WO2000079620A1 - Batterie rechargeable a electrolyte non aqueux - Google Patents

Batterie rechargeable a electrolyte non aqueux Download PDF

Info

Publication number
WO2000079620A1
WO2000079620A1 PCT/JP2000/004040 JP0004040W WO0079620A1 WO 2000079620 A1 WO2000079620 A1 WO 2000079620A1 JP 0004040 W JP0004040 W JP 0004040W WO 0079620 A1 WO0079620 A1 WO 0079620A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium
weight
battery
manganese
Prior art date
Application number
PCT/JP2000/004040
Other languages
English (en)
French (fr)
Inventor
Takuya Nakashima
Shinji Arimoto
Masatoshi Nagayama
Yoshiaki Nitta
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US09/936,611 priority Critical patent/US7122278B1/en
Priority to DE60043388T priority patent/DE60043388D1/de
Priority to EP00940774A priority patent/EP1202361B1/en
Publication of WO2000079620A1 publication Critical patent/WO2000079620A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery using a lithium manganese composite oxide as a positive electrode material, and particularly to an improvement in a negative electrode thereof.
  • non-aqueous electrolyte secondary batteries used as main power sources for mobile communication devices and portable electronic devices have the features of high electromotive force and high energy density.
  • the positive electrode material used for this non-aqueous electrolyte secondary battery is lithium cobalt oxide
  • lithium manganese composite oxides have the advantage of low pollution and low cost compared to other oxides, and research and development has been active from this viewpoint.
  • non-aqueous electrolyte secondary batteries are particularly needed as power sources for portable mobile terminals, various usage environments are expected. Therefore, environmental testing is an essential element in battery development. For example, it is necessary to conduct tests assuming use in a high-temperature and high-humidity atmosphere or in a low-temperature environment.
  • a non-aqueous electrolyte secondary battery is used or stored in a high-temperature environment such as in a car in summer, battery performance such as battery capacity and cycle characteristics may be impaired.
  • non-aqueous electrolyte secondary batteries stored in such a high-temperature environment degrade battery performance, because non-aqueous electrolyte secondary batteries using lithium manganese composite oxide as the cathode material It is becoming a more serious problem.
  • This is directly attributable to the elution of manganese ions from the lithium manganese composite oxide, which is the positive electrode active material, when stored in a high-temperature environment. From this viewpoint, materials that can suppress the elution of manganese ions from the positive electrode material have been studied. For example, in Japanese Patent Application Laid-Open No.
  • the present invention solves such a conventional problem, and a non-aqueous electrolyte secondary battery capable of maintaining a high battery capacity even when used or stored in a high-temperature environment such as an automobile in summer. It is intended to submit batteries.
  • the nonaqueous electrolyte secondary battery of the present invention uses a lithium manganese composite oxide for a positive electrode, uses a material capable of occluding and releasing lithium for a negative electrode, and further uses sodium, potassium, It contains at least one of calcium and strontium.
  • FIG. 1 is a longitudinal sectional view of a cylindrical battery according to an example of the present invention and a comparative example.
  • the present invention relates to a non-aqueous electrolyte secondary battery comprising a lithium manganese composite oxide as a positive electrode material and a material capable of inserting and extracting lithium as a negative electrode material, wherein the negative electrode comprises sodium, potassium, calcium, and strontium. It contains at least one of the selected elements.
  • manganese oxide having a trivalent oxidation state dissolves in the presence of an acid or the like by causing a disproportionation reaction as shown in Formula 1.
  • This manganese dissolution phenomenon also occurs in non-aqueous electrolytes, and in the case of non-aqueous electrolyte secondary batteries, manganese in the positive electrode material reacts with the non-aqueous electrolyte to partially dissolve manganese. Further, in a high temperature environment, the disproportionation reaction that causes this dissolution is accelerated.
  • the dissolved manganese dissolves in the electrolyte as Mn (divalent) of Formula 1, and this manganese ion having a positive charge moves to the negative electrode material side, which is a lower potential, and then the negative electrode Generates manganese compounds on the material.
  • the manganese compound generated on the negative electrode material inhibits the movement of lithium ion, which is the original charge transfer material in the nonaqueous electrolyte secondary battery. Furthermore, the generated manganese compound is close to the insulator, which causes the impedance of the battery to rise. As described above, it is considered that the nonaqueous electrolyte secondary battery in a high-temperature environment causes a loss of battery capacity after storage.
  • manganese ions should not be eluted from the positive electrode material, or even if manganese ions elute, It is indispensable to prevent the formation of highly insulating manganese compounds that deteriorate battery characteristics.
  • the negative electrode contains any of sodium, potassium, calcium, and strontium.
  • a manganese compound different from the above-mentioned highly insulating manganese compound that is, another manganese compound having low insulation properties, is formed on the negative electrode, so that the impedance rise of the battery is small and the capacity loss is small. It is thought to be less.
  • the content of the element of the group consisting of sodium, potassium, calcium and stonium contained in the negative electrode of the present invention is 0.01% by weight based on the whole negative electrode mixture composed of the negative electrode material, the binder, the additives and the like. % Or more and preferably 10% by weight or more. If the content is too small, a sufficient effect of improving the battery performance cannot be obtained, and if the content is too large, the amount of the negative electrode material with respect to the entire negative electrode decreases, and a practical battery capacity cannot be obtained. A more preferred content is 0.01% by weight or more and 5% by weight or less.
  • N a HC 2 N a HC 2
  • KOH potassium
  • K 2 0, ⁇ 2 ⁇ 2, ⁇ 0 2, ⁇ 3, ⁇ 2, ⁇ 2 C 2
  • a compound such as kappa HC 2.
  • calcium for example, C a (OH) 2, C a 0, C a O, C a CO Q, C a 3 N 2, C a NH,
  • Examples of a method for including sodium, potassium, calcium, strontium, and the like in the negative electrode include a method in which the above compound is added to the negative electrode material, a binder, and the like and included in the negative electrode mixture layer, or In the production process, the above compound is mixed and calcined to be included in the crystal of the negative electrode material.
  • lithium manganese composite acid examples include:
  • L i Mn 2 0 4 L i Mn0 2 ( orthorhombic, hexagonal), L i 2 Mn 4 O 9, L i 4 Mn 5 0 1 2, L i 2 two MnO, L i Mn one O 6 and so on.
  • L i Mn 2 0 4 (cubic), causative of manganese (bivalent) of L i Mn0 2 the loss of capacitance of orthorhombic elution of the ion is relatively small preferable.
  • Li Mn 2 ⁇ 4 (cubic) has a specific surface area of 2.0 m 2 Zg or less, an average particle size of 3 jum or more and 30 ⁇ or less, and a lattice constant a of 8.25 A or less.
  • the orthorhombic Li Mn ⁇ 2 has a specific surface area of 5.Om 2 Zg or less, an average particle diameter of 3 / xm or more and 30 ⁇ or less, and lattice constants a, b, and c of 2. It is preferably 75 A or more, 5.7 OA or more, and 4.55 A or more. This is because manganese (divalent) ions are less eluted when those having these physical properties are used.
  • the positive electrode and the negative electrode used in the present invention are formed by coating a mixture layer containing a conductive agent, a binder, and the like on the surface of the current collector with a positive electrode material or a negative electrode material capable of electrochemically and reversibly inserting and releasing lithium ions. It was made by wearing.
  • the above-mentioned lithium manganese composite oxide can be used.
  • the conductive agent for the positive electrode used in the present invention may be any electronic conductive material that does not cause a chemical change at the charge / discharge potential of the positive electrode material used.
  • graphites such as natural graphite (scale graphite), artificial graphite, etc., carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, carbon fibers, metal fibers, etc.
  • Conductive fibers, metal powders such as carbon fluoride and aluminum, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and organic conductive materials such as polyfuunylene derivatives. May be included alone or as a mixture thereof.
  • the conductive agent is not particularly limited, but is preferably 1 to 50% by weight relative to the positive electrode material, particularly preferably from 1 to 30 weight 0/0.
  • the binder for the positive electrode used in the present invention may be any of a thermoplastic resin and a thermosetting resin.
  • Preferred binders in the present invention include, for example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), and polyvinylidene fluoride.
  • PVDF Vinylidene fluoride-hexafluoroethylene copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perful Fluoroalkyl vinyl ether copolymer
  • EFE vinylidene fluoride-hexafluoropropylene copolymer
  • EFE-chloro-trifluoroethylene copolymer vinylidene fluoride-chloro-trifluoroethylene copolymer
  • EFE Resin ethylene-tetrafluoroethylene copolymer
  • PCTFE polychlorinated trifluoroethylene
  • ECTFE vinylidene fluoride-pentafluoropropylene copolymer
  • ECTFE fluorine Vinylidene fluoride-hexafluoropropylene-tetrafluoropropylene-tetrafluoroethylene copolymer
  • the current collector for the positive electrode used in the present invention may be any electronic conductor that does not cause a chemical change in the charge / discharge potential of the positive electrode material used.
  • the positive electrode material used for example, besides stainless steel, anoremium, titanium, carbon, conductive resin and the like, aluminum stainless steel whose surface is treated with carbon or titanium is used. Particularly, aluminum or an aluminum alloy is preferable. The surface of these materials can be oxidized and used. It is also desirable to make the current collector surface uneven by surface treatment.
  • the shape is, in addition to oil, film, sheet, net, ⁇ ,. The punched, lath, porous, foam, fiber, and non-woven fabrics are used.
  • the thickness is not particularly limited, but a thickness of 1 to 500 / xm is used.
  • Examples of the negative electrode material used in the present invention include lithium metal, lithium alloy, alloy, intermetallic compound, carbon, organic compound, inorganic compound, metal complex, and organic polymer compound. Any compound can be used as long as it can occlude and release lithium ions. These may be used alone or in combination.
  • alloys and intermetallic compounds include compounds of silicon, zinc, aluminum or tin and transition metals.
  • Carbonaceous materials include coke, pyrolytic carbons, natural graphite, artificial graphite, mesocabon microbeads, graphitized mesophase spherules, vapor-grown carbon, glassy carbons, and carbon fibers (polyacrylonitrile, pitch System, cellulosic system, vapor-grown carbon system), amorphous carbon, and calcined carbon of an organic substance. These may be used alone or in combination. Of these, graphite materials such as graphitized mesophase spheroids, natural graphite and artificial graphite are preferred.
  • Inorganic compounds include, for example, tin compounds, silicon compounds, and inorganic oxides include, for example, titanium oxides, tungsten oxides, molybdenum oxides, niobium oxides, vanadium oxides, iron oxides, and the like. Is raised.
  • Examples of the inorganic chalcogenides include, for example, iron sulfide, molybdenum sulfide, and titanium sulfide.
  • Polymer compounds such as polythiophene and polyacetylene are used as organic polymer compounds, and cobalt nitrides, copper nitrides, nickel nitrides, iron nitrides, manganese nitrides, etc. are used as nitrides. be able to.
  • the conductive agent for a negative electrode used in the present invention may be any material as long as it is an electron conductive material.
  • Conductive fibers such as fibers and metal fibers, metal powders such as copper and nickel, and organic conductive materials such as polyfudylene derivatives can be included alone or as a mixture thereof.
  • artificial graphite, acetylene black and carbon fiber are particularly preferred.
  • the addition amount of the conductive agent is not particularly limited, but is preferably 1 to 50% by weight, and particularly preferably 1 to 30% by weight based on the negative electrode material.
  • the negative electrode material of the present invention Since has its own electronic conductivity, it can function as a battery without adding a conductive agent.
  • the binder for the negative electrode used in the present invention may be any of a thermoplastic resin and a thermosetting resin.
  • Preferred binders in the present invention include, for example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, Tetraphenolic ethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkylvinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer Copolymer, vinylidene fluoride-chloro mouth trifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin), polychloro mouth trifluoroethylene (PCTFE), vinylidene fluoride-
  • more preferred materials are styrene butadiene rubber, polyvinylidene fluoride, ethylene-acrylic acid copolymer or (Na +) ion crosslinked product of the above material, ethylene-methacrylic acid copolymer or the above material.
  • the current collector for the negative electrode used in the present invention may be any electronic conductor that does not cause a chemical change in the configured battery.
  • Carbon, nickel or titanium treated, etc. are used.
  • copper or a copper alloy is preferable.
  • the surface of these materials may be used after being oxidized, and the surface of the current collector may be made uneven by surface treatment.
  • the shape used is not only oil, but also films, sheets, nets, punched ones, laths, porous bodies, foams, and moldings of fiber groups.
  • the thickness is not particularly limited, but a thickness of l to 500 / zm is used.
  • fillers In addition to conductive agents and binders, fillers, dispersants, ion conductors, pressure boosters, and various other additives can be used in the positive or negative electrode mixture.
  • the filler can be any fibrous material that does not cause a chemical change in the constructed battery. Usually, a olefin polymer such as polypropylene or polyethylene, or a fiber such as glass or carbon is used.
  • the amount of the filler added is not particularly limited, but is preferably 0 to 30% by weight based on the electrode mixture.
  • the negative electrode mixture surface is present at least on the surface facing the positive electrode mixture surface.
  • the non-aqueous electrolyte used in the present invention is composed of a solvent and a lithium salt dissolved in the solvent.
  • the non-aqueous solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), and getyl carbonate (DEC ), Chain carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC), resin carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate and ethyl propionate, ⁇ -butyrolataton Chain ethers such as ⁇ -latatatones, 1,2-dimethoxetane (DME), 1,2-diethoxyxetane (DEE), ethoxymethoxetane (EME), etc .; , Dimethyl sulfoxide, 1,3-dioxo
  • a mixed system of a cyclic carbonate and a chain carbonate or a mixed system of a cyclic carbonate, a chain carbonate and an aliphatic carboxylic acid ester is preferable.
  • the lithium salt dissolved in those solvents for example, L i C 10 4,
  • Particularly preferred non-aqueous electrolyte in the present invention comprises at least ethylene carbonate and Echirume chill carbonate, Ru electrolyte der containing L i PF 6 as a supporting salt.
  • the amount of these electrolytes to be added to the battery is not particularly limited, but a required amount can be used depending on the amounts of the positive electrode material and the negative electrode material and the size of the battery.
  • the amount of the supporting electrolyte dissolved in the nonaqueous solvent is not particularly limited, but is preferably 0.2 to 2 mol Z liter. In particular, it is more preferable to use 0.5 to 1.5 molnoliters.
  • Solid electrolytes are classified into inorganic solid electrolytes and organic solid electrolytes.
  • Well-known inorganic solid electrolytes include Li nitrides, halides, and oxyacid salts. Among them, L i 4 S i 0 4 , L i 4 S i O 4 - L i I - L i OH, x L i 3 PO 4 - (1 - x) L i 4 S i 0 4, L i 2 S i S 3, L i 3 P0 4 - L i 2 S- S i S 2, ⁇ I ⁇ phosphorus compounds are effective.
  • Organic solid electrolytes include, for example, polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, polyhexafluoropropylene, and derivatives, mixtures, and composites thereof.
  • Polymer material such as body It is effective.
  • Compounds such as C a C O 3 and C a F 2 can be used.
  • the addition amount is 0.0.
  • triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, pyridine, hexanoic acid triamide, nitrobenzene derivatives, crown ethereals, quaternary ammonium salts, ethylene glycol dialkyl ether, etc. Can be given.
  • an insulating microporous thin film having a high ion permeability, a predetermined mechanical strength, and an insulating property is used. Further, it is preferable to have a function of closing the holes at a certain temperature or higher and increasing the resistance. Sheets made of solely or in combination of olefin polymers such as polypropylene and polyethylene, or glass fibers, etc. are used because of their resistance to organic solvents and hydrophobicity.
  • the pore size of the separator is desirably in a range that does not allow the positive and negative electrode materials, binders, and conductive agents detached from the electrode sheet to pass through, for example, 0.01 to 1 ⁇ .
  • the thickness of the separator is generally 10 to 300 xm. Further, the porosity is determined according to the permeability of electrons and ions and the material / monthly pressure, but it is generally desirable to be 30 to 80%.
  • a polymer material that absorbs and retains an organic electrolyte composed of a solvent and a lithium salt dissolved in the solvent is contained in the positive electrode mixture and the negative electrode mixture, and a polymer that absorbs and retains the organic electrolyte is further included. It is also possible to construct a battery in which a porous separator composed of a positive electrode and a negative electrode is integrated. Any polymer material can be used as long as it can absorb and hold an organic electrolyte solution, and in particular, vinylidene fluoride and hexafluoro. Copolymers of mouth propylene are preferred.
  • the shape of the battery can be applied to any of coin type, button type, sheet type, stacked type, cylindrical type, flat type, square type, large type used for electric vehicles, etc.
  • nonaqueous electrolyte secondary battery of the present invention can be used for portable information terminals, portable electronic devices, home small power storage devices, motorcycles, electric vehicles, hybrid electric vehicles, etc., but is not limited to these. It is not done.
  • FIG. 1 shows a longitudinal section of the cylindrical battery used in this example.
  • reference numeral 1 denotes a battery case made of a stainless steel sheet having resistance to organic electrolyte
  • 2 denotes a sealing plate provided with a safety valve
  • 3 denotes an insulating packing.
  • Reference numeral 4 denotes an electrode plate group, and the positive electrode 5 and the negative electrode plate 6 are spirally wound through the separator 7 a plurality of times and housed in the battery case 1.
  • the positive electrode lead 5 a is drawn out of the positive electrode plate 5 and connected to the sealing plate 2
  • the negative electrode lead 6 a is drawn out of the negative electrode plate 6 and connected to the bottom of the battery case 1.
  • Reference numeral 8 denotes an insulating ring provided on the upper and lower parts of the electrode plate group 4, respectively.
  • the negative electrode plate 6 is made of 94% by weight of artificial graphite manufactured by Kanza and a 6% by weight of polyvinylidene fluoride resin as a binder, sodium hydroxide (NaOH) as an additive, and a negative electrode mixture.
  • the mixture was mixed so that the Na content was 5% by weight based on the whole, and these were dispersed in dehydrated N-methylpyrrolidinone to prepare a slurry, which was coated on a negative electrode current collector made of copper foil, and dried. , Made by court. At this time, the Na content in the dried negative electrode mixture was 5% by weight.
  • 0% Lithium manganate powder 90% by weight was mixed with 5% by weight of conductive carbon powder and 5% by weight of polyvinylidene fluoride resin as a binder, and dispersed in dehydrated N-methylpyrrolidinone. To prepare a slurry, applied on a negative electrode current collector made of aluminum foil, dried and pressed.
  • non-aqueous electrolyte a volume ratio of ethylene carbonate and E chill methyl carbonate 1: a mixed solvent of 1, was used a solution obtained by dissolving L i PF 6 1. to a concentration of 5 mol Bruno liter.
  • the positive electrode plate 5 and the negative electrode plate 6 were spirally wound through a separator 7 and housed in a battery case 1 having a diameter of 18 mm and a height of 65 mm. Then, after the electrolyte solution was injected into the electrode group 4, the battery was sealed, and a cylindrical battery was produced.
  • a cylindrical battery was produced in the same manner as in Example 1, except that the Na content in the dried negative electrode mixture was 10% by weight.
  • a cylindrical battery was produced in the same manner as in Example 1, except that the Na content in the dried negative electrode mixture was 0.01% by weight.
  • a cylindrical battery was fabricated in the same manner as in Example 1, except that the additive for the negative electrode was sodium carbonate (Na 2 C 3 ).
  • a cylindrical battery was fabricated in the same manner as in Example 1, except that the additive for the negative electrode was sodium amide (NaNH 2 ).
  • a cylindrical battery was fabricated in the same manner as in Example 1, except that the additive for the negative electrode was sodium hydroxide (KOH) and the K content in the dried negative electrode mixture was 5% by weight.
  • KOH sodium hydroxide
  • a cylindrical battery was produced in the same manner as in Example 7, except that the K content in the dried negative electrode mixture was 10% by weight.
  • Example 2 was the same as Example 1 except that the K content in the dried negative electrode mixture was 0.01% by weight. Similarly, a cylindrical battery was produced.
  • a cylindrical battery was produced in the same manner as in Example 1, except that the additive for the negative electrode was calcium hydroxide (Ca (OH)) and the Ca content in the dried negative electrode mixture was 5% by weight.
  • the additive for the negative electrode was calcium hydroxide (Ca (OH)) and the Ca content in the dried negative electrode mixture was 5% by weight.
  • a cylindrical battery was produced in the same manner as in Example 10, except that the Ca content in the dried negative electrode mixture was 10% by weight.
  • a cylindrical battery was produced in the same manner as in Example 10, except that the Ca content in the dried negative electrode mixture was 0.01% by weight.
  • a cylindrical battery was prepared in the same manner as in Example 1, except that the additive for the negative electrode was strontium hydroxide [Sr (OH) 2 ] and the Sr content in the dried negative electrode mixture was 5% by weight. Produced.
  • a cylindrical battery was produced in the same manner as in Example 13 except that the Sr content in the dried negative electrode mixture was 10% by weight.
  • a cylindrical battery was produced in the same manner as in Example 13 except that the Sr content in the dried negative electrode mixture was 0.01% by weight.
  • a cylindrical battery was produced in the same manner as in Example 1 except that was used.
  • a cylindrical battery was produced in the same manner as in Example 1 except that was used.
  • Lithium manganate having a specific surface area of 1.05 m 2 Zg, an average particle size of 1.2 zm, and a lattice constant of a 8.20 A belonging to the cubic system (space group F d 3m)
  • a cylindrical battery was produced in the same manner as in Example 1 except that powder was used.
  • Lithium manganate powder with a specific surface area of 1.08 m 2 Zg, an average particle size of 30.5 m and a lattice constant of a 8.20 A belonging to the cubic system (space group F d 3m)
  • a cylindrical battery was produced in the same manner as in Example 1 except that was used.
  • a cylindrical battery was produced in the same manner as in Example 1 except that the battery was used.
  • a cylindrical battery was produced in the same manner as in Example 1, except that the additive sodium hydroxide (NaOH) was not mixed in the negative electrode plate 6.
  • NaOH sodium hydroxide
  • Example 1 NaOH Na, 5% by weight 87%
  • Example 3 NaOH Na, 0.01% by weight 76%
  • Example 5 NaNH 2 Na, 5% by weight 85%
  • Example 9 KOH 0.01, 0.01% by weight 77%
  • Example 12 Ca (0H) 2 Ca, 0.01% by weight 75%
  • Example 3 Example 9, Example 12, and Example 15
  • Na, K, Ca, and Sr were 0.01% with respect to the dried negative electrode mixture. It can be seen that a sufficient deterioration suppressing effect cannot be obtained unless it is contained in an amount exceeding the weight%.
  • Example 1 Example 4, Example 5, and Example 6 when the Na content is the same regardless of the type of the compound when added to the negative electrode mixture, the same applies. It can be seen that the effect of suppressing the deterioration of the steel can be obtained.
  • Example 16 Example 17, Example 21, and Example 22 in Table 2
  • the specific surface area of the manganese lithium composite oxide of the positive electrode was 2%. It can be seen that when the value is larger, the deterioration suppressing effect is reduced even when Na is contained, and similarly when the positive electrode lattice constant is larger than 8.25 A, the deterioration suppressing effect is also reduced.
  • Example 1 Example 18, Example 19 and Example 20
  • the average particle diameter of the manganese-lithium composite oxide of the positive electrode is smaller than 3 m
  • the effect of suppressing deterioration is reduced, and conversely, the average particle diameter is reduced.
  • the capacity retention ratio increases as the size increases. As a result, it was difficult to produce a battery having a positive electrode with an average particle diameter of more than 30 m.
  • a non-aqueous electrolyte secondary battery particularly a non-aqueous electrolyte secondary battery using a lithium manganese composite oxide as a positive electrode active material, in a high-temperature environment. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

明 細 書 非水電解質二次電池 発明の詳細な説明
技術分野
本発明は、 リチウムマンガン複合酸化物を正極材料とする非水電解質二次電池 に関し、 特に、 その負極の改良に関するものである。
背景技術
近年、 移動体通信機器, 携帯電子機器の主電源として利用されている非水電解 質二次電池は、 起電力が高く、 高エネルギー密度である特長を有している。 この 非水電解質二次電池に用いる正極材料としては、 コバルト酸リチウム
( L i C o〇2 ) , ニッケル酸リチウム (L i N i 〇2 ) , マンガン酸リチウム ( L i M n 24等) のリチウムと 3 d軌道に電子を有する遷移金属との複合酸 化物が知られている。 特に、 リチウムマンガン複合酸化物は、 他の酸化物に比べ、 低公害性で安価であるという利点を有し、 この観点から研究開発が盛んになって きている。
この研究開発では、 電池容量や安全性を向上させる検討の他に、 以下のような 課題に対しても検討がなされている。
非水電解質二次電池は、 特に携帯用移動端末の電源としてニーズが高いため、 様々な使用環境が想定される。 したがって、 電池開発においては、 環境試験が必 要不可欠な要素となっている。 例えば、 高温多湿の雰囲気での使用や低温環境で の使用を想定した試験等が必要である。
特に、 夏期の車内といった高温環境下において、 非水電解質二次電池が使用さ れたり、 または保存されたりすると、 電池容量やサイクル特性といった電池性能 が損なわれることがある。
また、 このような高温環境下に保存された非水電解質二次電池が、 その電池性 能を劣化させることは、 リチウムマンガン複合酸化物を正極材料に用いた非水電 解質二次電池において、 さらに深刻な問題となってきている。 これは高温環境下に保存することによって、 正極活物質であるリチウムマンガ ン複合酸化物中からマンガンイオンが溶出することが直接的な原因となっている。 この観点より、 正極材料からのマンガンイオンの溶出を抑制させるような材料の 検討がなされてきた。 例えば、 特開平 9一 7 3 9 0 2号公報においては、 正極の リチウムマンガン複合酸化物中に含まれるナトリウムを 0 . 1〜0 . 8重量%に することにより、 原材料中に含まれる不純物を取り除いてマンガンイオンの溶出 を抑制する技術が開示されている。 また、 特開平 9— 8 2 3 6 0号公報において は、 正極材料であるリチウムマンガン複合酸化物の表面にリチウムイオン伝導性 固体電解質を被覆することにより、 マンガンイオンの溶出を抑制する技術が開示 されている。
これらの技術は、 電解液と正極活物質との反応性を低減させるという観点に立 つたものであり、 高温環境下において使用したり、 保存したりした場合、 電池特 性の劣化を抑えるのには効果がある。
発明の開示
しかしながら、 これら従来の技術にあっては、 正極材料としての原材料を調製 する過程やリチウムマンガン複合酸化物を合成する過程で、 洗浄や再熱処理とレヽ つた工程の追加が必要である。 このことから原材料や正極活物質の調製に対して 合成時間とコストがかかるという問題点を有していた。 さらに、 これら従来の技 術では、 電池を高温環境下に保存した場合の電池特性の劣化は抑制されるが、 マ ンガンィオンの溶出を完全に止めることはできないという問題点があつた。
本発明はこのような従来の問題点を解決するものであり、 夏期の自動車内のよ うな高温環境下で使用したり、 保存されたりした場合でも、 高い電池容量を維持 できる非水電解質二次電池を提出することを目的としている。
上記の課題を解決するために本発明の非水電解質二次電池は、 リチウムマンガ ン複合酸化物を正極に用い、 負極にリチウムを吸蔵,放出可能な材料を用い、 さ らにナトリウム, カリウム, カルシウム, ストロンチウムの少なくとも 1種を含 有させたものである。 これにより、 正極から溶出したマンガンイオンが負極上に 絶縁性の高いマンガン化合物を形成することが抑制され、 高温環境下における電 池の保存特性およびサイクル特性を改善することができる。 図面の簡単な説明
図 1は本発明の実施例ならびに比較例における円筒型電池の縦断面図である。 発明を実施するための最良の形態
本発明は、 正極材料にリチウムマンガン複合酸化物を、 負極材料にリチウムを 吸蔵 ·放出可能な材料を備えた非水電解質二次電池において、 負極に、 ナトリウ ム, カリウム, カルシウム, ストロンチウムの群から選ばれた元素の少なくとも 1種を含有させたものである。
上記のような本発明の非水電解質二次電池の高温環境下における劣化メカニズ ムの理由について、 以下に述べる。
一般に、 三価の酸化状態を含むマンガン酸化物は、 酸等の共存下では、 式 1の ような不均化反応を起こして溶解する。
2 M n (三価) →M n (四価) +M n (二価) (1 )
このマンガンの溶解現象は、 非水電解液中においても生じ、 非水電解液二次電 池の場合も、 正極材料中にあるマンガンと非水電解液が反応してマンガンの一部 が溶解し、 さらに、 高温の環境下においては、 この溶解をもたらす不均化反応は 加速される。
溶解したマンガンは、 式 1の M n (二価) として電解液中に溶解し、 プラス電 荷を有したこのマンガンイオンは、 卑な電位である負極材料側へと移動し、 その 後、 負極材料上でマンガン化合物を生成する。 この負極材料上で生成したマンガ ン化合物が、 非水電解質二次電池における本来の電荷移動体であるリチウムィォ ンの移動を阻害する。 さらに、 生成したマンガン化合物は絶縁体に近いので、 電 池のインピーダンスが上昇する原因ともなつている。 以上のようにして、 高温環 境下における非水電解質二次電池は、 保存後の電池容量の損失を惹起するものと 考えられる。
したがって、 非水電解質二次電池の高温環境下における保存後の電池特性の劣 化を低減させるには、 正極材料からマンガンイオンを溶出させないこと、 あるい は、 マンガンイオンが溶出したとしても負極上に電池特性を劣化させる絶縁性の 高いマンガン化合物が生成しないようにすることが必要不可欠となる。
し力 し、 正極からのマンガンイオンの溶出を完全に止めることは難しいので、 負極上で絶縁性の高いマンガン化合物が生成しないような状態にすることが必要 となる。
そこで、 本発明では負極中にナトリウム, カリウム, カルシウム, ストロンチ ゥムのいずれかの元素を含有させることとした。 これらの元素を含有させると絶 縁性の高い上記マンガン化合物とは異なるマンガン化合物、 すなわち、 絶縁性の 低い別のマンガン化合物が負極上に生成するため、 電池のインピーダンスの上昇 は少なく、 容量損失は少なくなると考えられる。
本発明の負極において含有させるナトリウム, カリウム, カルシウム, スト口 ンチウムの群からなる元素の含有量は、 負極材料, 結着剤, 添加剤等からなる負 極合剤全体に対して 0. 01重量%以上 10重量%であることが好ましい。 含有 量が少量すぎると電池性能の改善の十分な効果が得られず、 含有量が多量すぎる と負極全体に対する負極材料の量が減り実用的な電池容量が得られないからであ る。 さらに好ましい含有量は 0. 01重量%以上 5重量%以下である。
ナトリゥムの場合は、 例えば、 N a OH, N a 20, N a 202, N a O 2, N a 2 CO 3, N a HC03, Na 2S i〇3, N a NH2, N a N3,
N a 2 C 2, N a HC 2のような化合物を用いることができる。 カリウムの場合 は、 例えば KOH, K20, Κ 2 Ο 2, Κ02, ΚΝ 3, ΚΝΗ 2, Κ 2 C 2, Κ HC 2のような化合物を用いることができる。 カルシウムの場合は、 例えば、 C a (OH) 2, C a 0, C a O , C a CO Q, C a 3N 2, C a NH,
C a C2のような化合物を用いることができる。 さらに、 ス トロンチウムの場合 は、 例えば、 S r (OH) S r O, S r 02, S r C O 3のような化合物を 用いることができる。
負極中にナトリウム, カリウム, カルシウム, ストロンチウム等を含ませる方 法としては、 上記化合物を負極材料, 結着剤等に添カ卩して負極合剤層中に含ませ る方法、 または、 負極材料の製造工程で上記化合物を混合し焼成することにより、 負極材料の結晶中に含ませる方法等があげられる。
本発明で用いられるリチウムマンガン複合酸ィヒ物としては、 例えば、
L i Mn 204, L i Mn02 (斜方晶系, 六方晶系) , L i 2Mn4O9, L i 4Mn 501 2, L i 2MnOつ, L i Mnつ O 6等があげられる。 特に L i Mn 204 (立方晶系) , 斜方晶系の L i Mn02が電気容量の損失の原因 となるマンガン (二価) イオンの溶出が比較的少なく好ましい。
さらに、 L i Mn 24 (立方晶系) は、 比表面積が 2. 0m2Zg以下、 平 均粒径が 3 jum以上 30 μπα以下、 および格子定数 aが 8. 25 A以下であるこ とが好ましく、 斜方晶系の L i Mn〇2は、 比表面積が 5. Om2Zg以下、 平 均粒径が 3 /xm以上 30 μιη以下、 および格子定数 a, b, cがそれぞれ 2. 7 5 A以上, 5. 7 OA以上, 4. 55 A以上であるのが好ましい。 これらの物性 値を有するものを用いると、 マンガン (二価) イオンの溶出がさらに少ないから である。
本発明に用いられる正極および負極は、 リチウムイオンを電気化学的かつ可逆 的に挿入 ·放出できる正極材料や負極材料に導電剤, 結着剤等を含む合剤層を集 電体の表面に塗着して作製されたものである。
本発明に用いられる正極材料には、 上記リチウムマンガン複合酸化物を用いる ことができる。
本発明で使用される正極用導電剤は、 用いる正極材料の充放電電位において、 化学変化を起こさない電子伝導性材料であれば何でもよい。 例えば、 天然黒鉛 (鱗片黒鉛等) , 人造黒鉛等のグラフアイ ト類、 アセチレンブラック, ケッチェ ンブラック, チャンネルブラック, ファーネスブラック, ランプブラック, サー マルブラック等のカーボンブラック類、 炭素繊維, 金属繊維等の導電性繊維類、 フッ化カーボン, アルミニウム等の金属粉末類、 酸化亜鉛, チタン酸カリウム等 の導電性ウイスカ一類、 酸化チタン等の導電性金属酸化物あるいはポリフユニレ ン誘導体等の有機導電性材料等を単独またはこれらの混合物として含ませること ができる。 これらの導電剤のなかで、 人造黒鉛, アセチレンブラックが特に好ま しい。 導電剤の添カ卩量は、 特に限定されないが、 正極材料に対して 1〜50重量 %が好ましく、 特に 1〜30重量0 /0が好ましい。 カーボンやグラフアイトでは、 2〜1 5重量%が特に好ましい。
本発明に用いられる正極用結着剤としては、 熱可塑性樹脂, 熱硬化性樹脂のい ずれであってもよい。 本発明において好ましい結着剤は、 例えば、 ポリエチレン, ポリプロピレン, ポリテトラフルォロエチレン (PTFE) , ポリフッ化ビニリ デン (PVDF) , スチレンブタジエンゴム, テトラフルォロエチレン一へキサ フルォロエチレン共重合体, テトラフルォロエチレン一へキサフルォロプロピレ ン共重合体 (FEP) , テトラフルォロエチレン一パーフルォロアルキルビニル エーテル共重合体 (PFA) , フッ化ビニリデン一へキサフルォロプロピレン共 重合体, フッ化ビニリデンークロ口 トリフルォロエチレン共重合体, エチレン— テトラフルォロエチレン共重合体 (ETFE樹脂) , ポリクロ口 トリフルォロェ チレン (PCTFE) , フッ化ビニリデン一ペンタフルォロプロピレン共重合体, プロピレンーテトラフルォロエチレン共重合体, エチレン一クロ口 トリフノレオ口 エチレン共重合体 (ECTFE) , フッ化ビニリデン—へキサフルォロプロピレ ンーテトラフルォロエチレン共重合体, フッ化ビニリデン一パーフルォロメチル ビュルエーテル—テトラフルォロエチレン共重合体, エチレンーァクリル酸共重 合体または前記材料の (Na +) イオン架橋体, エチレンーメタクリル酸共重合 体または前記材料の (Na +) イオン架橋体, エチレン一アクリル酸メチル共重 合体または前記材料の (Na ^ イオン架橋体, エチレンーメタクリル酸メチル 共重合体または前記材料の (Na+) イオン架橋体をあげることができ、 これら の材料を単独または混合物として用いることができる。 またこれらの材料のなか でより好ましい材料はポリフッ化ビニリデン (PVDF) , ポリテトラフルォロ エチレン (PTFE) である。
本発明に用いられる正極用集電体としては、 用いる正極材料の充放電電位にお いて化学変化を起こさない電子伝導体であれば何でもよい。 例えば、 材料として ステンレス鋼, ァノレミニゥム, チタン, 炭素, 導電性樹脂等の他に、 アルミニゥ ムゃステンレス鋼の表面にカーボンあるいはチタンを処理させたものが用いられ る。 特に、 アルミニウムあるいはアルミニウム合金が好ましい。 これらの材料の 表面を酸化して用いることもできる。 また、 表面処理により集電体表面に凸凹を 付けることが望ましい。 形状は、 フオイルの他、 フィルム, シート, ネット, ノ、。 ンチされたもの, ラス体, 多孔質体, 発泡体, 繊維群, 不織布体の成形体等が用 いられる。 厚みは、 特に限定されないが、 1〜500 /xmのものが用いられる。 本発明に用いられる負極材料としては、 リチウム金属, リチウム合金, 合金, 金属間化合物, 炭素, 有機化合物, 無機化合物, 金属錯体, 有機高分子化合物等 のリチウムイオンを吸蔵 ·放出できる化合物であればよい。 これらは単独でも、 また組み合わせて用いてもよい。
リチウム合金としては、 L i— M (M = A 1 , G a , C d, I n , P b, B i , M g ) , L i - A 1 -M (M = M n , M g, S n , I n , C d, T e ) 等があげ られる。
合金, 金属間化合物としては珪素, 亜鉛, アルミニウムもしくはスズと遷移金 属の化合物等があげられる。
炭素質材料としては、 コークス, 熱分解炭素類, 天然黒鉛, 人造黒鉛, メソカ —ボンマイクロビーズ, 黒鉛化メソフェーズ小球体, 気相成長炭素, ガラス状炭 素類, 炭素繊維 (ポリアクリロニトリル系, ピッチ系, セルロース系, 気相成長 炭素系) , 不定形炭素, 有機物の焼成された炭素等があげられ、 これらは単独で も、 組み合わせて用いてもよい。 なかでもメソフェーズ小球体を黒鉛化したもの, 天然黒鉛, 人造黒鉛等の黒鉛材料が好ましい。
無機化合物としては例えば、 スズ化合物, 珪素化合物, 無機酸化物としては、 例えば、 チタン酸化物類, タングステン酸化物類, モリブデン酸化物類, ニオブ 酸化物類, バナジウム酸化物類, 鉄酸化物類等があげられる。 また、 無機カルコ ゲナイ ドとしては、 例えば、 硫化鉄, 硫化モリブデン, 硫化チタン等があげられ る。 有機高分子化合物としては、 ポリチォフェン, ポリアセチレン等の高分子化 合物、 窒化物としては、 コバルト窒化物類, 銅窒化物類, ニッケル窒化物類, 鉄 窒化物類, マンガン窒化物類等を用いることができる。
本発明に用いられる負極用導電剤は、 電子伝導性材料であれば何でもよい。 例 えば、 天然黒鉛, (鱗片状黒鉛等) , 人造黒鉛, 膨張黒鉛等のグラフアイ ト類、 アセチレンブラック, ケッチェンブラック, チャンネルブラック, ファーネスブ ラック, ランプブラック, サーマルブラック等のカーボンブラック類、 炭素繊維, 金属繊維等の導電性繊維類、 銅, ニッケル等の金属粉末類およびポリフユ二レン 誘導体等の有機導電性材料等を単独またはこれらの混合物として含ませることが できる。 これらの導電剤のなかで、 人造黒鉛, アセチレンブラック, 炭素繊維が 特に好ましい。 導電剤の添加量は、 特に限定されないが、 負極材料に対して 1〜 5 0重量%が好ましく、 特に 1〜 3 0重量%が好ましい。 また本発明の負極材料 はそれ自身電子伝導性を有するため、 導電剤を添加しなくても電池として機能さ せることは可能である。
本発明に用いられる負極用結着剤としては、 熱可塑性樹脂, 熱硬化性樹脂のい ずれであってもよい。 本発明において好ましい結着剤は、 例えば、 ポリエチレン, ポリプロピレン, ポリテトラフルォロエチレン (PTFE) , ポリフッ化ビニリ デン (PVDF) , スチレンブタジエンゴム, テトラフルォロエチレン一へキサ フルォロエチレン共重合体, テトラフノレオ口エチレン一へキサフルォロプロピレ ン共重合体 (FEP) , テトラフルォロエチレン一パーフルォロアルキルビニル エーテル共重合体 (PFA) , フッ化ビニリデン一へキサフルォロプロピレン共 重合体, フッ化ビニリデン—クロ口 トリフルォロエチレン共重合体, エチレン一 テトラフルォロエチレン共重合体 (ETFE樹脂) , ポリクロ口トリフルォロェ チレン (PCTFE) , フッ化ビニリデンーペンタフルォロプロピレン共重合体, プロピレンーテトラフルォロエチレン共重合体, エチレン一クロ口 トリフノレオ口 エチレン共重合体 (ECTFE) , フッ化ビニリデン一へキサフルォロプロピレ ン―テトラフルォロエチレン共重合体, フッ化ビニリデン—パ一フルォロメチル ビニルエーテルーテトラフルォロエチレン共重合体, エチレンーァクリル酸共重 合体または前記材料の (Na +) イオン架橋体, エチレンーメタクリル酸共重合 体または前記材料の (Na+) イオン架橋体, エチレン一アクリル酸メチル共重 合体または前記材料の (N a T) イオン架橋体, エチレンーメタクリル酸メチル 共重合体または前記材料の (Na+) イオン架橋体をあげることができ、 これら の材料を単独または混合物として用いることができる。 またこれらの材料のなか でより好ましい材料は、 スチレンブタジエンゴム, ポリフッ化ビニリデン, ェチ レン一アクリル酸共重合体または前記材料の (Na+) イオン架橋体, エチレン ーメタクリル酸共重合体または前記材料の (Na+) イオン架橋体, エチレン一 アクリル酸メチル共重合体または前記材料の (Na +) イオン架橋体, エチレン ーメタクリル酸メチル共重合体または前記材料の (Na+) イオン架橋体である。 本発明に用いられる負極用集電体としては、 構成された電池において化学変化 を起こさない電子伝導体であれば何でもよレ、。 例えば、 材料としてステンレス鋼, ニッケル, 銅, チタン, 炭酸, 導電性樹脂等の他に、 銅やステンレス鋼の表面に カーボン, ニッケルあるいはチタンを処理させたもの等が用いられる。 特に、 銅 あるいは銅合金が好ましい。 これらの材料の表面を酸ィ匕して用いることもでき、 また、 表面処理により集電体表面に凹凸を付けてもよい。 形状は、 フオイルの他、 フィルム, シート, ネッ ト, パンチングされたもの, ラス体, 多孔質体, 発泡体, 繊維群の成形体等が用いられる。 厚みは、 特に限定されないが、 l〜500 /zm のものが用いられる。
正極または負極の電極合剤には、 導電剤や結着剤の他、 フィラー, 分散剤, ィ オン伝導体, 圧力増強剤およびその他の各種添加剤を用いることができる。 フィ ラーは、 構成された電池において、 化学変化を起こさない繊維状材料であれば何 でも用いることができる。 通常、 ポリプロピレン, ポリエチレン等のォレフィン 系ポリマー, ガラス, 炭素等の繊維が用いられる。 フィラーの添加量は特に限定 されないが、 電極合剤に対して 0〜 30重量%が好ましい。
本発明における負極板と正極板の構成は、 少なくとも正極合剤面の対向面に負 極合剤面が存在していることが好ましい。
本発明に用いられる非水電解質は、 溶媒と、 その溶媒に溶解するリチウム塩と から構成されている。 非水溶媒としては、 例えば、 エチレンカーボネート (E C) , プロピレンカーボネート (PC) , ブチレンカーボネート (BC) , ビニ レンカーボネート (VC) 等の環状カーボネート類、 ジメチルカーボネート (D MC) , ジェチルカーボネート (DEC) , ェチルメチルカーボネート (EM C) , ジプロピルカーボネート (DPC) 等の鎖状カーボネート類、 ギ酸メチル, 酢酸メチル, プロピオン酸メチル, プロピオン酸ェチル等の樹脂族カルボン酸ェ ステル類, γ—ブチロラタトン等の γ—ラタトン類, 1, 2—ジメ トキシェタン (DME) , 1, 2—ジエトキシェタン (DEE) , エトキシメ トキシェタン (EME) 等の鎖状エーテル類、 テトラヒドロフラン, 2—メチルテトラヒ ドロ フラン等の環状エーテル類、 ジメチルスルホキシド, 1, 3—ジォキソラン, ホ ルムアミ ド, ァセトアミ ド, ジメチルホルムアミ ド, ジォキソラン, ァセトニト リル, プロピル二トリル, ニトロメタン, ェチルモノグライム, リン酸トリエス テル, トリメ トキシメタン, ジォキソラン誘導体, スルホラン, メチルスルホラ ン, 1, 3—ジメチル _ 2—イミダゾリジノン, 3—メチル一 2—ォキサゾリジ ノン, プロピレンカーボネート誘導体, テトラヒ ドロフラン誘導体, ェチルェ一 テル, 1, 3—プロパンサノレトン, ァニソール, ジメチノレスルホキシド, N—メ チルピロリ ドン等の非プロトン性有機溶媒をあげることができ、 これらの 1種ま たは 2種以上を混合して使用する。 なかでも環状カーボネートと鎖状カーボネ一 トとの混合系または環状カーボネートと鎖状カーボネートおよび脂肪族カルボン 酸エステルとの混合系が好ましい。 これらの溶媒に溶解するリチウム塩としては、 例えば L i C 104,
L i B F 4, L i PF6, L i A 1 C 14, L i S b F 6, L i S CN,
L i CF 3 S03, L i CF3C〇2, L i (C F 3 S O 2) 2, L i A s F 6, L i N (CF a S02) 2, L i B丄 0C 1 i 0, 低級脂肪族カルボン酸リチウム, L i C l, L i B r, L i I, クロロボランリチウム, 四フエニルホウ酸リチウ ム, イミ ド類等をあげることができ、 これらを使用する電解液等に単独または 2 種以上を組み合わせて使用することができるが、 特に
L i PF6を含ませることがより好ましい。
本発明における特に好ましい非水電解質は、 エチレンカーボネートとェチルメ チルカーボネートを少なくとも含み、 支持塩として L i P F 6を含む電解液であ る。 これら電解質を電池内に添加する量は、 特に限定されないが、 正極材料や負 極材料の量や電池のサイズによつて必要量を用いることができる。 支持電解質の 非水溶媒に対する溶解量は、 特に限定されないが、 0. 2〜2モル Zリットルが 好ましい。 特に、 0. 5〜 1. 5モルノリットルとすることがより好ましレ、。
また、 電解液の他に次のような固体電解質を用いることができる。 固体電解質 としては、 無機固体電解質と有機固体電解質に分けられる。 無機固体電解質には、 L iの窒化物, ハロゲン化物, 酸素酸塩等がよく知られている。 なかでも、 L i 4 S i 04, L i 4 S i O 4 - L i I - L i OH, x L i 3 P O 4 - ( 1 - x) L i 4 S i 04, L i 2 S i S 3, L i 3 P04— L i 2S— S i S 2, 硫ィ匕 リン化合物等が有効である。 有機固体電解質では、 例えば、 ポリエチレンォキサ イド, ポリプロピレンオキサイ ド, ポリホスファゼン, ポリアジリジン, ポリエ チレンスルフイ ド, ポリビニルアルコール, ポリフッ化ビニリデン, ポリへキサ フルォロプロピレン等やこれらの誘導体, 混合物, 複合体等のポリマー材料が有 効である。
また、 電解質にアルミニウム、 ホウ素、 カルシウム等の元素を添加することに より、 負極上への絶縁体であるマンガン酸化物の生成をさらに抑制することがで きる。 これは、 添加元素のイオン種がマンガンイオンよりも優先的に溶媒和させ ることにより、 電解液中をマンガンイオンが移動できなくなるからである。 例え ば、 L i A l (OCH3) 4, A 1 F 3, L i A 1 H4, L i B F 4, L i BH4, L i B 47, C a (B F 4) 2, C a B 407, C a (C 1 04) 2
C a C03, C a F 2等の化合物を用いることができる。 添加量としては 0. 0 さらに、 放電容量ゃ充放電特性を改良する目的で、 他の化合物を電解質に添カロ することも有効である。 例えば、 トリェチルフォスファイ ト, トリエタノールァ ミン, 環状エーテル, エチレンジァミン, n—グライム, ビリジン, へキサリン 酸トリアミ ド, ニトロベンゼン誘導体, クラウンエーテノレ類, 第四級アンモニゥ ム塩, エチレングリコールジアルキルエーテル等をあげることができる。
本発明に用いられるセパレータとしては、 大きなイオン透過度を持ち、 所定の 機械的強度を持ち、 絶縁性の微多孔性薄膜が用いられる。 また、 一定温度以上で 孔を閉塞し、 抵抗をあげる機能を持つことが好ましい。 耐有機溶剤性と疎水性か らポリプロピレン, ポリエチレン等の単独または組み合わせたォレフィン系ポリ マーあるいはガラス繊維等から作られたシートゃ不織布または織布が用いられる。 セパレータの孔径は、 電極シートより脱離した正負極材料, 結着剤, 導電剤が透 過しない範囲であることが望ましく、 例えば、 0. 01〜 1 μπιであるものが望 ましい。 セパレータの厚みは、 一般的には、 10〜300 xmが用いられる。 ま た、 空孔率は、 電子やイオンの透過性と素材ゃ月莫圧に応じて決定されるが、 一般 的には 30〜80%であることが望ましい。
また、 ポリマー材料に、 溶媒とその溶媒に溶解するリチウム塩とから構成され る有機電解液を吸収保持させたものを正極合剤, 負極合剤に含ませ、 さらに有機 電解液を吸収保持するポリマーからなる多孔性のセパレータを正極, 負極と一体 ィ匕した電池を構成することも可能である。 このポリマー材料としては、 有機電解 液を吸収保持できるものであればよいが、 特にフッ化ビニリデンとへキサフルォ 口プロピレンの共重合体が好ましい。
電池の形状はコイン型, ボタン型, シート型, 積層型, 円筒型, 偏平型, 角型, 電気自動車等に用いる大型のもの等いずれにも適用できる。
また、 本発明の非水電解質二次電池は、 携帯情報端末, 携帯電子機器, 家庭用 小型電力貯蔵装置, 自動二輪車, 電気自動車, ハイブリッド電気自動車等に用い ることができるが、 特にこれらに限定されるわけではない。
実施例
以下、 実施例により本発明をさらに詳しく説明する。 ただし、 本発明はこれら の実施例に限定されるものではない。
実施例 1
図 1に本実施例で用いた円筒型電池の縦断面を示す。 図 1において 1は耐有機 電解液性のステンレス鋼板を加工した電池ケース、 2は安全弁を設けた封口板、 3は絶縁パッキングを示す。 4は極板群であり、 正極 5および負極板 6がセパレ ータ 7を介して複数回渦巻状に卷回されて電池ケース 1内に収納されている。 そ して上記正極板 5からは正極リード 5 aが引き出されて封口板 2に接続され、 負 極板 6からは負極リード 6 aが引き出されて電池ケース 1の底部に接続されてい る。 8は絶縁リングで極板群 4の上下部にそれぞれ設けられている。
負極板 6は、 負極材料としての口ンザ社製人造黒鉛 9 4重量%と結着剤である ポリフッ化ビニリデン樹脂 6重量%に、 添加剤として水酸化ナトリウム (N a O H) を、 負極合剤全体に対し N a含有量が 5重量%となるように混合し、 これら を脱水 N—メチルピロリジノンに分散させてスラリーを作製し、 銅箔からなる負 極集電体上に塗布し、 乾燥後、 圧廷して作製した。 このとき乾燥状態の負極合剤 中の N a含有量は 5重量%であった。
—方、 正極板 5は、 比表面積 0 . 9 5 m2/ g, 平均粒径 1 1 . 5 μ m, 立方 晶系 (空間群 F d 3 m) に属する格子定数が a = 8 . 2 0 Aのマンガン酸リチウ ム粉末 9 0重量%に対し、 導電剤の炭素粉末 5重量%と結着剤のポリフッ化ビニ リデン樹脂 5重量%を混合し、 これらを脱水 N—メチルピロリジノンに分散させ てスラリーを作製し、 アルミニウム箔からなる負極集電体上に塗布し、 乾燥後、 圧廷して作製した。 また、 非水電解液には、 エチレンカーボネートとェチルメチルカーボネートの 体積比 1 : 1の混合溶媒、 L i P F 6を 1. 5モルノリットルの濃度になるよう に溶解したものを使用した。
正極板 5と負極板 6を、 セパレータ 7を介して渦巻上に巻回し、 直径 1 8mm, 高さ 65 mmの電池ケース 1に収納した。 そして、 上記電解液を極板群 4に注入 した後、 電池を密封口し、 円筒型電池を作製した。
実施例 2
乾燥状態の負極合剤中の N a含有量を 1 0重量%とした以外は、 実施例 1と同 様に円筒型電池を作製した。
実施例 3
乾燥状態の負極合剤中の N a含有量を 0. 01重量%とした以外は、 実施例 1 と同様に円筒型電池を作製した。
実施例 4
負極の添加剤を炭酸ナトリウム (Na 2C〇3) とした以外は、 実施例 1と同 様に円筒型電池を作製した。
実施例 5
負極の添加剤をナトリウムアミ ド (Na NH2) とした以外は、 実施例 1と同 様に円筒型電池を作製した。
実施例 6
負極の添加剤を酸化ナトリウム (Na 202) とした以外は、 実施例 1と同様 に円筒型電池を作製した。
実施例 7
負極の添加剤を水酸化ナトリウム (KOH) とし、 乾燥状態の負極合剤中の K 含有量を 5重量%とした以外は、 実施例 1と同様に円筒型電池を作製した。
実施例 8
乾燥状態の負極合剤中の K含有量を 10重量%とした以外は、 実施例 7と同様 に円筒型電池を作製した。
実施例 9
乾燥状態の負極合剤中の K含有量を 0. 01重量%とした以外は、 実施例 Ίと 同様に円筒型電池を作製した。
実施例 1 0
負極の添加剤を水酸化カルシウム (C a (OH) とし、 乾燥状態の負極合 剤中の C a含有量を 5重量%とした以外は、 実施例 1と同様に円筒型電池を作製 した。
実施例 1 1
乾燥状態の負極合剤中の C a含有量を 1 0重量%とした以外は、 実施例 1 0と 同様に円筒型電池を作製した。
実施例 1 2
乾燥状態の負極合剤中の C a含有量を 0. 01重量%とした以外は、 実施例 1 0と同様に円筒型電池を作製した。
実施例 1 3
負極の添加剤を水酸化ストロンチウム 〔S r (OH) 2〕 とし、 乾燥状態の負 極合剤中の S r含有量を 5重量%とした以外は、 実施例 1と同様に円筒型電池を 作製した。
実施例 14
乾燥状態の負極合剤中の S r含有量を 1 0重量%とした以外は、 実施例 1 3と 同様に円筒型電池を作製した。
実施例 1 5
乾燥状態の負極合剤中の S r含有量を 0. 01重量%とした以外は、 実施例 1 3と同様に円筒型電池を作製した。
実施例 1 6
正極板 5に、 比表面積 2. 02m2/g, 平均粒径 1 0. 7 /z m, 立方晶系 (空間群 Fd 3m) に属する格子定数が a = 8. 2 θΑのマンガン酸リチウム粉 末を用いる以外は、 実施例 1と同様に円筒型電池を作製した。
実施例 1 7
正極板 5に、 比表面積 2. 9 3m2/g, 平均粒径 1 0. 9 / m, 立方晶系 (空間群 Fd 3m) に属す格子定数が a = 8. 20 Aのマンガン酸リチウム粉末 を用いる以外は、 実施例 1と同様に円筒型電池を作製した。 実施例 1 8
正極板 5に、 比表面積 0. 9 7 m 2Z g, 平均粒径 3. 1 μ m, 立方晶系 (空 間群 F d 3m) に属す格子定数が a = 8. 2 0 Aのマンガン酸リチウム粉末を用 いる以外は、 実施例 1と同様に円筒型電池を作製した。
実施例 1 9
正極板 5に、 比表面積 1. 0 5 m2Zg, 平均粒径 1. 2 z m, 立方晶系 (空 間群 F d 3m) に属す格子定数が a = 8. 2 0 Aのマンガン酸リチウム粉末を用 いる以外は、 実施例 1と同様に円筒型電池を作製した。
実施例 2 0
正極板 5に、 比表面積 1. 0 8m2Zg, 平均粒径 3 0. 5 m, 立方晶系 (空間群 F d 3m) に属す格子定数が a = 8. 2 0 Aのマンガン酸リチウム粉末 を用いる以外は、 実施例 1と同様に円筒型電池を作製した。
実施例 2 1
正極板 5に、 比表面積 0. 9 5m2Zg, 平均粒径 9. 7 χη, 立方晶系 (空 間群 F d 3m) に属す格子定数が a = 8. 2 5 Aのマンガン酸リチウム粉末を用 いる以外は、 実施例 1と同様に円筒型電池を作製した。
実施例 2 2
正極板 5に、 比表面積 1. 0 3 m2Zg, 平均粒径 1 0. 3 μ ιη, 立方晶系 (空間群 F d 3 m) に属す格子定数が a = 8. 3 0 Aのマンガン酸リチウム粉末 を用いる以外は、 実施例 1と同様に円筒型電池を作製した。
比較例 1
負極板 6に、 添加剤の水酸化ナトリウム (N a OH) を混合しないこと以外は 実施例 1と同様に円筒型電池を作製した。
これらの電池を 1 0 OmAの定電流で、 まず 4. 3 Vになるまで充電した後、 1 0 0mAの定電流で 3. 0 Vになるまで放電する充放電サイクルを繰り返した。 また充放電は 6 0°Cの恒温槽の中で行った。 なお、 充放電は 1 00サイクルまで 繰り返し行い、 初期の放電容量に対する 1 00サイクル目の放電容量の比を容量 維持率として表 1および表 2に示した。 t)リし、 クノレ 添加化合物 含有元素とその量
後の容量維持率 実施例 1 NaOH Na、 5重量% 87%
実施例 2 NaOH Na、 10重量0 /0 89%
実施例 3 NaOH Na、 0.01重量% 76%
実施例 4 NaoC03 Na、 5重量% 86%
実施例 5 NaNH2 Na、 5重量% 85%
実施例 6 Na202 Na、 5重量% 86%
実施例 7 KOH K、 5重量% 87%
実施例 8 匪 Κ、 10重量% 89%
実施例 9 KOH Κ、 0.01重量% 77%
実施例 10 Ca(0H)2 Ca、 5重量% 85%
実施例 11 Ca(0H)2 Ca、 10重量0 /。 87%
実施例 12 Ca(0H)2 Ca、 0.01重量% 75%
実施例 13 Sr(0H)2 Sr、 5重量% 84%
実施例 14 Sr(0H)2 Sr、 10重量% 86%
実施例 15 Sr(0H)2 Sr、 0.01重量% 75%
比較例 1 なし 73% 表 2
負極中 (^有 正極の]: t¾ lEf i 平均 60°C、 100サイクノレ後 とその量 爾 (π%) 顧 麵 A)
実施例 1 Na、 5重量% 0.95 11.5 8.20 87% 実施例 16 Na、 5重量% 2.02 10.7 8.20 85% 実施例 17 Na、 5重量% 2.93 10.9 8.20 78% 実施例 18 Na、 5重量% 0.97 3.1 8.20 84% 実施例 19 Na、 5重量% 1.05 1.2 8.20 77% 実施例 20 Na、 5重量% 1.08 30.5 8.20 89% 実施例 21 Na、 5重量% 0.95 9.7 8.25 85% 実施例 22 Na、 5重量% 1.03 10.3 8.30 76% 比較例 1 なし 0.95 11.5 8.20 73% 表 1より、 実施例 1〜 1 2で作製した非水電解質二次電池は、 比較例 1で作製 した電池に比べて、 高温環境下でのサイクル劣化が抑制されていることがわかる。 また、 表 1の実施例 1と実施例 2、 実施例 7と実施例 8、 実施例 10と実施例 1 1、 実施例 1 3と実施例 14の結果から、 N a, K, C a, S rは乾燥状態の負 極合剤に対して 1 0重量%を超える量で含有させてもさらなる劣化抑制効果が見 込めないことが予測できる。 また、 Na, K, C a, S rの含有量を増加させる と、 負極活物質量が相対的に減少して電池容量が低下する。 従って、 Na, K, C a , S rの含有量を 1 0重量%以下とすることが好ましいことがわかる。
また、 比較例 1と実施例 3, 実施例 9, 実施例 1 2, 実施例 1 5の結果から、 N a, K, C a, S rは乾燥状態の負極合剤に対して 0. 01重量%を超える量 で含有させないと十分な劣化抑制効果が得られないことがわかる。
以上のことから、 乾燥状態の負極合剤中の N a, K, C a, S r含有量を 0. 01〜10重量%とすることが合理的であることがわかる。
また、 実施例 1, 実施例 4, 実施例 5, 実施例 6の結果から、 負極合剤に添加 する際、 その化合物種の如何を問わず、 N aの含有量が同一であれば、 同様の劣 化抑制効果を得られることがわかる。
表 2の実施例 1と実施例 1 6, 実施例 1 7, 実施例 21, 実施例 22の結果か ら、 正極のマンガンリチウム複合酸化物の比表面積が 2
Figure imgf000019_0001
より大きいと N aを含有させても劣化抑制効果は小さくなり、 正極格子定数が 8. 25 Aより 大きい場合も同様に、 劣化抑制効果が小さくなることがわかる。
実施例 1と実施例 18, 実施例 1 9, 実施例 20の結果から、 正極のマンガン リチウム複合酸化物の平均粒径が 3 mより小さいと劣化抑制効果は小さくなり、 逆に平均粒径が大きくなると容量維持率は上昇することがわかる。 し力 し、 正極 平均粒径が 30 mを超える電池作製が困難であった。
以上のことから、 正極のマンガンリチウム複合酸化物は、 比表面積 2. Om2 /g以下, 平均粒径 3〜30 /xm, 立方晶系 (空間群 F d 3m) に属する格子定 数が a = 8. 25 A以下とすることが好ましいことがわかる。
なお、 斜方晶系の L iMn02においても同様の実験を行ったところ、 比表面 積が 5. 0m2Zg以下、 平均粒径が 3 /xm以上 30 m以下、 および格子定数 a , b , cがそれぞれ 2 . 7 5 A以上, 5 . 7 θΑ以上, 4 . 5 5 A以上である もので、 N a等を含有させることによる容量維持率の上昇がみられた。
産業上の利用可能性
本発明によれば、 非水電解質二次電池の特にリチウムマンガン複合酸化物を正 極活物質とした非水電解質二次電池の高温環境下での保存特性, 高温サイクル特 性を改善することができる。

Claims

請 求 の 範 囲
1. リチウムマンガン複合酸化物を含む正極; リチウムの吸蔵 ·放出が可能な 材料を含む負極合剤を含む負極;非水電解質を含む非水電解質二次電池であって、 負極がナトリウム, カリウム, カルシウム, ストロンチウムの群から選ばれた元 素の少なくとも 1種を含む、 非水電解質二次電池。
2. ナトリウム, カリウム, カルシウム, ストロンチウムの群から選ばれた少 なくとも 1種の元素の含有量は、 負極合剤に対して 0. 0 1重量%以上 1 0重量 %以下である請求項 1記載の非水電解質二次電池。
3. リチウムマンガン複合酸化物が立方晶系であり、 比表面積が 2. Om2/ g以下、 平均粒径が 3 / m以上 30 //m以下、 格子定数 aが 8. 2 5 A以下であ る請求項 1または 2記載の非水電解質二次電池。
4. リチウムマンガン複合酸化物が斜方晶系であり、 比表面積が 5. Om2/ g以下、 平均粒径が 3 以上 30 μπι以下、 格子定数 aが 2. 7 5 A以上、 b が 5. 7 OA以上、 cが 4. 5 5A以上である請求項 1または 2記載の非水電解 質二次電池。
PCT/JP2000/004040 1999-06-23 2000-06-21 Batterie rechargeable a electrolyte non aqueux WO2000079620A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/936,611 US7122278B1 (en) 1999-06-23 2000-06-21 Non-aqueous electrolyte secondary battery
DE60043388T DE60043388D1 (ja) 1999-06-23 2000-06-21
EP00940774A EP1202361B1 (en) 1999-06-23 2000-06-21 Rechargeable nonaqueous electrolytic battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/176447 1999-06-23
JP17644799A JP4453122B2 (ja) 1999-06-23 1999-06-23 非水電解質二次電池

Publications (1)

Publication Number Publication Date
WO2000079620A1 true WO2000079620A1 (fr) 2000-12-28

Family

ID=16013876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004040 WO2000079620A1 (fr) 1999-06-23 2000-06-21 Batterie rechargeable a electrolyte non aqueux

Country Status (8)

Country Link
US (1) US7122278B1 (ja)
EP (1) EP1202361B1 (ja)
JP (1) JP4453122B2 (ja)
KR (1) KR100690140B1 (ja)
CN (1) CN1258237C (ja)
DE (1) DE60043388D1 (ja)
TW (1) TW475290B (ja)
WO (1) WO2000079620A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315217C (zh) * 2004-04-22 2007-05-09 天津大学 针管式锂锰电池及其制造方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878687B2 (ja) * 2001-02-23 2012-02-15 三洋電機株式会社 リチウム二次電池
US6727019B2 (en) * 2001-03-22 2004-04-27 Ilion Technology Electrochemical cell having an ionomer binder of Li-AMPS and associated fabrication
JP2002298924A (ja) * 2001-03-30 2002-10-11 Toray Eng Co Ltd 二次電池および二次電池製造方法ならびに二次電池製造装置
JP4752126B2 (ja) * 2001-04-16 2011-08-17 パナソニック株式会社 非水電解液二次電池
JP2002313339A (ja) * 2001-04-16 2002-10-25 Matsushita Battery Industrial Co Ltd 非水電解質二次電池
JP2003045491A (ja) * 2001-07-31 2003-02-14 Toray Eng Co Ltd 二次電池製造方法および二次電池製造装置
JP2003045473A (ja) * 2001-07-31 2003-02-14 Toray Eng Co Ltd 二次電池製造方法および二次電池製造装置
JP2003059525A (ja) * 2001-08-09 2003-02-28 Toray Eng Co Ltd 二次電池製造方法および二次電池製造装置
JP2005235416A (ja) * 2004-02-17 2005-09-02 Nippon Chem Ind Co Ltd リチウム二次電池正極副活物質用マンガン酸リチウム、リチウム二次電池正極活物質及びリチウム二次電池
CN101188282B (zh) * 2006-03-20 2010-09-08 日立麦克赛尔株式会社 非水二次电池及其使用方法
KR20090129500A (ko) * 2007-03-30 2009-12-16 알타이어나노 인코포레이티드 리튬 이온 전지의 제조방법
EP2494636B1 (de) * 2009-10-27 2018-10-10 Albemarle Germany GmbH Stickstoffhaltige hydridanoden und galvanische elemente enthaltend stickstoffhaltige hydridanoden
JP5422537B2 (ja) * 2010-10-29 2014-02-19 株式会社日立製作所 リチウムイオン二次電池
CN102082263B (zh) * 2011-01-02 2013-04-03 浙江大学 导电碳膜包覆钙或钙锡合金的锂电池负极材料的制备方法
JP5825006B2 (ja) * 2011-09-22 2015-12-02 藤倉化成株式会社 リチウムイオン二次電池用正極材、およびリチウムイオン二次電池
JP5607189B2 (ja) * 2013-01-28 2014-10-15 三洋電機株式会社 ニッケル複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
KR102391115B1 (ko) 2015-01-21 2022-04-27 삼성에스디아이 주식회사 양극 활물질 및 이를 포함한 양극을 함유한 리튬 이차 전지
JP2016184484A (ja) * 2015-03-26 2016-10-20 Tdk株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池
US10978748B2 (en) * 2016-03-24 2021-04-13 Uchicago Argonne, Llc Materials to improve the performance of lithium and sodium batteries
JP6956039B2 (ja) * 2018-03-06 2021-10-27 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池用正極及びリチウムイオン電池
EP4206133A1 (en) * 2020-08-27 2023-07-05 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN113193226B (zh) * 2021-04-22 2022-10-25 西安交通大学 一种调控二氧化钛/碳复合材料固体电解质界面膜的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283180A (ja) * 1996-04-16 1997-10-31 Fuji Photo Film Co Ltd 非水二次電池
JPH11111342A (ja) * 1997-10-07 1999-04-23 Yuasa Corp リチウム二次電池
JPH11343109A (ja) * 1998-03-25 1999-12-14 Osaka Gas Co Ltd 炭素材料およびその製造方法、リチウム二次電池用負極並びにリチウム二次電池
JP2000012015A (ja) * 1998-06-10 2000-01-14 Jurgen Otto Besenhard 非水系二次電池
JP2000012014A (ja) * 1998-06-10 2000-01-14 Jurgen Otto Besenhard 非水系二次電池
JP2000113877A (ja) * 1998-10-07 2000-04-21 Hitachi Ltd リチウム二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3036812B2 (ja) * 1990-09-20 2000-04-24 三洋電機株式会社 二次電池
US5532084A (en) * 1992-09-28 1996-07-02 Duracell Inc. Manganese dioxide product
AU3754195A (en) * 1994-10-27 1996-05-23 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell and its manufacturing method
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof
EP0758801B1 (en) * 1995-03-06 2003-11-19 Sony Corporation nonaqueous liquid electrolyte secondary cell
JPH09180758A (ja) * 1995-12-25 1997-07-11 Fuji Photo Film Co Ltd 非水二次電池
KR100211179B1 (ko) 1997-04-25 1999-07-15 손욱 리튬 이차전지용 양극 활물질 LixMn2O4 분말 및 그 제조방법
DE69707637T2 (de) * 1996-12-20 2002-08-01 Matsushita Electric Ind Co Ltd Sekundärbatterie mit nichtwässerigem Elektrolyt
EP0880187B1 (en) * 1997-05-22 2004-11-24 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
CA2240805C (en) * 1997-06-19 2005-07-26 Tosoh Corporation Spinel-type lithium-manganese oxide containing heteroelements, preparation process and use thereof
JPH1140150A (ja) * 1997-07-17 1999-02-12 Sanyo Electric Co Ltd リチウム二次電池
KR100280705B1 (ko) * 1998-11-05 2001-03-02 김순택 리튬 이온 폴리머 전지용 전극 활물질 조성물 및 이를 이용한리튬 이온 폴리머 전지용 전극판의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283180A (ja) * 1996-04-16 1997-10-31 Fuji Photo Film Co Ltd 非水二次電池
JPH11111342A (ja) * 1997-10-07 1999-04-23 Yuasa Corp リチウム二次電池
JPH11343109A (ja) * 1998-03-25 1999-12-14 Osaka Gas Co Ltd 炭素材料およびその製造方法、リチウム二次電池用負極並びにリチウム二次電池
JP2000012015A (ja) * 1998-06-10 2000-01-14 Jurgen Otto Besenhard 非水系二次電池
JP2000012014A (ja) * 1998-06-10 2000-01-14 Jurgen Otto Besenhard 非水系二次電池
JP2000113877A (ja) * 1998-10-07 2000-04-21 Hitachi Ltd リチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1202361A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315217C (zh) * 2004-04-22 2007-05-09 天津大学 针管式锂锰电池及其制造方法

Also Published As

Publication number Publication date
DE60043388D1 (ja) 2010-01-07
US7122278B1 (en) 2006-10-17
CN1348614A (zh) 2002-05-08
EP1202361B1 (en) 2009-11-25
EP1202361A4 (en) 2007-10-17
JP4453122B2 (ja) 2010-04-21
KR100690140B1 (ko) 2007-03-08
KR20020020686A (ko) 2002-03-15
TW475290B (en) 2002-02-01
EP1202361A1 (en) 2002-05-02
JP2001006661A (ja) 2001-01-12
CN1258237C (zh) 2006-05-31

Similar Documents

Publication Publication Date Title
CN108886139B (zh) 包含网状绝缘层的锂二次电池用负极以及包含该负极的锂二次电池
JP5459671B2 (ja) 正極活物質、リチウム2次電池用正極、及び前記正極を含むリチウム2次電池
WO2000079620A1 (fr) Batterie rechargeable a electrolyte non aqueux
KR101304868B1 (ko) 리튬 이차전지용 양극 활물질
KR100674011B1 (ko) 전자 전도성 물질로 피복된 전극 첨가제 및 이를 포함하는리튬 이차전지
TWI506838B (zh) Nonaqueous electrolyte storage battery and manufacturing method thereof
KR101056714B1 (ko) 고전압 특성이 향상된 양극 활물질
US6991752B2 (en) Positive electrode active material for non-aqueous electrolyte secondary cell and cell using the same
KR100655555B1 (ko) 비수 전해액 2차전지
CN105428712B (zh) 可再充电锂电池
JP2018006331A (ja) 非水電解質二次電池用負極材料及びその製造方法
JP2001015101A (ja) 非水電解質二次電池、その負極及び負極材料
JP4686801B2 (ja) 非水電解液二次電池
JP2013191439A (ja) 非水電解質二次電池
JP4352503B2 (ja) 非水電解液二次電池
JP2000357517A (ja) 電極とこれを用いた電池及び非水電解質二次電池
KR20200013200A (ko) 양극 활물질, 이를 포함하는 양극 및 이차전지
JP7458033B2 (ja) 非水電解質二次電池およびこれに用いる電解液
JP2010206127A (ja) キャパシタ
JP4568922B2 (ja) 非水電解液二次電池
JP2016035937A (ja) 非水電解質二次電池
JP4838987B2 (ja) 非水電解液二次電池
JP2016207557A (ja) リチウム二次電池
TW201331262A (zh) 包含含氮聚合物之電化電池
KR20140060891A (ko) 알루미늄 전극용 전해질 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00806674.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09936611

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000940774

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017012772

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017012772

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000940774

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020017012772

Country of ref document: KR