simply attaching inorganic microparticles to the surface of the heat-expandable microspheres makes it difficult to control the expandability, and also impairs such excellent properties.
  • the inorganic fine particles once adhered to the surface of the heat-expandable microspheres are easily detached in the washing step and the subsequent processing steps, and it is difficult to strictly control the amount of the inorganic fine particles.
  • colloidal silica or the like is used as a dispersion stabilizer, the filtrate becomes cloudy due to free silica. The cloudy filtrate cannot be discarded unless a flocculant is added, sedimented, and centrifuged to remove inorganic fine particles. If the inorganic fine particles attached to the surface of the heat-foamable microspheres are desorbed in the subsequent processing steps, they cause dusting and deteriorate the working environment.
  • a dispersion stabilizer such as colloidal silica can increase the amount of inorganic fine particles adhering to the surface of the heat-expandable microsphere.
  • the problem of cloudiness of the filtrate and the problem of desorption of inorganic fine particles in the washing step and the subsequent processing steps cannot be solved.
  • the amount of the inorganic fine particles attached to the surface of the heat-expandable microspheres is increased by such a method, the average diameter of the heat-expandable microspheres obtained becomes small, and the particle size distribution becomes large. Occurs.
  • thermofoamable microsphere exhibiting a sharp foaming initiation behavior
  • the heat-expandable microspheres may be used after being dispersed in an aqueous dispersion medium such as an aqueous emulsion depending on the application.
  • An aqueous dispersion containing the heat-expandable microspheres is applied to the base material using one or more methods, followed by drying and heating and foaming. At this time, in order to shorten the drying time, high-temperature hot air may be blown to dry.
  • the conventional heat-expandable microspheres show a broad foaming behavior as a whole due to foaming even at a temperature lower than the foaming temperature due to the thermal history of the high temperature received during drying. As a result, the surface property and smoothness of the foam layer were impaired, which sometimes caused practical problems.
  • thermo-expandable microspheres The foaming behavior of thermo-expandable microspheres is controlled by controlling the modulus of elasticity of the shell resin with respect to temperature, and controlling the vapor pressure with respect to the temperature of the blowing agent enclosed in the shell.
  • Japanese Patent Application No. 2000-0- 13 1859; Japanese Patent Application Laid-Open No. 2002-126369 and WO 01/833636 have been proposed. Correspondence
  • thermofoamable microsphere exhibiting a sharp foaming behavior even by such a conventional technique alone due to the heat history at a high temperature received during drying.
  • thermally expandable microspheres with improved adhesion to other materials There is also a need for thermally expandable microspheres with improved adhesion to other materials.
  • the heat-expandable microspheres are blended in an unfoamed state in various bases such as inks, paints, and plastics, and then heat-expanded, but the foam particles adhere to the base. Inferiority tends to cause various inconveniences in physical properties and appearance. In this case, the shell modification technology is very important. If the adhesiveness of the outer shell of the heat-expandable microsphere, especially its surface, can be improved, the adhesiveness to various bases can be improved.
  • thermofoamable microspheres Furthermore, if the adhesiveness of the outer shell of the heat-expandable microspheres can be improved, inorganic fine particles and the like can be uniformly and strongly adhered, and the amount of adhesion can be strictly controlled. As a result, the foaming behavior of the thermofoamable microspheres can be precisely controlled and designed. Furthermore, new means for preparing hybrid hollow microspheres in which the surface of resin particles is coated with inorganic fine particles and functional additives are provided. However, no technical means for improving the adhesiveness of the outer shell of the heat-expandable microsphere have been proposed. Disclosure of the invention
  • An object of the present invention is to provide a heat-expandable microsphere having improved adhesion to other materials and a method for producing the same.
  • Another object of the present invention is to provide a heat-expandable microsphere in which fusion between foam particles is suppressed and a method for producing the same.
  • Another object of the present invention is to provide a heat-expandable microsphere and a heat-expandable microsphere capable of preparing hybrid hollow microspheres, functional additives, and the like, which can strongly adhere other materials to the surface. It is to provide a manufacturing method.
  • Still another object of the present invention is to reduce or suppress the problem of white turbidity of waste water caused by inorganic fine particles used as a dispersion stabilizer in a method for producing a heat-expandable microsphere by a suspension polymerization method.
  • a method for producing a heat-expandable microsphere by a suspension polymerization method of the polymerizable mixture includes the steps of:
  • the suspension polymerization may be carried out in the presence of Also effective is a method in which the heat-expandable microspheres obtained by the suspension polymerization method are surface-treated with a silicon compound.
  • the heat-expandable microspheres containing the organic gayen compound in the outer shell allow inorganic fine particles and the like to be uniformly and strongly adhered to the surface, and the amount of the adhered particles can be strictly controlled. Therefore, the heat-expandable microspheres containing the organosilicon compound in the outer shell can prevent agglomeration due to fusion of the foam particles without impairing the expansion characteristics.
  • the suspension polymerization method When producing heat-expandable microspheres by the suspension polymerization method, if the suspension polymerization is carried out in an aqueous dispersion medium containing inorganic fine particles such as colloidal silica as a dispersion stabilizer, the inorganic fine particles will surface as designed. It can be uniformly and strongly adhered to the surface. Moreover, according to this method, the problem of cloudiness of the wastewater after the suspension polymerization can be reduced.
  • inorganic fine particles such as colloidal silica as a dispersion stabilizer
  • the present invention has been completed based on these findings.
  • a polymerizable mixture containing at least a foaming agent and a polymerizable monomer is subjected to suspension polymerization, and the foaming agent is contained in an outer shell formed from the produced polymer.
  • a method for producing a heat-expandable microsphere having an encapsulated structure the method comprising producing a heat-expandable microsphere by subjecting a polymerizable mixture to suspension polymerization in the presence of an organic silicon compound. A method is provided.
  • a polymerizable mixture containing at least a foaming agent and a polymerizable monomer is suspension-polymerized in an aqueous dispersion medium, and the foaming agent is contained in an outer shell formed from the produced polymer.
  • a method for producing a heat-expandable microsphere having an encapsulated structure comprising the step of treating the surface of the recovered heat-expandable microsphere with an organic silicon compound after the polymerization reaction.
  • a method for producing a foamable microsphere is provided.
  • the heat-expandable microspheres of the present invention have a structure in which a foaming agent is sealed in a shell formed of a polymer, and the shell contains an organic silicon compound.
  • a silane coupling agent is used as the organic silicon compound, the organic silicon compound can be easily attached to the outer shell.
  • Silane coupling agents having various functional groups are available, and their use also facilitates chemical modification of the outer shell with various functional groups.
  • an outer shell containing a chemically bonded organic silicon compound can be formed.
  • the heat-foamable microscopy in which organic silicon compounds such as silane coupling agents are distributed more on the outer shell surface Fairs can also be manufactured.
  • the outer shell of the heat-expandable microsphere of the present invention contains an organic silicon compound
  • another material can be strongly adhered to the outer shell surface via the organic silicon compound.
  • inorganic fine particles when adhered to the outer shell surface via an organic silicon compound, they can be uniformly and strongly adhered, and the amount of the adhered particles can be strictly controlled.
  • the heat-expandable microspheres to which the inorganic fine particles are thus adhered the fusion of the foam particles is effectively suppressed. If the amount of the inorganic fine particles is reduced, it is possible to prevent the aggregation of the thermo-expandable microsphere itself and to enhance the adhesiveness to other materials.
  • the organic silicon compound is preferably a silane coupling agent, and particularly preferably a silane coupling agent having a polymerizable functional group.
  • a silane coupling agent preferably a silane coupling agent having a polymerizable functional group.
  • the outer shell of the heat-expandable microsphere of the present invention is usually formed of a polymer having excellent gas barrier properties and heat resistance. Specifically, it can be formed using various polymerizable monomers such as acrylate, (meth) acrylonitrile, vinylidene chloride, vinyl chloride, and styrene. Among these, a vinylidene chloride copolymer and a (meth) acrylonitrile copolymer are preferable in terms of highly balancing gas barrier properties, solvent resistance, heat resistance, foaming properties, and the like. According to the present invention, thermofoamable microspheres exhibiting various foaming behaviors can be obtained by controlling the combination and composition ratio of the polymerizable monomers used and by selecting the type of the foaming agent.
  • the heat-expandable microspheres of the present invention are obtained by subjecting a polymerizable mixture containing at least a foaming agent and a polymerizable monomer to suspension polymerization in an aqueous dispersion medium to form an inner shell formed from the resulting polymer.
  • the polymerizable mixture can be obtained by suspension polymerization in the presence of an organic silicon compound.
  • an organic silicon compound having at least one kind of polymerizable reactive group selected from the group consisting of a vinyl group, a methacryl group, an acryl group, and an aryl group is preferable.
  • a polymerizable organic silicon compound can be contained in the polymer forming the outer shell of the heat-expandable microsphere by firmly chemically bonding by copolymerization.
  • a method in which an organic silicon compound is added to a polymerization reaction system containing an aqueous dispersion medium and a polymerizable mixture in the course of polymerization to further continue the suspension polymerization is preferable.
  • a more preferred method is to control the pH of the polymerization reaction system to 7 or less, more preferably 6 or less, particularly preferably 5.5 or less at the start of the polymerization, during the polymerization, and at the end of the polymerization reaction.
  • the pH of the polymerization reaction system exceeds 7, sufficient effects may not be obtained.
  • Another method for containing an organic silicon compound in the outer shell is to treat the surface of the heat-expandable microspheres obtained by the suspension polymerization method with an organic silicon compound.
  • a surface treatment method a general filter treatment method using a silane coupling agent such as a dry method, a wet method, a spray method, and an integral blend method can be employed.
  • the heat-expandable microspheres of the present invention in which the outer shell formed from a polymer contains an organic silicon compound, can have an inorganic substance and other materials such as Z or an organic substance adhere to the surface thereof. Thereby, the fusion of the foam particles can be prevented, and the properties of the outer shell surface can be modified.
  • inorganic substances are generally preferred because many of them can react or interact with an organic functional group or a silanol group of the organic gay compound.
  • the method of attaching other materials such as inorganic substances and Z or organic substances to the outer shell is as follows: (i) When polymerizing heat-expandable microspheres by the suspension polymerization method, the polymerization reaction system is initially used as a dispersion stabilizer. (Iii) a method of adding to the polymerization reaction system during the polymerization reaction, (iii) a method of adding after the polymerization reaction is completed, (iv) a method of blending with the obtained thermally foamable microspheres, ( V) A method that combines these, and the like.
  • the organic silicon compound used in the present invention means a gay compound having an organic group, and among them, a silane coupling agent is preferable.
  • the silane coupling agent has the formula (1)
  • R hydrogen atom or lower alkyl group such as methyl group or ethyl group
  • _NR 2 hydrogen atom, Or a lower alkyl group such as a methyl group or an ethyl group
  • X include the following groups.
  • preferred organic silicon compounds include 3-methylacryloxypropyl trimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyl tris (trimethylsiloxy) silane, vinyl trichlorosilane, and vinyl.
  • silane coupling agent having a polymerizable reactive group such as 3-methylacryloxypropyltrimethoxysilane is particularly preferable.
  • organic silicon compounds can be used alone or in combination of two or more.
  • the content of the organic gay compound is preferably at least 0.05% by weight, more preferably at least 0.01% by weight, particularly preferably at least 0. 0% by weight, based on the total weight of the heat-expandable microsphere. 0 15% by weight or more. If the content of the organic gay compound is too small, the effect of improving the adhesion to other materials will be insufficient.
  • the average particle diameter of the inorganic substance and / or the organic substance is not particularly limited, but is preferably sufficiently smaller than the average particle diameter of the heat-expandable microspheres, and is usually 1 O / zm or less, preferably 1 m or less, more preferably. Is less than 0.1 m.
  • the content (adhesion amount) of the inorganic substance and / or the organic substance is preferably 0.01 to 50% by weight, more preferably 0.05 to 10% by weight, based on the total weight of the heat-expandable microspheres. is there. If the content of inorganic substances and Z or organic substances is too small, it may be difficult for the outer shell to exert sufficient adhesiveness and other functions while preventing aggregation of the thermo-foamable microsphere itself. .
  • the content (adhesion amount) of the inorganic substance and the Z or the organic substance is preferably 1% based on the total weight of the thermally expandable microsphere. It is about 5 to 15% by weight. If the content of the inorganic substance and / or the organic substance is too large, foaming becomes difficult.
  • the blowing agent used in the present invention is a substance which usually becomes gaseous at a temperature lower than the softening point of the polymer forming the outer shell.
  • a foaming agent a low-boiling organic solvent is preferable.
  • ethane, ethylene, propane, propene, n-butane, isobutane, butene, isobutene, n-pentane, isopentane, neopentane, 2,2, and the like are; tetraalkyl silanes such as Tet Ramechirushiran; black hole Furuorokabon such CC 1 3 F; 4-trimethyl pentane, hexane, isohexane, petroleum E one ether, low molecular weight hydrocarbons, such as butane to the n- . These can be used alone or in combination of two or more.
  • the heat-expandable microspheres are preferably those in which the polymer forming the outer shell is thermoplastic and has gas barrier properties. From these viewpoints, a vinylidene chloride (co) polymer and a (meth) acrylonitrile (co) polymer are preferred.
  • Such vinylidene chloride (co) polymers include, as polymerizable monomers, ( ⁇ ⁇ ) vinylidene chloride 30 to: L 0 wt%, ( ⁇ ) acrylonitrile, methyl acrylonitrile, acrylate, (Co) polymers obtained using 0 to 70% by weight of at least one monomer selected from the group consisting of methyl acrylate, styrene and vinyl acetate are preferred. If the copolymerization ratio of vinylidene chloride is less than 30% by weight, the gas barrier property becomes too low, which is not preferable.
  • Examples of the vinylidene chloride (co) polymer include (A1) 40 to 80% by weight of vinylidene chloride and (B1) at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile. ( ⁇ 2) acrylic ester and meta It is a copolymer of at least one monomer selected from the group consisting of acrylates with 0 to 60% by weight. By using such a copolymer, it is easy to design a foaming temperature, and it is easy to achieve a high foaming ratio.
  • the outer shell is preferably formed from a (meth) acrylonitrile (co) polymer.
  • the (meth) acrylonitrile (co) polymer is obtained by using (meth) acrylonitrile alone or (meth) acrylonitrile and a vinyl monomer copolymerizable therewith as a polymerizable monomer. (Co) polymers.
  • Examples of biel monomers copolymerizable with (meth) acrylonitrile include vinylidene chloride, acrylates, methacrylates, styrene, and vinyl acetate.
  • Such (meth) acrylonitrile (co) polymers include, as polymerizable monomers, at least one monomer selected from the group consisting of (0) acrylonitrile and methyl acrylonitrile. 100% by weight, and (D) 0-70% by weight of at least one monomer selected from the group consisting of vinylidene chloride, acrylate, methyl acrylate, styrene, and vinyl acetate. If the copolymerization ratio of (meth) acrylonitrile is less than 30% by weight, the solvent resistance and heat resistance become insufficient.
  • (Meth) acrylonitrile (co) polymer has a high proportion of (meth) acrylonitrile and high foaming temperature (co) Polymer and a low proportion of (meth) acrylonitrile and low foaming temperature (co) Can be divided into polymers.
  • the (co) polymer in which the use ratio of (meth) acrylonitrile is large is at least one type of monomer selected from the group consisting of (C) acrylonitrile and methacrylonitrile as a polymerizable monomer. 0% by weight and (D) 0 to 20% by weight of at least one monomer selected from the group consisting of vinylidene chloride, acrylate, methyl acrylate, styrene, and vinyl acetate.
  • the resulting (co) polymer may be mentioned.
  • the (co) polymer in which the use ratio of (meth) acrylonitrile is small at least 30% by weight of at least one monomer selected from the group consisting of (C) acrylonitrile and methacrylonitrile is used as a polymerizable monomer. % Or more and less than 80% by weight, and more than 20% by weight of (D) at least one monomer selected from the group consisting of vinylidene chloride, acrylate, methyl acrylate, styrene, and vinyl acetate. (Co) polymer obtained using 70% by weight or less.
  • the (meth) acrylonitrile (co) polymer includes (C1) at least one monomer 51 to 100% by weight selected from the group consisting of acrylonitrile and methacrylonitrile; ) 0-40% by weight of vinylidene chloride and (D2) 0-48% by weight of at least one monomer selected from the group consisting of acrylic acid esters and methacrylic acid esters. (Co) polymers are preferred.
  • a (co) polymer not containing vinylidene chloride is desired as the polymer of the outer shell
  • at least one selected from the group consisting of (E) acrylonitrile and methacrylonitrile is used as the polymerizable monomer.
  • the polymerizable monomer Of 30 to 100% by weight of a monomer and 0 to 70% by weight of at least one monomer selected from the group consisting of (F) acrylate and methyl acrylate
  • the (meth) acrylonitrile (co) polymer obtained is preferred.
  • the polymerizable monomer a group consisting of (E1) 1 to 99% by weight of acrylonitrile, (E2) 1 to 99% by weight of methacrylonitrile, and (F) an acrylate ester and a methacrylate ester A copolymer obtained using 0 to 70% by weight of at least one selected monomer is preferable.
  • the outer shell (meth) acrylonitrile (co) polymer must be used as a polymerizable monomer.
  • Crosslinkable monomer (E1) 20 to 80% by weight of acrylonitrile, (E2) 20 to 80% by weight of methacrylonitrile, and (F) at least one selected from the group consisting of acrylates and methacrylates. It is preferably a copolymer obtained using 0 to 20% by weight of one kind of monomer.
  • a crosslinkable monomer can be used together with the polymerizable monomer as described above in order to improve foaming properties, processing properties, solvent resistance, and heat resistance.
  • the crosslinkable monomer a compound having two or more carbon-carbon double bonds is usually used.
  • crosslinkable monomer examples include divinylbenzene, ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, 1,3-butyl glycol dimethacrylate, and pentaerythritol triacrylate. (May evening) acrylate.
  • the proportion of the crosslinkable monomer to be used is usually 0.05 to 5% by weight, preferably 0:! To 3% by weight, based on the total weight of the polymerizable monomer.
  • the polymerization initiator is not particularly limited, and those generally used in this field can be used, but an oil-soluble polymerization initiator which is soluble in a polymerizable monomer is preferable. More specifically, examples of the polymerization initiator include dialkyl peroxide, diacyl peroxide, peroxyester, peroxydicarbonate, and azo compounds.
  • the polymerization initiator is usually contained in the monomer mixture, but if it is necessary to suppress premature polymerization, part or all of the polymerization initiator is added to the aqueous dispersion medium during or after the granulation step. And may be transferred into droplets of the polymerizable mixture.
  • the polymerization initiator is usually used at a ratio of 0.001 to 3% by weight based on the aqueous dispersion medium.
  • the pH of the aqueous phase at the time of polymerization is appropriately determined depending on the types of the dispersion stabilizer and the auxiliary stabilizer to be used.
  • silica such as colloidal silica
  • polymerization is performed in an acidic environment.
  • an acid is added as necessary to adjust the pH of the system to 7 or less, preferably to PH 6 or less, particularly preferably to about 3 to 4.
  • a dispersion stabilizer that dissolves in an aqueous dispersion medium in an acidic environment such as magnesium hydroxide or calcium phosphate
  • the polymerization is carried out in an alkaline environment.
  • One of the preferred combinations of the dispersion stabilizer is a combination of colloidal silicity and a condensation product.
  • a condensation product of diethanolamine and aliphatic dicarboxylic acid is preferable, and a condensation product of diethanolamine and adipic acid, and a condensation product of diethanolamine and itaconic acid are particularly preferable.
  • the acid value of the condensation product is preferably from 60 to less than 95, and more preferably from 65 to 90.
  • an inorganic salt such as sodium chloride or sodium sulfate is added, it becomes easier to obtain thermofoamable microspheres having a more uniform particle shape.
  • salt is preferably used as the inorganic salt.
  • the amount of colloidal silica used depends on the particle size, but is usually 0.5 to 20 parts by weight, preferably 1 to 15 parts by weight, per 100 parts by weight of the polymerizable monomer. It is.
  • the condensation product is generally used in a proportion of 0.05 to 2 parts by weight based on 100 parts by weight of the polymerizable monomer.
  • the inorganic salt is used in an amount of 0 to 100 parts by weight based on 100 parts by weight of the polymerizable monomer.
  • Water-soluble polyvalent metal compounds eg, magnesium chloride
  • water as dispersion stabilizers A colloid of a poorly water-soluble metal hydroxide (eg, magnesium hydroxide) obtained by a reaction with an alkali metal oxide (eg, sodium hydroxide) in an aqueous phase can be used.
  • an alkali metal oxide eg, sodium hydroxide
  • calcium phosphate a reaction product of sodium phosphate and calcium chloride in an aqueous phase can be used.
  • An emulsifier is not generally used, but if desired, an anionic surfactant such as a dialkyl sulfosuccinate or a phosphoric acid ester of polyoxyethylene alkyl (aryl) ether may be used.
  • At least one compound selected from the group consisting of alkali metal nitrite, stannous chloride, stannic chloride, water-soluble ascorbic acids, and boric acid is present in an aqueous dispersion medium.
  • aqueous dispersion medium can be present.
  • the polymerization particles do not agglomerate during polymerization, and the polymer does not adhere to the polymerization vessel wall, and the heat generated by polymerization is efficiently removed while being stable. Thus, heat-expandable microspheres can be produced.
  • sodium nitrite and nitrite are preferred in terms of availability and price.
  • the ascorbic acid include ascorbic acid, metal salts of ascorbic acid, and esters of ascorbic acid. Among them, those soluble in water are preferably used.
  • the water-soluble Asukorubin acids solubility 2 3 water is meant is 1 g Z l 0 0 cm 3 or more, and their alkali metal salts are preferred Asukorubin acid.
  • L-ascorbic acid (vitamin C), sodium ascorbate, and potassium ascorbate are particularly preferably used in terms of availability, price, and effects.
  • the order of adding each component to the aqueous dispersion medium is arbitrary, but usually, water and a dispersion stabilizer, and if necessary, a stabilizing agent and a polymerization aid, etc.
  • a system dispersion medium is prepared.
  • the polymerizable monomer and the blowing agent may be separately added to the aqueous dispersion medium, and may be integrated in the aqueous dispersion medium to form a polymerizable mixture (oil-based mixture). After mixing, add to the aqueous dispersion medium.
  • Droplets of the polymerizable mixture are prepared (granulated) in the aqueous dispersion medium by stirring and mixing the polymerizable mixture and the aqueous dispersion medium. It is preferable that the average particle size of the droplets is made to substantially match the average particle size of the intended heat-expandable microsphere.
  • the suspension polymerization is usually carried out by degassing the inside of the reaction vessel or replacing it with an inert gas and raising the temperature to a temperature of 30 to 10O :.
  • an organic silicon compound having a polymerization reactive group is added to the polymerizable mixture for polymerization, the organic silicon is formed in the outer shell formed from the polymer by performing suspension polymerization according to a conventional method.
  • the compound will be contained.
  • the organic gay compound is added to the polymerization reaction system during the suspension polymerization, the organic gay compound is usually added for about 1 to 12 hours, preferably about 2 to 10 hours, from the start of the suspension polymerization. It is preferable to add an elemental compound. It is presumed that by adding the organic silicon compound during the polymerization, the density of the organic silicon compound on the surface of the outer shell can be increased.
  • the organic gay compound When the organic gay compound is added to the polymerization reaction system during the polymerization, it is preferable to adjust the pH by adding an acid such as hydrochloric acid in order to maintain the pH of the polymerization reaction system at 7 or less.
  • an acid such as hydrochloric acid
  • the pH of the polymerization reaction system should be maintained at 7 or less from the start of polymerization to the end of polymerization.
  • the pH can be adjusted by adding an acid to the polymerization reaction system in the polymerization stream.
  • the heat-expandable microspheres of the present invention are used in various fields by being heat-expanded (heat-expanded) or unexpanded.
  • the heat-expandable microspheres for example, can be used as fillers in paints for automobiles, wallpaper, foaming inks (for forming relief patterns on T-shirts, etc.), shrinkage inhibitors, etc. used.
  • the heat-expandable microspheres of the present invention utilize the volume increase due to foaming to reduce the weight and increase the porosity of plastics, paints, and various materials, and impart various functions (eg, slip properties, heat insulation properties, cushions, etc.). , Sound insulation etc.).
  • the heat-expandable microspheres of the present invention can be suitably used in the fields of paints, wallpapers, and inks requiring surface properties and smoothness. Further, the heat-expandable microsphere of the present invention can be suitably used for applications requiring adhesiveness to a matrix resin. Furthermore, the heat-expandable microspheres of the present invention can be used as a functional additive in which the surface of a hollow microresin microsphere is coated with an inorganic substance and / or an organic substance.
  • 0.7 g of the heat-expandable microspheres are placed in a gear oven and heated at a predetermined temperature (expansion temperature) for 2 minutes to foam.
  • the obtained foam was placed in a measuring cylinder, the volume was measured, and the foaming ratio was calculated by dividing the volume of the foam by the volume of the heat-expandable microspheres when not expanded.
  • the expansion ratio is raised in steps of 5 from 70, and the expansion ratio at the time when the maximum expansion ratio is obtained is defined as the maximum expansion ratio.
  • a coating solution is prepared by adding 1 part by weight of heat-expandable microspheres to 5 parts by weight of EVA-based aqueous emulsion (concentration 55% by weight) containing ethylene / vinyl acetate copolymer (EVA). I do.
  • EVA-based aqueous emulsion concentration 55% by weight
  • EVA-based aqueous emulsion concentration 55% by weight
  • EVA-based emulsion concentration 55% by weight
  • EVA-based aqueous emulsion concentration 55% by weight
  • EVA ethylene / vinyl acetate copolymer
  • the expansion ratio is increased from 7 Ot: in steps of 5 and heated, and the temperature at which the majority of the particles expand is defined as the expansion start temperature. Furthermore, particles that have been foamed even at a heating temperature lower than the foaming start temperature are defined as abnormally foamed particles. The presence or absence of abnormally foamed particles is confirmed by observing the surface of the coating film heated below the foaming start temperature with an optical microscope.
  • the aqueous dispersion medium and the polymerizable mixture prepared above were stirred and mixed with a homogenizer to prepare fine droplets of the polymerizable mixture in the aqueous dispersion medium.
  • aqueous dispersion medium containing fine droplets of this polymerizable mixture was charged into a polymerization can (1.5 L) equipped with a stirrer, and reacted at 53 with a hot water bath for 22 hours. After the completion of the reaction, a reaction mixture having a pH of 6.3 was obtained. This reaction mixture was filtered and washed with water, and this operation was further repeated twice, and then dried to recover a thermally expandable microsphere having an average particle diameter of 14 m.
  • the first filtrate was milky white and remained strongly cloudy when diluted with 100 volumes of water.
  • the second filtrate was still white and cloudy, and the third filtrate was not clear enough to be discarded.
  • These filtrates were collected, and a flocculant was added to settle suspended particles, followed by centrifugation to separate solids and transparent waste liquid.
  • Industrial production requires a process to remove turbidity of waste liquid to prevent pollution, which imposes a heavy economic burden. (5) Thermal foaming microspheres
  • the amount of silica contained in the thus obtained thermally expandable microspheres was 0.8% by weight, which was equivalent to 39% by weight of the charged amount.
  • the expansion ratio at an expansion temperature of 14.5 was 40 times.
  • Examination of the foaming behavior of the binder system revealed that a large number of foamed particles (abnormally foamed particles) were found at the temperature at which the majority of the particles were foamed (even at a heating temperature of less than 1400).
  • the use of heat-expandable microspheres that exhibit such foaming initiation behavior in paints, wallpapers, and inks that require surface properties and smoothness impairs their surface properties and smoothness. Performance issues arise.
  • thermofoamable microspheres were prepared in the same manner as in Comparative Example 1 except that the droplets of the polymerizable mixture were granulated after the adjustment to 2.0.
  • the pH of the reaction mixture was 5.5. Since a small amount of aggregate was formed in the reaction mixture, the aggregate was removed using a 200-mesh sieve. Thereafter, the reaction mixture was filtered and washed with water, and this operation was repeated twice more, followed by drying to collect a thermofoamable microsphere having an average particle diameter of 14 m. The first filtrate showed very slight turbidity, but the second and third filtrates did not show turbidity.
  • the amount of silica contained in the thus obtained thermally expandable microspheres was 2.0% by weight, and it was calculated that almost all of the charged amount was included in the thermally expandable microspheres.
  • the foaming ratio at a foaming temperature of 14.5 was 40 times. Examination of the foaming behavior of the binder system revealed that almost no abnormal foamed particles foamed even at a heating temperature lower than the temperature at which the majority of the particles foamed (140 ° C). It showed a sharp foaming start behavior.
  • Example 1 7 hours after the start of polymerization, hydrochloric acid was added to the polymerization vessel to adjust the pH.
  • a heat-foamable microsphere was prepared in the same manner as in Example 1 except that the operation of performing the above was not performed.
  • the pH of the reaction mixture was 5.8.
  • the reaction mixture was filtered and washed with water, and this operation was repeated two more times, followed by drying to collect thermofoamable microspheres having an average particle diameter of 14. The first filtrate showed only slight turbidity, but the second and third filtrates did not show turbidity.
  • the amount of silica contained in the heat-expandable microspheres thus obtained was 2.0% by weight, and it was calculated that almost all of the charged amount was included in one heat-expandable microsphere.
  • the thermally foamable microspheres were foamed, there was little fusion between the foam particles, and no strong aggregation was observed.
  • the foaming ratio at a foaming temperature of 14.5 was 40 times. Examination of the foaming behavior of the binder system revealed that there was almost no abnormally foamed particles that foamed even at a heating temperature lower than the temperature at which the majority of the particles foamed (at 140). It showed a sharp foaming start behavior.
  • the amount of silica contained in the heat-expandable microspheres thus obtained is It was 2.0% by weight, and it was calculated that almost all of the charged amount was contained in the thermally expandable microspheres.
  • the foaming ratio at a foaming temperature of 14.5 was 40 times. Examination of the foaming behavior of the binder system revealed that almost no abnormally foamed particles were foamed even at a heating temperature lower than the temperature at which the majority of the particles foamed (at 140). It showed a sharp foaming start behavior.
  • the pH of the reaction mixture was 4.2.
  • This reaction mixture was filtered and washed with water, and this operation was further repeated twice, followed by drying to collect thermo-foamable microspheres having an average particle size of 15 im.
  • the first filtrate was clear and free of cloudiness and could be discarded by simply adjusting the pH.
  • the amount of silica contained in the thus obtained thermally expandable microphone mouth sphere was 2.0% by weight, and it was calculated that almost all of the charged amount was included in the thermally expandable microspheres.
  • thermofoamable microspheres exhibiting such a sharp foaming initiation behavior are shown in Table 1. It was confirmed that when used in the fields of paints, wallpapers, and inks that require surface properties and smoothness, the surface properties and smoothness were extremely excellent.
  • the aqueous dispersion medium and the polymerizable mixture prepared above were stirred and mixed with a homogenizer to prepare fine droplets of the polymerizable mixture in the aqueous dispersion medium.
  • aqueous dispersion medium containing fine droplets of this polymerizable mixture was charged into a polymerization can (1.5 L) equipped with a stirrer, and reacted at 53 using a hot water bath for 22 hours. After the completion of the reaction, a reaction mixture having a pH of 5.9 was obtained. The reaction mixture was filtered and washed with water, and this operation was repeated twice more, followed by drying to collect a thermally expandable microsphere having an average particle diameter of 16 m.
  • the first filtrate was milky white and remained strongly cloudy when diluted with 100 volumes of water.
  • the second filtrate was still white and cloudy, and the third filtrate was not clear enough to be discarded.
  • These filtrates were collected, and a flocculant was added to settle suspended particles, followed by centrifugation to separate solids and transparent waste liquid. (5) Thermal foaming microspheres
  • the amount of silica contained in the thus obtained thermally expandable microspheres was 0.6% by weight, which was equivalent to 34% by weight of the charged amount.
  • the expansion ratio at an expansion temperature of 140 was 46 times.
  • Examination of the foaming behavior of the binder system revealed that many abnormally foamed particles were foamed even at a heating temperature lower than the temperature at which the majority of the particles foamed (at 135). In other words, it exhibited a very broad foaming initiation behavior. If the heat-foamable microspheres exhibiting such a foaming start behavior are used in the fields of paints, wallpapers, and inks that require surface properties and smoothness, the surface properties and smoothness are impaired, causing problems in practical performance. .
  • the pH of the reaction mixture was 4.2.
  • the reaction mixture was filtered and washed with water, and this operation was repeated two more times, followed by drying to recover a thermofoamable microsphere having an average particle size of 17 m.
  • the first filtrate was clear and free of cloudiness and could be discarded by simply adjusting the pH.
  • the amount of silica contained in the thus obtained thermally expandable microspheres was 1.7% by weight, and it was calculated that almost all of the charged amount was included in the thermally expandable microspheres.
  • the foaming ratio at a foaming temperature of 140 was 50 times. Examination of the foaming behavior in the binder system revealed that the particles Even at a heating temperature below the temperature at which the majority foamed (at 135), there were almost no unusually foamed particles that foamed, and this thermofoamable microsphere exhibited a sharp foaming initiation behavior.
  • step (2) of preparing the polymerizable mixture of Comparative Example 2 0.1 lg of 3-methacryloxypropyl trimethoxysilane, which is a silane coupling agent having a polymerizable reactive group, was added to obtain a silane.
  • a polymerizable mixture containing a coupling agent is prepared, and in the next step (3) of preparing droplets, hydrochloric acid is added to the aqueous dispersion medium and the polymerizable mixture before stirring and mixing with a homogenizer.
  • a homogenizer was adjusted to 3.0, and then heat-expandable microspheres were prepared in the same manner as in Comparative Example 2 except that fine droplets of the polymerizable mixture were granulated.
  • the amount of silica contained in the thus obtained thermally expandable microspheres was 1.7% by weight, and it was calculated that almost all of the charged amount was included in the thermally expandable microspheres.
  • the foaming ratio at a foaming temperature of 14 was 47 times. Examination of the foaming behavior of the binder system revealed that almost no abnormally foamed particles foamed even at a heating temperature lower than the temperature at which the majority of the particles foamed (at 135). It showed a sharp foaming start behavior.
  • the pH of the reaction mixture was 4.0.
  • the reaction mixture was filtered and washed with water, and this operation was repeated twice more, followed by drying to collect a thermo-foamable microsphere having an average particle size of 17 m.
  • the first filtrate was clear and free of cloudiness and could be discarded by simply adjusting the pH.
  • the amount of silica contained in the thus obtained thermally expandable microspheres was 1.7% by weight, and it was calculated that almost all of the charged amount was included in the thermally expandable microspheres.
  • the expansion ratio at an expansion temperature of 140 was 50 times. Examination of the foaming behavior of the binder system revealed that there was almost no abnormal foaming particles that foamed even at a heating temperature lower than the temperature at which the majority of the particles foamed (135 ° C). The foaming initiation behavior was excellent.
  • the aqueous dispersion medium and the polymerizable mixture prepared above were stirred and mixed with a homogenizer to prepare fine droplets of the polymerizable mixture in the aqueous dispersion medium.
  • thermofoamable microsphere having an average particle size of 28 m.
  • the amount of silica contained in the thus obtained thermally expandable microspheres was 5.5% by weight.
  • a 5% aqueous slurry of the thermofoamable microspheres was prepared, and the slurry was agitated with a stirrer for 60 minutes. As a result, the slurry became cloudy due to silica released from the thermofoamable microspheres. Thereafter, the amount of silica contained in the heat-expandable microspheres recovered from the slurry was reduced to 1.3% by weight.
  • the thermally expandable microspheres were expanded, strong fusion between the foam particles was observed.
  • the expansion ratio at an expansion temperature of 170 ° C was 55 times. Examination of the foaming behavior of the binder system revealed that many abnormally foamed particles were foamed even at a heating temperature lower than the temperature at which the majority of the particles foamed (at 140). In other words, it showed a very broad foaming start behavior. Table 1 shows the thermally foamable microspheres exhibiting such foaming initiation behavior. If used in the fields of paints, wallpapers, and inks that require surface properties and smoothness, the surface properties and smoothness will be impaired, causing problems in practical performance.
  • the amount of silica contained in the thermally expandable microspheres thus obtained was 5.5% by weight.
  • a 5% aqueous slurry of the thermofoamable microspheres was prepared, and the slurry was stirred for 60 minutes with a stirrer. As a result, almost no cloudiness was observed in the slurry. Thereafter, the amount of silica contained in the heat-expandable microspheres recovered from this slurry solution was 5.4% by weight, which was almost unchanged from that before the treatment.
  • thermofoamable microspheres A 5% aqueous slurry of the thermofoamable microspheres was prepared, and the slurry was stirred with a stirrer for 60 minutes. As a result, the slurry became slightly cloudy. Thereafter, the amount of silica contained in the heat-expandable microspheres recovered from this slurry liquid was 7.4% by weight, which was almost unchanged from that before the treatment.
  • the first filtrate was milky white and remained strongly cloudy when diluted with 100 volumes of water.
  • the second filtrate was white and cloudy, and the third filtrate was not transparent enough to be discarded.
  • the amount of silica contained in the heat-expandable microspheres thus obtained was 5.8% by weight, which was not much different from the amount of silica in Comparative Example 3. Even after additional polymerization, only silica colloid was added. However, it was found that silica colloid did not adhere to the heat-expandable microspheres.
  • thermoly expandable microspheres were produced in the same manner as in Comparative Example 3, except that 5.5 g of colloidal silica was additionally added at the start of polymerization.
  • the thus obtained thermally expandable microspheres had an average particle size as small as 2 Owm, and the expansion ratio at an expansion temperature of 170 was reduced to 40 times. Therefore, it was not possible to increase only the amount of colloidal silica while maintaining the average particle size.
  • aqueous dispersion medium of pH 3.5 To 770 g of deionized water, 22 g of colloidal silica having a solid content of 40% by weight was added and dissolved. Further, 0.8 g of diethanolamine-adipic acid condensate and 0.13 g of sodium nitrite were dissolved, and hydrochloric acid was added to prepare an aqueous dispersion medium of pH 3.5.
  • the aqueous dispersion medium and the polymerizable mixture prepared above were stirred and mixed with a homogenizer to prepare fine droplets of the polymerizable mixture in the aqueous dispersion medium.
  • the amount of silica contained in the thus obtained thermally expandable microspheres was 3.3% by weight.
  • a 5% aqueous slurry of the thermofoamable microspheres was prepared, and the slurry was stirred for 60 minutes with a stirrer. As a result, the slurry became cloudy due to silica released from the thermofoamable microspheres. Thereafter, the amount of silicide contained in the thermally foamable microspheres recovered from the slurry liquid was
  • thermo-expandable microsphere A 5% aqueous slurry of this thermo-expandable microsphere
  • the amount of silica contained in the heat-expandable microspheres recovered from this slurry liquid was 3.2% by weight, which was almost unchanged from that before the treatment.
  • the heat-expandable microspheres were expanded, no fusion between the foam particles was observed.
  • the expansion ratio at an expansion temperature of 13 was 50 times.
  • the temperature at which the majority of the particles foamed there were almost no unusually foamed particles foamed even at a heating temperature of less than 800 ° C.
  • Thermal foaming microspheres exhibiting such a sharp foaming start behavior are used in paints, wallpapers, and inks that require surface smoothness and smoothness. It has been confirmed that the properties are very good.
  • a heat-expandable microsphere having improved adhesion to other materials and a method for producing the same.
  • a heat-expandable microsphere in which fusion between foam particles is suppressed and a method for producing the same.
  • a heat-expandable microsphere exhibiting sharp foaming behavior even when subjected to a heat history at a high temperature such as during drying and a method for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Polymerisation Methods In General (AREA)
  • Fertilizers (AREA)

Description

明細書
熱発泡性マイクロスフエアー及びその製造方法
技術分野
本発明は、 重合体から形成された外殻内に発泡剤が封入された構造をもつ熱発 泡性マイクロスフェア一に関し、 さらに詳しくは、 無機物及び/または有機物な どの他の材料との接着性に優れた熱発泡性マイクロスフェアーとその製造方法に 関する。 本発明の熱発泡性マイクロスフェアーは、 塗料やインクの分野をはじめ とする広範な産業分野に適用することができる。
背景技術
熱発泡性マイクロスフェアーは、 熱膨張性マイクロカプセルとも呼ばれ、 発泡 インクでの用途をはじめとして、 軽量化を目的とした塗料やプラスチックの充填 剤など、 種々の分野への用途展開が図られている。 熱発泡性マイクロスフェアー は、 通常、 揮発性の液体発泡剤を重合体によりマイクロカプセル化したものであ る。 このような熱発泡性マイクロスフェアーは、 一般に、 水系媒体中で、 少なく とも発泡剤と重合性単量体とを含有する重合性混合物を懸濁重合する方法により 製造することができる。 重合反応が進むにつれて、 生成する重合体により外殻が 形成され、 その外殻内に発泡剤が包み込まれるようにして封入された構造をもつ 熱発泡性マイクロスフェアーが得られる。
熱発泡性マイクロスフェアーの用途分野が拡大し、 また、 それぞれの用途分野 で高性能化が要求されるようになると、 熱発泡性マイクロスフェアーに対する要 求水準も高くなつてきている。
熱発泡性マイクロスフェアーに対する要求特性の一つに、 加熱発泡時とその後 に、 発泡体粒子間の融着による凝集が少ないこと、 さらには、 ほとんど凝集しな いことが挙げられる。 熱発泡性マイクロスフェアーに対する更なる要求特性の一 つとして、 乾燥時等において高い温度での熱履歴を受けても、 シャープな発泡開 始挙動を示すことが挙げられる。
熱発泡性マイクロスフェアーは、 未発泡状態でインクや塗料、 プラスチックな どに配合されるだけではなく、 発泡した状態で使用されることがある。 発泡体粒 子は、 中空プラスチックバルーンであるため、 極めて軽量であり、 例えば、 塗料 の充填剤として使用すると、 被塗装物の軽量化を図ることができる。 ところが、 発泡体粒子同士が凝集すると、 塗料などの基剤と混合することが困難となり、 ひ どい場合には、 混合時に発泡体粒子が破壊されてしまう。
発泡体粒子間の凝集を防ぐ方法として、 未発泡の熱発泡性マイクロスフェアー の表面を無機微粒子で被覆する方法が考えられる。 しかしながら、 無機微粒子を 熱発泡性マイクロスフェア一の表面に均一に付着させること、 さらには、 その付 着量を厳密に制御することは、 極めて困難である。 無機微粒子を熱発泡性マイク ロスフェアーの表面に均一に付着させることができないと、 均一な発泡が困難に なる。 無機微粒子の付着量が少なすぎると、 加熱発泡時の融着を充分に防ぐこと ができない。 無機微粒子の付着量が多すぎると、 充分に発泡させることが困難と なり、 最悪の場合には、 発泡が不能となることがある。
熱発泡性マイクロスフェアーには、 発泡がシャープであり、 かつ、 均一な形状 と大きさの発泡体粒子を形成できることが要求される。 そのために、 重合性単量 体の選択や懸濁重合条件の改良などが行われている (例えば、 特開平 1 1一 2 0 9 5 0 4号公報) 。 ところが、 熱発泡性マイクロスフェアー表面に単に無機微粒 子を付着させるだけでは、 発泡性の制御が困難となり、 そのような優れた諸特性 も阻害されてしまう。
水系分散媒体中で懸濁重合法により熱発泡性マイクロスフェアーを製造する際 に、 コロイダルシリカなどの無機微粒子を分散安定剤として含有する水系分散媒 体を用いると、 得られる熱発泡性マイクロスフェア一の表面に無機微粒子が付着 することが知られている。 しかし、 無機微粒子と熱発泡性マイクロスフェア一と の付着力が小さいため、 発泡体粒子の融着を防ぐに足る量の無機微粒子を熱発泡 性マイクロスフェア一表面に均一かつ強く付着させることが困難である。 したが つて、 重合終了後の回収工程で、 反応混合物を濾過 ·洗浄すると、 分散安定剤と して用いた無機微粒子のほとんどは濾液中に含まれることになる。
いったん熱発泡性マイクロスフェア一表面に付着した無機微粒子も、 洗浄工程 やその後の処理工程で簡単に脱離しやすく、 無機微粒子の付着量を厳密に制御す ることが困難である。 しかも、 分散安定剤としてコロイダルシリカなどを用いる と、 濾液が遊離シリカにより白濁する。 白濁した濾液は、 凝集剤を投入して沈降 後、 遠心分離して無機微粒子を除去しなければ、 廃棄することができない。 熱発 泡性マイクロスフェア一表面に付着した無機微粒子が、 その後の処理工程で脱離 すると、 粉立ちの原因となり、 作業環境を悪化させる。
コロイダルシリカなどの分散安定剤の量を増大させると、 熱発泡性マイクロス フェアー表面への無機微粒子の付着量を多くすることができる。 しかし、 濾液の 白濁問題、 洗浄工程やその後の処理工程での無機微粒子の脱離問題などは解決さ れない。 しかも、 このような方法で熱発泡性マイクロスフェアー表面への無機微 粒子の付着量を多くすると、 得られる熱発泡性マイクロスフェアーの平均粒径が 小さくなり、 粒径分布が大きくなるという問題が生じる。
一方、 シヤープな発泡開始挙動を示す熱発泡性マイクロスフェアーが望まれて いる。 熱発泡性マイクロスフェアーは、 その用途から水性ェマルジヨンなどの水 系分散媒体中に分散させてから使用される場合がある。 コ一夕一等を用いて、 熱 発泡性マイクロスフェアーを含有する水系分散液を下地材に塗工した後、 乾燥- 加熱発泡する。 この際、 乾燥時間の短縮のために、 高温の熱風を吹き付けて乾燥 することがある。 従来の熱発泡性マイクロスフェアーは、 乾燥時に受ける高い温 度での熱履歴によって、 その一部が発泡温度未満の温度でも発泡し、 全体として ブロードな発泡挙動を示す。 その結果、 発泡体層の表面性や平滑性が損なわれ、 実用上の問題を引き起こすことがあった。
熱発泡性マイクロスフェアーの発泡挙動は、 外殻樹脂の温度に対する弾性率の 制御、 並びに外殻内に封入される発泡剤の温度に対する蒸気圧の制御によって制 御できることが提案されている (特願 2 0 0 0— 1 3 1 8 5 9号;特開 2 0 0 2 - 1 2 6 9 3号公報及び WO 0 1 / 8 3 6 3 6号公報に対応) 。 しかし、 このよ うな従来技術だけでは、 乾燥時に受ける高い温度での熱履歴によっても、 シヤー プな発泡挙動を示す熱発泡性マイクロスフェア一を得ることが困難であった。 また、 他の材料との接着性が改良された熱発泡性マイクロスフェアーも望まれ ている。 熱発泡性マイクロスフェアーは、 多くの場合、 未発泡の状態でインク、 塗料、 プラスチックなどの各種基剤中に配合され、 その後、 加熱発泡されるが、 発泡体粒子が基剤との接着性に劣ると、 物性上や外観上、 種々の不都合が起こり やすい。 この場合、 外殻の変性技術が非常に重要となる。 熱発泡性マイクロスフ エア一の外殻、 特にその表面の接着性を向上することができるならば、 各種基剤 との接着性を改善することができる。
さらに、 熱発泡性マイクロスフェア一の外殻の接着性を向上させることができ れば、 無機微粒子などを均一かつ強く付着させることができ、 その付着量の厳密 な制御も可能となる。 ひいては、 熱発泡性マイクロスフェアーの発泡挙動を精密 に制御し、 かつ設計することができるようになる。 さらには、 樹脂粒子の表面を 無機微粒子でコーティングしたハイプリッド中空微小球や機能性添加剤を調製す る新たな手段が提供される。 しかし、 従来、 熱発泡性マイクロスフェアーの外殻 の接着性を向上させる技術的手段については、 何も提案されていない。 発明の開示
本発明の目的は、 他の材料との接着性が向上した熱発泡性マイクロスフェアー とその製造方法を提供することにある。
また、 本発明の目的は、 発泡体粒子間の融着が抑制された熱発泡性マイクロス フェア一とその製造方法を提供することにある。
さらに、 本発明の目的は、 乾燥時等において高い温度での熱履歴を受けても、 発泡開始が極めてシヤープな挙動を示す熱発泡性マイクロスフエア一とその製造 方法を提供することにある。 本発明の他の目的は、 表面に他の材料を強く接着することができ、 それによつ て、 ハイブリツド中空微小球や機能性添加剤などを調製することができる熱発泡 性マイクロスフェア一とその製造方法を提供することにある。
本発明のさらなる他の目的は、 懸濁重合法による熱発泡性マイクロスフェアー の製造方法において、 分散安定剤として用いた無機微粒子に起因する廃水の白濁 問題を軽減ないしは抑制することにある。
本発明者らは、 前記課題を達成するために鋭意研究した結果、 熱発泡性マイク ロスフェア一において、 重合体から形成された外殻にシランカップリング剤など の有機ケィ素化合物を含有させることにより、 他の材料との接着性が顕著に向上 することを見いだした。
重合体から形成された外殻に有機ケィ素化合物を含有させるには、 重合性混合 物の懸濁重合法により熱発泡性マイクロスフェアーを製造する方法において、 重 合性混合物を有機ゲイ素化合物の存在下で懸濁重合すればよい。 また、 懸濁重合 法により得られた熱発泡性マイクロスフェアーをケィ素化合物で表面処理する方 法も有効である。
外殻に有機ゲイ素化合物を含有する熱発泡性マイクロスフェアーは、 無機微粒 子等をその表面に均一かつ強く付着させることができ、 その付着量を厳密に制御 することも可能である。 したがって、 外殻に有機ケィ素化合物を含有する熱発泡 性マイクロスフェア一は、 発泡特性を阻害することなく、 発泡体粒子の融着によ る凝集を防ぐことができる。
懸濁重合法により熱発泡性マイクロスフェアーを製造する場合、 コロイダルシ リカなどの無機微粒子を分散安定剤として含有する水系分散媒体中で懸濁重合を 行うと、 無機微粒子を設計通りに外殻表面に均一かつ強く付着させることができ る。 しかも、 この方法によれば、 懸濁重合後の廃水の白濁問題を軽減することが できる。
本発明は、 これらの知見に基づいて完成するに至つたものである。
かくして、 本発明によれば、 重合体から形成された外殻内に発泡剤が封入され た構造をもつ熱発泡性マイクロスフェア一において、 重合体から形成された外殻 が、 有機ケィ素化合物を含有することを特徴とする熱発泡性マイクロスフェア一 が提供される。
また、 本発明によれば、 水系分散媒体中で、 少なくとも発泡剤及び重合性単量 体を含有する重合性混合物を懸濁重合して、 生成重合体から形成された外殻内に 発泡剤が封入された構造をもつ熱発泡性マイクロスフェアーを製造する方法にお いて、 重合性混合物を有機ケィ素化合物の存在下で懸濁重合することを特徴とす る熱発泡性マイクロスフェアーの製造方法が提供される。
さらに、 本発明によれば、 水系分散媒体中で、 少なくとも発泡剤及び重合性単 量体を含有する重合性混合物を懸濁重合して、 生成重合体から形成された外殻内 に発泡剤が封入された構造をもつ熱発泡性マイクロスフェアーを製造する方法に おいて、 重合反応終了後、 回収した熱発泡性マイクロスフェアーの表面を有機ケ ィ素化合物で処理することを特徴とする熱発泡性マイクロスフエアーの製造方法 が提供される。 発明を実施するための最良の形態
1 . 熱発泡性マイクロスフェアー
本発明の熱発泡性マイクロスフェア一は、 重合体から形成された外殻内に発泡 剤が封入された構造をもち、 その外殻が有機ケィ素化合物を含有している。 有機 ケィ素化合物としてシランカップリング剤を使用すると、 有機ケィ素化合物を外 殻に容易に付着させることができる。 種々の官能基を有するシランカツプリング 剤が入手可能であり、 それらを使用すると、 外殻を種々の官能基で化学修飾する ことも容易になる。
重合可能な官能基を有するシランカツプリング剤を用いて、 外殻を形成する重 合体と共重合させれば、 化学的に結合した有機ケィ素化合物を含有する外殻を形 成することができる。 懸濁重合法を工夫することにより、 シランカップリング剤 などの有機ケィ素化合物が、 外殻の表面により多く分布した熱発泡性マイクロス フェアーを製造することもできる。
本発明の熱発泡性マイクロスフェアーは、 外殻が有機ケィ素化合物を含有して いるため、 この有機ケィ素化合物を介して、 外殻表面に他の材料を強く付着させ ることができる。 例えば、 無機微粒子を有機ケィ素化合物を介して外殻表面に付 着させると、 均一かつ強く付着させることができ、 その付着量の厳密な制御も可 能となる。 このようにして無機微粒子を付着させた熱発泡性マイクロスフェア一 は、 その発泡体粒子の融着が効果的に抑制される。 無機微粒子の付着量を少なく すれば、 熱発泡性マイクロスフェアー自体の凝集を防ぎつつ、 他の材料との接着 性を高めることが可能である。
本発明の熱発泡性マイクロスフェアーにおいて、 前述した通り、 有機ケィ素化 合物がシラン力ップリング剤であることが好ましく、 重合可能な官能基を有する シランカップリング剤であることが特に好ましい。 その理由は、 シランカツプリ ング剤を用いることにより、 他の材料とのより強固な結合が実現し、 また、 種々 の官能基を導入して所望の変性を行うことが可能になるためである。
本発明の熱発泡性マイクロスフェアーの平均粒径は、 特に限定されないが、 通 常 3〜1 0 0 ^ m、 好ましくは 5〜 5 0 mの範囲内である。 本発明の熱発泡性 マイクロスフェア一における発泡剤の含有量は、 通常 5 ~ 5 0重量%、 好ましく は 7〜3 5重量%である。 発泡剤としては、 低沸点有機溶剤、 加熱により分解し てガスを発生する化合物などがあり、 これらの中でも、 低沸点有機溶剤が好まし レ 発泡剤は、 外殻を形成する重合体の軟化点以下の温度でガス状になるものか ら選択される。
本発明の熱発泡性マイクロスフェア一の外殻は、 通常、 ガスバリア性と耐熱性 に優れた重合体から形成される。 具体的には、 アクリル酸エステル、 (メタ) ァ クリロニトリル、 塩化ビニリデン、 塩化ビニル、 スチレンなどの種々の重合性単 量体を用いて形成することができる。 これらの中でも、 塩化ビニリデン共重合体 及び (メタ) アクリロニトリル共重合体は、 ガスバリア性、 耐溶剤性、 耐熱性、 発泡性などを高度にバランスさせる上で好ましい。 本発明によれば、 使用する重合性単量体の組み合わせや組成比の制御と、 発泡 剤の種類の選択により、 様々な発泡挙動を示す熱発泡性マイクロスフェアーを得 ることができる。
2 . 熱発泡性マイクロスフェアーの製造方法
本発明の熱発泡性マイクロスフェア一は、 水系分散媒体中で、 少なくとも発泡 剤及び重合性単量体を含有する重合性混合物を懸濁重合して、 生成重合体から形 成された外殻内に発泡剤が封入された構造をもつ熱発泡性マイクロスフェアーを 製造する方法において、 重合性混合物を有機ケィ素化合物の存在下で懸濁重合す ることにより得ることができる。
有機ケィ素化合物としては、 ビニル基、 メタクリル基、 アクリル基、 及びァリ ル基からなる群より選ばれた少なくとも一種の重合可能な反応基を有する有機ケ ィ素化合物が好ましい。 このような重合性有機ケィ素化合物は、 熱発泡性マイク ロスフェアーの外殻を形成する重合体中に共重合によって強固に化学結合して含 有させることができる。
重合性混合物を有機ケィ素化合物の存在下で懸濁重合する具体的な方法として は、 (i) 有機ゲイ素化合物を添加した重合性混合物を懸濁重合する方法、 (i i)水 系分散媒体と重合性混合物とを含有する重合反応系に有機ゲイ素化合物を重合途 中で添加して、 懸濁重合を更に継続する方法、 及び(i i i) これらを組み合わせた 方法などが挙げられる。
これらの方法の中でも、 (i i)水系分散媒体と重合性混合物とを含有する重合反 応系に有機ケィ素化合物を重合途中で添加して、 懸濁重合を更に継続する方法が 好ましく、 その際、 重合開始時、 重合途中、 及び重合反応終了時における重合反 応系の p Hを 7以下、 より好ましくは 6以下、 特に好ましくは 5 . 5以下に制御 する方法がより好ましい。 使用する分散安定剤の種類にもよるが、 多くの場合、 重合反応系の p Hが 7を超過すると、 充分な効果が得られないことがある。 外殻に有機ケィ素化合物を含有させる他の方法としては、 懸濁重合法により得 られた熱発泡性マイクロスフェアーの表面を有機ゲイ素化合物で処理する方法が 挙げられる。 表面処理方法としては、 乾式法、 湿式法、 スプレー法、 インテグラ ルブレンド法などシランカツプリング剤による一般的なフイラ一処理方法を採用 することができる。
重合体から形成された外殻が有機ケィ素化合物を含有する本発明の熱発泡性マ イクロスフェア一は、 その表面に無機物及び Zまたは有機物などの他の材料を付 着させることができ、 それによつて、 発泡体粒子の融着を防止したり、 外殻表面 の性質を改変したりすることができる。 特に無機物は、 一般に、 有機ゲイ素化合 物の有機官能基やシラノール基と反応もしくは相互作用することができるものが 多いので好ましい。
無機物及び Zまたは有機物などの他の材料を外殻に付着させる方法としては、 ( i )懸濁重合法により熱発泡性マイクロスフェアーを重合する時に、 分散安定剤 などとして最初から重合反応系に存在させる方法、 (Π)重合反応の途中で重合反 応系に添加する方法、 (i i i)重合反応終了後に添加する方法、 (iv)得られた熱発 泡性マイクロスフェアーとブレンドする方法、 (V)これらを組み合わせた方法な どが挙げられる。
( 1 ) 有機ゲイ素化合物:
本発明で使用する有機ケィ素化合物とは、 有機基を有するゲイ素化合物を意味 しており、 その中でもシランカップリング剤が好ましい。 シランカップリング剤 としては、 式 (1 )
Y S i (CH3) 3_nXn ( 1 )
(n = l、 2または 3) で表される有機ケィ素化合物が代表的なものである。
式 (1 ) 中、 Yは、 有機または無機の官能基を表わし、 ビニル基、 メ夕クリル 基、 アクリル基、 ァリル基、 エポキシ基、 アミノ基、 メルカプト基、 クロル基、 またはこれらの基を有する官能基である。 Yの具体例としては、 以下のような官 能基を挙げることができる。 Y: CH2 = CH―、 CI (CH2)3- H2N(CH2)3 -、
H2N(CH2)2NH(CH2)。一、
CH2— CHCH。0(CH2)。一、
O
CH2=C(CH3)COO(CH2)3 -、
HS (CH2)3—、
C 1 - 式 (1) 中、 Xは、 塩素原子などのハロゲン原子、 —OR (R=水素原子、 ま たはメチル基やェチル基などの低級アルキル基) 、 _NR2 (R=水素原子、 ま たはメチル基やェチル基などの低級アルキル基) などであり、 多くの場合、 ケィ 素原子に結合している加水分解性の基である。 Xの具体例としては、 以下のよう な基が挙げられる。
X: - C 1、 OR(R: H、 一 CH3、 — C2H5) 、
— NR2(R:H、 一 CH3、 -C2H5) 重合可能な反応基を有する有機ケィ素化合物としては、 ビニル基、 メ夕クリル 基、 アクリル基、 またはァリル基を有するものが挙げられる。
好ましい有機ケィ素化合物の具体例としては、 3—メ夕クリロキシプロビルト リメトキシシラン、 3—メタクリロキシプロピルメチルジメトキシシラン、 3— メタクリロキシプロビルトリス (トリメチルシロキシ) シラン、 ビニルトリクロ ルシラン、 ビニルトリメトキシシラン、 ビニルトリエトキシシラン、 ビニルトリ ス (2—メトキシエトキシ) シラン、 ビニル卜リス (2—メトキシェトキシ) シ ラン、 ビニルトリァセトキシシラン、 ビニルトリス (2 _トリメチルシロキシ) シラン、 ァリルトリメチルシラン、 3—グリシドキシプロビルトリメトキシシラ ン、 3—グリシドキシプロピルメチルジメトキシシラン、 3_ 〔N—ァリル— N 一 (2—アミノエチル) 〕 ァミノプロビルトリメトキシシラン、 3— (N—ァリ ルー N—グリシジル) ァミノプロビルトリメトキシシラン、 3_ (N—ァリル— N—メタクリロイル) ァミノプロビルトリメトキシシラン、 N, N—ビス 〔3_ (メチルジメトキシシリル) プロピル〕 メタクリルアミド、 N, N—ビス 〔3— (トリメトキシシリル) プロピル〕 メ夕クリルアミド、 1 _ ( 3—メ夕クリロキ シプロピル) — 1 , 1, 3 , 3 , 3 —ペンタメチルジシロキサン、 トリメトキシ シリルビ二ルビシクロ 〔2 , 2 , 1〕 ヘプタン等が挙げられる。
これらの中でも、 3—メ夕クリロキシプロビルトリメトキシシランなどの重合 可能な反応基を有するシランカップリング剤が特に好ましい。 これらの有機ケィ 素化合物は、 それぞれ単独で、 あるいは 2種以上を組み合わせて使用することが できる。
有機ゲイ素化合物の含有量は、 熱発泡性マイクロスフエァ一の全重量基準で、 好ましくは 0 . 0 0 5重量%以上、 より好ましくは 0 . 0 1重量%以上、 特に好 ましくは 0 . 0 1 5重量%以上でぁる。 有機ゲイ素化合物の含有量が少なすぎる と、 他の材料との接着性向上効果が不充分となる。
有機ケィ素化合物の含有量の上限は、 好ましくは 5重量%であり、 より好まし くは 1重量%程度である。 有機ケィ素化合物の含有量は、 より好ましくは 0 . 0 1〜5重量%、 特に好ましくは 0 . 0 1 5〜1重量%である。 有機ケィ素化合物 の含有量が多すぎると、 接着性向上効果が飽和し、 また、 経済的でない。
( 2 ) 無機物及び/または有機物:
本発明で使用する無機物としては、 シリカ、 炭酸カルシウム、 タルク、 酸化チ タン、 ガラス、 カオリンクレー、 マイ力、 ネフエリンシナイト、 合成ケィ酸、 石 英粉、 珪石粉、 珪藻土、 硫酸バリウム、 軽石粉、 その他の無機顔料などの微粉体 を挙げることができる。 また、 無機物としては、 コロイダルシリカ、 水酸化マグ ネシゥム、 リン酸カルシウムなどのコロイドを挙げることができる。 無機物とし ては、 このような無機微粒子が好ましい。
一方、 有機物としては、 有機 イ素化合物の官能基ゃシラノール基と反応もし くは相互作用をすることができるものが好ましい。 具体例としては、 官能基や極 性基を有するポリマーが挙げられる。 これらの有機物は、 微粒子であることが好 ましい。 これらの無機物及びノまたは有機物は、 それぞれ単独で、 あるいは 2種以上を 組み合わせて使用することができる。 これらの中でも、 コロイダルシリカなどの 分散安定剤として使用できるものが好ましい。
無機物及び または有機物の平均粒径は、 特に限定されないが、 熱発泡性マイ クロスフェアーの平均粒径よりも充分に小さいことが好ましく、 通常、 l O /z m 以下、 好ましくは 1 m以下、 より好ましくは 0 . 1 m以下である。
無機物及び または有機物の含有量 (付着量) は、 熱発泡性マイクロスフェア 一の全重量基準で、 好ましくは 0 . 0 1〜5 0重量%、 より好ましくは 0 . 0 5 〜 1 0重量%である。 無機物及び Zまたは有機物の含有量が少なすぎると、 熱発 泡性マイクロスフェアー自体の凝集を防ぎつつ、 その外殻が接着性やその他の機 能を充分に発揮することが困難になることがある。
無機物及び または有機物の付着により、 発泡体粒子の融着を防ぐ場合には、 無機物及び Zまたは有機物の含有量 (付着量) は、 熱発泡性マイクロスフェア一 の全重量基準で、 好ましくは 1 . 5〜1 5重量%程度である。 無機物及び/また は有機物の含有量が多すぎると、 発泡が困難になる。
( 3 ) 発泡剤:
本発明で使用する発泡剤は、 通常、 外殻を形成する重合体の軟化点以下の温度 でガス状になる物質である。 このような発泡剤としては、 低沸点有機溶剤が好適 であり、 例えば、 ェタン、 エチレン、 プロパン、 プロペン、 n—ブタン、 イソブ タン、 ブテン、 イソブテン、 n—ペンタン、 イソペンタン、 ネオペンタン、 2 , 2 , 4—トリメチルペンタン、 n—へキサン、 イソへキサン、 石油ェ一テル、 へ ブタンなどの低分子量炭化水素; C C 1 3 F等のクロ口フルォロカーボン;テト ラメチルシランなどのテトラアルキルシラン;などが挙げられる。 これらは、 そ れぞれ単独で、 あるいは 2種以上を組み合わせて使用することができる。
これらの中でも、 イソブタン、 n—ブタン、 n—ペンタン、 イソペンタン、 n —へキサン、 イソへキサン、 ヘプタン、 2, 2 , 4一トリメチルペンタン、 石油 エーテル、 及びこれらの 2種以上の混合物が好ましい。 また、 所望により、 加熱 により熱分解してガス状になる化合物を使用してもよい。
( 4 ) 重合性単量体:
重合性単量体としては、 アクリル酸メチル、 アクリル酸ェチル、 アクリル酸ブ チル、 ジシクロペンテニルァクリレート等のアクリル酸エステル;メタクリル酸 メチル、 メ夕クリル酸ェチル、 メタクリル酸プチル、 イソポルニルメタクリレー ト等のメタクリル酸エステル;アクリロニトリル、 メ夕クリロ二トリル、 塩化ビ ニリデン、 塩化ビニル、 スチレン、 酢酸ビエル、 α—メチルスチレン、 クロロブ レン、 ネオプレン、 ブタジエンなどが挙げられる。 これらの重合性単量体は、 そ れぞれ単独で、 あるいは 2種以上を組み合わせて使用することができる。
熱発泡性マイクロスフェアーは、 外殻を形成する重合体が熱可塑性で、 かつガ スバリア性を有するものが好ましい。 これらの観点から、 塩化ビニリデン (共) 重合体及び (メタ) アクリロニトリル (共) 重合体が好ましい。
塩化ビニリデン (共) 重合体としては、 重合性単量体として、 塩化ビニリデン 単独、 あるいは塩化ビニリデンとこれと共重合可能なビニル系単量体との混合物 を用いて得られる (共) 重合体を挙げることができる。 塩化ビニリデンと共重合 可能な単量体としては、 例えば、 アクリロニトリル、 メタクリロニトリル、 メタ クリル酸エステル、 アクリル酸エステル、 スチレン、 酢酸ビニルなどが挙げられ る。
このような塩化ビニリデン (共) 重合体としては、 重合性単量体として、 (Α) 塩化ビニリデン 3 0〜: L 0 0重量%と、 (Β) アクリロニトリル、 メ夕クリロニト リル、 アクリル酸エステル、 メ夕クリル酸エステル、 スチレン、 及び酢酸ビニル からなる群より選ばれた少なくとも一種の単量体 0〜 7 0重量%とを用いて得ら れた (共) 重合体が好ましい。 塩化ビニリデンの共重合割合が 3 0重量%未満で あるとガスバリア性が低くなりすぎるので、 好ましくない。
また、 塩化ビニリデン (共) 重合体としては、 (A1)塩化ビニリデン 4 0〜8 0 重量%と、 (B1)ァクリロ二トリル及びメタクリロ二トリルからなる群より選ばれ た少なくとも一種の単量体 0〜 6 0重量%と、 (Β2)アクリル酸エステル及びメタ クリル酸エステルからなる群より選ばれた少なくとも一種の単量体 0〜 6 0重 量%との共重合体である。 このような共重合体とすることにより、 発泡温度の設 計が容易であり、 また、 高発泡倍率を達成しやすい。
耐溶剤性や高温での発泡性を望む場合には、 (メタ) アクリロニトリル (共) 重合体により外殻を形成することが好ましい。 (メタ) アクリロニトリル (共) 重合体としては、 重合性単量体として、 (メタ) アクリロニトリル単独、 あるい は、 (メタ) アクリロニトリルとそれと共重合可能なビニル系単量体とを用いて 得られる (共) 重合体を挙げることができる。
(メタ) アクリロニトリルと共重合可能なビエル系単量体としては、 塩化ビニ リデン、 アクリル酸エステル、 メ夕クリル酸エステル、 スチレン、 酢酸ビニルな どが挙げられる。
このような (メタ) アクリロニトリル (共) 重合体としては、 重合性単量体と して、 (0 アクリロニトリル及びメ夕クリロ二トリルからなる群より選ばれた少 なくとも一種の単量体 3 0〜1 0 0重量%と、 (D) 塩化ビニリデン、 アクリル酸 エステル、 メ夕クリル酸エステル、 スチレン、 及び酢酸ビニルからなる群より選 ばれた少なくとも一種の単量体 0〜7 0重量%とを用いて得られた (共) 重合体 が好ましい。 (メタ) アクリロニトリルの共重合割合が 3 0重量%未満では、 耐 溶剤性や耐熱性が不充分となる。
(メタ) アクリロニトリル (共) 重合体は、 (メタ) アクリロニトリルの使用 割合が大きく、 発泡温度が高い (共) 重合体と、 (メタ) アクリロニトリルの使 用割合が小さく、 発泡温度が低い (共) 重合体に分けることができる.
(メタ) アクリロニトリルの使用割合が大きい (共) 重合体としては、 重合性 単量体として、 (C) アクリロニトリル及びメタクリロニトリルからなる群より選 ばれた少なくとも一種の単量体 8 0〜1 0 0重量%と、 (D) 塩化ビニリデン、 ァ クリル酸エステル、 メ夕クリル酸エステル、 スチレン、 及び酢酸ビニルからなる 群より選ばれた少なくとも一種の単量体 0〜2 0重量%とを用いて得られた (共) 重合体が挙げられる。 一方、 (メタ) アクリロニトリルの使用割合が小さい (共) 重合体としては、 重合性単量体として、 (C) アクリロニトリル及びメタクリロニトリルからなる群 より選ばれた少なくとも一種の単量体 3 0重量%以上 8 0重量%未満と、 (D) 塩 化ビニリデン、 アクリル酸エステル、 メ夕クリル酸エステル、 スチレン、 及び酢 酸ビニルからなる群より選ばれた少なくとも一種の単量体 2 0重量%超過 7 0重 量%以下とを用いて得られた (共) 重合体が挙げられる。
また、 (メタ) アクリロニトリル (共) 重合体としては、 (C1)ァクリロ二トリ ル及びメタクリロ二トリルからなる群より選ばれた少なくとも一種の単量体 5 1 〜1 0 0重量%と、 (D1)塩化ビニリデン 0 ~ 4 0重量%と、 (D2)アクリル酸エス テル及びメ夕クリル酸エステルからなる群より選ばれた少なくとも一種の単量体 0〜4 8重量%とを用いて得られた (共) 重合体が好ましい。
外殻の重合体として、 塩化ビニリデンを含まない (共) 重合体が望まれる場合 には、 重合性単量体として、 (E) アクリロニトリル及びメ夕クリロ二トリルから なる群より選ばれた少なくとも一種の単量体 3 0〜1 0 0重量%と、 (F) ァクリ ル酸エステル及びメ夕クリル酸エステルからなる群より選ばれた少なくとも一種 の単量体 0〜 7 0重量%とを用いて得られた (メタ) アクリロニトリル (共) 重 合体が好ましい。
また、 重合性単量体として、 (E1)アクリロニトリル 1〜9 9重量%と、 (E2)メ タクリロ二トリル 1〜9 9重量%と、 (F)アクリル酸エステル及びメタクリル酸 エステルからなる群より選ばれた少なくとも一種の単量体 0 ~ 7 0重量%とを用 いて得られた共重合体が好ましい。
さらに、 加工性、 発泡性、 ガスパリヤー性、 耐溶剤性などが特に優れた熱発泡 性マイクロスフェアーを得るには、 外殻の (メタ) アクリロニトリル (共) 重合 体が、 重合性単量体として、 (E1)アクリロニトリル 2 0〜8 0重量%と、 (E2)メ タクリロ二トリル 2 0〜 8 0重量%と、 (F)アクリル酸エステル及びメ夕クリル 酸エステルからなる群より選ばれた少なくとも一種の単量体 0〜 2 0重量%とを 用いて得られた共重合体であることが好ましい。 ( 5 ) 架橋性単量体:
前記の如き重合性単量体と共に、 発泡特性、 加工特性、 耐溶剤性、 耐熱性を改 良するために、 架橋性単量体を併用することができる。 架橋性単量体としては、 通常、 2つ以上の炭素一炭素二重結合を有する化合物が用いられる。
より具体的に、 架橋性単量体として、 例えば、 ジビニルベンゼン、 ジ (メタ) アクリル酸エチレングリコール、 トリ (メタ) アクリル酸トリメチロールプロパ ン、 ジメタクリル酸 1, 3—プチルグリコール、 ペンタエリスリトールトリ (メ 夕) ァクリレートなどが挙げられる。
架橋性単量体の使用割合は、 重合性単量体の全重量基準で、 通常、 0 . 0 5 〜5重量%、 好ましくは 0 . :!〜 3重量%である。
( 6 ) 重合開始剤:
重合開始剤としては、 特に限定されず、 この分野で一般に使用されているもの を使用することができるが、 重合性単量体に可溶性である油溶性重合開始剤が好 ましい。 より具体的に、 重合開始剤として、 例えば、 過酸化ジアルキル、 過酸化 ジァシル、 パーォキシエステル、 パ一ォキシジカーボネート、 及びァゾ化合物が 挙げられる。
重合開始剤は、 通常、 単量体混合物中に含有させるが、 早期重合を抑制する必 要がある場合には、 造粒工程中または造粒工程後に、 その一部または全部を水系 分散媒体中に添加して、 重合性混合物の液滴中に移行させてもよい。 重合開始剤 は、 水系分散媒体基準で、 通常、 0 . 0 0 0 1〜3重量%の割合で使用される。
( 7 ) 水系分散媒体:
懸濁重合は、 通常、 分散安定剤を含有する水系分散媒体中で行われる。 分散安 定剤としては、 例えば、 シリカ、 水酸化マグネシウムなどの無機微粒子を挙げる ことができる。 この他に補助安定剤、 例えば、 ジエタノールァミンと脂肪族ジカ ルボン酸の縮合生成物、 ポリビニルピロリドン、 ポリエチレンオキサイド、 各種 乳化剤等を使用することができる。 分散安定剤は、 重合性単量体 1 0 0重量部に 対して、 通常、 0 . 1〜2 0重量部の割合で使用される。 .分散安定剤を含有する水系分散媒体は、 通常、 分散安定剤や補助安定剤を脱ィ オン水に配合して調製する。 重合時の水相の p Hは、 使用する分散安定剤や補助 安定剤の種類によって適宜決められる。 例えば、 分散安定剤としてコロイダルシ リカなどのシリカを使用する場合は、 酸性環境下で重合が行われる。 水系分散媒 体を酸性にするには、 必要に応じて酸を加えて、 系の p Hを 7以下、 好ましくは P H 6以下、 特に好ましくは p H 3〜4程度に調整する。 水酸化マグネシウムや リン酸カルシウムなどの酸性環境下で水系分散媒体に溶解する分散安定剤の場合 には、 アルカリ性環境下で重合させる。
分散安定剤の好ましい組み合わせの一つとして、 コロイダルシリ力と縮合生成 物との組み合わせがある。 縮合生成物としては、 ジエタノールァミンと脂肪族ジ 力ルポン酸との縮合生成物が好ましく、 特にジエタノールァミンとアジピン酸と の縮合物や、 ジエタノールァミンとィタコン酸との縮合生成物が好ましい。 縮合 生成物の酸価は、 6 0以上 9 5未満であることが好ましく、 6 5〜9 0であるこ とがより好ましい。 さらに、 塩化ナトリウム、 硫酸ナトリウム等の無機塩を添加 すると、 より均一な粒子形状を有する熱発泡性マイクロスフェアーが得られやす くなる。 無機塩としては、 通常、 食塩が好適に用いられる。
コロイダルシリカの使用量は、 その粒子径によっても変わるが、 通常、 重合性 単量体 1 0 0重量部に対して、 0 . 5〜2 0重量部、 好ましくは 1〜1 5重量部 の割合である。 縮合生成物は、 重合性単量体 1 0 0重量部に対して、 通常 0 . 0 5〜 2重量部の割合で使用される。 無機塩は、 重合性単量体 1 0 0重量部に対し て、 0〜1 0 0重量部の割合で使用される。
分散安定剤の他の好ましい組み合わせとしては、 コロイダルシリ力と水溶性窒 素含有化合物との組み合わせが挙げられる。 これらの中でも、 コロイダルシリカ とポリビニルピロリドンとの組み合わせが好適に用いられる。 さらに、 他の好ま しい組み合わせとしては、 水酸化マグネシウム及び/またはリン酸カルシウムと 乳化剤との組み合わせがある。
分散安定剤として、 水溶性多価金属化合物 (例えば、 塩化マグネシウム) と水 酸化アルカリ金属塩 (例えば、 水酸化ナトリウム) との水相中での反応により得 られる難水溶性金属水酸化物 (例えば、 水酸化マグネシウム) のコロイドを用い ることができる。 また、 リン酸カルシウムとしては、 リン酸ナトリウムと塩化力 ルシゥムとの水相中での反応生成物を使用することができる。
乳化剤は、 一般には使用しないが、 所望により、 陰イオン性界面活性剤、 例え ば、 ジアルキルスルホコハク酸塩やポリオキシエチレンアルキル (ァリル) エー テルのリン酸エステル等を用いてもよい。
重合助剤として、 水系分散媒体中に、 亜硝酸アルカリ金属塩、 塩化第一スズ、 塩化第二スズ、 水可溶性ァスコルビン酸類、 及び硼酸からなる群より選ばれる少 なくとも一種の化合物を存在させることができる。 これらの化合物の存在下に懸 濁重合を行うと、 重合時に、 重合粒子同士の凝集が起こらず、 重合物が重合缶壁 に付着することがなく、 重合による発熱を効率的に除去しながら安定して熱発泡 性マイクロスフェアーを製造することができる。
亜硝酸アル力リ金属塩の中では、 亜硝酸ナトリゥム及び亜硝酸力リゥムが入手 の容易性や価格の点で好ましい。 ァスコルビン酸類としては、 ァスコルビン酸、 ァスコルビン酸の金属塩、 ァスコルビン酸のエステルなどが挙げられるが、 これ らの中でも水可溶性のものが好適に用いられる。
水可溶性ァスコルビン酸類とは、 2 3 の水に対する溶解性が 1 g Z l 0 0 c m3以上であるものを意味し、 ァスコルビン酸とそのアルカリ金属塩が好ましい。 これらの中でも、 L—ァスコルビン酸 (ビタミン C) 、 ァスコルビン酸ナトリウ ム、 及びァスコルビン酸カリウムが、 入手の容易性や価格、 作用効果の点で、 特 に好適に用いられる。
これらの化合物は、 重合性単量体 1 0 0重量部に対して、 通常、 0 . 0 0 1 〜1重量部、 好ましくは 0 . 0 1 ~ 0 . 1重量部の割合で使用される。
( 8 ) 懸濁重合:
水系分散媒体に各成分を添加する順序は、 任意であるが、 通常は、 水と分散安 定剤、 必要に応じて安定助剤や重合助剤などを加えて、 分散安定剤を含有する水 系分散媒体を調製する。 一方、 重合性単量体及び発泡剤は、 別々に水系分散媒体 に加えて、 水系分散媒体中で一体化して重合性混合物 (油性混合物) を形成して もよいが、 通常は、 予め両者を混合してから、 水系分散媒体中に添加する。 重合 開始剤は、 予め重合性単量体に添加して使用することができるが、 早期の重合を 避ける必要がある場合には、 例えば、 重合性単量体と発泡剤との混合物を水系分 散媒体中に添加し、 攪拌しながら重合開始剤を加え、 水系分散媒体中で一体化し てもよい。 重合性混合物と水系分散媒体との混合を別の容器で行って、 高剪断力 を有する攪拌機や分散機で攪拌混合した後、 重合缶に仕込んでもよい。 重合性混 合物と水系分散媒体とを攪拌混合することにより、 水系分散媒体中で重合性混合 物の液滴を調製 (造粒) する。 液滴の平均粒径は、 目的とする熱発泡性マイクロ スフエア一の平均粒径とほぼ一致させることが好ましい。
懸濁重合は、 通常、 反応槽内を脱気するか、 もしくは不活性ガスで置換して、 3 0〜1 0 O :の温度に昇温して行う。 重合反応性基を有する有機ケィ素化合物 を重合性混合物中に添加して重合を行う場合には、 常法に従って懸濁重合を行う ことにより、 重合体から形成される外殻中に有機ケィ素化合物が含有されること になる。 懸濁重合の途中で有機ゲイ素化合物を重合反応系に添加する場合には、 懸濁重合開始から通常 1〜1 2時間程度、 好ましくは 2〜 1 0時間程度が経過し た後に、 有機ゲイ素化合物を添加することが好ましい。 重合途中で有機ケィ素化 合物を添加することにより、 外殻の表面部分の有機ケィ素化合物の密度を高くす ることができると推定される。
有機ゲイ素化合物を重合途中で重合反応系に添加する場合、 重合反応系の p H を 7以下に保持するために、 塩酸などの酸を加えて、 p H調整することが好まし レ^ 特にコロイダルシリカなどの少なくとも酸性領域で水系分散媒体に不溶性の 無機微粒子を分散安定剤として用いる場合には、 重合開始時から重合終了時まで の間、 重合反応系の p Hを 7以下に保持することが好ましく、 そのために、 重合 戸流で重合反応系に酸を加えて p H調整することができる。
無機物及び または有機物を重合途中で加える場合にも、 懸濁重合開始から通 常 1〜1 2時間程度、 好ましくは 2〜1 0時間程度が経過した後に、 無機物及び または有機物を加えることが好ましい。 この場合、 あらかじめ重合性混合物中 に有機ケィ素化合物を添加しておくか、 あるいは無機物及び または有機物の添 加と同時か、 それより前に、 有機ゲイ素化合物を重合反応系に添加することが好 ましい。
懸濁重合後、 水相は、 例えば、 濾過、 遠心分離、 沈降によって除去される。 熱 発泡性マイクロスフェアーは、 濾過,洗浄した後、 乾燥する。 熱発泡性マイクロ スフエアーは、 発泡剤がガス化しない程度の比較的低温で乾燥される。 回収され た熱発泡性マイクロスフェアーは、 必要に応じて、 有機ケィ素化合物で表面処理 を行うことができ、 また、 無機物及び Zまたは有機物を表面に付着させることも できる。 さらに、 無機物以外の各種材料を用いて表面をコーティングすることも できる。
3 . 用途
本発明の熱発泡性マイクロスフェアーは、 加熱発泡 (熱膨脹) させて、 あるい は未発泡のままで、 各種分野に使用される。 熱発泡性マイクロスフェアーは、 例 えば、 その膨脹性を利用して、 自動車等の塗料の充填剤、 壁紙、 発泡インク (T 一シャツ等のレリーフ模様付け) の発泡剤、 収縮防止剤などに使用される。
本発明の熱発泡性マイクロスフェアーは、 発泡による体積増加を利用して、 プ ラスチック、 塗料、 各種資材などの軽量化や多孔質化、 各種機能性付与 (例えば、 スリップ性、 断熱性、 クッション性、 遮音性等) の目的で使用される。
本発明の熱発泡性マイクロスフェアーは、 表面性や平滑性が要求される塗料、 壁紙、 インク分野に好適に用いることができる。 また、 本発明の熱発泡性マイク ロスフェアーは、 マトリックス樹脂との接着性が要求される用途に好適に用いる ことができる。 さらに、 本発明の熱発泡性マイクロスフェアーは、 中空の微小樹 脂製マイクロスフェアーの表面が無機物及び/または有機物で被覆された機能性 添加剤として利用することができる。 実施例
以下、 実施例及び比較例を挙げて、 本発明についてより具体的に説明する。 各 種物性等の測定方法は、 以下のとおりである。 .
<測定方法 >
(1) 発泡倍率:
熱発泡性マイクロスフェアー 0. 7 gを、 ギア式オーブン中に入れ、 所定温度 (発泡温度) で 2分間加熱して発泡させる。 得られた発泡体をメスシリンダーに 入れて体積を測定し、 発泡体の体積を未発泡時の熱発泡性マイクロスフェアーの 体積で割って発泡倍率を算出した。 この際、 発泡倍率を 70 から 5で刻みで昇 温し、 最大の発泡倍率が得られる時点での当該発泡倍率を最大発泡倍率と定義す る。
(2) バインダー系での発泡特性:
エチレン ·酢酸ビニル共重合体 (EVA) を含有する EVA系水性ェマルジョ ン (濃度 55重量%) の EVA5重量部に対して、 熱発泡性マイクロスフェア一 1重量部を加えて、 塗工液を調製する。 この塗工液を両面アート紙に 200 xm のギャップを有するコ一夕一で塗布した後、 オーブンに入れて乾燥する。
乾燥は、 外殻樹脂のガラス転移温度が 100で以上である熱発泡性マイクロス フェアーを用いた場合には、 9 O :で 5分間行い、 外殻樹脂のガラス転移温度が 70°C以上 10 Ot:未満の熱発泡性マイクロスフェアーを用いた場合には、 6 0でで 5分間行う。
次いで、 所定温度のオーブンに入れて 2分間加熱する。 この際、 発泡倍率を 7 Ot:から 5で刻みで昇温し加熱するが、 粒子の大多数が発泡する温度を発泡開始 温度と定義する。 さらに、 発泡開始温度未満の加熱温度でも発泡した粒子を異常 発泡粒子と定義する。 異常発泡粒子の存在の有無は、 発泡開始温度未満で加熱し た塗工膜表面を光学顕微鏡で観察して確認する。
(3) 平均粒径及び粒径分布:
島津製作所製の粒径分布測定器 SALD— 3000 Jを用いて測定した。 [比較例 1 ]
(1) 水系分散媒体の調製
コロイダルシリカ 5. 5 g、 ジエタノールァミン—アジピン酸縮合生成物 (酸 価 =78mgKOHZg) 0. 825 g、 亜硝酸ナトリウム 0. 132 g、 及び 水 594. 38 gを混合して、 水系分散媒体 600 gを調製した。 この水系分散 媒体の pHが 3. 2になるように、 塩酸を添加して pHを調整した。
(2) 重合性混合物の調製
アクリロニトリル 110 g、 メ夕クリル酸メチル 1 10 g、 エチレングリコ一 ルジメ夕クリレート 0. 44g、 ペンタン 39. 6 g、 及び 2、 2 ' ーァゾビス (2, 4_ジメチルバレロニトリル) 1. 32 gを混合して、 重合性混合物を調 製した。 単量体成分の重量%は、 アクリロニトリル/メタクリル酸メチル =50 /50である。
(3) 液滴の調製
前記で調製した水系分散媒体と重合性混合物とを、 ホモジナイザーで攪拌混合 して、 水系分散媒体中に重合性混合物の微小な液滴を調製した。
(4) 懸濁重合
この重合性混合物の微小な液滴を含有する水系分散媒体を、 攪拌機付きの重合 缶 (1. 5L) に仕込み、 温水バスを用いて 53でで 22時間反応させた。 反応 終了後、 pH6. 3の反応混合物が得られた。 この反応混合物を濾過 ·水洗し、 この操作を更に 2回繰り返した後、 乾燥して、 平均粒径 14 mの熱発泡性マイ クロスフェアーを回収した。
最初の濾液は、 乳白色であり、 100倍量の水で希釈しても強く白濁したまま であった。 2回目の濾液もまだ白く濁っており、 3回目の濾液もそのまま廃棄で きるほどの透明液にはならなかった。 これらの濾液を回収し、 凝集剤を投入して 懸濁粒子を沈降させた後、 遠心分離して、 固形分と透明な廃液とに分離した。 ェ 業的生産においては、 公害防止のため廃液の白濁除去工程が必要となり、 経済的 負担が大きい。 ( 5 ) 熱発泡性マイクロスフェアー
このようにして得られた熱発泡性マイクロスフェア一に含まれるシリカ量は、 0 . 8重量%であり、 仕込み量の 3 9重量%に相当する量であった。 この熱発泡 性マイクロスフェアーを発泡させると、 発泡体粒子間の強い融着が認められた。 発泡温度 1 4 5 での発泡倍率は、 4 0倍であった。 バインダー系での発泡挙動 を調べたところ、 粒子の大多数が発泡する温度 (1 4 00 未満の加熱温度でも 発泡した粒子 (異常発泡粒子) が多く見られた。 つまり、 非常にブロードな発泡 開始挙動を示した。 このような発泡開始挙動を示す熱発泡性マイクロスフェア一 を、 表面性や平滑性が要求される塗料、 壁紙、 インク分野に用いると、 表面性や 平滑性が損われ、 実用性能に問題が生じる。
[実施例 1 ]
比較例 1の懸濁重合工程 (4 ) において、 重合開始から 6時間が経過した時点 で、 重合可能な反応基を有するシランカツプリング剤である 3—メタクリロキシ プロビルトリメトキシシラン 0 . 2 gを重合缶 (重合反応系) 中に添加した。 さ らに、 重合開始から 7時間が経過した時点で、 塩酸を重合缶中に添加して、 重合 反応系の P Hを 3 . 0に調整した。 このように、 比較例 1の懸濁重合工程 (4 ) において、 シランカップリング剤と塩酸を添加したこと以外は、 比較例 1と同様 にして、 熱発泡性マイクロスフェア一を製造した。
反応終了後、 反応混合物の p Hは、 4. 5であった。 この反応混合物を濾過 · 水洗し、 この操作を更に 2回繰り返した後、 乾燥して、 平均粒径 1 4 ^ mの熱発 泡性マイクロスフェアーを回収した。 最初の濾液は、 透明で白濁がなく、 p Hを 調整するだけで廃棄が可能であった。
このようにして得られた熱発泡性マイクロスフェアーに含まれるシリカ量は、 2 . 0重量%であり、 仕込み量のほぼ全量が熱発泡性マイクロスフェアーに含ま れると計算された。 この熱発泡性マイクロスフェアーを発泡させたところ、 発泡 体粒子間の融着が少なく、 強い凝集は見られなかった。 発泡温度 1 4 5 での発 泡倍率は、 4 0倍であった。 バインダー系での発泡挙動を調べたところ、 粒子の 大多数が発泡する温度 (1 4 0で) 未満の加熱温度でも発泡した異常発泡粒子は 殆んどなく、 この熱発泡性マイクロスフェア一は、 シャープな発泡開始挙動を示 した。
[実施例 2 ]
比較例 1の重合性混合物の調製工程 (2 ) において、 重合可能な反応基を有す るシランカツプリング剤である 3—メタクリロキシプロピルトリメトキシシラン 0 . 2 gを添加して、 シランカップリング剤を含有する重合性混合物を調製し、 そして、 次の液滴の調製工程 (3 ) において、 水系分散媒体と重合性混合物をホ モジナイザーで攪拌混合する前に、 塩酸を加えて p Hを 3 . 0に調整してから、 重合性混合物の微小な液滴を造粒したこと以外は、 比較例 1と同様にして、 熱発 泡性マイクロスフェアーを調製した。
反応終了後、 反応混合物の p Hは、 5 . 5であった。 反応混合物中に若干量の 凝集物が生成していたので、 2 0 0メッシュの篩を用いて凝集物を除去した。 し かる後、 反応混合物を濾過 ·水洗し、 この操作を更に 2回繰り返した後、 乾燥し て、 平均粒径 1 4 mの熱発泡性マイクロスフェアーを回収した。 最初の濾液に は、 ごく僅かの白濁が認められたが、 2回目及び 3回目の濾液には、 白濁は認め られなかった。
このようにして得られた熱発泡性マイクロスフェア一に含まれるシリカ量は、 2 . 0重量%であり、 仕込み量のほぼ全量が熱発泡性マイクロスフェアーに含ま れると計算された。 この熱発泡性マイクロスフェア一を発泡させたところ、 発泡 体粒子間の融着が少なく、 強い凝集は見られなかった。 発泡温度 1 4 5 での発 泡倍率は、 4 0倍であった。 バインダー系での発泡挙動を調べたところ、 粒子の 大多数が発泡する温度 (1 4 0 °C) 未満の加熱温度でも発泡した異常発泡粒子は 殆んどなく、 この熱発泡性マイクロスフェアーは、 シャープな発泡開始挙動を示 した。
[実施例 3 ]
実施例 1において、 重合開始 7時間後に塩酸を重合缶中に添加して p Hを調整 する操作を行わなかったこと以外は、 実施例 1と同様にして、 熱発泡性マイクロ スフエア一を調製した。 反応終了後、 反応混合物の p Hは、 5 . 8であった。 反 応混合物を濾過 ·水洗し、 この操作を更に 2回繰り返した後、 乾燥して、 平均粒 径 1 4 の熱発泡性マイクロスフェアーを回収した。 最初の濾液には、 ごく僅 かの白濁が認められたが、 2回目及び 3回目の濾液には、 白濁は認められなかつ た。
このようにして得られた熱発泡性マイクロスフェアーに含まれるシリカ量は、 2 . 0重量%であり、 仕込み量のほぼ全量が熱発泡性マイクロスフェア一に含ま れると計算された。 この熱発泡性マイクロスフェア一を発泡させたところ、 発泡 体粒子間の融着が少なく、 強い凝集は見られなかった。 発泡温度 1 4 5 での発 泡倍率は、 4 0倍であった。 バインダー系での発泡挙動を調べたところ、 粒子の 大多数が発泡する温度 (1 4 0で) 未満の加熱温度でも発泡した異常発泡粒子は 殆んどなく、 この熱発泡性マイクロスフェアーは、 シャープな発泡開始挙動を示 した。
[実施例 4 ]
比較例 1の懸濁重合工程 (4 ) において、 重合開始から 6時間が経過した時点 で、 重合可能な反応基を有するシランカップリング剤である 3—グリシドキシプ 口ビルトリメトキシシラン 0 . 2 gを重合缶 (重合反応系) 中に添加した。 さら に、 重合開始から 7時間が経過した時点で、 塩酸を重合缶中に添加して、 重合反 応系の p Hを 3 . 0に調整した. このように、 比較例 1の懸濁重合工程 (4 ) に おいて、 シランカップリング剤と塩酸を添加したこと以外は、 比較例 1と同様に して、 熱発泡性マイクロスフェア一を製造した。
反応終了後、 反応混合物の P Hは、 4 . 5であった。 この反応混合物を濾過 · 水洗し、 この操作を更に 2回繰り返した後、 乾燥して、 平均粒径 1 4 // mの熱発 泡性マイクロスフェアーを回収した。 最初の濾液は、 透明で白濁がなく、 p Hを 調整するだけで廃棄が可能であった。
このようにして得られた熱発泡性マイクロスフェアーに含まれるシリカ量は、 2 . 0重量%であり、 仕込み量のほぼ全量が熱発泡性マイクロスフェアーに含ま れると計算された。 この熱発泡性マイクロスフェアーを発泡させたところ、 発泡 体粒子間の融着が少なく、 強い凝集は見られなかった。 発泡温度 1 4 5ででの発 泡倍率は、 4 0倍であった。 バインダー系での発泡挙動を調べたところ、 粒子の 大多数が発泡する温度 (1 4 0で) 未満の加熱温度でも発泡した異常発泡粒子は 殆んどなく、 この熱発泡性マイクロスフェア一は、 シャープな発泡開始挙動を示 した。
[実施例 5 ]
比較例 1の懸濁重合工程 (4 ) において、 重合開始から 6時間が経過した時点 で、 重合可能な反応基を有するシランカップリング剤である 3—メ夕クリロキシ プロビルトリメトキシシラン 0 . 6 gを重合缶 (重合反応系) 中に添加した。 さ らに、 重合開始から 7時間が経過した時点で、 塩酸を重合缶中に添加して、 重合 反応系の p Hを 3 . 0に調整した. このように、 比較例 1の懸濁重合工程 (4 ) において、 シランカップリング剤と塩酸を添加したこと以外は、 比較例 1と同様 にして、 熱発泡性マイクロスフェア一を製造した。
反応終了後、 反応混合物の p Hは、 4. 2であった。 この反応混合物を濾過 · 水洗し、 この操作を更に 2回繰り返した後、 乾燥して、 平均粒径 1 5 i mの熱発 泡性マイクロスフェアーを回収した。 最初の濾液は、 透明で白濁がなく、 p Hを 調整するだけで廃棄が可能であつた。 このようにして得られた熱発泡性マイク口 スフエアーに含まれるシリカ量は、 2 . 0重量%であり、 仕込み量のほぼ全量が 熱発泡性マイクロスフェアーに含まれると計算された。
この熱発泡性マイクロスフエアーを発泡させたところ、 発泡体粒子間の融着が 少なく、 強い凝集は見られなかった。 発泡温度 1 4 5 "Cでの発泡倍率は、 4 2倍 であった。 バインダー系での発泡挙動を調べたところ、 粒子の大多数が発泡する 温度 (1 4 0で) 未満の加熱温度でも発泡した異常発泡粒子は殆んどなく、 この 熱発泡性マイクロスフェアーは、 シャープな発泡開始挙動を示した。
このようなシヤープな発泡開始挙動を示す熱発泡性マイクロスフェアーを、 表 面性や平滑性が要求される塗料、 壁紙、 インク分野で用いると、 表面性や平滑性 が非常に優れることが確認された。
[比較例 2]
(1) 水系分散媒体の調製
コロイダルシリカ 4 g、 ジエタノールァミン—アジピン酸縮合生成物 (酸価 = 78mg OH/g) 0. 5 g、 亜硝酸ナトリウム 0. 12 g、 及び水 595. 38 gを混合して、 水系分散媒体 600 gを調製した。 この水系分散媒体の pH が 3. 2になるように、 塩酸を添加して pHを調整した。
(2) 重合性混合物の調製
アクリロニトリル 120 g、 メ夕クリル酸メチル 60 g、 アクリル酸メチル 2 0 g、 エチレングリコールジメタクリレート 0. 4g、 イソペンタン 22 g、 及 び 2、 2 ' —ァゾビス (2, 4—ジメチルバレロニトリル) 1. 2gを混合して 重合性混合物を調製した。 単量体成分の重量%は、 アクリロニトリル/メタクリ ル酸メチル アクリル酸メチル =60/30/10である。
(3) 液滴の調製
前記で調製した水系分散媒体と重合性混合物とを、 ホモジナイザーで攪拌混合 して、 水系分散媒体中に重合性混合物の微小な液滴を調製した。
(4) 懸濁重合
この重合性混合物の微小な液滴を含有する水系分散媒体を、 攪拌機付きの重合 缶 (1. 5L) に仕込み、 温水バスを用いて 53 で 22時間反応させた。 反応 終了後、 pH5. 9の反応混合物が得られた。 この反応混合物を濾過 '水洗し、 この操作を更に 2回繰り返した後、 乾燥して、 平均粒径 16 mの熱発泡性マイ クロスフェアーを回収した。
最初の濾液は、 乳白色であり、 100倍量の水で希釈しても強く白濁したまま であった。 2回目の濾液もまだ白く濁っており、 3回目の濾液もそのまま廃棄で きるほどの透明液にはならなかった。 これらの濾液を回収し、 凝集剤を投入して 懸濁粒子を沈降させた後、 遠心分離して、 固形分と透明な廃液とに分離した。 ( 5 ) 熱発泡性マイクロスフェアー
このようにして得られた熱発泡性マイクロスフェア一に含まれるシリカ量は、 0 . 6重量%であり、 仕込み量の 3 4重量%に相当する量であった。 この熱発泡 性マイクロスフェアーを発泡させると、 発泡体粒子間の強い融着が認められた。 発泡温度 1 4 0ででの発泡倍率は、 4 6倍であった。 バインダー系での発泡挙動 を調べたところ、 粒子の大多数が発泡する温度 (1 3 5で) 未満の加熱温度でも 発泡した異常発泡粒子が多く見られた。 つまり、 非常にブロードな発泡開始挙動 を示した。 このような発泡開始挙動を示す熱発泡性マイクロスフェア一を、 表面 性や平滑性が要求される塗料、 壁紙、 インク分野に用いると、 表面性や平滑性が 損われ、 実用性能に問題が生じる。
[実施例 6 ]
比較例 2の懸濁重合工程 (4 ) において、 重合開始から 6時間が経過した時点 で、 重合可能な反応基を有するシランカップリング剤である 3—メタクリロキシ プロピルトリメトキシシラン 0 . l gを重合缶 (重合反応系) 中に添加した。 さ らに、 重合開始から 7時間が経過した時点で、 塩酸を重合缶中に添加して、 重合 反応系の p Hを 3 . 0に調整した。 このように、 比較例 2の懸濁重合工程 (4 ) において、 シランカップリング剤と塩酸を添加したこと以外は、 比較例 2と同様 にして、 熱発泡性マイクロスフェア一を製造した。
反応終了後、 反応混合物の p Hは、 4. 2であった。 この反応混合物を濾過 - 水洗し、 この操作を更に 2回繰り返した後、 乾燥して、 平均粒径 1 7 mの熱発 泡性マイクロスフェア一を回収した。 最初の濾液は、 透明で白濁がなく、 p Hを 調整するだけで廃棄が可能であった。
このようにして得られた熱発泡性マイクロスフェアーに含まれるシリカ量は、 1 . 7重量%であり、 仕込み量のほぼ全量が熱発泡性マイクロスフェアーに含ま れると計算された。 この熱発泡性マイクロスフェアーを発泡させたところ、 発泡 体粒子間の融着が少なく、 強い凝集は見られなかった。 発泡温度 1 4 0ででの発 泡倍率は、 5 0倍であった。 バインダー系での発泡挙動を調べたところ、 粒子の 大多数が発泡する温度 (1 3 5で) 未満の加熱温度でも発泡した異常発泡粒子は 殆んどなく、 この熱発泡性マイクロスフェアーは、 シャープな発泡開始挙動を示 した。
[実施例 7 ]
比較例 2の重合性混合物の調製工程 (2 ) において、 重合可能な反応基を有す るシランカップリング剤である 3—メ夕クリロキシプロビルトリメトキシシラン 0 . l gを添加して、 シランカップリング剤を含有する重合性混合物を調製し、 そして、 次の液滴の調製工程 (3 ) において、 水系分散媒体と重合性混合物をホ モジナイザーで攪拌混合する前に、 塩酸を加えて p Hを 3 . 0に調整してから、 重合性混合物の微小な液滴を造粒したこと以外は、 比較例 2と同様にして、 熱発 泡性マイクロスフェアーを調製した。
反応終了後、 反応混合物の P Hは、 5 . 5であった。 反応混合物中に若干量の 凝集物が生成していたので、 1 0 0メッシュの篩を用いて凝集物を除去した。 し かる後、 反応混合物を濾過,水洗し、 この操作を更に 2回繰り返した後、 乾燥し て、 平均粒径 1 6 mの熱発泡性マイクロスフェア一を回収した。 最初の濾液に は、 ごく僅かの白濁が認められたが、 2回目及び 3回目の濾液には、 白濁は認め られなかった。
このようにして得られた熱発泡性マイクロスフェアーに含まれるシリカ量は、 1 . 7重量%であり、 仕込み量のほぼ全量が熱発泡性マイクロスフェアーに含ま れると計算された。 この熱発泡性マイクロスフェア一を発泡させたところ、 発泡 体粒子間の融着が少なく、 強い凝集は見られなかった。 発泡温度 1 4 での発 泡倍率は、 4 7倍であった。 バインダー系での発泡挙動を調べたところ、 粒子の 大多数が発泡する温度 (1 3 5で) 未満の加熱温度でも発泡した異常発泡粒子は 殆んどなく、 この熱発泡性マイクロスフェア一は、 シャープな発泡開始挙動を示 した。
[実施例 8 ]
比較例 2の懸濁重合工程 (4 ) において、 重合開始から 6時間が経過した時点 で、 重合可能な反応基を有するシランカップリング剤である 3—ダリシドキシプ 口ピルトリメトキシシラン 0. 5 gを重合缶 (重合反応系) 中に添加した。 さら に、 重合開始から 7時間が経過した時点で、 塩酸を重合缶中に添加して、 重合反 応系の pHを 3. 0に調整した。 このように、 比較例 2の懸濁重合工程 (4) に おいて、 シランカップリング剤と塩酸を添加したこと以外は、 比較例 2と同様に して、 熱発泡性マイクロスフェアーを製造した。
反応終了後、 反応混合物の pHは、 4. 0であった。 この反応混合物を濾過 - 水洗し、 この操作を更に 2回繰り返した後、 乾燥して、 平均粒径 17 mの熱発 泡性マイクロスフェアーを回収した。 最初の濾液は、 透明で白濁がなく、 pHを 調整するだけで廃棄が可能であった。
このようにして得られた熱発泡性マイクロスフェア一に含まれるシリカ量は、 1. 7重量%であり、 仕込み量のほぼ全量が熱発泡性マイクロスフェアーに含ま れると計算された。 この熱発泡性マイクロスフェアーを発泡させたところ、 発泡 体粒子間の融着が少なく、 強い凝集は見られなかった。 発泡温度 140 での発 泡倍率は、 50倍であった。 バインダー系での発泡挙動を調べたところ、 粒子の 大多数が発泡する温度 (135°C) 未満の加熱温度でも発泡した異常発泡粒子は 殆んどなく、 この熱発泡性マイクロスフェア一は、 シャープな発泡開始挙動を示 した。
このようなシャ一プな発泡開始挙動を示す熱発泡性マイクロスフェアーを、 表 面性や平滑性が要求される塗料、 壁紙、 インク分野で用いると、 表面性や平滑性 が非常に優れることが確認された。
[比較例 3]
(1) 水系分散媒体の調製
コロイダルシリカ 16. 5 g.、 ジエタノールァミン—アジピン酸縮合生成物 (酸価 =78mgKOHZg) 1. 65 g、 食塩 169. 8 g、 亜硝酸ナトリウ ム 0. 11 、 及び水368. 94 gを混合して、 水系分散媒体 557 gを調製 した。 水系分散媒体の pHが 3. 2になるように、 塩酸を添加して調整した。 (2) 重合性混合物の調製
アクリロニトリル 147. 4g、 メタクリロニトリル 68. 2 g、 メ夕クリル 酸メチル 4. 4g、 トリメ夕クリル酸トリメチロールプロパン 0. 66 g、 n— ペンタン 26. 2 g、 石油エーテル 15 g、 及び 2, 2 ' —ァゾイソブチロニト リル 1. 2 gを混合して、 重合性混合物を調製した。 単量体成分の重量%は、 ァ クリロニトリル メタクリロ二トリル Zメ夕クリル酸メチル =67Z31ノ 2で ある。
(3) 液滴の調製
前記で調製した水系分散媒体と重合性混合物とを、 ホモジナイザーで攪拌混合 して、 水系分散媒体中に重合性混合物の微小な液滴を調製した。
(4) 懸濁重合
前記の重合性混合物の微小な液滴を含有する水系分散媒体を攪拌機付きの重合 缶 (1. 5L) に仕込み、 温水バスを用いて 60でで 20時間反応させた。 反応 終了後、 反応混合物を濾過 ·水洗し、 この操作を更に数回繰り返した後、 乾燥し て、 平均粒径 28 mの熱発泡性マイクロスフェアーを回収した。
(5) 熱発泡性マイクロスフェアー
このようにして得られた熱発泡性マイクロスフェア一に含まれるシリカ量は、 5. 5重量%であった。 この熱発泡性マイクロスフェアーの 5%水スラリー液を 調製し、 該スラリー液を 60分間攪拌機で攪拌処理すると、 スラリー液には熱発 泡性マイクロスフェア一から遊離したシリカによる白濁が生じた。 その後、 この スラリ一液から回収した熱発泡性マイクロスフエアーに含有されるシリカ量は、 1. 3重量%に低下してしまった。 この熱発泡性マイクロスフェアーを発泡させ ると、 発泡体粒子間の強い融着が認められた。
発泡温度 170°Cでの発泡倍率は、 55倍であった。 バインダー系での発泡挙 動を調べたところ、 粒子の大多数が発泡する温度 (140で) 未満の加熱温度で も発泡した異常発泡粒子が多く見られた。 つまり、 非常にブロードな発泡開始挙 動を示した。 このような発泡開始挙動を示す熱発泡性マイクロスフェア一を、 表 面性や平滑性が要求される塗料、 壁紙、 インク分野に用いると、 表面性や平滑性 が損われ、 実用性能に問題が生じる。
[実施例 9 ]
比較例 3の懸濁重合工程 (4 ) において、 重合開始から 6時間が経過した時点 で、 重合可能な反応基を有するシランカップリング剤である 3—メ夕クリロキシ プロピルトリメトキシシラン 0 . 2 gを重合缶 (重合反応系) 中に添加した。 さ らに、 重合開始から 7時間が経過した時点で、 塩酸を重合缶中に添加して、 重合 反応系の p Hを 3 . 0に調整した。 このように、 比較例 3の懸濁重合工程 (4 ) において、 シランカップリング剤と塩酸を添加したこと以外は、 比較例 3と同様 にして熱発泡性マイクロスフェア一を製造した。 反応終了後、 反応混合物の p H は、 4 . 2であった。 この反応混合物を濾過 '水洗し、 この操作を更に数回繰り 返した後、 乾燥して、 平均粒径 2 8 mの熱発泡性マイクロスフェアーを回収し た。
このようにして得られた熱発泡性マイクロスフェアーに含まれるシリカ量は、 5 . 5重量%であった。 この熱発泡性マイクロスフェアーの 5 %水スラリー液を 調製し、 該スラリー液を 6 0分間攪拌機で攪拌処理したところ、 スラリー液には 殆んど白濁が認められなかった。 その後、 このスラリー液から回収した熱発泡性 マイクロスフェア一に含有されるシリカ量は、 5 . 4重量%であり、 処理前と殆 んど変化していなかった。
この熱発泡性マイクロスフェアーを発泡させたところ、 発泡体粒子間の融着は 認められなかった。 発泡温度 1 7 0 での発泡倍率は、 5 5倍であった。 バイン ダ一系での発泡挙動を調べたところ、 粒子の大多数が発泡する温度 (1 4 0 ) 未満の加熱温度でも発泡した異常発泡粒子は殆んどなく、 この熱発泡性マイク口 スフエア一は、 シャープな発泡開始挙動を示した。
このようなシャープな発泡開始挙動を示す熱発泡性マイクロスフェア一を、 表 面性や平滑性が要求される塗料、 壁紙、 インク分野で用いると、 表面性や平滑性 が非常に優れることが確認された。 [実施例 1 0 ]
比較例 3の懸濁重合工程 (4 ) において、 重合開始から 6時間が経過した時点 で、 重合可能な反応基を有するシランカツプリング剤である 3—メタクリロキシ プロビルトリメトキシシラン 0 . 3 gとシリカコロイド 5 . 5 gを重合缶 (重合 反応系) 中に添加した。 さらに、 重合開始から 7時間が経過した時点で、 塩酸を 重合缶中に添加して、 重合反応系の p Hを 3 . 0に調整した。 このように、 比較 例 3の懸濁重合工程 (4 ) において、 シランカップリング剤とシリカコロイドを 同時に追加添加したこと、 及び塩酸を添加したこと以外は、 比較例 3と同様にし て熱発泡性マイクロスフェア一を製造した。 反応終了後、 反応混合物の p Hは、 4 . 2であった。 この反応混合物を濾過 ·水洗し、 この操作を更に数回繰り返し た後、 乾燥して、 平均粒径 2 8 mの熱発泡性マイクロスフェアーを回収した。 このようにして得られた熱発泡性マイクロスフエアーに含まれるシリ力量は、 7 . 7重量%であった。 この熱発泡性マイクロスフェアーの 5 %水スラリー液を 調製し、 該スラリー液を 6 0分間攪拌機で攪拌処理したところ、 スラリー液はご く僅かに白濁した。 その後、 このスラリー液から回収した熱発泡性マイクロスフ エアーに含有されるシリカ量は、 7 . 4重量%であり、 処理前と殆んど変化して いなかった。
この熱発泡性マイクロスフェアーを発泡させたところ、 発泡体粒子間の融着は 認められなかった。 発泡温度 1 7 0 での発泡倍率は、 5 5倍であった。 バイン ダ一系での発泡挙動を調べたところ、 粒子の大多数が発泡する温度 (1 4 0 V) 未満の加熱温度でも発泡した異常発泡粒子は殆んどなく、 この熱発泡性マイク口 スフエアーは、 シャープな発泡開始挙動を示した。
このようなシャープな発泡開始挙動を示す熱発泡性マイクロスフェアーを、 表 面性や平滑性が要求される塗料、 壁紙、 インク分野で用いると、 表面性や平滑性 が非常に優れることが確認された。
[比較例 4 ]
比較例 3の懸濁重合工程 (4 ) において、 重合開始から 6時間が経過した時点 で、 シリカコロイド 5 . 5 gを重合缶 (重合反応系) 中に添加した。 さらに、 重 合開始から 7時間が経過した時点で、 塩酸を重合缶中に添加して、 重合反応系の p Hを 3 . 0に調整した。 このように、 比較例 3の懸濁重合工程 (4 ) において、 シリカコロイドを追加添加したこと、 及び塩酸を添加したこと以外は、 比較例 3 と同様にして熱発泡性マイクロスフェア一を製造した。 反応終了後、 反応混合物 の p Hは、 4. 5であった。 この反応混合物を濾過 ·水洗し、 この操作を更に数 回繰り返した後、 乾燥して、 平均粒径 2 7 t mの熱発泡性マイクロスフェアーを 回収した。
最初の濾液は、 乳白色であり、 1 0 0倍量の水で希釈しても強く白濁したまま であった。 2回目の濾液も白く濁っており、 3回目の濾液もそのまま廃棄できる ほどの透明液にはならなかつた。
このようにして得られた熱発泡性マイクロスフェアーに含まれるシリカ量は、 5 . 8重量%と比較例 3のシリカ量と大差がなく、 重合開始後、 シリカコロイド だけを追加添加しても、 熱発泡性マイクロスフェア一には、 シリカコロイドが付 着しないことが分かった。
この熱発泡性マイクロスフエアーの 5 %水スラリ一液を調製し、 該スラリ一液 を 6 0分間攪拌機で攪拌処理したところ、 スラリー液はごく僅かに白濁した。 そ の後、 このスラリ一液から回収した熱発泡性マイクロスフエア一に含有されるシ リカ量は、 1 . 4重量%に低下してしまった。
この熱発泡性マイクロスフェアーを発泡させたところ、 発泡体粒子間に強い融 着が認められた。 発泡温度 1 7 0 での発泡倍率は、 5 5倍であった。 バインダ 一系での発泡挙動を調べたところ、 粒子の大多数が発泡する温度 (1 4 0 °C) 未 満の加熱温度でも発泡した異常発泡粒子が多く確認され、 この熱発泡性マイク口 スフエア一は、 非常にブロードな発泡開始挙動を示した。
このようなブロードな発泡開始挙動を示す熱発泡性マイクロスフェアーを、 表 面性や平滑性が要求される塗料、 壁紙、 インク分野で用いると、 表面性や平滑性 が損われ、 実用上の問題を生じることが確認された。 [比較例 5]
比較例 3の乳化液滴の調製後、 重合開始時にコロイダルシリカ 5. 5 gを追加 添加したこと以外は、 比較例 3と同様にして、 熱発泡性マイクロスフェア一を製 造した。 このようにして得られた熱発泡性マイクロスフェアーは、 平均粒径が 2 Owmと小さくなり、 発泡温度 170 での発泡倍率は 40倍にまで低下した。 したがって、 平均粒径を保持して、 コロイダルシリカ量だけを増量することはで きなかった。
[比較例 6]
(1) 水系分散媒体の調製
脱イオン水 770 gに固形分 40重量%のコロイダルシリカ 22 gを加えて溶 解させた。 さらに、 ジエタノールァミン—アジピン酸縮合物 0. 8 g、 亜硝酸ナ トリウム 0. 13 gを溶解させ、 そして、 塩酸を加えて、 pH3. 5の水系分散 媒体を調製した。
(2) 重合性混合物の調製
塩化ビニリデン 123. 2 g、 アクリロニトリル 85. 8 g、 メ夕クリル酸メ チル l l g、 トリメ夕クリル酸トリメチロールプロパン 0. 33 g、 2, 2' - ァゾビス—ジメチルバレロニトリル 1. l g、 及びブタン 35. 2 gからなる重 合性混合物を調製した。 単量体成分の重量%は、 塩化ビニリデン /ァクリロニト リル/メタクリル酸メチル = 56/39 5である。
(3) 液滴の調製
前記で調製した水系分散媒体と重合性混合物とを、 ホモジナイザーで攪拌混合 して、 水系分散媒体中に重合性混合物の微小な液滴を調製した。
(4) 懸濁重合
この重合性混合物の微小な液滴を含有する水系分散媒体を、 攪拌機付きの重合 缶 (1. 5L) に仕込み、 温水バスを用いて 50 で 22時間反応させた。 反応 終了後、 反応混合物を濾過 ·水洗し、 この操作を更に数回繰り返した後、 乾燥し て、 平均粒径 14 の熱発泡性マイクロスフェア一を回収した。 ( 5 ) 熱発泡性マイクロスフェア一
このようにして得られた熱発泡性マイクロスフェア一に含まれるシリカ量は、 3 . 3重量%であった。 この熱発泡性マイクロスフェアーの 5 %水スラリー液を 調製し、 該スラリー液を 6 0分間攪拌機で攪拌処理すると、 スラリー液には熱発 泡性マイクロスフェアーから遊離したシリカによる白濁が生じた。 その後、 この スラリー液から回収した熱発泡性マイクロスフエア一に含有されるシリ力量は、
2 . 4重量%に低下してしまった。
この熱発泡性マイクロスフエア一を発泡させると、 発泡体粒子間の強い融着が 認められた。 発泡温度 1 3 O t:での発泡倍率は、 5 0倍であった。 バインダー系 での発泡挙動を調べたところ、 粒子の大多数が発泡する温度 (8 0 T:) 未満の加 熱温度でも発泡した異常発泡粒子が多く確認され、 この熱発泡性マイクロスフエ ァ一は、 非常にブロードな発泡開始挙動を示した。
このようなブロードな発泡開始挙動を示す熱発泡性マイクロスフェア一を、 表 面性や平滑性が要求される塗料、 壁紙、 インク分野で用いると、 表面性や平滑性 が損われ、 実用上の問題を生じることが確認された。 ' [実施例 1 1 ]
比較例 6の懸濁重合工程 (4 ) において、 重合開始から 6時間が経過した時点 で、 重合可能な反応基を有するシランカツプリング剤である 3—メタクリロキシ プロビルトリメトキシシラン 0 . 2 gを重合缶 (重合反応系) 中に添加した。 さ らに、 重合開始から 7時間が経過した時点で、 塩酸を重合缶中に添加して、 重合 反応系の p Hを 3 . 0に調整した。 このように、 比較例 6の懸濁 ¾合工程 (4 ) において、 シランカップリング剤と塩酸を添加したこと以外は、 比較例 6と同様 にして熱発泡性マイクロスフェアーを製造した。 反応終了後、 反応混合物の p H は、 3 . 5であった。 反応混合物を濾過 ·水洗し、 この操作を更に数回繰り返し た後、 乾燥して、 平均粒径 1 4の熱発泡性マイクロスフェア一を回収した。 このようにして得られた熱発泡性マイクロスフェアーに含まれるシリカ量は、
3 . 3重量%であった。 この熱発泡性マイクロスフェアーの 5 %水スラリー液を 調製し、 該スラリー液を 6 0分間攪拌機で攪拌処理したところ、 スラリー液には ほとんど白濁が認められなかった。 その後、 このスラリー液から回収した熱発泡 性マイクロスフェアーに含有されるシリカ量は、 3 . 2重量%であり、 処理前と 殆んど変化していなかった。 この熱発泡性マイクロスフェアーを発泡させたとこ ろ、 発泡体粒子間の融着は認められなかった。
発泡温度 1 3 での発泡倍率は、 5 0倍であった。 バインダー系での発泡挙 動を調べたところ、 粒子の大多数が発泡する温度 (8 00 未満の加熱温度でも 発泡した異常発泡粒子は殆んどなく、 この熱発泡性マイクロスフェアーは、 シャ ープな発泡開始挙動を示した。 このようなシャープな発泡開始挙動を示す熱発泡 性マイクロスフェアーを、 表面性や平滑性が要求される塗料、 壁紙、 インク分野 で用いると、 表面性や平滑性が非常に優れることが確認された。 産業上の利用可能性
本発明によれば、 他の材料との接着性が向上した熱発泡性マイクロスフェアー とその製造方法が提供される。 本発明によれば、 発泡体粒子間の融着が抑制され た熱発泡性マイクロスフェアーとその製造方法が提供される。 また、 本発明によ れば、 乾燥時等で高い温度での熱履歴を受けても、 シャープな発泡挙動を示す熱 発泡性マイクロスフェアーとその製造方法が提供される。
さらに、 本発明によれば、 表面に他の材料を強く接着することができ、 それに よって、 ハイブリツド中空微小球や機能性添加剤などを調製することができる熱 発泡性マイクロスフェア一とその製造方法が提供される。 本発明の製造方法によ れば、 分散安定剤として用いた無機微粒子に起因する廃水の白濁問題を軽減ない しは抑制することができる。 したがって、 本発明の製造方法は、 環境に優しい方 法である。 本発明の熱発泡性マイクロスフェアーは、 プラスチック、 塗料、 イン ク、 各種資材などの添加剤として、 広範な技術分野で利用することができる。

Claims

請求の範囲
1 . 重合体から形成された外殻内に発泡剤が封入された構造をもつ熱発泡性 マイクロスフェアーにおいて、 重合体から形成された外殻が、 有機ケィ素化合物 を含有することを特徴とする熱発泡性マイクロスフェアー。
2 . 有機ゲイ素化合物が、 シランカップリング剤である請求項 1記載の熱発 泡性マイクロスフェア一。
3 . 有機ゲイ素化合物が、 ビニル基、 メタクリル基、 アクリル基、 及びァリ ル基からなる群より選ばれた少なくとも一種の重合可能な反応基を有する有機ケ ィ素化合物である請求項 1記載の熱発泡性マイクロスフェアー。
4 . 重合体から形成された外殻が、 (i) 該外殻表面への有機ゲイ素化合物の 付着、 (Π) 該外殻中への有機ゲイ素化合物の混入、 (i i i) 該重合体と有機ゲイ 素化合物との化学的結合、 あるいは(iv) これらの組み合わせにより、 有機ゲイ 素化合物を含有するものである請求項 1記載の熱発泡性マイクロスフェアー。
5 . 熱発泡性マイクロスフェアーの全量基準で、 0 . 0 0 5〜5重量%の有 機ケィ素化合物を含有する請求項 1記載の熱発泡性マイクロスフェア一。
6 . 重合体から形成された外殻が、 その表面に付着した無機物または有機物 若しくはこれらの混合物を更に含有するものである請求項 1記載の熱発泡性マイ クロスフェアー。
7 . 無機物及び有機物が、 いずれも平均粒径 1 0 m以下の微粒子である請 求項 6記載の熱発泡性マイクロスフェアー。
8. 平均粒径 1 0 im以下の微粒子が、 コロイダルシリカである請求項 7記 載の熱発泡性マイクロスフェアー。
9. 重合体から形成された外殻が、 塩化ビニリデン (共) 重合体及び (メ 夕) アクリロニトリル (共) 重合体からなる群より選ばれた重合体から形成され たものである請求項 1記載の熱発泡性マイクロスフエアー。
10. 水系分散媒体中で、 少なくとも発泡剤及び重合性単量体を含有する重 合性混合物を懸濁重合して、 生成重合体から形成された外殻内に発泡剤が封入さ れた構造をもつ熱発泡性マイクロスフェアーを製造する方法において、 重合性混 合物を有機ケィ素化合物の存在下で懸濁重合することを特徴とする熱発泡性マイ クロスフェア一の製造方法。
1 1. 有機ケィ素化合物が、 シランカップリング剤である請求項 10記載の 製造方法。
12. 有機ケィ素化合物が、 ビニル基、 メ夕クリル基、 アクリル基、 及びァ リル基からなる群より選ばれた少なくとも一種の重合可能な反応基を有する有機 ゲイ素化合物である請求項 10記載の製造方法。
13. (i) 有機ケィ素化合物を添加した重合性混合物を懸濁重合する方法、 (ii)水系分散媒体と重合性混合物とを含有する重合反応系に有機ケィ素化合物を 重合途中で添加して、 懸濁重合を更に継続する方法、 または(iii) これらを組み 合わせた方法により、 重合性混合物を有機ケィ素化合物の存在下で懸濁重合する 請求項 10記載の製造方法。
1 4 . 水系分散媒体と重合性混合物とを含有する重合反応系に有機ケィ素化 合物を重合途中で添加して、 懸濁重合を更に継続し、 その際、 重合開始時、 重合 途中、 及び重合反応終了時における重合反応系の p Hを 7以下に制御する請求項 1 3記載の製造方法。
1 5 . 無機微粒子からなる分散安定剤を含有する水系分散媒体中で重合性混 合物を懸濁重合し、 重合反応終了後、 生成重合体から形成された外殻の表面に無 機微粒子が付着した熱発泡性マイクロスフェアーを回収する請求項 1 0記載の製 造方法。 '
1 6 . 少なくとも酸性領域で水系分散媒体に不溶性の無機微粒子からなる分 散安定剤を含有する水系分散媒体中で重合性混合物を懸濁重合し、 その際、 重合 開始時、 重合途中、 及び重合反応終了時における重合反応系の p Hを 7以下に制 御する請求項 1 5記載の製造方法。
1 7 . 無機微粒子が、 コロイダルシリカである請求項 1 5記載の製造方法。
1 8 . 重合性混合物を有機ゲイ素化合物の存在下で懸濁重合し、 その際、 重 合途中で、 無機物または有機物若しくはこれらの混合物を重合反応系に添加して 懸濁重合を継続し、 重合反応終了後、 生成重合体から形成された外殻の表面に無 機物または有機物若しくはこれらの混合物が付着した熱発泡性マイクロスフェア 一を回収する請求項 1 0記載の製造方法。
1 9 . 水系分散媒体中で、 少なくとも発泡剤及び重合性単量体を含有する重 合性混合物を懸濁重合して、 生成重合体から形成された外殻内に発泡剤が封入さ れた構造をもつ熱発泡性マイクロスフェアーを製造する方法において、 重合反応 終了後、 回収した熱発泡性マイクロスフェアーの表面を有機ケィ素化合物で処理 することを特徴とする熱発泡性マイクロスフェアーの製造方法。
2 0 . 有機ケィ素化合物が、 シランカップリング剤である請求項 1 9記載の 製造方法。
2 1 . 無機微粒子からなる分散安定剤を含有する水系分散媒体中で重合性混 合物を懸濁重合し、 重合反応終了後、 生成重合体から形成された外殻の表面に無 機微粒子が付着した熱発泡性マイクロスフエァーを回収する請求項 1 9記載の製 造方法。
2 2 . 回収した熱発泡性マイクロスフェアーの表面を、 有機ケィ素化合物で 処理するとともに、 無機物または有機物若しくはこれらの混合物で表面処理する 請求項 1 9記載の製造方法。
2 3 . 重合性単量体が、 (a) 塩化ビニリデンと、 塩化ビニリデンと共重合可 能なビニル系単量体との混合物、 及び (b) (メタ) アクリロニトリルと、 (メ 夕) ァクリロ二トリルと共重合可能なビニル系単量体との混合物からなる群より 選ばれる単量体混合物である請求項 1 9記載の製造方法。
PCT/JP2002/005737 2001-06-11 2002-06-10 Heat-expandable microsphere and process for producing the same WO2002100971A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60235165T DE60235165D1 (de) 2001-06-11 2002-06-10 Thermisch expandierbare mikrokugel und verfahren zu deren herstellung
EP02733441A EP1408097B2 (en) 2001-06-11 2002-06-10 Heat-expandable microsphere and process for producing the same
US10/480,207 US7931967B2 (en) 2001-06-11 2002-06-10 Thermally foamable microsphere and production process thereof
AT02733441T ATE455593T1 (de) 2001-06-11 2002-06-10 Thermisch expandierbare mikrokugel und verfahren zu deren herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-174946 2001-06-11
JP2001174946A JP5044074B2 (ja) 2001-06-11 2001-06-11 熱発泡性マイクロスフェアー及びその製造方法

Publications (1)

Publication Number Publication Date
WO2002100971A1 true WO2002100971A1 (en) 2002-12-19

Family

ID=19016159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005737 WO2002100971A1 (en) 2001-06-11 2002-06-10 Heat-expandable microsphere and process for producing the same

Country Status (8)

Country Link
US (1) US7931967B2 (ja)
EP (1) EP1408097B2 (ja)
JP (1) JP5044074B2 (ja)
CN (1) CN100436562C (ja)
AT (1) ATE455593T1 (ja)
DE (1) DE60235165D1 (ja)
TW (1) TWI302567B (ja)
WO (1) WO2002100971A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329471C (zh) * 2003-02-24 2007-08-01 松本油脂制药株式会社 热膨胀性微球、其制造方法和其使用方法

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838037B2 (en) * 1999-11-17 2010-11-23 Tagra Biotechnologies Ltd. Method of microencapsulation
US6866906B2 (en) 2000-01-26 2005-03-15 International Paper Company Cut resistant paper and paper articles and method for making same
JP4721596B2 (ja) * 2001-09-28 2011-07-13 株式会社クレハ 低密度発泡紙及びその製造方法
RU2330911C2 (ru) 2002-09-13 2008-08-10 Интернэшнл Пейпер Компани Бумага с улучшенной жесткостью и пухлостью и способ для ее изготовления
US7828935B2 (en) * 2003-04-07 2010-11-09 International Paper Company Papers for liquid electrophotographic printing and method for making same
JP4738746B2 (ja) * 2004-01-20 2011-08-03 セメダイン株式会社 耐火構造体用硬化性組成物、シーリング材及びそれを用いた耐火工法
JP4567980B2 (ja) * 2004-01-26 2010-10-27 三洋化成工業株式会社 熱膨張性マイクロカプセルおよび中空樹脂粒子
US7361399B2 (en) * 2004-05-24 2008-04-22 International Paper Company Gloss coated multifunctional printing paper
JP2006035092A (ja) * 2004-07-27 2006-02-09 Sanyo Chem Ind Ltd 中空樹脂粒子と無機微粒子との混合物の製造方法
JP4217200B2 (ja) * 2004-09-24 2009-01-28 積水化学工業株式会社 中空樹脂微粒子の製造方法、中空樹脂微粒子、反射防止フィルム用コーティング剤及び反射防止フィルム
EP2295633A1 (en) * 2005-03-11 2011-03-16 International Paper Company Compositions containing expandable microspheres and an ionic compound, as well as methods of making and using the same
JP2006326501A (ja) * 2005-05-26 2006-12-07 Casio Electronics Co Ltd 中空マイクロカプセル及びその製造方法
US20090118401A1 (en) 2005-09-27 2009-05-07 Atsushi Saito Curable Composition
US8759410B2 (en) * 2005-12-19 2014-06-24 Kureha Corporation Thermally foamable microsphere, method of producing the same, and use thereof
PL1974097T3 (pl) * 2006-01-17 2018-07-31 International Paper Company Podłoża papierowe zawierające duże ilości powierzchniowych środków zaklejających i niskiej wewnętrznej zawartości kleju do zaklejania papieru oraz o dużej stabilności wymiarowej
KR101344854B1 (ko) * 2006-02-10 2013-12-31 아크조 노벨 엔.브이. 미소구체
KR101344855B1 (ko) * 2006-02-10 2013-12-31 아크조 노벨 엔.브이. 미소구체
US7956096B2 (en) 2006-02-10 2011-06-07 Akzo Nobel N.V. Microspheres
US8388809B2 (en) 2006-02-10 2013-03-05 Akzo Nobel N.V. Microspheres
CN101438005B (zh) * 2006-05-05 2014-04-16 国际纸业公司 具有膨胀聚合物微球的纸板材料
PL3000933T3 (pl) 2008-03-31 2019-03-29 International Paper Company Arkusz zapisu o lepszej jakości wydruku przy niskich poziomach dodatków
US8361571B2 (en) * 2008-06-20 2013-01-29 International Paper Company Composition and recording sheet with improved optical properties
CN104032622A (zh) * 2008-08-28 2014-09-10 国际纸业公司 可膨胀的微球及其制造和使用方法
US9296244B2 (en) 2008-09-26 2016-03-29 International Paper Company Composition suitable for multifunctional printing and recording sheet containing same
JP5202284B2 (ja) * 2008-12-22 2013-06-05 株式会社日立産機システム 熱硬化性樹脂組成物
JP2010202805A (ja) * 2009-03-04 2010-09-16 Sekisui Chem Co Ltd 熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法
EP2529830A3 (en) * 2009-06-09 2014-10-29 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microspheres and a method of making heat-expandable microspheres and application thereof
JP5731110B2 (ja) * 2009-09-18 2015-06-10 積水化学工業株式会社 発泡粒子、発泡性組成物、及び、発泡成形体の製造方法
JP5427529B2 (ja) * 2009-09-28 2014-02-26 積水化学工業株式会社 発泡粒子及び発泡成形体の製造方法
EP2526463B1 (en) 2010-01-22 2016-07-13 DSM IP Assets B.V. Method of forming a three-dimensional article having selective visual effects
EP2554620B1 (en) * 2010-03-31 2018-04-11 Sekisui Chemical Co., Ltd. Thermally expandable microcapsule, method for producing thermally expandable microcapsule, foamable masterbatch and foam molded article
JP5825506B2 (ja) * 2011-02-25 2015-12-02 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
JP2013053275A (ja) * 2011-09-06 2013-03-21 Sekisui Chem Co Ltd 熱膨張性マイクロカプセルの製造方法
US9206552B2 (en) 2012-02-17 2015-12-08 International Paper Company Absorbent plastic pigment with improved print density containing and recording sheet containing same
JP5604472B2 (ja) * 2012-05-17 2014-10-08 株式会社クレハ 熱発泡性マイクロスフェアー及びその製造方法
TW201422405A (zh) * 2012-12-10 2014-06-16 zhi-peng Chen 球體之一體成型製造方法
MX2016001388A (es) * 2013-07-29 2016-05-05 Takasago Perfumery Co Ltd Microcapsulas.
JP6438214B2 (ja) * 2014-05-21 2018-12-12 株式会社クレハ 熱膨張性マイクロスフェアーの製造方法、該製造方法で製造された熱膨張性マイクロスフェアー、及び該製造方法に用いるコロイダルシリカの判別方法
CN104532475A (zh) * 2014-12-15 2015-04-22 梁晋煜 一种制作球形立体棉的方法
CN110327858B (zh) * 2015-01-08 2021-09-21 积水化成品工业株式会社 中空颗粒、其制备方法、其用途以及生产微囊颗粒的方法
CN104788797B (zh) * 2015-04-03 2017-05-03 上海杰上杰化学有限公司 可发泡树脂粒子及用其制备发泡材料的方法
JP6152237B2 (ja) 2015-06-29 2017-06-21 松本油脂製薬株式会社 熱膨張性微小球の製造方法及びその利用
JP6610174B2 (ja) * 2015-11-06 2019-11-27 コニカミノルタ株式会社 中空粒子の製造方法
CN105384958A (zh) * 2015-12-19 2016-03-09 仇颖超 一种二氧化硅溶胶改性偶氮二甲酰胺发泡剂的制备方法
JP6185217B1 (ja) * 2016-02-29 2017-08-23 積水化成品工業株式会社 シリカ内包マイクロカプセル樹脂粒子、その製造方法及びその用途
EP4335549A3 (en) * 2017-09-29 2024-05-22 DDP Specialty Electronic Materials US 8, LLC Making particles with radial variation
KR20200134270A (ko) * 2018-03-21 2020-12-01 누리온 케미칼즈 인터내셔널 비.브이. 태양 반사 특성을 갖는 코팅
KR102202059B1 (ko) * 2018-05-11 2021-01-12 주식회사 엘지화학 고흡수성 수지 시트의 제조 방법
EP3898800A1 (en) 2018-12-05 2021-10-27 SABIC Global Technologies B.V. Prevention of visible particle formation in aqueous protein solutions
EP3816143B1 (en) 2019-10-30 2023-07-26 Alloy Surfaces Company, Inc. Pyrophoric pellets that emit infrared radiation
JP7412653B2 (ja) * 2022-01-21 2024-01-12 松本油脂製薬株式会社 熱膨張性微小球、中空粒子及びそれらの用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938241A (ja) * 1982-08-26 1984-03-02 Sekisui Plastics Co Ltd 発泡性粒子の製造法
JPS62286534A (ja) * 1986-06-04 1987-12-12 Matsumoto Yushi Seiyaku Kk 熱膨張性マイクロカプセルの製造法
JPH04202443A (ja) * 1990-11-30 1992-07-23 Dainippon Ink & Chem Inc 発泡性ビニル系樹脂粒子の製造方法
JPH04320432A (ja) * 1991-04-19 1992-11-11 Eiwa Kasei Kogyo Kk 発泡剤組成物
JPH05125223A (ja) * 1991-11-08 1993-05-21 Mizusawa Ind Chem Ltd ハイドロタルサイト被覆粒子、その製法及び樹脂用配合剤
JPH06240040A (ja) * 1993-02-16 1994-08-30 Dainichiseika Color & Chem Mfg Co Ltd 複合マイクロバルーン及びその製造方法
JPH10176078A (ja) * 1996-12-20 1998-06-30 Hitachi Chem Co Ltd 発泡性樹脂粒子およびその製造法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3142583A (en) * 1960-04-05 1964-07-28 Walter M Mcmahon Inorganic coating composition
NL302030A (ja) * 1962-12-21 1900-01-01
US3615972A (en) * 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
US3740359A (en) * 1972-07-10 1973-06-19 Dow Chemical Co Vinylidene chloride expandable microspheres
JPS5846251B2 (ja) * 1980-07-29 1983-10-15 日立化成工業株式会社 発泡性ビニル系重合体粒子の製造法
DE3129515C2 (de) * 1980-07-29 1986-07-24 Hitachi Chemical Co., Ltd., Tokio/Tokyo Schäumbare Styrolharzmasse und Verfahren zu ihrer Herstellung
JPS6019033A (ja) * 1983-07-12 1985-01-31 Matsumoto Yushi Seiyaku Kk 中空マイクロバル−ンおよびその製法
US5461125A (en) * 1993-04-30 1995-10-24 Minnesota Mining And Manufacturing Company Waterborne core-shell latex polymers
US5834526A (en) * 1997-07-11 1998-11-10 Wu; Huey S. Expandable hollow particles
JPH11181210A (ja) * 1997-12-17 1999-07-06 Toagosei Co Ltd 安定化された水性硬化性組成物
JP4620812B2 (ja) 1998-01-26 2011-01-26 株式会社クレハ 発泡性マイクロスフェアーの製造方法
EP1054034B2 (en) * 1998-01-26 2007-12-12 Kureha Corporation Expandable microspheres and process for producing the same
DE19810803A1 (de) * 1998-03-12 1999-09-16 Wacker Chemie Gmbh Verfahren zur Herstellung mikroverkapselter Produkte mit Organopolysiloxanwänden
JPH11335509A (ja) 1998-05-22 1999-12-07 Toagosei Co Ltd 水性組成物
JP2000086937A (ja) * 1998-09-11 2000-03-28 Matsushita Electric Ind Co Ltd 耐熱性断熱材料と耐熱性断熱材料の製造方法
EP1288272B2 (en) * 2000-04-28 2016-04-13 Kureha Corporation Heat-expandable microsphere and production process thereof
US7252882B2 (en) 2000-04-28 2007-08-07 Kureha Corporation Thermally foamable microsphere and production process thereof
WO2002096984A1 (en) * 2001-05-25 2002-12-05 Apache Products Company Foam insulation made with expandable microspheres and methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938241A (ja) * 1982-08-26 1984-03-02 Sekisui Plastics Co Ltd 発泡性粒子の製造法
JPS62286534A (ja) * 1986-06-04 1987-12-12 Matsumoto Yushi Seiyaku Kk 熱膨張性マイクロカプセルの製造法
JPH04202443A (ja) * 1990-11-30 1992-07-23 Dainippon Ink & Chem Inc 発泡性ビニル系樹脂粒子の製造方法
JPH04320432A (ja) * 1991-04-19 1992-11-11 Eiwa Kasei Kogyo Kk 発泡剤組成物
JPH05125223A (ja) * 1991-11-08 1993-05-21 Mizusawa Ind Chem Ltd ハイドロタルサイト被覆粒子、その製法及び樹脂用配合剤
JPH06240040A (ja) * 1993-02-16 1994-08-30 Dainichiseika Color & Chem Mfg Co Ltd 複合マイクロバルーン及びその製造方法
JPH10176078A (ja) * 1996-12-20 1998-06-30 Hitachi Chem Co Ltd 発泡性樹脂粒子およびその製造法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329471C (zh) * 2003-02-24 2007-08-01 松本油脂制药株式会社 热膨胀性微球、其制造方法和其使用方法

Also Published As

Publication number Publication date
CN100436562C (zh) 2008-11-26
CN1514865A (zh) 2004-07-21
JP2002363537A (ja) 2002-12-18
EP1408097B1 (en) 2010-01-20
EP1408097A1 (en) 2004-04-14
ATE455593T1 (de) 2010-02-15
EP1408097A4 (en) 2006-10-18
US7931967B2 (en) 2011-04-26
EP1408097B2 (en) 2012-10-10
DE60235165D1 (de) 2010-03-11
US20040157057A1 (en) 2004-08-12
JP5044074B2 (ja) 2012-10-10
TWI302567B (ja) 2008-11-01

Similar Documents

Publication Publication Date Title
WO2002100971A1 (en) Heat-expandable microsphere and process for producing the same
JP6774547B2 (ja) 熱膨張性熱可塑性マイクロスフェアおよびそれらの調製方法
US10093782B2 (en) Thermally foamable microsphere, method of producing the same, and use thereof
JP4945243B2 (ja) 熱発泡性マイクロスフェアー、その製造方法、その使用、それを含む組成物、及び物品
JP5604472B2 (ja) 熱発泡性マイクロスフェアー及びその製造方法
US5155138A (en) Expandable thermoplastic microspheres and process for the production and use thereof
WO2001083636A1 (fr) Macrosphere thermoexpansible et son procede de fabrication
WO1999037706A1 (fr) Microspheres expansibles et leur procede de production
JP2002012693A (ja) 熱発泡性マイクロスフェアー及びその製造方法
US6365641B1 (en) Process for producing heat-expandable microcapsules
KR101766012B1 (ko) 피커링 현탁중합법을 이용하여 제조한 열팽창 마이크로캡슐 및 이의 제조방법
JP5612245B2 (ja) 熱発泡性マイクロスフェアー及びその製造方法並びに組成物
JP6438214B2 (ja) 熱膨張性マイクロスフェアーの製造方法、該製造方法で製造された熱膨張性マイクロスフェアー、及び該製造方法に用いるコロイダルシリカの判別方法
JPS6410004B2 (ja)
JP6276423B2 (ja) 熱発泡性マイクロスフェアー、並びにそれを含む組成物及び成形体
KR0140565B1 (ko) 고형분이 적은 아크릴계 미끄럼방지제의 제조방법
CN117715698A (zh) 热膨胀性微球、组合物以及成型体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10480207

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 028117336

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002733441

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002733441

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642