WO2014006969A1 - バーナ - Google Patents

バーナ Download PDF

Info

Publication number
WO2014006969A1
WO2014006969A1 PCT/JP2013/062736 JP2013062736W WO2014006969A1 WO 2014006969 A1 WO2014006969 A1 WO 2014006969A1 JP 2013062736 W JP2013062736 W JP 2013062736W WO 2014006969 A1 WO2014006969 A1 WO 2014006969A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
pulverized coal
containing gas
cylinder nozzle
supply pipe
Prior art date
Application number
PCT/JP2013/062736
Other languages
English (en)
French (fr)
Inventor
田村 雅人
龍之介 糸数
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to EP13813164.4A priority Critical patent/EP2868969B1/en
Priority to AU2013284799A priority patent/AU2013284799B2/en
Priority to US14/411,729 priority patent/US9822968B2/en
Publication of WO2014006969A1 publication Critical patent/WO2014006969A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/02Vortex burners, e.g. for cyclone-type combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/20Fuel flow guiding devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a burner that is provided on the wall of a boiler furnace and burns fuel such as pulverized coal, and more particularly to a burner that performs oxyfuel combustion so that carbon dioxide can be easily recovered.
  • a mixed gas of combustion exhaust gas and oxygen is used as a carrier medium for transporting pulverized coal, and combustion air is also a mixed gas of combustion exhaust gas and oxygen.
  • combustion air is also a mixed gas of combustion exhaust gas and oxygen.
  • a burner that performs oxyfuel combustion that makes most of the combustion exhaust gas carbon dioxide and makes it easy to recover the carbon dioxide.
  • the oxygen concentration in the carrier medium increases due to an emergency stop of the device, etc., and pulverized coal may ignite during transportation.
  • a burner has been devised that uses only combustion exhaust gas as a carrier medium without mixing oxygen.
  • Patent Document 1 a primary gas that is a mixture of pulverized coal and combustion exhaust gas is ejected from the center of a burner into a furnace, and a secondary gas is supplied from the periphery of the primary gas, and from the periphery of the secondary gas.
  • An oxygen combustion boiler plant is disclosed in which an oxygen-enriched gas injection nozzle for supplying a tertiary gas branched from a secondary gas and ejecting an oxygen-enriched gas is installed in a primary system pipe upstream of the burner.
  • the present invention provides a burner that improves the ignition stability of pulverized coal while keeping the carrier medium in a low oxygen state.
  • the present invention is provided on the central axis of a throat provided on the furnace wall, and is provided with an inner cylinder nozzle through which auxiliary combustion air flows, concentrically with the inner cylinder nozzle, on the outer side, and a carrier medium and pulverized coal are mixed.
  • a nozzle body composed of an outer cylinder nozzle through which the pulverized coal mixed flow circulates, a wind box for housing the nozzle body, a secondary air conditioner housed in the window box and provided at the tip of the nozzle body
  • An auxiliary combustion air introduction pipe for introducing combustion air as auxiliary combustion air from the window box into the inner cylinder nozzle; a pulverized coal flow supply pipe for introducing a pulverized coal mixed flow into the outer cylinder nozzle;
  • the present invention relates to a burner that includes an oxygen-containing gas supply pipe that supplies an oxygen-containing gas to the pulverized coal mixed stream and increases an oxygen concentration in the pulverized coal mixed stream.
  • the present invention further comprises a plurality of deflector angles extending along the axial direction of the outer cylinder nozzle on the inner peripheral surface of the outer cylinder nozzle, and the deflector angle has an oxygen-containing gas flow path therein.
  • the burner is formed and connected to a ring pipe that extends to the base end and communicates with the flow path, and to which the oxygen-containing gas supply pipe that penetrates the peripheral wall of the outer cylinder nozzle is connected. .
  • the present invention also relates to a burner in which the oxygen-containing gas supply pipe communicates with the base of the outer cylinder nozzle and supplies the oxygen-containing gas from the base of the outer cylinder nozzle.
  • the present invention further includes a hollow concentration adjusting ring surrounding the inner cylinder nozzle, and a plurality of oxygen-containing gas ejection holes are formed in a tip surface of the concentration adjusting ring, and the inner cylinder is formed in the concentration adjusting ring.
  • the burner is connected to the oxygen-containing gas supply pipe that is inserted into the nozzle and penetrates the peripheral wall of the inner cylinder nozzle.
  • the present invention provides a first density adjusting ring surrounding the inner cylinder nozzle, and a first density adjusting ring provided on the inner peripheral surface of the outer cylinder nozzle over the entire circumference on the base side from the first density adjusting ring.
  • a concentration adjusting ring, and at least one of the first concentration adjusting ring and the second concentration adjusting ring is hollow, and a plurality of oxygen-containing gas ejection holes are formed in the tip surface.
  • the burner has an oxygen-containing gas supply pipe connected to the one concentration adjusting ring.
  • the inner cylinder nozzle provided on the central axis of the throat provided in the furnace wall, through which auxiliary combustion air flows, the outer cylinder concentrically with the inner cylinder nozzle, the conveying medium and pulverized coal are provided.
  • Nozzle body comprising an outer cylinder nozzle through which the mixed pulverized coal mixed flow circulates, a wind box that houses the nozzle body, and a secondary air regulator that is housed in the wind box and provided at the tip of the nozzle body
  • An auxiliary combustion air introduction pipe for introducing combustion air as auxiliary combustion air from the window box into the inner cylinder nozzle, and a pulverized coal flow supply pipe for introducing a pulverized coal mixed flow into the outer cylinder nozzle
  • an oxygen-containing gas supply pipe that supplies an oxygen-containing gas to the pulverized coal mixed stream to increase the oxygen concentration in the pulverized coal mixed stream, so that the oxygen concentration in the pulverized coal mixed stream is low
  • the ignition it is possible to promote, the pulverized coal mixture flow was increased oxygen concentration can be improved safety by shortening a path for flow.
  • FIG. 1 is a schematic vertical sectional view showing a burner according to a first embodiment of the present invention.
  • FIG. 2 is a schematic vertical sectional view showing a burner according to a second embodiment of the present invention.
  • FIG. 3 is a front view showing the nozzle body of the burner according to the second embodiment of the present invention.
  • FIG. 4 is a schematic vertical sectional view showing a burner according to a third embodiment of the present invention.
  • FIG. 5 is a schematic vertical sectional view showing a burner according to a fourth embodiment of the present invention.
  • FIG. 1 a burner 1 according to a first embodiment of the present invention will be described.
  • 2 represents a furnace
  • 3 represents a furnace wall of the furnace 2.
  • a throat 4 is provided on the furnace wall 3
  • a wind box 5 is attached to the counter-fire furnace 2 side of the furnace wall 3
  • the burner 1 is provided concentrically with the throat 4 inside the wind box 5.
  • the burner 1 includes a nozzle body 7 and a secondary air adjusting device 8 provided so as to surround the tip portion (end portion inside the furnace) of the nozzle body 7.
  • the nozzle body 7 includes a concentric outer cylinder nozzle 9, an inner cylinder nozzle 11, and an oil burner 12 disposed on the center line of the inner cylinder nozzle 11.
  • the inner cylinder nozzle 11 has a reduced diameter structure in which the diameter gradually decreases.
  • the cross-sectional shapes of the outer cylinder nozzle 9 and the inner cylinder nozzle 11 are circular, and the end of the furnace 2 side is opened between the outer cylinder nozzle 9 and the inner cylinder nozzle 11 in a hollow cylindrical space.
  • a fuel conduction space 13 is formed.
  • a density adjustment ring 15 surrounding the inner cylinder nozzle 11 is provided.
  • a pulverized coal flow supply pipe 16 and an oxygen-containing gas supply pipe 17 communicate with the outer cylinder nozzle 9 from the tangential direction at the base of the outer cylinder nozzle 9 (the end on the side of the reaction furnace 2).
  • the pulverized coal flow supply pipe 16 is connected to a pulverized coal mill (not shown), and a pulverized coal in which a carrier medium (hereinafter referred to as primary air) and pulverized coal are mixed through the pulverized coal flow supply pipe 16.
  • the mixed flow 18 flows into the fuel conduction space 13 from the tangential direction.
  • the primary air in the pulverized coal mixed stream 18 is obtained by mixing the flue gas of pulverized coal burned in the furnace 2 with air having an oxygen concentration of 21% or using the flue gas as it is.
  • the oxygen concentration is reduced to, for example, about 3% to 5%, and the pulverized coal mixed stream 18 is heated at a high temperature in the conveying process after being pulverized by the pulverized coal mill and flowing into the fuel conduction space 13. Even in this case, pulverized coal will not ignite.
  • the oxygen-containing gas supply pipe 17 is connected to an oxygen-containing gas supply source (not shown), and the oxygen-containing gas, such as pure oxygen or a mixed gas of oxygen and carbon dioxide, is connected through the oxygen-containing gas supply pipe 17.
  • the pulverized coal mixed stream 18 and the oxygen-containing gas 19 that have flowed into the fuel conduction space 13 are mixed while swirling inside the fuel conduction space 13, and have a predetermined oxygen concentration, for example, an oxygen concentration of 16% to 21%.
  • the oxygen-containing pulverized coal flow 20 is ejected from the tip of the fuel conduction space 13.
  • the oxygen-containing gas supply pipe 17 communicates with the base of the outer cylinder nozzle 9 in the axial direction, and the oxygen-containing gas 19 passes through the oxygen-containing gas supply pipe 17 in the axial direction. You may make it flow from.
  • a secondary air blower duct 21 communicates with the window box 5, and secondary air 22 flows as combustion air through the secondary air blower duct 21.
  • the secondary air 22 is a mixed gas in which oxygen is mixed with combustion exhaust gas when pulverized coal is burned in the furnace 2, for example, a mixture in which oxygen is about 30% and carbon dioxide is about 70%. Gas is used.
  • a tertiary air introduction pipe 23 as an auxiliary combustion air introduction pipe that opens to the inside of the window box 5 communicates with the base portion of the inner cylinder nozzle 11, and the secondary air fed to the wind box 5 is communicated.
  • the air 22 is taken in and led into the inner nozzle 11 as auxiliary combustion air, that is, tertiary air 24.
  • the secondary air adjusting device 8 includes an auxiliary air adjusting mechanism 25 that houses the tip of the nozzle body 7, and a main air adjusting mechanism 26 that is provided concentrically outside the auxiliary air adjusting mechanism 25.
  • the auxiliary air adjusting mechanism 25 includes a first air guide duct 27 that is reduced in diameter toward the tip, and a plurality of inner air vanes 28 that are rotatably provided.
  • the inner air vanes 28 are linked mechanisms (not shown). And the tilt angle with respect to the air flow can be changed.
  • the main air adjusting mechanism 26 includes a second air guide duct 29 that is reduced in diameter toward the tip, and a plurality of outer air vanes 31 that are rotatably provided at equal circumferential intervals.
  • the tip of the second air guide duct 29 is continuous with the throat 4, and the tip of the first air guide duct 27 is in a position retracted from the inner wall surface of the furnace wall 3, and the outer cylinder nozzle 9, The tip of the inner cylinder nozzle 11 is also at a position retracted from the inner wall surface of the furnace wall 3.
  • the pulverized coal pulverized by a pulverized coal mill (not shown) is conveyed by primary air, and is supplied from the pulverized coal flow supply pipe 16 to the base of the fuel conduction space 13 as the pulverized coal mixed flow 18.
  • the oxygen-containing gas 19 from an oxygen-containing gas supply source (not shown) is supplied from the oxygen-containing gas supply pipe 17 to the base of the fuel conduction space 13.
  • the pulverized coal mixed stream 18 and the oxygen-containing gas 19 supplied to the base of the fuel conduction space 13 flow toward the furnace 2 while turning in the fuel conduction space 13.
  • the pulverized coal mixed stream 18 and the oxygen-containing gas 19 are mixed in the process of swirling the fuel conduction space 13 to become the oxygen-containing pulverized coal stream 20 having an increased oxygen concentration.
  • the pulverized coal concentration and oxygen concentration in the stream 20 are made uniform.
  • the oxygen-containing pulverized coal stream 20 is reduced in flow in the process of passing through the outer cylinder nozzle 9 and is increased in speed and rectified. At this time, the oxygen-containing pulverized coal flow 20 is deflected by the concentration adjusting ring 15 to adjust the pulverized coal concentration, and the deflector angle 14 makes the pulverized coal in the oxygen-containing pulverized coal flow 20 more uniform.
  • the oxygen-containing pulverized coal stream 20 is heated by the secondary air 22 in the process of being jetted into the furnace 2 and further heated by receiving radiant heat from the furnace 2.
  • volatile matter is released from the pulverized coal, and the volatile matter is ignited and the flame is continuously maintained.
  • the secondary air 22 as combustion air is heated to a predetermined temperature and supplied to the wind box 5.
  • the secondary air 22 is swirled by the outer air vane 31 and is jetted into the furnace 2 together with the oxygen-containing pulverized coal flow 20 through the second air guide duct 29.
  • a part of the secondary air 22 taken into the second air guide duct 29 is taken into the first air guide duct 27 through the inner air vane 28 and ejected as secondary auxiliary air. Is done.
  • the inner air vane 28 is inclined with respect to the air flow, and gives a swirl flow to a part of the taken secondary air 22.
  • the A part of the secondary air 22 is guided as the tertiary air 24 to the inner cylinder nozzle 11 through the tertiary air introduction pipe 23 and is ejected from the inner cylinder nozzle 11.
  • the combustion state of pulverized coal is adjusted by ejecting the tertiary air 24. Therefore, the combustion state of the pulverized coal is adjusted to be optimum by adjusting the secondary air 22 and the tertiary air 24.
  • the oxygen-containing gas 19 is supplied from the base of the outer cylinder nozzle 9 through the oxygen-containing gas supply pipe 17, and the oxygen-containing gas 19 is supplied to the pulverized coal mixed flow.
  • the oxygen-containing gas 19 is supplied from the base of the outer cylinder nozzle 9 so that the oxygen-containing pulverized coal flow 20 having an oxygen concentration sufficient for ignition flows only in the fuel conduction space 13.
  • the pulverized coal mixed stream 18 pulverized in a pulverized coal mill (not shown) and supplied to the fuel conducting space 13 can be brought into a low oxygen state, and a path through which the oxygen-containing pulverized coal stream 20 flows is provided. It can be shortened, pulverized coal can be prevented from igniting, and safety can be improved. Further, since the oxygen-containing gas supply pipe 17 is connected to the outer cylinder nozzle 9 and does not extend into the fuel conduction space 13, the oxygen-containing gas supply pipe 17 is connected to the fuel conduction space 13. It is possible to prevent the oxygen-containing gas supply pipe 17 from being worn by pulverized coal without being exposed inside.
  • the secondary air 22 of the wind box 5 is supplied to the inner cylinder nozzle 11 through the tertiary air introduction pipe 23, the outer cylinder nozzle from which the oxygen-containing pulverized coal flow 20 is ejected.
  • Combustion air can be supplied from the inside and the outside of 9 to promote mixing of pulverized coal and oxygen, and the stability of ignition of pulverized coal can be further improved.
  • the oxygen-containing gas 19 is supplied into the fuel conduction space 13 via the oxygen-containing gas supply pipe 17, and the combustion exhaust gas when pulverized coal is burned in the furnace 2 is air having an oxygen concentration of 21%.
  • each oxygen-containing gas introduction pipe 33 and the ring pipe 34 communicate with each other.
  • the ring tube 34 is connected to an oxygen-containing gas supply pipe 35 that penetrates the outer cylinder nozzle 9, and the oxygen-containing gas supply pipe 35 is connected to an oxygen-containing gas supply source (not shown).
  • the oxygen-containing gas 19 such as pure oxygen or a mixed gas of oxygen and carbon dioxide is supplied to the ring pipe 34 from the oxygen-containing gas supply source through the oxygen-containing gas supply pipe 35.
  • the pulverized coal pulverized by the pulverized coal mill (not shown) is mixed with the primary air as the pulverized coal mixed flow 18 in the fuel conduction space 13 through the pulverized coal flow supply pipe 16.
  • the oxygen-containing gas 19 is supplied to the ring pipe 34 through the oxygen-containing gas supply pipe 35.
  • the pulverized coal mixed flow 18 supplied from the tangential direction into the fuel conduction space 13 is made uniform in the process of turning the fuel conduction space 13 and is compressed in the process of passing through the outer cylinder nozzle 9. Increased speed and rectification. Further, the pulverized coal concentration in the pulverized coal mixed stream 18 is adjusted by the concentration adjusting ring 15, and the pulverized coal in the pulverized coal mixed stream 18 is made more uniform by the deflector angle 14 to suppress swirling. A speed in the axial direction is given, and the pulverized coal mixed flow 18 is ejected from the tip of the outer cylinder nozzle 9.
  • the oxygen-containing gas 19 supplied to the ring pipe 34 circulates in the ring pipe 34 and is introduced into each oxygen-containing gas introduction pipe 33 so that the tip of each oxygen-containing gas introduction pipe 33, that is, each It is ejected from the tip of the deflector angle 14. Therefore, in the second embodiment, the oxygen-containing gas 19 is supplied from the tip of each deflector angle 14 to the pulverized coal mixed stream 18, so that the oxygen-containing gas 19 and the pulverized coal are supplied.
  • the mixed stream 18 can be easily mixed, and even if the oxygen concentration in the pulverized coal mixed stream 18 is low, the ignition of the pulverized coal can be stabilized and the ignition can be promoted.
  • the secondary air 22 is supplied to the inner cylinder nozzle 11 through the tertiary air introduction pipe 23
  • the pulverized coal mixed flow ejected from the outer cylinder nozzle 9 is used.
  • Combustion air can be supplied from the inner side and the outer side of 18 and the mixing of pulverized coal and oxygen can be promoted, and the stability of ignition of the pulverized coal can be further improved.
  • the oxygen-containing gas supply pipe 35 penetrates the outer cylinder nozzle 9 and is connected to the ring pipe 34, the oxygen-containing gas supply pipe 35 is not exposed in the fuel conduction space 13, and It is possible to prevent the oxygen-containing gas supply pipe 35 from being worn by pulverized coal.
  • the oxygen-containing gas introduction pipe 33 is inserted into the deflector angle 14, and the oxygen-containing gas introduction pipe 33 is used as a flow path for the oxygen-containing gas 19.
  • the angle 14 may have a hollow structure, and the deflector angle 14 itself may be a flow path for the oxygen-containing gas 19.
  • the concentration adjusting ring 15 has a hollow structure, and a plurality of oxygen-containing gas ejection holes 37 are formed in the tip surface of the concentration adjusting ring 15 at an equiangular pitch.
  • the concentration adjusting ring 15 is inserted into the inner cylinder nozzle 11 and connected to an oxygen-containing gas supply pipe 38 that penetrates the peripheral wall of the inner cylinder nozzle 11.
  • the oxygen-containing gas supply pipe 38 is connected to an oxygen-containing gas supply source (not shown), and the oxygen-containing gas 19 such as pure oxygen or a mixed gas of oxygen and carbon dioxide is passed through the oxygen-containing gas supply pipe 38.
  • the gas is supplied into the concentration adjusting ring 15 and ejected from the oxygen-containing gas ejection hole 37 into the fuel conduction space 13.
  • the pulverized coal 19 is supplied to the pulverized coal mixed stream 18 supplied via the pulverized coal flow supply pipe 16 via the concentration adjusting ring 15, thereby providing the pulverized coal.
  • an oxygen-containing pulverized coal stream 20 having an oxygen concentration sufficient to ignite the pulverized coal can be obtained. . Therefore, even when the oxygen concentration in the pulverized coal mixed stream 18 supplied to the fuel conduction space 13 is low, the ignition of the pulverized coal can be stabilized and the ignition can be promoted. In addition, since the oxygen-containing gas 19 is supplied from the concentration adjusting ring 15, the path through which the oxygen-containing pulverized coal flow 20 flows can be shortened, so that the pulverized coal is prevented from igniting and more safe. Can be improved.
  • the burner 1 of the third embodiment has the structure of the second embodiment, that is, an oxygen-containing gas introduction pipe 33 (see FIG. 3) inserted into the deflector angle 14 and a base end of the deflector angle 14.
  • a ring pipe 34 (see FIG. 2) connected across the pipe and an oxygen-containing gas supply pipe 35 (see FIG.
  • a hollow first concentration adjusting ring 41 surrounding the inner cylinder nozzle 11 is provided in the fuel conduction space 13.
  • the first concentration adjusting ring 41 has a base portion and a tip portion that are each tapered, and a side section that is trapezoidal.
  • a plurality of first oxygen-containing gas ejection holes 42 are formed at equiangular pitches on the inclined surface on the tip side of the first concentration adjusting ring 41.
  • a first oxygen-containing gas supply pipe 43 is connected to the first concentration adjusting ring 41.
  • the first oxygen-containing gas supply pipe 43 is inserted into the inner cylinder nozzle 11, penetrates the peripheral wall of the inner cylinder nozzle 11, and the first oxygen-containing gas supply pipe 43 enters the fuel conduction space 13. It is not exposed.
  • the first oxygen-containing gas supply pipe 43 is connected to an oxygen-containing gas supply source (not shown), and the oxygen-containing gas 19 such as pure oxygen or a mixed gas of oxygen and carbon dioxide is the first oxygen-containing gas.
  • the gas is supplied into the first concentration adjusting ring 41 through the supply pipe 43 and is injected into the fuel conduction space 13 through the first oxygen-containing gas injection hole 42.
  • a hollow second concentration adjusting ring 44 is provided on the inner peripheral surface of the outer cylinder nozzle 9 on the base side of the first concentration adjusting ring 41 over the entire circumference.
  • the second concentration adjusting ring 44 has a base portion and a tip portion that are each tapered, and a side section that is trapezoidal.
  • a plurality of second oxygen-containing gas ejection holes 45 are formed at equiangular pitches on the inclined surface on the distal end side of the second concentration adjusting ring 44.
  • a second oxygen-containing gas supply pipe 46 penetrating the peripheral wall of the outer cylinder nozzle 9 is connected to the second concentration adjusting ring 44, and the second oxygen-containing gas supply pipe 46 is exposed in the fuel conduction space 13. It is supposed not to.
  • the second oxygen-containing gas supply pipe 46 is connected to an oxygen-containing gas supply source (not shown), and the oxygen-containing gas 19 is adjusted to the second concentration via the second oxygen-containing gas supply pipe 46.
  • the gas is supplied into the ring 44 and ejected into the fuel conduction space 13 through the second oxygen-containing gas ejection hole 45.
  • the pulverized coal mixed flow 18 supplied via the pulverized coal flow supply pipe 16 is added to the oxygen-containing material via the first concentration adjusting ring 41 and the second concentration adjusting ring 44.
  • the pulverized coal mixed stream 18 and the oxygen-containing gas 19 are mixed, and at a stage where the pulverized coal is ejected from the tip of the outer cylinder nozzle 9, an oxygen concentration sufficient to ignite the pulverized coal
  • the oxygen-containing pulverized coal stream 20 can be obtained. Therefore, even when the oxygen concentration in the pulverized coal mixed stream 18 supplied into the fuel conduction space 13 is low, sufficient oxygen for combustion of the pulverized coal can be obtained, and the ignition of the pulverized coal can be stabilized. And promote ignition.
  • the concentration of the pulverized coal in the oxygen-containing pulverized coal flow 20 can be made uniform by the first concentration adjusting ring 41 and the second concentration adjusting ring 44, and the generated flame can be stabilized. Further, since the first oxygen-containing gas supply pipe 43 and the second oxygen-containing gas supply pipe 46 are not exposed in the fuel conduction space 13, respectively, the first oxygen-containing gas by pulverized coal is used. Wear of the supply pipe 43 and the second oxygen-containing gas supply pipe 46 can be prevented.
  • the oxygen-containing gas supply pipes 43, 46 are connected to both the first concentration adjusting ring 41 and the second concentration adjusting ring 44, and the oxygen-containing gas ejection holes 42, 45 are connected. However, the oxygen-containing gas 19 may be jetted from only one of the first concentration adjusting ring 41 and the second concentration adjusting ring 44.
  • Oxygen-containing gas can be supplied into the pulverized coal mixed stream having a low oxygen concentration, so that the oxygen concentration in the pulverized coal mixed stream can be increased, ignition can be stabilized, and the gas can be supplied into the outer cylinder nozzle.
  • the oxygen-containing gas By supplying the oxygen-containing gas into the pulverized coal mixed flow after the passage, the path through which the pulverized coal mixed flow flows is shortened, and can be applied to improve safety.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Air Supply (AREA)

Abstract

炉壁(3)に設けられたスロート(4)の中心軸心上に設けられ、補助燃焼用空気(24)が流通する内筒ノズル(11)及び該内筒ノズルと同心で外側に設けられ搬送媒体と微粉炭が混合された微粉炭混合流(18)が流通する外筒ノズル(9)からなるノズル本体(7)と、該ノズル本体を収納するウインドボックス(5)と、該ウインドボックスに収納されると共に前記ノズル本体の先端部に設けられる2次空気調整装置(8)と、前記ウインドボックスから前記内筒ノズル内に補助燃焼用空気として燃焼用空気(22)を導入する補助燃焼用空気導入管(23)と、前記外筒ノズル内に微粉炭混合流を導入する微粉炭流供給管(16)と、前記微粉炭混合流に酸素含有ガス(19)を供給し前記微粉炭混合流中の酸素濃度を上昇させる酸素含有ガス供給管(17)とを具備する。

Description

バーナ
 本発明は、ボイラ火炉の壁面に設けられ、微粉炭等の燃料を燃焼させるバーナ、特に二酸化炭素の回収を容易に行える様酸素燃焼を行うバーナに関するものである。
 ボイラの火炉で微粉炭の燃焼を行うバーナに於いて、微粉炭の搬送を行う搬送媒体として、燃焼排ガスと酸素の混合ガスを使用し、又燃焼用空気も同様に燃焼排ガスと酸素の混合ガスを使用することで、燃焼排ガスの大部分を二酸化炭素とし、二酸化炭素の回収を容易にする酸素燃焼を行うバーナがある。
 又、搬送媒体に燃焼排ガスと酸素の混合ガスを使用する場合、装置の緊急停止等により搬送媒体中の酸素濃度が上昇し、微粉炭が搬送中に発火する虞れがあることから、搬送媒体には酸素を混合させず、燃焼排ガスのみを搬送媒体とするバーナも考案されている。
 然し乍ら、燃焼排ガスに別途酸素を混合させないで燃焼排ガスのみを搬送媒体とした場合、燃焼排ガス中の酸素濃度は僅かに3%~5%程度である為、燃焼時に周囲から燃焼用空気を供給しても微粉炭混合流に充分に酸素が供給されず、着火が不安定になるという問題があった。
 尚、特許文献1には、バーナの中心から微粉炭と燃焼排ガスの混合物である1次ガスを火炉内に噴出させ、1次ガスの周囲から2次ガスを供給し、2次ガスの周囲から2次ガスを分岐させた3次ガスを供給し、酸素富化ガスを噴出する酸素富化ガス噴射ノズルをバーナ上流の1次系配管内に設置する酸素燃焼ボイラプラントが開示されている。
特開2011−75175号公報
 本発明は斯かる実情に鑑み、搬送媒体を低酸素状態に保ちつつ微粉炭の着火安定性の向上を図るバーナを提供するものである。
 本発明は、炉壁に設けられたスロートの中心軸心上に設けられ、補助燃焼用空気が流通する内筒ノズル及び該内筒ノズルと同心で外側に設けられ搬送媒体と微粉炭が混合された微粉炭混合流が流通する外筒ノズルからなるノズル本体と、該ノズル本体を収納するウインドボックスと、該ウインドボックスに収納されると共に前記ノズル本体の先端部に設けられる2次空気調整装置と、前記ウインドボックスから前記内筒ノズル内に補助燃焼用空気として燃焼用空気を導入する補助燃焼用空気導入管と、前記外筒ノズル内に微粉炭混合流を導入する微粉炭流供給管と、前記微粉炭混合流に酸素含有ガスを供給し前記微粉炭混合流中の酸素濃度を上昇させる酸素含有ガス供給管とを具備するバーナに係るものである。
 又本発明は、前記外筒ノズルの内周面に該外筒ノズルの軸心方向に沿って延在する複数のディフレクタアングルを更に具備し、該ディフレクタアングルは内部に酸素含有ガスの流路が形成されると共に基端に掛渡り前記流路に連通するリング管が接続され、該リング管に前記外筒ノズルの周壁を貫通する前記酸素含有ガス供給管が接続されたバーナに係るものである。
 又本発明は、前記酸素含有ガス供給管が前記外筒ノズルの基部に連通し、前記酸素含有ガスを前記外筒ノズルの基部から供給するバーナに係るものである。
 又本発明は、前記内筒ノズルを囲繞する中空の濃度調整リングを更に具備し、該濃度調整リングの先端面に複数の酸素含有ガス噴出孔が穿設され、前記濃度調整リングに前記内筒ノズルの内部に挿通され該内筒ノズルの周壁を貫通する前記酸素含有ガス供給管が接続されたバーナに係るものである。
 更に又本発明は、前記内筒ノズルを囲繞する第1濃度調整リングと、該第1濃度調整リングよりも基部側で、前記外筒ノズルの内周面に全周に亘って設けられた第2濃度調整リングとを更に具備し、前記第1濃度調整リング又は前記第2濃度調整リングの少なくとも何れか一方の濃度調整リングが中空で先端面に複数の酸素含有ガス噴出孔が穿設され、前記一方の濃度調整リングに酸素含有ガス供給管が接続されたバーナに係るものである。
 本発明によれば、炉壁に設けられたスロートの中心軸心上に設けられ、補助燃焼用空気が流通する内筒ノズル及び該内筒ノズルと同心で外側に設けられ搬送媒体と微粉炭が混合された微粉炭混合流が流通する外筒ノズルからなるノズル本体と、該ノズル本体を収納するウインドボックスと、該ウインドボックスに収納されると共に前記ノズル本体の先端部に設けられる2次空気調整装置と、前記ウインドボックスから前記内筒ノズル内に補助燃焼用空気として燃焼用空気を導入する補助燃焼用空気導入管と、前記外筒ノズル内に微粉炭混合流を導入する微粉炭流供給管と、前記微粉炭混合流に酸素含有ガスを供給し前記微粉炭混合流中の酸素濃度を上昇させる酸素含有ガス供給管とを具備するので、前記微粉炭混合流中の酸素濃度が低い場合であっても着火を安定させ、着火を促進させることができると共に、酸素濃度を上昇させた前記微粉炭混合流が流動する経路を短くすることで安全性の向上を図ることができる。
 図1は本発明の第1の実施例に係るバーナを示す概略立断面図である。
 図2は本発明の第2の実施例に係るバーナを示す概略立断面図である。
 図3は本発明の第2の実施例に係るバーナのノズル本体を示す正面図である。
 図4は本発明の第3の実施例に係るバーナを示す概略立断面図である。
 図5は本発明の第4の実施例に係るバーナを示す概略立断面図である。
 以下、図面を参照しつつ本発明の実施例を説明する。
 先ず、図1に於いて、本発明の第1の実施例に係るバーナ1について説明する。
 図1中、2は火炉、3は該火炉2の炉壁を示している。該炉壁3にスロート4が設けられ、前記炉壁3の反火炉2側にウインドボックス5が取付けられ、該ウインドボックス5の内部に前記バーナ1が前記スロート4と同心に設けられている。
 前記バーナ1は、ノズル本体7と該ノズル本体7の先端部(炉内側の端部)を囲む様に設けられた2次空気調整装置8とを具備している。
 前記ノズル本体7は、同心に設けられた外筒ノズル9、内筒ノズル11、該内筒ノズル11の中心線上に配設されたオイルバーナ12を具備しており、前記外筒ノズル9と前記内筒ノズル11とは、それぞれ径が漸次減少する縮径構造となっている。又、前記外筒ノズル9、前記内筒ノズル11の断面形状はそれぞれ円形であり、前記外筒ノズル9と前記内筒ノズル11間には中空筒状の空間で前記火炉2側端が開放された燃料導通空間13が形成される。
 前記外筒ノズル9の内周面には、周方向に所定の角度ピッチで所要数、例えば45°間隔で断面が三角形状のディフレクタアングル14が配設され、前記内筒ノズル11には、該内筒ノズル11を囲繞する濃度調整リング15が設けられている。
 前記外筒ノズル9の基部(前記反火炉2側の端部)には微粉炭流供給管16と酸素含有ガス供給管17とが、それぞれ前記外筒ノズル9に接線方向から連通されている。前記微粉炭流供給管16は微粉炭ミル(図示せず)に接続され、該微粉炭流供給管16を介して搬送媒体(以下1次空気と称す)と微粉炭とが混合された微粉炭混合流18が前記燃料導通空間13に接線方向から流入する。
 尚、前記微粉炭混合流18中の1次空気は、前記火炉2にて燃焼された微粉炭の燃焼排ガスを酸素濃度21%の空気と混合させるか、又は燃焼排ガスがそのまま使用されることで、酸素濃度が例えば3%~5%程度迄低下しており、前記微粉炭ミルに粉砕されてから前記燃料導通空間13に流入する迄の搬送工程に於いて、前記微粉炭混合流18が高温となった場合でも、微粉炭が発火しない様になっている。
 又、前記酸素含有ガス供給管17は酸素含有ガス供給源(図示せず)に接続され、該酸素含有ガス供給管17を介して純酸素や酸素と二酸化炭素の混合ガス等である酸素含有ガス19が、前記燃料導通空間13に接線方向から流入する。
 該燃料導通空間13に流入した前記微粉炭混合流18、及び前記酸素含有ガス19は、前記燃料導通空間13内部を旋回しつつ混合され、所定酸素濃度、例えば16%~21%の酸素濃度の酸素含有微粉炭流20として前記燃料導通空間13の先端より噴出される様になっている。
 尚、前記酸素含有ガス供給管17は前記外筒ノズル9の基部に軸心方向から連通させ、前記酸素含有ガス供給管17を介して前記酸素含有ガス19が前記燃料導通空間13に軸心方向から流入する様にしてもよい。
 又、前記ウインドボックス5には2次空気送風ダクト21が連通しており、該2次空気送風ダクト21を介して燃焼用空気として2次空気22が流入する。尚、該2次空気22には、前記火炉2にて微粉炭を燃焼させた際の燃焼排ガスに酸素を混合させた混合ガス、例えば酸素を約30%、二酸化炭素を約70%とした混合ガスが使用される。
 又、前記内筒ノズル11の基部には前記ウインドボックス5の内部に開口する補助燃焼用空気導入管としての3次空気導入管23が連通し、前記ウインドボックス5に送給される前記2次空気22を取入れ、燃焼用補助空気即ち3次空気24として前記内筒ノズル11内に導いている。
 前記2次空気調整装置8は、前記ノズル本体7の先端部を収納する補助空気調整機構25と、該補助空気調整機構25の外側に同心多重に設けられた主空気調整機構26から構成されている。
 前記補助空気調整機構25は、先端に向って縮径する第1空気ガイドダクト27と、回転自在に多数設けられたインナ空気ベーン28とを有し、該インナ空気ベーン28はリンク機構(図示せず)を介して同期回動可能であり、空気流れに対する傾斜角を変更可能となっている。又、前記主空気調整機構26は先端に向って縮径する第2空気ガイドダクト29と、円周等間隔で回転可能に多数設けられたアウタ空気ベーン31とを有し、該アウタ空気ベーン31は、前記インナ空気ベーン28と同様にリンク機構(図示せず)を介して同期回動可能であり、空気流れに対する傾斜角を変更可能となっている。
 尚、前記第2空気ガイドダクト29の先端は、前記スロート4に連続し、前記第1空気ガイドダクト27の先端は前記炉壁3の内壁面から後退した位置にあり、前記外筒ノズル9、前記内筒ノズル11の先端も前記炉壁3の内壁面から後退した位置となっている。
 次に、前記バーナ1での燃焼について説明する。
 微粉炭ミル(図示せず)により粉砕された微粉炭が1次空気により搬送され、前記微粉炭流供給管16より前記微粉炭混合流18として前記燃料導通空間13の基部に供給されると共に、酸素含有ガス供給源(図示せず)からの前記酸素含有ガス19が前記酸素含有ガス供給管17より前記燃料導通空間13の基部に供給される。
 該燃料導通空間13の基部に供給された前記微粉炭混合流18及び前記酸素含有ガス19は、前記燃料導通空間13を旋回しながら前記火炉2に向って流動する。前記微粉炭混合流18と前記酸素含有ガス19とは前記燃料導通空間13を旋回する過程で混ざり合い、酸素濃度が上昇した前記酸素含有微粉炭流20となると共に、旋回により該酸素含有微粉炭流20中の微粉炭濃度及び酸素濃度が均一化される。
 又、該酸素含有微粉炭流20は前記外筒ノズル9内を通過する過程で縮流されて増速され、整流される。この時、前記濃度調整リング15により前記酸素含有微粉炭流20が偏向されて微粉炭濃度が調整され、又前記ディフレクタアングル14により前記酸素含有微粉炭流20内の微粉炭がより均一化されると共に、旋回が抑制され軸心方向への速度を与えられ、前記外筒ノズル9の先端より噴出される。
 前記酸素含有微粉炭流20は、前記火炉2に噴出される過程で、前記2次空気22により昇温され、更に前記火炉2内からの輻射熱を受けて加熱される。加熱により、微粉炭から揮発分が放出され、該揮発分に着火して火炎が連続的に維持される。
 前記ウインドボックス5には燃焼用空気である前記2次空気22が所定温度に昇温されて供給される。該2次空気22は前記アウタ空気ベーン31により旋回が与えられ、前記第2空気ガイドダクト29を介して前記酸素含有微粉炭流20と共に前記火炉2に噴出される。
 尚、前記第2空気ガイドダクト29に取込まれた前記2次空気22の一部は前記インナ空気ベーン28を介して前記第1空気ガイドダクト27内部に取込まれ、2次補助空気として噴出される。又、前記インナ空気ベーン28は、空気流れに対して傾斜しており、取込んだ一部の2次空気22に旋回流を与える様になっている。
 前記アウタ空気ベーン31の風量調整、前記インナ空気ベーン28による旋回流の強さの調整、風量調整で前記2次空気22の供給量及び流れの状態が変化し、微粉炭の燃焼状態が調整される。
 又、該2次空気22の一部は前記3次空気24として前記3次空気導入管23を介して前記内筒ノズル11に導かれ、該内筒ノズル11より噴出される。前記3次空気24が噴出されることで、微粉炭の燃焼状態が調整される。従って、前記2次空気22の調整、前記3次空気24の調整等により微粉炭の燃焼状態が最適となる様に調整される。
 上述の様に、第1の実施例では、前記外筒ノズル9の基部より前記酸素含有ガス供給管17を介して前記酸素含有ガス19を供給し、該酸素含有ガス19を前記微粉炭混合流18が前記燃料導通空間13を流動する過程で混合させ、着火に充分な酸素濃度を有する前記酸素含有微粉炭流20としているので、該酸素含有微粉炭流20が前記外筒ノズル9から噴出される段階で充分に酸素濃度を上昇させることができ、前記燃料導通空間13に供給される前記微粉炭混合流18中の酸素濃度が低い場合であっても、着火を安定させ、着火を促進させることができる。
 又、前記酸素含有ガス19を前記外筒ノズル9の基部より供給し、着火に充分な酸素濃度を有する前記酸素含有微粉炭流20が前記燃料導通空間13のみを流動する様にしているので、微粉炭ミル(図示せず)に粉砕され、前記燃料導通空間13に供給される前記微粉炭混合流18を低酸素状態とすることができ、又前記酸素含有微粉炭流20が流動する経路を短くでき、微粉炭が発火するのを防止し、安全性を向上させることができる。
 又、前記酸素含有ガス供給管17は、前記外筒ノズル9に接続され、前記燃料導通空間13内に延出しない構造となっているので、前記酸素含有ガス供給管17が前記燃料導通空間13内に露出せず、微粉炭により前記酸素含有ガス供給管17が摩耗するのを防止することができる。
 又、前記3次空気導入管23を介して前記ウインドボックス5の前記2次空気22を前記内筒ノズル11に供給しているので、前記酸素含有微粉炭流20が噴出される前記外筒ノズル9の内側と外側から燃焼用空気を供給し、微粉炭と酸素の混合を促進することができ、微粉炭の着火の安定性をより高めることができる。
 更に、前記燃料導通空間13内に前記酸素含有ガス供給管17を介して前記酸素含有ガス19を供給し、又前記火炉2にて微粉炭を燃焼した際の燃焼排ガスを酸素濃度21%の空気と混合させて1次空気とするか、又は燃焼排ガスをそのまま1次空気として使用しているので、前記火炉2にて微粉炭の燃焼に供される空気は二酸化炭素の割合が高くなり、燃焼後の排ガスの殆どが二酸化炭素となり、燃焼後の工程にて二酸化炭素の回収を容易に行うことができる。
 次に、図2、図3に於いて、本発明の第2の実施例について説明する。尚、図2、図3中、図1中と同等のものには同符号を付し、その説明を省略する。
 第2の実施例のバーナ1では、各ディフレクタアングル14内に酸素含有ガス19の流路を形成する酸素含有ガス導入パイプ33が挿通され、又前記ディフレクタアングル14の基端には、各ディフレクタアングル14に掛渡るリング管34が接続されており、各酸素含有ガス導入パイプ33と前記リング管34とが連通している。
 又、該リング管34には、外筒ノズル9を貫通する酸素含有ガス供給管35が接続され、該酸素含有ガス供給管35は酸素含有ガス供給源(図示せず)に接続されており、該酸素含有ガス供給源より前記酸素含有ガス供給管35を介して、純酸素や酸素と二酸化炭素の混合ガス等である前記酸素含有ガス19が前記リング管34に供給される様になっている。
 第2の実施例に於いては、微粉炭ミル(図示せず)で粉砕された微粉炭が、1次空気と共に微粉炭混合流18として微粉炭流供給管16を介して燃料導通空間13内に供給され、又前記酸素含有ガス19が前記酸素含有ガス供給管35を介して前記リング管34に供給される。
 前記燃料導通空間13内に接線方向から供給された前記微粉炭混合流18は、前記燃料導通空間13を旋回する過程で均一化され、又外筒ノズル9内を通過する過程で縮流されて増速され、整流される。更に、濃度調整リング15により前記微粉炭混合流18中の微粉炭濃度が調整されると共に、前記ディフレクタアングル14により前記微粉炭混合流18中の微粉炭がより均一化され、旋回を抑制して軸心方向への速度を与えられ、前記外筒ノズル9の先端より前記微粉炭混合流18が噴出される。
 又、前記リング管34に供給された前記酸素含有ガス19は、前記リング管34内を流通し、各酸素含有ガス導入パイプ33に導入されて該各酸素含有ガス導入パイプ33の先端、即ち各ディフレクタアングル14の先端より噴出される。
 従って、第2の実施例では、前記微粉炭混合流18に対し、各ディフレクタアングル14の先端より前記酸素含有ガス19が供給される様になっているので、該酸素含有ガス19と前記微粉炭混合流18とを容易に混合させることができ、該微粉炭混合流18中の酸素濃度が低い場合であっても微粉炭の着火を安定させ、着火を促進させることができる。
 又、第1の実施例と同様、3次空気導入管23を介して2次空気22を前記内筒ノズル11に供給しているので、前記外筒ノズル9から噴出される前記微粉炭混合流18の内側と外側から燃焼用空気を供給することができ、微粉炭と酸素の混合を促進させ、微粉炭の着火の安定性をより高めることができる。
 更に、前記酸素含有ガス供給管35が前記外筒ノズル9を貫通し、前記リング管34に接続されているので、前記酸素含有ガス供給管35が前記燃料導通空間13内に露出せず、前記酸素含有ガス供給管35が微粉炭により摩耗するのを防止することができる。
 尚、第2の実施例に於いて、前記ディフレクタアングル14内に前記酸素含有ガス導入パイプ33を挿通し、該酸素含有ガス導入パイプ33を前記酸素含有ガス19の流路としているが、前記ディフレクタアングル14を中空構造とし、該ディフレクタアングル14そのものを前記酸素含有ガス19の流路としてもよい。
 次に、図4に於いて、本発明の第3の実施例について説明する。尚、図4中、図1中と同等のものには同符号を付し、その説明を省略する。
 第3の実施例では、濃度調整リング15を中空構造とし、該濃度調整リング15の先端面に等角度ピッチで複数の酸素含有ガス噴出孔37を穿設している。
 又、前記濃度調整リング15は、内筒ノズル11内に挿通され、該内筒ノズル11の周壁を貫通する酸素含有ガス供給管38と接続されている。
 該酸素含有ガス供給管38は、図示しない酸素含有ガス供給源に接続されており、前記酸素含有ガス供給管38を介して純酸素や酸素と二酸化炭素の混合ガス等の酸素含有ガス19が前記濃度調整リング15内に供給され、前記酸素含有ガス噴出孔37から前記燃料導通空間13内に噴出される様になっている。
 第3の実施例に於いては、微粉炭流供給管16を介して供給された微粉炭混合流18に前記濃度調整リング15を介して前記酸素含有ガス19を供給することで、前記微粉炭混合流18と前記酸素含有ガス19とを混合させ、外筒ノズル9の先端より噴出する段階で、微粉炭を着火させるのに充分な酸素濃度を有する酸素含有微粉炭流20とすることができる。
 従って、前記燃料導通空間13に供給される前記微粉炭混合流18中の酸素濃度が低い場合であっても、微粉炭の着火を安定させ、着火を促進させることができる。
 又、前記濃度調整リング15より前記酸素含有ガス19を供給することで、前記酸素含有微粉炭流20が流動する経路をより短くすることができるので、微粉炭の発火を防止し、より安全性を向上させることができる。
 更に、前記酸素含有ガス供給管38が前記内筒ノズル11の内部に挿通され、又該内筒ノズル11の周壁を貫通して前記濃度調整リング15に接続されているので、前記酸素含有ガス供給管38が前記燃料導通空間13内に露出することがなく、微粉炭による前記酸素含有ガス供給管38の摩耗を防止することができる。
 尚、第3の実施例のバーナ1に、第2の実施例の構成、即ちディフレクタアングル14内に挿通された酸素含有ガス導入パイプ33(図3参照)と、前記ディフレクタアングル14の基端に掛渡って接続されたリング管34(図2参照)と、前記外筒ノズル9の周壁を貫通し前記リング管34に接続された酸素含有ガス供給管35(図2参照)を加えてもよい。
 次に、図5に於いて、本発明の第4の実施例について説明する。尚、図5中、図1中と同等のものには同符号を付し、その説明を省略する。
 第4の実施例のバーナ1では、燃料導通空間13内に内筒ノズル11を囲繞する中空の第1濃度調整リング41が設けられる。該第1濃度調整リング41は基部及び先端部がそれぞれテーパ状となっており、側断面が台形形状となっている。該第1濃度調整リング41の先端側の斜面には、等角度ピッチで複数の第1酸素含有ガス噴出孔42が穿設されている。
 又、前記第1濃度調整リング41には、第1酸素含有ガス供給管43が接続されている。該第1酸素含有ガス供給管43は、前記内筒ノズル11の内部に挿通され、該内筒ノズル11の周壁を貫通し、前記第1酸素含有ガス供給管43が前記燃料導通空間13内に露出しない様になっている。
 前記第1酸素含有ガス供給管43は酸素含有ガス供給源(図示せず)と接続されており、純酸素や酸素と二酸化炭素の混合ガス等の酸素含有ガス19は、前記第1酸素含有ガス供給管43を介して前記第1濃度調整リング41内に供給され、前記第1酸素含有ガス噴出孔42を介して前記燃料導通空間13内に噴出される。
 又、前記第1濃度調整リング41よりも基部側の外筒ノズル9の内周面には、全周に亘って中空の第2濃度調整リング44が設けられる。該第2濃度調整リング44は基部及び先端部がそれぞれテーパ状となっており、側断面が台形形状となっている。該第2濃度調整リング44の先端側の斜面には、等角度ピッチで複数の第2酸素含有ガス噴出孔45が穿設されている。
 前記第2濃度調整リング44には、前記外筒ノズル9の周壁を貫通する第2酸素含有ガス供給管46が接続され、該第2酸素含有ガス供給管46が前記燃料導通空間13内に露出しない様になっている。
 前記第2酸素含有ガス供給管46は酸素含有ガス供給源(図示せず)に接続されており、前記酸素含有ガス19は、前記第2酸素含有ガス供給管46を介して前記第2濃度調整リング44内に供給され、前記第2酸素含有ガス噴出孔45を介して前記燃料導通空間13内に噴出される。
 第4の実施例に於いては、微粉炭流供給管16を介して供給された微粉炭混合流18に、前記第1濃度調整リング41及び前記第2濃度調整リング44を介して前記酸素含有ガス19を供給することで、前記微粉炭混合流18と前記酸素含有ガス19とを混合させ、前記外筒ノズル9の先端より噴出する段階で、微粉炭を着火させるのに充分な酸素濃度を有する酸素含有微粉炭流20とすることができる。
 従って、前記燃料導通空間13内に供給される前記微粉炭混合流18中の酸素濃度が低い場合であっても、微粉炭の燃焼に充分な酸素を得ることができ、微粉炭の着火を安定させ、着火を促進させることができる。
 又、前記第1濃度調整リング41及び前記第2濃度調整リング44により前記酸素含有微粉炭流20中の微粉炭の濃度を均一化でき、生成される火炎を安定させることができる。
 更に、前記第1酸素含有ガス供給管43と前記第2酸素含有ガス供給管46とが、それぞれ前記燃料導通空間13内に露出しない様になっているので、微粉炭による前記第1酸素含有ガス供給管43と前記第2酸素含有ガス供給管46の摩耗を防止することができる。
 尚、第4の実施例では、前記第1濃度調整リング41と前記第2濃度調整リング44の両方に前記酸素含有ガス供給管43,46を接続し、前記酸素含有ガス噴出孔42,45を介して前記酸素含有ガス19を噴出させているが、前記第1濃度調整リング41と前記第2濃度調整リング44の何れか一方からのみ前記酸素含有ガス19を噴出させる様にしてもよい。
 酸素濃度の低い微粉炭混合流中に酸素含有ガスを供給可能としたことで、前記微粉炭混合流中の酸素濃度を上昇させ、着火を安定させることができると共に、外筒ノズル内に供給された後の前記微粉炭混合流中に前記酸素含有ガスを供給することで、前記微粉炭混合流が流動する経路が短くなり、安全性の向上に適用できる。
 1       バーナ
 2       火炉
 3       炉壁
 4       スロート
 5       ウインドボックス
 7       ノズル本体
 8       2次空気調整装置
 9       外筒ノズル
 11      内筒ノズル
 13      燃料導通空間
 14      ディフレクタアングル
 15      濃度調整リング
 16      微粉炭流供給管
 17      酸素含有ガス供給管
 18      微粉炭混合流
 19      酸素含有ガス
 20      酸素含有微粉炭流
 22      2次空気(燃焼用空気)
 23      3次空気導入管(補助燃焼用空気導入管)
 24      3次空気(補助燃焼用空気)
 33      酸素含有ガス導入パイプ
 34      リング管
 35      酸素含有ガス供給管
 37      酸素含有ガス噴出孔
 38      酸素含有ガス供給管
 41      第1濃度調整リング
 42      第1酸素含有ガス噴出孔
 43      第1酸素含有ガス供給管
 44      第2濃度調整リング
 45      第2酸素含有ガス噴出孔
 46      第2酸素含有ガス供給管

Claims (5)

  1.  炉壁に設けられたスロートの中心軸心上に設けられ、補助燃焼用空気が流通する内筒ノズル及び該内筒ノズルと同心で外側に設けられ搬送媒体と微粉炭が混合された微粉炭混合流が流通する外筒ノズルからなるノズル本体と、該ノズル本体を収納するウインドボックスと、該ウインドボックスに収納されると共に前記ノズル本体の先端部に設けられる2次空気調整装置と、前記ウインドボックスから前記内筒ノズル内に補助燃焼用空気として燃焼用空気を導入する補助燃焼用空気導入管と、前記外筒ノズル内に微粉炭混合流を導入する微粉炭流供給管と、前記微粉炭混合流に酸素含有ガスを供給し前記微粉炭混合流中の酸素濃度を上昇させる酸素含有ガス供給管とを具備することを特徴とするバーナ。
  2.  前記外筒ノズルの内周面に該外筒ノズルの軸心方向に沿って延在する複数のディフレクタアングルを更に具備し、該ディフレクタアングルは内部に酸素含有ガスの流路が形成されると共に基端に掛渡り前記流路に連通するリング管が接続され、該リング管に前記外筒ノズルの周壁を貫通する前記酸素含有ガス供給管が接続された請求項1のバーナ。
  3.  前記酸素含有ガス供給管が前記外筒ノズルの基部に連通し、前記酸素含有ガスを前記外筒ノズルの基部から供給する請求項1のバーナ。
  4.  前記内筒ノズルを囲繞する中空の濃度調整リングを更に具備し、該濃度調整リングの先端面に複数の酸素含有ガス噴出孔が穿設され、前記濃度調整リングに前記内筒ノズルの内部に挿通され該内筒ノズルの周壁を貫通する前記酸素含有ガス供給管が接続された請求項1又は請求項2のバーナ。
  5.  前記内筒ノズルを囲繞する第1濃度調整リングと、該第1濃度調整リングよりも基部側で、前記外筒ノズルの内周面に全周に亘って設けられた第2濃度調整リングとを更に具備し、前記第1濃度調整リング又は前記第2濃度調整リングの少なくとも何れか一方の濃度調整リングが中空で先端面に複数の酸素含有ガス噴出孔が穿設され、前記一方の濃度調整リングに酸素含有ガス供給管が接続された請求項1又は請求項2のバーナ。
PCT/JP2013/062736 2012-07-02 2013-04-24 バーナ WO2014006969A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13813164.4A EP2868969B1 (en) 2012-07-02 2013-04-24 Burner
AU2013284799A AU2013284799B2 (en) 2012-07-02 2013-04-24 Burner
US14/411,729 US9822968B2 (en) 2012-07-02 2013-04-24 Burner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012148471A JP6011073B2 (ja) 2012-07-02 2012-07-02 バーナ
JP2012-148471 2012-07-02

Publications (1)

Publication Number Publication Date
WO2014006969A1 true WO2014006969A1 (ja) 2014-01-09

Family

ID=49881731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062736 WO2014006969A1 (ja) 2012-07-02 2013-04-24 バーナ

Country Status (5)

Country Link
US (1) US9822968B2 (ja)
EP (1) EP2868969B1 (ja)
JP (1) JP6011073B2 (ja)
AU (1) AU2013284799B2 (ja)
WO (1) WO2014006969A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945189A (zh) * 2019-03-20 2019-06-28 中国矿业大学 一种改进主管的低浓度瓦斯脉动燃烧器
CN110595060A (zh) * 2019-10-10 2019-12-20 襄阳中和机电技术有限公司 一种管道式油煤混烧燃烧系统

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868068B (zh) * 2014-03-24 2016-03-02 王龙陵 一种高温氧气直接点火和稳燃系统
JP6326918B2 (ja) * 2014-04-02 2018-05-23 株式会社Ihi 微粉炭バーナ
CN105114954B (zh) * 2015-09-24 2017-05-10 陈维汉 一种多燃料预混旋流燃烧的燃烧装置
CN105737152B (zh) * 2016-03-10 2017-09-29 陈维汉 一种分级预混旋流低氮燃烧的燃烧装置
US10989138B2 (en) 2017-03-30 2021-04-27 Quest Engines, LLC Internal combustion engine
US10753308B2 (en) 2017-03-30 2020-08-25 Quest Engines, LLC Internal combustion engine
US10465629B2 (en) 2017-03-30 2019-11-05 Quest Engines, LLC Internal combustion engine having piston with deflector channels and complementary cylinder head
US10590834B2 (en) 2017-03-30 2020-03-17 Quest Engines, LLC Internal combustion engine
US10590813B2 (en) 2017-03-30 2020-03-17 Quest Engines, LLC Internal combustion engine
US10526953B2 (en) 2017-03-30 2020-01-07 Quest Engines, LLC Internal combustion engine
US10598285B2 (en) 2017-03-30 2020-03-24 Quest Engines, LLC Piston sealing system
US11041456B2 (en) 2017-03-30 2021-06-22 Quest Engines, LLC Internal combustion engine
KR102468662B1 (ko) 2017-04-28 2022-11-18 퀘스트 엔진스, 엘엘씨 가변 체적 챔버 장치
WO2018204684A1 (en) 2017-05-04 2018-11-08 Quest Engines, LLC Variable volume chamber for interaction with a fluid
JP6863189B2 (ja) * 2017-09-05 2021-04-21 トヨタ自動車株式会社 水素ガスバーナー装置用のノズル構造体
US10808866B2 (en) 2017-09-29 2020-10-20 Quest Engines, LLC Apparatus and methods for controlling the movement of matter
CN107940498A (zh) * 2017-12-20 2018-04-20 国丰新能源江苏有限公司 与二次风管结合的辅燃装置
CN108061301A (zh) * 2018-01-23 2018-05-22 上海云汇环保科技有限公司 一种新型钢包烘烤燃烧器
US10753267B2 (en) 2018-01-26 2020-08-25 Quest Engines, LLC Method and apparatus for producing stratified streams
WO2019147797A2 (en) 2018-01-26 2019-08-01 Quest Engines, LLC Audio source waveguide
JP7429501B2 (ja) * 2019-04-10 2024-02-08 株式会社Ihi 粉体噴射装置
CN110360544B (zh) * 2019-08-09 2021-02-23 郑州釜鼎热能技术有限公司 一种煤粉气化与分级预混燃烧的低氮燃烧装置
US10845052B1 (en) * 2019-12-20 2020-11-24 Jupiter Oxygen Corporation Combustion system comprising an annular shroud burner
CN112178633A (zh) * 2020-09-29 2021-01-05 湖北赤焰热能工程有限公司 一种浓缩型双调风旋流燃烧器及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142095A (ja) * 1986-12-05 1988-06-14 Babcock Hitachi Kk 噴流層石炭ガス化炉
JPH07293823A (ja) * 1994-04-27 1995-11-10 Ishikawajima Harima Heavy Ind Co Ltd 微粉炭バーナ
JPH09178116A (ja) * 1995-12-22 1997-07-11 Central Res Inst Of Electric Power Ind 微粉炭バーナ
JPH1038216A (ja) * 1996-07-22 1998-02-13 Ishikawajima Harima Heavy Ind Co Ltd 微粉炭バーナ
JPH10205712A (ja) * 1997-01-17 1998-08-04 Mitsubishi Heavy Ind Ltd 湿式炉用バーナ
JP2001026787A (ja) * 1999-07-13 2001-01-30 Mitsubishi Heavy Ind Ltd 石炭ガス化炉
WO2002012791A1 (en) * 2000-08-04 2002-02-14 Babcock-Hitachi Kabushiki Kaisha Solid fuel burner and combustion method using solid fuel burner
JP2005140480A (ja) * 2003-11-10 2005-06-02 Hitachi Ltd 固体燃料バーナと固体燃料バーナの燃焼方法
JP2008196741A (ja) * 2007-02-09 2008-08-28 Ihi Corp 微粉炭バーナ
JP2011075175A (ja) 2009-09-30 2011-04-14 Hitachi Ltd 酸素燃焼ボイラプラント

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08110014A (ja) * 1994-10-07 1996-04-30 Babcock Hitachi Kk 微粉炭燃焼装置
JP2002340306A (ja) * 2001-05-17 2002-11-27 Babcock Hitachi Kk 固体燃料燃焼用バーナおよび該バーナを備えた燃焼装置
JP2009079794A (ja) * 2007-09-25 2009-04-16 Babcock Hitachi Kk 固体燃料バーナ、固体燃料バーナを用いた燃焼装置とその運転方法
SE532338C2 (sv) * 2008-04-22 2009-12-15 Aga Ab Förfarande samt anordning för förbränning av bränsle i fast fas
JP2009264654A (ja) 2008-04-24 2009-11-12 Babcock Hitachi Kk 微粉炭バーナ
JP2011106726A (ja) * 2009-11-17 2011-06-02 Ihi Corp 微粉炭バーナ
JP5566317B2 (ja) 2011-02-18 2014-08-06 バブコック日立株式会社 固体燃料バーナ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142095A (ja) * 1986-12-05 1988-06-14 Babcock Hitachi Kk 噴流層石炭ガス化炉
JPH07293823A (ja) * 1994-04-27 1995-11-10 Ishikawajima Harima Heavy Ind Co Ltd 微粉炭バーナ
JPH09178116A (ja) * 1995-12-22 1997-07-11 Central Res Inst Of Electric Power Ind 微粉炭バーナ
JPH1038216A (ja) * 1996-07-22 1998-02-13 Ishikawajima Harima Heavy Ind Co Ltd 微粉炭バーナ
JPH10205712A (ja) * 1997-01-17 1998-08-04 Mitsubishi Heavy Ind Ltd 湿式炉用バーナ
JP2001026787A (ja) * 1999-07-13 2001-01-30 Mitsubishi Heavy Ind Ltd 石炭ガス化炉
WO2002012791A1 (en) * 2000-08-04 2002-02-14 Babcock-Hitachi Kabushiki Kaisha Solid fuel burner and combustion method using solid fuel burner
JP2005140480A (ja) * 2003-11-10 2005-06-02 Hitachi Ltd 固体燃料バーナと固体燃料バーナの燃焼方法
JP2008196741A (ja) * 2007-02-09 2008-08-28 Ihi Corp 微粉炭バーナ
JP2011075175A (ja) 2009-09-30 2011-04-14 Hitachi Ltd 酸素燃焼ボイラプラント

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945189A (zh) * 2019-03-20 2019-06-28 中国矿业大学 一种改进主管的低浓度瓦斯脉动燃烧器
CN109945189B (zh) * 2019-03-20 2023-09-05 中国矿业大学 一种改进主管的低浓度瓦斯脉动燃烧器
CN110595060A (zh) * 2019-10-10 2019-12-20 襄阳中和机电技术有限公司 一种管道式油煤混烧燃烧系统

Also Published As

Publication number Publication date
EP2868969B1 (en) 2019-01-30
US9822968B2 (en) 2017-11-21
AU2013284799B2 (en) 2016-01-14
JP2014009922A (ja) 2014-01-20
JP6011073B2 (ja) 2016-10-19
EP2868969A4 (en) 2016-03-09
US20150176840A1 (en) 2015-06-25
EP2868969A1 (en) 2015-05-06
AU2013284799A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP6011073B2 (ja) バーナ
EP1936270B1 (en) Pulverized solid fuel burner
TWI272357B (en) NOx-reduced combustion of concentrated coal streams
AU2011247692B2 (en) Pulverized coal burner and pulverized coal boiler
US20120231400A1 (en) Burners
JP6160105B2 (ja) 微粉炭バーナ
US9995480B2 (en) Burner
US20060281036A1 (en) Tunneled multi-swirler for liquid fuel atomization
WO2009113237A1 (ja) 微粉燃料用バーナ
JP6056409B2 (ja) バイオマスバーナ
US20230014871A1 (en) Radiant wall burner
CN113915613A (zh) 用于分级地燃烧燃料的方法和燃烧头
JP6056413B2 (ja) バーナ
JP5245558B2 (ja) 微粉燃料用バーナ
FI125911B (en) Gas burner with low nitrogen oxide emissions and fuel gas combustion process
JPS62196511A (ja) 微粉炭燃焼装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813164

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14411729

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013813164

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013284799

Country of ref document: AU

Date of ref document: 20130424

Kind code of ref document: A