WO2012049842A1 - ボイラ燃焼システムとその運転方法 - Google Patents

ボイラ燃焼システムとその運転方法 Download PDF

Info

Publication number
WO2012049842A1
WO2012049842A1 PCT/JP2011/005701 JP2011005701W WO2012049842A1 WO 2012049842 A1 WO2012049842 A1 WO 2012049842A1 JP 2011005701 W JP2011005701 W JP 2011005701W WO 2012049842 A1 WO2012049842 A1 WO 2012049842A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
gas
exhaust gas
boiler
burner
Prior art date
Application number
PCT/JP2011/005701
Other languages
English (en)
French (fr)
Inventor
仁 若松
丸本 隆弘
嶺 聡彦
パウリ デルニヤティン
Original Assignee
バブコック日立株式会社
フォータム コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコック日立株式会社, フォータム コーポレーション filed Critical バブコック日立株式会社
Priority to US13/876,516 priority Critical patent/US9429319B2/en
Priority to CA2823438A priority patent/CA2823438A1/en
Priority to AU2011315008A priority patent/AU2011315008B2/en
Priority to EP11832286.6A priority patent/EP2629009A1/en
Publication of WO2012049842A1 publication Critical patent/WO2012049842A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/08Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for reducing temperature in combustion chamber, e.g. for protecting walls of combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07001Injecting synthetic air, i.e. a combustion supporting mixture made of pure oxygen and an inert gas, e.g. nitrogen or recycled fumes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a boiler combustion system and an operation method thereof, and more particularly to a technique suitable for performing an oxyfuel combustion operation by modifying an existing air combustion boiler combustion system.
  • thermal power generation using an oxyfuel combustion system has been proposed as a method for facilitating the recovery of carbon dioxide (CO 2 ), which is one of the causative substances of global warming and has the largest emission in industrial activities.
  • CO 2 carbon dioxide
  • the amount of combustion gas supplied to the burner is about 0.8 during air combustion. Doubled. For this reason, the gas flow rate at the combustion gas outlet of the burner is lower than that during air combustion, and as a result, the combustion of the flame becomes unstable as compared with air combustion.
  • An object of the present invention is to suppress corrosion of a water wall pipe of a boiler and stabilize combustion of a burner during oxyfuel combustion operation of the boiler.
  • a boiler combustion system of the present invention includes a burner that burns fuel with a combustion gas, and a two-stage combustion gas inlet that supplies combustion gas in the vicinity of the combustion zone of the burner.
  • a boiler an exhaust gas treatment system for treating exhaust gas discharged from the boiler, an exhaust gas supply device that is provided in an exhaust gas circulation line branched from the exhaust gas treatment system, and extracts exhaust gas from the exhaust gas treatment system;
  • a flow regulator is connected to each of the two-stage combustion gas supply line for supplying gas to the fuel gas inlet, the combustion gas supply line, and the fuel transfer gas supply line.
  • An oxygen supply line that supplies oxygen-rich gas
  • a combustion air supply device that is provided in parallel with the exhaust gas supply device and that supplies combustion air
  • a switching means that switches operation between the exhaust gas supply device and the combustion air supply device
  • a flow rate adjusting device for adjusting the gas flow rates of the combustion gas supply line and the two-stage combustion gas supply line, respectively.
  • the combustion air supply device when the combustion air supply device is operated by the operation of the switching means, the combustion air is supplied to the boiler to perform the air combustion operation, and when the exhaust gas supply device is operated, the exhaust gas supply device is operated. And a mixed gas of oxygen-rich gas are supplied to the boiler and the oxyfuel combustion operation is performed.
  • the operation method of the boiler can be freely switched between the air combustion operation and the oxyfuel combustion operation, it is possible to operate the system in consideration of the environment, the power generation load and the like.
  • the gas flow rate of the combustion gas supply line and the two-stage combustion gas supply line can be freely adjusted by providing the flow rate adjusting device, for example, during the air combustion operation, the oxygen of the combustion air supplied to the burner Two-stage combustion with a ratio of less than 1 is performed, and during oxyfuel combustion operation, combustion gas in which exhaust gas and oxygen-rich gas are mixed can be controlled to be supplied only to the burner. Further, by supplying the combustion gas only to the burner during the oxyfuel combustion operation, for example, the combustion gas corresponding to the combustion air supplied to the two-stage combustion gas inlet during the air combustion operation is sent to the burner. be able to. Thereby, since the flow velocity of the combustion gas supplied from the burner is increased, the combustion of the burner can be stabilized.
  • the flow rate is adjusted so that the oxygen ratio of the combustion gas supplied from the burner is 1 or more, thereby preventing the occurrence of an oxygen-deficient region in the combustion region of the burner, and corrosive gas. Since generation
  • the combustion air supply device includes a first air supply fan for supplying combustion air to the exhaust gas circulation line on the downstream side of the exhaust gas supply device, and a fuel supply gas supply line branched from the exhaust gas circulation line. It may be configured by a second air supply fan that supplies combustion air. In this way, by adjusting the supply destination of combustion air to each of the plurality of air supply fans, the supply amount of combustion air can be easily adjusted.
  • the boiler combustion system of the present invention includes a boiler having a burner for burning fuel with a combustion gas, and a two-stage combustion gas inlet for supplying combustion gas in the vicinity of the combustion region of the burner, and the boiler.
  • a flow rate adjusting device for adjusting the flow rate.
  • the combustion air is supplied to the burner and the two-stage combustion gas inlet and the combustion is supplied to the burner.
  • the supply amount of the combustion air is larger than the supply amount of the combustion air supplied from the two-stage combustion gas inlet, the oxygen ratio of the combustion air supplied to the burner is 0.7 to 0.9, and the boiler Is operated in the oxyfuel combustion system, a mixed gas of a part of the exhaust gas discharged from the boiler and the oxygen-rich gas is supplied only to the burner, and the oxygen ratio of this mixed gas is 1.0 to 1.2. It is good to do.
  • the two-stage combustion gas inlet is exposed to high-temperature gas of about 1000 ° C. or more, and may be burned out. There is. For this reason, when the boiler is operated in the oxyfuel combustion system, a mixed gas is supplied from the burner, while a smaller amount of exhaust gas is supplied from the two-stage combustion gas input port than the mixed gas. Thereby, the high temperature of the two-stage combustion gas inlet can be suppressed, and burning can be suppressed.
  • the present invention during the oxyfuel combustion operation of the boiler, it is possible to suppress corrosion of the water wall tube of the boiler and stabilize the combustion of the burner. As a result, the maintenance cost of the boiler can be reduced and long-term stable operation can be achieved.
  • FIG. 1 is a system diagram showing a configuration of an embodiment of a boiler combustion system to which the present invention is applied.
  • the boiler combustion system to which this invention is applied it is a figure explaining the relationship between a burner oxygen ratio and the amount of water wall pipe corrosion. It is a figure explaining the relationship between a burner oxygen ratio and NOx discharge
  • the boiler combustion system shown in FIG. 1 can be constructed by adding equipment necessary for oxyfuel combustion based on the existing air combustion system and changing the configuration and system.
  • the boiler combustion system is an air combustion system. It is possible to switch between oxyfuel combustion methods.
  • this embodiment demonstrates the example which uses pulverized coal as a fossil fuel burned with a boiler, it is not limited to this example, For example, not only a fossil fuel but other fuels, such as biomass fuel, are used. May be used.
  • the boiler 1 has a furnace 3, a burner 5 and a wind box 7 attached to the furnace 3, and a two-stage combustion gas inlet 9 installed downstream of the combustion area of the burner 5. , And is accommodated in the wind box 7.
  • the burner 5 is formed with a fuel flow path to which fuel pulverized coal is supplied and a combustion gas flow path to which combustion gas is supplied.
  • An exhaust gas treatment line 11 through which the exhaust gas g1 flows is connected to the outlet of the boiler 1, and to the exhaust gas treatment line 11, a denitration device 13, a heat exchanger 15, a dust removal device 17, an induction fan 19, and a desulfurization device are connected from the upstream side. 21 and a CO 2 recovery device 23 are sequentially arranged. Further, the exhaust gas treatment line 11 between the desulfurization device 21 and the CO 2 recovery device 23 is branched in the middle, and a chimney 25 is connected to the end.
  • the exhaust gas treatment line 11 between the induction fan 19 and the desulfurization device 21 is branched to an exhaust gas circulation line 27 on the way.
  • the exhaust gas circulation line 27 is provided with an exhaust gas supply fan 29 for extracting a part of the exhaust gas (hereinafter referred to as circulating exhaust gas g2) from the exhaust gas treatment line 11.
  • the exhaust gas circulation line 27 is branched into three lines on the downstream side of the exhaust gas supply fan 29, that is, a combustion gas supply line 31, a fuel transfer gas supply line 33, and a two-stage combustion gas supply line 35. .
  • the two-stage combustion gas supply is further performed from the branch point p2 of the combustion gas supply line 31.
  • the line 35 is branched.
  • the combustion gas supply line 31 is connected to the combustion gas flow path of the burner 5 via the heat exchanger 15, and the fuel transfer gas supply line 33 sequentially passes through the heat exchanger 15 and the pulverized coal generator 37.
  • the burner 5 is connected to the fuel flow path.
  • the two-stage combustion gas supply line 35 is connected to the two-stage combustion gas inlet 9 of the boiler 1 via the heat exchanger 15.
  • the fuel transfer gas supply line 33 has a structure that can bypass the heat exchanger 15.
  • the coal of fuel is accommodated in the bunker 39, and when the feeder 41 is opened, the coal is supplied to the pulverized coal unit 37 via the fuel conveying gas supply line 33, and the coal not shown is accommodated in the pulverized coal unit 37. It is pulverized to a particle size suitable for pulverized coal combustion by a pulverizing mill or the like. The pulverized coal thus pulverized is accompanied by the combustion gas supplied from the fuel supply gas supply line 33 and supplied to the fuel flow path of the burner 5.
  • a first combustion air supply fan 43 that supplies combustion air is connected in parallel with the exhaust gas supply fan 29 on the downstream side of the exhaust gas supply fan 29 of the exhaust gas circulation line 27.
  • a second combustion air supply fan 45 is connected in parallel with the exhaust gas supply fan 29 to the fuel transfer gas supply line 33 branched from the exhaust gas circulation line 27.
  • the first combustion air supply fan 43 mainly supplies the combustion air whose flow rate is adjusted via the damper 47 to the combustion gas supply line 31 and the two-stage combustion gas supply line 35
  • the combustion air supply fan 45 mainly supplies the combustion air whose flow rate is adjusted via the damper 49 to the fuel conveyance gas supply line 33.
  • a branch outlet of the oxygen supply line 51 is connected to the combustion gas supply line 31 and the fuel transfer gas supply line 33 on the downstream side of the branch point p2 through flow rate adjusting valves 53a and 53b, respectively.
  • an oxygen supply device 55 that produces oxygen-rich gas is connected to the inlet portion on the opposite side of the oxygen supply line 51.
  • the oxygen-rich gas is mixed with the circulating exhaust gas flowing through the combustion gas supply line 31 and the fuel transfer gas supply line 33 to obtain a practical oxygen concentration (for example, 26 to 29 wet-Vol%: wet base volume fraction).
  • the oxygen supply device 55 of the present embodiment generates nitrogen gas having a high concentration of 95 dry-Vol% (dry base volume fraction) or more by separating nitrogen and the like from air. It is not limited to this.
  • the combustion gas supply line 31 and the two-stage combustion gas supply line 35 are each provided with a gas flow rate measuring device (not shown) using an orifice or the like, and on the downstream side of the heat exchanger 15, respectively. Dampers 57 and 59 are provided.
  • the detected value of the gas flow rate measured by the gas flow rate measuring device in both lines is input to a control device (not shown) so that the control device controls the opening degree of the dampers 57 and 59 so that the set gas flow rate is obtained. It has become.
  • the control device has a switching function for switching the operation of the exhaust gas supply fan 29, the first combustion air supply fan 43, and the second combustion air supply fan 45.
  • the operation of the exhaust gas supply fan 29 is stopped and the first combustion air supply fan 43 and the second combustion air supply are stopped.
  • the operation of the fan 45 is started.
  • the operation of the first combustion air supply fan 43 and the second combustion air supply fan 45 is stopped and the exhaust gas is discharged.
  • the operation of the supply fan 29 is started.
  • the first combustion air supply fan 43 and the second combustion air supply fan 45 are operated to convert the combustion air into the burner 5 and the two-stage combustion gas.
  • Two-stage combustion is performed by supplying the charging port 9.
  • the two-stage combustion means that the oxygen ratio of the combustion air supplied to the burner 5 is less than 1.0, and the fuel is completely supplied by combining the oxygen of the combustion air supplied to the two-stage combustion gas inlet 9.
  • a combustion method for burning since an oxygen-deficient region is formed in the combustion region of the burner 5, the oxidation reaction of nitrogen contained in the fuel is suppressed, and the NOx reduction reaction proceeds in the wake of the combustion region of the burner 5. As a result, NOx emissions are reduced.
  • the combustion air and pulverized coal are supplied to the boiler 1 during the air combustion operation, and the pulverized coal is combusted.
  • the exhaust gas generated in the boiler 1 by the combustion of the pulverized coal is guided to the exhaust gas treatment line 11 and supplied to the denitration device 13 to remove NOx in the exhaust gas.
  • the exhaust gas exiting the denitration device 13 is supplied to the heat exchanger 15 and the temperature is reduced.
  • the exhaust gas exiting the heat exchanger 15 is guided to the dust removing device 17 to remove the dust component in the exhaust gas. Thereafter, the exhaust gas is guided to the desulfurization device 21 through the induction fan 19 and SOx is removed.
  • the exhaust gas exiting the desulfurization device 21 is cooled and compressed by the CO 2 recovery device 23 and separated in a state where the CO 2 is liquefied. On the other hand, the gas component from which CO 2 has been separated is released from the chimney 25 into the atmosphere. During the air combustion operation, since the exhaust gas supply fan 29 is stopped, the exhaust gas is not guided to the boiler 1 through the exhaust gas circulation line 27.
  • the combustion air ejected from the second combustion air supply fan 45 is adjusted in flow rate by the damper 49 and then supplied mainly to the fuel conveyance gas supply line 33.
  • the combustion air flowing through the fuel transfer gas supply line 33 is heat-exchanged by the heat exchanger 15 and further joined to a part of the combustion air that bypasses the heat exchanger 15 and heated to a predetermined temperature.
  • the pulverized coal introduced into the pulverized coal container 37 and pulverized is supplied to the burner 5.
  • the combustion air blown from the first combustion air supply fan 43 is flow-adjusted by the damper 47 and then distributed and supplied mainly to the combustion gas supply line 31 and the two-stage combustion gas supply line 35.
  • the combustion air distributed to the combustion gas supply line 31 and the two-stage combustion gas supply line 35 is heat-exchanged and heated by the heat exchanger 15, and then the gas flow rate is measured by a flow rate measuring device provided on both lines. Is detected, and the opening degree of the dampers 57 and 59 is adjusted so that the detected gas flow rate becomes a preset gas flow rate.
  • the oxygen ratio of the combustion air supplied to the burner 5 and the two-stage combustion gas inlet 9 is adjusted to a set value by the opening degree of the dampers 47, 57, 59, and the two-stage combustion gas inlet 9
  • the supply amount of the combustion air to be supplied is adjusted to a set amount smaller than the supply amount of the combustion air supplied to the burner 5.
  • two-stage combustion with combustion air is performed in a state in which the supply amount of combustion air and the oxygen ratio are adjusted to the set range.
  • the control device stops the operation of the first combustion air supply fan 43 and the second combustion air supply fan 45 and supplies exhaust gas.
  • the operation of the fan 29 is started.
  • the operation of the oxygen supply device 55 is started by a command from the control device, and the damper 57 is opened and the damper 59 is closed.
  • the circulation exhaust gas g2 supplied from the exhaust gas circulation line 27 is supplied to the burner 5 after being supplied with the oxygen-rich gas g3 only through the combustion gas supply line 31 and the fuel transfer gas supply line 33, respectively.
  • single stage combustion is performed.
  • the supply amount of the oxygen-rich gas g3 is controlled to a set amount by adjusting the opening degree of the flow rate adjusting valves 53a and 53b, while being supplied to the burner 5 through the combustion gas supply line 31.
  • the oxygen ratio of the combustion gas is adjusted to a set value of 1.0 or more by adjusting the opening degree of the damper 57.
  • the single-stage combustion refers to a combustion method in which the oxygen ratio of the combustion air supplied to the burner 5 is set to 1.0 or more, and the fuel is completely burned only with oxygen supplied stoichiometrically.
  • the total flow rate of the combustion gas flowing through the combustion gas supply line 31 and the two-stage combustion gas supply line 35 is set to In the case of Q, while maintaining Q constant, the opening degree of the dampers 57 and 59 is adjusted, and the amount of combustion gas supplied to the combustion gas supply line 31 and the two-stage combustion gas supply line 35 is controlled. That is, when switching from the two-stage combustion to the single-stage combustion, the damper 59 is closed and the damper 57 is opened, so that the combustion gas supplied to the two-stage combustion gas supply line 35 is supplied to the combustion gas supply line 31. Operate to supply.
  • the gas composition in the boiler 1 is CO 2 is the main processor.
  • the gas composition in the boiler 1 is mainly nitrogen, so the amount of heat collected in the boiler 1 and the boiler outlet temperature are different from those in the oxyfuel combustion operation. Therefore, in the case of a system that achieves both an oxyfuel combustion type and an air combustion type, means for making the amount of collected heat and the boiler outlet temperature equivalent to those during the air combustion operation are required during the oxyfuel combustion operation.
  • the oxygen concentration in the combustion gas is increased from 21 wet-Vol% of the normal air combustion type to 25 wet-Vol% to 30 wet-Vol%, and the amount of combustion gas supplied to the boiler 1 Needs to be about 80% of the air combustion operation.
  • the flow rate of the combustion gas ejected from the burner 5 to the boiler 1 is reduced by reducing the amount of combustion gas supplied to the boiler 1 to about 80%. Therefore, the flame stability of the burner 5 is lowered.
  • SO 2 concentration in the circulation exhaust gas g2 is 3 to 5 times during the air combustion operation. Therefore, when the two-stage combustion is performed during the oxyfuel combustion operation, the reduction reaction in the oxygen-deficient region formed in the combustion region of the burner 5, that is, the corrosiveness such as SO 2 to H 2 S, COS, etc. The generation of gas is accelerated, and the corrosion of boiler water wall pipes and the like by these corrosive gases is accelerated.
  • FIG. 2 shows the relationship between the oxygen ratio of the combustion gas supplied to the burner 5 (hereinafter abbreviated as “burner oxygen ratio”) and the corrosion amount of the boiler water wall tube. As shown in the figure, when the operation is performed in the two-stage combustion in which the burner oxygen ratio is less than 1, the corrosion amount of the water wall pipe of the boiler increases.
  • the oxyfuel combustion is operated by single-stage combustion with a burner oxygen ratio of 1 or more.
  • the burner oxygen ratio is set to 1 or more, the fuel is completely combusted and the necessary amount of oxygen is supplied to the burner 5, so that an oxygen-deficient region is prevented from being formed in the combustion region of the burner 5. It becomes possible to suppress corrosion of the pipe.
  • the oxyfuel combustion operation is not single-stage combustion but single-stage combustion, it is possible to input the combustion gas that has been input from the second-stage combustion gas inlet 9 into the burner 5. Become. Thereby, the amount of combustion gas supplied to the burner 5 can be increased, and the flow velocity of the combustion gas ejected from the burner 5 can be increased accordingly.
  • the combustion gas supplied to the two-stage combustion gas inlet 9 is supplied to the burner 5 and single-stage combustion is performed, so that the burner 5 has 1.2 at the time of the two-stage combustion. It becomes possible to supply more than double the combustion gas. Thereby, even during oxyfuel combustion, the flow velocity of the combustion gas ejected from the combustion gas ejection port of the burner 5 can be made equal to that during air combustion, and the stability of the flame can be maintained.
  • Fig. 3 shows the relationship between the burner oxygen ratio and NOx emissions from the chimney.
  • the burner oxygen ratio is 1.1 to 1.3, and the fuel is completely burned by supplying excess oxygen.
  • the burner oxygen ratio is burned at 1.0 or less. I am letting.
  • the burner oxygen ratio As operating conditions during the oxyfuel combustion operation, when the burner oxygen ratio is set to 1.2 or higher, the production cost of the oxygen-rich gas supplied from the oxygen supply device 55 increases, so the burner oxygen ratio is 1.2 or less. It is desirable to perform staged combustion. On the other hand, when the burner oxygen ratio is less than 1.0, the SO 2 concentration in the exhaust gas is 3 to 5 times that in the air combustion operation, so the corrosiveness generated in the oxygen deficient region of the burner 5 combustion region. Gas increases and corrosion of the boiler water wall tube is accelerated. Therefore, it is desirable to perform single-stage combustion with a burner oxygen ratio of 1.0 to 1.2.
  • the second-stage combustion gas inlet 9 is exposed to a high-temperature gas of, for example, 1000 ° C. or more, and the metal member constituting the second-stage combustion gas inlet 9 is burned out. There is a fear. Therefore, during the oxyfuel combustion operation, by opening the damper 59 slightly, the circulating exhaust gas g2 (for example, exhaust gas having an oxygen concentration of 4% or less) supplied from the exhaust gas supply fan 29 is input to the two-stage combustion gas input port 9. Is desirable. By flowing the circulating exhaust gas g2 in this way, the temperature rise of the two-stage combustion gas inlet 9 can be suppressed, and thus burning can be prevented.
  • the circulating exhaust gas g2 for example, exhaust gas having an oxygen concentration of 4% or less
  • the operating conditions during the air combustion operation are desirably two-stage combustion with a burner oxygen ratio of 0.9 or less in order to obtain an effect of suppressing the oxidation of nitrogen in the fuel and an effect of promoting the reduction of NOx.
  • the burner oxygen ratio is less than 0.7, the amount of corrosive gas generated in the oxygen-deficient region increases, and the corrosion of the water wall tube of the boiler is accelerated. Therefore, it is desirable to perform two-stage combustion with a burner oxygen ratio of 0.7 or more and 0.9 or less.
  • the supply ratio of the gas supplied from the burner 5 and the second-stage combustion gas inlet 9 (the gas flow ratio of the combustion gas supply line 31 and the second-stage combustion gas supply line 35) is 50% for the burner 5, for example. With respect to -75%, the second-stage combustion gas inlet 9 is adjusted to 25% to 50% so that the supply ratio from the second-stage combustion gas input 9 is smaller than the supply ratio from the burner 5. .
  • the operation method of the boiler 1 can be easily and freely switched between the air combustion operation and the oxyfuel combustion operation. It becomes possible. Even when the air combustion operation is switched to the oxyfuel combustion operation, the progress of corrosion of the water wall pipe of the boiler 1 can be suppressed, and the flame holding property of the burner 5 can be maintained high. Thereby, reduction of the maintenance cost of the boiler 1 and long-term stable operation are attained.
  • dampers 47, 57, and 59 are used as flow rate adjustment devices for combustion air flowing through the combustion gas supply line 31 and the two-stage combustion gas supply line 35 during air combustion operation.
  • the present invention is not limited to this as long as the gas flow rate can be adjusted.
  • the present invention is not limited to this as long as the gas contains at least about 21% oxygen.
  • the exhaust gas circulation line 27 is not limited to one.
  • two exhaust gas circulation lines 61 a and 61 b are provided, and the exhaust gas circulation line 61 a is connected to the combustion gas supply line 31.
  • the exhaust gas circulation line 61b may be connected to the fuel transfer gas supply line 33.
  • exhaust gas supply fans 63a and 63b are installed in the exhaust gas circulation lines 61a and 61b, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Supply (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

 ボイラの酸素燃焼運転時に、ボイラの水壁管等の腐食を抑制し、かつバーナの燃焼を安定化させる。 本発明のボイラ燃焼システムは、バーナ5と2段燃焼用ガス投入口9を備えたボイラ1と、ボイラの排ガス処理系統から排ガス循環ライン27を介して排ガスを抜き出す排ガス供給ファン29と、その後流側で排ガス循環ラインから分岐された燃焼用ガス供給ライン31、燃料搬送用ガス供給ライン33、2段燃焼用ガス供給ライン35と、燃焼用ガス供給ライン31と燃料搬送用ガス供給ライン33にそれぞれ富酸素ガスを供給する酸素供給ライン51と、排ガス供給ファン29と並列に設けられ燃焼用空気を供給する燃焼用空気供給ファン43,45と、排ガス供給ファンと燃焼用空気供給ファンとの運転を切り替える切替手段と、燃焼用ガス供給ラインと2段燃焼用ガス供給ラインのガス流量をそれぞれ調整するダンパ57,59とを備える。

Description

ボイラ燃焼システムとその運転方法
 本発明は、ボイラ燃焼システムとその運転方法に係り、特に、既設の空気燃焼式ボイラ燃焼システムを改造して酸素燃焼運転を行うのに好適な技術に関する。
 従来の火力発電プラントでは、空気を用いて燃料を燃焼させる空気燃焼用ボイラを備えた空気燃焼システムが主流となっている。一方、地球温暖化の原因物質の1つであり、産業活動において最も排出量が多い二酸化炭素(CO)の回収を容易にする方法として、酸素燃焼システムによる火力発電が提案されている。
 酸素燃焼システムでは、ボイラから排出されて除塵処理された排ガスの一部を脱硫装置の上流側から抜き出した後、その抜き出した排ガスに空気分離装置で製造された富酸素ガスが混合された混合ガスを石炭等の化石燃料とともにボイラに供給する方法が開示されている(例えば、特許文献1参照。)。このシステムによれば、窒素の含有量が多い燃焼用空気をボイラに供給しないため、排ガス中のCO濃度が高められ、排ガス中からCOを効率的に分離することができる。
 一方、石炭を燃料とする石炭焚きボイラでは、石炭中に含まれる硫黄分がボイラ内で酸化することにより、SO等の硫黄酸化物(以下、SOと略す)が生成されるため、排ガス中には多くのSOが含まれている。このため、排ガスを大気中に放出する前にはSOを脱硫装置で除去しなければならないが、排ガスのガス量が多いほど、脱硫に掛かるコストが増大する。
 これに対し、特許文献1の酸素燃焼システムでは、脱硫装置の上流側で抜き出した排ガスを再循環させているため、脱硫装置で処理する排ガス量を減らすことができ、排ガスの脱硫処理に掛かるコストを抑えることができる。このような酸素燃焼システムは、既設の空気燃焼式ボイラシステムの空気燃焼用ボイラを用いたまま、空気分離装置や酸素供給ライン及び排ガスを再循環させるライン等を増設することで、運用が可能となる。
特開2007-147162号公報
 ところで、既設の空気燃焼用ボイラでは、排ガス中の窒素酸化物(以下、NOxと略す。)を低減するために2段燃焼が採用されている。この2段燃焼とは、ボイラに供給する燃焼用ガスの一部をバーナの燃焼域の近傍(例えば後流側)に設けられた2段燃焼用ガス投入口に供給するとともに、バーナに供給する酸素量を燃料が完全燃焼する酸素量である酸素比1よりも小さくすることで、バーナの燃焼域で酸素を欠乏させるものである。これにより、石炭中に含まれる窒素分の酸化が抑制され、かつ、生成したNOxの還元反応が進行するため、燃焼域でのNOxの生成量を低減できる。
 しかし、2段燃焼を行うと、バーナゾーンの燃焼域で発生する酸素欠乏領域においてSOの還元反応により腐食性の強いHSやCOS等が生成され、ボイラの水壁管等が腐食し易くなる。ここで、既設の2段燃焼方式のボイラを用いて、特許文献1のような酸素燃焼システムに改造した場合、脱硫装置の上流側から排ガスを循環させることで脱硫コストは低減できるが、排ガスの循環によって排ガス中に含まれるSOが濃縮された結果、排ガス中のSO濃度は空気燃焼運転時の3~5倍に増加する。このため、酸素欠乏領域ではSOの還元反応によりHSやCOSが増加し、腐食性ガスによるボイラの水壁管等への腐食が加速される。
 また、酸素燃焼運転時には、排ガスと酸素の混合ガスを燃焼用ガスとして使用するため、空気燃焼運転と同じ2段燃焼では、バーナに供給される燃焼用ガス量が空気燃焼時の約0.8倍となる。このため、バーナの燃焼用ガス噴出口におけるガス流速が空気燃焼時に比べて低下してしまい、結果として空気燃焼時と比べて火炎の燃焼が不安定となる。
 本発明の課題は、ボイラの酸素燃焼運転時において、ボイラの水壁管等の腐食を抑制し、かつバーナの燃焼を安定化させることにある。
 上記課題を解決するため、本発明のボイラ燃焼システムは、燃料を燃焼用ガスで燃焼させるバーナと該バーナの燃焼域の近傍に燃焼用ガスを供給する2段燃焼用ガス投入口とを備えたボイラと、このボイラから排出された排ガスを処理する排ガス処理系統と、この排ガス処理系統から分岐させた排ガス循環ラインに設けられ排ガス処理系統から排ガスを抜き出す排ガス供給装置と、この排ガス供給装置の後流側で排ガス循環ラインから分岐された、バーナに燃焼用ガスを供給する燃焼用ガス供給ラインとバーナに燃料を搬送するための燃料搬送用ガスを供給する燃料搬送用ガス供給ラインと2段燃焼用ガス投入口にガスを供給する2段燃焼用ガス供給ラインと、燃焼用ガス供給ラインと燃料搬送用ガス供給ラインにそれぞれ流量調整器を介して富酸素ガスを供給する酸素供給ラインと、排ガス供給装置と並列に設けられ燃焼用空気を供給する燃焼用空気供給装置と、排ガス供給装置と燃焼用空気供給装置との運転を切り替える切替手段と、燃焼用ガス供給ラインと2段燃焼用ガス供給ラインのガス流量をそれぞれ調整する流量調整装置とを備えてなることを特徴とする。
 これによれば、切替手段の操作により、燃焼用空気供給装置が運転されるときは、燃焼用空気がボイラに供給されて空気燃焼運転が行われ、排ガス供給装置が運転されるときは、排ガスと富酸素ガスの混合ガスがボイラに供給されて酸素燃焼運転が行われる。このようにボイラの運転方式を空気燃焼運転と酸素燃焼運転とで自在に切り替えることができるため、環境や発電負荷等を考慮したシステムの運用が可能となる。
 また、流量調整装置を備えることで、燃焼用ガス供給ラインと2段燃焼用ガス供給ラインのガス流量を自在に調整できるため、例えば、空気燃焼運転時には、バーナに供給される燃焼用空気の酸素比を1未満とする2段燃焼を行い、酸素燃焼運転時には、バーナのみに排ガスと富酸素ガスが混合された燃焼用ガスが供給されるように制御することができる。また、酸素燃焼運転時には、バーナのみに燃焼用ガスを供給することで、例えば、空気燃焼運転時に2段燃焼用ガス投入口に供給していた燃焼用空気に相当する燃焼用ガスをバーナに回すことができる。これにより、バーナから供給される燃焼用ガスの流速が増加されるため、バーナの燃焼を安定化することができる。また、酸素燃焼運転時には、バーナから供給される燃焼用ガスの酸素比が1以上となるように流量を調整することで、バーナの燃焼域で酸素欠乏領域が発生するのを防ぎ、腐食性ガスの発生を抑制できるため、ボイラの水壁管等の腐食を抑制することができる。
 この場合において、燃焼用空気供給装置は、排ガス供給装置の後流側の排ガス循環ラインに燃焼用空気を供給する第1の空気供給ファンと排ガス循環ラインから分岐された燃料搬送用ガス供給ラインに燃焼用空気を供給する第2の空気供給ファンとから構成されてなるものとしてもよい。このように複数の空気供給ファンにそれぞれ燃焼用空気の供給先を分担させることにより、燃焼用空気の供給量の調整が容易になる。
 また、本発明のボイラ燃焼システムは、燃料を燃焼用ガスで燃焼させるバーナと該バーナの燃焼域の近傍に燃焼用ガスを供給する2段燃焼用ガス投入口とを備えたボイラと、このボイラから排出された排ガスを処理する排ガス処理系統と、排ガス処理系統から分岐させた第1と第2の排ガス循環ラインにそれぞれ設けられ排ガス処理系統から排ガスを抜き出す第1と第2の排ガス供給装置と、第1の排ガス供給装置の後流側で分岐された、バーナに燃焼用ガスを供給する燃焼用ガス供給ラインと2段燃焼用ガス投入口にガスを供給する2段燃焼用ガス供給ラインと、第2の排ガス供給装置の後流側に連通され、バーナに燃料を搬送するための燃料搬送用ガスを供給する燃料搬送用ガス供給ラインと、燃焼用ガス供給ラインと燃料搬送用ガス供給ラインにそれぞれ流量調整器を介して富酸素ガスを供給する酸素供給ラインと、第1と第2の排ガス供給装置とそれぞれ並列に設けられ燃焼用空気を供給する第1と第2の燃焼用空気供給装置と、第1と第2の排ガス供給装置と第1と第2の燃焼用空気供給装置との運転を切り替える切替手段と、燃焼用ガス供給ラインと2段燃焼用ガス供給ラインのガス流量をそれぞれ調整する流量調整装置とを備えてなることを特徴とする。
 また、本発明のボイラ燃焼システムの運転方法として、ボイラを空気燃焼方式で運転するときは、バーナと2段燃焼用ガス投入口に燃焼用空気を供給する2段燃焼を行い、バーナに供給する燃焼用空気の供給量は、2段燃焼用ガス投入口から供給する燃焼用空気の供給量よりも多く、バーナに供給する燃焼用空気の酸素比を0.7以上0.9以下とし、ボイラを酸素燃焼方式で運転するときは、ボイラから排出された排ガスの一部と富酸素ガスとの混合ガスをバーナのみに供給し、この混合ガスの酸素比を1.0以上1.2以下とするのがよい。
 ところで、酸素燃焼運転時において、バーナのみから燃焼用ガスを供給する単段燃焼を行った場合、2段燃焼用ガス投入口は約1000℃以上の高温ガスに曝されるため、焼損する可能性がある。そのため、ボイラを酸素燃焼方式で運転するときには、バーナから混合ガスを供給する一方、2段燃焼用ガス投入口から混合ガスよりも少量の排ガスを供給するようにする。これにより、2段燃焼用ガス投入口の高温化を抑制し、焼損を抑制することができる。
 本発明によれば、ボイラの酸素燃焼運転時において、ボイラの水壁管等の腐食を抑制し、かつバーナの燃焼を安定化させることができる。これにより、ボイラのメンテナンスコストの低減及び長期安定運転が可能となる。
本発明を適用してなるボイラ燃焼システムの一実施形態の構成を示す系統図である。 本発明を適用してなるボイラ燃焼システムにおいて、バーナ酸素比と水壁管腐食量との関係を説明する図である。 本発明を適用してなるボイラ燃焼システムにおいて、バーナ酸素比とNOx排出量の関係を説明する図である。 本発明を適用してなるボイラ燃焼システムの他の実施形態の構成を示す系統図である。
 以下、本発明を適用してなる酸素燃焼システムの実施形態について、図1を参照して詳細に説明する。図1に示すボイラ燃焼システムは、既設の空気燃焼システムを基にして酸素燃焼に必要な機器類を追加し、構成・系統を変更して構築できるものあり、ボイラの燃焼方式を空気燃焼方式と酸素燃焼方式とで切り替え可能になっている。なお、本実施形態では、ボイラで燃焼させる化石燃料として微粉炭を用いる例を説明するが、この例に限定されるものではなく、例えば、化石燃料に限らず、バイオマス燃料等、他の燃料を使用してもよい。
 ボイラ1は、火炉3と、火炉3に取り付けられるバーナ5及びウィンドボックス7と、バーナ5の燃焼域の後流に設置された2段燃焼用ガス投入口9を有しており、バーナ5は、ウィンドボックス7内に収容されている。バーナ5には、燃料の微粉炭が供給される燃料流路と燃焼用ガスが供給される燃焼用ガス流路が形成されている。
 ボイラ1の出口には、排ガスg1が通流する排ガス処理ライン11が接続され、排ガス処理ライン11には、上流側から脱硝装置13、熱交換器15、除塵装置17、誘引ファン19、脱硫装置21、CO回収装置23が順次配設されている。また、脱硫装置21とCO回収装置23の間の排ガス処理ライン11は途中で分岐され、その先には煙突25が接続されている。
 誘引ファン19と脱硫装置21の間の排ガス処理ライン11は、その途中で排ガス循環ライン27に分岐されている。この排ガス循環ライン27には排ガス処理ライン11から排ガスの一部(以下、循環排ガスg2という。)を抜き出す排ガス供給ファン29が設けられている。排ガス循環ライン27は、排ガス供給ファン29の後流側で3本のライン、つまり、燃焼用ガス供給ライン31と燃料搬送用ガス供給ライン33と2段燃焼用ガス供給ライン35に分岐されている。つまり、排ガス循環ライン27が分岐点p1で燃焼用ガス供給ライン31と燃料搬送用ガス供給ライン33に分岐された後、更に、燃焼用ガス供給ライン31の分岐点p2から2段燃焼用ガス供給ライン35が分岐されるようになっている。燃焼用ガス供給ライン31は、熱交換器15を経由してバーナ5の燃焼用ガス流路に接続され、燃料搬送用ガス供給ライン33は、熱交換器15、微粉炭器37を順次経由してバーナ5の燃料流路に接続されている。2段燃焼用ガス供給ライン35は、熱交換器15を経由してボイラ1の2段燃焼用ガス投入口9に接続されている。なお、燃料搬送用ガス供給ライン33は、熱交換器15をバイパスできる構造になっている。
 燃料の石炭はバンカ39に収容されており、フィーダ41が開くと、石炭が燃料搬送用ガス供給ライン33を経由して微粉炭器37に供給され、微粉炭器37に収容される図示しない石炭粉砕ミル等によって微粉炭燃焼に適した粒度に粉砕される。粉砕された微粉炭は、燃料搬送用ガス供給ライン33より供給される燃焼用ガスに同伴されて、バーナ5の燃料流路に供給されるようになっている。
 排ガス循環ライン27の排ガス供給ファン29の後流側には、燃焼用空気を供給する第1の燃焼用空気供給ファン43が排ガス供給ファン29と並列に接続されている。また、排ガス循環ライン27から分岐された燃料搬送用ガス供給ライン33には、第2の燃焼用空気供給ファン45が排ガス供給ファン29と並列に接続されている。ここで、第1の燃焼用空気供給ファン43は、主として燃焼用ガス供給ライン31と2段燃焼用ガス供給ライン35にダンパ47を介して流量調整された燃焼用空気を供給し、第2の燃焼用空気供給ファン45は、主として燃料搬送用ガス供給ライン33にダンパ49を介して流量調整された燃焼用空気を供給するようになっている。
 分岐点p2の後流側の燃焼用ガス供給ライン31と燃料搬送用ガス供給ライン33には、酸素供給ライン51の分岐した先の出口がそれぞれ流量調整弁53a,53bを介して接続されている。一方、酸素供給ライン51の反対側の入口部には富酸素ガスを製造する酸素供給装置55が接続されている。これにより、酸素供給装置55で製造された富酸素ガスは、燃焼用ガス供給ライン31と燃料搬送用ガス供給ライン33に分配されて供給されるようになっている。富酸素ガスは、燃焼用ガス供給ライン31と燃料搬送用ガス供給ライン33を流れる循環排ガスと混合され、実用的な酸素濃度(例えば26~29wet-Vol%:ウェットベースの容積分率)となるように流量調整弁53a,53bの弁開度が調節される。なお、本実施形態の酸素供給装置55は、空気から窒素等を分離して濃度95dry-Vol%(ドライべースの容積分率)以上の高濃度の酸素ガスを生成するものであるが、これに限られるものではない。
 燃焼用ガス供給ライン31と2段燃焼用ガス供給ライン35には、それぞれオリフィス等を用いたガス流量計測装置(図示せず)が配設され、熱交換器15の後流側には、それぞれダンパ57,59が設けられている。両ラインにおいてガス流量計測装置により計測されたガス流量の検出値は図示しない制御装置に入力され、設定されたガス流量となるように、制御装置がダンパ57,59の開度を制御するようになっている。また、制御装置は、排ガス供給ファン29と、第1の燃焼用空気供給ファン43及び第2の燃焼用空気供給ファン45との運転を切り替える切替機能を有している。例えば、酸素燃焼運転から空気燃焼運転に切り替える指令が制御手段に入力された場合は、排ガス供給ファン29の運転が停止されるとともに第1の燃焼用空気供給ファン43及び第2の燃焼用空気供給ファン45の運転が開始される。反対に、空気燃焼運転から酸素燃焼運転に切り替える指令が制御手段に入力された場合は、第1の燃焼用空気供給ファン43及び第2の燃焼用空気供給ファン45の運転が停止されるとともに排ガス供給ファン29の運転が開始される。
 本システムでは、ボイラ1が空気燃焼運転を行うときは、第1の燃焼用空気供給ファン43及び第2の燃焼用空気供給ファン45を運転して燃焼用空気をバーナ5及び2段燃焼用ガス投入口9に供給することで2段燃焼が行われるようになっている。ここで、2段燃焼とは、バーナ5に供給する燃焼用空気の酸素比を1.0未満とし、2段燃焼用ガス投入口9に供給する燃焼用空気の酸素を併せることで燃料を完全燃焼させる燃焼方式をいう。これによれば、バーナ5の燃焼域で酸素欠乏領域が形成されるため、燃料中に含まれる窒素分の酸化反応が抑制され、またバーナ5の燃焼域後流でNOxの還元反応が進行することから、NOxの排出量が低減される。
 空気燃焼運転時のボイラ1には、燃焼用空気と微粉炭が供給されて微粉炭が燃焼される。微粉炭の燃焼によりボイラ1で発生した排ガスは、排ガス処理ライン11に導かれて脱硝装置13に供給され、排ガス中のNOxが除去される。脱硝装置13を出た排ガスは、熱交換器15に供給されて減温される。熱交換器15を出た排ガスは、除塵装置17に導かれて排ガス中の煤塵成分が除去される。排ガスはその後、誘引ファン19を介して脱硫装置21に導かれ、SOxが除去される。脱硫装置21を出た排ガスは、CO回収装置23で冷却圧縮され、COが液化された状態で分離される。一方、COが分離されたガス成分は、煙突25から大気中へ放出される。なお、空気燃焼運転時には、排ガス供給ファン29が停止しているため、排ガス循環ライン27を通じて排ガスがボイラ1に導かれることはない。
 一方、第2の燃焼用空気供給ファン45から噴き出された燃焼用空気は、ダンパ49で流量調整された後、主として燃料搬送用ガス供給ライン33に供給される。燃料搬送用ガス供給ライン33を流れる燃焼用空気は、熱交換器15で熱交換され、更に、熱交換器15をバイパスさせた一部の燃焼用空気と合流して所定温度に加熱された後、微粉炭器37に導入され、粉砕された微粉炭を同伴してバーナ5に供給される。第1の燃焼用空気供給ファン43から噴き出された燃焼用空気は、ダンパ47で流量調整された後、主として燃焼用ガス供給ライン31と2段燃焼用ガス供給ライン35に分配されて供給される。燃焼用ガス供給ライン31と2段燃焼用ガス供給ライン35に分配された燃焼用空気は、熱交換器15で熱交換されて加熱された後、両ラインに設けられた流量計測装置によりガス流量が検出され、検出されたガス流量が予め設定されたガス流量になるようにダンパ57,59の開度が調節される。ここで、バーナ5と2段燃焼用ガス投入口9に供給する燃焼用空気の酸素比は、ダンパ47,57,59の開度によって設定値に調節され、2段燃焼用ガス投入口9に供給する燃焼用空気の供給量は、バーナ5に供給する燃焼用空気の供給量よりも少ない設定量に調整される。このように、ボイラ1では、燃焼用空気の供給量や酸素比が設定範囲に調節された状態で、燃焼用空気による2段燃焼が行われる。
 次に、ボイラ1の運転方式を空気燃焼式から酸素燃焼式に切り替える際の動作を説明する。空気燃焼式から酸素燃焼式に切り替える指令が制御装置に入力された場合、制御装置は、第1の燃焼用空気供給ファン43及び第2の燃焼用空気供給ファン45の運転を停止させ、排ガス供給ファン29の運転を開始させる。また、制御装置からの指令により、酸素供給装置55の運転が開始され、更に、ダンパ57が開放され、ダンパ59が閉じられる。これにより、排ガス循環ライン27から供給された循環排ガスg2は、燃焼用ガス供給ライン31と燃料搬送用ガス供給ライン33のみを経由し、それぞれ富酸素ガスg3が供給された後、バーナ5に供給されて単段燃焼が行われる。制御装置からの指令により、富酸素ガスg3の供給量は、流量調整弁53a,53bの開度が調節されることで設定量に制御される一方、燃焼用ガス供給ライン31を通じてバーナ5に供給する燃焼用ガスの酸素比は、ダンパ57の開度が調節されることで1.0以上の設定値に調節される。ここで、単段燃焼とは、バーナ5に供給する燃焼用空気の酸素比を1.0以上とし、化学量論的にバーナ5から供給する酸素のみで燃料を完全燃焼させる燃焼方式をいう。
 このように、2段燃焼から単段燃焼、又は、単段燃焼から2段燃焼に切り替える時は、燃焼用ガス供給ライン31と2段燃焼用ガス供給ライン35を流れる燃焼用ガスの全流量をQとした場合、Qを一定に保ちつつ、ダンパ57,59の開度を調整し、燃焼用ガス供給ライン31と2段燃焼用ガス供給ライン35に供給する燃焼用ガス量を制御する。つまり、2段燃焼から単段燃焼へ切り替えるときは、ダンパ59を閉じ、ダンパ57を開くことで、2段燃焼用ガス供給ライン35に供給していた燃焼用ガスを燃焼用ガス供給ライン31へ供給するように操作する。一方、単段燃焼から2段燃焼へ切り替えるときは、ダンパ59を開き、ダンパ57をやや閉じることで、燃焼用ガス供給ライン31のみに供給していた燃焼用ガスの一部を2段燃焼用ガス供給ライン35へ供給するように操作する。
 ところで、酸素燃焼運転時は、循環排ガスg2と富酸素ガスg3の混合ガスを燃焼用ガスとして使用するため、ボイラ1内のガス組成はCOが主体となる。一方、燃焼用ガスとして燃焼用空気を使用する空気燃焼運転時は、ボイラ1内のガス組成が窒素主体となるため、ボイラ1内での収熱量やボイラ出口温度が酸素燃焼運転時と異なる。したがって、酸素燃焼式と空気燃焼式を両立させるシステムの場合、酸素燃焼運転時には、収熱量やボイラ出口温度を空気燃焼運転時と同等にする手段が必要である。
 これを達成するためには、燃焼用ガス中の酸素濃度を通常の空気燃焼式の21wet-Vol%から25wet-Vol%~30wet-Vol%へ上昇させ、かつボイラ1に供給する燃焼用ガス量を空気燃焼運転時の約80%にすることが必要となる。しかし、空気燃焼運転時と同じ2段燃焼を想定した場合、ボイラ1に供給する燃焼用ガス量が約80%に低下することにより、バーナ5からボイラ1に噴出する燃焼用ガスの流速が低下するため、バーナ5の火炎安定性が低下する。
 また、酸素燃焼運転時では、排ガスの循環により、循環排ガスg2に含まれるSOが濃縮されるため、循環排ガスg2中のSO濃度が空気燃焼運転時の3~5倍となる。そのため、酸素燃焼運転時に2段燃焼を行った場合、空気燃焼運転時に比べて、バーナ5の燃焼域で形成される酸素欠乏領域における還元反応、すなわちSOからHSやCOS等の腐食性ガスの生成が加速され、これらの腐食性ガスによるボイラ水壁管等への腐食が加速される。
 図2に、バーナ5に供給する燃焼用ガスの酸素比(以下、バーナ酸素比と略す。)とボイラ水壁管の腐食量の関係を示す。図に示すように、バーナ酸素比を1未満とする2段燃焼で運転した場合、ボイラの水壁管の腐食量が増大する。
 この腐食を抑制するため、本実施形態では、酸素燃焼運転をバーナ酸素比1以上とする単段燃焼で運転するようにしている。バーナ酸素比を1以上にすることで、燃料が完全燃焼し、必要な酸素量がバーナ5に供給されるため、バーナ5の燃焼域で酸素欠乏領域が形成されるのを防ぎ、ボイラ水壁管の腐食を抑制することが可能となる。また、本実施形態では、酸素燃焼運転を2段燃焼ではなく単段燃焼しているため、2段燃焼用ガス投入口9から投入していた燃焼用ガスをバーナ5に投入することが可能となる。これにより、バーナ5に供給する燃焼用ガス量を増やすことができ、その分、バーナ5から噴出する燃焼用ガスの流速を増大させることができる。
 具体的に、空気燃焼運転時の2段燃焼では、バーナ5に全燃焼用ガス量の50%~85%の燃焼用ガスを供給し、残りを2段燃焼用ガス投入口9に供給している。このため、酸素燃焼運転時では、2段燃焼用ガス投入口9に供給していた燃焼用ガスをバーナ5に供給し、単段燃焼することで、バーナ5に2段燃焼時の1.2倍以上の燃焼用ガスを供給することが可能となる。これにより、酸素燃焼時においても、バーナ5の燃焼用ガス噴出口から噴出される燃焼用ガスの流速を空気燃焼時と同等にすることができ、火炎の安定性を保つことが可能となる。
 ところで、酸素燃焼運転を単段燃焼で行った場合、ボイラ1内で生成するNOx量の増加が懸念される。しかし、酸素燃焼運転では、排ガスを再循環させているため、再循環系外へ排出されるNOx量は空気燃焼運転よりも低減される。
 図3にバーナ酸素比と煙突でのNOx排出量の関係を示す。通常の空気燃焼運転では、バーナ酸素比を1.1~1.3とし、酸素を過剰に供給することで燃料を完全燃焼させており、2段燃焼時にはバーナ酸素比を1.0以下で燃焼させている。これに対し、酸素燃焼運転では、単段燃焼を行ったとき(バーナ酸素比=1.2)のNOx排出量が、空気燃焼運転で2段燃焼を行ったとき(バーナ酸素比=0.8~0.9)と同等であるため、酸素燃焼運転を単段燃焼で行っても、空気燃焼運転で2段燃焼を行った場合と同等のNOx排出量に抑えることができる。
 酸素燃焼運転時の運用条件としては、バーナ酸素比を1.2以上とした場合、酸素供給装置55から供給する富酸素ガスの製造コストが増大するため、バーナ酸素比は1.2以下の単段燃焼を行うことが望ましい。一方、バーナ酸素比を1.0未満とした場合、排ガス中のSO濃度が空気燃焼運転時の3倍~5倍となるため、バーナ5の燃焼域の酸素欠乏領域で生成される腐食性ガスが増加し、ボイラ水壁管の腐食が加速される。したがって、バーナ酸素比を1.0以上1.2以下とする単段燃焼を行うことが望ましい。
 さらに、酸素燃焼運転を単段燃焼で行った場合、2段燃焼用ガス投入口9が例えば1000℃以上の高温ガスに曝され、2段燃焼用ガス投入口9を構成する金属部材が焼損するおそれがある。そのため、酸素燃焼運転時には、ダンパ59をやや開くことで、排ガス供給ファン29より供給される循環排ガスg2(例えば、酸素濃度4%以下の排ガス)を2段燃焼用ガス投入口9に投入することが望ましい。このように循環排ガスg2を流すことで2段燃焼用ガス投入口9の温度上昇を抑制できるため、焼損を防ぐことができる。
 空気燃焼運転時の運用条件は、燃料中の窒素分の酸化抑制効果、及びNOxの還元促進効果を得るために、バーナ酸素比を0.9以下の2段燃焼とすることが望ましい。ここで、バーナ酸素比を0.7未満とした場合、酸素欠乏領域での腐食性ガスの生成量が増大し、ボイラの水壁管等への腐食が加速される。したがって、バーナ酸素比を0.7以上0.9以下とする2段燃焼を行うことが望ましい。なお、バーナ5と2段燃焼用ガス投入口9から供給するガスの供給割合(燃焼用ガス供給ライン31と2段燃焼用ガス供給ライン35のガス流量割合)は、例えば、バーナ5が50%~75%に対し、2段燃焼用ガス投入口9を25%~50%とし、2段燃焼用ガス投入口9からの供給割合がバーナ5からの供給割合よりも少なくなるように調整される。
 以上述べたように、本実施形態によれば、ボイラ1の運転方式を空気燃焼運転と酸素燃焼運転とで簡単かつ自在に切り替えることができるため、環境や発電負荷などを考慮したシステムの運用が可能となる。また、空気燃焼運転から酸素燃焼運転に切り替えた場合でも、ボイラ1の水壁管の腐食進行を抑制することができ、かつ、バーナ5の保炎性を高く維持することができる。これにより、ボイラ1のメンテナンスコストの低減及び長期安定運転が可能となる。
 また、本実施形態では、例えば、空気燃焼運転時において、燃焼用ガス供給ライン31と2段燃焼用ガス供給ライン35を流れる燃焼用空気の流量調整装置として、ダンパ47,57,59などを用いる例を説明したが、ガス流量を調節可能なものであれば、これに限定されるものではない。また、本実施形態では、空気燃焼運転時に、第1の燃焼用空気供給ファン43及び第2の燃焼用空気供給ファン45を運転することで得られた大気中の空気を燃焼用空気として用いる例を説明したが、少なくとも酸素を21%程度以上含むガスであれば、これに限定されるものではない。
 また、本実施形態では、排ガス処理ライン11の誘引ファン19と脱硫装置21との間に排ガス循環ライン27の一端を接続することで、排ガスの一部を抜き出す例を説明したが、少なくとも排ガス処理ライン11に設けられた除塵装置17の後流側に排ガス循環ライン27を接続する構成であれば、この例に限られるものではない。また、排ガス循環ライン27は1本に限られるものではなく、例えば、図4に示すように、2本の排ガス循環ライン61a,61bを設け、排ガス循環ライン61aを燃焼用ガス供給ライン31に接続し、排ガス循環ライン61bを燃料搬送用ガス供給ライン33に接続するようにしてもよい。この場合、排ガス循環ライン61a,61bには、それぞれ排ガス供給ファン63a,63bを設置するものとする。
  1  ボイラ
  5  バーナ
  9  2段燃焼用ガス投入口
 11  排ガス処理ライン
 17  除塵装置
 21  脱硫装置
 27  排ガス循環ライン
 29,63  排ガス供給ファン
 31  燃焼用ガス供給ライン
 33  燃料搬送用ガス供給ライン
 35  2段燃焼用ガス供給ライン
 43  第1の燃焼用空気供給ファン
 45  第2の燃焼用空気供給ファン
 47,49,57,59 ダンパ
 51  酸素供給ライン
 53a,53b  流量調整弁
 55  酸素供給装置

Claims (5)

  1.  燃料を燃焼用ガスで燃焼させるバーナと該バーナの燃焼域の近傍に燃焼用ガスを供給する2段燃焼用ガス投入口とを備えたボイラと、
     前記ボイラから排出された排ガスを処理する排ガス処理系統と、
     前記排ガス処理系統から分岐させた排ガス循環ラインに設けられ前記排ガス処理系統から排ガスを抜き出す排ガス供給装置と、
     前記排ガス供給装置の後流側で前記排ガス循環ラインから分岐された、前記バーナに燃焼用ガスを供給する燃焼用ガス供給ラインと前記バーナに燃料を搬送するための燃料搬送用ガスを供給する燃料搬送用ガス供給ラインと前記2段燃焼用ガス投入口にガスを供給する2段燃焼用ガス供給ラインと、
     前記燃焼用ガス供給ラインと前記燃料搬送用ガス供給ラインにそれぞれ流量調整器を介して富酸素ガスを供給する酸素供給ラインと、
     前記排ガス供給装置と並列に設けられ燃焼用空気を供給する燃焼用空気供給装置と、
     前記排ガス供給装置と前記燃焼用空気供給装置との運転を切り替える切替手段と、
     前記燃焼用ガス供給ラインと前記2段燃焼用ガス供給ラインのガス流量をそれぞれ調整する流量調整装置とを備えてなるボイラ燃焼システム。
  2.  前記燃焼用空気供給装置は、前記排ガス供給装置の後流側の前記排ガス循環ラインに前記燃焼用空気を供給する第1の空気供給ファンと前記排ガス循環ラインから分岐された前記燃料搬送用ガス供給ラインに前記燃焼用空気を供給する第2の空気供給ファンとから構成されてなる請求項1に記載のボイラ燃焼システム。
  3.  燃料を燃焼用ガスで燃焼させるバーナと該バーナの燃焼域の近傍に燃焼用ガスを供給する2段燃焼用ガス投入口とを備えたボイラと、
     前記ボイラから排出された排ガスを処理する排ガス処理系統と、
     前記排ガス処理系統から分岐させた第1と第2の排ガス循環ラインにそれぞれ設けられ前記排ガス処理系統から排ガスを抜き出す第1と第2の排ガス供給装置と、
     前記第1の排ガス供給装置の後流側で分岐された、前記バーナに燃焼用ガスを供給する燃焼用ガス供給ラインと前記2段燃焼用ガス投入口にガスを供給する2段燃焼用ガス供給ラインと、
     前記第2の排ガス供給装置の後流側に連通され、前記バーナに燃料を搬送するための燃料搬送用ガスを供給する燃料搬送用ガス供給ラインと、
     前記燃焼用ガス供給ラインと前記燃料搬送用ガス供給ラインにそれぞれ流量調整器を介して富酸素ガスを供給する酸素供給ラインと、
     前記第1と第2の排ガス供給装置とそれぞれ並列に設けられ燃焼用空気を供給する第1と第2の燃焼用空気供給装置と、
     前記第1と第2の排ガス供給装置と前記第1と第2の燃焼用空気供給装置との運転を切り替える切替手段と、
     前記燃焼用ガス供給ラインと前記2段燃焼用ガス供給ラインのガス流量をそれぞれ調整する流量調整装置とを備えてなるボイラ燃焼システム。
  4.  燃料を燃焼用ガスで燃焼させるバーナと該バーナの燃焼域の近傍に燃焼用ガスを供給する2段燃焼用ガス投入口とを備えたボイラを備え、該ボイラの燃焼方式を空気燃焼方式と酸素燃焼方式とで切り替え可能に構成されたボイラ燃焼システムの運転方法であって、
     前記ボイラを前記空気燃焼方式で運転するときは、前記バーナと前記2段燃焼用ガス投入口に燃焼用空気を供給する2段燃焼を行い、前記バーナに供給する前記燃焼用空気の供給量は、前記2段燃焼用ガス投入口から供給する前記燃焼用空気の供給量よりも多く、前記バーナに供給する前記燃焼用空気の酸素比を0.7以上0.9以下とし、
     前記ボイラを前記酸素燃焼方式で運転するときは、前記ボイラから排出された排ガスの一部と富酸素ガスとの混合ガスを前記バーナのみに供給し、該混合ガスの酸素比を1.0以上1.2以下とするボイラ燃焼システムの運転方法。
  5.  前記ボイラを前記酸素燃焼方式で運転するときは、前記バーナに前記混合ガスを供給するとともに、該混合ガスよりも少量の前記排ガスを前記2段燃焼用ガス投入口に供給する請求項4に記載のボイラ燃焼システムの運転方法。
PCT/JP2011/005701 2010-10-15 2011-10-12 ボイラ燃焼システムとその運転方法 WO2012049842A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/876,516 US9429319B2 (en) 2010-10-15 2011-10-12 Boiler combustion system and operation method therefor
CA2823438A CA2823438A1 (en) 2010-10-15 2011-10-12 Boiler combustion system and operation method therefor
AU2011315008A AU2011315008B2 (en) 2010-10-15 2011-10-12 Boiler combustion system and operation method therefor
EP11832286.6A EP2629009A1 (en) 2010-10-15 2011-10-12 Boiler combustion system and operation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-232213 2010-10-15
JP2010232213A JP5487509B2 (ja) 2010-10-15 2010-10-15 ボイラ燃焼システムとその運転方法

Publications (1)

Publication Number Publication Date
WO2012049842A1 true WO2012049842A1 (ja) 2012-04-19

Family

ID=45938083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005701 WO2012049842A1 (ja) 2010-10-15 2011-10-12 ボイラ燃焼システムとその運転方法

Country Status (6)

Country Link
US (1) US9429319B2 (ja)
EP (1) EP2629009A1 (ja)
JP (1) JP5487509B2 (ja)
AU (1) AU2011315008B2 (ja)
CA (1) CA2823438A1 (ja)
WO (1) WO2012049842A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053250A1 (ja) * 2022-09-09 2024-03-14 株式会社日本サーモエナー ボイラシステム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6080034B2 (ja) * 2012-08-22 2017-02-15 日本エクス・クロン株式会社 アルミニウムを再生可能燃料として利用する方法
JP5979668B2 (ja) * 2012-09-28 2016-08-24 三菱日立パワーシステムズ株式会社 固体燃料バーナを備えた燃焼装置とその運転方法
CN106287679A (zh) * 2016-08-11 2017-01-04 兰州理工大学 一种煤粉锅炉高温烟气循环控制方法
CN112945600B (zh) * 2021-03-12 2023-09-05 苏州西热节能环保技术有限公司 基于水冷壁高温腐蚀防治的煤粉锅炉一体化综合调整方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012791A1 (en) * 2000-08-04 2002-02-14 Babcock-Hitachi Kabushiki Kaisha Solid fuel burner and combustion method using solid fuel burner
JP2002243110A (ja) * 2001-02-19 2002-08-28 Hitachi Ltd 微粉炭ボイラー
JP2007147162A (ja) * 2005-11-28 2007-06-14 Electric Power Dev Co Ltd 酸素燃焼ボイラの燃焼制御方法及び装置
JP4150968B2 (ja) * 2003-11-10 2008-09-17 株式会社日立製作所 固体燃料バーナと固体燃料バーナの燃焼方法
JP2009270753A (ja) * 2008-05-07 2009-11-19 Hitachi Ltd 酸素燃焼ボイラシステム,微粉炭燃焼ボイラの改造方法,酸素燃焼ボイラシステムの制御装置及びその制御方法
JP2010107129A (ja) * 2008-10-31 2010-05-13 Hitachi Ltd 酸素燃焼ボイラシステム及び酸素燃焼ボイラシステムの制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135874A (en) * 1976-03-31 1979-01-23 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Two stage combustion furnace
JP2644621B2 (ja) * 1990-10-11 1997-08-25 耕司 戸田 超音波霧化装置
RU2005116273A (ru) * 2002-10-30 2005-11-10 Кребс Энд Сислер Лп (Us) Котел со сжиганием топлива при использовании окислителя, обогащенного кислородом, для повышения кпд и снижения вредных выбросов
US8246343B2 (en) * 2003-01-21 2012-08-21 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and method for efficient mixing of two streams

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012791A1 (en) * 2000-08-04 2002-02-14 Babcock-Hitachi Kabushiki Kaisha Solid fuel burner and combustion method using solid fuel burner
JP2002243110A (ja) * 2001-02-19 2002-08-28 Hitachi Ltd 微粉炭ボイラー
JP4150968B2 (ja) * 2003-11-10 2008-09-17 株式会社日立製作所 固体燃料バーナと固体燃料バーナの燃焼方法
JP2007147162A (ja) * 2005-11-28 2007-06-14 Electric Power Dev Co Ltd 酸素燃焼ボイラの燃焼制御方法及び装置
JP2009270753A (ja) * 2008-05-07 2009-11-19 Hitachi Ltd 酸素燃焼ボイラシステム,微粉炭燃焼ボイラの改造方法,酸素燃焼ボイラシステムの制御装置及びその制御方法
JP2010107129A (ja) * 2008-10-31 2010-05-13 Hitachi Ltd 酸素燃焼ボイラシステム及び酸素燃焼ボイラシステムの制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053250A1 (ja) * 2022-09-09 2024-03-14 株式会社日本サーモエナー ボイラシステム

Also Published As

Publication number Publication date
US20130252184A1 (en) 2013-09-26
AU2011315008A1 (en) 2013-04-11
CA2823438A1 (en) 2012-04-19
JP5487509B2 (ja) 2014-05-07
AU2011315008B2 (en) 2015-08-20
EP2629009A1 (en) 2013-08-21
JP2012087946A (ja) 2012-05-10
US9429319B2 (en) 2016-08-30

Similar Documents

Publication Publication Date Title
JP5174618B2 (ja) 酸素燃焼ボイラシステム及び酸素燃焼ボイラシステムの制御方法
JP4644725B2 (ja) 酸素燃焼ボイラシステム,微粉炭燃焼ボイラの改造方法,酸素燃焼ボイラシステムの制御装置及びその制御方法
US9651253B2 (en) Combustion apparatus
JP5138028B2 (ja) 酸素燃焼ボイラの酸素供給制御方法及び装置
JP4731293B2 (ja) 酸素燃焼ボイラの燃焼制御方法及び装置
JP5270661B2 (ja) 酸素燃焼ボイラの排ガス制御方法及び装置
JP5208195B2 (ja) 酸素燃焼ボイラの排ガス制御方法及び装置
WO2012042892A1 (ja) 酸素燃焼システム及びその運転方法
JP5107419B2 (ja) 酸素燃焼ボイラの燃焼制御装置
JP5107418B2 (ja) 酸素燃焼ボイラの一次再循環排ガス流量制御装置
WO2012049842A1 (ja) ボイラ燃焼システムとその運転方法
WO2013008893A1 (ja) 微粉炭焚きボイラ設備の運転方法
JP5812740B2 (ja) 酸素燃焼システム及びその運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832286

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2011832286

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011832286

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2823438

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2011315008

Country of ref document: AU

Date of ref document: 20111012

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13876516

Country of ref document: US