WO2002012791A1 - Solid fuel burner and combustion method using solid fuel burner - Google Patents

Solid fuel burner and combustion method using solid fuel burner Download PDF

Info

Publication number
WO2002012791A1
WO2002012791A1 PCT/JP2001/006684 JP0106684W WO0212791A1 WO 2002012791 A1 WO2002012791 A1 WO 2002012791A1 JP 0106684 W JP0106684 W JP 0106684W WO 0212791 A1 WO0212791 A1 WO 0212791A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
combustion
nozzle
fuel
solid fuel
Prior art date
Application number
PCT/JP2001/006684
Other languages
English (en)
French (fr)
Inventor
Toshikazu Tsumura
Hirofumi Okazaki
Miki Shimogori
Kenji Kiyama
Kouji Kuramashi
Hitoshi Kikuchi
Yoshitaka Takahashi
Shigeki Morita
Kazuhito Sakai
Masayuki Taniguchi
Hironobu Kobayashi
Original Assignee
Babcock-Hitachi Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock-Hitachi Kabushiki Kaisha filed Critical Babcock-Hitachi Kabushiki Kaisha
Priority to EP01954425.3A priority Critical patent/EP1306614B1/en
Priority to PL353461A priority patent/PL206626B1/pl
Priority to HU0302402A priority patent/HUP0302402A2/hu
Priority to AU76720/01A priority patent/AU776725B2/en
Priority to SK511-2002A priority patent/SK287642B6/sk
Priority to JP2002518037A priority patent/JP4969015B2/ja
Publication of WO2002012791A1 publication Critical patent/WO2002012791A1/ja
Priority to US10/101,795 priority patent/US6715432B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/32Disposition of burners to obtain rotating flames, i.e. flames moving helically or spirally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • F23C7/004Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/008Flow control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/10Furnace staging
    • F23C2201/101Furnace staging in vertical direction, e.g. alternating lean and rich zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/20Fuel flow guiding devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2208/00Control devices associated with burners
    • F23D2208/10Sensing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • F23D2209/20Flame lift-off / stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a solid fuel burner that burns by transporting solid fuel by airflow and a method of burning the solid fuel. And a combustion method using the burner, and a furnace, a heating furnace or a hot blast provided with the burner, capable of performing combustion to reduce the concentration of nitrogen oxides (NOx) in the combustion exhaust gas. It relates to combustion equipment such as generators and their operation methods, as well as coal-fired boilers and their systems, and coal-fired power generation systems. Conventional technology
  • the air ratio in the burner's burner zone (the ratio of the required air to the fuel, where the air ratio of 1 is the stoichiometric equivalent) is set to a fuel-rich condition of 1 or less. By maintaining this, the generated NOx is reduced and the NOx is reduced. At this time, unburned fuel is burned by introducing air from the air inlet installed on the downstream side of the burner zone.
  • solid fuel burners such as pulverized coal burners (hereinafter sometimes simply referred to as burners) have a low NOx combustion method (hereinafter, this type of burners is referred to as a low NOx burner) that reduces the amount of NOx generated by itself.
  • a large reduction area is formed by turning the primary air and tertiary air and delaying the mixing with the pulverized coal stream ignited only by the primary air. JP 60-1763 No. 15, JP-A-62-17205).
  • Mixing pulverized coal and pulverized coal transporting gas A burner has been developed in which a flame stabilizer is installed to bridge between an external flame stabilizer provided on the outer peripheral portion of a fuel nozzle through which a fluid flows and the internal flame stabilizer. In areas where energy demand is expected to increase, low-grade coal, which has a large amount of moisture and ash and has a low calorific value, will probably be used in the future.
  • Lignite is a coal that exists mainly in Eastern Europe and is a relatively young coal with an ash content of more than 20% and a water content of more than 30%.
  • coal, wood, and beet with low coalification such as lignite and lignite
  • volatiles components released as a gas when heated
  • water contained in fuel a large amount of water contained in fuel.
  • the calorific value is lower than that of coal with a high degree of coalification such as bituminous coal and anthracite.
  • the melting temperature of combustion ash is low. Due to its high volatile content, it spontaneously ignites during storage and pulverization in an air atmosphere, and is more difficult to handle than bituminous coal. For this reason, when lignite or lignite is pulverized and burned, a mixed gas of combustion exhaust gas and air is used as a fuel transfer gas. The low oxygen concentration of the gas mixture prevents spontaneous combustion of the fuel.
  • water in the fuel carried by the mixed gas can be evaporated by the retained heat of the combustion exhaust gas.
  • the combustion reaction does not proceed until the fuel ejected from the wrench is mixed with air.
  • the combustion reaction is limited by the mixing speed of the fuel and air, and the combustion speed is lower than that of bituminous coal that can be carried by air. For this reason, the burn-out time of fuel is longer than that of bituminous coal combustion, and the unburned portion at the furnace outlet increases.
  • Japanese Patent Laying-Open No. 10-73208 discloses a wrench in which an air nozzle is provided outside a fuel nozzle. Also, a burner that has an air nozzle at the center of the fuel nozzle and promotes mixing of fuel and air at the fuel nozzle outlet is often used.
  • Japanese Patent Application Laid-Open No. 4-214102 discloses a fuel nozzle for ejecting a mixture of pulverized coal and a carrier gas thereof, and a secondary air nozzle and a tertiary air nozzle disposed outside the fuel nozzle. Further, there is disclosed a wrench having a flame stabilizer for holding a flame obtained from pulverized coal ejected from the fuel nozzle at a tip end of a partition wall separating the fuel nozzle and the secondary air nozzle.
  • lignite is an inexpensive fuel, but has problems in its combustibility and ash adhesion due to its properties of high ash, high moisture and low calorific value.
  • the key technology for high-efficiency combustion is how to promote ignition and form a stable flame.
  • the reason why the ash adheres to the parner structure and the furnace wall is high because of its low melting point.
  • Lignite, etc. has problems due to ash properties such as high content of calcium and sodium, etc., and is supplied in large quantities to the furnace (it has to generate more heat than bituminous coal, so it is necessary to increase the amount of coal input) It is also a coal subject to unfavorable conditions for slugging and fouling, such as high ash production. Therefore, in order to use low-grade coal such as lignite or lignite in the Pana, it is necessary to achieve both high-efficiency combustion and reduced ash adhesion.
  • lignite combustion methods used overseas are the evening firing method and the coal firing method.
  • the former is a method in which a burner compartment composed of a fuel flow path and a combustion air flow path is installed on the side wall of the furnace
  • the latter is a method in which a parner compartment composed of a fuel flow path and a combustion air flow path is installed at the four corners of the furnace.
  • These combustion methods are different from the so-called opposed combustion method, in which burners are arranged so as to be paired with opposed furnace walls, which are often used in domestic bituminous coal combustion.
  • the lignite combustion method does not self-flame near the outlet of the parner, but imparts momentum to the jet of combustion air. This is a method in which fuel is stably burned by mixed combustion at or near the furnace center.
  • FIG. 30 is a front view of an example of the corner compartment type 37 of the corona filling type or the tangential type as viewed from the furnace side.
  • the combustion air has a different flow velocity depending on its role.
  • the central air nozzle 124 can quickly mix with the fuel from the fuel nozzle 125 supplied by exhaust gas, and promote combustion by increasing the oxygen concentration.
  • the outermost air nozzle 126 is intended to stabilize the combustion from the center of the furnace to the vicinity thereof with a jet having a penetration force of 5 Om / s or more.
  • the technology that is indispensable to have an advantage in the world market is to respond to load changes in response to fluctuations in power demand.
  • the conventional technology has the following problems.
  • FIG. 31 is a horizontal cross-sectional view of the inside of the furnace 41 showing an example of a change in the flame shape when the load of the furnace 41 in the corner firing method is reduced from a high load to a low load. At high load as shown in Fig.
  • the jet from the burner compartment 37 forms a blow-off portion 38 near the base of the wrench, and forms a stable combustion region from the center of the furnace 41 to the vicinity thereof. And efficient combustion is performed. However, at low load, the velocity of each jet from the Pana Compartment 37 decreases. As the momentum decreases, the stable combustion region shown in Fig. 31 (a) is not formed and the combustion becomes unstable (the entire furnace 41 becomes dim as shown in Fig. 31 (b)). .
  • a flame detector 48 is installed near the air port 49 on the upper part of the furnace, but if the brightness inside the furnace 41 decreases as shown in Fig. 31 (b), a misfire is judged.
  • Fig. 31 (b) have a furnace compartment 41 at the bottom of the furnace 41, and a jet of a mixed fluid of fuel and combustion gas from the burner compartment 37 is provided in the after-air port 4.
  • the flame is formed by the supply of combustion air from 9.
  • the temperature of the burner structure becomes high due to radiant heat from the flame.
  • Fuels with a low degree of coalification such as lignite and lignite, have a low melting temperature of combustion ash. Therefore, if combustion ash adheres to the high-temperature portion of the burner structure, the fuel gradually melts and further grows. The enlarged melt can be an obstacle to fuel combustion. Therefore, when burning under high load operation conditions, it is necessary to form the flame away from the wrench.
  • An object of the present invention is to provide a solid fuel burner that can perform stable combustion over a wide range from a high load operation condition to a low load operation condition of a combustion device (furnace), and can use a low-carbonized fuel such as lignite or lignite.
  • Another object of the present invention is to provide a combustion method using the burner, a combustion device provided with the burner and a method of operating the same, and a coal-fired boiler.
  • Another object of the present invention is to provide an opposed-burning type burner that can quickly and efficiently burn pulverized coal such as lignite having poor ash properties near the outlet of the burner to prevent ash deposition around the burner.
  • An object of the present invention is to provide a burner that can be used and a combustion device provided with the burner.
  • an object of the present invention is to stabilize the furnace center even when the combustion load of the furnace is reduced when using a co-fueling method or a tangential method.
  • An object of the present invention is to provide a burner in which a combustion region is formed and which can also prevent ash from adhering to a furnace side wall, and a combustion device provided with the burner.
  • an object of the present invention is to provide a multi-tube burner which can be used as a burner of a counter combustion system, a corner firing system, or an evening generator system, and a combustion device provided with the burner. is there.
  • the low NOx burner according to the prior art described above has a structure suitable for reducing the NOx concentration in the combustion exhaust gas in ordinary bituminous coal combustion.
  • combustion exhaust gas with a low oxygen content is used as the carrier gas instead of primary air from the viewpoint of preventing ignition P. Have been. In this case, it is difficult to ignite near the wrench, so the following two problems exist.
  • the above problem is due to the fact that a gas with low oxygen concentration is used as a carrier gas for coal, and as a countermeasure, the combustion air is supplied into the fuel nozzle near the burner outlet to reduce the oxygen concentration.
  • the pulverized coal concentration decreases and the ignition performance does not improve.
  • an object of the present invention is to provide a solid fuel combustion parner capable of burning even a pulverized coal having poor ash properties, such as lignite, in the vicinity of a parner outlet with high efficiency and low N 0 X combustion, and a combustion equipped with the parner. It is to provide a device. Disclosure of the invention
  • the burner of the present invention is a burner which is particularly suitable for a case where a mixed fluid of a solid fuel composed of low-rank coal such as lignite or lignite and a carrier gas having an oxygen concentration of less than 21% is used.
  • a first parner according to the present invention comprises: a central air nozzle for ejecting air; a fuel nozzle for ejecting a mixed fluid of a solid fuel and a carrier gas disposed outside the central air nozzle; A solid fuel having an additional air hole or additional air nozzle disposed on the inner wall surface of the nozzle for discharging air, and one or more outer air nozzles disposed on the outside of the fuel nozzle for discharging combustion air. No.
  • the parner can increase the amount of air ejected from an additional air hole or an additional air nozzle that ejects air along the inner wall surface of the fuel nozzle.
  • Oxygen concentration near the inside of the fuel nozzle wall increases due to the air ejected from the additional air holes or additional air nozzles. In this way, the combustion of the fuel is promoted more than when the oxygen concentration is low, so that the ignition of the fuel is accelerated and a flame can be formed near the fuel nozzle.
  • the above-mentioned parner blows out the air spouted from the center air nozzle as a substantially straight flow or as a weak swirl flow according to the combustion load. Either the case or the case of jetting as a strong swirling flow becomes possible.
  • the center air nozzle and / or (b) the additional air hole or the nozzle outlet be located on the upstream side of the fuel nozzle from the outlet of the fuel nozzle. Due to the above configuration, (a) the center air nozzle and / or (b) the air ejected from the additional air hole or the additional air nozzle mixes with the fuel inside the fuel nozzle. Can be enhanced.
  • the distance from the fuel nozzle outlet to the center air nozzle ⁇ the additional air hole or the outlet of the additional air nozzle should be within the fuel nozzle in order to prevent flashback or burnout due to flame formation in the fuel nozzle. It is desirable that the fuel retention time be less than the fuel ignition delay time (about 0.1 second). Normally, the fuel transfer gas flows through the fuel nozzle at a flow rate of 10 to 20 m / s, so that the distance is 1 to 2 m or less.
  • a flow path contraction member that temporarily reduces the cross-sectional area of the nozzle in order from the upstream side of the burner and then enlarges the cross-sectional area to the original size is provided on the inner side of the fuel nozzle wall of the above-mentioned burner. This has the effect of restricting the flow of fuel particles (pulverized coal), which have greater inertial force than gas (such as combustion exhaust gas), in the direction of the central axis of the wrench.
  • a conical part with a gradually increasing cross-sectional area and a cone with a gradually decreasing cross-sectional area from the upstream side of the parner By providing a concentrator consisting of a section downstream of the flow constriction member, the flow of fuel particles (pulverized coal) constricted in the direction of the central axis of the panner passes through the concentrator and into the flow path in the fuel nozzle. It spreads and flows along. At this time, the fuel particles (pulverized coal) have a larger inertial force than the fuel transfer gas (combustion exhaust gas), so they flow to one side toward the wall surface of the fuel nozzle and go straight toward the outlet.
  • a concentrated pulverized coal stream is generated on the fuel nozzle wall side, which increases the chance of contact with outside air (combustion air) near the fuel nozzle outlet, and can be formed downstream of the flame stabilizer described later. It becomes easy to ignite by contact with the high temperature gas of the circulating flow.
  • the fuel ejected from the fuel nozzle rises in temperature due to the high radiant heat from the furnace, so that the fuel is ejected from the fuel nozzle at a high flow rate. Can also be stably burned.
  • the air blown out from the center air nozzle is made to flow straight or to a weak swirl (0.3 or less in swirl number), so that the flame is blown off from near the burner and the flame is formed at a position away from the wrench.
  • a weak swirl 0.3 or less in swirl number
  • the air ejected from the central air nozzle is formed into a strong swirling flow (0.5 or more in swirl number), so that the air and the fuel jet are Promotes mixing.
  • the swirling flow applied to the air jetted from the central air nozzle reduces the jet flow velocity of the fuel on the central axis of the wrench, so that the residence time of the fuel near the fuel nozzle becomes longer.
  • a flame is formed near the fuel nozzle as it reaches the temperature required for fuel to burn near the fuel nozzle.
  • the above-mentioned parner of the present invention can change the ratio of the amount of air ejected from the center air nozzle and the additional air hole or the additional air nozzle according to the combustion load. For example, if the combustion load is low, reduce the amount of air ejected from the central air nozzle and increase the proportion of the amount of air ejected from the additional air holes or additional air nozzles at the same time. If the combustion load is high, the central air nozzle A combustion method is adopted in which the amount of air ejected from the air is increased, and at the same time, the proportion of air ejected from the additional air holes or additional air nozzles is reduced.
  • the total amount of air supplied from the fuel nozzle, the center air nozzle, and the additional air hole or nozzle of the parner and the volatile matter in the fuel are completely eliminated. It is desirable to perform combustion by adjusting the amount of air so that the ratio of the amount of air required for combustion (hereinafter referred to as air ratio to volatile matter) is 0.85 to 0.95.
  • an obstacle for the flow of the gas ejected from the fuel nozzle or the air ejected from the outside air nozzle at the tip of the partition wall between the fuel nozzle and the outside air nozzle.
  • a flow from the downstream to the upstream hereinafter, referred to as a circulating flow
  • the temperature in the circulation flow becomes high and acts as an ignition source for the fuel jet flowing on the side. Therefore, the flame is formed stably from the fuel nozzle outlet.
  • the ignition of the fuel is promoted by a configuration in which a flame stabilizer having a serrated protrusion is provided on the inner side wall of the fuel nozzle outlet.
  • the cross-sectional area of the flow path on the downstream side of the center air nozzle of the upper three-panner of the present invention is made smaller than the cross-sectional area of the flow path on the upstream side of the center air nozzle.
  • the installation position of the swirler may be movably arranged in the central air nozzle in the direction of the central axis of the burner. With this configuration, it is possible to adjust the installation position of the swirler according to the combustion load and change the swirling strength of the air flow.
  • the swirler When the combustion load is low, the swirler is moved to a position where the cross-sectional area of the flow path on the downstream side of the center air nozzle is relatively small, and a strong swirl is applied to the air jet from the center air nozzle to generate a flame near the burner. If the combustion load is high, move the swirler to a position where the cross-sectional area of the flow path on the upstream side of the center air nozzle is relatively large, and make a slight swirl on the air jet flow of the center air nozzle to separate from the parner. A flame can be formed at a position inside the furnace.
  • the thermal load in the furnace is high, so it is desirable to form the flame away from the wrench. Also, under low load conditions, the heat load in the furnace is low, so even if the flame is brought close to the wrench, the temperature of the wrench and the surrounding furnace wall will be lower than in the high load condition.
  • the center air nozzle When the burner of the present invention is used with the burner, the center air nozzle has a cylindrical shape, and a pair of air pipes is connected as a pipe for supplying air to an upstream portion of the center air nozzle.
  • a combustion device connected in such a way that air flows in from the tangential direction at the opposite position of the cylindrical cross section of the center air nozzle, and operating the combustion device with a high combustion load (for example, 60 to 70% or more) Supply the same air flow rate from the pair of air supply pipes into the central air nozzle, and use a pair of air supply pipes when operating the combustion device with a low combustion load (eg, 60-70% or less).
  • a low combustion load eg, 60-70% or less
  • the second parner of the present invention is a fuel nozzle for ejecting a mixed fluid of a solid fuel and a carrier gas therefor, and an additional air hole or an additional air nozzle for ejecting air arranged inside the wall surface of the fuel nozzle.
  • a solid fuel panner having one or more outer air nozzles for ejecting air disposed outside a wall surface of the fuel nozzle.
  • the second burner is a wrench without a central air nozzle that blows out the air of the first wrench.
  • the second parner of the present invention it is possible to increase the amount of air ejected from the additional air hole or the additional air nozzle for ejecting air to the inside of the wall surface of the fuel nozzle.
  • Oxygen concentration near the inside of the fuel nozzle wall increases due to air jetting from the additional air holes or additional air nozzles. Therefore, the combustion reaction of the fuel is accelerated as compared with the case where the oxygen concentration is low, so that the ignition of the fuel is accelerated and a flame can be formed near the fuel nozzle.
  • the additional air hole or the additional air nozzle outlet (tip portion) is located on the upstream side of the inside of the panner than the outlet (tip portion) of the fuel nozzle. Good.
  • the air ejected from the additional air hole or the additional air nozzle in the fuel nozzle mixes with the fuel, so that the oxygen concentration of the fuel transfer gas can be partially increased.
  • the distance from the outlet of the fuel nozzle to the outlet of the additional air hole or the additional air nozzle prevents flashback and burning due to the formation of a flame in the fuel nozzle. It is desirable that the ignition delay time be about 0.1 second or less.
  • the fuel transfer gas flows through the fuel nozzle at a flow rate of 10 to 2 Om / s, so the distance is set to 1 to 2 m or less.
  • a flow passage reducing member that temporarily reduces the cross-sectional area of the nozzle from the upstream side to the downstream side of the burner in order from the upstream side to the downstream side inside the wall of the fuel nozzle of the parner, and then expands the nozzle to its original size.
  • a concentrator consisting of a part whose cross-sectional area increases and a part whose cross-sectional area decreases in order from the upstream side to the downstream side of the fuel nozzle is also provided inside the fuel nozzle, and the flow path reducing member is also provided downstream.
  • the flow of fuel particles (pulverized coal) constricted in the direction of the central axis of the wrench by the reducing member spreads and flows through the flow path in the fuel nozzle by the concentrator. At this time, the fuel particles (pulverized coal) have a larger inertial force than the fuel-transporting gas, and flow toward the inner side of the fuel nozzle wall to reach the outlet.
  • a concentrated pulverized coal stream is generated on the inner wall surface of the fuel nozzle, and the chance of coming into contact with air ejected from the outer air nozzle near the fuel nozzle outlet increases.
  • the pressure is reduced in the furnace on the downstream side of the flame stabilizer, and a circulating flow from the downstream to the upstream is formed.
  • a circulating flow in addition to the air, fuel, and fuel carrier gas ejected from the fuel nozzle and the outside air nozzle, high-temperature gas from the area downstream of the parner installation position in the furnace stays. For this reason, the temperature in the circulation flow becomes high and acts as an ignition source for the fuel jet. Therefore, the flame is stably formed from the fuel nozzle outlet.
  • the ignition of the fuel is promoted even when a flame stabilizing device having a serrated protrusion is provided inside the wall surface of the front end (outlet) of the fuel nozzle.
  • the additional air hole or the additional air nozzle outlet may be arranged between the conical portion where the cross-sectional area of the concentrator gradually decreases and the flame stabilizer.
  • a gas mixture having the amount of oxygen necessary for combustion is obtained, which collides with the flame stabilizer and the ignition of the flame stabilizer can be performed effectively.
  • the combustion load of the furnace is small, even pulverized coal, such as lignite, with poor ash properties can be burned quickly and efficiently near the outlet of the burner, reducing the combustion gas to NNX and adhering ash to the furnace wall around the burner. Can be prevented.
  • the above-mentioned burner of the present invention can change the amount of air ejected from the additional air holes or the additional air nozzles according to the combustion load of the combustion device (furnace).
  • solid fuel panner of the present invention in general, in a solid fuel panner, when the combustion load of a combustion device (furnace) is high, a solid fuel flame is formed from a position in the furnace far from the solid fuel panner, When the combustion load of the combustion device (furnace) is low, it is desirable to form a solid fuel flame near the furnace wall immediately after the fuel nozzle outlet of the solid fuel.
  • an additional air hole or additional air nozzle is provided in the solid fuel parner, and the combustion load of the combustion device (furnace) is low, a method of increasing the amount of air ejected from the additional air hole or the additional air nozzle may be adopted. Can be adopted. At this time, the air ejected from the additional air hole or the additional air nozzle increases the oxygen concentration near the inside of the fuel nozzle wall. Therefore, the combustion reaction of the fuel is accelerated as compared with the case where the oxygen concentration is low, and the ignition of the fuel is accelerated, and a flame can be formed near the fuel nozzle outlet (tip).
  • the combustion load of the combustion device (furnace) is high, the temperature of the flame and the outer furnace wall is relatively low by moving the flame formation position away from the parner, and the flame is slackened on the parner structure and the furnace wall. Suppress the ability to make a king.
  • the amount of air supplied from the fuel nozzle of the wrench (including the amount of air from the additional air holes or additional air nozzles, if any). It is desirable to adjust the amount of air so that the ratio of the amount of air required to completely combust the volatiles in the fuel (air ratio to volatiles) is 0.85 to 0.95.
  • air ratio to volatiles is 0.85 to 0.95.
  • the additional air hole or the air hole based on a signal from a thermometer or a radiation intensity meter provided on the furnace or the surrounding furnace wall is used.
  • the amount of air ejected from the additional air nozzle can be adjusted.
  • the position of flame formation in the furnace can be changed, and the amount of heat radiated to the burner wall can be adjusted.
  • the heat load in the furnace is high under the high load condition of the combustion device, so it is desirable to form the flame at a position in the furnace away from the burner, and the heat load in the furnace is low under the low load condition Therefore, the temperature of the burner and the surrounding furnace wall is lower than under high load conditions, and the flame formation position in the furnace may be closer to the burner.
  • the fuel is ignited at a position far from the burner under a high load condition of the combustion device, and a flame is formed at the center of the furnace.
  • the additional air holes of the first and second parners of the present invention can be used instead of the additional air nozzle, but are circular, oval, rectangular, and square holes provided on the wall of the fuel nozzle.
  • a total of four, eight, and up to about twenty nozzles can be provided evenly in the radial direction of the fuel nozzle. It is not preferable to form an additional air hole with a single slit in the entire radial direction of the fuel nozzle because additional air ejected from the slit causes a drift in the fuel nozzle.
  • the additional air hole supplies heated air to the additional air nozzle.
  • pressurized air supplied to a fan mill for producing pulverized coal or air supplied to a heated wind box for burning a parner can be used. Pressurized air supplied to the fan mill is more preferably used because of its relatively high pressure.
  • an air supply portion to the additional air holes or the additional air nozzles of the first and second parners of the present invention is configured such that the outer air nozzle supplies combustion air (outer air such as secondary air or tertiary air). Although it may be connected to a wind box provided for supplying air, it is desirable to connect to a combustion gas supply device provided exclusively for supplying combustion gas to the air supply unit.
  • a gas with an increased oxygen concentration hereinafter referred to as an oxygen-enriched gas
  • pure oxygen can be easily supplied.
  • the combustion air flow rate adjusting mechanism can be installed in a dedicated combustion gas supply device, the supply amount can be controlled.
  • the combustion gas (air) that is effective at the time of fuel ignition is introduced into the wrench through a dedicated combustion air supply device
  • the combustion gas (air) differs from the combustion gas (air) pressure obtained in the wind box. Since the pressure can be used, the size of the supply port of the combustion gas for ignition can be freely selected.
  • a combustion air flow rate adjustment mechanism can be installed in a dedicated combustion air supply device, the supply amount can be easily controlled.
  • a guide for determining the direction of jetting the outside air is provided at the outlet of the outside air nozzle of the first and second parners of the present invention, and the outside air (secondary air, tertiary air and (Sometimes referred to as "expansion flame").
  • the outside air secondary air, tertiary air and (Sometimes referred to as "expansion flame”
  • the jet of combustion air from the outer air nozzle that entrains the mixed fluid such as exhaust gas and pulverized coal has a moving amount.
  • the flame is narrowed by the high-momentum air jet, and a stable flame (combustion zone) can be formed in the furnace, enabling highly efficient pulverized coal combustion.
  • the outer air blast will generate a jet from the wrench and the outer furnace.
  • the walls can be cooled by outside air, which reduces the slacking.
  • the combustion apparatus provided with a plurality of the first and second parners of the present invention on a furnace wall include a furnace such as a coal-fired boiler, a pete-fired boiler, a biomass (wood) -fired boiler, a heating furnace, and a hot stove. is there.
  • thermometer or a radiation intensity meter is installed on the first and second parners of the present invention or on the furnace wall outside the parner, and jets from a central air nozzle of the parner based on signals from these measuring devices.
  • the combustion device By operating the combustion device to change the amount of air and / or the air swirl strength or the amount of air ejected from the additional air holes or additional air nozzles, a flame is formed at the appropriate furnace position according to the load change.
  • the standard for determining whether the flame is formed at an appropriate position is determined, for example, as follows.
  • the combustion device when the combustion device has a low load, the tip of the solid fuel flame in the furnace is formed near the furnace wall outside the fuel nozzle outlet, and when the combustion device has a high load, the fuel nozzle outlet is located on the center axis of the fuel nozzle. Operate the combustion device so that the flame is formed at a position in the furnace at least 0.5 m away from the furnace.
  • the combustion device when the combustion device is operated at the high load, the flame in the central part of the furnace where the flame of the present invention collects or the flame in the vicinity of the central portion is monitored by a flame detector or visually, and the combustion device is operated at a low load. Monitors the individual flames formed at the parner outlet of the present invention to operate the combustion apparatus properly.
  • the present invention includes the following coal-fired boiler system and coal-fired power generation system.
  • a coal-fired power generation system comprising: a steam bin driven by the steam obtained by the boiler; and a generator driven by the steam turbine, the coal-fired power generation using the solid fuel parner of the present invention as the parner. system.
  • the first parner and the second parner of the present invention are a conventional furnace or a tangential type burner which is difficult to operate at a low load in a furnace, and in a high load region, from a central portion in the furnace to the vicinity thereof. The system is operated in such a way that a stable flame combustion area is formed over the period, and the self-flaming type is used in the low load range.
  • furnaces using low-grade coal such as lignite or lignite as fuel can cope with a wide range of furnace load changes (specifically, 30% to 100%) according to power demand. .
  • a blower is formed at the base of the fuel jet in the high-load region, and the burner is burned from the base of the fuel jet in the burner in the low-load region.
  • Adjust the air flow distribution of the combustion air (outside air and outermost air) of the parner used and / or adjust the swirling force of the combustion air using the swirler provided on the outer air nozzle of the parner By doing so, the blow-off or ignition of the fuel jet at the root of PANA is controlled.
  • FIG. 1 is a sectional view of a pulverized coal parner according to a first embodiment of the present invention at the time of low load operation.
  • FIG. 2 is a cross-sectional view of the pulverized coal parner of FIG. 1 at the time of high load operation.
  • FIG. 3 is a front view of the pulverized coal burner of FIG. 1 as viewed from the furnace side.
  • FIG. 4 is a front view of a modified example of the pulverized coal parner of FIG.
  • FIG. 5 is a cross-sectional view of a modified example of the pulverized coal parner of FIG.
  • FIG. 6 is a sectional view of a modified example of the pulverized coal parner of FIG.
  • FIG. 7 is a cross-sectional view of the pulverized coal parner according to the second embodiment of the present invention at the time of high load operation.
  • FIG. 8 is a view of the pulverized coal parner in FIG. 7 taken along line AA.
  • FIG. 9 is a sectional view of a pulverized coal parner according to the third embodiment of the present invention.
  • Fig. 10 is a front view of the pulverized coal parner of Fig. 9 viewed from the furnace side.
  • FIG. 11 is a cross-sectional view of a solid fuel panner according to a fourth embodiment of the present invention at the time of low-load operation.
  • FIG. 12 is a cross-sectional view of the solid fuel panner of FIG. 11 at the time of high load operation.
  • FIG. 13 is a front view of the solid fuel panner of FIG. 11 as viewed from the furnace side.
  • FIG. 14 is a cross-sectional view of a modified example of the solid fuel panner of FIG. 11 at the time of high load operation.
  • FIG. 15 is a front view of a modified example of the solid fuel panner of FIG. 11 as viewed from the furnace side.
  • FIG. 16 is a cross-sectional view of a modification of the solid fuel burner of FIG.
  • FIG. 17 is a cross-sectional view of the solid fuel panner according to the fifth embodiment of the present invention at the time of low load operation.
  • FIG. 18 is a cross-sectional view of the solid fuel panner of FIG. 17 at the time of high load operation.
  • FIG. 19 is a sectional view of a solid fuel parner according to a sixth embodiment of the present invention.
  • FIG. 20 is a front view of the solid fuel burner of FIG. 19 as viewed from the furnace side.
  • FIG. 21 is a cross-sectional view (FIG. 21 (a)) and a front view (FIG. 21 (b)) of a wrench according to a seventh embodiment of the present invention.
  • FIG. 22 is a sectional view (FIG. 22 (a)) and a front view (FIG. 22 (b)) of a wrench according to the eighth embodiment of the present invention.
  • FIG. 23 is a horizontal cross-sectional view of a furnace showing a flame formation state due to the arrangement of a corner (corner firing method) in the furnace according to the embodiment of the present invention. b) is at low load).
  • FIG. 24 is a horizontal cross-sectional view of a furnace showing a state of formation of a flame by disposing the burner of the embodiment of the present invention in the furnace (an evening firing method). , And Fig. 24 (b) at low load).
  • FIG. 25 is a horizontal cross-sectional view of a furnace showing a flame formation state due to the arrangement of a burner (an evening firing method) in the furnace according to the embodiment of the present invention. ( Figure 25 (b) shows a low load).
  • Figure 26 is a configuration diagram of a general lignite-fired boiler (Figure 26 (a) is a side view, and Figure 26 (b) is a horizontal cross-sectional view of a furnace).
  • FIG. 27 is a schematic diagram of a combustion device according to an embodiment of the present invention.
  • FIG. 28 is a horizontal sectional view of the combustion device of FIG.
  • FIG. 29 is a schematic diagram of a pulverized coal boiler system according to an embodiment of the present invention.
  • FIG. 30 is a front view showing an example of a parna compartment according to the related art, as viewed from the furnace side.
  • Fig. 31 is a horizontal cross-sectional view of the furnace, showing the change in the combustion area in the furnace when the load is reduced in the conventional coke-furnacing combustion method (Fig. 31 (a) shows the state when the load is high, (b) is at low load).
  • FIG. 32 is a furnace longitudinal sectional view showing the arrangement position of an in-furnace flame detector for monitoring the center of a furnace in the prior art.
  • Figure 26 shows the configuration of a general lignite-fired boiler furnace 41.
  • Fig. 26 (a) is a side view of a tangential firing type lignite-fired boiler furnace 41, and
  • Fig. 26 (b) is a horizontal sectional view of the furnace 41 of Fig. 26 (a). is there.
  • the combustion gas (approximately 100 ° C) is drawn from the furnace 41 using the exhaust gas duct 55 (Fig. 28, Fig. 29) from the top of the furnace 41, and the fan mill 4 5 Drying and pulverization of lignite supplied from coal van power 4 3 at the same time.
  • a heat transfer tube 59 such as a superheater 50 (FIG. 29) is disposed in the upper part of the furnace 41.
  • one fan mill 45 is installed for each burner compartment 37 (see Figure 30).
  • FIG. 1 and 2 are cross-sectional views of a solid fuel burner (hereinafter simply referred to as a burner) 42 according to a first embodiment of the present invention.
  • FIG. 1 shows a burner 4 2 under a low load condition.
  • Fig. 2 shows a state in which fuel ejected from the furnace is burning in the furnace 41, and
  • Fig. 2 shows a state in which fuel ejected from the burner 42 under a high load condition is burning in the furnace 41.
  • FIG. 3 is a schematic view of the wrench 42 shown in FIG. 1 viewed from the furnace 41 side.
  • An oil gun 24 for assisting combustion is provided at the center of the burner 42, and a center air nozzle 10 for blowing air around the oil gun 24 is provided.
  • a fuel nozzle 11 for ejecting a mixed fluid of fuel and a carrier gas having a flow path formed concentrically with the center air nozzle 10 is provided.
  • An additional air hole (not shown) or an additional air nozzle 12 is provided inside the outer partition wall 22 of the fuel nozzle 11.
  • a plurality of additional air nozzles 12 are arranged along the inside of the outer partition wall 22 of the fuel nozzle 11, or a plurality of additional air holes are provided in the outer partition wall 22. Has been arranged.
  • a secondary air nozzle 13 and a tertiary air nozzle 14 (which may be simply referred to as an outer air nozzle together) for ejecting air concentrically with the fuel nozzle 11 are provided. is there.
  • An obstruction called a flame stabilizer 23 is provided at the outer end of the fuel nozzle 11 (furnace exit side). The flame stabilizer 23 is used for the flow of the mixture of the fuel ejected from the fuel nozzle 11 and the carrier gas (hereinafter referred to as pulverized coal flow) 16 and the flow of the secondary air flowing through the secondary air nozzle 13 1 7 obstacles and Work.
  • the center air nozzle 10 is configured to be supplied with the combustion air in the wind box 26, and the damper 3 and the opening / closing device 4 are provided. Therefore, the amount of center air supplied to the parner 42 via the center air nozzle 10 can be adjusted according to the furnace load.
  • An oil gun 24 for assisting combustion provided through the center of the center air nozzle 10 is used for igniting fuel when the wrench is started. Further, a swirler 25 for applying a swirling force to the air ejected from the center air nozzle 10 is provided at the tip of the center air nozzle 10, and the air supplied to the air box 26 for supplying air is secondary. Air is supplied from the air nozzle 13 and the tertiary air nozzle 14 into the furnace 41. The swirlers 27, 28 for giving a swirling force to the air ejected from the secondary air nozzles 13 and the tertiary air nozzles 14 are provided in the nozzles 13, 14 respectively.
  • the secondary air nozzles 13 and the tertiary air nozzles 14 are separated by a partition wall 29, and the tip of the partition wall 29 is a guide for ejecting the tertiary air stream 18 at an angle to the pulverized coal jet 16. (Sleeve).
  • the burner throat 30 constituting the furnace wall doubles as the outer wall of the tertiary air nozzle 14.
  • a water pipe 31 is provided on the furnace wall.
  • a flow-reducing member 3 2 for reducing the flow path provided in the fuel nozzle 1 1 is located inside the outer partition 2 2 on the upstream side of the fuel nozzle 1 1, and the fuel is supplied to the partition 2 2 side of the fuel nozzle 1 1
  • It is concentrator 3 3 for concentrating c concentrator 3 3 provided outside of the center air nozzle 1 0 is provided in the flow path contraction member 3 2 than PANA downstream (furnace side).
  • the fuel particles (pulverized coal) flowing along the flow path in the fuel nozzle 11 have a larger inertial force than the gas for transporting fuel (combustion exhaust gas), the fuel particles flow toward the inner wall of the fuel nozzle 11 side by side. Go straight to the exit. As a result, a concentrated pulverized coal stream is generated on the wall side of the fuel nozzle 11, and the chance of contact with outside air (combustion air) near the outlet of the fuel nozzle 11 increases. It becomes easy to ignite by contact with the high-temperature gas of the circulating flow 19 formed on the downstream side.
  • the configuration and combustion method of the parner 42 when the oxygen concentration in the pulverized coal stream 16 is low using combustion exhaust gas as the fuel transfer gas will be described.
  • combustion exhaust gas as the fuel transfer gas
  • the combustion of coal with low coalification such as lignite and lignite has a large amount of volatile matter and moisture, and the calorific value is lower than that of coal with high coalification.
  • the melting temperature of combustion ash is low. Due to its high volatile content, it is easy to spontaneously ignite during the storage and pulverization process in an air atmosphere.
  • lignite or lignite is pulverized and burned, a mixture of combustion exhaust gas with low oxygen concentration and air as a carrier gas for fuel Is used.
  • the moisture in the pulverized coal can be evaporated by the retained heat of the flue gas.
  • the burning rate of lignite and lignite is slower than the burning rate in air.
  • pulverized coal such as lignite or lignite as a carrier gas with a low oxygen concentration
  • the combustion speed is restricted by the mixing speed of lignite or lignite with air, and the combustion rate is lower than that of bituminous coal that can be transported by air.
  • Speed decreases. For this reason, when lignite or lignite is burned under the low-load conditions of Pana 42, where the amount of fuel burned is small, flame blow-off and misfire are more likely to occur than when bituminous coal is burned.
  • Lignite and lignite also have a longer burn-off time than bituminous coal, increasing the amount of unburned coal at the furnace exit. Therefore, it is necessary to promote mixing with air.
  • the amount of combustion is increased and lignite or lignite is burned under a high heat load and under good conditions for mixing with air, the amount of fuel burned near the Pana 42 increases due to the large amount of volatile components.
  • the heat load near the burner 42 becomes locally high and the radiant heat causes the temperature of the parna structure and the furnace wall to rise, The combustion ash may adhere and melt, causing slacking of the wrench structure and furnace wall.
  • lignite and lignite have low melting temperatures of combustion ash, so slacking is likely to occur on burner structures and furnace walls.
  • the problem caused by the difference in the combustion state of the fuel between the high load condition and the low load condition of the parner 42 when using coal with a low degree of coalification is caused by the load of the burner 42.
  • the problem can be solved by changing the flame formation position accordingly. That is, the flame is formed at a position away from the parner 42 under the high load condition, and the flame is formed from the outlet of the fuel nozzle 11 under the low load condition. Under low load conditions, even when the flame is brought close to the furnace wall and the burner wall 42, the heat load in the furnace 41 is low, so that the temperature of the burner 41 and the surrounding furnace wall is lower than in the high load condition. For this reason, slacking does not occur on the parna structure and the furnace wall.
  • a flame is formed from the outlet of the fuel nozzle 11.
  • an additional air hole is provided in addition to retaining the high-temperature gas in the circulating flow 19 formed downstream of the flame stabilizer 23.
  • the oxygen concentration in the pulverized coal jet 16 near the flame stabilizer 23 is increased by supplying air from the additional air nozzle 12 into the parner. Therefore, the combustion speed becomes higher than when the oxygen concentration is low, the ignition of the fuel particles is accelerated, and a flame can be formed near the fuel nozzle 11.
  • a method of supplying air from the central air nozzle 10 is effective for increasing the oxygen concentration in the pulverized coal jet 16 and accelerating the ignition of the pulverized coal. At this time, it is effective to provide a swirler 25 in the center air nozzle 10 as shown in Fig. 1 and to give a swirl strength to the center air flow 15 to promote mixing with the pulverized coal jet 16 .
  • the air flow 15 coming out of the center air nozzle 10 spreads outward due to centrifugal force, and the flow velocity toward the furnace center decreases. For this reason, the pulverized coal particles stay for a long time near the outlet of the pana, and the combustion starts near the pana 42.
  • the center air nozzle 10 and the additional air hole or the additional air nozzle 12 be provided on the upstream side of the fuel nozzle 11 outlet.
  • the residence time of the pulverized coal in the fuel nozzle 11 is shorter than the ignition delay time of the pulverized coal in order to prevent burnout and flashback of the fuel nozzle 11 due to ignition of the pulverized coal in the fuel nozzle 11.
  • the flow velocity in the fuel nozzle 11 of 10 to 20 m / s are used as guidelines.
  • the distance between the outlet of the fuel nozzle 11 and the outlet of the central air nozzle 10 and the distance between the outlet of the fuel nozzle 11 and the outlet of the additional air hole or the outlet of the additional air nozzle 12 are within about lm.
  • the flame is formed at a position away from the wrench to reduce the thermal load near the wrench. For this reason, in the present embodiment, the amount of air supplied from the additional air holes or the additional air nozzles 12 is reduced as compared with the case where the load is low. In addition, the amount of air supplied from the central air nozzle 10 is increased, and the air flow speed is also made higher than the jet flow speed of the pulverized coal jet 16 in the fuel nozzle 11. Due to the reduced supply of additional air, the oxygen concentration in the pulverized coal jet 16 near the flame holder 23 will be lower than under low load conditions, and the combustion rate will be slower.
  • the temperature of the circulating flow 19 formed downstream of the flame stabilizer 23 becomes low, and the radiant heat received by the parner structure is suppressed.
  • the flow velocity of the pulverized coal jet 16 at the outlet of the fuel nozzle 11 is increased by increasing the flow velocity of the air from the central air nozzle 10. For this reason, the residence time of the fuel particles near the burner is shortened, and most of the fuel is ignited at a position away from the parner 42. In this way, the radiant heat received from the flame can be reduced, and the possibility of slacking on the wrench structure and the furnace wall can be suppressed.
  • a swirler 25 is provided in the center air nozzle 10 to give swirling strength to the center air 15.
  • a circulating flow 19 is formed downstream of the flame stabilizer 23, and a part of the fuel is burned in the circulating flow 19, so that the flame in this region is a so-called sleeve. It ’s a fire.
  • High-temperature gas can be supplied stably from the obtained pilot flame to the flame formed at a position distant from Pana 42, so that the flame at a position distant from Pana 42 is stable and the risk of misfiring is reduced. . + Also, to reduce the NOx concentration in the exhaust gas generated by the combustion of pulverized coal, the amount of air supplied from the fuel nozzle 11, the center air nozzle 10, and the additional air hole or additional air nozzle 12 And the amount of air required to completely combust volatiles in fuel It is desirable to adjust the amount of air so that the ratio (air ratio to volatile matter) is 0.85 to 0.95.
  • the pulverized coal mixes and burns with the air supplied from the fuel nozzle 11 (first stage), and thereafter, the secondary air stream 17 and the tertiary air stream 18 mix and burn (second stage). Further, if an after-air port 49 (see FIG. 27) for supplying air is installed in the furnace 41 downstream of the parner 42, the pulverized coal is mixed with the air supplied from the after-air port 49. Complete combustion (third stage). The volatiles in the fuel burn at the first stage because the burning rate is higher than that of fixed carbon.
  • Condition A Condition B Fuel supply amount (relative to rated load) 100% 100% Oxygen concentration of fuel carrier gas (%) 10 10 Air ratio to volatile matter in fuel Carrier gas 0.26 0.26 A Central air 0.48 0.53 B Additional air 0.05 0.05 C
  • condition B had an air ratio to volatile matter (column D in Table 1) of 0.79 By setting to 0.84, the concentration of nitrogen oxide can be reduced.
  • the parner 42 of this embodiment has a cylindrical air nozzle 10, a fuel nozzle 11, an additional air nozzle 12, a secondary air nozzle 13 and a tertiary air nozzle 14 as shown in the front view from the furnace side in FIG.
  • a cylindrical air nozzle 10 a fuel nozzle 11, an additional air nozzle 12, a secondary air nozzle 13 and a tertiary air nozzle 14 as shown in the front view from the furnace side in FIG.
  • the fuel nozzle 11 is square, or as shown in the front view of the parner 42 in FIG. 4 viewed from the furnace side, the secondary air nozzle 13 and the tertiary air nozzle 14
  • the outside air may be supplied from one nozzle (secondary air nozzle 13), or a nozzle structure (not shown) divided into three or more may be used.
  • the flow channel contraction member 32 for reducing the flow channel in the fuel nozzle 11 and the enrichment for condensing the fuel particles to the fuel nozzle outer partition wall 22 side.
  • the vessel 33 is provided, the case where these components are not provided (FIG. 5) may be used.
  • a flame stabilizer 23 is provided at the tip of the outer partition wall 22 of the fuel nozzle 11 as shown in FIGS. 1 and 2, but as shown in FIG.
  • a pipe expansion member 50 may be provided downstream of the tip of the outer partition wall 22 to give swirling strength to the air flow (the secondary air flow 17) and induce the circulating flow 19.
  • FIG. 6 shows a modification of the burner 42 shown in FIG.
  • An air supply unit to the additional air nozzle 12 of the parner 42 is not a combustion air from the wind box 26, but a combustion gas supply device () provided exclusively for supplying a combustion gas to the air supply unit. (Not shown). Empty to additional air nozzle 12 By connecting a dedicated combustion air supply device to the gas supply unit, it is possible to increase the oxygen concentration of the gas or gas depending on the flammability of solid fuel such as pulverized coal or when the load on the furnace 41 decreases. Pure oxygen can be easily supplied to the additional air nozzles 12.
  • a combustion air flow control mechanism (not shown) can be installed in a dedicated combustion gas supply device, so that the supply amount can be controlled.
  • combustion gas (air) effective at the time of fuel ignition is introduced from a dedicated combustion air supply device into the PARNA 42 via the additional air nozzle 12, the combustion gas obtained in the wind box 26 is obtained.
  • the combustion air pressure may be different from the air pressure.
  • a combustion air flow rate adjustment mechanism can be installed in a dedicated combustion air supply device, the supply amount can be easily controlled.
  • FIG. 7 is a cross-sectional view of a parner 42 according to a second embodiment of the present invention.
  • Fig. 7 shows the operating state of the parner 42 when the furnace 41 is operated under high load conditions.
  • This embodiment differs from the first embodiment in that the swirler 25 in the center air nozzle 10 is different from the first embodiment. The difference is that the arrangement position of the is made movable.
  • the burner 42 of this embodiment is operated under a low load condition, it is completely the same as the diagram showing the operating state of the parner 42 under the low load condition of the first embodiment shown in FIG.
  • the position of the swirler 25 is moved to the tip of the center air nozzle 10.
  • the position of the swirler 25 located at the center air nozzle 10 was moved to the upstream side in the operating state of the wrench under high load conditions compared to the operating state under the high load conditions shown in Fig. 2.
  • the swirler 25 is moved to the upstream side of the center air nozzle 10
  • the nozzle cross-sectional area of the center air nozzle 10 is increased, and the ratio of the swirler 25 to the nozzle cross-sectional area is increased. This is smaller than the case where the swirler 25 is arranged at the tip (downstream side) of the center air nozzle 10, which is different from the burner 42 of the first embodiment.
  • the position of the swirler 25 is moved to the upstream side of the center air nozzle 10 as compared with the first embodiment, and the flame is formed away from the panner 42. Reduce the heat load near the wrench. For this reason, in this embodiment, the amount of air supplied from the additional air holes (not shown) or the additional air nozzles 12 under a high load condition is reduced as compared with the operation under a low load condition.
  • the cross-sectional area of the swirler 25 within the flow path width of the central air nozzle 10 becomes larger than under low load conditions, so that the swirl strength given to the air ejected from the central air nozzle 10 Is reduced.
  • the central air flow 15 does not spread after the jet from the nozzle 10 into the furnace 41 as compared with the case where the swirling strength is high. Therefore, the residence time of the fuel particles near) -na is shortened, and the amount of fuel burned near nana is reduced.
  • radiant heat received from the flame to the burner structure and the furnace wall can be reduced, and the generation of slacking on the burner structure and the furnace wall can be suppressed.
  • the temperature of the circulating flow 19 downstream of the flame stabilizer 23 also decreases as the radiant heat from the flame decreases.
  • the effect of changing the swirling flow velocity of the center air flow 15 has been described, but the method of changing the amount of air supplied to each air nozzle 10 to 14 as in the first embodiment is described. May be used together. The operation at this time is the same as that described in the first embodiment.
  • a swirler 25 which induces swirling strength by a blade installed at an angle to the air flow was used. Show the case.
  • a method of changing the swirling strength in the present embodiment, a method of changing the installation position of the swirler 25 within the center air nozzle 10 and changing the ratio of the swirler 25 to the nozzle cross-sectional area is used.
  • a method of changing the turning strength a method of changing the inclination angle of the blade of the swirler 25 may be used. Also, as shown in the cross-sectional view of the center air nozzle 10 in FIG.
  • the pipe 52 upstream of the center air nozzle 10 is divided into two pipes 52 a and a pipe 52 b.
  • a method may be used in which the turning strength is changed by flowing air in a tangential manner to the cross section.
  • the turning strength is offset by using the two pipes 52a and 52b facing each other under a high load condition. Further, under a low load condition, the turning strength can be increased by mainly flowing air from one of the pipes 52a or 52b.
  • FIG. 9 is a cross-sectional view of a parner 42 using coal such as lignite or lignite as a solid fuel according to an embodiment of the present invention.
  • FIG. 10 is a front view of the parner viewed from the furnace side. A mixed fluid of pulverized coal of fuel and fuel exhaust gas is supplied to the furnace 41 through the fuel nozzle 11. At the tip of the fuel nozzle 11, an L-shaped cross-sectioned flame holder 36 is installed, and a flame is formed near the parner by the effect of a circulating flow 19 formed on the downstream side thereafter.
  • pulverized coal wraps around the comb-shaped flame stabilizer 36 and is easy to ignite (it ignites behind the comb-shaped flame stabilizer 36).
  • FIGS. 11 and 12 are cross-sectional views of a parner 42 showing a fourth embodiment according to the present invention.
  • FIG. 11 shows that fuel injected from the parner 42 under a low load condition is a furnace 41.
  • Fig. 12 and Fig. 14 show the state where the fuel injected from the parner 42 under the high load condition is burning in the furnace 41.
  • FIG. 13 is a schematic view of the burner 42 shown in FIG. 11 as viewed from the furnace 41 side.
  • the burner 42 shown in the fourth embodiment is provided with an oil gun 24 for assisting combustion in the center thereof, and a fuel nozzle 1 for jetting out a mixed fluid of fuel and its carrier gas around the oil gun 24. 1 is provided.
  • a plurality of additional air holes (not shown) or additional air nozzles 12 are arranged along the inside of the wall surface 22 of the fuel nozzle 11. Outside the fuel nozzle 11, there are a secondary air nozzle 13 and a tertiary air nozzle 14 for ejecting air concentric with the fuel nozzle 11.
  • a flame stabilizer 23 is provided outside the front end of the fuel nozzle 11 (furnace 41 exit side).
  • the flame stabilizer 23 acts as an obstacle to the pulverized coal stream 16 ejected from the fuel nozzle 11 and the secondary air stream 17 flowing through the secondary air nozzle 13.
  • the pressure on the downstream side of the flame stabilizer 23 decreases, and this part induces a flow in the opposite direction to the pulverized coal flow 16 and the secondary air flow 17 to circulate.
  • a flow 19 is generated, and in the circulating flow 19, the temperature of the fuel particles rises due to radiant heat from the furnace 41, causing ignition.
  • outside air nozzles secondary air nozzle 13 and tertiary air nozzle 14 etc. If a guide 25 is provided in the mouth to guide the jetting direction of the outside air away from the central axis of the parner 42, the circulating flow 19 is easily formed together with the flame stabilizer 23.
  • An auxiliary oil gun 24 provided through the center of the fuel nozzle 11 is used for fuel ignition when the burner 42 is started.
  • swirlers 27 and 28 that give swirling force to the air ejected from the secondary air nozzle 13 and the tertiary air nozzle 14 are provided in the nozzles 13 and 14 respectively.
  • the secondary air nozzles 13 and the tertiary air nozzles 14 are separated by a partition wall 29, and the tip of the partition wall 29 is a guide for ejecting the tertiary air flow 18 to the outside to the pulverized coal flow 16.
  • Forming 2 5 The burner throat 30 constituting the furnace 4 1 wall also serves as the outer peripheral wall of the tertiary air nozzle 14.
  • a water pipe 31 is provided on the wall of the furnace 41.
  • a flow channel reducing member 3 2 for reducing the flow channel provided in the fuel nozzle 11 1 is located inside the partition wall 22 on the upstream side of the fuel nozzle 11, and the fuel is supplied to the partition wall 22 side of the fuel nozzle 11 1.
  • a concentrator 33 for concentrating is provided outside the oil gun 24. The concentrator 33 is provided downstream of the parner 42 (furnace 41 side) from the flow path reducing member 32.
  • a burner exhaust gas discharged from the furnace 41 is used as a fuel transfer gas, and a description will be given of a configuration of a burner and a method of burning lignite or lignite when the oxygen concentration in the pulverized coal stream 16 is low.
  • the burner blows out or misfires at low load caused by different combustion conditions under high load and low load conditions of the burner.
  • the problem of the combustion ash adhering to the burner structure and melting during combustion is solved by changing the flame formation position in the furnace 41 according to the load of the burner 42. That is, the flame is formed at a position in the furnace 41 away from the parner 42 under the high load condition, and the flame is formed from the furnace 41 near the outlet of the fuel nozzle 11 under the low load condition. Under low load conditions, even when the flame is brought closer to the furnace wall 41 or the burner 41, the heat load in the furnace 41 is low, so the temperature of the burner 41 and the surrounding furnace wall is lower than in the high load condition. .
  • the flame is formed from inside the furnace 41 near the outlet of the fuel nozzle 11, and in this embodiment, the hot gas is added to the circulating flow 19 formed downstream of the flame stabilizer 23 and the guide 25.
  • the oxygen concentration in the pulverized coal stream 16 near the flame stabilizer 23 can be increased by supplying air from an additional air hole (not shown) or the additional air nozzle 12. For this reason, the combustion speed is higher than in the case where the oxygen concentration is low, so that the ignition of the fuel particles is accelerated, and a flame can be formed in the furnace 41 near the fuel nozzle 11.
  • the additional air hole (not shown) or the additional air nozzle 12 be provided upstream of the tip of the fuel nozzle 11 (furnace 41 outlet).
  • the residence time of the fuel in the fuel nozzle 11 is shorter than the fuel ignition delay time in order to prevent burnout and flashback of the fuel nozzle 11 due to ignition of the fuel in the fuel nozzle 11.
  • the ignition delay time of gas fuel which has a shorter ignition delay time than pulverized coal (about 0.1 second)
  • the flow velocity in the fuel nozzle 11 of 10 to 2 O m / s are used as a guide.
  • the distance between the fuel nozzle 11 outlet and the additional air hole (not shown) or the additional air nozzle 12 outlet should be within about 1 m.
  • the heat load near the Pana 42 is reduced by forming the flame in the furnace 41 away from the Pana 42.
  • the amount of air supplied from the additional air hole (not shown) or the additional air nozzle 12 is reduced as compared with the case of the low load condition. Due to the reduced supply of additional air, the oxygen concentration in the pulverized coal stream 16 near the flame stabilizer 23 is lower than under low load conditions, and the combustion rate is lower. For this reason, the temperature of the circulating flow 19 formed on the downstream side of the flame stabilizer 23 becomes low, so that the radiant heat received by the parner structure can be reduced and slacking can be suppressed.
  • a circulating flow 19 is formed on the downstream side of the flame holder 23, and a part of the fuel is burned in the circulating flow 19, so that the flame in this region is a so-called sode ( (Fire). Since high-temperature gas can be supplied stably to the flame formed at a position in the furnace 41 away from the panner 42 from the obtained sleeve fire, the flame at a position away from the panner 42 becomes stable, and there is no danger of misfiring. Reduced.
  • Fig. 14 shows the flame of Pana 42 under the high load condition of furnace 41.
  • This shows a case where the circulating flow 19 formed downstream of 23 is formed apart from the circulating flow 19.
  • the flames are separated from each other as shown in the horizontal sectional view of the combustion device (furnace 41) using the parner 42 of the present invention shown in FIG. It is desirable to mix in a furnace 41 to stably burn in the furnace.
  • FIG. 23 (a) the case where the parners 42 are installed at the four corners of the furnace 41 wall is shown, but the same applies to the opposing combustion system in which the parners 42 are arranged on the opposing furnace wall 41.
  • the total amount of air supplied from the fuel nozzle 11 and the additional air holes or the additional air nozzles 12 and the volatile matter in the fuel must be completely burned. It is desirable to adjust the amount of air so that the required ratio of air amount (air ratio to volatile matter) is 0.85 to 0.95.
  • Most of the fuel is mixed with the air supplied from the additional air nozzles or additional air nozzles 12 in the fuel nozzles 11, combusted (first stage), and then the secondary air flow 17 or the tertiary air flow 1 It is mixed with 8 and burns (second stage). Furthermore, if an air supply port 49 (see Fig.
  • the columnar fuel nozzle 11, the secondary air nozzle 13 and the tertiary air nozzle 14 are concentric circles.
  • Figure 15 a front view of the panner 42 seen from the furnace 41 side.
  • an air nozzle structure in which at least a part of the outer air nozzles such as the secondary air nozzles 13 and the tertiary air nozzles 14 are provided so as to sandwich the fuel nozzle 11 may be used.
  • the additional air nozzle 12 may be a single nozzle provided along the wall surface 22 of the fuel nozzle 11.
  • the outside air is supplied from one nozzle (secondary air nozzle 13), or the nozzle structure is divided into three or more (not shown).
  • the flow channel reducing member 32 for reducing the flow channel in the fuel nozzle 11 and the fuel particles are provided on the wall of the fuel nozzle 11.
  • An obstacle (concentrator) 33 for concentrating is provided inside the surface 22. Even if these components are not provided, the same action as the parner 42 shown in FIGS. 11 to 15 can be obtained. .
  • a flame stabilizer 23 is provided in 22.
  • a guide 35 is provided to blow out the outside air flow (secondary air flow 17) in the direction away from the fuel nozzle 11 as shown in Fig. 16.
  • a method of forming a circulating flow 19 near the back side of the guide 35 (the center side of the furnace 41) may be used.
  • FIGS. 17 and 18 are cross-sectional views of a parner 42 showing a fifth embodiment according to the present invention.
  • FIG. 17 shows that the fuel jetted from the parner 42 under a low load condition is a furnace 41.
  • Fig. 18 shows a state in which the fuel ejected from the parner 42 under a high load condition is burning in the furnace 41.
  • the main difference between this embodiment and the fourth embodiment is that the flame holder 23 and the guide 35 are not provided at the tip of the wall surface 22 of the fuel nozzle 11. Flame holder 2 3 and guide
  • a swirler 27 provided in the secondary air flow path is used.
  • a strong swirling flow velocity (generally, 1 or more in swirl number) is given to the secondary air by the swirler 27 provided in the secondary air nozzle 13. Due to the centrifugal force generated by the swirling flow velocity, the secondary air flow 17 is ejected from the secondary air nozzle 13 and then spreads away from the pulverized coal flow 16. At this time, the pressure decreases in the area between the pulverized coal stream 16 and the secondary air flow 17, and the circulating flow is in the opposite direction to the pulverized coal stream 16 and the secondary air flow 1 ⁇ . 19 is induced.
  • a damper (not shown) that reduces the flow rate of the secondary air nozzle 13 is attached to the secondary air nozzle 13 to reduce the flow rate of the secondary air to near zero.
  • a circulating flow 19 can be induced between the tertiary air flow 18 in 14 and the pulverized coal flow 16.
  • the oxygen concentration in the pulverized coal stream 16 near the wall 22 of the fuel nozzle 11 becomes lower than that under the low load condition, and the combustion speed becomes slower.
  • the swirl flow velocity given to the secondary air is reduced by the swirler 27 provided in the secondary air nozzle 13. For this reason, the secondary air flow 17 is ejected from the secondary air nozzle 13 and then flows in parallel with the pulverized coal flow 16, so that the area between the pulverized coal flow 16 and the secondary air flow 17 is There is no circulating flow 19, which is the reverse flow.
  • the area between the pulverized coal flow 16 and the secondary air flow 17 is reversed.
  • the circulating flow 19, which is a directional flow, can be prevented from being generated.
  • FIG. 19 is a sectional view of a solid fuel burner 42 according to a sixth embodiment of the present invention
  • FIG. 20 is a front view of the burner 42 viewed from the furnace 41 side.
  • the mixed fluid of fuel and flue gas is supplied to the furnace 41 through the fuel nozzle 11.
  • an L-shaped cross-section flame holder 36 is installed at the end of the fuel nozzle 11.
  • the circulating flow 19 formed on the flow side causes an effect from the vicinity of the panner 42.
  • a flame is formed.
  • the characteristic configuration of the parner 42 shown in FIG. 19 is that an additional air hole (not shown) or an additional air nozzle 1 2 ( (See Fig. 20), so that the fuel can easily ignite by wrapping around the comb-shaped flame stabilizer 36 (it ignites behind the comb-shaped flame stabilizer 36)
  • FIG. 21 is a cross-sectional view of a wrench according to the seventh embodiment.
  • Fig. 21 (a) is a cross section of the wrench
  • Fig. 21 (b) is a front view of the wrench seen from the furnace side.
  • a mixed fluid of pulverized coal of fuel and carrier gas (primary air) is supplied to the furnace 41 through the fuel nozzle 11.
  • an L-shaped cross-section flame holder 36 is installed, and thereafter a flame is formed from near the parner by the effect of a circulating flow 19 formed on the downstream side.
  • a concentrator 33 is installed inside the fuel nozzle 11, and the ignition is promoted by increasing the pulverized coal concentration near the flame holder 36.
  • Combustion air (secondary air flow 17 and tertiary air flow 18) is supplied to the outer periphery of the fuel nozzle 11 from a wind box 26.
  • the tertiary air flow 18 is given a proper swirl by the swirler 28 to set the optimum conditions for low NOx combustion.
  • the tertiary air flow 18 is further spread outward by the guide plate 29, which creates a so-called excess fuel condition that makes the center of the flame short of air. Is obtained.
  • the characteristic configuration of the wrench shown in Fig. 21 is that an additional air hole (not shown) for ignition or an additional air nozzle 12 is provided between the concentrator 33 and the inner wall of the fuel nozzle 11. It is.
  • the additional air for ignition is supplied to the pulverized coal stream, which is concentrated on the inner wall side of the fuel nozzle 11 by the concentrator 33, so that the oxygen concentration increases under the condition that the pulverized coal concentration is maintained at a predetermined concentration or more. Therefore, the ignitability is improved.
  • an oil burner 24 used at the time of starting the parner is disposed on the central axis of the parner 42.
  • a mixing area S for additional air for ignition and a mixed fluid is provided between the concentrator 33 and the flame stabilizer 36 at the tip of the fuel nozzle 11.
  • an additional air hole for ignition or an outlet for the additional air nozzle 12 is provided between the toothed flame holders 36 (see Fig. 21 (b)). It becomes easy to ignite around the flame stabilizer 36 (ignited downwind of the comb-shaped flame stabilizer 36)
  • a guide 36 ′ for guiding the direction in which the outside air is ejected may be provided at the outlet of the outside air nozzle (the secondary air flow 17 and the secondary air flow 18).
  • the guide 36 'together with the flame stabilizer 36 forms a circulating flow 19 more easily.
  • This guide 36 ' is advantageous for forming a flame near the furnace wall at low loads.
  • the guide 3 6 5 is not necessarily provided. (Eighth embodiment)
  • FIG. 22 is a cross-sectional view of the burner 42
  • FIG. 22 (b) is a front view of the burner viewed from the furnace side). It is characterized by additional air holes for ignition or additional air nozzles for additional air nozzles (not shown) from the supply line for exclusive use of additional air nozzles (not shown) or additional air for ignition via additional air nozzles.
  • additional air holes for ignition or additional air nozzles for additional air nozzles from the supply line for exclusive use of additional air nozzles (not shown) or additional air for ignition via additional air nozzles.
  • the air 67 and the mixed fluid in the fuel nozzle 11 are introduced into a mixing area S.
  • FIG. 23 shows a horizontal cross-sectional view of a furnace 41 using any one of the burners of the above embodiment of the present invention as a cornering type parner.
  • a horizontal portion for installing a burner compartment 37 (see FIG. 30) is usually provided at the four corners of the furnace 41.
  • the jet from each burner of the parner compartment 37 forms a blow-off portion 38 at the root of the burner, and a stable combustion area in the furnace 41 to form
  • the flow rate of the tertiary air flow 18 of the outermost tertiary air nozzle 14 that contributes to the formation of a stable combustion area in the furnace is 5 O m / s or more
  • Pulverized coal stream 16 supplied with exhaust gas has a flow velocity of 5 m / s to 3 O m / s
  • the central air nozzle 10 that promotes fuel ignition has an air velocity of 5 m / s to 2 O m / s.
  • FIG. 24 shows an embodiment in which fuel is supplied into the furnace 41 from four burner compartments 37 provided on each side wall of the furnace 41
  • Fig. 25 shows an example in which fuel is provided on each side wall of the furnace 41. 6
  • Fig. 25 (a) shows a high load
  • Fig. 25 (b) shows a low load.
  • the blow-off portion 38 is formed at the base of the fuel jet burner 42 at the time of high load, and the furnace 4 Load change up to load change of furnace 41 over a wide range by using a method that forms a stable combustion zone within 1 and a self-flame holding method that holds flame from the base of fuel jet 4 2 at low load. It is possible to respond to
  • a part of the Pana Compartment 37 was remodeled to a Pana structure consisting of fuel and multiple combustion air passages, and each combustion air
  • the operation of the furnace at low and high loads is controlled by the distribution and the presence of swirling of the fuel and combustion air jets.
  • FIG. 27 is a schematic diagram of a combustion apparatus using a coal parner such as lignite or lignite of the present invention.
  • FIG. 28 is a horizontal sectional view of FIG.
  • description will be given with reference to FIGS. 27 and 28.
  • the wrench 42 is installed vertically in two stages, and the wrench 42 is installed horizontally from the four corners of the furnace 41 to the center.
  • Coal or the like is supplied from a fuel hopper 43 to a fan mill 45 through a coal feeder 44. After being pulverized by the fan mill 45, the pulverized coal is supplied to the parner 42 through the fuel pipe 54.
  • the furnace The flue gas extracted from the upper part of 41 is mixed with coal in the flue gas duct 55 downstream of the coal feeder 44 and introduced into the fan mill 45. By mixing the coal with the hot combustion gas, the moisture contained in the coal evaporates.
  • Air to be supplied to the parner 42 and the air port 49 provided downstream thereof is supplied from a blower 46.
  • a two-stage combustion system is used, in which less air is required than the air required for complete combustion of the fuel from the parner 42 and the remaining air is supplied from the after-air port 49, but without the after-air port 49.
  • a single-stage combustion system in which all necessary air is introduced from the burner 42 may be used.
  • the combustion method is changed according to the load of the combustion device (furnace 41). That is, under a high load condition, the flame is formed at a position away from the burner 42 to reduce the heat load near the burner 42. Under low load conditions, a flame is formed from the fuel nozzle 11 outlet. At this time, it is necessary to monitor the flame to safely operate the combustion equipment.
  • the combustion method changes according to the load, it is preferable to change the flame monitoring method. In other words, it is necessary to install a flame detector 47 in each parner 42 in order to monitor the flame formed in each parner 42 under the low load condition. In order to form a flame at the location, it is necessary to install a flame detector 48 that monitors the center of the furnace. Select the signal of the flame detector 47, 48 according to each load and combustion method and monitor the flame.
  • FIG. 29 shows a configuration diagram in which various burners described in the above embodiment of the present invention using coal such as lignite or lignite as a solid fuel are applied to a pulverized coal boiler system.
  • the pulverized coal boiler shown in Fig. 29 is equipped with an array of parners 42 using a two-stage combustion method and an air port 49.
  • a plurality of parners 42 are provided, arranged in three stages in the height direction of the furnace 41, and also arranged in five rows in the horizontal direction of the furnace 41. Although the horizontal arrangement of the wrench of the furnace 41 is not shown, the number and arrangement of wrench 42 are It is determined by body capacity (maximum pulverized coal combustion, boiler capacity, etc.) and boiler structure.
  • Each parner 42 is stored in a wind box 26 for each stage.
  • the parner 42 is provided with an atomizer that spouts oil for combustion as air as a carrier gas, and the auxiliary fuel is supplied to the oil nozzles 24 of each parner 42 via a distributor 58.
  • the temperature of the combustion air 51 is increased by the heat exchanger 52, the flow rate is adjusted by the damper 56 as heated air of about 300 ° C, and then introduced into the wind box 26, where each It is configured to be able to squirt from 2 into the furnace 41.
  • the combustion air 51 is further supplied to an air port 49 via a damper 57.
  • Combustion exhaust gas is taken out from a combustion exhaust gas duct 55 connected near the exhaust gas outlet of the furnace, and supplied to a coal feeder 44.
  • the pulverized coal is supplied to the fan mill 45 together with the exhaust gas for transportation, where it is pulverized, the particle size distribution is adjusted, and then supplied to the parner 42.
  • the particle size and distribution of the pulverized coal supplied to parna 42 are changed by the boiler load.
  • the wall surface of the furnace 41 is usually of a water cooling structure, in which primary steam is generated, and the primary steam is superheated by a superheater 50 and sent to a steam turbine (not shown) as superheated steam. Since the steam bin is directly connected to the generator, the generator can operate to obtain power.
  • the flue used to discharge the flue gas from the pulverized coal boiler from the chimney 63 into the atmosphere is equipped with an exhaust gas purification device consisting of a denitration device 60, an electric dust collector 61, and a desulfurization device 62. I have.
  • the amount of combustion air supplied to each parner 42 should be 89 to 90% by volume of the theoretical air amount of coal, and the after-air amount from the after-air port 49 should be 40 to 30% of the theoretical air amount of coal. It is set so that the total air volume is about 120% of the theoretical air volume of coal by setting it to about volume%.
  • the flame from the pulverized coal burner 42 is burned with an air volume smaller than the theoretical air volume, and the after-air reduces the unburned fuel.
  • a plurality of the burners 42 are provided on the wall surface of the furnace, and water is heated by combustion heat obtained by burning pulverized coal with the parners 42 to generate steam.
  • ADVANTAGE OF THE INVENTION even if it is a solid fuel with relatively low flammability, such as lignite or lignite, which has a low degree of coalification, it can perform stable combustion over a wide range from high load conditions to low load conditions. It is possible to obtain a combustion method using the burner, a combustion apparatus equipped with the burner, such as a furnace, a heating furnace or a hot-air generating furnace, and a method of operating the same, as well as a coal-fired boiler and its system, and a coal-fired power generation system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Description

明 細 書 固体燃料ノ ーナと固体燃料ノ '一ナを用いた燃焼方法 技術分野
本発明は固体燃料を気流搬送して燃焼する固体燃料用パーナおよびその燃焼方 法に関し、 特に水分や揮発分の多い微粉炭、 木材又はピートを燃料として燃焼す るのに適した幅広い火炉負荷変化に対応でき、 しかも燃焼排ガス中の窒素酸化物 (NOx)濃度を低下させる燃焼を可能とする固体燃料用パーナ及び該バ一ナを 用いた燃焼方法及び該パーナを備えた火炉、 加熱炉または熱風発生炉等の燃焼装 置とその運用方法、 さらには石炭焚きボイラとそのシステム、 石炭火力発電シス テムに関する。 従来の技術
環境保全のための公害防止規制は年々厳しくなつているが、 特に前記石炭を燃 焼させる微粉炭ボイラでは燃焼ガス中の NOx発生量を極力低減すること (以下、 低 NOx化という) が要請されている。 燃焼排ガス中の NOx濃度を低下させる 燃焼技術 (低 NOx化技術) としては二段燃焼法がある。 二段燃焼法としては火 炉全体で N 0 X発生量を下げるものとパーナ単体で N◦ X濃度を下げるものと 2 通りがある。 火炉全体で NOx発生量を下げる場合は火炉のバ一ナゾーンでの空 気比 (燃料に対する必要空気の割合であり、 空気比 1が量論的当量である) を 1 以下の燃料リツチな条件に保つことで生成 NOxを'還元し、 低 NOx化を図ると いうものである。 この際の未燃焼燃料についてはバ一ナゾーン後流側に設置した 空気挿入口から空気を投入し、 燃焼させる。
また、 微粉炭パーナ等の固体燃料パーナ (以下、 単にパーナと記すことがあ る) 単体で NOx発生量を下げる低 NOx化燃焼法 (以下、 この種のパーナを低 NOx化パーナという) は二次空気及び三次空気に旋回をかけて一次空気のみで 着火している微粉炭流との混合を遅らせることにより大きな還元領域を形成させ るというものであり、 ある種の低 NOx化微粉炭パーナ (特開昭 60— 1763 1 5号、 特開昭 6 2— 1 7 2 1 0 5号) で実用化されている。
これらの技術により排ガス中の N O x濃度を 1 3 O p p m (燃料比 =固定炭素 /揮発分が 2、 石炭中の窒素分 1 . 5 %、 灰中未然分 5 %以下) まで低減させる ことができるようになった。 しかし、 排ガス中の N O x濃度規制値は年々厳しく なる傾向にあり、 今後要求される排ガス中の N O x規制値は 1 0 O p p m以下で ある。
0 発生量1 0 0 p p m以下の低 N O x化バ一ナとして、 パーナ部での低 N O x化燃焼法をさらに強化する内部保炎器付きバーナゃ微粉炭と微粉炭搬送用気 体の混合流体の流れる燃料ノズルの外周部に設けられた外部保炎器と前記内部保 炎器の間に橋渡しをするような保炎器を設置したパーナが開発されている。 また、 エネルギー需要の増大が見込まれている地域では、 今後は水分や灰分が 多く、 発熱量の低い低品位炭の利用が主体になると考えられる。低品位炭の中で も褐炭や亜れき青炭等の高水分含有炭は埋蔵量が多いものの、 れき青炭に比べ火 炎温度が低下すること及び燃焼性が良くないこと等、 燃料としての性能が劣るこ とが懸念される。褐炭は東欧を中心に存在する石炭であり、 灰分 2 0 %以上、 水 分 3 0 %以上の比較的若い石炭である。
また、 褐炭や亜炭に代表される石炭化度の低い石炭や木材、 ビートは加熱時に 気体として放出される成分 (以下、 揮発分と記す) や、 燃料中に含まれる水分が 多い。 また、 発熱量が瀝青炭や無煙炭などの石炭化度の高い石炭に比べて低く、 一般に粉砕性が悪い。 さらに、 燃焼灰の溶融温度が低いという特徴がある。 揮発 分が多いため、 空気雰囲気では貯蔵や粉砕過程において自然発火しゃすく、 瀝青 炭などに比べて扱いにくい。 このため、 褐炭や亜炭などを微粉砕し、 燃焼させる 場合は、 燃料の搬送用気体として燃焼排ガスと空気との混合気体が使われる。 前 記混合気体は酸素濃度が低いので、 燃料の自然発火を防げる。 また、 燃焼排ガス の保有熱によつて前記混合気体で搬送する燃料中の水分を蒸発させることができ る o
しかし、 低酸素濃度雰囲気下で燃料を搬送することにより、 パーナから噴出す る燃料は空気と混合した後でないと燃焼反応が進まない。 燃焼反応は燃料と空気 の混合速度に制約され、 空気で搬送できる瀝青炭に比べて燃焼速度が低下する。 このため、 燃料の燃え切り時間が瀝青炭の燃焼に比べて長くなり、 火炉出口での 未燃焼分が増える。
低酸素濃度の搬送用気体で搬送される燃料の着火を早める方法として、 燃料ノ ズル先端に空気噴出ノズルを設け、 燃料搬送用気体の酸素濃度を高める方法があ る。 たとえば特開平 1 0— 7 3 2 0 8号公報には燃料ノズルの外側に空気ノズル を設けたパーナが示されている。 また、 燃料ノズルの中心に空気ノズルを設け、 燃料ノズル出口での燃料と空気との混合を促進させるバーナも良く用いられてい る。
また、 特開平 4 _ 2 1 4 1 0 2号公報には微粉炭とその搬送用気体の混合物を 噴出する燃料ノズルと、 該燃料ノズルの外側に配置された二次空気ノズルと三次 空気ノズルを有し、 さらに前記燃料ノズルから噴出する微粉炭から得られる火炎 を保持する保炎器を前記燃料ノズルと二次空気ノズルを隔てる隔壁先端部に設け たパーナが開示されている。 以上述べたように、 褐炭等は安価な燃料であるが、 高灰分、 高水分、 低発熱量 という性状に基因して、 その燃焼性や灰付着性に問題がある。 その燃焼性に関し ては、 いかに着火を促進し、 安定な火炎を形成するかが高効率燃焼のキーテクノ ロジ一となる。 またパーナ構造体、 火炉壁面などへの灰付着性が高い原因は融点 が低いことが原因である。褐炭等はカルシウムやナトリウム等の含有量が多い等 の灰性状による問題点の他、 炉内に多量に供給するため (瀝青炭に比べ、 発熱量 が少ないため、 投入石炭量を増やす必要がある) 、 灰生成量が多い等、 スラツギ ング ·ファゥリングに対して好ましくない条件が重なる石炭でもある。従って褐 炭や亜炭などの低品位炭をパーナで使用するためには、 その高効率燃焼性と灰付 着性低減の両方を達成することが必要である。
海外で用いられている一般的な褐炭燃焼の方式は夕ンジェンシャルフアイャリ ング方式とコ一ナフアイャリング方式である。 前者は火炉側壁に燃料流路と燃焼 用空気流路からなるバーナコンパートメントを設置した方式であり、 後者は火炉 の四隅に燃料流路と燃焼用空気流路からなるパーナコンパートメントを設置した 方式である。 これらの燃焼方式が、 国内瀝青炭燃焼時によく用いられる対向する火炉壁面に 対になるようにバ一ナ群を配置する、 いわゆる対向燃焼方式と異なる点を述べる 対向燃焼方式は各パーナ (燃料と燃焼用空気の多重管) を自己保炎方式で運用 するものであるのに対し、 前記褐炭燃焼の方式はパーナ出口近傍で自己保炎させ るのではなく燃焼用空気の噴流に運動量を持たせ、 火炉中心部又はその近傍で混 合燃焼させることにより燃料を安定燃焼させる方式である。
図 3 0はコ一ナフアイャリング方式またはタンジェンシャル方式のバ一ナコン パートメント 3 7の一例を火炉側から見た正面図である。燃焼用空気はその役割 により流速が異なり、 たとえば中心空気ノズル 1 2 4は排ガスで供給される燃料 ノズル 1 2 5からの燃料と速やかに混合し、 酸素濃度を高めることにより燃焼を 促進するのが目的であり、 最外側空気ノズル 1 2 6は 5 O m/ s以上の貫通力の ある噴流で火炉中心部からその近傍にかけて燃焼の安定化をはかるのが目的であ る。 従来ほとんど経験のなかった褐炭を主とした低品位炭の燃焼分野において、 世 界中の市場で優位性を持っために必要不可欠な技術は、 電力の需要増減に応じた 負荷変化に対応して運用できる微粉炭パーナを開発することである。 東欧では電 力需要に対して、 時に 3 0 %の部分負荷でボイラを運転することが望まれる。 こ れに対し、 従来技術には次のような問題点があつた。
先に述べたように、 褐炭燃焼に関する従来技術 (コ一ナフアイヤリング方式ま たはタンジェンシャル方式) で重要なのは、 燃料と燃焼用空気の混合流体の噴流 に貫通力を持たせ、 火炉内での安定燃焼を行うことである。 火炉の負荷を下げて いくとパーナコンパートメント 3 7からの前記噴流の運動量が少なくなるため、 火炎が不安定になる。 図 3 1はコーナファイヤリング方式における火炉 4 1の負 荷が高負荷から低負荷に下がる時の火炎形状の変ィヒを例として示す火炉 4 1内の 水平断面図である。 図 3 1 ( a ) に示す高負荷時にはバ一ナコンパートメント 3 7からの前記噴流はパーナの根元付近で吹き飛び部 3 8を形成し、 火炉 4 1中央 部からその近傍にかけて安定した燃焼領域を形成し、 効率良い燃焼が行われる。 しかし、 低負荷時にはパーナコンパ一トメント 3 7からの各噴流の流速が下が り、 運動量が減少するため、 図 3 1 ( a ) に示す安定した燃焼領域が形成されず、 燃焼が不安定になる (図 3 1 ( b ) に示すように火炉 4 1全体が薄暗くなる) 。 低負荷時におけるパーナ失火防止対策上、 火炉 4 1内で安定した燃焼領域が形成 されているかどうかを監視するために、 図 3 2の火炉 4 1の側断面図に示すよう に、 火炉 4 1の上部のァフ夕エアポート 4 9付近に火炎検知器 4 8が設置されて いるが、 図 3 1 ( b ) に示すように火炉 4 1内の輝度が下がると、 失火判定を出 す。
このような理由により、 火炉 4 1内での安定した燃焼領域の形成が各バーナか らの噴流の運動量に左右される従来の方式では、 低負荷時での運用は困難である なお、 図 3 1 ( a ) 、 図 3 1 ( b ) には火炉 4 1下部にパーナコンパートメント 3 7を設けており、 バ一ナコンパ一トメント 3 7からの燃料と燃焼用気体の混合 流体の噴流がアフターエアポート 4 9からの燃焼用空気の供給により火炎が形成 させる。
また、 上述の従来技術のパーナに供給する燃料量が多くなる燃焼装置 (火炉) の高負荷運転条件では、 火炎からの輻射熱によりバ一ナ構造物が高温となる。 褐 炭や亜炭などの石炭化度の低い燃料は燃焼灰の溶融温度が低いため、 バ一ナ構造 物の前記高温部分に燃焼灰が付着すると、 次第に溶融し、 さらに溶融物が成長す る。 大きくなつた溶融物は燃料の燃焼に対して障害となることがある。 このため、 高負荷運転条件での燃焼時は火炎をパーナから離して形成する必要がある。
本発明の課題は、 燃焼装置 (火炉) の高負荷運転条件から低負荷運転条件まで、 広範囲にわたって安定燃焼でき、 また褐炭や亜炭などの石炭化度の低い燃料を用 いることができる固体燃料パーナ、 該バ一ナを用いた燃焼方法及び該バーナを備 えた燃焼装置とその運用方法、 さらには石炭焚きボイラを提供することである。 また、 本発明の課題は褐炭など灰性状が劣悪な粉砕炭でもパーナ出口近傍で速 やかに高効率で燃焼させて、 パーナ周りの灰付着を防止することができる対向燃 焼方式のパーナとして使用できるパーナ及び該パーナを備えた燃焼装置を提供す ることである。
さらに、 本発明の課題はコ一ナフアイャリング方式やタンジェンシャル方式の パーナを用いる場合に 火炉の燃焼負荷が低下したときにも火炉中心に安定した 燃焼領域が形成され、 なお、 かつ火炉側壁での灰付着も防止することができるバ 一ナと該バ一ナを備えた燃焼装置を提供することである。
さらに、 本発明の課題は対向燃焼方式又はコーナフアイャリング方式や夕ンジ ェンシャル方式のバ一ナとして使用できる多重管式のバ一ナ及び該バ一ナを備え た燃焼装置を提供することである。 さらに、 上記従来技術からなる低 N O X化バ一ナは、 通常のれき青炭燃焼にお ける燃焼排ガス中の N O X濃度低減に関して適した構造となっている。 しかしな がら、 褐炭やピート等の発火性の高い燃料を使用する燃焼装置においては、 発火 P方止の観点から、 搬送用ガスとして一次空気の代りに酸素含有率の低い燃焼排ガ スが用いられている。 この場合には、 パーナ近傍での着火が困難なため、 下記 2 つの問題点が存在する。
( 1 ) バ一ナ近傍での保炎が困難なため、 油やガスでの助燃を必要としない運転 は、 燃焼炉内の温度が高い、 高負荷域に限られる。
( 2 ) バ一ナ近傍の空気に対して燃料が過剰に存在する領域での燃焼率が低いた め、 すなわち二次空気、 三次空気が混合した後の燃焼率が高いために、 低 N O x 化燃焼が得られない。
上記の問題点は酸素濃度の低いガスを石炭の搬送用ガスとして用いていること が原因であり、 その対策として、 バ一ナ出口近傍の燃料ノズル内に燃焼用空気を 供給して酸素濃度を高めることが考えられるが、 この場合には、 微粉炭濃度が低 下して、 着火性能は向上しない。
そこで、 本発明の課題は褐炭など灰性状が劣悪な粉砕炭でもパーナ出口近傍で 速やかに高効率で燃焼させ、 低 N 0 X化燃焼が可能な固体燃料燃焼用パーナ及び 該パーナを備えた燃焼装置を提供することである。 発明の開示
本発明のパーナは、 褐炭や亜炭などの石炭化度の低い石炭からなる固体燃料と、 酸素濃度が 2 1 %よりも低い搬送用気体の混合流体を用いる場合に特に適したバ —ナである。 ( 1 ) 本発明の第一のパーナは、 空気を噴出する中心空気ノズルと、 該中心空気 ノズルの外側に配置された固体燃料とその搬送用気体の混合流体を噴出する燃料 ノズルと、 前記燃料ノズルの内側壁面に配置された空気を噴出する追加空気孔ま たは追加空気ノズルと、 前記燃料ノズルの外側に配置された燃焼用空気を噴出す る一以上の外側空気ノズルとを有する固体燃料ノ 一ナである。
上記パーナは、 前記燃料ノズルの壁面内側に沿って空気を噴出する追加空気孔 または追加空気ノズルから噴出する空気量を増やすことができる。 追加空気孔ま たは追加空気ノズルから噴出する空気により、 燃料ノズル壁面内側近傍の酸素濃 度が高まる。 こうして燃料の燃焼は酸素濃度が低い場合よりも促進されるため、 燃料の着火が早まり火炎が燃料ノズル近くから形成できる。
また、 上記パーナは、 前記中心空気ノズル内に旋回器を備えることで、 燃焼負 荷に応じて、 前記中心空気ノズルから噴出する空気を①直進流として噴出する場 合又は弱い旋回流として噴出する場合と②強い旋回流として噴出する場合とのい ずれかの噴出方法が可能になる。
このとき、 (a ) 前記中心空気ノズル及び/又は (b ) 前記追加空気孔または ノズル出口が前記燃料ノズルの出口よりもノ ーナ内部の上流側に位置することが 望ましい。 前記構成により燃料ノズル内部において (a ) 前記中心空気ノズル及 び/又は (b ) 追加空気孔または追加空気ノズルから噴出する空気が燃料と混合 するため、 燃料搬送用気体の酸素濃度を部分的に高めることができる。
なお、 燃料ノズル出口から前記中心空気ノズルゃ前記追加空気孔または追加空 気ノズルの出口までの距離は燃料ノズル内での火炎形成による逆火や焼損がない ようにするため、 燃料ノズル内での燃料の滞留時間が燃料の着火遅れ時間 (約 0 . 1秒) 以下となることが望ましい。 通常、 燃料搬送用気体は流速 1 0 - 2 0 m/ sで燃料ノズル内を流れるので、 前記距離は 1〜 2 m以下となる。
また、 上記パーナの燃料ノズルの壁面内側に、 バ一ナ上流側から順に前記ノズ ルの断面積を一旦縮小した後、 元の大きさまで拡大する流路縮流部材を設けるこ とで燃料搬送用気体 (燃焼排ガスなど) より慣性力が大きい燃料粒子 (微粉炭) の流れがパーナ中心軸方向に絞られる効果がある。 さらに中心空気ノズルの壁面 外側に、 パーナ上流側から順に断面積が漸増する円錐部と断面積が漸減する円錐 部から成る濃縮器を流路縮流部材より下流側に設けることで、 パーナ中心軸方向 に絞られた燃料粒子 (微粉炭) の流れが、 濃縮器を通過後、 燃料ノズル内の流路 に沿って広がって流れる。 このとき燃料粒子 (微粉炭) は燃料搬送用気体 (燃焼 排ガス) より慣性力が大きいため、 燃料ノズルの壁面側に片寄って流れて出口に 向けて直進する。 このため、 燃料ノズル壁面側に濃縮された微粉炭流が生じて、 燃料ノズル出口付近で外側空気 (燃焼用空気) と触れる機会が増えて、 さらに後 述の保炎器の後流側にできる循環流の高温ガスと接触して着火し易くなる。
また、 本発明の上記パーナが高負荷条件下で運用される場合には、 燃料ノズル から噴出する燃料は火炉内からの高い輻射熱により温度が上昇するため、 高い流 速で燃料ノズルから噴出しても安定に燃焼できる。 このとき、 中心空気ノズルか ら噴出する空気を直進流もしくは弱い旋回流 (スワール数で 0 . 3以下) とする ことで、 火炎をバ一ナ近くから吹き飛ばし、 火炎をパーナより離れた位置で形成 させ、 火炎輻射熱によりパーナ構造物が高温になることを防ぐことができる。 さらに、 本発明の上記パーナが低負荷条件下で運用される場合には、 中心空気 ノズルから噴出する空気を強い旋回流 (スワール数で 0 . 5以上) とすることで、 空気と燃料噴流との混合を促進させる。 また、 中心空気ノズルから噴出する空気 に与える旋回流によりパーナ中心軸上の燃料の噴出流速が減速されるため、 燃料 ノズル近くでの燃料の滞留時間が長くなる。 こうして、 燃料ノズル近くで燃料が 燃焼するために必要な温度に到達するので、 火炎が燃料ノズル近くから形成され る。
また、 本発明の上記パーナは燃焼負荷に応じて、 中心空気ノズルと追加空気孔 または追加空気ノズルから噴出する空気量の割合を変えることもできる。 たとえ ば、 燃焼負荷が低い場合は、 中心空気ノズルから噴出する空気量を減らして、 同 時に追加空気孔または追加空気ノズルから噴出する空気量の割合を増やし、 燃焼 負荷が高い場合は中心空気ノズルから噴出する空気量を増やして、 同時に追加空 気孔または追加空気ノズルから噴出する空気量の割合を減らす燃焼方法を採用す る。
本発明の上記バ一ナでは、 パーナの燃料ノズル、 中心空気ノズルおよび追カロ空 気孔またはノズルからそれそれ供給される空気量の合計と燃料中の揮発分を完全 燃焼させるのに必要な空気量の比 (以下、 揮発分に対する空気比と記す) を 0 . 8 5〜0 . 9 5となるように空気量を調整して燃焼させることが望ましい。
また、 前記燃料ノズルと外側空気ノズルの隔壁先端部に、 前記燃料ノズルから 噴出する気体や外側空気ノズルから噴出する空気の流れに対する障害物 (保炎 器) を設けることが望ましい。
前記保炎器の下流側では圧力が低下し、 下流から上流に向かう流れ (以下、 循 環流と記す) が形成される。循環流内には外側のノズル群から噴出する空気や燃 料のほか、 下流からの高温の既燃焼ガスが滞留する。 このため、 循環流内は高温 となり、 その側を流れる燃料噴流の着火源として作用する。 このため、 火炎は燃 料ノズル出口部分から安定に形成される。
また、 燃料ノズル出口内側壁にさめ歯状突起を有する保炎器を設ける構成でも 燃料の着火が促進される。
また、 本発明の上君 3パーナの中心空気ノズルの下流側の流路断面積を前記中心 空気ノズルの上流側の流路断面積に比較して小さくして、 例えば前記中心空気ノ ズル内の旋回器の設置位置を該中心空気ノズル内でバ一ナ中心軸方向に移動可能 に配置しても良い。 この構成で、 燃焼負荷によって旋回器の設置位置を調整して、 空気流れの旋回強度を変化させることができる。
燃焼負荷が低い場合には旋回器を中心空気ノズルの下流側の流路断面積が比較 的小さい位置に移動させ、 中心空気ノズルの空気噴出流に強い旋回をかけてバー ナの近傍で火炎を形成させる、 また燃焼負荷が高い場合には旋回器を中心空気ノ ズルの上流側の流路断面積が比較的大きい位置に移動させ中心空気ノズルの空気 噴出流に弱い旋回をかけてパーナから離れた火炉内の位置で火炎を形成させるこ とができる。
さらに、 バ一ナやその外側の火炉壁の温度が高すぎると燃焼灰がバ一ナ構造物 や火炉壁に付着し、 付着物が成長するスラッキングと呼ばれる現象が現れる。 こ のスラッキングを抑制するためにパーナやその周囲の火炉壁に設けた温度計もし くは放射強度計などからの信号に基づき、 前記中心空気ノズルから噴出する空気 量や空気旋回強度を変えるか又は前記追加空気孔または追加空気ノズルから噴出 する空気量を変えることができる。 前記空気量や空気旋回強度を変えることで、 . 火炉内での火炎の形成位置を変えてバ一ナや火炉壁への輻射熱量を調整すること ができる。
高負荷条件では火炉内の熱負荷が高いため、 火炎をパーナから離れた位置に形 成させることが望ましい。 また、 低負荷条件では火炉内の熱負荷は低いので、 火 炎をパーナに近づけてもパーナやその周囲の火炉壁の温度は高負荷条件の場合よ りも低くなる。
前記燃焼装置に本発明のパーナを用いる場合、 中心空気ノズルは円筒形状とし、 該中心空気ノズルの上流側の部位に空気供給用の配管として一対の空気配管を接 続し、 該一対の空気配管を中心空気ノズルの円筒断面の対向する位置の接線方向 から空気を流入させるようにそれそれ接続した燃焼装置を用いて、 該燃焼装置を 高い燃焼負荷 (例えば 6 0〜7 0 %以上) で運用する場合には一対の空気供給用 配管から同じ空気流量を中心空気ノズル内に供給し、 燃焼装置を低い燃焼負荷 (例えば 6 0 - 7 0 %以下) で運用する場合には一対の空気供給配管から中心空 気ノズル内に供給する空気流量の配分に差異を持たせることにより、 それそれの 負荷に応じた中心空気流れの旋回強度を調整することができる。
( 2 ) 本発明の第二のパーナは固体燃料とその搬送用気体の混合流体を噴出する 燃料ノズルと、 前記燃料ノズルの壁面の内側に配置された空気を噴出する追加空 気孔または追加空気ノズルと、 前記燃料ノズルの壁面の外側に配置された空気を 噴出する一つ以上の外側空気ノズルとを有する固体燃料パーナである。 第二のバ —ナは第一のパーナが有する空気を噴出する中心空気ノズルを持たないパーナで ある。
本発明の上記第二のパーナにおいて、 燃料ノズルの壁面内側に空気を噴出する 追加空気孔または追加空気ノズルから噴出する空気量を増やすことができる。 追 加空気孔または追加空気ノズルから噴出する空気により、 燃料ノズルの壁面内側 近傍の酸素濃度が高まる。 このため、 燃料の燃焼反応は酸素濃度が低い場合より も促進されるため、 燃料の着火が早まり火炎が燃料ノズル近くから形成できる。 また、 上記バ一ナは、 前記追加空気孔または追加空気ノズル出口 (先端部) が 前記燃料ノズルの出口 (先端部) よりもパーナ内部の上流側に位置することが望 ましい。 前記構成により燃料ノズル内部において前記追加空気孔または追加空気 ノズルから噴出する空気が燃料と混合するため、 燃料搬送用気体の酸素濃度を部 分的に高めることができる。 なお、 燃料ノズル出口から前記追加空気孔または追 加空気ノズルの出口までの距離は燃料ノズル内での火炎形成による逆火や焼損を 防く、ため、 燃料ノズル内での燃料の滞留時間が燃料の着火遅れ時間 (約 0 . 1 秒) 以下となることが望ましい。 通常、 燃料搬送用気体は流速 1 0〜2 O m/s で燃料ノズル内を流れるので、 前記距離は 1〜 2 m以下とする。
また、 上記パーナの燃料ノズルの壁面内側にバ一ナ上流側から下流側に順に前 記ノズルの断面積を一旦縮小した後、 元の大きさまで拡大する流路縮小部材を設 けることが望ましい。燃料ノズルの流路断面積を縮小することで、 燃料ノズル内 を流れる燃料搬送用気体の流速が高まる。 このため、 瞬間的な燃料流速の低下に よる燃料ノズル内での火炎形成が起きたとしても、 火炎は流路縮小部材の流路縮 小部分よりも上流側への逆火を防く、ことができる。 さらに、 燃料ノズルの内部に パーナ上流側から下流側に順に断面積が増加する部分と断面積が減少する部分か らなる濃縮器を流路縮小部材ょりも下流側に設けることで、 流路縮小部材により パーナ中心軸方向に絞られた燃料粒子 (微粉炭) の流れが、 濃縮器により燃料ノ ズル内の流路に広がって流れる。 このとき、 燃料粒子 (微粉炭) は燃料搬送用気 体より慣性力が大きいため、 燃料ノズルの壁面内側に片寄って流れて出口に到達 する。 このため、 燃料ノズル内側壁面側に濃縮された微粉炭流が生じて、 燃料ノ ズル出口付近で外側空気ノズルから噴出する空気と触れる機会が増える。 また、 後述の保炎器の後流側にできる循環流の高温ガスと接触して着火し易くなる。 また、 前記燃料ノズルと外側空気ノズルを隔てる壁面の先端部に、 前記燃料ノ ズルから噴出する固体燃料混合物や空気の流れに対抗するように保炎器を設ける ことが望ましい。
前記保炎器の下流側の火炉内では圧力が低下し、 下流から上流に向かう循璟流 が形成される。 循環流内には燃料ノズルゃ外側空気ノズルなどから噴出する空気 や燃料、 燃料搬送用気体の他、 火炉内のパーナ設置位置より下流側の領域からの 高温ガスが滞留する。 このため、 循環流内は高温となり、 燃料噴流の着火源とし て作用する。 このため、 火炎は燃料ノズル出口部分から安定に形成される。 また、 燃料ノズルの壁面先端 (出口) 部の壁面内側にさめ歯状突起を有する保 炎器を設ける構成でも燃料の着火が促進される。 固体燃料の搬送用気体として燃焼排ガスを用いても、 前記追加空気孔または追 加空気ノズル出口を、 前記濃縮器の断面積が漸減する円錐部と前記保炎器との間 に配置することで燃焼に必要な酸素量を有する混合気体が得られ、 これが保炎器 に衝突して保炎器での着火が効果的に行える。 また火炉の燃焼負荷が小さい時で 褐炭等の灰性状が劣悪な粉碎炭でもパーナ出口近傍で速やかに高効率で燃焼させ、 燃焼ガスの低 N◦ X化とパーナ周りの火炉壁面への灰付着を防止することができ る。
また、 上記本発明のパーナは、 燃焼装置 (火炉) の燃焼負荷に応じて、 追加空 気孔または追加空気ノズルから噴出する空気量を変えることもできる。
本発明の上記固体燃料パーナに限らないが、 一般に固体燃料パーナでは、 燃焼 装置 (火炉) の燃焼負荷が高い場合は、 固体燃料パーナから離れた火炉内の位置 から固体燃料の火炎を形成し、 燃焼装置 (火炉) の燃焼負荷が低い場合は、 固体 燃料の燃料ノズル出口直後の火炉壁面付近から固体燃料の火炎を形成させること が望ましい。
例えば、 固体燃料パーナに追加空気孔または追加空気ノズルが設けられている と、 燃焼装置 (火炉) の燃焼負荷が低い場合は、 前記追加空気孔または追加空気 ノズルから噴出する空気量を増やす方法を採用することができる。 このとき、 追 加空気孔または追カ卩空気ノズルから噴出する空気により、 燃料ノズル壁面内側近 傍の酸素濃度が高まる。 このため、 燃料の燃焼反応は酸素濃度が低い場合よりも 促進され、 燃料の着火が早まり火炎が燃料ノズル出口 (先端部) 近くから形成で きる。 また、 燃焼装置 (火炉) の燃焼負荷が高い場合は、 前記追加空気孔または 追加空気ノズルから噴出する空気量を減らすことで、 燃料ノズル壁面内側近傍の 酸素濃度が比較的に低くなり、 燃料の燃焼反応が進まず、 燃料の着火が遅れ、 燃 料ノズルから離れた火炉内の位置で火炎を形成させることができる。 燃焼装置 (火炉) の燃焼負荷が高い場合には固体燃料パーナやその外側の火炉 壁の温度が高くなるので、 燃焼灰がパーナ構造物や火炉壁に付着し、 付着物が成 長するスラッキングと呼ばれる現象が生じやすい。 そこで燃焼装置 (火炉) の燃 焼負荷が高い場合には火炎の形成位置をパーナから離すことで、 パーナやその外 側の火炉壁の温度を比較的低くし、 パーナ構造物や火炉壁にスラッキングができ ることを抑制する。 さらに、 燃焼負荷が低い場合は、 パーナの燃料ノズルから供 給される空気量 (追加空気孔または追加空気ノズルがある場合には追加空気孔ま たは追加空気ノズルからの空気量も含めて) と燃料中の揮発分を完全燃焼させる のに必要な空気量の比 (揮発分に対する空気比) を 0 . 8 5〜0 . 9 5となるよ うに空気量を調整することが望ましい。 燃焼負荷が低い場合は安定燃焼が難しい が、 揮発分に対する空気比を 0 . 8 5〜0 . 9 5とすることで火炎温度が高くな り、 安定燃焼を維持し易くなる。
また、 ノ 一ナ構造物や火炉壁にスラッキングが生じることを抑制するために、 パーナやその周囲の火炉壁に設けた温度計もしくは放射強度計などからの信号に 基づき、 前記追加空気孔または追加空気ノズルから噴出する空気量を調整するこ とができる。 空気量を調整することで、 火炉内での火炎の形成位置を変えて、 バ —ナゃ火炉壁への輻射熱量を調整することができる。 前述のように燃焼装置の高負荷条件では火炉内の熱負荷が高いため、 火炎をバ ーナから離れた火炉内の位置に形成させることが望ましく、 低負荷条件では火炉 内の熱負荷は低いので、 パーナやその周囲の火炉壁の温度は高負荷条件の場合よ りも低くなり、 火炉内での火炎形成位置をパーナに近づけても良い。 また、 本発明の前記第一のパーナと第二パーナの燃焼方法によると、 燃焼装置 の高負荷条件ではパーナから離れた位置で燃料が着火し、 火炎は火炉中心部に形 成される。 パーナから形成される火炎を監視するには、 高負荷条件で運用する場 合はパーナの火炎が集まる燃焼装置中央部分の火炎を監視することが望ましい。 また、 燃焼装置の低負荷条件ではバ一ナ近くで燃料が着火して火炎を形成するが、 個別のパーナ毎に火炎が形成され、 火炉内で前記火炎がそれそれ分かれて形成さ れる場合もある。 そのため、 低負荷条件では個別のバ一ナ出口に形成される個々 の火炎を監視することが望ましい。
また、 本発明の第一のパーナと第二のパーナの追加空気孔は追加空気ノズルの 代りに用いることができるが、 燃料ノズルの壁面の設けた円形、 楕円形、 長方形、 正方形の孔であり、 燃料ノズルの径方向に均等に合計 4個、 8個、 最高 2 0個程 度設けることができる。燃料ノズルの径方向全体に一つのスリットで追カ卩空気孔 を形成すると当該スリツトから噴出する追加空気が燃料ノズル内で偏流を生じる ので、 好ましくない。
また、 前記追加空気孔は追加空気ノズルには加熱された空気を供給することが 望ましい。 該加熱源としては微粉炭生成用にファンミルに供給される加圧空気ま たはパーナの燃焼用の加熱された風箱に供給される空気を用いることができる。 ファンミルに供給される加圧空気が比較的圧力が高いのでより好ましく用いられ る。
また、 本発明の前記第一のパーナと第二のパーナの追加空気孔または追加空気 ノズルへの空気供給部は、 前記外側空気ノズルに燃焼用空気 (二次空気又は三次 空気等の外側空気) を供給するために設けられる風箱に接続して良いが、 該空気 供給部に燃焼用気体を供給するために専用に設けられた燃焼用気体供給装置に接 続することが望ましい。
追加空気孔または追加空気ノズルへの空気供給部に専用の燃焼用空気供給装置 に接続することで、 微粉炭等の固体燃料の燃焼性に応じて、 又は燃焼装置の負荷 が低下したときなどに酸素濃度を増した気体 (以下酸素富化気体) 又は純酸素を 容易に供給することができる。 また燃焼用空気流量調節機構を専用の燃焼用気体 供給装置に設置できるので、 その供給量の制御が可能となる。
また、 燃料の着火時に有効な燃焼用気体(空気) を専用の燃焼用空気供給装置 からパーナに導入すると、 風箱で得られる燃焼用気体 (空気)圧力とは異なる燃 焼用気体 (空気) 圧力とすることができるため、 着火用の燃焼用気体の供給口の 大きさを自由に選定できる。 また、 専用の燃焼用空気供給装置に燃焼用空気流量 調節機構を設置できるので、 その供給量の制御が簡単に行える。
さらに、 本発明の上記第一のパーナと第二のパーナの外側空気ノズルの出口に 外側空気の噴出方向を決めるガイドを設けて、 外側空気 (二次空気、 三次空気と 称することがある) の広がりをある程度設けて広がり火炎を形成させる。 ただし、 前記ガイドのパーナ中心軸に対して 4 5度以下の傾斜角度とすることで、 排ガス と微粉炭などの混合流体を巻き込む外側空気ノズルからの燃焼用空気の噴流に運 動量を持たせることができる。 この運動量の大きな空気噴流により火炎が狭まり、 火炉内に安定した火炎 (燃焼領域) を形成させることができ、 高効率な微粉炭燃 焼を行える。
また、 最も外側の最外側空気ノズルからの噴流を誘導する前記ガイドを外側空 気噴流がパーナやその外側の火炉壁に沿うような角度で取り付けると、 外側空気 噴出流はパーナやその外側の火炉壁を外側空気で冷却することができ、 前記スラ ッキングを抑制する。 本発明の前記第一のパーナと第二のパーナを複数本火炉壁面の設けた燃焼装置 としては石炭焚きボイラ、 ピート焚きボイラ、 バイオマス (木材) 焚きボイラ等 の火炉、 加熱炉、 及び熱風炉がある。 本発明の前記第一のパーナと第二のパーナ又は該パーナの外側の火炉壁面に温 度計又は放射強度計を設置し、 これらの計測装置の信号に基づき、 パーナの中心 空気ノズルから噴出する空気量及び/又は空気旋回強度又は追加空気孔または追 加空気ノズルから噴出する空気量を変えるように燃焼装置を運用することで、 負 荷変化に応じて火炎が適正な火炉位置で形成されるように制御することができる c また、 火炎が適正な位置で形成されているかどうかの目安は、 例えば次のよう に決める。 すなわち、 燃焼装置が低負荷の場合には火炉内の固体燃料火炎の先端 が燃料ノズル出口外側の火炉壁面付近で形成され、 燃焼装置が高負荷の場合には 燃料ノズル中心軸上で燃料ノズル出口から 0 . 5 m以上離れた火炉内の位置で火 炎が形成されるように燃焼装置を運用する。
また、 燃焼装置を前記高負荷で運用する場合は本発明のパーナの火炎が集まる 火炉内の中央部分又はその近傍の火炎を火炎検知器あるいは目視で監視し、 燃焼 装置を低負荷で運用する場合は本発明のパーナ出口に形成される個々の火炎を監 視して燃焼装置を適正に運用する。 また、 本発明は以下の石炭焚きボイラシステムと石炭火力発電システムを含む c
( a ) 前記石炭焚きボイラと、 該ボイラの排ガスの流路となる煙道と、 該煙道に 設けられた排ガス浄ィ匕装置と、 ボイラに設けた本発明の前記パーナに石炭を微粉 炭として搬送する微粉炭搬送装置と、 該微粉炭搬送装置からパーナに供給する微 粉炭量を調整する微粉炭供給量調整装置と、 該パーナから噴出する空気量を調整 する空気量調整装置とを備えた石炭焚きボイラシステム。
( b ) 本発明の前記パーナを複数本配置する壁面を設けた火炉と、 該バ一ナによ り固体燃料を燃焼させて得られる燃焼熱により水を加熱して蒸気を発生させるボ イラと、 該ボイラで得られた蒸気により駆動する蒸気夕一ビンと、 該蒸気タービ ンより駆動する発電機を備えた石炭火力発電システムにおいて、 前記パーナとし て本発明の固体燃料パーナを用いる石炭火力発電システム。 本発明の前記第一のパーナと第二パーナは、 従来火炉の低負荷での運用が困難 なコ一ナフアイヤリング方式またはタンジヱンシャル方式のバーナを、 高負荷域 においては火炉内の中心部からその近傍にかけて安定した火炎の燃焼領域を形成 させる方式で運用し、 低負荷域では自己保炎型方式で運用するものである。
このとき、 本発明の固体燃料バーナをーユニットとして、 その複数ユニットを 四隅あるいは対向する側壁面にそれそれ対に成るように配置した火炉を用いるこ とができる。
前記燃焼方式を用いることにより、 褐炭、 亜炭などの低品位炭を燃料として用 いる火炉でも電力需要に応じた幅広い火炉の負荷変化 (具体的には 3 0 %〜1 0 0 %) に対応できる。
具体的には、 高負荷域ではパーナの燃料噴流根元に吹き飛び部を形成させ、 低 負荷域ではバ一ナの燃料噴流の根元から燃焼させ、 自己保炎型とするパーナの運 用を行う。 使用するパーナの燃焼用空気 (外側空気及び最外側空気) の空気の流 量配分を調整すること、 及び/又はパーナの外側空気ノズルに設けた旋回器を用 いて燃焼用空気の旋回力を調整することによって、 パーナの燃料噴流根元の吹き 飛び、 あるいは着火を制御する。 本発明のパーナをボイラ火炉に適用することにより、 電力需要に対応したボイ ラ火炉の運用ができるため、 ボイラ火炉では電力用蒸気を必要以上に発生させる ことがなく、 効率的なボイラ火炉の運用ができ、 運用上大幅なコストダウンが図 れる。 図面の簡単な説明
図 1は、 本発明の第 1の実施例に係わる微粉炭パーナの低負荷運用時の断面 図である。
図 2は、 図 1の微粉炭パーナの高負荷運用時の断面図である。
図 3は、 図 1の微粉炭バ一ナを火炉側から見た正面図である。
図 4は、 図 1の微粉炭パーナの変形例の正面図である。
図 5は、 図 1の微粉炭パーナの変形例の断面図である。
図 6は、 図 1の微粉炭パーナの変形例の断面図である。
図 7は、 本発明の第 2の実施例に係わる微粉炭パーナの高負荷運用時の断面 図である。
図 8は、 図 7の微粉炭パーナの A- A線矢視図である。
図 9は、 本発明の第 3の実施例に係わる微粉炭パーナ断面図である。
図 1 0は、 図 9の微粉炭パーナを火炉側から見たパーナ正面図
図 1 1は、 本発明の第 4の実施例に係わる固体燃料パーナの低負荷運用時の 断面図である。
図 1 2は、 図 1 1の固体燃料パーナの高負荷運用時の断面図である。
図 1 3は、 図 1 1の固体燃料パーナを火炉側から見た正面図である。
図 1 4は、 図 1 1の固体燃料パーナの高負荷運用時の変形例の断面図である。 図 1 5は、 図 1 1の固体燃料パーナの変形例を火炉側から見た正面図である。 図 1 6は、 図 1 1の固体燃料バーナの変形例の断面図である。
図 1 7は、 本発明の第 5の実施例に係わる固体燃料パーナの低負荷運用時の 断面図である。
図 1 8は、 図 1 7の固体燃料パーナの高負荷運用時の断面図である。
図 1 9は、 本発明の第 6の実施例に係わる固体燃料パーナの断面図である。 図 20は、 図 19の固体燃料パーナを火炉側から見た正面図である。
図 21は、 本発明の第 7の実施例のパーナの断面図 (図 21 (a) ) と正面 図 (図 21 (b) ) である。
図 22は、 本発明の第 8の実施例のパーナの断面図 (図 22 (a) ) と正面 図 (図 22 (b) ) である。
図 23は、 本発明の実施例の火炉内でのパーナ (コーナフアイヤリング方 式) 配置による火炎の形成状態を示す火炉水平断面図である (図 23 (a) は高 負荷時、 図 23 (b) は低負荷時) 。
図 24は、 本発明の実施例のバ一ナを火炉内で (夕ンジェンシャルフアイャ リング方式) 配置による火炎の形成状態を示す火炉水平断面図である (図 24 (a) は高負荷時、 図 24 (b) は低負荷時) 。
図 25は、 本発明の実施例の火炉内でのバ一ナ (夕ンジェンシャルフアイャ リング方式) 配置によ火炎の形成状態を示す火炉水平断面図である (図 25 (a) は高負荷時、 図 25 (b) は低負荷時) 。
図 26は、 一般的な褐炭焚きボイラの構成図である (図 26 (a) は側面図、 図 26 (b) は火炉水平断面図) 。
図 27は、 本発明の実施例に係わる燃焼装置の概略図である。
図 28は、 図 27の燃焼装置の水平断面図である。
図 29は、 本発明の実施例に係わる微粉炭ボイラシステムの概略図である。 図 30は、 従来技術におけるパーナコンパートメントの一例を示す火炉側か ら見た正面図である。
図 31は、 従来技術におけるパーナのコ一ナフアイヤリング燃焼方式におけ る負荷下げ時の火炉内の燃焼領域の変化を示す火炉水平断面図である (図 31 (a) は高負荷時、 図 31 (b) は低負荷時) 。
図 32は、 従来技術における火炉中心部を監視する炉内用火炎検知器の配置 位置を示す火炉縦断面図である。 発明を実施するための最良の形態
本発明の実施の形態を図面と共に説明する。 図 2 6に一般的な褐炭焚きボイラ火炉 4 1の構成を示す。 図 2 6 ( a ) はタン ジヱンシャルフアイャリング方式の褐炭焚きボイラ火炉 4 1の側面図であり、 図 2 6 ( b ) は図 2 6 ( a ) の火炉 4 1の水平断面図である。
褐炭焚きボイラでは通常、 火炉 4 1上部より排ガスダクト 5 5 (図 2 8、 図 2 9 ) を用いて燃焼ガス (約 1 0 0 0 °C) を火炉 4 1内から引き出し、 ファンミル 4 5で石炭バン力 4 3から供給された褐炭の乾燥 ·粉砕を同時に行う。 火炉 4 1 内部の上部には過熱器 5 0 (図 2 9 ) などの伝熱管 5 9が配置される。 コ一ナフ アイャリング及び夕ンジェンシャルフアイャリング方式のバ一ナではバ一ナコン パ一トメント 3 7 (図 3 0参照) 毎に 1台のファンミル 4 5を設置する。
(第 1の実施例)
図 1と図 2は本発明に係わる第 1の実施例の固体燃料パーナ (以下、 単にバ一 ナという) 4 2の断面図であり、 図 1は低負荷条件下にあるバ一ナ 4 2から噴出 される燃料が火炉 4 1で燃焼している状態を示し、 図 2は高負荷条件下にあるバ —ナ 4 2から噴出される燃料が火炉 4 1で燃焼している状態を示す。 図 3は図 1 に示すパーナ 4 2を火炉 4 1側から見た概略図である。
バ一ナ 4 2の中心部に助燃用のオイルガン 2 4が設けられ、 該オイルガン 2 4 の周りに空気を噴出する中心空気ノズル 1 0が設けられ、 該中心空気ノズル 1 0 の外側に該中心空気ノズル 1 0と同心状に流路を形成した燃料とその搬送用気体 の混合流体を噴出する燃料ノズル 1 1が設けられる。 燃料ノズル 1 1の外側隔壁 2 2の内側に追加空気孔 (図示せず) または追加空気ノズル 1 2が設けられる。 本実施例では図 3に示すように燃料ノズル 1 1の外側隔壁 2 2の内側に沿って複 数本の追加空気ノズル 1 2を配置しているか、 外側隔壁 2 2に複数個の追加空気 孔を配置している。 また、 燃料ノズル 1 1の外側には該燃料ノズル 1 1と同心円 状の空気噴出用の二次空気ノズル 1 3と三次空気ノズル 1 4 (これらを合わせて 単に外側空気ノズルということがある) がある。 燃料ノズル 1 1外側の先端部 (火炉出口側) には保炎器 2 3と呼ばれる障害物を設ける。 保炎器 2 3は燃料ノ ズル 1 1から噴出する燃料とその搬送用気体の混合物の流れ (以下、 微粉炭流と 記す) 1 6や二次空気ノズル 1 3を流れる二次空気の流れ 1 7に対して障害物と して働く。 このため、 保炎器 2 3の下流側 (火炉側 4 1 ) の圧力が低下し、 この 部分は微粉炭噴流 1 6や二次空気の流れ 1 Ίとは逆方向の流れが誘起される。 こ の逆方向の流れを循環流 1 9と呼ぶ。循環流 1 9内には下流から微粉炭の燃焼で 生じた高温ガスが流れ込み、 滞留する。 この高温ガスと燃料噴流 1 6中の微粉炭 がパーナ 4 2出口の火炉 4 1内で混合することと、 火炉 4 1内からの輻射熱で微 粉炭粒子の温度が上昇し、 着火する。
図 1に示すバ一ナ 4 2では、 中心空気ノズル 1 0には風箱 2 6内の燃焼用空気 が供給される構成になっており、 ダンパ 3とその開閉装置 4が設けられている。 そのため中心空気ノズル 1 0を経由してパーナ 4 2に供給する中心空気量を火炉 の負荷に応じて調整することができる。
中心空気ノズル 1 0の中心部を貫通して設けられた助燃用のオイルガン 2 4は パーナ起動時に燃料着火用に使用する。 また、 中心空気ノズル 1 0から噴出する 空気に旋回力を与える旋回器 2 5が中心空気ノズル 1 0の先端部に設けられ、 空 気を供給する風箱 2 6に供給される空気は二次空気ノズル 1 3と三次空気ノズル 1 4から火炉 4 1内に供給される。 二次空気ノズル 1 3と三次空気ノズル 1 4か ら噴出する空気に旋回力を与える旋回器 2 7、 2 8をそれそれのノズル 1 3、 1 4内に設ける。
二次空気ノズル 1 3と三次空気ノズル 1 4は隔壁 2 9で隔てられ、 隔壁 2 9の 先端部分は微粉炭噴流 1 6に対して三次空気流 1 8が角度を持つように噴出させ るガイド (スリーブ) を形成している。 火炉壁を構成するバ一ナスロート 3 0は 三次空気ノズル 1 4の外側壁を兼ねる。 また、 火炉壁には水管 3 1が設けられて いる。
燃料ノズル 1 1内に設けられた流路を縮小する流路縮流部材 3 2が燃料ノズル 1 1の上流側の外側隔壁 2 2内側にあり、 また燃料を燃料ノズル 1 1の隔壁 2 2 側に濃縮するための濃縮器 3 3が中心空気ノズル 1 0の外側部に設けられている c 濃縮器 3 3は流路縮流部材 3 2よりパーナ下流側 (火炉側) に設けられている。 前記流路縮流部材 3 2を設けたことで燃料搬送用気体である燃焼排ガスより慣 性力が大きい燃料粒子 (微粉炭) の流れがパーナ中心軸方向に絞られる効果があ る。 さらに濃縮器 3 3を流路縮流部材 3 2より下流側に設けることで、 パーナ中 心軸方向に流路縮流部材 3 2で絞られた燃料粒子 (微粉炭) の流れが、 濃縮器 3 3を通過後、 燃料ノズル 1 1内の流路に沿って広がって流れる。
燃料ノズル 1 1内の流路に沿って広がって流れる燃料粒子 (微粉炭) は燃料搬 送用気体 (燃焼排ガス) より慣性力が大きいため、 燃料ノズル 1 1内壁面側に片 寄って流れて出口に向けて直進する。 このため、 燃料ノズル 1 1の壁面側に濃縮 された微粉炭流が生じて、 燃料ノズル 1 1出口付近で外側空気 (燃焼用空気) と 触れる機会が増えて、 されに保炎器 2 3の後流側にできる循璟流 1 9の高温ガス と接触して着火し易くなる。
本実施例では燃料の搬送用気体に燃焼排ガスを利用し、 微粉炭流 1 6中の酸素 濃度が低い場合のパーナ 4 2の構成と燃焼方法を説明する。 このような燃焼方法 を適用する事例として、 褐炭や亜炭の燃焼が挙げられる。
既に述べたように、 褐炭や亜炭に代表される石炭化度の低い石炭の燃焼は揮発 分や水分が多く、 また、 発熱量が石炭化度の高い石炭に比べて低く、 一般に粉砕 性が悪く、 燃焼灰の溶融温度が低いという特徴がある。 揮発分が多いため空気雰 囲気では貯蔵や粉砕過程において自然発火しやすいので褐炭や亜炭を微粉砕して 燃焼する場合は、 燃料の搬送用気体として酸素濃度が低い燃焼排ガスと空気との 混合気体が使われる。 また、 燃焼排ガスの保有熱によって微粉炭中の水分を蒸発 させることができる。
低い酸素濃度雰囲気下では褐炭や亜炭などの燃焼速度が空気中での燃焼速度に 比べて遅い。 そして、 低い酸素濃度の搬送用気体で褐炭や亜炭などの微粉炭を搬 送することにより、 その燃焼速度は褐炭や亜炭などと空気の混合速度に制約され、 空気で搬送できる瀝青炭に比べて燃焼速度が低下する。 このため、 燃料の燃焼量 が少ないパーナ 4 2の低負荷条件で褐炭や亜炭などを燃焼させると瀝青炭の燃焼 の場合よりも火炎の吹き飛びや失火が生じやすい。 また、 褐炭や亜炭などは、 そ の燃え切り時間が瀝青炭に比べて長くなり、 火炉出口での未燃焼分が増える。 こ のため、 空気との混合の促進が必要となる。 また、 燃焼量を増やし、 高い熱負荷 で褐炭や亜炭等を燃焼させた場合に空気との混合が良い条件では、 揮発分が多い ためパーナ 4 2近くで燃える燃料量が多くなる。 このようにバ一ナ 4 2近くの熱 負荷が局所的に高くなり、 輻射熱によりパーナ構造物や火炉壁が高温となると、 燃焼灰が付着、 溶融し、 パーナ構造物や火炉壁にスラッキングが生じるおそれが ある。 特に褐炭や亜炭は燃焼灰の溶融温度が低いため、 バ一ナ構造物や火炉壁に スラッキングが生じゃすい。
本実施例では石炭化度の低い石炭を用いる時のパーナ 4 2の高負荷条件と低負 荷条件で、 燃料の燃焼状態が異なることで生じる前記不具合は、 バ一ナ 4 2の負 荷に応じて火炎の形成位置を変えることで解決する。 すなわち、 高負荷条件では 火炎をパーナ 4 2から離れた位置に形成させ、 低負荷条件では火炎を燃料ノズル 1 1の出口から形成する。 低負荷条件では火炎を火炉壁やパーナ 4 2に近づけて も火炉 4 1内の熱負荷が低いため、 パーナ 4 2やその周囲の火炉壁の温度は高負 荷条件の場合よりも低くなる。 このため、 パーナ構造物や火炉壁にスラッキング が生じない。
低負荷条件では火炎を燃料ノズル 1 1の出口から形成させるため、 本実施例で は保炎器 2 3の下流側に形成される循環流 1 9に高温ガスを滞留させるほかに、 追加空気孔または追加空気ノズル 1 2から空気をパーナ内に供給することで保炎 器 2 3近くの微粉炭噴流 1 6中の酸素濃度を高める。 そのため燃焼速度が酸素濃 度が低い場合に比較して高くなり、 燃料粒子の着火が早まり、 火炎が燃料ノズル 1 1近くから形成できる。
また、 中心空気ノズル 1 0から空気を供給する方法も微粉炭噴流 1 6中の酸素 濃度を高め、 微粉炭の着火を早めるのに有効である。 このとき、 図 1に示すよう に中心空気ノズル 1 0中に旋回器 2 5を設け、 中心空気の流れ 1 5に旋回強度を 与えて微粉炭噴流 1 6との混合を促すことが有効である。 中心空気の流れ 1 5に 旋回強度を与えることで中心空気ノズル 1 0から出た空気の流れ 1 5は遠心力で 外側に広がるため、 火炉中心部に向かう流速が低下する。 このため、 微粉炭粒子 がパーナ出口付近での滞留する時間が長くなり、 パーナ 4 2の近くで燃焼が始ま る。
また、 中心空気ノズル 1 0や追加空気孔または追加空気ノズル 1 2は燃料ノズ ル 1 1出口よりも上流側に設けることが望ましい。 このとき、 燃料ノズル 1 1内 での微粉炭の着火による燃料ノズル 1 1の焼損や逆火現象を防ぐため、 燃料ノズ ル 1 1内での微粉炭の滞留時間が微粉炭の着火遅れ時間よりも短くなるように中 心空気ノズル 1 0や追加空気孔または追加空気ノズル 1 2の燃料ノズル 1 1内で の配置位置を決めることが望ましい。 通常は微粉炭などよりも着火遅れ時間の短 いガス燃料の着火遅れ時間 (約 0 . 1秒) と燃料ノズル 1 1内の流速 1 0〜2 0 m/sを目安にする。例えば、 燃料ノズル 1 1出口と中心空気ノズル 1 0出口の 間の距離や燃料ノズル 1 1出口と追加空気孔または追加空気ノズル 1 2出口の間 の距離を l m程度以内とする。
高負荷条件では火炎をパーナ 4 2から離れた位置に形成させることでパーナ近 くの熱負荷を低減させる。 このため、 本実施例では追加空気孔または追加空気ノ ズル 1 2からの空気供給量を低負荷条件の場合に比べて低減する。 また、 中心空 気ノズル 1 0からの空気供給量を増やし、 その空気流速も燃料ノズル 1 1内の微 粉炭噴流 1 6の噴出流速より高める。 追加空気の供給量が減ることにより、 保炎 器 2 3近くでの微粉炭噴流 1 6中の酸素濃度は低負荷条件のときより低くなり、 燃焼速度も遅くなる。 このため、 保炎器 2 3下流側にできる循環流 1 9の温度は 低くなり、 パーナ構造物の受ける輻射熱は抑制される。 また、 中心空気ノズル 1 0からの空気の流速が高まることで微粉炭噴流 1 6の燃料ノズル 1 1出口での流 速は高くなる。 このため、 バ一ナ近くでの燃料粒子の滞留時間は短くなり、 燃料 の大部分はパーナ 4 2から離れた位置で着火する。 こうして火炎から受ける輻射 熱を低減し、 パーナ構造物や火炉壁にスラッキングができることを抑制できる。 また、 本実施例では中心空気ノズル 1 0に旋回器 2 5を設け、 中心空気 1 5に 旋回強度を与える。 このため、 中心空気 1 5はパーナ 4 2から離れると、 広がつ て流れるので流速が低下し、 パーナ 4 2から離れた位置では空気流速と火炎伝播 の速度がつりあい、 安定に微粉炭が燃焼する。 さらに、 本実施例のように保炎器 2 3の下流側に循環流 1 9を形成させ、 燃料の一部を、 この循環流 1 9内で燃焼 させることで、 この領域の火炎がいわゆる袖火 (種火) とな ¾。 得られた種火か らパーナ 4 2より離れた位置で形成される火炎へ高温のガスを安定供給できるた め、 パーナ 4 2から離れた位置の火炎は安定し、 失火の危険は低減される。 + また、 微粉炭の燃焼により発生する排ガス中の N O x濃度を低減するには、 燃 料ノズル 1 1、 中心空気ノズル 1 0及び追加空気孔または追加空気ノズル 1 2か ら供給される空気量の合計と燃料中の揮発分を完全燃焼させるのに必要な空気量 の比 (揮発分に対する空気比) が 0. 85〜0. 95になるように、 空気量を調 整することが望ましい。 微粉炭の大部分は燃料ノズル 11から供給される空気と 混合、 燃焼し (第一段階) 、 その後、 二次空気流れ 17や三次空気流れ 18が混 合し、 燃焼する (第二段階) 。 さらに、 パーナ 42より下流側の火炉 41内に空 気を供給するアフターエアポート 49 (図 27参照) が設置されている場合には、 このアフターエアポート 49から供給される空気と混合し、 微粉炭は完全燃焼す る (第三段階) 。 燃料中の揮発分は固定炭素に比べて燃焼速度が速いため前記第 一段階で燃焼する。
このとき、 揮発分に対する空気比を 0. 85〜0. 95とすることで酸素不足 ではあるが、 微粉炭の燃焼は促進され、 高い火炎温度で微粉炭の燃焼が行われる 前記第一段階での燃焼で微粉炭を酸素が不足する還元燃焼をさせることから、 微 粉炭中の窒素や空気中の窒素から生じる NOxを無害な窒素に転換し、 火炉 41 から排出される NOx量を低減できる。 また、 高温で反応するため、 前記第二段 階の反応が促進され、 未燃焼分が低減できる。 表 1には空気量を変えた場合の火 炉出口から排出される NOxの濃度を比較した結果を示す。 ここで、 燃料には褐 炭を用い、 燃料比 (固定炭素/揮発分の比) 0. 82である。
【表 1】
条件 A 条件 B 燃料供給量 (定格負荷に対し) 100% 100% 燃料搬送気体の酸素濃度 (%) 10 10 燃料中の揮発分に対する空気比 搬送気体 0. 26 0. 26 A 中心空気 0. 48 0. 53 B 追加空気 0. 05 0. 05 C
(搬送気体 +中心空気 +追加空気) の合計 0. 79 0. 84 D ノ Π側Χ'」
Figure imgf000027_0001
屮 ¾ 3J ·ヽ _ζπ メヽノ n R 7 リ, υ
«¾ι +ISI 査 d计すス 卜卜 パーナ (搬送気体 +中心空気 +追加空気 +外側空
0. 80 0. 82 気) の合計
ァフ夕エア 0. 40 0. 40 火炉出口 NOx濃度 (ppm : 6%酸素濃度換算) 165 150 条件 Aに比べて条件 Bは揮発分に対する空気比 (表 1の D欄) が 0. 79から 0. 84となることで窒素酸化物の濃度を低減できる。
また、 本実施例のパーナ 42は図 3の火炉側から見た正面図に示すように円柱 状の空気ノズル 10、 燃料ノズル 11、 追加空気ノズル 12、 二次空気ノズル 1 3及び三次空気ノズル 14が同心円状に配置された円形状であるが、 燃料ノズル 11が角型の場合や、 図 4のパーナ 42を火炉側から見た正面図に示すように二 次空気ノズル 13及び三次空気ノズル 14等の外側空気供給用ノズルの少なくと も一部で燃料ノズル 1 1を挟むように設置した空気ノズル構造としても良い。 ま た、 図 5のパーナ断面図に示すように外側空気を 1つのノズル (二次空気ノズル 13) から供給する場合や、 三以上に分割したノズル構造 (図示せず) としても 良い。 また、 本実施例は図 1、 図 2に示されるように燃料ノズル 1 1内に流路を 縮小する流路縮流部材 32や燃料粒子を燃料ノズル外側隔壁 22側に濃縮するた めの濃縮器 33を設けているが、 これらの構成物がない場合 (図 5) でも良い。 また、 本実施例では図 1や図 2に示すように燃料ノズル 11の外側隔壁 22の 先端に保炎器 23を設けたが、 図 5に示すように保炎器 23を設けないで外側空 気の流れ (二次空気の流れ 17) に旋回強度を与え、 外側隔壁 22の先端の下流 に循環流 19を誘起するための拡管部材 50を設けても良い。
また、 図 6には図 1に示すバ一ナ 42の変形例を示す。
このパーナ 42の追加空気ノズル 12への空気供給部は、 風箱 26から燃焼用 空気ではなく、 該空気供給部に燃焼用気体を供給するために専用に設けられた燃 焼用気体供給装置 (図示せず) に接続した例である。 追加空気ノズル 12への空 気供給部に専用の燃焼用空気供給装置に接続することで、 微粉炭等の固体燃料の 燃焼性に応じて、 又は火炉 4 1の負荷が低下したときなどに酸素濃度を増した気 体又は純酸素を追加空気ノズル 1 2へ容易に供給することができる。 また燃焼用 空気流量調節機構 (図示せず) を専用の燃焼用気体供給装置に設置できるので、 その供給量の制御が可能となる。
また、 燃料の着火時に有効な燃焼用気体 (空気) を専用の燃焼用空気供給装置 から追加空気ノズル 1 2を絰由してパーナ 4 2に導入すると、 風箱 2 6で得られ る燃焼用空気圧力とは異なる燃焼用空気圧力とすることができる。 また、 専用の 燃焼用空気供給装置に燃焼用空気流量調節機構を設置できるので、 その供給量の 制御が簡単に行える。
(第 2の実施例)
図 7には本発明の第 2の実施例のパーナ 4 2の断面図を示す。 図 7には火炉 4 1が高負荷条件で運用されている場合のパーナ 4 2の運用状態を示すが、 本実施 例は第 1の実施例とは中心空気ノズル 1 0内の旋回器 2 5の配置位置を移動可能 な構成にしたことが相違している。 本実施例のバ一ナ 4 2を低負荷条件で運用す る場合は、 図 1に示す第 1の実施例の低負荷条件下でのパーナ 4 2の運用状態を 示す図と全く同一であり、 旋回器 2 5の配置位置を中心空気ノズル 1 0の先端部 に移動させる。 また、 高負荷条件でのパーナ運用状態は図 2に示す場合の高負荷 条件での運用状態と比較して中心空気ノズル 1 0に配置した旋回器 2 5の位置を 上流側に移動させたことが異なる。 また旋回器 2 5を中心空気ノズル 1 0の上流 側に移動させた場合には、 中心空気ノズル 1 0のノズル断面積を大きくして、 該 ノズル断面積に対して旋回器 2 5の占める割合を中心空気ノズル 1 0の先端部 (下流側) に旋回器 2 5を配置した場合に比較して小さくしたことが前記第 1の 実施例のバ一ナ 4 2とは異なる。
本実施例のパーナ 4 2を用いた場合に、 火炉 4 1が高負荷条件下にあるときの 中心空気の流れ 1 5の旋回流速を変えた場合について、 以下説明する。
高負荷条件下では、 第 1の実施例と比較して旋回器 2 5の設置位置を中心空気 ノズル 1 0の上流側に移動させ、 火炎をパーナ 4 2から離して形成させることで パーナ近くの熱負荷を低減させる。 このため、 本実施例では、 高負荷条件下での 追加空気孔 (図示せず) または追加空気ノズル 1 2からの空気供給量を低負荷条 件下での運用時に比べて低減する。
また、 高負荷条件下では中心空気ノズル 1 0の流路幅内での旋回器 2 5の断面 積が低負荷条件下に比べて大きくなるので中心空気ノズル 1 0から噴出する空気 に与える旋回強度が低減される。 このため、 旋回強度が高い場合と比べて中心空 気の流れ 1 5はノズル 1 0から火炉 4 1内への噴出後に広がらない。 従って、 ) —ナ近くでの燃料粒子の滞留時間は短くなり、 パーナ近くで燃焼する燃料量が少 なくなる。 こうして、 バ一ナ構造体及び火炉壁が火炎から受ける輻射熱が低減し、 パーナ構造物や火炉壁にスラッキングが生成することを抑制できる。 また、 保炎 器 2 3下流の循環流 1 9の温度も火炎からの輻射熱の低減に伴って低くなる。 本実施例では中心空気の流れ 1 5の旋回流速を変化させ場合の効果について述 ベたが、 第 1の実施例のように各空気ノズル 1 0〜1 4に供給する空気量を変え る方法を併用しても良い。 このときの作用は第 1の実施例に述べたのと同様であ る。
また、 本実施例では、 中心空気ノズル 1 0から噴出する空気に旋回強度を与え る方法として、 空気の流れに対し傾いて設置された羽根により旋回強度を誘起す る旋回器 2 5を用いた場合を示す。 また旋回強度を変える方法として、 本実施例 では旋回器 2 5の設置位置を中心空気ノズル 1 0内で変え、 ノズル断面積に対し 旋回器 2 5の占める割合を変更する方法を用いている。 前記旋回強度を変える方 法としては、 旋回器 2 5の羽根の傾き角度を変える方法を用いてもよい。 また、 図 8の中心空気ノズル 1 0の断面図に示すように中心空気ノズル 1 0の上流側の 配管 5 2を 2つの配管 5 2 a、 配管 5 2 bに分け、 中心空気ノズル 1 0の断面に 対して接線方法に空気を流入させることで前記旋回強度を変える方法でもよい。 この場合、 高負荷条件下では対向する 2つの配管 5 2 a、 配管 5 2 bを用いるこ とで旋回強度は相殺される。 また、 低負荷条件下では片方の配管 5 2 a又は配管 5 2 bから主に空気を流入させることで、 前記旋回強度を強くすることができる。
(第 3の実施例) 本発明の実施例の固体燃料として褐炭、 亜炭などの石炭を燃料とするパーナ 4 2の断面図を図 9に示し、 図 1 0はこのパーナを火炉側から見た正面図である。 燃料の微粉炭と燃料排ガスの混合流体は、 燃料ノズル 1 1を通して火炉 4 1に 供給される。 燃料ノズル 1 1の先端には断面 L型のさめ歯保炎器 3 6が設置され、 その後流側に形成される循環流 1 9の効果によりパーナ近傍から火炎が形成され る。 図 9に示すパーナの特徴的な構成はさめ歯状の保炎器 2 3の間に着火用空気 が流入するように追加空気孔 (図示せず) または追加空気ノズル 1 2を設けてい る (図 1 0参照) ので、 微粉炭はさめ歯状の保炎器 3 6を廻り込んで着火しやす くなる (さめ歯状の保炎器 3 6の後側で着火する) 。
(第 4の実施例)
図 1 1と図 1 2は本発明に係わる第 4の実施例を示すパーナ 4 2の断面図であ り、 図 1 1は低負荷条件にあるパーナ 4 2から噴出される燃料が火炉 4 1で燃焼 している状態を示し、 図 1 2及び図 1 4は高負荷条件下にあるパーナ 4 2から噴 出される燃料が火炉 4 1で燃焼している状態を示す。 図 1 3は図 1 1に示すバー ナ 4 2を火炉 4 1側から見た概略図である。
第 4の実施例に示すパーナ 4 2は、 中心部に助燃用のオイルガン 2 4が設けら れ、 該オイルガン 2 4の周囲に燃料とその搬送用気体の混合流体を噴出する燃料 ノズル 1 1が設けられる。 燃料ノズル 1 1の壁面 2 2の内側に沿って複数本の追 加空気孔 (図示せず) または追加空気ノズル 1 2を配置している。 また、 燃料ノ ズル 1 1の外側には該燃料ノズル 1 1と同心円状の空気噴出用の二次空気ノズル 1 3と三次空気ノズル 1 4がある。 燃料ノズル 1 1の壁面先端部 (火炉 4 1出口 側) の外側には保炎器 2 3が設けられている。 保炎器 2 3は燃料ノズル 1 1から 噴出する微粉炭流 1 6や二次空気ノズル 1 3を流れる二次空気の流れ 1 7に対し て障害物として働く。 このため、 保炎器 2 3の下流側 (火炉 4 1内部) の圧力が 低下し、 この部分は微粉炭流 1 6や二次空気の流れ 1 7とは逆方向の流れが誘起 され、 循環流 1 9を生じ、 該循環流 1 9において火炉 4 1内からの輻射熱で燃料 粒子の温度が上昇し、 着火する。
また、 外側空気ノズル (二次空気ノズル 1 3、 三次空気ノズル 1 4など) の出 口に外側空気の噴出方向をパーナ 4 2の中心軸から離れる方向に誘導するガイド 2 5を設けると保炎器 2 3と共に循環流 1 9が容易に形成される。
燃料ノズル 1 1の中心部を貫通して設けられた助燃用のオイルガン 2 4はバー ナ 4 2起動時に燃料着火用に使用される。 また、 二次空気ノズル 1 3と三次空気 ノズル 1 4から噴出する空気に旋回力を与える旋回器 2 7、 2 8をそれそれのノ ズル 1 3、 1 4内に設ける。
二次空気ノズル 1 3と三次空気ノズル 1 4は隔壁 2 9で隔てられ、 隔壁 2 9の 先端部分は微粉炭流 1 6に対して三次空気流 1 8が外側に広がるように噴出させ るガイド 2 5を形成している。 火炉 4 1壁を構成するバーナスロート 3 0は三次 空気ノズル 1 4の外周壁を兼ねる。 また、 火炉 4 1壁には水管 3 1が設けられて いる。
燃料ノズル 1 1内に設けられた流路を縮小する流路縮小部材 3 2が燃料ノズル 1 1の上流側の隔壁 2 2内側にあり、 また、 燃料を燃料ノズル 1 1の隔壁 2 2側 に濃縮するための濃縮器 3 3がオイルガン 2 4の外側部に設けられている。 濃縮 器 3 3は流路縮小部材 3 2よりパーナ 4 2の下流側 (火炉 4 1側) に設けられて いる。
本実施例では、 燃料の搬送用気体に火炉 4 1から排出する燃焼排ガスを利用し、 微粉炭流 1 6中の酸素濃度が低い場合のパーナ構成と褐炭や亜炭の燃焼方法を説 明する。
石炭化度の低い燃料を用いる時のバ一ナ 4 2の高負荷条件と低負荷条件で、 燃 焼状態が異なることで生じる低負荷で燃焼時の火炎の吹き飛びや失火の不具合や、 高負荷燃焼時の燃焼灰がパーナ構造部などへ付着、 溶融する不具合は、 本実施例 ではバ一ナ 4 2の負荷に応じて火炉 4 1内での火炎の形成位置を変えることで解 決する。 すなわち、 高負荷条件では火炎をパーナ 4 2から離れた火炉 4 1内の位 置に形成させ、 低負荷条件では火炎を燃料ノズル 1 1の出口付近の火炉 4 1内か ら形成させる。低負荷条件では火炎を火炉 4 1壁やパーナ 4 2に近づけても火炉 4 1内の熱負荷が低いため、 パーナ 4 2やその周囲の火炉壁の温度は高負荷条件 の場合よりも低くなる。 このため、 パーナ構造部や火炉壁にスラヅキングが生じ ない。 低負荷条件では火炎を燃料ノズル 1 1の出口付近の火炉 4 1内から形成させる ため、 本実施例では保炎器 2 3及びガイド 2 5の下流側に形成される循環流 1 9 に高温ガスを滞留させる他に、 追加空気孔 (図示せず) または追加空気ノズル 1 2から空気を供給することで保炎器 2 3近くの微粉炭流 1 6中の酸素濃度を高め ることができる。 このため、 燃焼速度は酸素濃度が低い場合に比べて高くなるの で、 燃料粒子の着火が早まり、 火炎が燃料ノズル 1 1近くの火炉 4 1内から形成 できる。
また、 追加空気孔 (図示せず) または追加空気ノズル 1 2は燃料ノズル 1 1の 先端部 (火炉 4 1出口部) よりも上流側に設けることが望ましい。 このとき、 燃 料ノズル 1 1内での燃料の着火による燃料ノズル 1 1の焼損や逆火現象を防ぐた め、 燃料ノズル 1 1内での燃料の滞留時間が燃料の着火遅れ時間よりも短くなる ように追加空気孔または追加空気ノズル 1 2の燃料ノズル 1 1内での配置を決め ることが望ましい。 通常は微粉炭などよりも着火遅れ時間の短いガス燃料の着火 遅れ時間 (約 0 . 1秒) と燃料ノズル 1 1内の流速 1 0〜2 O m/ sを目安にす る。例えば、 燃料ノズル 1 1出口と追加空気孔 (図示せず) または追加空気ノズ ル 1 2出口の距離を l m程度以内とする。
火炉 4 1の高負荷条件では、 火炎をパーナ 4 2から離れた火炉 4 1内の位置に 形成させることでパーナ 4 2近くの熱負荷を低減させる。 このため、 本実施例で は追加空気孔 (図示せず) または追加空気ノズル 1 2からの空気供給量を低負荷 条件の場合に比べて低減させる。 追加空気の供給量が減ることにより、 保炎器 2 3近くでの微粉炭流 1 6中の酸素濃度は低負荷条件のときよりも低くなり、 燃焼 速度も遅くなる。 このため、 保炎器 2 3下流側にできる循環流 1 9の温度は低く なり、 パーナ構造物の受ける輻射熱を低減し、 スラッキングを抑制できる。 本実施例のように、 保炎器 2 3の下流側に循環流 1 9を形成させ、 燃料の一部 をこの循環流 1 9内で燃焼させることで、 この領域の火炎がいわゆる袖火 (種 火) となる。 得られた袖火からパーナ 4 2より離れた火炉 4 1内の位置で形成さ れる火炎へ高温のガスを安定供給できるため、 パーナ 4 2から離れた位置の火炎 は安定し、 失火の危険は低減される。
また、 図 1 4には火炉 4 1の高負荷条件において、 パーナ 4 2の火炎を保炎器 2 3の下流側の循環流 1 9から離れて形成させた場合を示す。 この場合、 失火の 危険を低減するため、 火炎は図 2 3 ( a ) に示す本発明のパーナ 4 2を用いた燃 焼装置 (火炉 4 1 ) の水平断面図のように、 火炎 2 0同士を火炉 4 1内で混合す ることで、 炉内で安定燃焼させることが望ましい。 図 2 3 ( a) ではパーナ 4 2 が火炉 4 1壁の四隅に設置される場合を示すが、 対向する火炉 4 1壁にパーナ 4 2が配置される対向燃焼方式の場合も同じである。
また、 燃焼により発生する N O x濃度を低減させるには、 燃料ノズル 1 1と追 加空気孔または追加空気ノズル 1 2から供給される空気量の合計と燃料中の揮発 分を完全燃焼させるのに必要な空気量の比 (揮発分に対する空気比) を 0 . 8 5 〜0 . 9 5となるように空気量を調整することが望ましい。燃料の大部分は燃料 ノズル 1 1内の追加空気孑しまたは追加空気ノズル 1 2から供給される空気と混合、 燃焼し (第一段階) 、 その後、 二次空気流れ 1 7や三次空気流れ 1 8と混合され、 燃焼する (第二段階) 。 さらに、 バ一ナ 4 2より下流側の火炉 4 1内に空気を供 給するァフ夕エア一ポート 4 9 (図 2 7参照) が設置されている場合には、 この ァフ夕エア一ポート 4 9から供給される空気と混合し、 燃料は完全燃焼する (第 三段階) 。 燃料中の揮発分は固定炭素に比べて燃焼速度が速いため上記の第一段 階で燃焼する。
このとき、 揮発分に対する空気比を 0 . 8 5〜0 . 9 5とすることで、 酸素不 足ではあるが、 燃料の燃焼は促進され、 高い火炎温度で燃焼できる。 前記第一段 階での燃焼で燃料は酸素が不足する還元燃焼をさせることから、 燃料中の窒素や 空気中の窒素から生じる N O xを無害な窒素に転換し、 火炉 4 1から排出される N〇x量を低減でき、 前記第二段階の反応が促進され、 未燃焼分が低減できる。 表 2には空気量を変えた場合の火炉 4 1出口から排出される窒素酸化物の濃度を 比較した結果を示す。 ここで、 燃料には褐炭を用い、 燃料比 (固定炭素/揮発分 の比) 0 . 8 2である。
表 2中の揮発分に対する空気比 (表 2の C欄) が条件 Aでは 0 . 7 0であるが、 条件 Bでは 0 . 8 5となるため、 火炎中の窒素酸化物の濃度を低減できる。 【表 2】
Figure imgf000034_0001
また、 本実施例のパーナ 4 2は図 1 3の火炉 4 1側から見た正面図に示すよう に円柱状の燃料ノズル 1 1、 二次空気ノズル 1 3及び三次空気ノズル 1 4が同心 円状に配置された円形状であるが、 燃料ノズル 1 1が角型の場合や濃縮器 3 3が 角型の場合、 図 1 5 (パーナ 4 2を火炉 4 1側から見た正面図) に示すように二 次空気ノズル 1 3及び三次空気ノズル 1 4等の外側空気ノズルの少なくとも一部 が燃料ノズル 1 1を挟むように設置した空気ノズル構造としても良い。 また、 図 1 5のパーナ 4 2に示されるように追加空気ノズル 1 2を燃料ノズル 1 1の壁面 2 2に沿って設けた 1つのノズルとしても良い。
また、 図 1 6のバ一ナ 4 2の断面図に示すように外側空気を 1つのノズル (二 次空気ノズル 1 3 ) から供給する場合や、 三つ以上に分割したノズル構造 (図示 せず) としても良い。 また、 本実施例は図 1 1、 図 1 2に示されるように燃料ノ ズル 1 1内に流路を縮小する流路縮小部材 3 2や燃料粒子を燃料ノズル 1 1の壁 面 2 2の内側に濃縮するための障害物 (濃縮器) 3 3を設けているが、 これらの 構成物がない場合でも図 1 1〜図 1 5に示すパーナ 4 2と同じ作用が得られる。 また、 本実施例では図 1 1や図 1 2に示すように燃料ノズル 1 1の先端部壁面
2 2に保炎器 2 3を設けたが、 図 1 6に示すように燃料ノズル 1 1から離れる方 向に外側空気の流れ (二次空気の流れ 1 7 ) を噴出させるガイド 3 5を設けるこ とで該ガイド 3 5の裏側 (火炉 4 1の中心側) 近傍に循環流 1 9を形成させる方 法でもかまわない。
(第 5の実施例)
図 1 7と図 1 8は本発明に係わる第 5の実施例を示すパーナ 4 2の断面図であ り、 図 1 7は低負荷条件にあるパーナ 4 2から噴出される燃料が火炉 4 1で燃焼 している状態を示し、 図 1 8は高負荷条件下にあるパーナ 4 2から噴出される燃 料が火炉 4 1で燃焼している状態を示す。
本実施例が第 4の実施例と異なる主なところは、 燃料ノズル 1 1の壁面 2 2の 先端に保炎器 2 3やガイド 3 5を設けていないことである。 保炎器 2 3やガイド
3 5を設けずに火炎形状を変えるため、 本実施例では二次空気流路に設けた旋回 器 2 7を用いる。
火炉 4 1の低負荷条件では火炎を燃料ノズル 1 1の出口から形成させる。 この ため、 追加空気孔 (図示せず) または追加空気ノズル 1 2から空気を供給するこ とで燃料ノズル 1 1の隔壁 2 2近くでは微粉炭流 1 6中の酸素濃度を高める。 こ のため、 燃焼速度は酸素濃度が低い場合に比べて高くなるので、 燃料粒子の着火 が早まり、 火炎が燃料ノズル 1 1近くから形成できる。
さらに本実施例では二次空気ノズル 1 3に設けた旋回器 2 7により二次空気に 強い旋回流速 (通常、 スワール数で 1以上) を与える。 旋回流速による遠心力で 二次空気の流れ 1 7は二次空気ノズル 1 3から噴出後、 微粉炭流 1 6から離れる 方向に広がる。 このとき、 微粉炭流 1 6と二次空気の流れ 1 7の間の領域では圧 力が低下し、 微粉炭流 1 6や二次空気の流れ 1 Ίとは逆方向の流れである循環流 1 9が誘起される。 また、 二次空気ノズル 1 3に流量を減らすダンパ (図示せ ず) を取り付け、 二次空気の流量をゼロ近くまで減らすことで、 三次空気ノズル 1 4内の三次空気の流れ 1 8と微粉炭流 1 6の間に循環流 1 9を誘起できる。 火炉 4 1の高負荷条件では、 火炎をパーナ 4 2から離れた火炉 4 1内の位置に 形成させることでパーナ 4 2近くの熱負荷を低減させる。 このため、 追加空気孔 または追加空気ノズル 1 2からの空気供給量を低負荷条件の場合に比べて低減す る。 追加空気の供給量が減ることにより、 燃料ノズル 1 1の壁面 2 2近くでは微 粉炭流 1 6中の酸素濃度は低負荷条件のときよりも低くなり、 燃焼速度も遅くな る。 さらに本実施例では二次空気ノズル 1 3に設けた旋回器 2 7により二次空気 に与える旋回流速を弱める。 このため二次空気の流れ 1 7は二次空気ノズル 1 3 から噴出後、 微粉炭流 1 6と平行に流れるため、 微粉炭流 1 6と二次空気の流れ 1 7の間の領域には逆方向の流れである循環流 1 9が生じない。 また、 二次空気 ノズル 1 3に取り付けたダンパ (図示せず) を開け、 二次空気の流量を増やすこ とで、 微粉炭流 1 6と二次空気の流れ 1 7の間の領域に逆方向の流れである循環 流 1 9を生じないようにさせることができる。
(第 6の実施例)
図 1 9は本発明の第 6の実施例による固体燃料バ一ナ 4 2の断面図を示し、 図 2 0はこのバ一ナ 4 2を火炉 4 1側から見た正面図である。
燃料と燃焼排ガスの混合流体は、 燃料ノズル 1 1を通して火炉 4 1に供給され る。 燃料ノズル 1 1の先端には断面 L型のさめ歯保炎器 3 6が設置され、 その後 流側 (火炉 4 1の内側) に形成される循環流 1 9の効果によりパーナ 4 2近傍か ら火炎が形成される。 図 1 9に示すパーナ 4 2の特徴的な構成はさめ歯状の保炎 器 3 6の間に着火用空気が流入するように追加空気孔 (図示せず) または追加空 気ノズル 1 2 (図 2 0参照) を設けているので、 燃料はさめ歯状の保炎器 3 6を 回りこんで着火しやすくなる (さめ歯状の保炎器 3 6の後側で着火する)
(第 7の実施例)
本発明の第 7の実施例について説明する。 第 7の実施例のパーナの断面図を図 2 1に示す。 図 2 1 ( a ) はパーナ断面、 図 2 1 ( b ) は火炉側から見たパーナ 正面図である。 燃料の微粉炭と搬送用気体 (一次空気) の混合流体は燃料ノズル 1 1を通して 火炉 4 1に供給される。 燃料ノズル 1 1の先端には断面 L型のさめ歯保炎器 3 6 が設置され、 その後流側に形成される循環流 1 9の効果によりパーナ近傍から火 炎が形成される。
燃料ノズル 1 1の内部には濃縮器 3 3が設置されており、 保炎器 3 6近傍の微 粉炭濃度を高めることにより、 着火を促進している。 燃料ノズル 1 1外周には風 箱 2 6より燃焼用空気 (二次空気流れ 1 7及び三次空気流れ 1 8 ) が供給される。 三次空気流れ 1 8は旋回器 2 8によって適正な旋回が与えられ、 低 N O x燃焼に 最適な条件が設定される。 三次空気流れ 1 8は更に案内板 2 9によって外側に広 げられ、 火炎中心部を空気不足とする、 いわゆる燃料過剰な条件が形成されて、 微粉炭燃焼の低 N◦ X化に適した燃焼が得られる。
図 2 1に示すパーナの特徴的な構成は、 濃縮器 3 3と燃料ノズル 1 1の内壁の 間に着火用の追加空気孔 (図示せず) または追加空気ノズル 1 2を設けているこ とである。 濃縮器 3 3により燃料ノズル 1 1の内壁側に濃縮されて流れる微粉炭 流に着火用追加空気が供給されることで、 微粉炭濃度が所定濃度以上に維持され た条件下で酸素濃度が高まるので、 着火性が向上する。 またパーナ 4 2の中心軸 部にはパーナ起動時に用いられる油バ一ナ 2 4が配置されている。 燃料ノズル 1 1先端部の濃縮器 3 3と保炎器 3 6との間に着火用追加空気と混合流体の混合領 域 Sを設けている。 これにより着火用空気 2 1と燃料ノズル 1 1内の混合流体の 混合が充分に行える。 さらに、 さめ歯状の保炎器 3 6の間に着火用追加空気孔ま たは追カ卩空気ノズル 1 2の出口を設けている (図 2 1 ( b )参照) ので、 さめ歯 状の保炎器 3 6を廻り込んで着火しやすくなる (さめ歯状の保炎器 3 6の風下で 着火)
また、 外側空気ノズル (二次空気流れ 1 7、 ≡次空気流れ 1 8 ) の流路出口に 外側空気の噴出方向を拡げる方向に誘導するガイド 3 6 ' を設けても良い。 ガイ ド 3 6 ' は保炎器 3 6と共に循環流 1 9がさらに容易に形成される。 このガイド 3 6 'は低負荷時に火炉壁近傍で火炎を形成するのに有利である。 またガイド 3 6 5 が必ずしも設ける必要はない。 (第 8の実施例)
図 2 2 (図 2 2 ( a ) はパーナ 4 2の断面図、 図 2 2 ( b ) は火炉側から見た パーナ正面図である。 ) に示す第 8の実施例のバ一ナ 4 2の特徴は、 着火用追加 空気孔または追加空気ノズル専用の供給ライン 6 6から着火用追加空気孔 (図示 せず) または追加空気ノズル 1 2を介して着火用空気 6 7を、 該着火用追加空気 6 7と燃料ノズル 1 1内の混合流体の混合領域 Sに導入する構成である。
図 2 2に示すバ一ナ 4 2では、 供給ライン 6 6から導入される着火用追加空気 6 7は風箱 2 6で得られる空気圧力とは異なる空気圧力とすることができるため、 追加空気孔 (図示せず) または追加空気ノズル 1 2の大きさを自由に選定できる c また、 専用の着火用追加空気ライン 6 6に着火用空気流量調節機構 (図示せず) を設置できるので、 その供給量の制御が簡単に行える。 また着火用空気 6 7とし て酸素富化気体を用いることで、 着火性をさらに向上させることができる。 図 2 3に本発明の前記実施例のいずれかのバーナをコ一ナフアイャリング方式 のパーナとして用いた火炉 4 1の水平断面図を示す。
コーナファイヤリング方式のバ一ナにおいては通常、 火炉 4 1四隅にバーナコ ンパ一トメント 3 7 (図 3 0参照) を設置するための水平部を設けてある。 図 2 3 ( a ) に示す火炉 4 1の高負荷時にはパーナコンパートメント 3 7の各バ一ナ からの噴流はバ一ナ根元に吹き飛び部 3 8を形成し、 火炉 4 1内に安定した燃焼 領域を形成する。
図 2 3に示すコーナファイヤリング方式のパーナの運用の一例として、 例えば、 火炉内の安定した燃焼領域の形成に寄与する最外側の三次空気ノズル 1 4の三次 空気流 1 8の流速は 5 O m/ s以上、 排ガスで供給される微粉炭流 1 6の流速は 5 m/ s ~ 3 O m/ s , 燃料の着火を促進する中心空気ノズル 1 0の空気流速は 5 m/ s〜2 O m/ sである。
図 2 3 ( b ) に示す火炉 4 1が低負荷条件下にあるときには後で燃焼用空気の 配分や旋回を変化させ、 各パーナから自己保炎型火炎 3 6を形成させる。 図 2 4 は火炉 4 1の各側壁に設けた 4つのバーナコンパートメント 3 7から燃料を火炉 4 1内に供給した場合の一実施例を示し、 図 2 5は火炉 4 1の各側壁に設けた 6 つのパーナコンパートメント 3 7から燃料を火炉 4 1内に投入する場合の一実施 例である。 図 2 5 ( a ) は高負荷時を示し、 図 2 5 ( b ) は低負荷時を示す。 以上の設定により、 高負荷時にはパーナ 4 2の根元では酸素濃度が低く、 高温 ガスの循環などの熱源もないため、 燃料は着火せず、 吹き飛び部 3 8を形成する c 火炉 4 1の中央部でその他のバ一ナ 4 2から噴流及び最外側の空気ノズル 1 4と 混合し、 安定した燃焼領域を形成することによって初めて安定燃焼する。高負荷 での運用おける最外側の空気ノズル 1 4の役割は従来と同様、 火炉内の燃焼領域 の形成の安定化であり、 例えば流速は 5 O m/ s以上が望ましい。
すなわち、 本発明では、 従来のコーナファイヤリング及び夕ンジェンシャルフ アイヤリング方式の火炉 4 1において、 高負荷時には燃料噴流のバ一ナ 4 2の根 元に吹き飛び部 3 8を形成し、 火炉 4 1内に安定した燃焼領域を形成する方式、 低負荷時には燃料噴流のパーナ 4 2の根元から保炎させる自己保炎方式をそれそ れ用いることによって、 幅広い火炉 4 1の負荷変化までの負荷変化に対応可能と するものである。
具体的な方法として、 各火炉壁面の水壁構造を改造せず、 パーナコンパ一トメ ント 3 7の一部を燃料と複数の燃焼用空気流路からなるパーナ構造に改造し、 各 燃焼用空気の配分、 燃料と燃焼用空気の噴流の旋回の有無により、 火炉の低負荷 及ぴ高負荷での運用を制御するものである。
また、 ここでは、 水壁を改造せず、 バ一ナコンパートメント 3 7の一部を改造 する方式のみを示しているが、 新設されるボイラにおいて隣接する二つのパーナ 4 2の間に水壁構造を設ける場合にも本発明は適用できる。 図 2 7は本発明の褐炭、 亜炭などの石炭パーナを用いた燃焼装置の概略図であ る。 また、 図 2 8は図 2 7の水平断面図である。 以下、 図 2 7と図 2 8に従って 説明する。
燃焼装置の火炉 4 1にパーナ 4 2を上下方向に二段、 水平方向に火炉 4 1の四 隅から中央に向かってパーナ 4 2を設置している。 石炭等のは燃料ホヅパ 4 3か ら給炭機 4 4を通してファンミル 4 5に供給される。 ファンミル 4 5で粉碎され た後、 微粉炭は燃料配管 5 4を通じてパーナ 4 2に供給される。 このとき、 火炉 4 1の上部から抜き出した燃焼排ガスを給炭機 4 4の下流側の排ガスダクト 5 5 内で石炭と混合してファンミル 4 5に導入している。 石炭を高温の燃焼ガスと混 合することで石炭中に含まれる水分が蒸発する。 また、 酸素濃度が低下するため、 ファンミル 4 5で粉碎の際に高温となっても自然着火や爆発を抑制できる。褐炭 の場合、 酸素濃度は 8〜1 5 %程度のことが多い。 パーナ 4 2とその下流側に設 けたァフ夕エアポート 4 9に供給する空気はブロア 4 6から供給される。 パーナ 4 2から燃料の完全燃焼に必要な空気量より少ない空気を投入し、 ァフタエアポ —ト 4 9から残りの空気を供給する二段燃焼方式を用いるが、 ァフ夕エアポート 4 9を設けず、 バ一ナ 4 2から必要な空気をすベて投入する単段燃焼方式でもか まわない。
パーナ 4 2では燃焼装置 (火炉 4 1 ) の負荷に伴って燃焼方式を変更する。 す なわち、 高負荷条件では火炎をパーナ 4 2から離れた位置に形成させることでバ ーナ 4 2近くの熱負荷を低減させる。 また、 低負荷条件では火炎を燃料ノズル 1 1出口から形成する。 このとき、 燃焼装置を安全に運用するため、 火炎の監視が 必要となる。 本発明では燃焼方式が負荷に伴って変更するため、 火炎の監視方式 も変更する方が望ましい。 すなわち、 低負荷条件ではパーナ 4 2毎に形成される 火炎を監視するため、 火炎検知機 4 7を個々のパーナ 4 2に設置する必要がある c また、 高負荷条件ではパーナ 4 2から離した位置に火炎を形成するため、 火炉中 心部を監視する火炎検知機 4 8を設置する要がある。 それそれの負荷と燃焼方法 に応じて、 火炎検知機 4 7、 4 8の信号を選択し火炎を監視する。
また、 高負荷条件でのパーナ構造物及び火炉壁へのスラッキングを低減するた め、 図示していな温度計や輻射量測定器を火炉壁ゃ微粉炭パーナ 4 2に設置し、 その信号に基づいて追加空気流量や中心空気流量を調整することも可能である。 固体燃料として褐炭、 亜炭などの石炭を燃料とする本発明の前記実施例記載の 各種バーナを微粉炭ボイラシステムに適用した場合の構成図を図 2 9に示す。 図 2 9に示す微粉炭ボイラは二段燃焼方法を用いるパーナ 4 2の配列とァフ夕 一エアポート 4 9を備えている。 パーナ 4 2は複数本設けられ、 火炉 4 1の高さ 方向に三段配列され、 火炉 4 1の水平方向にも五列配列されている。 火炉 4 1の 水平方向のパーナ配列は図示していないが、 パーナ 4 2の本数と配列はパーナ単 体の容量 (最大微粉炭燃焼量、 ボイラ容量など) 及びボイラの構造によって決定 される。
各パーナ 4 2は各段毎に風箱 2 6に収納される。 パーナ 4 2には助燃用のオイ ルを空気を搬送用気体として噴出するアトマイザを備え、 助燃料は分配器 5 8を 介して各パーナ 4 2のオイルノズル 2 4に供給される。 燃焼用空気 5 1は熱交換 器 5 2によって昇温し、 約 3 0 0 °C程度の加熱空気としてダンパ 5 6で流量が調 整された後、 風箱 2 6に導入され、 各パーナ 4 2から火炉 4 1内に噴出できるよ うに構成されている。 燃焼用空気 5 1はさらにァフ夕エアポート 4 9にダンパ 5 7を介して供給される。
火炉出口の排ガス出口部付近に接続される燃焼排ガスダクト 5 5から燃焼排ガ スが取り出され、 給炭機 4 4へ供給される。 微粉炭は搬送用排ガスと共にファン ミル 4 5に供給され、 ここで粉砕され、 粒径分布が調整された後、 パーナ 4 2に 供給される。 パーナ 4 2へ供給される微粉炭の粒径とその分布はボイラ負荷によ つて変化させる。 火炉 4 1の壁面は通常水冷却構造に成っており、 ここで一次蒸 気を生成させ、 この一次蒸気を過熱器 5 0で過熱して過熱蒸気として、 図示しな い蒸気タービンに送る。 蒸気夕一ビンは発電機に直結しているので、 発電機が作 動して電力を得ることができる。
微粉炭ボイラの燃焼排ガスを煙突 6 3から大気中に排出するための煙道には脱 硝装置 6 0、 電気集麈器 6 1及び脱硫装置 6 2などからなる排ガス浄化装置が設 けられている。
各パーナ 4 2に供給される燃焼用空気量は石炭の理論空気量の 8 9〜9 0容量 %とし、 アフターエアポート 4 9からのアフターエア量は、 石炭の理論空気量の 4 0〜3 0容量%程度にして全空気量として石炭の理論空気量の 1 2 0 %程度に なるように設定する。 微粉炭バ一ナ 4 2による火炎は理論空気量より少ない空気 量で燃焼させ、 アフターエアによって燃料の未燃分を少なくする。
また、 本発明のパーナ 4 2を使用し、 該バ一ナ 4 2を複数本火炉壁面に設け、 これらのパーナ 4 2により微粉炭を燃焼させて得られる燃焼熱により水を加熱し て蒸気を発生させる石炭焚きボイラと、 このボイラで得られた蒸気により駆動す る蒸気夕一ビンと、 該蒸気夕一ビンより駆動する発電機 (図示せず) を備えた石 炭火力発電システムを用いることで、 褐炭や亜炭などの石炭化度の低い石炭を利 用した火力発電が可能になる。 産業上の利用可能性
本発明によれば、 褐炭や亜炭などの石炭化度の低い石炭など燃焼性が比較的劣 る固体燃料であっても、 高負荷条件から低負荷条件まで、 広範囲にわたって安定 燃焼ができる固体燃料パーナ、 該パーナを用いた燃焼方法及び該バ一ナを備えた 火炉、 加熱炉または熱風発生炉等の燃焼装置とその運用方法、 さらには石炭焚き ボイラとそのシステム、 石炭火力発電システムが得られる。
本発明によれば、 搬送用気体として酸素濃度の低いガスを用いる場合でも、 バ ーナ近傍からの着火を可能とする。 そのため低負荷域でも、 褐炭など灰性状が劣 悪な粉砕炭でもパーナ出口近傍で速やかに高効率で燃焼させて、 燃焼ガスの低 N 〇 X化とバ一ナ周りの灰付着を防止することができる。

Claims

請 求 の 範 囲
1 . 空気を噴出する中心空気ノズルと、
該中心空気ノズルの外側に配置された固体燃料とその搬送用気体の混合流体を 噴出する燃料ノズルと、
前記燃料ノズルの内側壁面に設けられた空気を噴出する追加空気孔または追カロ 空気ノズルと、
前記燃料ノズルの外側に配置された燃焼用空気を噴出する一以上の外側空気ノ ズルと
を有することを特徴とする固体燃料パーナ。
2 . 前記中心空気ノズルと前記追加空気孔または追加空気ノズルのいずれ か一方、 又は両方のノズル出口が前記燃料ノズルの出口よりもパーナ上流側に位 置することを特徴とする請求項 1記載の固体燃料パーナ。
3 . 追加空気孔または追加空気ノズルには加熱及び/または加圧された空気 を供給導入することを特徴とする請求項 1記載の固体燃料パーナ。
4 . 前記中心空気ノズルの外側壁に、 パーナ上流側から順に断面積が漸増 する円錐部と断面積が漸減する円錐部から成る濃縮器を設けたことを特徴とする 請求項 1記載の固体燃料パーナ。
5 . 前記燃料ノズルの内側壁に、 パーナ上流側から順に前記ノズルの流路 断面積を一旦縮小した後、 元の大きさまで拡大する流路縮流部材を設けたことを 特徴とする請求項 1記載の固体燃料パーナ。
6 . 前記中心空気ノズル内に旋回器を設けたことを特徴とする請求項 1記 載の固体燃料パーナ。
7 . 前記外側空気ノズル内に旋回器を設けたことを特徴とする請求項 1記 載の固体燃料パーナ。
8 . 前記外側空気ノズルの出口に外側空気の噴出方向を決めるガイドを設 けたことを特徴とする請求項 1記載の固体燃料ノ ^ーナ。
9 . 前言己外側空気ノズルからの外側空気をパーナ中心軸に対して 4 5度以 下の傾斜角度で噴出させるガイドを外側空気ノズル出口に設けたことを特徴とす る請求項 1記載の固体燃料パーナ。
1 0 . 前記燃料ノズルと前記外側空気ノズルの間にノズルから噴出する固 体燃料混合物や空気の流れに対して障害となる保炎器を設けたことを特徴とする 請求項 1記載の固体燃料バ一ナ。
1 1 . 前記燃料ノズル出口内側に向けて突出するさめ歯状突起を有する保 炎器を設けたことを特徴とする請求項 1 0記載の固体燃料パーナ。
1 2 . 前記中心空気ノズルの下流側の流路断面積が前記中心空気ノズルの 上流側の流路断面積に比較して小さいことを特徴とする請求項 1記載の固体燃料 パーナ。
1 3 . 前記中心空気ノズル内の旋回器の設置位置を該中心空気ノズル内で パーナ中心軸方向に移動可能に配置したことを特徴とする請求項 1 2記載の固体 燃料パーナ。
1 4 . 燃焼負荷によって空気流れの旋回強度を変化させる旋回器を前記中 心空気ノズル内に設けたことを特徴とする請求項 1記載の固体燃料パーナ。
1 5 . 請求項 1記載の固体燃料パーナを用いた燃焼方法であって、 燃焼負 荷に応じて、 中心空気ノズルから噴出する空気を直進流又は弱い旋回流からなる 空気噴出方法と強い旋回流の空気噴出方法の二通りの空気噴出方法のいずれかを 選択可能な旋回器を設けたことを特徴とする固体燃料バ一ナを用いた燃焼方法。
1 6 . 請求項 1記載の固体燃料パーナを用いた燃焼方法であって、 燃焼負 荷が低い場合は、 前記中心空気ノズルから強い空気旋回流を噴出し、 燃焼負荷が 高い場合は、 前記中心空気ノズルから弱い空気旋回流又は直進流を噴出すること を特徴とする固体燃料パーナを用いた燃焼方法。
1 7 . 請求項 1記載の固体燃料パーナを用いた燃焼方法であって、 燃焼負 荷に応じて、 中心空気ノズルと追加空気孔またはノズルから噴出する空気量の割 合を変えることを特徴とする固体燃料パーナを用いた燃焼方法。
1 8 . 請求項 1記載の固体燃料パーナを用いた燃焼方法であって、 燃焼負 荷が低い場合は、 中心空気ノズルから噴出する空気を減らして、 同時に追加空気 孑しまたは追加空気ノズルから噴出する空気の割合を増やし、 燃焼負荷が高い場合 は中心空気ノズルから噴出する空気量を増やして、 同時に追加空気孔または追カロ 空気ノズルから噴出する空気量の割合を減らすことを特徴とする固体燃料パーナ を用いた燃焼方法。
1 9 . 請求項 1記載の固体燃料パーナを用いた燃焼方法であって、 燃料ノ ズル、 中心空気ノズルおよび追加空気孔または追加空気ノズルからそれそれ供給 される空気量の合計と燃料中の揮発分を完全燃焼させるのに必要な空気量の比を 0 . 8 5〜0 . 9 5となるように空気量を調整して燃焼させることを特徴とする 固体燃料ノ、'一ナを用いた燃焼方法。
2 0 . 請求項 1記載の固体燃料パーナの固体燃料の搬送用気体として燃焼 排ガスを用い、 該固体燃料パーナを複数本配置した火炉壁面を設けた燃焼装置。
2 1 . 請求項 1記載の固体燃料パーナを一ュニットとして、 その複数ュニ ットを四隅あるいは対向する側壁面にそれそれ対に成るように配置した火炉を備 えたことを特徴とする請求項 2 0記載の燃焼装置。
2 2 . 固体燃料パーナの中心空気ノズルは円筒形状であり、 該中心空気ノ ズルの上流側の部位に空気供給用の配管として一対の空気配管を接続し、 該一対 の空気配管を中心空気ノズルの円筒断面の対向する位置の接線方向から空気を流 入させるようにそれそれ接続したことを特徴とする請求項 2 0記載の燃焼装置。
2 3 . 燃焼装置を高い燃焼負荷で運用する場合は、 固体燃料パーナの中心 空気ノズルから噴出する空気量を増やして、 同時に追加空気孔または追加空気ノ ズルから噴出する空気量の割合を減らして固体燃料パーナから離れた位置から固 体燃料火炎を形成し、 燃焼装置を低い燃焼負荷で運用する場合は、 固体燃料バー ナの中心空気ノズルから噴出する空気を減らして、 同時に追加空気孔または追加 空気ノズルから噴出する空気の割合を増やして固体燃料バーナの燃料ノズル出口 直後から固体燃料火炎を形成することを特徴とする請求項 2 0記載の燃焼装置の 運用方法。
2 4 . 固体燃料パーナ又は該固体燃料パーナの外側の火炉壁面に温度計又 は放射強度計を設置し、 これらの計測装置の信号に基づき、 固体燃料パーナの中 心空気ノズルから噴出する空気量と空気旋回強度又は追加空気孔または追加空気 ノズルから噴出する空気量を調整することを特徴とする請求項 2 0記載の燃焼装 置の運用方法。
2 5 . 燃焼装置を高い負荷で運用する場合は燃料ノズル中心軸上で燃料ノ ズル出口から 0 . 5 m以上離れた火炉内の位置で燃焼させ、 燃焼装置を低い負荷 で運用する場合は火炉内の固体燃料火炎の先端が燃料ノズル出口外側部火炉壁面 近傍で燃焼させることを特徴とする請求項 2 0記載の燃焼装置の運用方法。
2 6 . 燃焼装置を高い負荷で運用する場合は固体燃料パーナの火炎が集ま る火炉内の中央部分の火炎を火炎検知器あるいは目視で監視し、 燃焼装置を低い 負荷で運用する場合は固体燃料パーナ出口近傍に形成される個々の火炎を監視す ることを特徴とする請求項 2 0記載の燃焼装置の運用方法。
2 7 . 燃焼装置を高い負荷で運用する場合には二つの空気供給用配管から 同じ空気流量を中心空気ノズル内に供給し、 燃焼装置を低い負荷で運用する場合 には二つの空気供給配管から中心空気ノズル内に供給する空気流量の配分に差異 を持たせることにより、 高負荷及び低負荷に応じた中心空気流れの旋回強度を調 整することを特徴とする請求項 2 2記載の燃焼装置の運用方法。
2 8 . 請求項 1記載の固体燃料パーナを複数本配置する壁面を備えた火炉 と、 該火炉内に設けられ、 前記火炉内での固体燃料の燃焼によって得られる火炎 で水を加熱して蒸気を発生させる熱交換器とを備えたことを特徴とする石炭焚き ボイラ。
2 9 . 請求項 2 8記載の石炭焚きボイラと、 該ボイラの排ガスの流路とな る煙道と、 該煙道に設けられた排ガス浄化装置と、 ボイラのパーナに石炭を微粉 炭として搬送する微粉炭搬送装置と、 該微粉炭搬送装置から固体パーナに供給す る微粉炭量を調整する微粉炭供給量調整装置と、 パーナから噴出する空気量を調 整する空気量調整装置とを備えたことを特徴とする石炭焚きボイラシステム。
3 0 . 請求項 1記載の固体燃料バ一ナを複数本配置する火炉壁面を備えた 火炉と、 該パーナにより固体燃料を燃焼させて得られる燃焼熱により水を加熱し て蒸気を発生させるボイラと、 該ボイラで得られた蒸気により駆動する蒸気夕一 ビンと、 該蒸気タービンより駆動する発電機を備えた石炭火力発電システム。
3 1 . 固体燃料とその搬送用気体の混合流体を噴出する燃料ノズルと、 前記燃料ノズルの内側壁面に配置された空気を噴出する追加空気孔または追カロ 前記燃料ノズルの壁面の外側に配置された空気を噴出する一つ以上の外側空気 ノズルと
を有することを特徴とする固体燃料バ一ナ。
3 2 . 追加空気孔または追加空気ノズルには加熱及び/または加圧された空 気を供給導入することを特徵とする請求項 3 1記載の固体燃料バ一ナ。
3 3 . 前記追加空気孔または追加空気ノズルの出口が前記燃料ノズルの出 口よりもノ 一ナ上流側に位置することを特徴とする請求項 3 1記載の固体燃料ノ ーナ。
3 4 . 前記燃料ノズルの内部に、 パーナ上流側から下流側に向けて順に断 面積が増加する部分と断面積が減少する部分を有する濃縮器を設けたことを特徴 とする請求項 3 1記載の固体燃料パーナ。
3 5 . 前記燃料ノズルの内側壁面に、 パーナ上流側から下流側に向けて順 に燃料ノズルの流路断面積を一旦縮小した後、 元の大きさまで拡大する流路縮流 部材を設けたことを特徴とする請求項 3 1記載の固体燃料パーナ。
3 6 . 前記外側空気ノズルに旋回器を設けたことを特徴とする請求項 3 1 記載の固体燃料パーナ。
3 7 . 前記外側空気ノズル出口に外側空気ノズルから噴出される外側空気 の流れを方向づけるガイドを設けたことを特徴とする請求項 3 1記載の固体燃料 バーナ。
3 8 . 前記燃料ノズルと前記外側空気ノズルを隔てる壁面先端部に前記各 ノズルから噴出する固体燃料混合物と空気の流れに対抗するように保炎器を設け たことを特徴とする請求項 3 1記載の固体燃料パーナ。
3 9 . 前記保炎器は前記燃料ノズルの先端部壁面の内側に向けて突出する さめ歯状の突起を有することを特徴とする請求項 3 8記載の固体燃料パーナ。
4 0 . 固体燃料の搬送用気体として燃焼排ガスを用い、 前記追加空気孔ま たは追加空気ノズル出口は、 前記濃縮器の断面積が漸減する円錐部と前記保炎器 との間に設けることを特徴とする請求項 3 1記載の固体燃料燃焼用パーナ。
4 1 . 前記追加空気孔または追加空気ノズルへの空気供給部は、 前記外側 空気ノズルに燃焼用空気を供給するために設けられる風箱に接続していることを 特徴とする請求項 3 1記載の固体燃料燃焼用パーナ。
4 2 . 前記追加空気孔または追加空気ノズルへの空気供給部は、 該空気供 給部に燃焼用気体を供給するために専用に設けられた燃焼用気体供給装置に接続 していることを特徴とする請求項 3 1記載の固体燃料燃焼用パーナ。
4 3 . 前記燃焼用気体供給装置には、 酸素濃度を増した気体もしくは純酸 素を供給する手段を接続することを特徴とする請求項 4 2記載の固体燃料燃焼用 パーナ。
4 4 . 燃焼用気体流量調節機構を前記燃焼用気体供給装置に設けることを 特徴とする請求項 4 2記載の固体燃料燃焼用パーナ。
4 5 . 請求項 3 1記載の固体燃料パーナを用いた燃焼方法であって、 燃焼 負荷が低い場合は前記追加空気孔または追加空気ノズルから供給する空気量を増 やし、 前記外側空気ノズルのうち、 前記燃料ノズルに最も近い外側空気ノズルか ら供給する空気流量を減らすか又は旋回強度を上げ、 また、 燃焼負荷が高い場合 は前記追加空気孔または追加空気ノズルから供給する空気量を減らし、 前記外側 空気ノズルのうち、 前記燃料ノズルに最も近い外側空気ノズルから供給する空気 量を増やすか又は旋回強度を下げることを特徴とする固体燃料パーナの燃焼方法 c 4 6 . 請求項 3 1記載の固体燃料パーナの複数本を壁面に配置した火炉を 設けたことを特徴とする燃焼装置。
4 7 . 請求項 3 1記載の固体燃料パーナをーュニヅトとして、 その複数ュ ニットを四隅あるいは対向する側壁面にそれそれ対に成るように配置した火炉を 備えたことを特徴とする燃焼装置。
4 8 . 請求項 3 1記載の固体燃料パーナの複数本を壁面を備えた火炉と、 該火炉内に設けられ、 前記火炉内での固体燃料の燃焼で生じた燃焼熱で水を加熱 し、 蒸気を発生させる熱交換器を備えたことを特徴とする石炭焚きボイラ。
4 9 . 請求項 3 1記載の固体燃料パーナを用いた燃焼方法であって、 燃焼 負荷が低い場合は追加空気孔または追加空気ノズルから供給する空気量を増やし、 燃焼負荷が高い場合は追加空気孔または追加空気ノズルから供給する空気量を減 らすことを特徴とする固体燃料パーナの燃焼方法。
5 0 . 燃焼装置を高い燃焼負荷で運用する場合は固体燃料パーナから離れ た火炉内での位置から固体燃料の火炎を形成し、 燃焼装置を低い燃焼負荷で運用 する場合は固体燃料パーナの燃料ノズル出口直後の火炉壁面付近から固体燃料の 火炎を形成することを特徴とする請求項 4 6記載の燃焼装置の運用方法。
5 1 . 固体燃料パーナ又は該固体燃料パーナ近傍の火炉壁面に温度計又は 放射強度計を設置し、 これらの計測装置の信号に基づき、 固体燃料パーナに設け た追加空気孔または追加空気ノズルから噴出する空気量を調整することを特徴と する請求項 5 0記載の燃焼装置の運用方法。
5 2 . 燃焼装置を高い負荷で運用する場合は燃料ノズル中心軸上で燃料ノ ズル出口から 0 . 5 m以上離れた火炉内の位置で燃焼させ、 燃焼装置を低い負荷 で運用する場合は火炉内の固体燃料火炎の先端が燃料ノズル出口外側部火炉壁面 近傍で燃焼させることを特徴とする請求項 5 0記載の燃焼装置の運用方法。
5 3 . 燃焼装置を高い燃焼負荷で運用する場合は、 固体燃料パーナの火炎 が集まる火炉内の中央部分の火炎を火炉内に設けた火炎検出器あるいは目視で監 視し、 燃焼装置を低い燃焼負荷で運用する場合は、 固体燃料パーナの燃料ノズル 出口付近の火炉内に形成される個々の火炎を火炉内に設けた火炎検出器あるいは 目視で監視することを特徴とする請求項 5 0記載の燃焼装置の運用方法。
5 4 . 燃焼装置を低い燃焼負荷で運用する場合は、 固体燃料パーナから供 給する空気量の合計と燃料中の揮発分を燃料を完全燃焼させるのに必要な空気量 の比を 0 . 8 5 ~ 0 . 9 5となるように固体燃料パーナに供給する空気量を調整 することを特徴とする請求項 5 0記載の燃焼装置の運用方法。
5 5 · 請求項 3 1記載の固体燃料パーナを複数本配置する火炉壁面を備え た火炉と、 該パーナにより固体燃料を燃焼させて得られる燃焼熱により水を加熱 して蒸気を発生させるボイラと、 該ボイラで得られた蒸気により駆動する蒸気夕 —ビンと、 該蒸気夕一ビンより駆動する発電機を備えた石炭火力発電システム。
PCT/JP2001/006684 2000-08-04 2001-08-03 Solid fuel burner and combustion method using solid fuel burner WO2002012791A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP01954425.3A EP1306614B1 (en) 2000-08-04 2001-08-03 Solid fuel burner
PL353461A PL206626B1 (pl) 2000-08-04 2001-08-03 Palnik do paliwa stałego oraz sposób spalania za pomocą palnika do paliwa stałego
HU0302402A HUP0302402A2 (hu) 2000-08-04 2001-08-03 Szilárd tüzelőanyaggal táplált égő, eljárás szilárd tüzelőanyaggal táplált égővel történő égetésre, égető berendezés, eljárás égető berendezés működtetésére, széntüzelésű vízforraló, széntüzelésű vízforraló rendszer és széntüzelésű áramfejlesztő rendszer
AU76720/01A AU776725B2 (en) 2000-08-04 2001-08-03 Solid fuel burner and combustion method using solid fuel burner
SK511-2002A SK287642B6 (sk) 2000-08-04 2001-08-03 Horák na tuhé palivo a spôsob spaľovania horákom na tuhé palivo
JP2002518037A JP4969015B2 (ja) 2000-08-04 2001-08-03 固体燃料バーナと固体燃料バーナを用いた燃焼方法
US10/101,795 US6715432B2 (en) 2000-08-04 2002-03-19 Solid fuel burner and method of combustion using solid fuel burner

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000-237235 2000-08-04
JP2000237235 2000-08-04
JP2001020851 2001-01-29
JP2001-20851 2001-01-29
JP2001-147964 2001-05-17
JP2001147964 2001-05-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/101,795 Continuation US6715432B2 (en) 2000-08-04 2002-03-19 Solid fuel burner and method of combustion using solid fuel burner

Publications (1)

Publication Number Publication Date
WO2002012791A1 true WO2002012791A1 (en) 2002-02-14

Family

ID=27344265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006684 WO2002012791A1 (en) 2000-08-04 2001-08-03 Solid fuel burner and combustion method using solid fuel burner

Country Status (12)

Country Link
US (1) US6715432B2 (ja)
EP (1) EP1306614B1 (ja)
JP (1) JP4969015B2 (ja)
CN (1) CN100453901C (ja)
AU (1) AU776725B2 (ja)
BG (1) BG64878B1 (ja)
CZ (1) CZ303467B6 (ja)
HU (1) HUP0302402A2 (ja)
PL (1) PL206626B1 (ja)
RS (1) RS50092B (ja)
SK (1) SK287642B6 (ja)
WO (1) WO2002012791A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531967A (ja) * 2005-02-25 2008-08-14 クリーン コンバスチョン テクノロジーズ エルエルシー 燃焼方法およびシステム
WO2009041081A1 (ja) 2007-09-25 2009-04-02 Babcock-Hitachi Kabushiki Kaisha 固体燃料バーナ、固体燃料バーナを用いた燃焼装置とその運転方法
US7770528B2 (en) 2003-11-10 2010-08-10 Babcock- Hitachi K.K. Solid fuel burner, solid fuel burner combustion method, combustion apparatus and combustion apparatus operation method
JP2010242999A (ja) * 2009-04-02 2010-10-28 Babcock Hitachi Kk 木質バイオマス直接粉砕燃焼方法と装置とボイラシステム
WO2012042910A1 (ja) * 2010-09-30 2012-04-05 バブコック日立株式会社 燃焼システム及びその運転方法
WO2012049842A1 (ja) * 2010-10-15 2012-04-19 バブコック日立株式会社 ボイラ燃焼システムとその運転方法
JP2012122653A (ja) * 2010-12-07 2012-06-28 Mitsubishi Heavy Ind Ltd 燃焼バーナ
JP2012215364A (ja) * 2011-04-01 2012-11-08 Mitsubishi Heavy Ind Ltd ボイラ及びボイラの運転方法
JP2013234843A (ja) * 2013-07-22 2013-11-21 Mitsubishi Heavy Ind Ltd 固体燃料焚きバーナ及び固体燃料焚きボイラ
WO2014006969A1 (ja) * 2012-07-02 2014-01-09 株式会社Ihi バーナ
US8714096B2 (en) 2009-09-11 2014-05-06 Babcock-Hitachi K.K. Pulverized coal boiler
KR20160066201A (ko) * 2014-12-02 2016-06-10 한국에너지기술연구원 바이오오일과 석유계 유류의 혼합연소 장치 및 이를 이용한 열에너지 생산방법
US9671108B2 (en) 2011-04-01 2017-06-06 Mitsubishi Heavy Industries, Ltd. Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler
US9869469B2 (en) 2009-12-22 2018-01-16 Mitsubishi Heavy Industries, Ltd. Combustion burner and boiler including the same
CN107726608A (zh) * 2017-11-15 2018-02-23 张恒文 废机油采暖炉
US10281142B2 (en) 2009-12-17 2019-05-07 Mitsubishi Heavy Industries, Ltd. Solid-fuel-fired burner and solid-fuel-fired boiler
JP2019517658A (ja) * 2016-06-08 2019-06-24 フォータム オサケ ユキチュア ユルキネンFortum Oyj 燃料を燃焼させる方法及びボイラー
CN110848672A (zh) * 2018-08-20 2020-02-28 三菱日立电力系统株式会社 固体燃料喷烧器
US10591156B2 (en) 2015-06-12 2020-03-17 Mitsubishi Hitachi Power Systems, Ltd. Burner, combustion device, boiler, and burner control method
CN112393230A (zh) * 2019-08-16 2021-02-23 付烜 一种提高煤粉燃尽率并降低NOx生成量的锅炉设备
JP2022027531A (ja) * 2020-07-30 2022-02-10 武夫 河原井 バイオマス燃料の燃焼機
CN115164592A (zh) * 2022-07-01 2022-10-11 天津水泥工业设计研究院有限公司 一种分解炉二次全氧燃烧富集co2的系统与方法
CN116045275A (zh) * 2023-02-17 2023-05-02 临沂市欧科节能技术有限公司 一种燃烧锅炉装置
CN117704368A (zh) * 2024-01-19 2024-03-15 南京巨华工业技术有限公司 一种节煤燃烧器

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517021A (ja) 2003-01-21 2006-07-13 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 燃料運搬ガス中の酸素リッチ化のための方法及び装置
US7028622B2 (en) 2003-04-04 2006-04-18 Maxon Corporation Apparatus for burning pulverized solid fuels with oxygen
DE102004059679B4 (de) * 2003-12-16 2005-12-22 Alstom Power Boiler Gmbh Rundbrenner zur Verbrennung von staubförmigem Brennstoff
AU2005286220B2 (en) * 2004-08-18 2011-03-24 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for injecting a gas into a two-phase stream
KR20070105380A (ko) * 2005-02-25 2007-10-30 클린 컴버스천 테크놀러지스 엘엘씨 연소 방법 및 시스템
FR2887597B1 (fr) * 2005-06-27 2010-04-30 Egci Pillard Conduite annulaire et bruleur comportant une telle conduite
US7499763B2 (en) * 2005-07-20 2009-03-03 Fuel And Furnace Consulting, Inc. Perturbation test method for measuring output responses to controlled process inputs
WO2007048886A1 (fr) * 2005-10-28 2007-05-03 Sefmat Bruleur/generateur d'air chaud a allumage interne
US20080264310A1 (en) * 2005-11-22 2008-10-30 Clean Combustion Technologies, Llc Combustion Method and System
WO2007062019A2 (en) * 2005-11-22 2007-05-31 Clean Combustion Technologies Llc Combustion method and system
CA2631898A1 (en) * 2005-12-02 2007-06-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Proced Es Georges Claude Methods and systems for reduced nox combustion of coal with injection of heated nitrogen-containing gas
DE102006011326C5 (de) * 2006-03-09 2015-03-19 Alstom Technology Ltd. Rundbrenner
US20070231761A1 (en) * 2006-04-03 2007-10-04 Lee Rosen Integration of oxy-fuel and air-fuel combustion
DK1892470T3 (da) * 2006-08-16 2011-03-21 Babcock & Wilcox Power Generat Fremgangsmåde til mindskelse af NOx-emissioner i en pulveriseret-kul-brænder
US7717701B2 (en) * 2006-10-24 2010-05-18 Air Products And Chemicals, Inc. Pulverized solid fuel burner
CN101191614B (zh) * 2006-12-01 2010-10-06 郑平安 通用煤粉微油点火方法
DE102006060869A1 (de) * 2006-12-22 2008-06-26 Khd Humboldt Wedag Gmbh Verfahren zur Regelung des Betriebes eines Drehofenbrenners
US20080261161A1 (en) * 2007-04-23 2008-10-23 The Onix Corporation Alternative Fuel Burner with Plural Injection Ports
EP2153132B1 (en) * 2007-05-18 2015-11-04 Her Majesty the Queen in Right of Canada as Represented by The Minister of Natural Resources Method for burning coal using oxygen in a recycled flue gas stream for carbon dioxide capture
DE102007025051B4 (de) * 2007-05-29 2011-06-01 Hitachi Power Europe Gmbh Hüttengasbrenner
DE102007030269B4 (de) * 2007-06-28 2014-07-17 Mitsubishi Hitachi Power Systems Europe Gmbh Kohlenstaubbrenner zur Verfeuerung von in Dichtstromförderung zugeführtem Brennstoff
FR2927409B1 (fr) * 2008-02-11 2013-01-04 Air Liquide Procede de chauffage d'un cru mineral dans un four de cuisson de type four tunnel
CN101960219B (zh) * 2008-03-06 2013-01-02 株式会社Ihi 氧燃烧锅炉的煤粉燃烧器
BRPI0911632A2 (pt) * 2008-04-10 2015-10-13 Babcock Hitachi Kabushiku Kaisha queimador de combustível sólido, aparelho de combustão que usa queimador de combustível sólido e método para operar o aparelho de combustão
US20090297996A1 (en) * 2008-05-28 2009-12-03 Advanced Burner Technologies Corporation Fuel injector for low NOx furnace
US20100021853A1 (en) * 2008-07-25 2010-01-28 John Zink Company, Llc Burner Apparatus And Methods
RU2451879C2 (ru) * 2009-01-19 2012-05-27 Алексей Михайлович Бондарев Горелка для пыли высокой концентрации
DE102009016191B4 (de) * 2009-04-03 2013-04-04 Alstom Technology Ltd. Verfahren und Anordnung zur Verbesserung des dynamischen Verhaltens eines kohlegefeuerten Kraftwerkes bei primären und/oder sekundären Anforderungen des Elektrizitätsnetz-Betreibers an die Stromabgabe in das Netz
US20100275824A1 (en) * 2009-04-29 2010-11-04 Larue Albert D Biomass center air jet burner
JP4896194B2 (ja) * 2009-09-30 2012-03-14 株式会社日立製作所 酸素燃焼ボイラプラント
CN102235666B (zh) * 2010-04-27 2014-11-26 烟台龙源电力技术股份有限公司 一种煤粉燃烧器及包括该煤粉燃烧器的煤粉锅炉
PL2479491T3 (pl) * 2011-01-20 2014-08-29 Fortum Oyj Sposób i palnik do spalania ubogiego gazu w kotle elektrowni
CA2825371C (en) 2011-01-28 2018-01-23 Osaka Gas Co., Ltd. Furnace-heating combustion apparatus
TWI564529B (zh) * 2011-01-31 2017-01-01 大阪瓦斯股份有限公司 爐加熱用燃燒裝置
CN102297513A (zh) * 2011-02-23 2011-12-28 薛碧 一种高效节能环保一体锅炉
JP5584647B2 (ja) * 2011-04-08 2014-09-03 株式会社日立製作所 バイオマスの半炭化燃料の製造装置と製造方法、及び半炭化燃料を用いた発電システム
US8707877B2 (en) * 2011-06-05 2014-04-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Solid fuel and oxygen combustion with low NOx and efficient burnout
JP5789146B2 (ja) * 2011-07-13 2015-10-07 株式会社神戸製鋼所 微粉炭焚きボイラ設備の運転方法および微粉炭焚きボイラ設備
JP5658126B2 (ja) * 2011-11-16 2015-01-21 三菱重工業株式会社 油焚きバーナ、固体燃料焚きバーナユニット及び固体燃料焚きボイラ
CN102563625A (zh) * 2012-01-16 2012-07-11 华中科技大学 一种煤粉富氧燃烧方法
GB201202907D0 (en) 2012-02-21 2012-04-04 Doosan Power Systems Ltd Burner
US20140157790A1 (en) * 2012-12-10 2014-06-12 Zilkha Biomass Power Llc Combustor assembly and methods of using same
JP6171543B2 (ja) * 2013-05-08 2017-08-02 株式会社Ihi バーナ
CN103398376B (zh) * 2013-07-10 2015-07-22 中国科学技术大学 一种富氧燃烧器
CN104566357A (zh) * 2013-10-29 2015-04-29 烟台龙源电力技术股份有限公司 煤粉燃烧器以及锅炉
US9709269B2 (en) 2014-01-07 2017-07-18 Air Products And Chemicals, Inc. Solid fuel burner
JP6177187B2 (ja) * 2014-04-30 2017-08-09 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器、ガスタービン、制御装置及び制御方法
US10375901B2 (en) 2014-12-09 2019-08-13 Mtd Products Inc Blower/vacuum
DE102015121534B4 (de) * 2015-12-10 2017-07-06 Abb Schweiz Ag Flammenionisationsdetektor mit spezieller Brennerdüse
CN107305009B (zh) * 2016-04-20 2020-03-03 赛科有限责任公司 用于使燃料燃烧的方法以及燃烧装置
JP2018059659A (ja) * 2016-10-04 2018-04-12 三菱日立パワーシステムズ株式会社 固体燃料バーナ
TWI614455B (zh) * 2016-11-21 2018-02-11 提升導流效果之熱風槍
WO2019022059A1 (ja) * 2017-07-25 2019-01-31 株式会社Ihi 粉体燃料バーナ
CN107543160B (zh) * 2017-09-15 2024-04-30 徐州燃烧控制研究院有限公司 一种超低氮燃气燃烧器
CN108019739A (zh) * 2017-11-29 2018-05-11 北京科技大学 一种低氮源纯氧燃烧方法
CN108561898B (zh) * 2017-12-27 2020-09-22 中国航发四川燃气涡轮研究院 一种同轴分区高温升燃烧室头部
KR102091329B1 (ko) * 2018-07-11 2020-03-19 이정용 Hho 가스를 이용한 열풍 유닛
WO2020120828A1 (en) * 2018-12-14 2020-06-18 Fortum Oyj Method for burning fuel, burner and boiler
DE102019122940A1 (de) * 2019-08-27 2021-03-04 Ebner Industrieofenbau Gmbh Regenerativbrenner für stark reduzierte NOx Emissionen
CN110836383B (zh) * 2019-11-15 2021-10-26 中国科学院工程热物理研究所 一种高温烟气发生器及其控制方法
RU199334U1 (ru) * 2020-05-12 2020-08-28 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Горелочное устройство для экологически чистой растопки котлов
CN112344326A (zh) * 2020-10-16 2021-02-09 上海甘吉环保科技有限公司 氢氧气与燃料结合燃烧的火焰可调烧嘴
CN112902153B (zh) * 2021-03-26 2022-08-23 西安热工研究院有限公司 一种解决四角切圆超临界锅炉水冷壁超温的系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210205A (ja) * 1983-05-14 1984-11-28 Babcock Hitachi Kk 微粉炭バ−ナ装置
JPS6081422U (ja) * 1983-11-08 1985-06-06 石川島播磨重工業株式会社 バ−ナの燃焼用空気供給装置
JPH08270931A (ja) * 1995-03-29 1996-10-18 Hitachi Ltd 微粉炭燃焼装置及び燃焼方法
JPH1073208A (ja) * 1996-08-29 1998-03-17 Mitsubishi Heavy Ind Ltd 高揮発分・高水分含有炭焚きバーナ
JPH11132414A (ja) * 1997-10-31 1999-05-21 Babcock Hitachi Kk 超低NOxバーナ
JPH11148610A (ja) * 1997-11-20 1999-06-02 Babcock Hitachi Kk 固体燃料燃焼用バーナと固体燃料用燃焼装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421039A (en) * 1981-09-24 1983-12-20 Combustion Engineering, Inc. Pulverized coal-fired burner
JPH06103606B2 (ja) * 1984-02-15 1994-12-14 住友電気工業株式会社 減衰振動電圧印加用電気絶縁ケーブル
JPS60176315A (ja) 1984-02-21 1985-09-10 Rohm Co Ltd 自動利得調整回路
JPS62172105A (ja) 1986-01-24 1987-07-29 Hitachi Ltd NOxを抑制する燃焼方法及び装置
JP2804182B2 (ja) 1990-03-07 1998-09-24 株式会社日立製作所 微粉炭ボイラ及び微粉炭バーナ
US5267850A (en) * 1992-06-04 1993-12-07 Praxair Technology, Inc. Fuel jet burner
CA2151308C (en) * 1994-06-17 1999-06-08 Hideaki Ohta Pulverized fuel combustion burner
RO118900B1 (ro) * 1996-07-19 2003-12-30 Babcock Hitachi Kabushiki Kaisha Arzător de combustie
JP2995013B2 (ja) * 1997-03-31 1999-12-27 三菱重工業株式会社 微粉状燃料燃焼バーナ
JP3344694B2 (ja) * 1997-07-24 2002-11-11 株式会社日立製作所 微粉炭燃焼バーナ
JPH11281010A (ja) * 1998-03-26 1999-10-15 Babcock Hitachi Kk 固体燃料燃焼バーナと固体燃料燃焼装置
JP2000039108A (ja) * 1998-07-24 2000-02-08 Babcock Hitachi Kk 低NOxバーナ
EP0976977B1 (en) * 1998-07-29 2003-03-26 Mitsubishi Heavy Industries, Ltd. Pulverized coal burner
US6123542A (en) * 1998-11-03 2000-09-26 American Air Liquide Self-cooled oxygen-fuel burner for use in high-temperature and high-particulate furnaces
DE59812039D1 (de) * 1998-11-18 2004-11-04 Alstom Technology Ltd Baden Brenner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210205A (ja) * 1983-05-14 1984-11-28 Babcock Hitachi Kk 微粉炭バ−ナ装置
JPS6081422U (ja) * 1983-11-08 1985-06-06 石川島播磨重工業株式会社 バ−ナの燃焼用空気供給装置
JPH08270931A (ja) * 1995-03-29 1996-10-18 Hitachi Ltd 微粉炭燃焼装置及び燃焼方法
JPH1073208A (ja) * 1996-08-29 1998-03-17 Mitsubishi Heavy Ind Ltd 高揮発分・高水分含有炭焚きバーナ
JPH11132414A (ja) * 1997-10-31 1999-05-21 Babcock Hitachi Kk 超低NOxバーナ
JPH11148610A (ja) * 1997-11-20 1999-06-02 Babcock Hitachi Kk 固体燃料燃焼用バーナと固体燃料用燃焼装置

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7770528B2 (en) 2003-11-10 2010-08-10 Babcock- Hitachi K.K. Solid fuel burner, solid fuel burner combustion method, combustion apparatus and combustion apparatus operation method
JP2008531967A (ja) * 2005-02-25 2008-08-14 クリーン コンバスチョン テクノロジーズ エルエルシー 燃焼方法およびシステム
WO2009041081A1 (ja) 2007-09-25 2009-04-02 Babcock-Hitachi Kabushiki Kaisha 固体燃料バーナ、固体燃料バーナを用いた燃焼装置とその運転方法
JP2009079794A (ja) * 2007-09-25 2009-04-16 Babcock Hitachi Kk 固体燃料バーナ、固体燃料バーナを用いた燃焼装置とその運転方法
JP2010242999A (ja) * 2009-04-02 2010-10-28 Babcock Hitachi Kk 木質バイオマス直接粉砕燃焼方法と装置とボイラシステム
US8714096B2 (en) 2009-09-11 2014-05-06 Babcock-Hitachi K.K. Pulverized coal boiler
US10281142B2 (en) 2009-12-17 2019-05-07 Mitsubishi Heavy Industries, Ltd. Solid-fuel-fired burner and solid-fuel-fired boiler
US9869469B2 (en) 2009-12-22 2018-01-16 Mitsubishi Heavy Industries, Ltd. Combustion burner and boiler including the same
JP5331939B2 (ja) * 2010-09-30 2013-10-30 バブコック日立株式会社 燃焼システム及びその運転方法
WO2012042910A1 (ja) * 2010-09-30 2012-04-05 バブコック日立株式会社 燃焼システム及びその運転方法
WO2012042693A1 (ja) * 2010-09-30 2012-04-05 バブコック日立株式会社 酸素燃焼システム及びその運転方法
JP2012087946A (ja) * 2010-10-15 2012-05-10 Babcock Hitachi Kk ボイラ燃焼システムとその運転方法
AU2011315008B2 (en) * 2010-10-15 2015-08-20 Mitsubishi Power, Ltd. Boiler combustion system and operation method therefor
WO2012049842A1 (ja) * 2010-10-15 2012-04-19 バブコック日立株式会社 ボイラ燃焼システムとその運転方法
US9429319B2 (en) 2010-10-15 2016-08-30 Mitsubishi Hitachi Power Systems, Ltd. Boiler combustion system and operation method therefor
JP2012122653A (ja) * 2010-12-07 2012-06-28 Mitsubishi Heavy Ind Ltd 燃焼バーナ
JP2012215364A (ja) * 2011-04-01 2012-11-08 Mitsubishi Heavy Ind Ltd ボイラ及びボイラの運転方法
US9671108B2 (en) 2011-04-01 2017-06-06 Mitsubishi Heavy Industries, Ltd. Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler
WO2014006969A1 (ja) * 2012-07-02 2014-01-09 株式会社Ihi バーナ
JP2014009922A (ja) * 2012-07-02 2014-01-20 Ihi Corp バーナ
US9822968B2 (en) 2012-07-02 2017-11-21 Ihi Corporation Burner
JP2013234843A (ja) * 2013-07-22 2013-11-21 Mitsubishi Heavy Ind Ltd 固体燃料焚きバーナ及び固体燃料焚きボイラ
KR20160066201A (ko) * 2014-12-02 2016-06-10 한국에너지기술연구원 바이오오일과 석유계 유류의 혼합연소 장치 및 이를 이용한 열에너지 생산방법
KR101650086B1 (ko) * 2014-12-02 2016-08-23 한국에너지기술연구원 바이오오일과 석유계 유류의 혼합연소 장치 및 이를 이용한 열에너지 생산방법
US10591156B2 (en) 2015-06-12 2020-03-17 Mitsubishi Hitachi Power Systems, Ltd. Burner, combustion device, boiler, and burner control method
JP2019517658A (ja) * 2016-06-08 2019-06-24 フォータム オサケ ユキチュア ユルキネンFortum Oyj 燃料を燃焼させる方法及びボイラー
CN107726608A (zh) * 2017-11-15 2018-02-23 张恒文 废机油采暖炉
CN110848672A (zh) * 2018-08-20 2020-02-28 三菱日立电力系统株式会社 固体燃料喷烧器
CN112393230A (zh) * 2019-08-16 2021-02-23 付烜 一种提高煤粉燃尽率并降低NOx生成量的锅炉设备
JP2022027531A (ja) * 2020-07-30 2022-02-10 武夫 河原井 バイオマス燃料の燃焼機
CN115164592A (zh) * 2022-07-01 2022-10-11 天津水泥工业设计研究院有限公司 一种分解炉二次全氧燃烧富集co2的系统与方法
CN115164592B (zh) * 2022-07-01 2024-06-07 天津水泥工业设计研究院有限公司 一种分解炉二次全氧燃烧富集co2的系统与方法
CN116045275A (zh) * 2023-02-17 2023-05-02 临沂市欧科节能技术有限公司 一种燃烧锅炉装置
CN116045275B (zh) * 2023-02-17 2023-11-17 临沂市欧科节能技术有限公司 一种燃烧锅炉装置
CN117704368A (zh) * 2024-01-19 2024-03-15 南京巨华工业技术有限公司 一种节煤燃烧器

Also Published As

Publication number Publication date
CN100453901C (zh) 2009-01-21
CN1386180A (zh) 2002-12-18
AU776725B2 (en) 2004-09-16
YU23002A (sh) 2003-12-31
CZ303467B6 (cs) 2012-10-03
AU7672001A (en) 2002-02-18
EP1306614A4 (en) 2005-11-16
US6715432B2 (en) 2004-04-06
CZ20021480A3 (cs) 2002-11-13
JP4969015B2 (ja) 2012-07-04
US20020144636A1 (en) 2002-10-10
BG106652A (en) 2002-12-29
PL206626B1 (pl) 2010-09-30
EP1306614B1 (en) 2015-10-07
BG64878B1 (bg) 2006-07-31
HUP0302402A2 (hu) 2003-10-28
RS50092B (sr) 2009-01-22
SK287642B6 (sk) 2011-05-06
SK5112002A3 (en) 2002-10-08
PL353461A1 (en) 2003-11-17
EP1306614A1 (en) 2003-05-02

Similar Documents

Publication Publication Date Title
WO2002012791A1 (en) Solid fuel burner and combustion method using solid fuel burner
AU2002301911B2 (en) Solid fuel burner, burning method using the same, combustion apparatus and method of operating the combustion apparatus
AU2011310173B2 (en) Combustion system and method for operating same
US7438005B2 (en) Low NOx combustion
JP3890497B2 (ja) 固体燃料バーナと固体燃料バーナの燃焼方法
US4426939A (en) Method of reducing NOx and SOx emission
CN103697465A (zh) 一种利用高温烟气实现乏气煤粉再燃并降低NOx的锅炉
RU2348861C1 (ru) Вихревая топка для сжигания твердого топлива
JP2002115810A (ja) 低NOx固体燃料燃焼装置
JP2001330211A (ja) 微粉炭バーナとそれを用いた微粉炭ボイラ及びそのシステム並びに石炭火力発電システム
RU2282105C2 (ru) Горелка, работающая на твердом топливе, и способ сжигания топлива при использовании горелки, работающей на твердом топливе
JP3899457B2 (ja) 固体燃料バーナと固体燃料バーナの燃焼方法
JP2519923B2 (ja) 微粉炭燃焼装置
EP2863123B1 (en) Method of low-emission incineration of low and mean calorific value gases containing NH3, HCN, C5H5N, and other nitrogen-containing compounds in combustion chambers of industrial power equipment, and the system for practicing the method
JP4353391B2 (ja) 固体燃料燃焼用バーナ及び該バーナを用いる燃焼方法及び燃焼装置
RU169645U1 (ru) Вертикальная призматическая низкоэмиссионная топка
JP2001349533A (ja) バーナ装置及び該装置からの燃焼用空気の噴出方法
RU2006741C1 (ru) Топка
CN112963828A (zh) 煤粉贫氧气化燃烧器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: P-230/02

Country of ref document: YU

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG CN CZ HU ID IN JP PL RO RU SK US YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT DE ES FI GB GR IE TR

ENP Entry into the national phase

Ref document number: 2002 518037

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 76720/01

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10101795

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/00350/DE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 018022847

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 5112002

Country of ref document: SK

ENP Entry into the national phase

Ref document number: 2001 106652

Country of ref document: BG

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV2002-1480

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 2001954425

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2002-1480

Country of ref document: CZ

ENP Entry into the national phase

Ref document number: 2002110101

Country of ref document: RU

Kind code of ref document: A

Ref country code: RU

Ref document number: RU A

WWP Wipo information: published in national office

Ref document number: 2001954425

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 76720/01

Country of ref document: AU