JP4896194B2 - 酸素燃焼ボイラプラント - Google Patents

酸素燃焼ボイラプラント Download PDF

Info

Publication number
JP4896194B2
JP4896194B2 JP2009225902A JP2009225902A JP4896194B2 JP 4896194 B2 JP4896194 B2 JP 4896194B2 JP 2009225902 A JP2009225902 A JP 2009225902A JP 2009225902 A JP2009225902 A JP 2009225902A JP 4896194 B2 JP4896194 B2 JP 4896194B2
Authority
JP
Japan
Prior art keywords
oxygen
gas
exhaust gas
burner
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009225902A
Other languages
English (en)
Other versions
JP2011075175A (ja
Inventor
正行 谷口
強 柴田
喜治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009225902A priority Critical patent/JP4896194B2/ja
Priority to US12/893,733 priority patent/US8578868B2/en
Priority to EP10012344.7A priority patent/EP2309185A3/en
Publication of JP2011075175A publication Critical patent/JP2011075175A/ja
Application granted granted Critical
Publication of JP4896194B2 publication Critical patent/JP4896194B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/003Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/10Premixing fluegas with fuel and combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/06041Staged supply of oxidant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07001Injecting synthetic air, i.e. a combustion supporting mixture made of pure oxygen and an inert gas, e.g. nitrogen or recycled fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07005Injecting pure oxygen or oxygen enriched air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

本発明は、酸素燃焼ボイラプラントに関する。
微粉炭を燃焼させるボイラは、バーナへ供給する気体によって2種類の燃焼方式に分けることができる。空気燃焼は、バーナへ空気を供給することで燃料を燃焼させる方式である。また、酸素燃焼は、空気を用いる代わりに高純度の酸素と燃焼排ガスの混合気体で燃料を燃焼させる方式である。
酸素燃焼は、排ガス成分の大部分が二酸化炭素になるため、排ガスから二酸化炭素を回収する際に二酸化炭素を濃縮する必要がない。そのため、酸素燃焼は排ガスをそのまま加圧,冷却して二酸化炭素を液化・分離させることが可能であり、二酸化炭素の排出量削減に有効な方法の一つである。
この酸素燃焼方式において、バーナ付近を流れる微粉炭の着火を促進する方法として、微粉炭と燃焼排ガスの混合気流にむけて酸素を噴射する方法が提案されている(特許文献1)。
特開平7−318016号公報
しかし、微粉炭と燃焼排ガスの混合気流にむけて酸素を噴射する際に、酸素濃度の高いガス塊中に微粉炭が進入し、逆火などの異常燃焼が発生する可能性がある。特に、酸素供給を開始した直後や、運転条件を変化させるときに異常燃焼が発生しやすい。
そこで本発明の目的は、バーナにおいて着火性能を向上させるとともに、異常燃焼が発生しにくい酸素燃焼ボイラプラントを提供することにある。
本発明は、酸素製造装置が製造した酸素をバーナ内の1次系配管に供給する酸素供給配管と、ボイラから排出された燃焼排ガスを酸素供給配管に供給する系統と、酸素供給配管の噴出口がバーナ噴出部より上流側に設けられていることを特徴とする。
本発明によれば、バーナにおいて着火性能を向上させるとともに、異常燃焼が発生しにくい酸素燃焼ボイラプラントを提供することができる。
ボイラプラントの構成を説明する図である。 支燃ガス中の酸素濃度と微粉炭の燃焼速度の関係を説明する図である。 ボイラプラント構成の変形例を説明する図である。 ボイラプラントの構成のもうひとつの変形例を説明する図である。 ボイラプラントに適用する微粉炭バーナの構成を説明する図である。 図5の構成において、微粉炭と燃焼排ガスの混合物である1次ガス流と、ボイラ火炉内に噴出した酸素富化ガスの混合状態を説明する図である。 ボイラプラントに適用する微粉炭バーナの変形例を説明する図である。 ボイラプラントに適用する微粉炭バーナのもうひとつの変形例を説明する図である。 ボイラプラントに適用する微粉炭バーナのもうひとつの変形例を説明する図である。 バーナ噴出口近傍の混合状態を示す図である。 バーナ噴出口近傍の酸素濃度,粒子濃度,着火下限界濃度,火炎伝播速度の分布を示す概念図である。 支燃ガスがN2/O2系である場合と、CO2/O2系(酸素燃焼)である場合の、火炎伝播速度の違いを示す実験結果である。 断熱火炎温度と火炎伝播速度の関係を示す図である。 火炎伝播速度の実験結果と計算結果を比較した図である。 支燃ガスがN2/O2系である場合と、CO2/O2系(酸素燃焼)である場合の、可燃下限界濃度の違いを示す計算結果である。 可燃下限界濃度(着火下限界濃度)の実験結果と計算結果を比較した図である。 システムの成立性を検討した計算の、計算条件を示す図である。 空気燃焼時の粒子濃度と火炎伝播速度の関係を示す、計算結果である。 システム成立性の検討結果である。(ケース1) システム成立性の検討結果の例である。(ケース2) システム成立性の検討結果の例である。(ケース3) ボイラプラントに適用する微粉炭バーナの変形例を説明する図である。 ボイラプラントに適用する微粉炭バーナの変形例を説明する図であり、図22のバーナを火炉方向から見た図である。 ボイラプラントに適用する微粉炭バーナの変形例を説明する図であり、図22のバーナを火炉方向から見た図の変形例である。
以下、最良の実施形態について、図を参照しながら説明する。
図1は、石炭を燃料とする酸素燃焼ボイラプラントを示す。本例はボイラ200を用いて蒸気を発生させる火力発電プラントである。
ボイラ200は、バーナ210とガスポート225を備える。バーナ210は微粉炭をボイラ内の火炉に供給し、燃焼させる。ガスポート225は、バーナ210の下流側に設けられ、2段燃焼用ガスを火炉に供給する。
ボイラ200から排出される燃焼排ガスが流れる系統を説明する。燃焼排ガス380は、ボイラ200から排出された排ガスが流れる系統を示す。排ガス処理装置340は、排ガスを浄化する装置である。ファン381は、排ガスを流すための装置である。冷却除湿装置341は、排ガスを冷却するとともに湿分を除去する。二酸化炭素回収装置350は、冷却除湿後の排ガスを圧縮し、二酸化炭素を排ガスから回収する。未回収ガス351は、二酸化炭素回収装置350で二酸化炭素を回収した後に残ったガスを示す系統である。循環排ガス390は、ボイラから排出された燃焼排ガス380の一部をボイラ200へ再循環させる系統を示す。循環排ガス流量調整弁391は、循環排ガスの流量を調整する機能を有する。ファン382は、循環排ガスをボイラへ再循環させるために加圧する装置である。ガス予熱器330は、燃焼排ガス380と循環排ガス390を熱交換させることにより、循環排ガス390を加熱する。温度の低い循環排ガス393は、ガス予熱器330をバイパスさせる系統を示す。バイパス流量制御弁394は循環排ガス393の流量を調整する機能を有する。流量調整弁213,214は、循環排ガス390がそれぞれバーナ210,エアポート225に供給される流量を調整する機能を有する。
そして、本実施例では冷却除湿器341から排出された循環排ガスを第1の酸素供給配管219に戻すため、少量の燃焼排ガス395が流れる系統を設けている。この系統には、加圧するファン396,流量を調整する流量調整弁500を備える。
また、空気燃焼用空気配管363bは、空気燃焼時に外部の空気をボイラ200に供給する。空気燃焼用空気配管363bには、空気流量調整弁364,392が設けられている。
次に、酸素供給系統を説明する。酸素製造装置360は、空気363aから窒素を分離して酸素を製造する装置である。酸素ガス362は、酸素製造装置360によって製造される。第1の酸素供給配管219は、酸素ガス362を流す配管である。第1の酸素供給配管219には、一次系配管216に供給する酸素量を調整する流量調整弁218が設けられている。また、流量調整弁211は、循環排ガスに供給する酸素量を調整する弁である。そして、第2の酸素供給配管397は、石炭粉砕装置130の上流側で循環排ガスに酸素を供給する配管である。第2の酸素供給配管397にも流量調整弁396が設けられている。
なお、窒素ガス361は煙突370へ排出される。
そして、石炭粉砕装置130は、石炭を粉砕し、微粉炭を生成する。バーナ210の一次系配管216は、石炭粉砕装置130からの微粉炭を循環排ガスとともにバーナ210へ供給する。石炭粉砕装置130に循環排ガス390を供給する系統には流量調整弁215を備える。また、循環排ガス390がバーナ210に直接供給される配管を二次系配管217とする。
ボイラから排出される燃焼排ガス380の系統には、ガス予熱器330,排ガスを浄化するための排ガス処理装置340,ガスを流すためのファン381,排ガス中の二酸化炭素を冷却・液化して回収する二酸化炭素回収装置350,二酸化炭素を回収した後に残る窒素と酸素が主体の未回収ガス351を放出する煙突370がある。
図1に示すように、本実施例のボイラプラントは、空気を窒素主体のガスと、酸素主体のガスに分離して高純度の酸素を製造する酸素製造装置360を備えている。酸素製造装置は、酸素と窒素の沸点の違いを利用して両者を分離する方式であり、空気を冷却して酸素を製造する。本実施例は酸素製造方法に依存するものではなく、窒素分子と酸素分子の大きさの違いを利用して分離する膜分離方式など、他の方法でもよい。
酸素製造装置は空気363aを酸素ガス362と窒素主体の窒素ガス361に分離する。分離した窒素ガス361は煙突370から大気に放出される。
空気の代わりに高純度の酸素を用いて燃焼させると、火炎の温度が高温になり過ぎるため燃料を燃焼させるバーナやボイラ壁面が損傷する可能性がある。そのため、酸素製造装置360で製造した酸素ガスを、ボイラから排出される排ガスの一部である循環排ガス390と混合して、バーナ210と二段燃焼用のガスポート225へ供給する。循環排ガス390はガス予熱器330により昇温する。循環排ガス390の一部はガス予熱器330を通さずにバイパスさせ、温度の低い循環排ガス393を循環排ガスに混合させることで温度を調整する。温度の低い循環排ガスの流量は、バイパス流量制御弁394で調整する。
循環排ガス390は排ガス処理装置340で浄化された後のガスの一部であり、ガス予熱器330で昇温させる。循環排ガスの流量は、循環排ガス流量調整弁391の開度で調節できる。
バーナ210及びガスポート225へ供給される酸素ガス362は、流量調整弁211,213及び214の開度を調整することで流量を調節できる。また、循環排ガス390も同様に、流量調整弁213及び214の開度を制御することで流量を調節できる。
燃料である石炭は、石炭粉砕装置130で微粉炭となり、流量調整弁215を通過した循環排ガス390の一部と共に1次系配管216を通してバーナ210へ搬送される。バーナ210は、2次系配管217を流れる酸素濃度の高い2次系ガスと1次系配管216を流れる微粉炭及び循環排ガスからなる1次系ガスとを混合して燃焼させることで、ボイラ200の火炉内に高温の燃焼ガスを発生させる。
ここで、1次系ガス中の酸素濃度は数%のため、バーナ近傍で微粉炭が着火しにくいという課題がある。そこで、酸素ガス362を1次系配管216に供給すると、1次系ガスの酸素濃度が高くなり、微粉炭の着火性が改善する。しかし、酸素を1次系配管216に供給した直後には、純酸素に近い酸素濃度の高いガス塊が1次系配管216の内部に形成されている。このガス塊中に微粉炭粒子が進入すると、酸素濃度が極めて高い条件下で微粉炭が酸化され、逆火などの異常燃焼が発生する可能性がある。異常燃焼が発生すると、極めて温度の高い火炎が形成され、バーナやバーナに接続される配管が溶損することがある。この異常燃焼を防ぐために、少量の燃焼排ガス395を再循環させ、小型ファン396と流量調整弁500で流量を調整したのち、第1の酸素供給配管219へ供給する。このように、ボイラから排出された燃焼排ガスを酸素供給配管に供給する系統を設けることにより、バーナにおける異常燃焼を防ぐことができる。
更に、第2の酸素供給配管397は、石炭粉砕装置130に循環排ガスを供給する上流側配管に酸素ガス362を供給する。石炭粉砕装置130に流入する循環排ガスの酸素濃度を事前に少し高めることにより、バーナ近傍での微粉炭着火性能をさらに高めることができる。
異常燃焼が発生する可能性は、燃焼速度と強い相関がある。図2は、酸素燃焼ボイラの排ガスに酸素を混合したものを支燃ガスとしたときの、支燃ガス中の酸素濃度と微粉炭の燃焼速度の関係である。純酸素や、純酸素に近いガス中に微粉炭を混入したときの燃焼速度は極めて速い。燃焼速度を小さくして異常燃焼が発生しにくくするには、酸素濃度を下げることが極めて有効である。例えば、酸素濃度を100%から70−80%に低下させると、燃焼速度は約半分に低下するので、異常燃焼の発生をかなり抑制できる。少量の排ガスを酸素ガスに混入すると、燃焼速度の低減効果は大きい。
図1は、除湿冷却装置341から排出された燃焼排ガスの一部を少量の燃焼排ガス395として循環させた。この理由は、燃焼排ガスの温度が最も低くなるためである。燃焼速度は支燃ガスの温度にも影響を受け、支燃ガスの温度が低いほど燃焼速度が小さい。したがって、少量の燃焼排ガス395の温度が低いほど、異常燃焼の発生を防止する効果が大きい。また、燃焼排ガス中には通常水蒸気が含まれる。燃焼排ガスの配管内で水蒸気が露結すると配管が腐食されやすくなる。図1のように、除湿後の排ガスを循環させることにより、配管が腐食されにくくなる。
図1において、少量の燃焼排ガス395を第1の酸素供給配管219に供給しない場合には、1次系配管216の配管内に純酸素と微粉炭の混合物が形成される可能性がある。そこで、本実施例では、第1の酸素供給配管219から供給する酸素量のうち20%分を燃焼排ガス395とする。このように、少量の燃焼排ガス395を第1の酸素供給配管219に供給すると、酸素80%の支燃ガスと微粉炭の混合気しか形成されず、異常燃焼の発生危険性を大幅に低減できる。
なお、バーナ近傍における微粉炭の着火性は、第1の酸素供給配管219に供給された燃焼排ガスと酸素ガスが充分に混合したときの平均酸素濃度に影響する。また、燃焼排ガス395の供給量がわずかであれば、混合した後の平均酸素濃度に与える影響は小さい。
このような酸素燃焼方式のボイラでも、起動時には酸素製造装置360を駆動するための動力(電力)が得られず、酸素ガス362をボイラへ供給できない。また、酸素製造装置360の起動時は、循環排ガス量が安定に確保できない。そのため、空気燃焼方式で起動させる方法が提案されている。空気燃焼方式で運転する場合、循環排ガス流量調整弁391を閉じて、空気流量調整弁364,392を開くことによって排ガスの代わりに空気363bを供給できる。従って、従来通りの空気燃焼も実施可能となっている。
図3及び図4は、少量の燃焼排ガス395を供給する方法の変形例である。図3では、循環排ガス390のうち、ガス予熱器を経由しない温度の低い循環排ガス393の一部を分岐して、第1の酸素供給配管219へ供給する。温度の低い排ガスを利用することで、燃焼速度の低減効果が大きくなる。
図4は、石炭粉砕機130へ供給する循環排ガス390の一部を分岐する方法である。排ガスの温度が高くなるため燃焼速度の低減効果は若干劣るが、配管長さを短くできる。また、着火性の劣る石炭を使用するシステムに適している。
図5は、図1〜図4のシステムを適用したときのバーナ構成例を示す。
起動用の油バーナ22は、バーナの中心部に設置されている。また、酸素富化ガス噴射ノズル23は油バーナ22の周囲に設置される。なお、酸素富化ガス噴射ノズル23は、第1の酸素供給配管219の先端部に設けられている。酸素富化ガス噴射ノズル23の周囲には、1次ノズル25が設置され、1次ノズル25は微粉炭9と燃焼排ガス11の混合物である1次ガス10をボイラ火炉1内に噴出する。酸素富化ガス24は、環状に噴射された1次ガス10の内側から供給される。2次ガス217aは、1次ノズル25の周囲からボイラ火炉1内に供給される。2次ガス217aは、ウインドボックス2を経て二つの流路に分流されたのち、旋回羽根17で流れの旋回成分を付与され、ボイラ火炉1内に供給される。1次ガス10は、1次系配管216から供給される。また、2次ガス217aは、2次系配管217から供給される。酸素富化ガス噴射ノズル23には、酸素ガス362が供給される。酸素ガス362は、酸素富化ガス噴射ノズル23に供給される前に、少量の燃焼排ガス395が事前に混合される。
図6は、酸素富化ガス噴射ノズル23の噴出口近くにおけるガスの混合状態を示す。酸素富化ガス24は、1次ガス10の流れに向かって噴射される。酸素富化ガス24と1次ガス10の流れとの境界には混合領域32が形成される。ただし、噴射されたガスの全てが瞬時に混合することはないので、混合領域32の内部には高酸素濃度のガス塊33が一時的に形成される。1次ガス10の流れには、微粉炭粒子34が同伴されている。この微粉炭粒子34は、1次ガス10の流れに完全に同伴されて動くわけではない。一部の微粉炭粒子34は、1次ガス10の流れからずれて、独自の運動をする。この結果、図6に示すように、微粉炭粒子の軌跡36を経て、高酸素濃度のガス塊33に微粉炭粒子34が進入する場合がある。高酸素濃度のガス塊に進入した微粉炭粒子35は燃焼しやすくなり、燃焼したときの燃焼温度も高くなる。このとき、高酸素濃度のガス塊35の酸素濃度が高いほど燃焼しやすく、燃焼温度も高くなる。図2に示すように、燃焼のしやすさは、酸素濃度と燃焼速度の関係に対応する。
ここで、少量の燃焼排ガス395を酸素ガス362に供給しない場合、酸素濃度のガス塊に進入した微粉炭粒子35は、純酸素に近い雰囲気条件で燃焼する。燃焼速度が非常に大きいので、極めて高温の異常燃焼が発生しやすく、バーナ部の溶損などの原因になりやすい。また、高酸素濃度のガス塊35の形成領域が大きいほど、このような異常燃焼が発生しやすい。特に、酸素ガス362の供給を開始した直後や酸素ガスの供給量を変化させる際に、高酸素濃度のガス塊35の形成領域が瞬間的に大きくなりやすいので注意が必要である。
事前に、少量の燃焼排ガス395を酸素ガス362に供給した場合、純酸素を炉内に供給することがないので、微粉炭が純酸素中で燃焼することもない。図2に示すように、雰囲気の酸素濃度を100%から僅かに低下させるだけでも、燃焼速度は大きく低下する。そのため、少量の燃焼排ガス395を事前に酸素ガス362に混合させることによる異常燃焼の発生防止効果は大きい。
また、石炭の燃焼性能は、石炭性状により大きく異なる。バーナ付近での着火を促進し、かつ異常燃焼を防止するためには、石炭性状に応じて酸素ガス362の供給量や供給方法などを調整しなければならない。少量の燃焼排ガス395を第1の酸素供給配管219に供給する系統が無い場合、酸素ガス362の供給量や供給時の噴出速度を調整しなければならず、石炭性状に応じて常に最適な供給量や供給時の噴出速度を維持するのは困難である。
一方、少量の燃焼排ガス395を第1の酸素供給配管219に供給する系統を有する場合、燃焼速度が常に等しくなるように、石炭性状に応じて酸素富化ガス24の酸素濃度を調整すればよい。たとえば、設計基準に用いた石炭において、最適の酸素濃度が80%であったと仮定する。他の石炭を使用する場合には、実際に使用する使用炭における雰囲気酸素濃度と燃焼速度の関係を実験で求め、図2のような特性曲線を作成する。このとき、使用炭の酸素濃度が90%のときに基準炭の燃焼速度と等しくなる場合、使用炭の最適酸素濃度は90%となる。微粉炭の酸素濃度と燃焼速度の関係は小型装置の実験から得られるので、プラントの運用を開始する前に最適運用条件を決定できる。
なお、バーナの運転状態が酸素燃焼に移行して定常状態に達した後は、高酸素濃度のガス塊35の形成領域が小さいので、異常燃焼は発生しにくい。使用する石炭性状により、バーナの運転状態が定常状態に達した後は、少量の燃焼排ガス395の供給を停止しても良い。
図7は、図1〜図4のシステムを適用したときのバーナ構成例を示すとともに、酸素富化ガスの供給方法の変形例を示す。
1次ガス10はバーナの中心部からボイラ火炉1内に噴出する。保炎器89は、微粉炭の着火を促進する。1次ガス10の周囲から2次ガス217aを供給し、2次ガス217aの周囲からさらに3次ガス317を供給する。ここで3次ガス317は、2次ガス217aと同様に、循環排ガス390と酸素ガス362の混合気体である。2次ガス217aを分離して3次ガス317としてもよいし、別系統から3次ガス317を供給してもよい。また、2次ガス217aから3次ガス317を分岐させた後、3次ガス317中に酸素ガス362を追加しても良い。あるいは、3次ガス317から2次ガス217aを分岐させた後、2次ガス中に酸素ガス362を追加しても良い。
なお、酸素富化ガス噴射ノズル23は、第1の酸素供給配管219の先端部に設けられている。1次ガス10は、1次系配管216から供給される。また、2次ガス217aは、2次系配管217から供給される。
酸素富化ガス噴射ノズル23は、バーナ上流の1次系配管216中に設置する。酸素富化ガス噴射ノズル23は、酸素ガス362と少量の燃焼排ガス395を混合して生成する酸素富化ガスを1次系配管216に供給する。この方法では、ボイラ火炉内に噴出する際や、酸素富化ガスを噴出した直後の1次ガス10の流れに、酸素濃度のむらができにくい利点がある。酸素濃度のむらが小さいと、NOx排出特性や最低負荷性能などの燃焼性能を予測しやすい利点がある。バーナの運転状態が酸素燃焼の定常状態に達した後、使用する石炭性状によっては少量の燃焼排ガス395の供給を停止しても良い。
図8は、図1〜図4のシステムを適用したときのバーナ構成例を示すとともに、酸素富化ガスの供給方法のもうひとつの変形例を示す。
本実施例のバーナ構造は、2次ガス217aの一部が、2次ガス導入管51を用いて1次ガス10中に導かれる。2次ガス導入管51はバーナの内部に設けられている。酸素供給ノズル52は、酸素ガス362を2次ガス導入管51の内部に供給する。酸素ガス362は、2次ガス導入管51の内部で2次ガス217aの一部と混合した後に1次ガス10へ供給される。そのため、純酸素が1次ガス中に直接供給されることはなく、純酸素と微粉炭の混合物が形成されることもない。この方法では、少量の燃焼排ガス395を供給するための配管を省略できる利点がある。
なお、酸素供給ノズル52は、第1の酸素供給配管219の先端部に設けられている。1次ガス10は、1次系配管216から供給される。また、2次ガス217aは、2次系配管217から供給される。
図8のバーナ構造において、酸素供給ノズル52と2次ガス導入管51の噴出口はバーナの内部に設けられると共に、バーナ噴出部405より上流側に設けられている。そのため、バーナ近傍での着火性能をさらに向上できる。理想的には、バーナ噴出部405の直近で微粉炭が着火できるのがよい。このためには、1次ガス10がバーナ噴出部に到達する時点で、1次ガス10と酸素ガス362が混合されているのが望ましい。しかし、ガスの混合には、一定の混合遅れがあり、この混合遅れを加味して、酸素供給ノズル52と2次ガス導入管51の噴出口をバーナ噴出部405より上流側に設けるのが良い。
図10は、この混合遅れを考慮したうえで、バーナ近傍での酸素濃度と粒子濃度の分布を模式的に表わした図である。酸素供給ノズル52の噴出口とバーナ噴出部405との距離を混合遅れより長くすると、バーナ噴出部405の近傍に、混合領域が形成される。混合領域とは、酸素ガスの流れ406と1次ガスの流れ31が混合した流れである。混合領域中には、さまざまな酸素濃度と粒子濃度のガス塊が存在する。ここでは簡略化のため、酸素濃度は高く粒子濃度が低い混合領域A407と、酸素濃度は低く粒子濃度が高い混合領域B408の2種を示した。酸素ガスの流れ406に近い領域では混合領域A407が形成され、1次ガスの流れ31の近くでは混合領域B408が形成される。微粉炭の着火性は粒子濃度と酸素濃度の両方に支配される。そのため、混合領域A407と混合領域B408のどちらが着火しやすいかを判断するには、詳細な実験あるいは計算が必要である。
1次ガス流れの周囲には、火炎409が形成されている。この火炎409からの熱により、微粉炭が加熱され、着火する。ただし、微粉炭は火炎からの放射熱でも加熱される。そのため、必ずしも火炎の近くにある微粉炭から先に着火するわけではない。
図11は、バーナ噴出部405近傍での酸素濃度と粒子濃度の分布を模式的に示した図である。火炎伝播速度と着火下限界濃度は、着火のしやすさを表わす物理量である。微粉炭を着火させるには、粒子濃度をある値以上にする必要がある。この値が着火下限界濃度である。この着火下限界濃度は、原理的には可燃下限界濃度である。但し、実用装置では確実に着火させる観点から、可燃下限界濃度に安全率を加えた値を用いるとよい。ガス中の酸素濃度が高いほど、着火下限界濃度は低くなる。しかし、対象としたシステムでは、酸素濃度が高くなるほど粒子濃度が低くなる。そのため、ある酸素濃度の範囲を満たすガス中の粒子濃度が着火下限界を上回ることになる。バーナ近傍で確実に着火させるための必要条件は、粒子濃度が着火下限界濃度を上回るガス塊が存在することである。また、着火下限界濃度は、周囲の温度が高くなると低くなる。但し、周囲の粒子が着火すると周囲の温度が高くなるため、その結果、着火下限界濃度は低くなり、着火条件を満たすようになる。一部でも着火条件を満たすガス塊が存在すれば、混合気全体が着火できる可能性を有する。そして、粒子濃度が着火下限界濃度を上回るガス塊が存在しないときは失火する。
実機では、燃焼負荷の変化が必要であり、燃焼負荷の変化により粒子の平均濃度が変化する。通常は負荷が低くなると、粒子濃度が低くなる。負荷変化を考慮した場合、粒子濃度と着火下限界濃度の間にある程度の差異がある方が望ましい。この差異を裕度と定義する。
もうひとつの物理量は火炎伝播速度である。火炎伝播速度は、逆火などの異常燃焼が発生する条件の判断指標になる。火炎伝播速度が大きいほど着火が容易であり、火炎伝播速度が大きすぎると異常燃焼が発生しやすくなる。火炎伝播が約1m/sであれば、火炎は移動する。混合気の流速が火炎伝播速度よりも小さい場合、火炎が流れ上流側に向かって移動するため、逆火が発生する。ただし、混合気の流速は平均値ではなく瞬時値の最小値である。そのため、混合気の流速を正確に予測することは難しい。類似システムの実績を参照して、このときの火炎伝播速度の実績範囲であれば、逆火や異常燃焼は生じないと判断するのが実用的である。火炎伝播速度が実績範囲より大きいときは、逆火や異常燃焼の危険ありと判断する。
発明者らは、種々の燃焼条件下において火炎伝播速度と着火下限界濃度(可燃限界濃度)を予測するモデルを開発した。このモデルを用いて、システムの成立性を検討した。モデルの開発に用いた実験結果と検証結果の例を以下に示す。
図12と図13は、実験結果の例である。図12は、N2/O2燃焼場(O2が21%の空気燃焼)とCO2/O2燃焼場(酸素燃焼)での火炎伝播速度を比較した結果である。同じ酸素濃度で比較すると、CO2/O2燃焼場の火炎伝播速度は、N2/O2燃焼場のそれよりも小さくなる。図13は、図12の結果の一部を、断熱火炎温度と火炎伝播速度の関係で示したものである。同じ断熱火炎温度の条件で比較すると、CO2/O2燃焼場の火炎伝播速度は、N2/O2燃焼場のそれと同等である。酸素燃焼場での火炎伝播速度が小さいのは、支燃ガス中に比熱の大きなCO2が多量に含まれるため、燃焼温度が上がりにくいのが主因である。
図14〜図16は、検証結果の例である。図14は、火炎伝播速度を検証した結果である。支燃ガス条件,酸素濃度,周囲の温度,石炭性状,粒径をさまざまに変えた基礎実験で検証した。図中の白丸はCO2/O2燃焼場での結果であり、他はN2/O2燃焼場での結果である。支燃ガスの種類に係わらず、約20%の誤差で火炎伝播速度を予測することができる。図15は、可燃下限界濃度を基礎実験で検証した結果である。実験には瀝青炭を用いた。酸素濃度の影響を再現できることを確認した。酸素燃焼の場合、酸素濃度が30±4vol%のときの可燃下限界濃度が、空気燃焼時のそれと一致する。図16は、石炭の種類と粒径を変えて、実機に近い大型バーナを用いて可燃下限界濃度(着火下限界濃度)を検証した結果である。約10%の誤差で予測できる。
このモデルを用いて3ケースのケーススタディを実施して、システムの成立性を検討した。図17に検討条件を示す。ケース1は、排ガス中に純酸素を混合するケースである。ケース2は、本発明の1例であり、酸素ガス362に燃焼排ガスを混合して酸素濃度を70%まで低減したものである。ケース3も本発明の変形例である。ケース2との違いは、1次ガス10中の酸素濃度が15%と高いことである。石炭粉砕器130に流入する循環排ガスに酸素ガスを一部混合させ、循環排ガスの酸素濃度を予め高めた条件に相当する。対象とした石炭は瀝青炭である。粒径は3ケースとも同じである。1次ガス10中の微粉炭濃度は、3ケースとも同じであり、0.6kg/m3とした。
検討に先立ち、比較のために、空気燃焼時の火炎伝播速度と着火下限界濃度を計算した。結果を図18に示す。空気燃焼時には、1次ガス10は空気であり、バーナ近傍で酸素富化ガスを供給しない。微粉炭ボイラで使用される頻度が高い、瀝青炭と亜瀝青炭について計算した。
ケーススタディで設定した、粒子濃度が0.6kg/m3の条件でみると、火炎伝播速度は瀝青炭で0.2m/s、亜瀝青案で0.5m/sである。ただし、実機では、局所的に粒子濃度が高い領域も存在するので、これより火炎伝播速度が大きくなることもある。火炎伝播速度の最大値は、瀝青炭0.5m/s、亜瀝青炭で0.8m/sである。今回の検討では、実績範囲を0.2−0.8m/sと定義する。火炎伝播速度が0.8m/sを超えた場合には、実績外とし、逆火に注意が必要と判定する。着火下限界濃度は、可燃下限界濃度の2倍の値と定義した。この着火下限界濃度より粒子濃度が高くなるガス塊があれば、着火可能と判断する。粒子濃度を着火下限界濃度で割った値を裕度と定義する。空気燃焼の場合には、亜瀝青炭燃焼時の裕度が2.6、瀝青炭燃焼時の裕度が1.7である。着火と逆火に関する必要条件を満たした上で、空気燃焼時と同等の裕度を確保できるシステム構成が、最も望ましいと判断する。
図19は、ケース1の検討結果である。横軸にガス塊の酸素濃度を示し、これに対応する粒子濃度,着火下限界濃度,火炎伝播速度を縦軸に示した。火炎伝播速度は、亜瀝青炭を空気燃焼したときの最大値を1として、規格化して示した。酸素濃度が30−80%の広い範囲で、着火条件を満たしており、失火の恐れは少ない。しかし、火炎伝播速度については、実績の3倍程度になるガス塊が存在する。逆火に対して注意が必要であり、火炎伝播速度をより小さくしたほうがよい。火炎伝播速度が大きくなる原因は、酸素濃度が80%近い、酸素濃度が非常に高い条件でも可燃混合気が形成できてしまうことにある。
図20は、ケース2の検討結果である。酸素ガス362中の酸素濃度を70%まで低減したことにより、極端に酸素濃度が高い可燃混合気は形成されない。この結果、火炎伝播速度は実績範囲内に収まる。着火条件を満たすガス塊も存在するので、システム成立の必要条件を満たす。ただし、裕度は、空気焚きの実績よりも小さくなる。そこで、酸素ガス362中の酸素濃度を更に変更した。酸素濃度を高くした場合、裕度は確保できるが、火炎伝播速度が大きくなり過ぎた。一方、酸素濃度を低くした場合、着火条件を満たすのが困難になった。
図21は、ケース3の検討結果である。空気燃焼並みの裕度を確保し、火炎伝播速度を実績範囲に収めることができた。1次ガス10に酸素ガス36を混合させるケース2では、粒子濃度は着火下限界を下回るので、給炭系統中で微粉炭が着火条件を満たすことはない。酸素ガス362中の酸素濃度と1次ガス10の酸素濃度の組み合わせを変えて検討したが、システム成立条件を満たす組み合わせは多数存在した。
図9は、図1〜図4のシステムを適用したときのバーナ構成例を示すとともに、酸素富化ガスの供給方法のもうひとつの変形例を示す。
図8と図9との相違点は、酸素ガス362に燃焼排ガス395を供給している点である。図9のバーナ構造も、酸素供給ノズル52と2次ガス導入管51の噴出口が、バーナ噴出部405より上流側に設けられている。そのため、バーナ近傍での着火性能をさらに向上できる。
図22は、図1〜図4のシステムを適用したときのバーナ構成例を示す。図22は、酸素ガスと燃焼排ガスを予め混合して酸素濃度を下げた後、酸素供給ノズル52から1次ガス10中へ供給する構成であり、2次ガス導入管51は省略されている。この構成では、酸素供給ノズル52から噴出する酸素ガス362中の酸素濃度を精度良く制御できる。着火が難しい石炭を用いるときに有効である。
図23は、バーナをA方向から見た図である。1次ノズル401の外周側に、保炎器400が櫛歯状に設置される。1次ノズル401の周囲には、2次ノズル402と3次ノズル403が同心円状に配置される。酸素供給ノズル52は保炎器400の間に配置される。
図24は、酸素供給ノズル52の配置方法の変形例である。酸素供給ノズル52を保炎器400の直上流に配置する。図23と図24の構成では、保炎器直近の酸素濃度分布が異なる。図24の構成では、保炎器400の直近の酸素濃度が高くなる。保炎器400の直上流側の酸素濃度も高くなる。保炎器400の直近部は流れの乱れが強いので、火炎の形成には最も有利な領域である。この部分の酸素濃度を高めると、着火には最も有利である。反面、保炎器400の直上流部の酸素濃度も高くなるので、着火しやすい石炭を用いたときには、ここで微粉炭が着火し保炎器400が焼損する恐れがある。そのため、図24の構成は着火しにくい石炭を用いたときに適した構成である。
一方、図23の構成において、酸素濃度が高い領域は、保炎器の直近部からやや離れた領域に形成され。そのため、保炎器400が焼損する恐れは少ない。着火しやすい石炭を用いたときに適した構成である。
1 火炉
2 ウインドボックス
10 1次ガス
22 油バーナ
23 酸素富化ガス噴射ノズル
24 酸素富化ガス
25 1次ノズル
32 混合領域
33 高酸素濃度のガス塊
34 微粉炭粒子
35 高酸素濃度のガス塊に進入した微粉炭粒子
36 微粉炭粒子の軌跡
51 2次ガス導入管
52 酸素供給ノズル
89 保炎器
130 石炭粉砕機
200 ボイラ
210 バーナ
217 2次ガス
225 ガスポート

Claims (4)

  1. 空気から窒素を分離して酸素を製造する酸素製造装置と、前記酸素製造装置から供給される酸素と微粉炭を燃焼させるバーナと、前記バーナに微粉炭を供給する1次系配管とを備えたボイラと、
    前記1次系配管に前記ボイラが排出する燃焼排ガスを供給する排ガス再循環手段と、前記ボイラから排出される排ガス中の二酸化炭素を回収する二酸化炭素回収装置とを備えた酸素燃焼ボイラプラントにおいて、
    前記酸素製造装置が製造した酸素を前記バーナ内の前記1次系配管に供給する酸素供給配管と、
    前記ボイラから排出された燃焼排ガスを前記酸素供給配管に供給する系統と、
    前記酸素供給配管の噴出口が前記バーナ噴出部より上流側に設けられていることを特徴とする酸素燃焼ボイラプラント。
  2. 請求項1記載の酸素燃焼ボイラプラントであって、
    前記ボイラから排出された燃焼排ガスが供給され、微粉炭と前記燃焼排ガスの混合流体を前記1次系配管に供給する石炭粉砕装置と、
    前記酸素供給配管から分岐された配管が前記石炭粉砕装置の上流側で接続されていることを特徴とする酸素燃焼ボイラプラント。
  3. 請求項1記載の酸素燃焼ボイラプラントであって、
    前記バーナは、前記1次系配管内の1次ガスが流れる流路と、前記1次ガスが流れる流路の外周側に、2次ガスが流れる流路を備え、前記2次ガスの一部が前記1次ガスへ供給される2次ガス導入管を備え、
    前記酸素製造装置が製造した酸素を前記2次ガス導入管へ導く酸素供給ノズルを備えることを特徴とする酸素燃焼ボイラプラント。
  4. 請求項3記載の酸素燃焼ボイラプラントであって、
    前記2次ガス導入管の噴出口は、前記バーナの噴出口よりも上流側に設けられていることを特徴とする酸素燃焼ボイラプラント。
JP2009225902A 2009-09-30 2009-09-30 酸素燃焼ボイラプラント Active JP4896194B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009225902A JP4896194B2 (ja) 2009-09-30 2009-09-30 酸素燃焼ボイラプラント
US12/893,733 US8578868B2 (en) 2009-09-30 2010-09-29 Oxyfuel combustion boiler plant
EP10012344.7A EP2309185A3 (en) 2009-09-30 2010-09-30 Oxyfuel combustion boiler plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009225902A JP4896194B2 (ja) 2009-09-30 2009-09-30 酸素燃焼ボイラプラント

Publications (2)

Publication Number Publication Date
JP2011075175A JP2011075175A (ja) 2011-04-14
JP4896194B2 true JP4896194B2 (ja) 2012-03-14

Family

ID=43332283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009225902A Active JP4896194B2 (ja) 2009-09-30 2009-09-30 酸素燃焼ボイラプラント

Country Status (3)

Country Link
US (1) US8578868B2 (ja)
EP (1) EP2309185A3 (ja)
JP (1) JP4896194B2 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120244479A1 (en) * 2011-03-22 2012-09-27 General Electric Company Combustion System Using Recycled Flue Gas to Boost Overfire Air
JP5789146B2 (ja) * 2011-07-13 2015-10-07 株式会社神戸製鋼所 微粉炭焚きボイラ設備の運転方法および微粉炭焚きボイラ設備
JP5812740B2 (ja) * 2011-07-25 2015-11-17 三菱日立パワーシステムズ株式会社 酸素燃焼システム及びその運転方法
JP6019565B2 (ja) * 2011-11-16 2016-11-02 株式会社Ihi 酸素燃焼ボイラの微粉燃料供給方法及び酸素燃焼ボイラシステム
CN102425805B (zh) * 2011-11-22 2013-09-18 孙德义 锅炉房换气及新风加热系统
CN102563687B (zh) * 2012-03-07 2014-05-14 上海锅炉厂有限公司 富氧燃烧系统
CN102588997B (zh) * 2012-03-07 2014-07-09 上海锅炉厂有限公司 富氧燃烧系统
JP6011073B2 (ja) 2012-07-02 2016-10-19 株式会社Ihi バーナ
JP5979668B2 (ja) * 2012-09-28 2016-08-24 三菱日立パワーシステムズ株式会社 固体燃料バーナを備えた燃焼装置とその運転方法
CN103615713B (zh) * 2013-11-28 2015-11-11 华中科技大学 一种煤粉富氧无焰燃烧方法及其系统
CN103672886A (zh) * 2014-01-06 2014-03-26 南京凯盛国际工程有限公司 一种水泥窑炉局部富氧燃烧器
CN103968415B (zh) * 2014-05-14 2016-04-13 华中科技大学 烟气再循环煤粉锅炉燃烧系统及其工况切换方法
US10281140B2 (en) * 2014-07-15 2019-05-07 Chevron U.S.A. Inc. Low NOx combustion method and apparatus
CN105509033B (zh) * 2016-02-02 2018-06-29 王立臣 煤粉锅炉多氧燃烧烟气再循环系统
CN105674322A (zh) * 2016-04-11 2016-06-15 中国神华能源股份有限公司 富氧燃烧锅炉的氧气注入装置及富氧燃烧锅炉
CN106287666B (zh) * 2016-08-31 2018-11-23 苏州迪森能源技术有限公司 一种空气与回流烟气配比可调型生物质锅炉系统
JP2018059659A (ja) * 2016-10-04 2018-04-12 三菱日立パワーシステムズ株式会社 固体燃料バーナ
CN109724070B (zh) * 2019-02-21 2020-09-22 华中科技大学 一种增压富氧燃煤系统和方法
CN111550770B (zh) * 2020-04-21 2022-04-12 中国神华能源股份有限公司国华电力分公司 一种富氧燃烧锅炉系统及其运行方法
CN111750341B (zh) * 2020-07-08 2023-03-14 湖南大学 一种富氧燃烧系统及其控制方法
CN113738325B (zh) * 2021-07-30 2022-05-20 西安交通大学 一种富油煤原位热解与碳捕集耦合的系统
CN113847621B (zh) * 2021-10-22 2024-02-27 西安热工研究院有限公司 一种锅炉冷态启动系统及方法
FI20225751A1 (fi) * 2022-08-25 2024-02-26 Aliceco Energy Ab Oy Järjestelmä ja menetelmä polttolaitoksen päivittämiseksi happipolttoa varten

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3068888B2 (ja) 1991-05-28 2000-07-24 株式会社日立製作所 燃焼装置及びその運転方法
JP3053914B2 (ja) * 1991-07-16 2000-06-19 バブコック日立株式会社 Co2回収型ボイラ
JPH0694212A (ja) 1992-09-10 1994-04-05 Mitsubishi Heavy Ind Ltd 化石燃料燃焼ボイラ
JPH06101809A (ja) 1992-09-21 1994-04-12 Ishikawajima Harima Heavy Ind Co Ltd ボイラ設備
JP3338555B2 (ja) * 1994-05-24 2002-10-28 電源開発株式会社 二酸化炭素回収型排ガス再循環ボイラ設備の燃焼バーナ
EP1306614B1 (en) * 2000-08-04 2015-10-07 Mitsubishi Hitachi Power Systems, Ltd. Solid fuel burner
JP3702167B2 (ja) * 2000-11-06 2005-10-05 三菱重工業株式会社 ガス化炉用バーナ及びこれを用いたガス化剤供給方法
JP4150968B2 (ja) * 2003-11-10 2008-09-17 株式会社日立製作所 固体燃料バーナと固体燃料バーナの燃焼方法
JP4731293B2 (ja) 2005-11-28 2011-07-20 電源開発株式会社 酸素燃焼ボイラの燃焼制御方法及び装置
US9651253B2 (en) * 2007-05-15 2017-05-16 Doosan Power Systems Americas, Llc Combustion apparatus
US7708804B2 (en) * 2007-07-11 2010-05-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of a gaseous mixture
CN102016418B (zh) * 2008-03-06 2013-02-06 株式会社Ihi 氧燃烧锅炉的氧供给控制方法及装置
JP4644725B2 (ja) * 2008-05-07 2011-03-02 株式会社日立製作所 酸素燃焼ボイラシステム,微粉炭燃焼ボイラの改造方法,酸素燃焼ボイラシステムの制御装置及びその制御方法

Also Published As

Publication number Publication date
US20110073020A1 (en) 2011-03-31
EP2309185A3 (en) 2014-04-16
US8578868B2 (en) 2013-11-12
JP2011075175A (ja) 2011-04-14
EP2309185A2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4896194B2 (ja) 酸素燃焼ボイラプラント
JP4896195B2 (ja) 酸素燃焼ボイラプラント及び酸素燃焼ボイラプラントの運転方法
US9752773B2 (en) Apparatus and method of controlling the thermal performance of an oxygen-fired boiler
CA2733109C (en) Combustion system with precombustor for recycled flue gas
JP5068183B2 (ja) 燃焼方法およびシステム
JP5406460B2 (ja) 保炎マージンの範囲内で作動させるのを可能にするための方法及びシステム
JP5736583B2 (ja) バーナ装置
WO2012042910A1 (ja) 燃焼システム及びその運転方法
JP3890497B2 (ja) 固体燃料バーナと固体燃料バーナの燃焼方法
CN105737203A (zh) 一种旋流器及采用其的预混燃烧器
KR101511472B1 (ko) 산소-고체 연료 버너
KR20070105380A (ko) 연소 방법 및 시스템
JP2014001908A (ja) 固体燃料バーナ及び固体燃料バーナを備えた酸素燃焼装置
CA3162215A1 (en) Combustion system comprising an annular shroud burner
US7185595B2 (en) Method for largely unsupported combustion of petroleum coke
JP2010270990A (ja) 燃料バーナ及び旋回燃焼ボイラ
US20240019118A1 (en) Burner, System, and Method for Hydrogen-Enhanced Pulverized Coal Ignition
JP2012021652A (ja) 石炭焚きボイラの燃焼炉及び石炭焚きボイラの燃焼炉の運転方法
JP2003156203A (ja) 固体燃料バーナと固体燃料バーナの燃焼方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R151 Written notification of patent or utility model registration

Ref document number: 4896194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250