WO1999003988A1 - Procede de production de nucleosides de purine par fermentation - Google Patents

Procede de production de nucleosides de purine par fermentation Download PDF

Info

Publication number
WO1999003988A1
WO1999003988A1 PCT/JP1998/003239 JP9803239W WO9903988A1 WO 1999003988 A1 WO1999003988 A1 WO 1999003988A1 JP 9803239 W JP9803239 W JP 9803239W WO 9903988 A1 WO9903988 A1 WO 9903988A1
Authority
WO
WIPO (PCT)
Prior art keywords
purine nucleoside
purine
gene
plasmid
strain
Prior art date
Application number
PCT/JP1998/003239
Other languages
English (en)
French (fr)
Inventor
Hiroshi Matsui
Hisashi Kawasaki
Megumi Shimaoka
Yasuhiro Takenaka
Osamu Kurahashi
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to JP50692199A priority Critical patent/JP3944916B2/ja
Priority to BRPI9815557-1A priority patent/BR9815557B1/pt
Priority to US09/462,472 priority patent/US7435560B1/en
Priority to DE69837041T priority patent/DE69837041T2/de
Priority to EP98932584A priority patent/EP1004663B1/en
Priority to KR10-2000-7000552A priority patent/KR100511151B1/ko
Publication of WO1999003988A1 publication Critical patent/WO1999003988A1/ja
Priority to US11/682,083 priority patent/US7776566B2/en
Priority to US11/682,103 priority patent/US20070161090A1/en
Priority to US11/682,114 priority patent/US7601519B2/en
Priority to US11/682,155 priority patent/US7608432B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/38Nucleosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/38Nucleosides
    • C12P19/40Nucleosides having a condensed ring system containing a six-membered ring having two nitrogen atoms in the same ring, e.g. purine nucleosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Definitions

  • the present invention relates to a method for producing purine nucleosides such as inosine and guanosine, which are important substances as a raw material for synthesizing 5, -inosinic acid and 5'-guanylic acid, and a novel microorganism used for the production.
  • purine nucleosides such as inosine and guanosine, which are important substances as a raw material for synthesizing 5, -inosinic acid and 5'-guanylic acid, and a novel microorganism used for the production.
  • microorganisms of the genus Bacillus that are adenylate-requiring strains or have been rendered resistant to various drugs including purine analogs (JP-B-38-23039, JP-B-54) — 17033, JP-B 55-2956, JP-B 55-45 199, JP-B 56-162998, JP-B 57-14160, JP-B 57-41915, JP-A-59-42895), and of the genus Brevipacterium Microorganisms (Japanese Patent Publication No. 51-5075, Japanese Patent Publication No. 58-1)
  • An object of the present invention is to create a microorganism suitable for producing purine nucleosides by a fermentation method.
  • the present inventors have conceived, in order to solve the above-mentioned problems, to confer purine nucleoside-producing ability to a bacterium belonging to the genus Escherichia, which differs from microorganisms conventionally used for producing purine nucleosides by fermentation. The inventors succeeded in realizing this and completed the present invention.
  • the present invention provides a microorganism belonging to the genus Escherichia and having a purine nucleoside-producing ability.
  • the present invention provides the microorganism, which has acquired purine nucleoside-producing ability by increasing the intracellular activity of an enzyme involved in bryn nucleoside biosynthesis. More specifically, the microorganism having acquired the purine nucleoside producing ability by increasing the expression level of the gene of the enzyme involved in purine nucleoside biosynthesis, and the regulation of the enzyme involved in purine nucleoside biosynthesis being released And a microorganism having the purine nucleoside-producing ability. Regulation of enzymes involved in purine nucleoside biosynthesis is released, for example, by releasing feedback inhibition.
  • the enzymes involved in the purine nucleoside biosynthesis include, for example, phosphoribosyl pyrophosphate (PRPPP) amide transferase and phosphoribosylpyrrolineate (PRPPP) synthase.
  • PRPPP phosphoribosyl pyrophosphate
  • PRPPP phosphoribosylpyrrolineate
  • the present invention provides such a microorganism which has acquired a purine nucleoside-producing ability by blocking a reaction from a purine nucleoside biosynthesis to another metabolite.
  • the reactions that diverge from the purine nucleoside biosynthesis to other metabolites include, for example, succinyl-adenosine monophosphate (AMP) synthase, purine nucleoside phosphorylase, adenosine deaminase, and inosine one. It is catalyzed by an enzyme selected from guanosine kinase, guanosine monophosphate (GMP) reductase, 6-phosphogluconate dehydrase, phosphoglucose 'isomerase, adenine' deamine, and xanthosine phosphorylase. There is a reaction. Further, the present invention provides the microorganism having an enhanced purine nucleoside-producing ability by weakening the uptake of purine nucleosides into cells.
  • AMP succinyl-adenosine monophosphate
  • purine nucleoside phosphorylase adenosine deaminase
  • Uptake of purine nucleosides into cells can be attenuated by blocking reactions involved in the uptake of purine nucleosides into cells.
  • the reaction involved in the uptake of the purine nucleoside into cells is, for example, a reaction catalyzed by nucleoside permease.
  • the present invention is a method for producing a purine nucleoside by a fermentation method, which comprises culturing the microorganism in a medium, producing and accumulating the purine nucleoside, and recovering the purine nucleoside.
  • Microorganisms belonging to the genus Escherichia and capable of producing purine nucleosides examples include Escherichia coli (E. coli).
  • Escherichia coli Escherichia coli
  • E. coli K12 strain and its derivatives can be used.
  • Purine nucleosides in the present invention include, for example, inosine, guanosine, adenosine and the like.
  • Purine nucleoside-producing ability means the ability to produce and accumulate purine nucleosides in a medium. Further, having the purine nucleoside-producing ability means that the microorganism belonging to the genus Escherichia produces and accumulates purine nucleosides in a medium in a larger amount than a wild-type strain of E. coli, for example, the W3110 strain. Incubation at 50 mg / L or more, more preferably 100 mg / L or more, even more preferably 200 mg / L or more, and most preferably 500 mg / L or more in the culture medium under the conditions described in Example 1 Means to accumulate production.
  • breeding by increasing the intracellular activity of an enzyme involved in purine nucleoside biosynthesis, for example, an enzyme involved in purine nucleoside biosynthesis Breeding by increasing the expression level of the gene can be employed.
  • breeding by deregulating enzymes involved in purine nucleoside biosynthesis can also be employed.
  • reactions that diverge from purine nucleoside biosynthesis to other metabolites Breeding by blocking and breeding by weakening the uptake of purine nucleosides into cells can also be employed.
  • Means for increasing the intracellular activity of an enzyme involved in purine nucleoside biosynthesis include increasing the expression level of the enzyme gene.
  • Means for increasing the expression level of the gene include, but are not limited to, improving the regulatory region of the gene, increasing the copy number of the gene, and the like.
  • Improving the regulatory region means adding a modification that increases the amount of gene transcription.
  • the transcription amount of a downstream gene can be increased by enhancing the promoter.
  • lac, trp, tac, trc, PL and other promoters that function in microorganisms may be newly introduced.
  • the transcription amount of the gene can be increased by newly introducing Enhansa.
  • the introduction of a gene such as a promoter into chromosome DNA is described in, for example, Japanese Patent Application Laid-Open No. 1-215280.
  • the increase in the copy number of a gene can be obtained by connecting a gene to a multi-copy type vector to prepare a recombinant DNA, and allowing the microorganism to retain the recombinant DNA.
  • the vector is widely used such as plasmid and phage.
  • transposon Bosset, DE and Berg, CM., Bio / Technol., 1, 417 (1983)
  • Mu phage JP-A-2-109985
  • the PCR (polymerase chain reaction) method is mainly used based on known genetic information of E. coli.
  • the necessary gene region can be amplified and used for breeding.
  • purF a gene encoding PRPP amide transferase
  • E. coli K12 strain W3110 ATCC27325
  • the chromosomal DNA used at this time may be any strain as long as it is derived from E. coli.
  • purF is a gene that encodes a PRPPP amide transferase that is feedback inhibited by adenosine monophosphate (layer) or guanosine monophosphate (GMP), and includes variants due to genetic polymorphism and the like.
  • Genetic polymorphism refers to a phenomenon in which the amino acid sequence of a protein is partially changed due to a natural mutation in a gene.
  • Means for increasing the intracellular activity of an enzyme involved in purine nucleoside biosynthesis include increasing the activity of the enzyme itself by introducing a mutation into the structural gene itself.
  • Means for increasing the intracellular activity of an enzyme involved in purine nucleoside biosynthesis include deregulation of an enzyme involved in purine nucleoside biosynthesis.
  • Regulation of an enzyme involved in purine nucleoside biosynthesis refers to a mechanism that negatively regulates the activity of the enzyme, such as inhibition of feedback by a biosynthetic pathway intermediate or end product, attentive action, transcription repression, etc. .
  • Purine nucleosides produced by microorganisms inhibit the activity of the enzyme involved in purine nucleoside biosynthesis or suppress the expression of the gene encoding the enzyme through the regulation. Therefore, it is desirable to release the regulation in order for the microorganism to produce purine nucleosides.
  • Enzymes involved in purine nucleoside biosynthesis under the above regulation are AMP and GMP.
  • PRPP amide transferase which undergoes feedback inhibition
  • PRPP synthase which undergoes feedback inhibition by adenosine diphosphate (ADP).
  • ADP adenosine diphosphate
  • GMP is inhibited by inosine monophosphate dehydrogenase (IMP) and GMP synthetase (guaA).
  • IMP inosine monophosphate dehydrogenase
  • guaBA GMP synthetase
  • the pudding 'operon, guaBA is under suppression.
  • As a method of releasing the regulation there is a method of introducing a mutation into a gene encoding an enzyme or its regulatory region. The mutation includes a mutation that releases feedback inhibition, which is usually a mutation in a structural gene.
  • the same mutation includes a mutation that releases the attack, which is usually a mutation within one night.
  • the mutation includes a mutation that releases repression, which is usually a mutation in a gene encoding a regulatory protein called a repressor, or a mutation in the operator region.
  • Mutations that release repression include those that inactivate purine repressors.
  • the repressor binds to the operator region of the purine operon under conditions where abundant purine nucleotides are present, and as a result, transcription of the operon is suppressed.
  • the inactivation of the repressor leads to the release of suppression.
  • Mutations in genes can be generated by site-directed mutagenesis (Kramer, W. and Frits, HJ, Methods in Enzymology, 154, 350 (1987)), recombinant PCR (PCR Technology, Stockton Press (1989)), A method for chemically synthesizing a specific portion of DNA, a method for treating the gene with hydroxyamine, or a method for treating a strain having the gene with ultraviolet irradiation or a chemical agent such as nitrosoguanidine or nitrous acid. There is a way. For the purpose of completely inactivating the function of a gene, there is a method of adding or deleting DNA to an appropriate restriction enzyme site.
  • the expression level of the enzyme can be examined by measuring the enzyme activity or using an antibody.
  • One method for obtaining mutants in which the regulation of the enzyme has been released is to select strains that grow on a minimal medium containing purine analogs such as 8-azaadenine and 8-azaguanine. There is a way to check the change in (3) A microorganism that has acquired purine nucleoside-producing ability by blocking the reaction that branches from purine nucleoside biosynthesis to other metabolites
  • the purine nucleoside biosynthetic pathway of microorganisms belonging to the genus Escherichia has been elucidated, and all enzymes involved in purine nucleoside biosynthesis and all the reactions catalyzed by the enzyme have been elucidated (Escherichia coli and Salmonella CELLULAR AND MOLECULAR BIOLOGY second Edition vol. 1 and vol. 2 ASM PRESS WASHINGTON DC). In addition to these, some of the reactions leading to other metabolites have become apparent.
  • Microorganisms that block reactions to other metabolites may become required for those metabolites.
  • Methods for blocking the reaction from purine nucleoside biosynthesis to other metabolites include deleting the enzyme that catalyzes the reaction, or inactivating the enzyme that catalyzes the reaction.
  • Can be Deletion of an enzyme includes a method of deleting a gene encoding the enzyme.
  • Methods for inactivating an enzyme include introducing a mutation into the gene encoding the enzyme or adding a drug that specifically inactivates the enzyme.
  • blocking the branch from IMP to succinyl AMP and blocking the conversion of inosine to hypoxanthine results in the blocking of IMP from being converted to AMP and the conversion of inosine to hypoxanthine. No more. And it is expected that inosine will be accumulated. In order to confirm the effectiveness, it is sufficient to culture the mutant strain obtained according to the purpose and to check the inosine productivity.
  • GMP reductase is involved in the reaction of converting GMP to IMP, but inactivating GMP reductase is expected to improve guanosine productivity. As shown in Examples described later, a slight improvement in guanosine accumulation was observed.
  • a carbon source such as glucose is used to produce purine nucleosides, but it is known that the sugar metabolic system leading to purine nucleoside biosynthesis differs depending on the carbon source and culture conditions used. Therefore, in order to favor the metabolic system towards purine nucleoside biosynthesis, the pentose phosphate pathway should be prioritized to favor others It is conceivable to cut off the fork. As a means of inactivating 6-phosphogluconate dehydrase ⁇ phosphoglucose isomerase, its effectiveness in inosine production was confirmed.
  • Re-incorporation of the purine nucleoside excreted out of the cell into the cell is considered energetically unreasonable in accumulating the purine nucleoside.Therefore, it is effective to weaken the purine nucleoside uptake. is there.
  • Means for weakening the uptake of purine nucleosides into cells include blocking reactions involved in purine nucleoside cell permeability. The reaction can be blocked in the same manner as described in (3) above.
  • nucleoside protease which is one of the proteases involved in the uptake of purine nucleosides into cells.
  • a method for producing purine nucleosides by a fermentation method using a microorganism that has acquired purine nucleoside-producing ability will be described below.
  • the medium for purine nucleoside production to be used may be an ordinary medium containing a carbon source, a nitrogen source, inorganic ions and other organic components as required.
  • Carbon sources include sugars such as glucose, lactose, galactose, fructose, arabinose, maltose, xylose, trehalose, ribose and hydrolyzed starch, and alcohols such as glycerol and mannitol sorbitol.
  • Organic acids such as gluconic acid, fumaric acid, citric acid and succinic acid can be used.
  • inorganic ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate
  • organic nitrogen such as soybean hydrolysate, ammonia gas, and ammonia water
  • it is desirable to contain required substances such as vitamins such as vitamin B1, nucleic acids such as adenine and RNA, or yeast extract in an appropriate amount.
  • vitamins such as vitamin B1
  • nucleic acids such as adenine and RNA, or yeast extract
  • small amounts of calcium phosphate, magnesium sulfate, iron ions, manganese ions, etc. are added as necessary.
  • the culture is preferably carried out under aerobic conditions for about 16 to 72 hours.
  • the culture temperature is controlled at 3 ° C to 45 ° C, and the pH is controlled at 5 to 8 during the culture.
  • inorganic or organic acidic or alkaline substances, ammonia gas, and the like can be used for pH adjustment.
  • the purine nucleoside can be collected from the fermented liquor usually by a combination of an ion exchange resin method, a precipitation method, and other known methods.
  • PurR which encodes a purine repressor, puro, a deoD that encodes purine nucleoside pnosphorylase, puro nucleoside pnosphorylase, succinyl-AMP purA, a gene encoding synthase, purA ⁇ anosine'adenase (adenosine deaminase) 3 ⁇ 4: add, a gene that encodes, gsk, a gene that encodes inosine-guanosine kinase GuaC, a gene that encodes GMP reductase, and 6-phosphogluconate dehydrogenase.
  • E-code (6-phosphogluconate dehydrase) is a gene that encodes edd and fosfozoreco.
  • Pgi which encodes a gene that encodes whophogiucose lsomerase
  • yicP which encodes a gene that encodes adenine deaminase 12 (adenine deaminase) (PRP synthetase) is a gene encoding prs N xanthosine pnosphorylase 3 ⁇ 4:
  • the gene encoding xapA and nupG, a gene encoding nucleoside permease (nucleoside permiase), are cloned.
  • the chromosomal DNA used in this case may be any strain as long as it is derived from E. coli.
  • the mutation to be introduced into purF is a mutation for destroying purF and a mutation for releasing feedback inhibition of PRPP amide transferase.
  • the mutation introduced into purR is a mutation for destroying purR.
  • the mutation to be introduced into deoD is de Mutation to destroy oD.
  • the mutation introduced into purA is a mutation for destroying purA.
  • the mutation to be introduced into add is a mutation for destroying add.
  • the mutation to be introduced into gsk is a mutation for destroying gsk.
  • the mutation to be introduced into guaC is a mutation for destroying guaC.
  • the mutation introduced into edd is a mutation for destroying edd.
  • the mutation introduced into pgi is a mutation for destroying pgi.
  • the mutation introduced into yicP is a mutation for destroying yicP.
  • the mutation to be introduced into prs is a mutation for releasing feedback inhibition of PRPP synthase.
  • the mutation introduced into xapA is a mutation for destroying xapA.
  • the mutation introduced into nupG is a mutation for destroying nupG.
  • Mutations in genes can be generated by site-directed mutagenesis (Kramer, W. and Frits, H ⁇ , Methods in Enzymology, 154, 350 (1987)), and recombinant PCR (PCR Technology, Stockton Press (1989)).
  • There is a method of chemically synthesizing a specific portion of DNA a method of treating the gene with hydroxyamine, a method of irradiating a strain having the gene with ultraviolet light, or a treatment with a chemical agent such as nitrosoguanidine or nitrite.
  • a chemical agent such as nitrosoguanidine or nitrite.
  • For the purpose of completely inactivating the function of a gene there is a method of adding or deleting DNA to an appropriate restriction enzyme site.
  • purF and prs into which mutations for releasing feedback inhibition of PRPP amide transferase and PRPP synthase have been introduced are introduced into a suitable microorganism as recombinant DNA and expressed.
  • a microorganism having a PRPP amide transferase gene (purF) and a PRPP synthase gene (prs) from which feedback inhibition has been substantially released is obtained.
  • the recombinant DNA obtained by the above method is defined as a plasmid containing useful genes such as PRPP amide transferase gene (purF) and PRPP synthase gene (prs), for which feedback inhibition has been released, as a passenger. This is what is incorporated into the vector.
  • lac, trp, tac, trc, PL, or other promoters that function in microorganisms may be used to efficiently express the useful gene.
  • the useful gene was transposon (Berg, DE and Berg, CM, Bio / Technol., 1, 417 (1983)), Mu phage (JP-A-2-109985), or homologous. It also includes those integrated into the chromosome by a method using a plasmid for recombination.
  • a plasmid for homologous recombination a plasmid having a temperature-sensitive replication origin is used as a plasmid having a temperature-sensitive replication origin is used. Plasmids with a temperature-sensitive replication origin can replicate at permissive temperatures, for example, around 30 ° C, but not at permissive temperatures.
  • non-permissive temperature for example, cannot be reproduced at 37 ° C to 42 ° C.
  • the plasmid may be replicated at an allowable temperature or the plasmid may be dropped from a host at a non-permissive temperature. Can be.
  • PMAN997 was used as a plasmid for homologous recombination.
  • pMardan 997 was expressed in p-plot 031 (J. Bacteriol., 162, 1196 (1985)) and pUCl9.
  • the gene to be inactivated is a gene whose expression level of an enzyme involved in the biosynthesis of purine nucleosides is increased by the inactivation.
  • the purine repressor gene (purR) on the chromosome was disrupted to release the mechanism of suppressing the expression of the purine nucleotide biosynthesis gene including the PRPPP amide transferase gene (purF).
  • purine nucleosides In addition, they disrupted the gene encoding an enzyme that catalyzes reactions from purine nucleoside biosynthesis to other metabolites. Specifically, purine nucleosides
  • the phosphorylase gene (deoD) was disrupted to suppress the degradation of inosine and guanosine into hypoxanthine and guanine.
  • the saccharine two-amp AMP synthase gene (purA) was disrupted to provide adenine auxotrophy.
  • the adenosine danidase gene (add) was disrupted to suppress the conversion of adenosine to inosine.
  • the inosine-guanosine kinase gene (gsk) was disrupted to suppress the conversion of inosine and guanosine to IMP and GMP.
  • GMP reductase gene guaC
  • edd 6-phosphogluconate dehydrase gene
  • pgi phosphoglucose-isomerase gene
  • the xanthosine phosphorylase gene (xapA) was disrupted to suppress the induced degradation of xanthosine to xanthine and the degradation of inosine and guanosine to hypoxanthine-guanine.
  • the strain carrying the gene may be treated with ultraviolet rays or treated with a chemical agent such as nitrosoguanidine or nitrous acid to inactivate the function of the gene of interest.
  • microorganism having the recombinant DNA a microorganism belonging to the genus Escherichia, which expresses a gene encoding a target enzyme such as the PRPP amide transferase, was used.
  • PRPP amide transferase gene For efficient utilization of the PRPP amide transferase gene (purF), other useful genes such as genes other than purF involved in IMP biosynthesis from PRPP (purD, purT, purL, purM, purK, purE, purC). , purB, purH), IMP dehydrogenase gene (guaB), GMP synthase gene (guaA), PRPP synthase gene (prs) and the like.
  • these useful genes like the PRPP amide transferase gene (purF), may be present on the chromosome of the host, or may be present on plasmid or phage.
  • PurA succinyl-AMP synthase gene
  • deoD purine nucleoside / phosphorylase gene
  • purR purine reblesser gene
  • purF PRPP amide transferase gene
  • add adenosine 'Daminase gene'
  • gsk Inosine -Guanosine 'kinase gene
  • guaC GMP reductase gene
  • FIG. 1 shows the construction of pMAN997.
  • FIG. 2 shows the structure of the gene for homologous recombination.
  • the numbers in the figure indicate the length (bp) of the obtained fragment and the position from the 5 'side.
  • FIG. 3 shows the structure of the gene for homologous recombination.
  • the numbers in the figure indicate the length (bp) of the obtained fragment and the position from the 5 'side.
  • CTCCTGC AGAACGAGGAAAAAGACGTATG SEQ ID NO: 1
  • CTCAAGCTTTCATCCTTCGTTATGCATTTCG SEQ ID NO: 1
  • Bglll site there is one Bglll site at about 880 bp from the 5th side of the cloned 1530 bp purF fragment, but there is one Bglll site in the pCRTMI I vector itself, so was partially digested with BglII, blunt-ended with T4 DNA polymerase, and ligated with T4 DNA ligase.
  • E. coli HB101 competent cells were transformed with this ligation solution, and LB (trib) containing 25 ⁇ g / ml of ampicillin was transformed. 1% ton, yeast extract 0.5%, NaCl 0.1%, glucose 0.1%, pH7) Transformants growing on agar plates were obtained.
  • Plasmid DNA was prepared from the transformants of the 18 clones, and a plasmid DNA (pCRTMI IpurF, # 14) from which a fragment of about 1550 bp was obtained by EcoRI digestion and whose fragment was not digested by BglII was selected. . PurF contained in this plasmid DNA will cause a frameshift at the Bglll site, and the encoded enzyme is expected to have no function (Fig. 2).
  • pCRTMI IpurF '# 14 was digested with EcoRI to prepare a fragment of about 1.6 Kb containing purF. This fragment was cloned into pMAN997 (pMAN031 (J. Bacterid., 162, 1196 (1985)) and pUCl9 (Takara Shuzo, as shown in FIG. 1), which are homologous recombination vectors having a temperature-sensitive origin of replication (tsori). (A product obtained by reconnecting Vsp l-Hindlll fragments) to the EcoRI site to obtain plasmid pMA997purF, # 14. E.
  • coli W3110 strain wild strain was transformed at 30 ° C with plasmid p AN997purF, # 14, and several of the obtained colonies were spread on an LB agar plate containing 25 ⁇ g / ml ampicillin. The cells were cultured overnight at 30 ° C. Next, these cultured cells were applied to an LB agar plate containing 25 ⁇ g / ml of ampicillin so as to obtain a single colony, and a colony growing at 42 ° C. was obtained. The procedure for obtaining a single knee growing at 42 ° C. was repeated once more, and a clone in which the entire plasmid had been integrated into the chromosome by homologous recombination was selected.
  • This clone was confirmed to have no plasmid in the cytoplasm.
  • Apply several of these clones to LB agar plate, incubate at 30 ° C overnight, inoculate LB liquid medium (3 ml / test tube), and shake at 42 ° C for 3 to 4 hours. Cultured. Diluting it suitably so that single colonies should be obtained (10-5 ⁇ 10- about 6), plated on LB agar plates, and cultured overnight at 42 ° C, to obtain colonies. Pick up 100 colonies at random from the colonies that appeared, grow them on LB agar plates and LB agar plates containing 25 / g / ml ampicillin, and grow ampicillin-sensitive clones that grow only on LB agar plates.
  • the PCR method (94 ° C, 30sec; 55 ° C, lmin; 72 ° C, 2min; 30 cycles; Gene Amp PCR System Model 9600 (Cha-Kin I Luma Co.)) was performed using a 31-mer primer at both ends.
  • Plasmid MA was prepared from the transformants of the 18 clones, and a plasmid DNA (pUC18purA '# 1) from which a fragment of about llOObp was obtained without digestion with Fspl and digestion with Sacl and Sail was prepared. Was selected. PurA of this plasmid DNA will be deleted between the Hpa I and Sna B I sites, and the encoded enzyme is expected to have no function ( Figure 2).
  • pUC18purA '# l was digested with Sacl and Sail to prepare a fragment of about 1.1 Kb containing purA. This fragment was inserted between the Sacl site and Sail site of PMAN997 (described above), a vector for homologous recombination having a temperature-sensitive replication origin (tsori), to obtain plasmid pMAN997purA, #l. Was. Transform F-2-51 strain (purF-) at 30 ° C with plasmid pMAN997purA, # 1, and apply several of the obtained colonies to an LB agar plate containing 25 ⁇ g / ml ampicillin And cultured overnight at 30 ° C.
  • these cultured cells were spread on an LB agar plate containing 25 ⁇ g / ml of ampicillin so that a single colony was obtained. Growing colonies were obtained. The procedure of obtaining a single colony growing at 42 ° C was repeated once more, and a clone in which the entire plasmid had been integrated into the chromosome by homologous recombination was selected. This clone was confirmed to have no plasmid in the cytoplasm. Next, apply several of these clones to LB agar plate, incubate at 30 ° C, inoculate into LB liquid medium (3ml / test tube) and shake at 42 ° C for 3-4 hours. Cultured.
  • a purA l.lkb fragment was amplified by PCR from the chromosome MA of these target clones, and it was confirmed that the size was smaller than that of the wild type (about 1.3 kb) and that it was not digested by FspI.
  • a clone satisfying the above was defined as a purA deletion strain, and in this case, a FA-31 strain.
  • CTCGTCGACGCGGGTCTGGMCTGTTCGAC (SEQ ID NO: 5), which was created based on information searched using the ⁇ deoD '' keyword in the E. coli Gene Bank, using the chromosomal DNA of the W3110 strain as type I, CTCGCATGCCCGTGCTTTAC CAAAGCGAATC PCR method based on two ends primer 30mer and 31mer having the nucleotide sequence of (SEQ ID NO: 6) (94 ° C, 30sec ; 55 ° C, lmin; 72 ° C 5 2min; 30 cycles; Gene Amp PCR System Model9600 (/ , ° -kin;!
  • the plasmid was digested with Hpal, and the digested plasmid and lOmer Cla l Mix with linker Then, a T4 DNA ligase reaction was performed. As a result, the Clal site was inserted into the Hpal site.
  • the ligated solution was used to transform E. coli HB101 competent cells to obtain transformants that grow on LB agar plates containing 25 g / ml of ampicillin.
  • Plasmid DNA was prepared from the transformants of 16 clones, and a plasmid DNA (pCRTMI IdeoD, # 16) which was not digested with Hpal but cleaved with ClaI was selected.
  • the deoD contained in this plasmid DNA is expected to cause a frameshift at the Hpal site, and the encoded enzyme is expected to have no function ( Figure 2).
  • pCRTMI IdeoD, # 16 was digested with EcoRI to prepare a fragment of about 1.35 Kb containing deoD. This fragment was inserted into the EcoRI site of PMAN997 (described above), which is a vector for homologous recombination having a temperature-sensitive replication origin (tsori), to obtain plasmid pMAN997deoD, # 16. Plasmid pMAN997deoD, # 16 was used to transform 72 strains (purF—) and FA-31 strains (purF—, purA—) of F-31 at 30 ° C, and several of the resulting colonies were transformed into 25 / g / ampicillin.
  • the mixture was spread on a LB agar plate containing ml, and cultured at 30 ° C. Next, these cultured cells were applied to an LB agar plate containing 25 / g / ml of ampicillin so as to obtain a single colony, and a colony growing at 42 ° C was obtained. The procedure of obtaining a single colony growing at 42 ° C was repeated once more, and a clone in which the entire plasmid had been integrated into the chromosome by homologous recombination was selected. This clone was confirmed to have no plasmid in the cytoplasm.
  • Ambicillin-sensitive clones were further grown on LB medium supplemented with inosine lg / L, and these cultures were analyzed by thin-layer chromatogram to select clones in which inosine was not degraded to hypoxanthine. Furthermore, an approximately 1.35 kb fragment containing deoD was amplified from the chromosome MA of these target clones by PCR, and it was confirmed that the fragment was cut with ClaI but not with HpaI. A clone satisfying the above was defined as a deoD deletion strain, and the F-; l-72 strain (purF 1) and those derived from FA-31 strains (purF-, purA-) were designated as FD-6 strain and FAD-25 strain, respectively.
  • CTCGTCGACGAAAGTAGAAGCGTCATCAG (SEQ ID NO: 7), which was created based on information searched using the ⁇ purR '' keyword in the E. coli Gene Bank using the chromosomal DNA of the W3110 strain as type I, PCR method using a 29-mer and 28-mer primers having the nucleotide sequence of CTCGCATGCTTMCGACGATA GTCGCGG (SEQ ID NO: 8) (94 ° C, 30sec; 55 ° C, lmin; 72 ° C, 2min; 30 cycles; Gene Amp PCR System Model 9600 (C.-Kin I Luma Co., Ltd.)), and an amplified fragment of about 1.8 kb containing a purR structural gene region covering ATG and a translation termination codon and about 800 bp 5 ′ upstream region of ATG is pUC19 vector.
  • Plasmid DNA was prepared from the transformants of 10 clones, and a plasmid DNA (pUC19purR, # 2) which was not digested with PmaC I but cleaved with BglII was selected from these.
  • the purR of this plasmid DNA will undergo a frameshift at the PmaC I site, and the encoded enzyme is expected to have no function ( Figure 2).
  • pUC19purR, # 2 was digested with Sacl and Sphl to prepare a fragment of about 1.8 Kb containing purR. This fragment was inserted between the SacI site and the SphI site of PMAN997 (described above), which is a vector for homologous recombination having a temperature-sensitive replication origin (tsori), to obtain plasmid pMAN997purR, # 2. Plasmid p AN997purR, # 2 was used to transform FD-6 strain (purF ", deoD”) and FAD-25 strain (purF-, purA-, deoD-) at 30 ° C.
  • the cells were spread on an LB agar plate containing 25 ⁇ g / ml of ampicillin, and cultured at 30 ° C. overnight. Next, these cultured cells were spread on an LB agar plate containing 25 / g / ml of ampicillin so as to obtain a single colony, and colonies growing at 42 ° C were obtained. The operation of obtaining a single colony growing at 42 ° C was repeated once more, and a clone in which the entire plasmid had been integrated into the chromosome by homologous recombination was selected. It was confirmed that this clone did not have a plasmid in the cytoplasm.
  • clones were randomly selected from ampicillin-sensitive clones, and an approximately 1.8 kb fragment containing purR was amplified from these chromosomal MAs by PCR, and clones that were cleaved by Bgl11 but not PmaC1 Was selected. These clones were designated as purR-deleted strains, and those derived from the FD-6 strain (purF-, deoD-) and FAD-25 strain (purF-, purA-, deoD-one) were FDR-18 strain and FADR-8 strain.
  • the PRPP amide transferase activity was increased compared to the non-purR-disrupted strain, indicating that the purF + strain lacking deoD and purR, the purA, deoD, and purR Was confirmed using the purF + strain deleted.
  • the measurement of PRPP amide transferase activity was performed according to the method of LJ Messenger et al. (J. Biol. Chem., 254, 3382 (1979)).
  • the purF fragment was cut out from the plasmid carrying about 1530 bp purF cloned into the pCRTMI I vector (Invitrogen) in 1) by digestion with Pstl and Hindlll, and the plasmid PKF18 for mutation introduction (Takara Shuzo) The clone was reinserted between the Pstl site and the Hindlll site of the multi-cloning site of (1) to obtain the desired clone (pKFpurF).
  • pKFpurF According to G. Zhou et al. (J. Biol.
  • Primer for mutation K326Q 5, -GGGCTTCGTT CAG AACCGCTATGTTGG-3 '(SEQ ID NO: 9)
  • Primer for mutation P410W 5,-TATGGTATTGATATG TGG AGCGCCACGGAAC-3' (SEQ ID NO: 10)
  • mutant (desensitized) purF was inserted downstream of pKF18-derived la cp / o (promoted lactose operon promoter). PurF is expressed under the control of
  • Transformants were prepared by introducing pKFpurFKQ and pKFpurFKQPW into the FDR-18 strains (purF—, deoD—, purR—) and FADR-8 strains (purF—, purA—, deoD, purR—) prepared in 4), Purine nucleoside producing ability of these strains was evaluated.
  • the following is a description of a purifying nucleoside-producing basal medium, a culture method, and an analysis method for evaluating purine nucleoside-producing ability.
  • Basic medium MS medium Glucose 40 g / L (separate sterilization)
  • Buffer 0.2M NaH 2 P0 4 (pH3.98 ) pH adjusted with phosphoric acid
  • Table 2 shows the results of the evaluation of purine nucleoside-producing ability.
  • the mutant purF plasmid-introduced strain showed superior inosine production compared to the W3110 strain (wild strain), which showed only trace production.
  • Table 2 shows the results of the evaluation of purine nucleoside-producing ability.
  • the mutant purF plasmid-introduced strain showed superior inosine production compared to the W3110 strain (wild strain), which showed only trace production.
  • CTCGTCGACGGCTGGATGCCTTACGCATC (SEQ ID NO: 11), which was created based on the information obtained by using the chromosomal DNA of the W3110 strain as type I and searching for “add” as a keyword in the Gene Data Bank (E. coli Gene Bank).
  • PCR using a 29-mer and a 29-mer primer having the nucleotide sequence of CTCGCATGCAGTCAGCACGGT ATATCGTG (SEQ ID NO: 12) (94 ° C, 30sec; 55.
  • the plasmid was erased with StuI. Digested plasmid and 8-mer BglII And T4 DNA ligase reaction. As a result, a Bgll I site was added to the Stul site. The ligated solution was used to transform E. coli JM109 competent cells to obtain a transformant growing on an LB agar plate containing 25 g / ml of ampicillin.
  • Plasmid DNA was prepared from the transformants of 10 clones, and a plasmid DNA (pUC19add '# l) which was not cleaved by Stu1 but cleaved by BgIII was selected from among them. Addition of this plasmid DNA will cause a frame shift at the Stu1 site, and the encoded enzyme is expected to have no function (Fig. 2).
  • pUC19add '# l was digested with Sacl and Sphl to prepare a fragment of about 1.8 Kb containing add. This fragment was inserted between the SacI and SphI sites of PMAN997 (FIG. 1), which is a vector for homologous recombination having a temperature-sensitive replication origin (tsori), to obtain plasmid pMAN997add, # 1.
  • Transform FDR-18 strains purF-, deoD-, purR-
  • FADR-8 strains purF-, purA ", deoD-, purR-
  • a plurality of the obtained colonies were spread on an LB agar plate containing 25 ⁇ g / ml of ampicillin, and cultured at ⁇ 30 ° C. Next, these cultured cells were cultured in an ambicillin so that a single colony was obtained. Stained on LB agar plate containing 25 / g / ml to obtain colonies that grow at 42 ° C. Repeat the procedure to obtain a single colony that grows at 42 ° C. again, and plasmid by homologous recombination A clone was selected in which the whole was integrated into the chromosome.It was confirmed that this clone did not have a plasmid in the cytoplasmic fluid.
  • PKFpurFKQ and pKFpurFKQ were added to the FDRadd-18-1 strain (purF—, deoD “, purR”, add—) and FADRadd-8-3 strain (purF—, purA “, deoD—, purR—, add—) prepared in 1).
  • Transformants into which pKFpurFKQPW was introduced were prepared, and the purine nucleoside-producing ability of these strains was evaluated.
  • transformants using wild-type purF plasmid pKFpurF
  • Table 3 shows the results of the evaluation of purine nucleoside-producing ability. Inosine production superior to W3110 strain (wild strain) was observed. In addition, the effects of desensitized purFKQ and purFKQPW were observed as compared with wild-type purF. Table 3
  • pCRTMI IpurFL The plasmid retained by this clone is called pCRTMI IpurFL.
  • pCRTMI IpurFL has EcoRI sites as restriction enzyme sites near both sides of the cloning site. Pstl site and Hindi II site are designed for PCR primers.
  • pCRTMI IpurFL was digested with SnaB I and HindIII to obtain a fragment of about 0.65 kb downstream from the C-terminus of the coding region of purF. This fragment was inserted between the SnaBI site and the HindIII site of pKFpurFKQ and pKFpurFKQPW obtained in 5) of Example 1 to produce pKFpurFLKQ and pKFpurFLKQPW.
  • pKFpurFLKQ and pKFpurFLKQPW were digested with EcoRI and HindIII to prepare a fragment of about 2.1 Kb containing purFLKQ and pu ⁇ FLKQPW. This fragment was inserted between the EcoRI site and the Hindlll site of PMA997 (described above), a vector for homologous recombination having a temperature-sensitive origin of replication (tsori), and the plasmids pMAN997purFLKQ and pMAN9 97purFLKQPW was obtained.
  • tsori temperature-sensitive origin of replication
  • Plasmids pMAN997purFLKQ and pMAN997purFLKQPW were FDiiadd-18-1 strains (purF-, deoD ", purR-, add-) and FADRadd-8-3 strains (purF-, purA-, deoD-, purR-, ad d- ) was transformed at 30 ° C, and several of the obtained colonies were spread on an LB agar plate containing 25 ⁇ g / ml of ampicillin, and cultured at-30 ° C.
  • FDRadd-18-1 (purF “, deoD”, purR “, add”) derived from FDRadd-18-1:: KQ strain (purFKQ, deoD-, purR-, add-one) and FDRadd-18-1 :: KQPW strain (purFKQPW, deoD “, purR-, add”), and FADRadd-8-3 strain (purF-, purA-, deoD-, purR, add-) derived from FADRadd-8-3 :: KQ strains (purFKQ, purA ", deoD-, purR”, add-) and FADRadd-8-3 :: KQPW strains (purFKQPW, purA-, deoD-, purR ", add-).
  • FDRadd-18-1 KQ strain (purFKQ, deoD—, purR—, add—) prepared in 2), FDRadd-18-1:: KQPW strain (purFKQPW, deoD “, purR”, add "), FADRadd -8-3: of the KQ strains (purFKQ, purA-, deo D-I, purR-, add-) and FADRadd- 8--3 :: KQPW strains (purFKQPW, purA ", deoD-, purR”, add ") Purine nucleoside producing ability was evaluated.
  • the basic medium for purine nucleoside production, the culture method, and the analysis method are the same as those in Example 1.
  • PurA- (adenine-requiring) strain is supplemented with 5 mg / L adenine in MS medium.
  • Table 4 shows the results of evaluating the purine nucleoside-producing ability. Inosine production superior to W3110 strain (wild strain) was observed. Table 4
  • FDRadd-18-l KQ 110 0
  • the plasmid was digested with Bglll, and the kanamycin resistance (Knf) gene GenBlock ( A T4 DNA ligase reaction was performed for the purpose of inserting a BamHI digest (Pharmaciaha, manufactured by Iotech). The ligated solution was used to transform E. coli JM109 competent cells to obtain transformants growing on LB agar plates containing kanamycin 50 // g / ml.
  • Plasmid DNA was prepared from the transformants of 4 clones, and Bgl We selected a plasmid DNA (pUC18gsk, # 2) that was not digested with I and cuts out a fragment of about 2.8 kb by digestion with EcoRI and Sail. The heterologous gene is inserted into the gsk of the plasmid DNA at the Bglll site, and the encoded enzyme is expected to have no function (Fig. 2).
  • pUC18gsk the # 2 was digested with Sac l, Sph l and Dra l, the gsk and Km p gene was prepared fragment including about 2.8 Kb.
  • the purpose of Dral digestion is to facilitate the acquisition of Sacl-Sphl fragments.
  • This fragment was inserted between the SacI site and the SphI site of PMAN997 (described above), which is a vector for homologous recombination having a temperature-sensitive replication origin (tsori), to obtain plasmid pMAN997gsk, # 2 .
  • FDRG-18-13 strains (purF-, deoD-, purR-, gsk-) and FADRaddG-8-3 strains (purF-, purA-, deoD-, purR ", add-, gsk-) prepared in 1) PKFpurFKQ and pKFpurFKQPW into pKFpurFKQPW to evaluate the purine nucleoside-producing ability
  • the plasmids pKFpurFKQ and pKF purFKQPW have the drug selection marker gene of the ⁇ ⁇ ⁇ ⁇ gene and the host FDRG-18-13 and FADRaddG-8 Since the three strains are also kanamycin-resistant, it is difficult to obtain a transformant, and therefore, the plasmid pKFpurFKQ and pKFpurFKQPW are used for drug selection.
  • the purFKQ and purFKQPW fragments were excised from pKFpurFKQ and pKFpurFKQPW using Pstl and Hindi II. These were inserted between the PstI site and HindIII site of pUC18 to produce pUCpurFKQ and pUCpurFKQPW, which were used to transform host FDRG-18-13 strain and FADRaddG-8-3 strain, and The purine nucleoside-producing ability of the recombinant was evaluated The basic medium for purine nucleoside production, the culture method, and the analysis method were the same as those in Example 1. For the purA- (adenine-requiring) strain, the MS medium was used. 5 mg / L of Adenine is added.
  • Table 5 shows the results of evaluating the purine nucleoside-producing ability. From these results, it was confirmed that when the gsk deletion was given, guanosine was accumulated together with inosine. Table 5
  • the FDRG-18-3 strains (purF-, deoD-, purR “, gsk-) and FADRaddG-8-3 strains (purF-, purA-, deoD-, purR-, add ", gslT) at 30 ° C.
  • a plurality of the obtained colonies were spread on an LB agar plate containing 25 ⁇ g / ml of ampicillin, and cultured at 30 ° C overnight.
  • these cultured cells were spread on an LB agar plate containing 25 g / ml of ampicillin so as to obtain a single colony, and colonies growing at 42 ° C were obtained.
  • chromosomal DNAs of these target clones were prepared, a 1.5 kb fragment containing purF was amplified by PCR, and the nucleotide sequence around the mutation site by homologous recombination was analyzed.As a result, K326Q (326Lys ⁇ Gln) And the mutation of K326Q (326Lys ⁇ Gln) + P410W (410Pro ⁇ Trp).
  • FDRG-18- 13 (purF-, deoD-, purR-, gsk-) derived from FDRG-18- 13:: KQ strain (purFKQ, deoD-, purR “, gsk-) and FDRG-18- 13:: KQPW strain (purFKQPW, deoD-, purR “, gsk-) and FADRaddG-8-3 strain (purF-, purA-, deoD-, purR-, add-, gsk-) derived from F ADRaddG-8-3 :: KQ strain (purFKQ, purA—, deoD—, purR ", add—, gsk”) and FADRaddG-8-3 :: KQPW strain (purFKQPW, purA ", deoD—, purR", add ⁇ , Gsk ").
  • the F ADRaddG-8-3 KQ strain (urFKQ, purA-, deoD-, purR ", add-, gsk”) was given the private number AJ13334. Based on the Budapest Treaty on June 24, 1997, the Institute of Biotechnology and Industrial Technology, Ministry of International Trade and Industry of Japan (Postal Code 305-0046, 1-3-1, Tsukuba-Higashi, Ibaraki, Japan) was deposited internationally and given the accession number FE RM BP-5993.
  • the purine nucleoside-producing ability of these four desensitized purF chromosome integration strains was evaluated.
  • the basic medium for purine nucleoside production, the culture method, and the analysis method are the same as those in Example 1.
  • PurA- (adenine auxotrophy) strain is supplemented with 5 mg / L adenine in MS medium.
  • Table 6 shows the results of evaluating the purine nucleoside-producing ability. From these results, it was confirmed that when the gsk deletion was given, guanosine was accumulated together with inosine.
  • FDRG-18-13 KQPW 145 125
  • Awake addG-8-3 KQPW 530 130
  • Example 1 1) Preparation of wild-type purR homologous recombination plasmid and preparation of purR + reverted chromosome integration strain
  • the pUC19 vector (Takara Shuzo) was placed between the Sail site and the Sphl site.
  • a plasmid (pUCpurR) carrying a 1.8 kb purR fragment was obtained.
  • This pUCpurR was digested with SacI and Sphl to prepare a fragment of about 1.8 Kb containing wild-type purR.
  • This fragment was inserted between the SacI site and the SphI site of PMAN997 (described above), which is a vector for homologous recombination having a temperature-sensitive replication origin (tsori), to obtain a plasmid pMAN997purR. Transformation of FADRadd-8-3 (purF-, purA-, deoD-, purIT, add) with Plasmid p 997purR at 30 ° C, and transforming one of the obtained colonies into ampicillin 25 / g / The mixture was spread on an LB agar plate containing ml, and cultured at 30 ° C overnight.
  • Transformants were prepared by introducing pKFpurFKQ into the FADadd-8-3-2 strains (purF-, purA ", deoD", add-) prepared in 1), and the purine nucleoside-producing ability of these strains was evaluated. .
  • a transformant using the pKFpurKQ was also prepared for the FADRadd-8-3 strain, and the effect of purR deletion was comparatively evaluated.
  • the basic medium, the culture method, and the analysis method for purine nucleoside production are the same as in Example 1. Adenine 5 mg / L is added to MS medium.
  • Table 7 shows the results of evaluating the purine nucleoside-producing ability.
  • FADRadd puriT type
  • FADadd purR wild type
  • Aro51 HI sites there are two Aro51 HI sites at approximately 900 bp and 1030 bp from the 5 'side of the cloned gsk fragment, and one Bglll site at 1640 bp from the 5' side of the cloned gsk fragment.
  • the ligated solution was used to transform E. coli JM109 competent cells to obtain transformants that grow on LB agar plates containing 25 ⁇ g / ml of ambicillin.
  • Plasmid DM was prepared from the transformants of 10 clones, and a plasmid DNA (about 2.3 kb) was digested with Kpnl and SphI, which was not digested with Aro 51HI or BglII, and digested with Kpnl and SphI. pUC19gsk, # 10) was selected. It is predicted that the gsk of this plasmid DNA will have a structural gene deleted between the Aro51HI site and the Bglll site, and the encoded enzyme will have no function (Figure 3).
  • pUC19gsk '# 10 was digested with Kpnl and Sphl to prepare an approximately 2.3 Kb fragment containing the gsk gene. This fragment was inserted between the Kpnl site and the Sphl site of PMAN997 (described above), a homologous recombination vector having a temperature-sensitive replication origin (tsori), and the plasmid pMAN997gsk, # 10 was inserted. Obtained. Plasmid pMAN997gsk, # 10 was used to transform FADRadd-8-3 strain (pupupu, purA-1, deoD—, purR ", add”) at 30 ° C, and several of the resulting colonies were transformed into ampicillin 25.
  • the plate was spread on an LB agar plate containing g / ml, and cultured at 30 ° C. Next, these cultured cells were applied to an LB agar plate containing 25 ⁇ g / ml of ampicillin so as to obtain a single colony, and a colony growing at 42 ° C. was obtained. The operation of obtaining a single colony growing at 42 ° C was repeated once more, and a clone in which the entire plasmid had been integrated into the chromosome by homologous recombination was selected. This clone is a bra It was confirmed that the smid was not contained in the cytoplasm.
  • Inosine-guanosine kinase activity was performed according to the method of Yododa et al. (Biochim. Biophys. Acta., 1341, 200-206 (1997)). These clones were used as new gsk deletion strains, and those derived from the FADRadd-8-3 strain (purF-, purA-, deoD-, purR ", add-) were used as FADRaddgsk strains (purF-, purA", deoD-). , purR—, add-1, gsk—).
  • chromosomal DNA of the W3110 strain as type I, 29mer and 29mer having the base sequence of CTCMGCTTACGGCTCTGGTCCACGCCAG (SEQ ID NO: 18) and CTCC TGCAGCAGCGTTGGGAGATTACAGG (SEQ ID NO: 19) based on information from the Genetic Bank (E. coli Gene Bank) PCR (94 ° C, 30sec; 55 ° C, lmin; 72 ° C, 2min; 30 cycles; Gene Amp PCR System Model 9600 (C.-Kin Elmer)) Approximately 2.2 kb amplified fragment of the guaC structural gene region covering the translation stop codon
  • Hindlll site and Pstl site are designed for PCR primers.
  • a Bglll site is located at about l.lb from the 5th side of the cloned 2.2kb guaC fragment.
  • Plasmids pMAN997guaC, # 1 were obtained by inserting the recombinant vector PMAN997 (described above) between the Hindlll site and the Pstl site, and the plasmid pAN997guaC, # 1 for the FADRadd-8-3 strain ( PurF-, purA, deoD ", purR", add-I) and FADRaddgsk strains (purF-, purA-, deoD-, purR-, add-I, gsk-I) were transformed at 30 ° C and obtained.
  • guaC-deleted strain A clone that satisfies the above conditions was designated as a guaC-deleted strain, and clones derived from FADRad d-8-3 and FADRaddgsk were each used as a FADRaddguaC strain (purF —, PurA “, deoD”, purR “, add--, uaC”) and FADRaddgskguaC strain (purF--, purA ", deoD--, purR", add--, gsk--, guaC "). No GMP reductase activity was detected in these clones. I confirmed that GMP reductase activity was measured according to the method of BB Garber et al. ( ⁇ Bacteriol., 43, 105 (1980)).
  • Table 8 shows the results of evaluating the purine nucleoside-producing ability. Deletion of guaC showed a slight increase in guanosine production. Table 8
  • CTCGMTTCGGATATCTGGMGMGAGGG SEQ ID NO: 20
  • CTCMGCTTGGMTAGTCCCTTC GGTAGC created based on information searched using the edd keyword in the E. coli Gene Bank
  • PCR using a 29-mer and a 29-mer primer having the nucleotide sequence of SEQ ID NO: 21) (94 ° C, 30sec; 55 ° C, lmin; 72 ° C, 2min; 30 cycles; Gene Amp PCR System Model 9600 (C.- Edd structure to cover ATG and translation termination codon
  • the amplified PCR product fragment can be cloned as it is, and EcoRI sites exist as restriction enzyme sites near both sides of the cloning site.
  • BaiiHI site and Hindlll site are designed for PCR primers.
  • Plasmid was digested with Stu1 because there are two Stu1 sites at about 660 bp and 190 Obp from the 5 'side of about 3.0 kb of the cloned edd fragment. Self-ligation on one side of the vector from which the Stul fragment of about 1.25 kb had been removed was performed using T4 DNA ligase. The ligated solution was used to transform E.
  • Plasmid DNA was prepared from the transformants of 10 clones, and a plasmid DNA (pCRTMI Iedd, #l) from which a 1.25 kb fragment was not cut out by StuI was selected.
  • the edd contained in this plasmid DNA is expected to have no enzyme protein produced since the protein code region including the promoter overnight region has been removed (Fig. 3).
  • Plasmid FpMAN997edd '# 1 was used to transform FADRadd-8-3 (purF-, purA-, deoD-, purR-, add-) at 30 ° C, and several of the resulting colonies were transformed into ambicilin at 25 zg / ml.
  • Transformants were prepared by introducing pKFpurFKQ into the FADRaddedd strains (purF-, purA-, deoD-, purR ", add", edd-) prepared in 1), and the purine nucleoside-producing ability of these strains was evaluated.
  • the basic medium for producing purine nucleosides, the culture method and the analysis method are the same as those in Example 1.
  • Adenine 5 mg / L is added to MS medium.
  • 6-phosphogluconate dehydrase, encoded by edd is a first-step enzyme that is induced by gluconic acid and metabolizes gluconate to pyruvate via the Entner-Doudoroff pathway.
  • Gluconic acid is considered to flow only into the pentosephosphate pathway due to the deletion of this enzyme. Therefore, in addition to glucose, gluconic acid (added at 48 g / L) was used as a C source in MS medium. did. Table 9 shows the results of evaluating the purine nucleoside-producing ability. Deletion of edd showed a marked increase in inosine production when gluconic acid was used as a C source. The effect was also observed when glucose was used as the C source. Table 9
  • CTCGTCGACTCCATTTTCAGCCTTGGCAC SEQ ID NO: 22
  • CTCGCATGCGTCGCATCAGGCAT CGGTTG SEQ ID NO: 22
  • PCR method using a 29-mer and a 29-mer primer having the nucleotide sequence of SEQ ID NO: 23 (94 ° C, 30sec; 55 ° C, lmin; 72 ° C, 2min; 30 cycles; Gene Amp PCR System Model 9600 (c.
  • the self-ligation on the vector side from which the approximately 500 bp fragment was removed between the BssHI I site and the Mlul site was performed using T4 DNA ligase.
  • the ligated solution was used to transform E. coli JM109 competent cells to obtain transformants that grow on LB agar plates containing 25 ⁇ g / ml ampicillin.
  • Plasmid MA was prepared from the transformants of 10 clones, and a plasmid DNA (pUC18pgi, #l) from which a fragment of about 1.7 kb was cut out by treatment with Sail and Sphl was selected.
  • the pgi of this plasmid DNA will be deleted between the BssHI I site and the Mlul site, and the encoded enzyme is expected to have no function (Figure 3).
  • pUC18pgi '# l was digested with Sail and Sphl to prepare a fragment of about 1.7 Kb containing pgi. This fragment was inserted between the Sail site and Sphl site of PMAN997 (described above), which is a vector for homologous recombination having a temperature-sensitive replication origin (tsori), to obtain plasmid pMAN997 pgi '# l. Was.
  • Plasmid pMAN997pgi, # 1, FADRadd-8-3 strain (purF-, purA-, deoD-, purR ", add-) and FADRaddedd (purF-, purA-, deoD-, purR", add-, edd-) was transformed at 30 ° C., and a plurality of the obtained colonies were spread on an LB agar plate containing 25 ⁇ g / ml of ampicillin, and cultured at 30 ° C. overnight. Next, these cultured cells are The colonies were spread on an LB agar plate containing 25 g / ml of ampicillin to obtain colonies, and colonies growing at 42 ° C were obtained.
  • the pgi region is amplified by PCR from the chromosomal DNA of these target clones using the PCR primers shown above, and clones whose amplified fragment size is not about 2.2 kb of wild type but about 1.7 kb of deleted form are selected. did.
  • Table 10 shows the evaluation results of the purine nucleoside-producing ability. Deletion of pgi resulted in extremely poor growth of the conventional MS medium supplemented with adenine at 5 mg / L.Therefore, a medium in which the yeast extract was increased to 0.8% was used. The parent strain showed increased growth rate, decreased inosine production, and a significant amount of by-product hypoxanthine in this medium. On the other hand, the pgi-deleted strain has a remarkable effect of increasing inosine production. Table 10
  • yicP is registered as 0RF (open reading frame, structural gene) having high homology to adenine deaminase derived from Bacillus subtilis. Therefore, the bases of CTCCTGCAGC GACGTTTTCTTTTATGACA (SEQ ID NO: 24) and CTCMGCTTCGTAACTGGTGACTTTTGCC (SEQ ID NO: 25) were prepared based on the information searched using the chromosomal DNA of strain W3110 as type I and ⁇ yicP '' as a keyword.
  • This PCR product was digested with Pstl and Hindlll and cloned between the Pstl site and Hindlll site of the pUC18 vector (Takara Shuzo). After digestion of plasmid with Hapl and EcoRV, Hapl site and EcoRV site are located at approximately 540 bp and approximately 590 bp from the side of the cloned yicP fragment at approximately 1.9 kb and 5, respectively. Self-ligation of DNA from which 47 bp of -EcoRV had been removed was performed with T4 DNA ligase. The ligated solution was used to transform E. coli JM109 competent cells.
  • Plasmid DNA was prepared from the transformants of 10 clones, and from these, plasmid DNA (pUC18yicP '# l) which was not digested by Hapl or EcoRV digestion was selected. The deletion of 47 bp of the HapI-EcoRV site causes frame shift in yicP contained in this plasmid DNA, and it is predicted that the encoded enzyme will have no function (Fig. 3).
  • pUC18yicP '# l was digested with Pstl and Hindlll to prepare a fragment of about 1.9 Kb containing the yicP structural gene. This fragment was inserted between the Pstl site and Hindlll site of PMAN997 (described above), which is a vector for homologous recombination having a temperature-sensitive replication origin (tsori), to obtain plasmid p-picture 997yicP, # 1. Was.
  • Transform FADRaddedd (purF ", urA", deoD-, purR-, add-, edcT) with plasmid p-plot 997yicP, # 1 at 30 ° C, and transform several of the obtained colonies into ampicillin 25 / g. / ml and spread on a LB agar plate containing 30 ml / ml at 30 ° C.
  • these cultured cells were applied to an LB agar plate containing 25 ⁇ g / ml of ampicillin so as to obtain a single colony, and a colony growing at 42 ° C. was obtained.
  • Emerged colonies Pick up 100 colonies at random from them, grow them on LB agar plate and LB agar plate containing 25 ⁇ g / ml ampicillin, and select ampicillin-sensitive clones that grow only on LB agar plate.
  • the yicP region was amplified from the chromosome MA of the target clone by PCR using the PCR primers described above, and clones whose amplified fragment size was not digested by Hapl or EcoRV were selected.
  • Adenine deaminase activity was determined according to the method of Per Nygaard et al. (J. Bacteriol., 178, 846-853 (1996)).
  • the clone was defined as a yicP-deleted strain and a FADRaddeddyicP strain (purF-, purA-, deoD_, purR-, add-, ed d-, yicP-). 2) Obtain phosphoglucose isomerase gene (pgi) deficient strain from adenine diaminase gene (yicP) deficient strain
  • FADRaddeddy i cP strains (purF-, purA “, deoD-, purR", add, edd “, yicP-) and FADRaddeddy icPpgi strains (purF-, purA", deoD “, purR”, which were prepared in 1) and 2).
  • Transformants in which pKFpurFKQ was introduced into add-, edd ", yicP-, and pgi-) were prepared, and the response to purifying adenine and the ability to produce purine nucleosides were evaluated for the growth of these strains.
  • the basic medium, culture method, and analysis method were the same as those in Example 1, but a medium in which adenine was added to MS medium in the range of 0 to 50 mg / L was used.
  • Table 11 shows the evaluation results of the growth response and purine nucleoside-producing ability on adenine. Deletion of yicP improved the growth rate with respect to the amount of adenine, and the effect of the deletion of yicP on inosine production was observed in the adenine-added groups at 50 mg / L and 20 mg / L.
  • both 38mer and 29mer having the nucleotide sequence of CTCGTCGACTGCCTAAGGATCTTCTCATGCCTGATATG (SEQ ID NO: 26) and CTCGCATGCGCCGGGTTCGATTAGTGTTC (SEQ ID NO: 27) Perform PCR with primers (94 ° C, 30sec; 55 ° C, lmin; 72 ° C, 2min; 30 cycles; Gene Amp PCR System Model9600 (C.-Kin-Elmer)) and terminate translation with SD-ATG An amplified fragment of about 1 Kb of the prs structural gene region covering the codon was cloned into pUC18 vector (Takara Shuzo). Sail site and Sphl site are designed for PCR primers. After cutting this PCR product with Sail and Sphl, it was cloned between the Sail site of the pUC18
  • the prs fragment was cut out from plasmid pUCprs carrying about lkb of prs cloned in 1) by digestion with Sail and Sphl, and the mutagenesis plasmid pKF19k (Takara Shuzo Co., Ltd.)
  • the desired clone was obtained by reinsertion between the site and Sphl site (pKFprs).
  • pKFprs PRPP synthase
  • Prs PRPP synthase
  • a mutant of Asp (D) at position 128 mutated to Ala (A) has been partially desensitized.
  • the following synthetic DNA primer was prepared in order to perform gene replacement so that Asp (D) at position 128 of PRPP synthase (Prs) could be mutated to Ala (A), and Site-directed Mutagenesis According to the protocol of System Mutan-Super Expresses Km (Takara Shuzo), a site-specific mutation was introduced into pKFprs.
  • a prs fragment was cut out from the previously prepared pUCprs with Sail and Sphl, and transferred between the Sail site and Sphl site of STV18 (Takara Shuzo).
  • These pUCprsDA and pSTVprsDA, and pUCprs and pSTVprs have mutant and wild-type prs inserted downstream of pUC18 and pSTV18-derived lacp / o (promoter of lacto-superoperon), respectively. Prs is expressed under the control.
  • the recombinant obtained by transforming E. coli JM109 with the above four plasmids was cultured in LB liquid medium for 8 hours, and then the cells were collected to prepare a crude enzyme extract.
  • the PRPP synthase activity and the degree of inhibition by ADP were measured by partially modifying the method of K. F. Jensen et al. (Analytical Biochemistry, 98, 254-263 (1979). [Non - 3 2 P]. using the ATP, was measured [3 2 P] AMP produced in the reaction shows the results in Table 1 2.
  • Table 13 shows the evaluation results of purine nucleoside-producing ability. By introducing mutant prsDA as a plasmid, an effect of increasing inosine production was observed. Table 13
  • N-in 5, -CCCATCCACTAAACTTAAACATCGTGGCGTGAAATCAGG-3, (SEQ ID NO: 30) C-in: 5 '-TGTTTAAGTTTAGTGGATGGGCATCAACCTTATTTGTGG-3' (SEQ ID NO: 31) C-out: 5, -CGCAAGCTTCAAACTCCGGGTTACGGGCG-3 '(SEQ ID NO: 32)
  • the chromosomal DNA of the W3110 strain was used as a type I primer at both ends of N-out (29mer) and N-in (39mer) and C-in (39mer) and C-out (29mer), and PCR was performed for each. Method (94 ° C, 30sec; 55 ° C, lmin; 72 ° C, 2min; 30 cycles; Gene Amp PCR System Model 9600 (C.-Kin Elmer)) to obtain two PCR products (both about 850 bp). Then, the two PCR products are mixed, and PCR is again performed using N-out and C-out as primers at both ends. A gene fragment shortened to a size of about 1.7 kb was amplified.
  • BamHI site and HindIII site are designed for N-out and C-out PCR primers.
  • this fragment and plasmid PMAN997 (described above), which is a homologous recombination vector having a temperature-sensitive replication origin (tsori), were digested with BamHI and HindII.
  • Ligations were performed with T4 DNA ligase. The ligated solution was used to transform E. coli JM109 competent cells to obtain transformants that grow on LB agar plates containing 25 ⁇ g / ml of ambicillin.
  • Plasmid DNA was prepared from the transformants of 10 clones, and from these plasmid DNA was selected from which a digested fragment of about 1.7 kb was generated by digestion with BajnHI and HindIII (p-fault 997xapA '# l). It is predicted that xapA contained in this plasmid DNA will lose the function of the encoded enzyme by deleting about 700 bp of the structural gene (Fig. 3).
  • This plasmid pMAN997xapA, # 1 in FADRaddeddyicPpgi strain was transformed with the 30 ° C, it it obtained colonies of A plurality of the cells were spread on an LB agar plate containing 25 ⁇ g / ml of ambicillin, and cultured at 30 ° C. at room temperature. Next, these cultured cells were applied to an LB agar plate containing 25 g / ml of ampicillin so as to obtain a single colony, and a colony growing at 42 ° C was obtained.
  • the clone was designated as the xapA-deleted strain, and was designated as FADRaddeddyicP pgixapA strain (purF-I, purA-I, deoD-, purR ", add-I, edd-, yicP-, pgi-I, xapA").
  • xanthosine By adding xanthosine to the culture, It was confirmed that xanthine was not produced and that xanthosine phosphorylase was not induced.
  • Xanthosine phosphorylase activity was measured by K. Hammer Jespersen et al. (Molec. Gen. Genet., 179). , 341-348 (1980)).
  • Transformants were prepared by introducing pKFpurFKQ into the FADRaddeddyicPpgixapA strain (purF-, purA-, deoD ", purr, add", edd-, yicP-, pgi-, xapA-) prepared in 1). Purine nucleoside producing ability was evaluated.
  • the basic medium for producing purine nucleosides, the culture method and the analysis method are the same as those in Example 1, except that the medium in which the amount of the distractor in the MS medium was increased to 0.8% was used.
  • Table 14 shows the evaluation results of the purine nucleoside-producing ability. When the amount of bisect tract in MS medium is increased, hypoxane that occurs significantly after sugar consumption in the latter half of culture is increased. Tin byproducts were reduced by deletion of xapA, and an effect of increasing inosine production was observed. Table 14
  • chromosome MA of the W3110 strain as type III, based on information from the Genetic Bank (E. coli Gene Bank), 35mer and 35mer having the base sequence of PCR (94 ° C, 30sec; 55 ° C, lmin; 72. C, 2min; 30 cycles; Gene Amp PCR System Mode 19600 (C.-Kin I Luma-))
  • An approximately 2.7 Kb fragment of the nupG structural gene region covering -ATG and the translation stop codon was amplified.
  • EcoRI site and Sail site are designed for PCR primers. This amplified fragment was treated with EcoRI, Sail and ⁇ ⁇ .
  • pUC18nupG, # 1 was treated with EcoRI and Sail, PMAN997 (described above), which is a vector for homologous recombination having a temperature-sensitive replication origin (tsori) having a fragment of about 1.9 kb, was ligated with EcoRI and plasmid cut with Sail using T4 DNA ligase. E. coli JM109 recombinant cells were transformed with this ligation solution to obtain transformants that grow on LB agar plates containing 25 ⁇ g / ml ampicillin.
  • Plasmid DNA was prepared from the transformants of 10 clones, and from these, plasmid DNA (p 997 nupG '# l), which produces a cut fragment of about 1.9 kb upon treatment with EcoRI and Sail, was selected. It is predicted that the nupG contained in this plasmid DNA will lose the function of the encoded enzyme by deleting about 820 bp of the structural gene (Fig. 3).
  • This plasmid p-type 997nupG, #l is the FADRaddeddyicPpgi strain (purF _, purA-, deoD-, ⁇ urR “, add", edd ", yi cP-, pgi-) was transformed at 30 ° C, ampicillin 25 a plurality of resulting colonies // g / The plate was spread on an LB agar plate containing ml and cultured at 30 ° C.Then, these cultured cells were spread on an LB agar plate containing 25 / g / ml ambivisillin to obtain a single colony.
  • a colony that grew at 42 ° C was obtained, and the procedure to obtain a single colony that grew at 42 ° C was repeated once again to select a clone in which the entire plasmid was integrated into the chromosome by homologous recombination. This clone does not have the plasmid in the cytoplasm.
  • several of the clones were spread on an LB agar plate, cultured overnight at 30 ° C, inoculated into LB liquid medium (3 ml / test tube), and incubated at 42 ° C for 3 to 4 hours. and cultured with shaking.
  • the FADRaddeddyicPpginupG strain (purF-, purA “, deoD”, purR “, add”, edd- Transformants in which pKFpurFKQ was introduced into yicP-, pgi-, and nupG-) were prepared, and the ability of these strains to produce prin nucleosides was evaluated.
  • the basic medium for purine nucleoside production, the culture method, and the analysis method were the same as those in Example 1, but a medium in which the amount of distractor in the MS medium was increased to 1.2 was used.
  • Table 15 shows the results of evaluating the purine nucleoside-producing ability.
  • the deletion of nupG reduced hypoxanthine by-products that were significantly generated after the consumption of sugar in the latter half of the culture, and also showed an effect of increasing inosine production.
  • a purine nucleoside-producing bacterium is created by desuppressing and desensitizing an enzyme controlled by a purine nucleoside biosynthesis system, and further by blocking a decomposition system and a conversion system.
  • the created purine nucleotide-producing bacteria can be suitably used for producing purine nucleosides by a fermentation method.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明細書
発酵法によるプリンヌクレオシドの製造法 技術分野
本発明は 5, —イノシン酸および 5' —グァニル酸の合成原料として重要な物 質であるイノシンおよびグアノシン等のプリンヌクレオシドの製造法、 ならびに その製造に用いられる新規微生物に関する。 背景技術
発酵法によるイノシンおよびグアノシンの生産に関しては、 アデ二ン要求株で ある、 またはそれにプリンアナログをはじめとする各種の薬剤に対する耐性を付 与したバチルス属の微生物 (特公昭 38— 23039、 特公昭 54— 17033、 特公昭 55— 2956、 特公昭 55— 45 199、 特閧昭 56— 162998、 特公昭 57— 14160、 特公昭 57— 41915、 特開昭 59— 42895) 、 およびブレビパクテリゥム属の微生物 (特公昭 5 1— 5075、 特公昭 58 - 1
7592、 Agric.Biol.Chem., 42, 399(1978)) 等を用いる方法が知られている。 このような変異株を取得するには、 従来、 紫外線照射やニトロソグァ二ジン
(N-methyl-N' -nitro-N-nitrosoguanidine) 処理などの変異誘起処理を行い、 適 当な選択培地を用いて、 目的とする変異株を取得するという方法が行われてきた。 一方で、 遺伝子工学技術を用いた生産株の育種もバチルス属の微生物 (特開昭 5
8— 158197、 特開昭 58— 175493、 特開昭 59— 28470、 特閧 昭 60— 156388、 特開平 1— 27477、 特開平 1— 174385、 特開 平 3— 58787、 特開平 3— 164185、 特開平 5— 84067、 特閧平 5 — 192 164) 、 およびブレビパクテリゥム属の微生物 (特開昭 63 - 248 394) で行われている。 発明の開示
本発明は、 発酵法によってプリンヌクレオシドを製造するために好適な微生物 を創製することを課題とする。 本発明者らは上記課題を解決するために、 発酵法によりプリンヌクレオシドを 製造するために従来用いられてきた微生物とは属を異にするェシエリヒア属細菌 にプリンヌクレオシド生産能を付与することを着想し、 これを実現することに成 功し、 本発明を完成した。
すなわち本発明は、 ェシヱリヒア属に属し、 プリンヌクレオシド生産能を有す る微生物を提供する。
詳しくは、 当該微生物として、 ブリンヌクレオシド生合成に関与する酵素の細 胞内での活性が上昇することによってプリンヌクレオシド生産能を獲得した当該 微生物を提供する。 より詳しくは、 プリンヌクレオシド生合成に関与する酵素の 遺伝子の発現量が上昇することによってプリンヌクレオシド生産能を獲得した当 該微生物、 および、 プリンヌクレオシド生合成に関与する酵素の調節が解除され ることによってプリンヌクレオシド生産能を獲得した当該微生物を提供する。 プリンヌクレオシド生合成に関与する酵素の調節は、 たとえばフィードバック 阻害が解除されることによって解除される。
上記プリンヌクレオシド生合成に関与する酵素とは、 たとえばホスホリボシル ピロリン酸 (P R P P ) アミ ドトランスフェラ一ゼおよびホスホリボシルピロリ ン酸 (P R P P ) シンセ夕一ゼである。
上記プリンヌクレオシド生合成に関与する酵素の調節を解除する手段としては、 たとえばプリン · リブレッサーの欠失がある。
さらに本発明は、 プリンヌクレオシド生合成から分岐して他の代謝産物にいた る反応が遮断されることによってプリンヌクレオシド生産能を獲得した当該微生 物を提供する。
上記プリンヌクレオシド生合成から分岐して他の代謝産物にいたる反応は、 た とえばサクシ二ル一アデノシンモノリン酸 (AM P ) シン夕一ゼ、 プリンヌクレ オシド ·フォスフォリラ一ゼ、 アデノシン ·デァミナーゼ、 イノシン一グアノシ ン ·キナーゼ、 グアノシンモノリン酸 (G M P ) リダクタ一ゼ、 6—フォスフォ グルコン酸デヒドラ一ゼ、 フォスフォグルコース 'イソメラーゼ、 アデニン 'デ ァミナ一ゼ、 キサントシン · フォスフオリラ一ゼから選ばれる酵素に触媒される 反応がある。 さらに、 本発明は、 プリンヌクレオシドの細胞内へ取り込みを弱化することに よってプリンヌクレオシド生産能を強化した当該微生物を提供する。
プリンヌクレオシドの細胞内へ取り込みは、 プリンヌクレオシドの細胞内への 取り込みに関与する反応を遮断することによって弱化することができる。 上記プ リンヌクレオシドの細胞内への取り込みに関与する反応は、 たとえばヌクレオシ ドパーミアーゼに触媒される反応である。
また本発明は、 上記微生物を培地に培養し、 プリンヌクレオシドを生成蓄積せ しめ、 プリンヌクレオシドを回収することを特徴とする発酵法によるプリンヌク レオシドの製造法である。
以下、 本発明を詳細に説明する。
( 1 ) ェシエリヒア属に属し、 プリンヌクレオシド生産能を有する微生物 本発明にいうェシエリヒア属に属する微生物の例としては、 ェシエリヒア 'コ リ(E. col i ) 等があげられる。 E. col iを遺伝子工学的手法を用いて育種する場合 には、 E. coli K12株及びその誘導体を用いることができる。
本発明にいうプリンヌクレオシドとは、 たとえばイノシン、 グアノシン、 アデ ノシン等を含む。
本発明にいうプリンヌクレオシド生産能とは、 プリンヌクレオシドを培地中に 生産蓄積する能力を意味する。 また、 プリンヌクレオシド生産能を有するとは、 そのェシヱリヒア属に属する微生物が、 E. coliの野生株例えば W3110株よりも多 量にプリヌクレオシドを培地中に生産蓄積することを意味し、 好ましくは、 後記 実施例 1に記載した条件で培養して 50 mg/L以上、 さらに好ましくは 100 mg/L以 上、 さらになお好ましくは 200mg/L以上、 もっとも好ましくは 500 mg/L以上のィ ノシンを培地中に生産蓄積することを意味する。
ェシェリヒア属に属し、 プリンヌクレオシド生産能を有する微生物を育種する には、 プリンヌクレオシド生合成に関与する酵素の細胞内での活性を上昇させる ことによる育種、 一例として、 プリンヌクレオシド生合成に関与する酵素の遺伝 子の発現量を上昇させることによる育種を採用できる。 あるいは、 プリンヌクレ ォシド生合成に関与する酵素の調節を解除することによる育種も採用できる。 さらに、 プリンヌクレオシド生合成から分岐して他の代謝産物にいたる反応が 遮断されることによる育種、 および、 プリンヌクレオシドの細胞内への取り込み を弱化することによる育種も採用できる。
( 2 ) プリンヌクレオシド生合成に関与する酵素の細胞内での活性が上昇した微 生物
ェシエリヒア属に属する微生物におけるプリンヌクレオシド生合成に関与する 全酵素と、 同酵素が触媒する全反応はすでに明らかにされている(Escherichia coli and Salmonella CELLULAR AND MOLECULAR BIOLOGY second Edition vol. 1 and vol. 2 ASM PRESS WASHINGTON D.C.)。 これら酵素のう ち、 律速段階となっている反応を触媒する酵素の酵素活性を上昇させることによ つて、 プリンヌクレオシド生産能を付与することができる。 そのような律速段階 となっている反応を触媒する酵素は、 たとえば P R P Pアミ ドトランスフェラ一 ゼ (PRPP amidotransferase)や P R P Pシンセ夕ーゼ (PRPP synthetase)である。 プリンヌクレオシド生合成に関与する酵素の細胞内での活性を上昇させる手段 を、 以下例を挙げて説明するが、 これらに限定されるものではない。
プリンヌクレオシド生合成に関与する酵素の細胞内での活性を上昇させる手段 としては、 酵素の遺伝子の発現量を上昇させることが挙げられる。
遺伝子の発現量を上昇させる手段としては、 遺伝子の調節領域の改良、 遺伝子 のコピー数の上昇などが挙げられるが、 これらに限定されるものでない。
調節領域の改良とは、 遺伝子の転写量を増加させる改変を加えることをいう。 たとえばプロモーターに変異を導入することによってプロモーター強化をおこな い下流にある遺伝子の転写量を増加させることができる。 プロモー夕一に変異を 導入する以外にも、 lac,trp,tac,trc,PLその他の微生物内で機能するプロモ一夕 —を新たに導入してもよい。 あるいは、 ェンハンサ一を新たに導入することによ つて遺伝子の転写量を増加させることができる。 染色体 D N Aへのプロモー夕一 等の遺伝子の導入については、 例えば特開平 1— 2 1 5 2 8 0号公報に記載され ている。
遺伝子のコピー数の上昇は、 具体的には、 遺伝子を多コピー型のベクターに接 続して組換え D N Aを作製し、 同組換え D N Aを微生物に保持させることによつ て得られる。 ここでべクタ一とは、 プラスミ ドやファージ等広く用いられている ものを含むが、 これら以外にも、 トランソポゾン (Berg, D.E. and Berg, CM., Bio/Technol., 1, 417(1983))や Muファージ (特開平 2-109985)も含む。 遺伝子を相 同組換え用プラスミ ド等を用いた方法で染色体に組込んでコピー数を上昇させる ことも可能である。
ェシエリヒア属に属し、 プリンヌクレオシド生合成に関与する酵素の遺伝子の 発現量の上昇した微生物の誘導に当たっては、 主として E. col iの既知の遺伝子情 報に基づき、 PCR( polymerase chain reaction)法を用いて必要な遺伝子領域を増 幅取得し育種に用いることができる。
たとえば E. coli K12の W3110株 (ATCC27325 )の染色体 DNAより PCR法を用いて P R P Pアミ ドトランスフェラ一ゼをコードする遺伝子である purFをクローニング する。 この際使用する染色体 DNAは E. coli由来であればどの菌株でもよい。 purF はアデノシンモノリン酸 (層)やグアノシンモノリン酸(GMP)でフィードバック阻 害を受ける P R P Pアミ ドトランスフェラーゼをコードする遺伝子を言い、 遺伝 的多形性などによる変異型も含む。 なお、 遺伝的多形性とは、 遺伝子上の自然突 然変異によりタンパク質のアミノ酸配列が一部変化している現象をいう。
プリンヌクレオシド生合成に関与する酵素の細胞内での活性を上昇させる手段 としては、 酵素の構造遺伝子自体に変異を導入して、 酵素そのものの活性を上昇 させることも挙げられる。
プリンヌクレオシド生合成に関与する酵素の細胞内での活性を上昇させる手段 としては、 プリンヌクレオシド生合成に関与する酵素の調節を解除することも挙 げられる。
プリンヌクレオシド生合成に関与する酵素の調節とは、 同酵素の活性を負に制 御する仕組みをいい、 たとえば生合成経路中間体または最終産物によるフィード バック阻害、 ァテニユエ一シヨン、 転写抑制などをさす。 微生物が製造したプリ ンヌクレオシドは、 同調節を通じてプリンヌクレオシド生合成に関与する酵素の 活性を阻害し、 または、 同酵素をコードする遺伝子の発現を抑制する。 したがつ て、 微生物にプリンヌクレオシドを生産させるためには同調節を解除することが 望ましい。
上記調節を受けるプリンヌクレオシド生合成に関与する酵素は、 AMPや GMPでフ イードバック阻害を受ける P R P Pアミ ドトランスフェラ一ゼゃアデノシンジリ ン酸 (ADP )によるフィードバック阻害を受ける P R P Pシンセ夕一ゼがあげられ る。 そのほか、 GMPによるフィードバック阻害をイノシンモノリン酸デヒドロゲ ナ一ゼ (IMP dehydrogenase: guaB) と G M Pシンセ夕ーゼ (GMP synthetase: guaA)とが受けている。 また、 プリン 'オペロン、 guaBAは抑制を受けている。 調節を解除する方法としては、 酵素をコ一ドする遺伝子またはその調節領域に 変異を導入する方法がある。 同変異としては、 フィードバック阻害を解除する変 異があり、 これは、 通常には、 構造遺伝子内の変異である。 また、 同変異として は、 ァテニユエ一シヨンを解除する変異があり、 これは、 通常には、 ァテニユエ 一夕一内の変異である。 さらに、 同変異としては、 抑制を解除する変異があり、 これは、 通常には、 リブレッサーと呼ばれる調節タンパク質をコードする遺伝子 の変異、 またはオペレーター領域内の変異である。
抑制を解除する変異としては、 プリン ' リブレッサーを不活化させる変異があ る。 同リブレッサーは、 プリンヌクレオチドが多量に存在する条件下でプリンォ ペロンのオペレータ一領域に結合し、 結果として同オペロンの転写が抑制される。 同リプレッサ一の不活化は、 抑制の解除につながる。
遺伝子に変異を生じさせるには、 部位特異的変異法 (Kramer, W. and Frits, H.J., Methods in Enzymology, 154, 350(1987))、 リコンビナント PCR法 (PCR Technology, Stockton Press(1989))、 特定の部分の DNAを化学合成する方法、 ま たは当該遺伝子をヒドロキシァミン処理する方法や当該遺伝子を保有する菌株を 紫外線照射処理、 もしくはニトロソグァニジンや亜硝酸などの化学薬剤で処理す る方法がある。 また遺伝子の機能を完全に不活化する目的の場合には適当な制限 酵素サイ 卜に DNAの付加や欠失を入れる方法がある。
プリンヌクレオシド生合成に関与する酵素の調節が解除されたものを選択する 場合、 酵素の発現量を酵素活性を測定することによって調べるか、 抗体を用いて 調べることができる。 また、 酵素の調節が解除された変異株を取得する一つの方 法として、 8—ァザアデニンや 8—ァザグァニンなどのプリンアナログを含む最 小培地で生育する菌株を選択し、 酵素の発現量や活性の変化を確認する方法があ る。 ( 3 ) プリンヌクレオシド生合成から分岐して他の代謝産物にいたる反応を遮断 することによってプリンヌクレオシド生産能を獲得した微生物
ェシエリヒア属に属する微生物のプリンヌクレオシド生合成経路は明らかにな つており、 プリンヌクレオシド生合成に関与する全酵素と、 同酵素が触媒する全 反応はすでに明らかにされている(Escherichia coli and Salmonella CELLULAR AND MOLECULAR BIOLOGY second Edition vol. 1 and vol. 2 ASM PRESS WASHINGTON D.C.)。 これらに加え、 他の代謝産物にいたる反応のいくつかは 明らかになつている。
他の代謝産物にいたる反応が遮断された微生物は、 同代謝産物を要求するよう になる可能性がある。 同代謝産物を要求するようになつた微生物を培養するため には、 培地に栄養物質として同代謝産物あるいはその中間体 (前駆体) を添加す る必要がある。 したがって、 遮断されるべき反応を決定する際には、 培地に新た な同代謝産物を添加する必要が生じない反応を選択することが望ましい。
また、 他の代謝産物にいたる反応のうち、 いかなるものを遮断してもつねにプ リンヌクレオシドの生産能が向上するとはかぎらない。 微生物がプリンヌクレオ シドを生産する時期に、 プリンヌクレオシド中間体あるいはプリンヌクレオシド を他の代謝産物に変換する方向の反応が進行している場合に、 同反応を遮断する ことがプリンヌクレオシド生産性向上につながる可能性がある。
プリンヌクレオシド生合成経路から分岐して他の代謝産物にいたる反応のうち、 それを遮断することによって実際にプリンヌクレオシド生産性向上につながるも のは、 プリンヌクレオシド生合成経路図がすでに明らかになっているので、 これ に基づき予測される。
プリンヌクレオシド生合成から分岐して他の代謝産物にいたる反応を遮断する 方法としては、 その反応を触媒する酵素を欠失させるか、 あるいは、 その反応を 触媒する酵素を不活化させる方法などがあげられる。 酵素を欠失させるには、 そ の酵素をコ一ドする遺伝子を欠失させる方法があげられる。 酵素を不活化させる には、 その酵素をコードする遺伝子に変異を導入するか、 あるいはその酵素を特 異的に不活化する薬剤を添加する方法などがある。
プリンヌクレオシド生合成から分岐して他の代謝産物にいたる反応のうち、 そ れを遮断することによって実際にプリンヌクレオシド生産性向上につながるもの としては、 サクシ二ルー AM Pシン夕ーゼ、 プリンヌクレオシド 'フォスフオリ ラーゼ、 アデノシン ·デァミナ一ゼ、 イノシン一グアノシン 'キナ一ゼ、 G M P リダクタ一ゼ、 6—フォスフォグルコン酸デヒドラ一ゼ、 フォスフォグルコース 'イソメラーゼ、 アデニン 'デァミナ一ゼ、 キサントシン ' フォスフオリラーゼ から選ばれる酵素に触媒される反応があげられる。
例えば、 IMPからサクシニル AMPへの分岐を遮断し、 かつイノシンからヒポキサ ンチンへの転換を遮断すると、 同遮断の結果 IMPは AMPへ転換されることがなくな り、 かつイノシンからヒポキサンチンへ転換されることがなくなる。 そして、 ィ ノシンが蓄積されることが予想される。 これらの有効性を確認するためには目的 に応じて取得した変異株を培養してイノシンの生産性を見ればよい。
後述の実施例では、 E. coliにおいてサクシニル— A M Pシン夕一ゼ遺伝子 (purA 遺伝子) を破壊してアデニン要求性を付与したとき、 E. coliのアデ二 ン要求株を生育させるのにアデニンないしはアデノシン等の AMP系物質の培地へ の添加が必要となった。 しかし、 これらの添加物質は、 E. coliにおいてはただ ちにイノシンあるいはヒポキサンチンに転換され、 AMP系物質の消化により、 一 定のところで生育が停止してしまう性質が見いだされた。 そこでその生育を維持 させる手段として、 E. coliの代謝経路から判断してアデノシンからイノシンへ の転換に関与するアデノシン ·デアミナーゼあるいはアデニンからヒポキサンチ ンへの転換に関与するアデニン ·デァミナーゼを不活化する必要性が予測された。 このようにして、 アデノシン ·デァミナ一ゼあるいはアデニン ·デァミナーゼの 不活化による効果は確認され、 ィノシンの蓄積向上効果が観察された。
また G M Pレダク夕ーゼは GM Pを I M Pに転換する反応に関わるが、 GM P レダク夕一ゼを不活化することによりグアノシンの生産性向上が予想される。 後 述の実施例に示すように若干のグアノシン蓄積向上が認められた。
またプリンヌクレオシドを生産するのにグルコ一ス等の炭素源が使用されるが、 使用する炭素源や培養条件により、 プリンヌクレオシド生合成にいたる糖代謝系 に差違が生じることが知られている。 それゆえ、 プリンヌクレオシド生合成へと 代謝系を有利に導くために、 ペントースリン酸経路を優先させるように他への分 岐を遮断することが考えられる。 その手段として、 6—フォスフォグルコン酸デ ヒドラーゼゃフォスフォグルコース ·ィソメラーゼを不活化することを行ったと ころ、 そのイノシン生産への有効性が確認された。
( 4 ) プリンヌクレオシドの細胞内への取り込みを弱化することによってプリン ヌクレオシドの生産能を獲得した微生物
細胞外に排出したプリンヌクレオシドをふたたび細胞内へ取り込むことはプリ ンヌクレオシドを蓄積する上では、 エネルギー的に不合理なことと考えられるの で、 プリンヌクレオシドの取り込みを弱化することは有効なことである。
プリンヌクレオシドの細胞内への取り込みを弱化させる手段としては、 プリン ヌクレオシドの細胞透過性に関与する反応を遮断することが挙げられる。 反応の 遮断は上記 (3 ) に説明したのと同様にして行うことができる。
例えば、 プリンヌクレオシドの細胞内への取り込みに関与するパ一ミアーゼの 一つであるヌクレオシドパ一ミア一ゼを不活化することによってイノシンの蓄積 向上効果が観察された。
( 5 ) プリンヌクレオシドの製造法
プリンヌクレオシド生産能を獲得した微生物を用いて発酵法によってプリンヌ クレオシドを製造する方法を以下説明する。
使用するプリンヌクレオシド生産用培地は、 炭素源、 窒素源、 無機イオンおよ び必要に応じその他の有機成分を含有する通常の培地でよい。 炭素源としては、 グルコース、 ラクトース、 ガラクト一ス、 フラクト一ス、 ァラビノース、 マルト —ス、 キシロース、 トレハロース、 リボースや澱粉の加水分解物などの糖類、 グ リセロール、 マンニト一ルゃソルビトールなどのアルコール類、 グルコン酸、 フ マール酸、 クェン酸ゃコハク酸等の有機酸類を用いることができる。 窒素源とし ては、 硫酸アンモニゥム、 塩化アンモニゥム、 リン酸アンモニゥム等の無機アン モニゥム塩、 大豆加水分解物などの有機窒素、 アンモニアガス、 アンモニア水等 を用いることができる。 有機微量栄養素としては、 ビタミン B1等のビタミン類、 アデニンや RNA等の核酸類などの要求物質または酵母エキス等を適量含有させる ことが望ましい。 これらの他に、 必要に応じて、 リン酸カルシウム、 硫酸マグネ シゥム、 鉄イオン、 マンガンイオン等が少量添加される。 培養は好気的条件下で 1 6〜7 2時間程度実施するのがよく、 培養温度は 3ひ °C〜4 5 °Cに、 培養中 pHは 5〜8に制御する。 なお、 pH調整には無機あるいは有 機の酸性あるいはアル力リ性物質、 さらにアンモニアガス等を使用することがで きる。
発酵液からのプリンヌクレオシドの採取は通常、 イオン交換樹脂法、 沈殿法そ の他の公知の方法を組合せることにより実施できる。
( 6 ) プリンヌクレオシド生産菌の具体例
まずェシヱリヒア ·コリ(E.coli) K12の W3110株 (ATCC27325)の染色体 DNA よ り PCR法を用 レヽて P R P P ア ミ ド ト ラ ン ス フ ェ ラ 一ゼ(PRPP amidotransferase)をコ一ドする遺伝子である purF、 プリン · リプレヅサ一
、 purine repressor)をコ一ドする ίκ子である purR、 プリンヌクレ才シド ·フ ォスフォリフ一セ (purine nucleoside pnosphorylase)をコードする遺 1Ε子でめ る deoD、 サクシニル一 A M Pシン夕ーゼ ( succinyl-AMP synthase)をコードす る遺伝子である purAヽ ァァノシン 'テア ナーセ ( adenosine deaminase) ¾:コ 一ドする遺伝子である add、 イ ノシン一グアノ シン · キナーゼ(inosine- guanosine kinase)をコードする遺伝子である gsk、 G M Pレダク夕一ゼ (GMP reductase)をコードする遺伝子である guaC、 6—フォスフォグルコン酸デヒド ラ一 ·" E (6-phosphogluconate dehydrase)をコード 3 -る 十でめる edd、 フォス フォグゾレコ——ス · ソメフ——ゼ whophogiucose lsomerase)をコード ■る遺伝子 である pgi、 ァテニン 'デァ ナ一" 12 (adenine deaminase)をコード" 5—る遺伝子で ある yicP、 P R P Pシンセ夕一ゼ (PRPP synthetase)をコードする遺伝子である prsN キサントシン · フォスフオリフ一セ (xanthosine pnosphorylase) ¾:コードす る遺伝子である xapAおよびヌクレオシド 'パーミア一ゼ (nucleoside permiase) をコードする遺伝子である nupGをクロ一ニングし、 これらの遺伝子をそれそれ の目的に応じて変異させる。 この際使用する染色体 DNAは E.coli由来であればど の菌株でもよい。
purFに導入する変異とは、 purFを破壊するための変異と、 P R P Pアミ ドトラ ンスフェラーゼのフィードバック阻害を解除するための変異である。 purRに導入 する変異とは、 purRを破壊するための変異である。 deoDに導入する変異とは、 de oDを破壊するための変異である。 purAに導入する変異とは、 purAを破壊するため の変異である。 addに導入する変異とは、 addを破壊するための変異である。 gsk に導入する変異とは、 gskを破壊するための変異である。
guaCに導入する変異とは、 guaCを破壊するための変異である。 eddに導入する 変異とは、 eddを破壊するための変異である。 pgiに導入する変異とは、 pgiを破 壊するための変異である。 yicPに導入する変異とは、 yicPを破壊するための変異 である。 prsに導入する変異とは、 P R P Pシンセ夕ーゼのフィードバック阻害 を解除するための変異である。 xapAに導入する変異とは、 xapAを破壊するための 変異である。 nupGに導入する変異とは、 nupGを破壊するための変異である。
遺伝子に変異を生じさせるには、 部位特異的変異法 (Kramer, W. and Frits, H丄, Methods in Enzymology, 154, 350(1987))、 リコンビナント PCR法 (PCR Technology, Stockton Press(1989))、 特定の部分の DNAを化学合成する方法あるいは当該遺伝子 をヒドロキシァミン処理する方法や当該遺伝子を保有する菌株を紫外線照射処理、 もしくはニトロソグァ二ジンや亜硝酸などの化学薬剤処理をする方法がある。 ま た遺伝子の機能を完全に不活化する目的の場合には適当な制限酵素サイ トに DNA の付加や欠失を入れる方法がある。
次に、 P R P Pアミ ドトランスフェラ一ゼおよび P R P Pシンセ夕一ゼのフィ ―ドバック阻害を解除するための変異が導入された purFおよび prsを組換え DNAと して適当な微生物に導入し、 発現させることにより、 フィードバック阻害が実質 的に解除された P R P Pアミ ドトランスフェラ一ゼ遺伝子(purF)および P R P P シンセ夕ーゼ遺伝子(prs)を保有する微生物を取得する。 以上の方法で取得され る組換え DNAとは、 フィードバック阻害を解除した P R P Pアミ ドトランスフエ ラーゼ遺伝子(purF )および P R P Pシンセ夕一ゼ遺伝子(prs)等の有用遺伝子を パヅセンジャーとして、 プラスミ ドゃファージ DNAのベクターに組込んだものを いう。 その際、 該有用遺伝子の発現を効率的に実施するために、 lac,trp,tac,tr c, PLその他の微生物内で機能するプロモー夕一を用いてもよい。
なお、 ここでいう組換え MAには、 該有用遺伝子をトランスポゾン (Berg,D.E. and Berg,C.M., Bio/Technol., 1, 417(1983))、 Muファージ (特開平 2-109985 )また は相同組換え用プラスミ ド等を用いた方法で染色体に組込んだものも含まれる。 相同組換え用プラスミ ドとしては、 温度感受性複製起点を有するプラスミ ドが 使用される。 温度感受性複製起点を有するプラスミ ドは、 許容温度 (permissive temperature) 、 例え ば 30°C付近で は複製で き る が、 非許容温度
(non-permissive temperature) 、 例えば 37°C〜42°Cでは複製できない。 温度感 受性複製起点を有するプラスミ ドを用いた相同組換え法では、 必要に応じて、 許 容温度でプラスミ ドを複製させたり、 非許容温度でプラスミ ドを宿主から脱落さ せたりすることができる。 後述の実施例では、 相同組換え用プラスミ ドとして、 PMAN997を使用したが、 p匪 997は p画 031(J.Bacteriol., 162, 1196(1985))と pUCl 9
(宝酒造社製) のそれそれ Vsp l -Hindl l l断片を繋ぎ換えたものである (図 1 ) 。 また ffi同組換 L¾S(Expenments in Molecular Genetics, Cold Spring Habor Lab.(1972))を用いて染色体上の特定の遺伝子機能を不活化し、 プリンヌクレオ シドの生産能を向上させた。 不活化される遺伝子とは、 その不活化によってプリ ンヌクレオシド生合成に関与する酵素の遺伝子の発現量が上昇するものである。 具体的には、 染色体上のプリン ' リブレッサー遺伝子(purR)を破壊して P R P P アミ ドトランスフェラ一ゼ遺伝子 (purF )を始めとするプリンヌクレオチド生合成 遺伝子の発現抑制機構の解除を行った。
さらに、 プリンヌクレオシド生合成から分岐して他の代謝産物にいたる反応を 触媒する酵素をコードする遺伝子を破壊した。 具体的には、 プリンヌクレオシド
-フォスフオリラーゼ遺伝子(deoD) を破壊して、 イノシンおよびグアノシンの ヒポキサンチンおよびグァニンへの分解を抑制した。 また、 サクシ二ルー A M P シン夕一ゼ遺伝子 (purA)を破壊して、 アデニン要求性を付与した。 さらに、 アデ ノシン ·デァミナ一ゼ遺伝子(add)を破壊してアデノシンからイノシンへの転換 を抑制した。 イノシン一グアノシン ·キナーゼ遺伝子 (gsk)を破壊してイノシン およびグアノシンから IMPおよび GMPへの転換を抑制した。 G M Pリダクターゼ遺 伝子 ( guaC )を破壊して GMPから IMPへの転換を抑制した。 6 -フォスフォグルコン酸 デヒ ドラ一ゼ遺伝子(edd )を破壊して、 糖がェン トナー一ド ウ ドロフ (Entner-Doudoroff)経路で代謝されるのを抑制した。 フォスフォグルコース -ィ ソメラーゼ遺伝子 (pgi )を破壊して、 糖が解糖経路で代謝されるのを抑制し、 ぺ ントースリン酸経路への流入を計った。 アデニン ·デァミナ一ゼ遺伝子 (yicP )を 破壊し、 アデニンからヒポキサンチンへの転換を抑制した。 キサントシン ' フォ スフオリラ一ゼ遺伝子(xapA)を破壊して、 キサントシンからキサンチンへの誘導 分解を抑制するとともにイノシンやグアノシンのヒポキサンチンゃグァニンへの 分解を抑制した。 もちろん、 当該遺伝子を保有する菌株を紫外線照射処理、 もし くはニトロソグァ二ジンや亜硝酸などの化学薬剤処理して、 目的の遺伝子の機能 を不活化することも行われる。
組換え DNAを有する微生物としては、 該 PRPPアミ ドトランスフェラ一ゼ等 の目的の酵素をコ一ドする遺伝子が発現するェシエリヒア属に属する微生物を用 いた。
また該 PR PPアミ ドトランスフェラーゼ遺伝子(purF)の効率的活用のために 他の有用遺伝子、 例えば PRPPから IMP生合成に関わる purF以外の遺伝子 (purD,pur T , purL , purM, purK , purE , purC , purB , purH ) , I MPデヒドロゲナーゼ遺伝子(guaB)、 G M Pシンセ夕ーゼ遺伝子(guaA)や P R P Pシンセ夕一ゼ遺伝子(prs )等と組合 せて利用するとよい。 その際、 これらの有用遺伝子は該 PRPPアミ ドトランス フヱラーゼ遺伝子 (purF)と同じく、 宿主の染色体上に存在しても、 プラスミ ドや ファ一ジ上に存在してもよい。
以上の方法で取得される purA (サクシニル— AMPシン夕一ゼ遺伝子) 欠失、 および/または deoD (プリンヌクレオシド · フォスフォリラ一ゼ遺伝子) 欠失、 および/または purR (プリン · リブレッサー遺伝子) 欠失、 および/または脱感 作型 purF (PRPPアミ ドトランスフェラーゼ遺伝子) 、 および/または add (アデノシン 'デァミナ一ゼ遺伝子) 欠失、 および/または gsk (イノシン一グ ァノシン 'キナーゼ遺伝子) 欠失、 および/または guaC (GMPリダクタ一ゼ遺 伝子) 欠失、 および/または edd (6-フォスフォグルコン酸デヒドラ一ゼ遺伝子) 欠失、 および/または pgi (フォスフォグルコース 'イソメラ一ゼ遺伝子) 欠失、 および/または yicP (アデニン 'デァミナ一ゼ遺伝子) 欠失、 および/または xa pA (キサントシン ·フォスフォリラ一ゼ遺伝子) 欠失、 および/または nupG (ヌ クレオシドパ一ミア一ゼ遺伝子) 欠失を有する微生物、 あるいは脱感作型 PRP Pアミ ド トランスフェラーゼ遺伝子(purF)、 および/または脱感作型 prs (PR PPシンセ夕一ゼ遺伝子) を含む組換え DNAで形質転換された本微生物を培養し、 培養液に目的のイノシンおよびグアノシン等のプリンヌクレオシドを生成蓄積せ しめ、 これを採取する。 図面の簡単な説明
図 1は、 pMAN997の構築を示す。
図 2は、 相同組換え用遺伝子の構造を示す。 図中の数字は、 取得された断片の 長さ(bp)および 5'側からの位置を示す。
図 3は、 相同組換え用遺伝子の構造を示す。 図中の数字は、 取得された断片の 長さ(bp)および 5'側からの位置を示す。 発明を実施するための最良の形態
実施例 1
1 ) P R P Pアミ ドトランスフェラ一ゼ遺伝子 (purF)欠失株の取得
E. coli K12の W3110株 (ATCC27325 )の染色体 DNAを錡型として用い、 遺伝子デ一 夕バンク (GenBank Accession No.M26893) の情報に基づき作製された、 CTCCTGC AGAACGAGGAAAAAGACGTATG (配列番号 1 ) と CTCAAGCTTTCATCCTTCGTTATGCATTTCG (配列番号 2 ) の塩基配列を有する 29merと 31merの両端プライマーによる PCR法 (94°C, 30sec ; 55°C, lmin; 72°C, 2min; 30サイクル; Gene Amp PCR System Mode 1960 0(ハ。-キンエルマ-社製)) を行い、 SD-ATGと翻訳終止コドンをカバ一する purF構造遺伝 子領域の約 1530bpの増幅断片を pCRTMI Iベクター ( Invitrogen社製) にクローン 化した。 本ベクターには PCR産物増幅断片をそのままクロ一ニングすることがで き、 また、 クローニングサイ トの両近傍に制限酵素サイ トとして EcoHIサイ トが 存在する。 また PCR用プライマ一には Pstlサイ トと Hindl l lサイ トがそれそれデザ ィンされている。
クロ一ン化された 1530bpの purF断片の 5,側から約 880bpの位置に Bgll lサイ トが 1ケ所あるが、 pCRTMI Iベクタ一そのものにも Bgll lサイ トが 1ケ所あるので、 プ ラスミ ドを Bgll lで部分消化し、 T4 DNA ポリメラーゼで平滑末端化した後に、 T4 DNA リガ一ゼで連結した。 このライゲイシヨン液で E. coli HB101のコンビテン ト細胞(competent cel l )を形質転換し、 アンピシリン 25〃g/mlを含む LB(トリブ トン 1% ,イーストエキストラクト 0.5%,NaCl 0.1 %,グルコース 0.1 %,pH7)寒 天プレートに生育する形質転換体を得た。 18クローンの形質転換体からプラスミ ド DNAを調製し、 この中から EcoRI消化で約 1550bpの断片が得られ、 かつ Bgl l lで 本断片が切断されないプラスミ ド DNA(pCRTMI IpurF,#14)を選択した。 本プラスミ ド DNAが有する purFは Bgll lサイ 卜でフレームシフトが生じることになり、 コード される酵素は機能を持たなくなると予測される (図 2 ) 。
次に、 pCRTMI IpurF' #14を EcoR I消化し、 purFを含む約 1.6Kbの断片を調製した。 この断片を温度感受性複製起点 (tsori )を有する相同組換え用ベクターである pMA N997 (図 1に示されるように、 pMAN031 (J. Bacterid . , 162, 1196( 1985) )と pUCl 9 (宝酒造社製) のそれそれ Vsp l - Hindl l l断片を繋ぎ換えたもの) の EcoR Iサイ トに揷入し、 プラスミ ド pMA 997purF,#14を得た。 プラスミ ド p AN997purF, #14で E. coli W3110株 (野生株) を 30°Cで形質転換し、 得られたコロニーの複数個をァ ンピシリン 25〃g/mlを含む LB寒天プレートに塗布し、 30°Cで一晩培養した。 次に これらの培養菌体をシングルコロニーが得られるようにアンピシリン 25〃 g/mlを 含む LB寒天プレートに塗布し、 42°Cで生育するコロニーを得た。 さらにもう一度、 42°Cで生育するシングルコ口ニーを得る操作を繰り返し、 相同組換えによりブラ スミ ド全体が染色体に組込まれたクローンを選択した。 本クローンがプラスミ ド を細胞質液中に持たないことを確認した。 次にこのクローンの複数個を LB寒天プ レートに塗布し、 30°Cで一晩培養した後に、 LB液体培地 (3ml/試験管) に接種 し、 42°Cで 3〜4時間、 振とう培養した。 これをシングルコロニーが得られるよう に適当に希釈(10— 5〜: 10—6程度)し、 LB寒天プレートに塗布し、 42°Cで一晩培養し、 コロニーを得た。 出現したコロニーの中から無作為に 100コロニ一をピックアツ プしてそれそれを LB寒天プレートとアンピシリン 25/ g/mlを含む LB寒天プレート に生育させ、 LB寒天プレートにのみ生育するアンピシリン感受性のクロ一ンを選 んだ。 さらにアンピシリン感受性のクローンの中から最小培地( 1L当たり Na2HP04 6.8g, KH2PO4 3g, NaCl 0.5g, NH4C1 lg, MgS04 '7H20 0.5g, CaCl2 '2H20 15mg, チアミン HC1 2mg, グルコース 0.2g)に生育せず、 ヒポキサンチン 50mg/L添加 最小培地には生育するクローンを選択した。 さらにはこれらの目的クローンの染 色体 DNAから PCRにより purFを含む約 1.5kb断片を増幅させ、 Bgl l lで切断されない ことを確認した。 以上を満足するクロ一ンを purF欠失株とし、 ここでは F-2- 51株 および F-卜 72株とした。
2)サクシニル— AM Pシン夕一ゼ遺伝子(purA)欠失株の取得
W3110株の染色体 DNAを錡型として用い、 遺伝子データバンク (GenBank Accession No.J04199) の情報に基づき作製された、 CTCGAGCTCATGGGTMCMCGTCGT CGTAC (配列番号 3 ) と CTCGTCGACTTACGCGTCGMCGGGTCGCGC (配列番号 4 ) の塩基 配列を有する 31merと 31merの両端プライマ一による PCR法 (94°C,30sec; 55°C, lm in; 72°C,2min; 30サイクル; Gene Amp PCR System Model9600(ハ。-キン Iルマ-社製)) を 行い、 ATGと翻訳終止コドンをカバ一する purA構造遺伝子領域の約 1300bpの増幅 断片を PUC18ベクタ一 (宝酒造社製) の Sac Iサイ トと Sai lサイ トの間にクロー ン化した。 なお、 PCR用プライマーには Saclサイ 卜と Sailサイ トがそれそれデザ インされている。 クロ一ン化された purA断片の約 1300bpの 5'側から約 520bpと 710 bpの位置にそれそれ Hpa lおよび SnaB Iサイ トが 1ケ所あるのでプラスミ ドを Hpa Iおよび SnaB Iで消化し、 約 190bp断片を除去したものを得る目的で T4 DNA リガ —ゼで連結した。 このライゲイシヨン液で E. col i JM109のコンビテント細胞を形 質転換し、 アンビシリン 25〃g/mlを含む LB寒天プレートに生育する形質転換体を 得た。 18クローンの形質転換体からプラスミ ド MAを調製し、 この中から Fsp lで は切断せず、 Sac lおよび Sai lでの切断で約 llOObpの断片が得られるプラスミ ド DNA(pUC18purA' #1 )を選択した。 本プラスミ ド DNAが有する purAは Hpa Iおよび Sna B Iサイ トの間で欠失が生じることになり、 コードされる酵素は機能を持たなく なると予測される (図 2 )。
次に、 pUC18purA' #lを Sac lと Sai l消化し、 purAを含む約 1.1Kbの断片を調製 した。 この断片を温度感受性複製起点 (tsori )を有する相同組換え用べクタ一で ある PMAN997 (上述) の Sac lサイ 卜と Sai lサイ 卜の間に挿入し、 プラスミ ド pMA N997purA,#lを得た。 プラスミ ド pMAN997purA, #1で F- 2- 51株 (purF— ) を 30°Cで形 質転換し、 得られたコロニーの複数個をアンピシリン 25〃g/mlを含む LB寒天プレ 一卜に塗布し、 30°Cで一晩培養した。 次にこれらの培養菌体をシングルコロニー が得られるようにアンピシリン 25〃g/mlを含む LB寒天プレートに塗布し、 42°Cで 生育するコロニーを得た。 さらにもう一度、 42°Cで生育するシングルコロニーを 得る操作を繰り返し、 相同組換えによりプラスミ ド全体が染色体に組込まれたク ローンを選択した。 本クローンがプラスミ ドを細胞質液中に持たないことを確認 した。 次にこのクローンの複数個を LB寒天プレートに塗布し、 30°Cでー晚培養し た後に、 LB液体培地 (3ml/試験管) に接種し、 42°Cで 3〜4時間、 振とう培養し た。 これをシングルコロニーが得られるように適当に希釈(10— 5〜10— 6程度)し、 LB寒天プレートに塗布し、 42°Cでー晚培養し、 コロニーを得た。 出現したコロニ —の中から無作為に 100コロニ一をピックアップしてそれそれを LB寒天プレート とアンピシリン 25〃g/mlを含む LB寒天プレ一トに生育させ、 LB寒天プレ一トにの み生育するアンピシリン感受性のクローンを選んだ。 さらにアンピシリン感受性 のクローンの中からヒポキサンチン 50mg/L添加最小培地に生育せず、 アデニン 50mg/L添加最小培地には生育するクローンを選択した。 さらにはこれらの目的ク ローンの染色体 MAから PCRにより purA約 l . lkb断片を増幅させ、 野生型 (約 1.3kb) よりサイズが小さいこと、 および Fsp lで切断されないことを確認した。 以上を 満足するクローンを purA欠失株とし、 ここでは FA- 31株とした。
3)プリンヌクレオシド ' フォスフオリラーゼ遺伝子(deoD)欠失株の取得
W3110株の染色体 DNAを錡型として用い、 遺伝子デ一夕バンク (E. coli Gene Bank) において 「deoD」 をキーワードにして検索される情報に基づいて作製さ れた、 CTCGTCGACGCGGGTCTGGMCTGTTCGAC (配列番号 5 ) と CTCGCATGCCCGTGCTTTAC CAAAGCGAATC (配列番号 6 ) の塩基配列を有する 30merと 31merの両端プライマー による PCR法 (94°C, 30sec ; 55°C, lmin; 72°C52min; 30サイクル; Gene Amp PCR System Model9600(/、° -キン;!ルマ-社製)) を行い、 SD- ATGと翻訳終止コドンをカバー する deoD構造遺伝子領域を含む約 1350bpの増幅断片を pCRTMI Iベクタ一 (Invitrogen社製) にクロ一ン化した。 本ベクターにはクローニングサイ トの両 近傍に制限酵素サイ トとして EcoRIサイ 卜が存在する。 また PCR用プライマーには Sai lサイ トと Sph lサイ トがそれそれデザインされている。 クローン化された de oD断片の約 1350bpの 5,側から約 680bpの位置に Hpa lサイ 卜が 1ケ所あるのでブラ スミ ドを Hpa lで消ィ匕し、 消化されたプラスミ ドと lOmerの Cla l リンカ一とを混 合して T4 DNA リガーゼ反応を行った。 この結果、 Hpalサイ トに Clalサイ トが揷 入された。 このライゲイシヨン液で E. coli HB101のコンビテント細胞を形質転換 し、 アンピシリン 25 g/mlを含む LB寒天プレートに生育する形質転換体を得た。 16クローンの形質転換体からプラスミ ド DNAを調製し、 この中から Hpa lでは切断 せず、 Cla lで切断されるプラスミ ド DNA(pCRTMI IdeoD,#16 )を選択した。 本ブラ スミ ド DNAが有する deoDは Hpa lサイ トでフレームシフトが生じることになり、 コ —ドされる酵素は機能を持たなくなると予測される (図 2 )。
次に、 pCRTMI IdeoD,#16を EcoR I消化し、 deoDを含む約 1.35Kbの断片を調製し た。 この断片を温度感受性複製起点(tsori )を有する相同組換え用ベクターであ る PMAN997 (上述) の EcoR Iサイ トに揷入し、 プラスミ ド pMAN997deoD, #16を得た。 プラスミ ド pMAN997deoD,#16で F-卜 72株 (purF— ) および FA- 31株 (purF—,purA— )を 30°Cで形質転換し、 得られたコロニーの複数個をアンピシリン 25 /g/mlを含む LB 寒天プレートに塗布し、 30°Cでー晚培養した。 次にこれらの培養菌体をシングル コロニーが得られるようにアンピシリン 25 /g/mlを含む LB寒天プレートに塗布し、 42°Cで生育するコロニーを得た。 さらにもう一度、 42°Cで生育するシングルコロ 二一を得る操作を繰り返し、 相同組換えによりプラスミ ド全体が染色体に組込ま れたクローンを選択した。 本クローンがプラスミ ドを細胞質液中に持たないこと を確認した。 次にこのクローンの複数個を LB寒天プレートに塗布し、 30°Cで一晩 培養した後に、 LB液 培地 (3ml/試験管) に接種し、 42°Cで 3〜4時間、 振とう 培養した。 これをシングルコロニーが得られるように適当に希釈(10— 5〜; 10— 6程 度)し、 LB寒天プレートに塗布し、 42°Cで一晩培養し、 コロニーを得た。 出現し たコロニーの中から無作為に 100コロニーをピックアップしてそれそれを LB寒天 プレートとアンピシリン 25 zg/mlを含む LB寒天プレートに生育させ、 LB寒天プレ ―トにのみ生育するアンピシリン感受性のクローンを選んだ。 さらにアンビシリ ン感受性のクローンをイノシン lg/L添加 LB培地に生育させ、 これらの培養液を 薄層クロマトグラムにより分析して、 ィノシンがヒポキサンチンに分解していな いクローンを選択した。 さらにはこれらの目的クローンの染色体 MAから PCRによ り deoDを含む約 1.35kb断片を増幅させ、 Cla Iで切断されるが Hpa Iで切断されな いことを確認した。 以上を満足するクロ一ンを deoD欠失株とし、 F-;l-72株 (purF 一) および FA-31株(purF— , purA— )由来のものをそれそれ FD- 6株および FAD- 25株と した。
4)プリン · リブレッサ一遺伝子 (purR)欠失株の取得
W3110株の染色体 DNAを鎵型として用い、 遺伝子デ一夕バンク (E. coli Gene Bank) において 「purR」 をキーワードにして検索される情報に基づいて作製さ れた、 CTCGTCGACGAAAGTAGAAGCGTCATCAG (配列番号 7 ) と CTCGCATGCTTMCGACGATA GTCGCGG (配列番号 8 ) の塩基配列を有する 29merと 28merの両端プライマーによ る PCR法 (94°C, 30sec; 55°C, lmin; 72°C, 2min; 30サイクル; Gene Amp PCR System Model9600 (ハ。 -キン Iルマ-社製)) を行い、 ATGと翻訳終止コドンをカバ一する purR構 造遺伝子領域および ATGの 5'上流域約 800bpを含む約 1.8kbの増幅断片を pUC19べク 夕一 (宝酒造社製) の Sai lサイ トおよび Sph lサイ 卜の間にクローン化した。 PC R用プライマーには Sal Iサイ トと Sph lサイ トがそれそれデザィンされており、 このサイ トがクローニングに利用された。 クロ一ン化された purR断片の約 1.8kb の 5'側から約 810bpの位置に PmaC Iサイ ト (purR構造遺伝子領域での N末端近傍) が 1ケ所あるのでプラスミ ドを PmaC Iで消化した。 消化されたプラスミ ドと 8mer の Bgl l lリンカ一を混合して T4 DNA リガ一ゼ反応を行った。 この結果、 PmaCIサ ィ トに Bgl l lサイ トが挿入された。 このライゲイシヨン液で E. coli JM109のコン ピテント細胞を形質転換し、 アンピシリン 25〃g/mlを含む LB寒天プレートに生育 する形質転換体を得た。 10クローンの形質転換体からプラスミ ド DNAを調製し、 この中から PmaC Iでは切断せず、 Bgll lで切断されるプラスミ ド DNA(pUC19purR, # 2)を選択した。 本プラスミ ド DNAが有する purRは PmaC Iサイ トでフレームシフト が生じることになり、 コードされる酵素は機能を持たなくなると予測される (図 2 ) o
次に、 pUC19purR,#2を Sac lと Sph lで消化し、 purRを含む約 1.8Kbの断片を調 製した。 この断片を温度感受性複製起点(tsori )を有する相同組換え用ベクター である PMAN997 (上述) の Sac Iサイ トと Sph lサイ 卜の間に挿入し、 プラスミ ド p MAN997purR,#2を得た。 プラスミ ド p AN997purR, #2で FD- 6株 (purF" , deoD" ) およ び FAD- 25株(purF―, purA―, deoD— )を 30°Cで形質転換し、 得られたコロニーの複数 個をアンピシリン 25〃g/mlを含む LB寒天プレートに塗布し、 30°Cで一晩培養した。 次にこれらの培養菌体をシングルコロニ一が得られるようにアンピシリン 25/ g/ mlを含む LB寒天プレートに塗布し、 42°Cで生育するコロニーを得た。 さらにもう 一度、 42°Cで生育するシングルコロニーを得る操作を繰り返し、 相同組換えによ りプラスミ ド全体が染色体に組込まれたクローンを選択した。 本クローンがブラ スミ ドを細胞質液中に持たないことを確認した。 次にこのクローンの複数個を LB 寒天プレートに塗布し、 30°Cで一晩培養した後に、 LB液体培地 (3ml/試験管) に接種し、 42°Cで 3〜4時間、 振とう培養した。 これをシングルコロニーが得られ るように適当に希釈(10— 5〜: 10— 6程度)し、 LB寒天プレートに塗布し、 42°Cで一晩 培養し、 コロニ一を得た。 出現したコロニーの中から無作為に 100コロニーをピ ヅクアップしてそれそれを LB寒天プレートとアンピシリン 25〃g/mlを含む LB寒天 プレートに生育させ、 LB寒天プレートにのみ生育するアンピシリン感受性のクロ ーンを選んだ。 さらにアンピシリン感受性のクローンの中から 10クロ一ンを無作 為に選び、 これらの染色体 MAから PCRにより purRを含む約 1.8kb断片を増幅させ、 Bgl 11で切断されるが PmaC Iで切断されないクローンを選択した。 これらのクロ ーンを purR欠失株とし、 FD-6株 (purF— ,deoD— ) および FAD- 25株(purF―, purA―, de oD一)由来のものをそれそれ FDR- 18株および FADR-8株とした。 なお、 purRが破壊さ れた株では、 P R P Pアミ ドトランスフェラ一ゼ活性が purR非破壊株に比べて増 大していることが、 deoDおよび purRが欠失した purF+株や、 purA、 deoDおよび pur Rが欠失した purF+株を用いて確認された。 P R P Pアミ ドトランスフヱラ一ゼ活 性の測定は L.J.Messengerら (J.Biol.Chem., 254, 3382(1979))の方法に従って行つ た。
5 )脱感作型 P R P Pアミ ドトランスフェラ一ゼ遺伝子(purF )の作製
1 )で pCRTMI Iベクター ( Invitrogen社製) にクローン化した約 1530bpの purFを 搭載したプラスミ ドより Pst lと Hindl l lでの消化により purF断片を切り出し、 変 異導入用プラスミ ド PKF18 (宝酒造社製) のマルチクロ一ニングサイ トの Pst lサ ィ トと Hindl l lサイ トの間に挿入し直し、 目的のクローンを得た(pKFpurF )。 G.Zhouら (J.Biol.Chem., 269, 6784(1994))により、 P R P Pアミ ドトランスフェラ一 ゼ(PurF )の 326位の Lys(K )が Gln(Q )に変異したもの、 さらに 410位の Pro(P )が Trp (W)に変異したものがいずれも GMPおよび AMPのフィードバヅク阻害に対して脱感 作されていることが示されている。 そこで、 P R P Pアミ ドトランスフェラーゼ (PurF )の 326位の Lys(K)を Gln(Q)に、 410位の Pro(P )を Trp(W)に変異できるような 遺伝子置換を行うために以下の合成 DNAプライマ一を作製し、 Site-directed Mutagenesis System Mutan-Super Express Km (宝酒造社製) のプロトコ一ル に従って、 pKFpurFに部位特異的変異を導入した。
K326Q変異用ブライマ一: 5, -GGGCTTCGTT CAG AACCGCTATGTTGG-3' (配列番号 9 ) P410W変異用プライマ一: 5, - TATGGTATTGATATG TGG AGCGCCACGGAAC-3' (配列番号 1 0 )
変異導入操作後、 得られた形質転換体のそれそれ 6クローンずつをランダムに ピックアップし、 プラスミ ドを調製し、 変異導入個所周辺の塩基配列を解析した 結果、 目的のものが得られたことが確認された。 得られたプラスミ ドはそれそれ pKFpurFKQおよび pKFpurFPWとした。 さらに pKFpurFKQに P410W(410Pro→Trp)の変 異を同じ方法で導入し、 二つの変異を同時に持つ変異型プラスミ ド pKFpurFKQPW も作製した。 また本 pKFpurFKQ、 pKFpurFPW, および pKFpurFKQPWは pKF18由来の la cp/o (ラクト一スオペロンのプロモ一夕一) の下流に変異型 (脱感作型) の purF が挿入されており、 本プロモ一夕一の支配下に purFが発現する。
またこれらのプラスミ ドで E. coli JM109を形質転換した組換え体を LB液体培地 で 8時間培養した後に菌体を集め、 粗酵素抽出液を調製した。 これらの P R P P アミ ド トランスフエラーゼ活性および AMPや GMPによる阻害度の測定を L.J.Messengerら(J.Biol.Chem., 254, 3382(1979》の方法に従って行った。 その結 果を表 1に示す。 PRPPアミ ドトランスフェラーゼ活性および AMPや GMPによる阻害 宿主 プラスミ ド PRPPアミ ド トランスフェラーゼ活性
Figure imgf000024_0001
なし lOmM AMP lOmM GMP
JM109 0.001
JM109 pKFpurF 0.68 0.48 0.10
JM109 pKFpurFKQ 0.34 0.32 0.33
JM109 pKFpurFKQPW 0.18 0.16 0.17
6)変異型 purFプラスミ ド導入株のプリンヌクレオシド生産能評価
4)で作製した FDR- 18株 (purF— ,deoD―, purR—)および FADR- 8株 (purF— ,purA―, deoD , purR— )に pKFpurFKQおよび pKFpurFKQPWを導入した形質転換体を作製し、 これら の株のプリンヌクレオシド生産能を評価した。
以下に、 プリンヌクレオシド生産能の評価のための、 プリンヌクレオシド生産 用の基本培地および培養方法ならびに分析方法を示す。
1.基本培地: MS培地 グルコース 40 g/L (別殺菌)
(NH4)2S04 16 g/L
Figure imgf000024_0002
MnS04-4H20 0.01 g/L
イ-スト Iキストラ外 2 g/L
CaC03 30 g/L (別殺菌) 2 . 培養方法
リフレッシュ(refresh)培養;保存状態の菌を接種
LB寒天培地 (必要に応じて薬剤添加)
37°C、 ー晚
種 ( seed)培養; リフレッシュ培養した菌を接種
LB液体培地 (必要に応じて薬剤添加) 、 37°C、 -晚
主 (main)培養;種培養液体培地から 2%接種
MS培地 (必要に応じてアデニン、 薬剤添加) 37°C、 20ml/500ml容坂ロフラスコ
3 . 分析方法
培養液 500〃1を経時的にサンプリングし、 15,000rpmで、 5分間遠心し、 その上 清液を H20にて 4倍希釈後、 HPLC分析する。 特記しない限り 3日間培養後の培地当 たりのプリンヌクレオシド蓄積量として評価する。
分析条件:
カラム : Asahipak GS-220 ( 7.6腿 ID x 500腿 L)
緩衝液 : 0.2M NaH2P04 (pH3.98) リン酸にて pH調整
55°C
流速 1.5ml/min
検出 UV254nm
保持時間 (min)
イノシン 16.40
ヒポキサンチン 19.27
グアノシン 20. 94
グァニン 23.55
アデニン 24.92
26.75 なお、 purA— (アデニン要求性) の菌株については MS培地にアデニン 5mg/Lが添 加される。
プリンヌクレオシド生産能の評価結果を表 2に示す。 変異型 purFプラスミ ド導 入株では、 痕跡量 (trace)の生産しか認められない W3110株 (野生株) に比べ、 優 位なィノシンの生産が認められた。 表 2
プリンヌクレオシド生産能評価 宿主 プラスミ ド プリンヌクレオシド蓄積
ィノシン(mg/L)
W3110 trace 0
FDR-18 pKFpurFKQ 115 0
FDR- 18 pKFpurFKQPW 110 0
FADR-8 pKFpurFKQ 66 0
FADR-8 pKFpurFKQPW 62 0
実施例 2
1 )アデノシン ·デァミナ一ゼ遺伝子(add)欠失株の取得
W3110株の染色体 DNAを鎵型として用い、 遺伝子データバンク (E. coli Gene Bank) において 「add」 をキ一ワードにして検索される情報に基づいて作製され た、 CTCGTCGACGGCTGGATGCCTTACGCATC (配列番号 1 1 ) と CTCGCATGCAGTCAGCACGGT ATATCGTG (配列番号 1 2 ) の塩基配列を有する 29merと 29merの両端プライマ一に よる PCR法 (94°C, 30sec ; 55。C,lmin; 72°C , 2min; 30サイクル; Gene Amp PCR System Mode 19600 (ハ。 -キン Iルマ-社製)) を行い、 ATGと翻訳終止コドンをカバーする add構 造遺伝子領域および ATGの 5'上流域約 420bpおよび翻訳終止コドンの下流域約 370b Pを含む約 1.8kbの増幅断片を pUC19ベクタ一 (宝酒造社製) の Sal Iサイ 卜と Sph Iサイ 卜の間にクローン化した。 PCR用プライマーには Sai lサイ 卜と Sph lサイ トがそれそれデザインされており、 このサイ トをクローニングに利用した。 クロ ーン化された add断片の約 1.8kbの 5'側から約 880bpの位置に Stu lサイ 卜が 1ケ所 あるのでプラスミ ドを Stu lで消ィ匕した。 消化されたプラスミ ドと 8merの Bgl l lリ ンカーとを混合し、 T4 DNAリガーゼ反応を行った。 この結果、 Stulサイ トに Bgll Iサイ トが揷入された。 このライゲイシヨン液で E. coli JM109のコンビテント細 胞を形質転換し、 アンピシリン 25 g/mlを含む LB寒天プレートに生育する形質転 換体を得た。 10クローンの形質転換体からプラスミ ド DNAを調製し、 この中から S tu lでは切断されず、 Bgll lで切断されるプラスミ ド DNA(pUC19add' #l )を選択し た。 本プラスミ ド DNAが有する addは Stu lサイ 卜でフレームシフトが生じること になり、 コードされる酵素は機能を持たなくなると予測される (図 2 )。
次に、 pUC19add' #lを Sac lと Sph lで消化し、 addを含む約 1.8Kbの断片を調製 した。 この断片を温度感受性複製起点 (tsori )を有する相同組換え用ベクターで ある PMAN997 (図 1 ) の Sac lと Sph lサイ 卜の間に挿入し、 プラスミ ド pMAN997ad d,# lを得た。 プラスミ ド pMAN997add,# lで FDR- 18株 (purF—,deoD— ,purR— ) およ び FADR-8株( purF―, purA" , deoD―, purR— )を 30°Cで形質転換し、 得られたコロニー の複数個をアンピシリン 25〃g/mlを含む LB寒天プレートに塗布し、 30°Cでー晚培 養した。 次にこれらの培養菌体をシングルコロニーが得られるようにアンビシリ ン 25 /g/mlを含む LB寒天プレートに塗布し、 42°Cで生育するコロニーを得た。 さ らにもう一度、 42°Cで生育するシングルコロニーを得る操作を繰り返し、 相同組 換えによりプラスミ ド全体が染色体に組込まれたクローンを選択した。 本クロー ンがプラスミ ドを細胞質液中に持たないことを確認した。 次にこのクロ一ンの複 数個を LB寒天プレートに塗布し、 30°Cで一晩培養した後に、 LB液体培地 (3ml/ 試験管) に接種し、 42°Cで 3〜4時間、 振とう培養した。 これをシングルコロニー が得られるように適当に希釈(10— 5〜10— 6程度)し、 LB寒天プレートに塗布し、 42 °Cでー晚培養し、 コロニ一を得た。 出現したコロニーの中から無作為に 100コロ 二一をピックアップしてそれそれを LB寒天プレートとアンピシリン 25〃g/mlを含 む LB寒天プレートに生育させ、 LB寒天プレートにのみ生育するアンピシリン感受 性のクローンを選んだ。 さらにアンピシリン感受性のクローンをアデノシン 1.5g /L添加 LB培地に生育させ、 これらの培養液を薄層クロマトグラムにより分析して、 アデノシンがイノシンに転換していないクロ一ンを選択した。 さらにこれらの目 的クロ一ンの染色体 DNAから PCRにより add約 1 · 8kb断片を増幅させ、 Bgl 11で切断 されるが Stu lで切断されないことを確認した。 これらのクローンを add欠失株と し、 FDR- 18株 (purF―, deoD—, purR— ) および FADR- 8株(purF―, purA— , deoD— ,purR一) 由来のものをそれそれ FDRadd- 18- 1株および FADRadd- 8- 3株とした。
2)脱感作型 purFプラスミ ド導入株のプリンヌクレオシド生産能評価
1 )で作製した FDRadd- 18-1株 (purF— , deoD", purR" , add— ) および FADRadd- 8-3株 (purF—, purA" , deoD—, purR— , add— )に pKFpurFKQおよび pKFpurFKQPWを導入した形質 転換体を作製し、 これらの株のプリンヌクレオシド生産能を評価した。 なお、 FA DRadd- 8-3株については野生型 purFプラスミ ド(pKFpurF )による形質転換体も作製 し、 pKFpurFKQによる形質転換体および pKFpurFKQPWによる形質転換体と比較評価 した。 プリンヌクレオシド生産用の基本培地および培養方法ならびに分析方法は 実施例 1と同じである。 purA— (アデニン要求性) の菌株については MS培地にアデ 二ン 5mg/Lが添加されている。
プリンヌクレオシド生産能の評価結果を表 3に示す。 W3110株 (野生株) に比 ベ、 優位なイノシンの生産が認められた。 また、 野生型 purFに比べ、 脱感作型 pu rFKQおよび purFKQPWの効果が認められた。 表 3
プリンヌクレオシド生産能評価 宿主 プラスミ ド プリンヌクレオシド蓄積
イノシン(mg /い グアノシン(mg/L)
W3110 trace 0
FDRadd-18-l pKFpurFKQ 220 0
FDRadd-18-l pKFpurFKQPW 215 0
FADRadd- 8- 3 pKFpurFKQ 1080 0
醒 add- 8- 3 pKFpurFKQPW 1030 0
FADRadd- 8- 3 pKFpurF 805 0
実施例 3
1 )脱感作型 purF相同組換えプラスミ ドの作製
実施例 1の 1 )で作製した purF—株を利用して脱感作型 purFを染色体置換するた めに、 先に取得した purF断片 (約 1.6kb) よりもさらに 3'側に約 0.5kb長い purF断 片を取得した。 W3110株の染色体 DNAを錶型として用い、 遺伝子データバンク (E. coli Gene Bank) の情報に基づき、 CTCCTGCAGMCGAGGAAAAAGACGTATG (配列番号 1 ) と CTCAAGCTTGTCTGATTTATCACATCATC (配列番号 1 3 ) の塩基配列を有する 29merと 29merの両端プライマーによる PCR法 (94°C, 30sec ; 55°C, lmin; 72°C52min; 30サイ クル; Gene Amp PCR System Model9600 (ハ。 -キン Iルマ-社製)) を行い、 SD- ATGと翻訳終 止コドンをカバーする purF構造遺伝子領域を含む約 2. lkbの増幅断片を pCRTMI Iベ クタ一 (Invitrogen社製) にクローン化した。 このクローンの保持するプラスミ ドを pCRTMI IpurFLとする。 pCRTMI IpurFLにはクローニングサイ トの両近傍に制限 酵素サイ トとして EcoRIサイ トが存在する。 また PCR用プライマーには Pstlサイ ト と Hindi I Iサイ トがそれそれデザインされている。
次に pCRTMI IpurFLを SnaB Iと Hindl l lで消化し、 purFのコーディング領域の C末 端より下流の約 0.65kbの断片を得た。 この断片を実施例 1の 5 )で得た pKFpurFKQ および pKFpurFKQPWの SnaB Iサイ 卜と Hindl l lサイ 卜との間に挿入し、 pKFpurFLKQ および pKFpurFLKQPWを作製した。
次に、 pKFpurFLKQおよび pKFpurFLKQPWを EcoR Iと Hindl l lで消化し、 purFLKQお ょびpuΓFLKQPWを含む約2.1Kbの断片を調製した。 この断片を温度感受性複製起点 (tsori )を有する相同組換え用べクタ一である PMA 997 (上述) の EcoR Iサイ 卜と Hindl l lサイ トとの間に挿入し、 それそれプラスミ ド pMAN997purFLKQおよび pMAN9 97purFLKQPWを得た。
2)脱感作型 purF染色体組込み株の作製
プラスミ ド pMAN997purFLKQおよび pMAN997purFLKQPWでそれそれ FDiiadd- 18-1株 (purF— , deoD" , purR—, add— ) および FADRadd- 8- 3株(purF— , purA—, deoD— , purR— , ad d一)を 30°Cで形質転換し、 得られたコロニーの複数個をアンピシリン 25〃g/mlを 含む LB寒天プレートに塗布し、 30°Cでー晚培養した。 次にこれらの培養菌体をシ ングルコロニーが得られるようにアンピシリン 25 g/mlを含む LB寒天プレートに 塗布し、 42°Cで生育するコロニーを得た。 さらにもう一度、 42°Cで生育するシン グルコロニーを得る操作を繰り返し、 相同組換えによりプラスミ ド全体が染色体 に組込まれたクローンを選択した。 本クローンがプラスミ ドを細胞質液中に持た ないことを確認した。 次にこのクローンの複数個を LB寒天プレートに塗布し、 30 °Cで一晩培養した後に、 LB液体培地 (3ml/試験管) に接種し、 42°Cで 3〜4時間、 振とう培養した。 これをシングルコロニーが得られるように適当に希釈(10— 5〜1 0一 6程度)し、 LB寒天プレートに塗布し、 42°Cで一晩培養し、 コロニーを得た。 出 現したコロニーの中から無作為に 100コロニ一をピックアップしてそれそれを LB 寒天プレートとアンピシリン 25〃g/mlを含む LB寒天プレ一卜に生育させ、 LB寒天 プレートにのみ生育するアンピシリン感受性のクローンを選んだ。 さらにアンピ シリン感受性のクローンの中から、 FDRadd- 18-1株 (purF" , deoD , purR" , add" ) の場合には最小培地に生育し、 FADRadd- 8- 3株( purF―, purA", deoD—, purR", add" ) の場合には L-ヒスチジン 100mg/Lおよびアデニン 50mg/L添加最小培地に生育す るクローンを選択した。
さらにはこれらの目的クロ一ンの染色体 DNAから PCRにより purFを含む約 1.5kb 断片を増幅させ、 相同組換え置換による変異導入個所周辺の塩基配列を解析した 結果、 K326Q( 326Lys→Gln)の変異、 および K326Q(326Lys→Gln) +P410W(410Pro→ Trp)の変異をそれそれが持つことが確認された。
FDRadd- 18-1株 ( purF" , deoD" , purR" , add" ) 由来のものを FDRadd-18- 1 : :KQ株 (purFKQ, deoD―, purR—, add一) および FDRadd-18- 1 : :KQPW株 (purFKQPW, deoD" ,pur R- , add" ) とし、 FADRadd- 8- 3株(purF―, purA―, deoD—, purR ,add—)由来のものを FA DRadd-8-3:: KQ株 ( purFKQ, purA" , deoD— , purR", add— )および FADRadd- 8-3:: KQPW株 (purFKQPW, purA—, deoD—, purR" , add— )と命名した。
3)脱感作型 purF染色体組込み株のプリンヌクレオシド生産能評価
2)で作製した FDRadd- 18- 1 : :KQ株 (purFKQ, deoD—, purR―, add—) 、 FDRadd-18-1: : KQPW株 (purFKQPW, deoD" , purR" , add" ) 、 FADRadd- 8-3 : :KQ株(purFKQ, purA— , deo D一, purR—, add— )および FADRadd- 8- 3:: KQPW株(purFKQPW, purA", deoD— , purR" , add" ) のプリンヌクレオシド生産能を評価した。 プリンヌクレオシド生産用の基本培地 および培養方法ならびに分析方法は実施例 1と同じである。 purA— (アデニン要求 性) の菌株については MS培地にアデニン 5mg/Lが添加されている。 プリンヌクレオシド生産能の評価結果を表 4に示す。 W3110株 (野生株) に比 ベ、 優位なィノシン生産が認められた。 表 4
プリンヌクレオシド生産能評価 プリンヌ ド蓄積
イノシン(mg/い グアノシン(mg/L)
W3110 trace 0
FDRadd-18-l : : KQ 110 0
FDRadd-18-l: : KQPW 105 0
FADRadd-8-3: : KQ 635 0
FADRadd-8-3 : : KQPW 620 0
実施例 4
1 )イノシン—グアノシン 'キナーゼ遺伝子(gsk)欠失株の取得
W3110株の染色体 DNAを錶型として用い、 遺伝子デ一夕バンク (GenBank Accession No.D00798) の情報に基づき、 CTCGAGCTCATGAAATTTCCCGG (配列番号 14) と CTCGGATCCGGTACCATGCTG (配列番号 15) の塩基配列を有する 23merと 21merの両 端プライマーによる PCR法 (94°C,30sec ; 55°C, lmin; 72°C,2min; 30サイクル; Gene Amp PCR System Mode 19600 (八。 -キン Iルマ-社製)) を行い、 ATGと翻訳終止コドンを力 バーする gsk構造遺伝子領域を含む約 1.5kbの増幅断片を pUC18ベクタ一 (宝酒造 社製) の Sac lサイ 卜と BamH Iサイ 卜の間にクローン化した。 PCR用プライマーに は Sac Iサイ 卜と BamH Iサイ トがそれそれデザインされている。
クローン化された gsk断片の約 1.5kbの 5'側から約 830bpの位置に Bgl 11サイ トが 1ケ所あるのでプラスミ ドを Bgll lで消化し、 そこにカナマイシン耐性 (Knf )遺 伝子 GenBlock (BamH I消化物、 フアルマシアハ、、ィォテク社製) を挿入する目的で T4 DNA リ ガーゼ反応を行った。 このライゲイシヨン液で E. coli JM109のコンビテント細胞 を形質転換し、 カナマイシン 50//g/mlを含む LB寒天プレートに生育する形質転換 体を得た。 4クローンの形質転換体からプラスミ ド DNAを調製し、 この中から Bgl l Iでは切断されず、 EcoR Iと Sai lでの消化で約 2.8kbの断片が切り出されるブラ スミ ド DNA(pUC18gsk,#2)を選択した。 本プラスミ ド DNAが有する gskは Bgll lサイ トで異種遺伝子が挿入されることになり、 コードされる酵素は機能を持たなくな ると予測される (図 2 ) 。
次に、 pUC18gsk,#2を Sac l、 Sph lおよび Dra lで消化し、 gskと Kmp遺伝子を含 む約 2.8Kbの断片を調製した。 Dral消化の目的は、 Sacl-Sphl断片の取得を容易に することである。 この断片を温度感受性複製起点 (tsori )を有する相同組換え用 ベクタ一である PMAN997 (上述) の Sac Iサイ トと Sph lサイ 卜との間に挿入し、 プラスミ ド pMAN997gsk,#2を得た。 プラスミ ド pMAN997gsk, #2で FDR- 18株 (purF一, deoD— , puril— ) および FADRadd- 8- 3株( purF― , purA", deoD一, purR" , add— )を 30。Cで形 質転換し、 得られたコロニーの複数個をアンピシリン 25〃g/mlを含む LB寒天プレ —トに塗布し、 30°Cで一晩培養した。 次にこれらの培養菌体をシングルコロニ一 が得られるようにアンピシリン 25 zg/mlを含む LB寒天プレートに塗布し、 42°Cで 生育するコロニーを得た。 さらにもう一度、 42°Cで生育するシングルコロニーを 得る操作を繰り返し、 相同組換えによりプラスミ ド全体が染色体に組込まれたク ローンを選択した。 本クローンがプラスミ ドを細胞質液中に持たないことを確認 した。 次にこのクローンの複数個を LB寒天プレートに塗布し、 30°Cでー晚培養し た後に、 LB液体培地 (3ml/試験管) に接種し、 42°Cで 3〜4時間、 振とう培養し た。 これをシングルコロニーが得られるように適当に希釈(10— 5〜1(Γ 6程度)し、 LB寒天プレートに塗布し、 42°Cで一晩培養し、 コロニーを得た。 出現したコロニ —の中から無作為に 100コロニーをピックアップしてそれそれを LB寒天プレート、 アンビシリン 25〃g/mlを含む LB寒天プレートおよびカナマイシン 20〃g/mlを含む LB寒天プレートに生育させ、 アンビシリン 25〃g/mlを含む LB寒天プレ一トには生 育しないがカナマイシン 20 /g/mlを含む LB寒天プレートには生育するクローンを 選んだ。 さらにこれらの目的クローンの染色体 DNAから PCRにより gsk遺伝子を含 む断片を増幅させ、 本来の約 1.5kb断片ではなく Knf遺伝子を含む約 2.8kb断片が 増幅されていることを確認した。 またこれらのクローンでは、 イノシン一グアノ シン ·キナーゼ活性が検出されないことを確認した。 イノシン一グアノシン 'キ ナ一ゼ活性は臼田ら(Biochim. Biophys. Acta. , 1341, 200- 206( 1997) )の方法に 従って行った。 これらのクローンを gsk欠失株とし、 FDR-18株 (purF— , deoD―, pur ίΓ ) および FADRadd- 8-3株 ( purF一 , purA", deoD― , purR", add— )由来のものをそれそ れ FDRG- 18- 13株および FADRaddG-8-3株とした。
2 )脱感作型 purFブラスミ ド導入株のプリンヌクレオシド生産能評価
1 )で作製した FDRG- 18- 13株 ( purF―, deoD— , purR— , gsk— ) および FADRaddG- 8- 3株 ( purF― , purA—, deoD― , purR", add―, gsk— )に pKFpurFKQおよび pKFpurFKQPWを導入し、 プリンヌクレオシド生産能を評価するにあたり、 プラスミ ド pKFpurFKQおよび pKF purFKQPWは薬剤選択マ一カー遺伝子が ΚηΓ遺伝子であり、 宿主 FDRG- 18- 13株およ び FADRaddG- 8- 3株もまたカナマイシン耐性となっているので、 形質転換体を得る のが困難である。 そこでプラスミ ド pKFpurFKQおよび pKFpurFKQPWの薬剤選択マー 力一遺伝子の交換をアンビシリン耐性遺伝子を持つ PUC18ベクタ一 (宝酒造社製) を用いて行った。 pKF18と pUC18とは lacプロモ一夕一とマルチクローニングサイ トの位置関係が全く同じなので、 pKFpurFKQおよび pKFpurFKQPWから Pst lと Hindi I Iで purFKQおよび purFKQPW断片を切り出し、 これらを pUC18の Pst Iサイ トと Hind I I Iサイ 卜の間に挿入し、 pUCpurFKQおよび pUCpurFKQPWを作製した。 これらで宿 主 FDRG- 18- 13株および FADRaddG-8-3株を形質転換し、 組換え体のプリンヌクレオ シド生産能を評価した。 プリンヌクレオシド生産用の基本培地および培養方法な らびに分析方法は実施例 1と同じである。 purA— (アデニン要求性) の菌株につい ては MS培地にアデ二ン 5mg/Lが添加されている。
プリンヌクレオシド生産能の評価結果を表 5に示す。 この結果より gsk欠失を 付与した場合にはイノシンと共にグアノシンも蓄積することが認められた。 表 5
プリ ド生産能評価 宿主 プラスミ ド プリンヌ ド蓄積
イノシン(mg/L )
W3110 trace 0
FDRG-18-13 pUCpurFKQ 105 139
FDRG-18-13 pUCpurFKQPW 108 93
FADRaddG-8-3 pUCpurFKQ 126 52
FADRaddG-8-3 pUCpurFKQPW 222 49
3 )脱感作型 purF染色体組込み株の作製とプリンヌクレオシド生産能評価
プラスミ ド p画 997purFLKQおよび pMAN997purFLKQPWでそれそれ FDRG- 18- 3株 (p urF— , deoD— , purR", gsk— ) および FADRaddG- 8- 3株(purF— , purA— , deoD— , purR— , add" , gslT )を 30°Cで形質転換し、 得られたコロニーの複数個をアンピシリン 25〃g/ml を含む LB寒天プレートに塗布し、 30°Cで一晩培養した。 次にこれらの培養菌体を シングルコロニーが得られるようにアンピシリン 25 g/mlを含む LB寒天プレート に塗布し、 42°Cで生育するコロニ一を得た。 さらにもう一度、 42°Cで生育するシ ングルコロニ一を得る操作を繰り返し、 相同組換えによりプラスミ ド全体が染色 体に組込まれたクローンを選択した。 本クローンがプラスミ ドを細胞質液中に持 たないことを確認した。 次にこのクローンの複数個を LB寒天プレートに塗布し、 30°Cで一晩培養した後に、 LB液体培地 (3ml/試験管) に接種し、 42°Cで 3〜4時 間、 振とう培養した。 これをシングルコロニーが得られるように適当に希釈(10 5〜10— 6程度)し、 LB寒天プレートに塗布し、 42°Cで一晩培養し、 コロニーを得た。 出現したコロニーの中から無作為に 100コロニーをビックアップしてそれそれを L B寒天プレートとアンピシリン 25〃g/mlを含む LB寒天プレートに生育させ、 LB寒 天プレートにのみ生育するアンピシリン感受性のクロ一ンを選んだ。 さらにアン ピシリン感受性のクローンの中から、 FDRG- 18- 13株 (purF" , deoD" , purR" , gsk~ ) の場合には最小培地に生育し、 FADRaddG- 8- 3株 (purF— , urA" , deoD , purR—, add一, gsk—)の場合には L-ヒスチジン 100mg/Lおよびアデニン 50mg/L添加最小培地に生 育するクローンを選択した。
さらにはこれらの目的クローンの染色体 DNAを調製し、 PCRにより purFを含む約 1.5kb断片を増幅させ、 相同組換え置換による変異導入個所周辺の塩基配列を解 析した結果、 K326Q( 326Lys→Gln)の変異、 および K326Q( 326Lys→Gln) +P410W(41 0Pro→Trp )の変異をそれぞれが持つことが確認された。
FDRG- 18- 13株 (purF―, deoD―, purR— ,gsk— ) 由来のものを FDRG-18- 13 : :KQ株 (pu rFKQ , deoD―, purR", gsk— ) および FDRG- 18-13 : : KQPW株 ( purFKQPW, deoD―, purR" , gs k一) とし、 FADRaddG-8-3株(purF— ,purA— , deoD— ,purR―, add―, gsk— )由来のものを F ADRaddG-8-3:: KQ株 ( purFKQ, purA— , deoD― , purR" , add— , gsk" )および FADRaddG- 8-3: : KQPW株 ( purFKQPW, purA" , deoD— , purR", add―, gsk" )と命名した。
F ADRaddG-8-3:: KQ株 ( urFKQ, purA— , deoD―, purR" , add—, gsk" )には、 プライべ一 ト ·ナンバー AJ13334が付与された。 同株は、 1997年 6月 24日付けで通産省工業技 術院生命工学工業技術研究所 (郵便番号 305- 0046 日本国茨城県つくば巿東一丁 目 1番 3号) に、 ブタペスト条約に基づいて国際寄託され、 受託番号として、 FE RM BP- 5993が付与された。
これらの 4種の脱感作型 purF染色体組込み株のプリンヌクレオシド生産能を評 価した。 プリンヌクレオシド生産用の基本培地および培養方法ならびに分析方法 は実施例 1と同じである。 purA— (アデニン要求性) の菌株については MS培地にァ デニン 5mg/Lが添加されている。
プリンヌクレオシド生産能の評価結果を表 6に示す。 この結果より gsk欠失を 付与した場合にはイノシンと共にグアノシンも蓄積することが認められた。
表 6
プリンヌクレオシド生産能評価 菌株 プリ ド蓄積
イノシン(mg/L) mg/l )
W3110 trace 0
FDRG-18-13 : :KQ 150 140
FDRG-18-13 : :KQPW 145 125
FADRaddG-8-3 : :KQ 550 135
醒 addG-8 - 3 : :KQPW 530 130
実施例 5
1 )野生型 purR相同組換えプラスミ ドの作製と purR+復帰染色体組込み株の作製 実施例 1の 4)で pUC19ベクタ一 (宝酒造社製) の Sai lサイ 卜と Sph lサイ トの 間に約 1.8kbの purR断片が搭載されているプラスミ ド(pUCpurR)を得た。 この pUCp urRを Sac Iと Sph lで消化し、 野生型 purRを含む約 1.8Kbの断片を調製した。 この 断片を温度感受性複製起点 (tsori )を有する相同組換え用ベクターである PMAN997 (上述) の Sac Iサイ 卜と Sph lサイ 卜の間に挿入し、 プラスミ ド pMAN997purRを 得た。 プラスミ ド p匪 997purRで FADRadd- 8- 3株 (purF—,purA―, deoD―, purIT,add一) を 30°Cで形質転換し、 得られたコロニ一の複数個をアンピシリン 25 / g/mlを含む LB寒天プレートに塗布し、 30°Cで一晩培養した。 次にこれらの培養菌体を、 シン グルコロニーが得られるようにアンピシリン 25 g/mlを含む LB寒天プレートに塗 布し、 42°Cで生育するコロニーを得た。 さらにもう一度、 42°Cで生育するシング ルコロニーを得る操作を繰り返し、 相同組換えによりプラスミ ド全体が染色体に 組込まれたクローンを選択した。 本クローンがプラスミ ドを細胞質液中に持たな いことを確認した。 次にこのクローンの複数個を LB寒天プレートに塗布し、 30°C で一晩培養した後に、 LB液体培地 (3ml/試験管) に接種し、 42°Cで 3〜4時間、 振とう培養した。 これをシングルコロニーが得られるように適当に希釈(10— 5~1 0一6程度)し、 LB寒天プレートに塗布し、 42°Cで一晩培養し、 コロニーを得た。 出 現したコロニーの中から無作為に 100コロニーをピックアップして,それそれを LB 寒天プレートとアンピシリン 25 g/mlを含む LB寒天プレ一トに生育させ、 LB寒天 プレートにのみ生育するアンピシリン感受性のクロ一ンを選んだ。 さらにアンピ シリン感受性のクローンの中から 10クローンを無作為に選び、 これらの染色体 DN Aから PCRにより purR約 1.8kb断片を増幅させ、 PmaC Iで切断されるが Bgl l lで切断 されないクローンを選択した。 これらのクロ一ンを purR+復帰株とし、 FADadd-8 - 3- 2株( purF—, purA", deoD", add" )とした。
2 )脱感作型 purFプラスミ ド導入株のプリンヌクレオシド生産能評価
1 )で作製した FADadd- 8-3-2株( purF―, purA" , deoD", add— )に pKFpurFKQを導入し た形質転換体を作製し、 これらの株のプリンヌクレオシド生産能を評価した。 な お、 FADRadd- 8- 3株についても pKFpurKQによる形質転換体を作製し、 purR欠失の 効果を比較評価した。 プリンヌクレオシド生産用の基本培地および培養方法なら びに分析方法は実施例 1と同じである。 MS培地にアデニン 5mg/Lが添加されてい る。
プリンヌクレオシド生産能の評価結果を表 7に示す。 FADadd (purR野生型) に 比べ、 FADRadd(puriT型)の方が優位なイノシンの生産を示し、 purR欠失の効果が 確認された。 表 7
プリンヌクレオシド生産能評価 宿主 プラスミ ド プリンヌクレオシド蓄積
イノシン (mg/L ) グアノシン(mg/L )
W3110 trace 0
FADRadd- 8 - 3 pKFpurFKQ 1080 0
FADadd- 8-3- 2 pKFpurFKQ 930 0
実施例 6
1 )イノシン一グアノシン ·キナーゼ遺伝子 (gsk)欠失株の再取得
W31 10株の染色体 DNAを錡型として用い、 遺伝子デ一夕バンク (GenBank Accession No.D00798) の情報に基づき、 CTCGGTACCCTGTTGCGTTAAGCCATCCCAGA (配 列番号 16) と CTCGCATGCCAACGTACGGCATTMCCTA (配列番号 17) の塩基配列を有す る 32merと 29merの両端プライマーによる PCR法 (94°C,30sec; 55°C, lmin; 72°C, 2 min; 30サイクル; Gene Amp PCR System Model9600 (ハ。 -キン iルマ-社製)) を行い、 ATGと 翻訳終止コドンをカバ一する gsk構造遺伝子領域 (約 800bp) を含む約 3.0kbの増 幅断片を PUC19ベクタ一 (宝酒造社製) の Kpn lサイ 卜と Sph lサイ 卜の間にクロ —ン化した。 PCR用プライマーには Kpn lサイ 卜と Sph lサイ トがそれそれデザィ ンされている。
クロ一ン化された gsk断片の約 3. Okbの 5'側から約 900bpと 1030bpの位置に Aro51 HIサイ 卜が 2ケ所、 1640bpの位置に Bgl l lサイ トがそれそれ 1ケ所あるのでプラ スミ ドを Aro51HIと Bgl l lで消化し、 T4 DNA ポリメラ一ゼで平滑末端化した後、 A ΓΟ51ΗΙ- Bgl l l断片を除去して、 T4 DNA リガ一ゼでべクタ一側の DNAのセルフライ ゲイシヨンを行った。 このライゲイシヨン液で E. coli JM109のコンビテント細胞 を形質転換し、 アンビシリン 25〃g/mlを含む LB寒天プレートに生育する形質転換 体を得た。 10クローンの形質転換体からプラスミ ド DMを調製し、 この中から Aro 51HIあるいは Bgll lでは切断されず、 Kpn lと Sph Iでの消化で約 2.3kbの断片が切 り出されるプラスミ ド DNA(pUC19gsk,#10 )を選択した。 本プラスミ ド DNAが有する gskは Aro51HIサイ 卜と Bgl l lサイ トの間で構造遺伝子が欠失することになり、 コ —ドされる酵素は機能を持たなくなると予測される (図 3 )。
次に、 pUC19gsk' #10を Kpn lおよび Sph lで消化し、 gsk遺伝子を含む約 2.3Kbの 断片を調製した。 この断片を温度感受性複製起点 (tsori )を有する相同組換え用 ぺク夕一である PMAN997 (上述) の Kpn lサイ 卜と Sph lサイ トの間に挿入し、 プ ラスミ ド pMAN997gsk,#10を得た。 プラスミ ド pMAN997gsk, #10で FADRadd- 8- 3株 (pu ΓΓ, purA一 , deoD— , purR" , add" )を 30°Cで形質転換し、 得られたコロ二一の複数個 をアンピシリン 25 g/mlを含む LB寒天プレートに塗布し、 30°Cでー晚培養した。 次にこれらの培養菌体をシングルコロニーが得られるようにアンピシリン 25〃g/ mlを含む LB寒天プレートに塗布し、 42°Cで生育するコロニーを得た。 さらにもう 一度、 42°Cで生育するシングルコロニーを得る操作を繰り返し、 相同組換えによ りプラスミ ド全体が染色体に組込まれたクローンを選択した。 本クローンがブラ スミ ドを細胞質液中に持たないことを確認した。 次にこのクローンの複数個を LB 寒天プレートに塗布し、 30°Cで一晩培養した後に、 LB液体培地 (3ml/試験管) に接種し、 42°Cで 3~4時間、 振とう培養した。 これをシングルコロニーが得られ るように適当に希釈(10— 5〜10— 6程度)し、 LB寒天プレートに塗布し、 42°Cで一晩 培養し、 コロニーを得た。 出現したコロニーの中から無作為に 100コロニーをピ ヅクアップして、 それそれを LB寒天プレー卜とアンピシリン 25〃g/mlを含む LB寒 天プレートに生育させ、 LB寒天プレートにのみ生育するアンピシリン感受性のク 口一ンを選んだ。 さらにアンピシリン感受性のクローンの中から 10クロ一ンを無 作為に選び、 これらの染色体 DNAから先の PCRブラィマ一を用いて PCRにより gsk遺 伝子を含む断片を増幅させ、 本来の約 3. Okb断片ではなく約 2.3kb断片が増幅され ているクロ一ンを選択した。 またこれらのクローンでは、 イノシン一グアノシン
•キナーゼ活性が検出されないことを確認した。 イノシン一グアノシン ·キナー ゼ活性は曰田ら(Biochim. Biophys. Acta. , 1341, 200- 206( 1997) )の方法に従つ て行った。 これらのクローンを新たな gsk欠失株とし、 FADRadd- 8-3株 (purF— ,pur A—, deoD― , purR" , add— )由来のものを FADRaddgsk株( purF―, purA" , deoD— , purR—, add 一, gsk— )とした。
2) G M Pリダクターゼ遺伝子 (guaC)欠失株の取得
W3110株の染色体 DNAを錶型として用い、 遺伝子デ一夕バンク (E. coli Gene Bank) の情報に基づき、 CTCMGCTTACGGCTCTGGTCCACGCCAG (配列番号 18) と CTCC TGCAGCAGCGTTGGGAGATTACAGG (配列番号 19) の塩基配列を有する 29merと 29merの 両端プライマーによる PCR法 ( 94°C , 30sec ; 55°C , lmin; 72°C , 2min; 30サイクル; Gene Amp PCR System Model9600 (ハ。 -キンエルマ-社製)) を行い、 SD- ATGと翻訳終 止コドンをカバ一する guaC構造遺伝子領域の約 2.2kbの増幅断片を pUC18ベクター
(宝酒造社製) の Hindl l lサイ トと Pst lサイ 卜の間にクローン化した。 PCR用プ ライマーには Hindl l lサイ 卜と Pstlサイ トがそれそれデザインされている。
クローン化された 2.2kbの guaC断片の 5,側から約 l . lkbの位置に Bgl l lサイ トが
1ケ所あるので、 Bgll lで切断後、 T4 DNA ポリメラーゼで平滑末端化した後に、 T4 DNA リガーゼで連結した。 このライゲイシヨン液で E. coli JM109のコンビテ ント細胞を形質転換し、 アンピシリン 25 g/mlを含む LB寒天プレートに生育する 形質転換体を得た。 18クローンの形質転換体からプラスミ ド DNAを調製し、 この 中から Hindl l lと Pstlで約 2.2kbの断片が得られ、 かつ Bgl l lで本断片が切断され ないプラスミ ド DNA(pUC18guaC' #l )を選択した。 本プラスミ ド DNAが有する guaCは Bgl l lサイ トでフレームシフトが生じることになり、 コードされる酵素は機能を 持たなくなると予測される (図 3 )。
次に、 1]( 18 11& #1を^11(1111と?31;1で消化し、 guaCを含む約 2.2Kbの断片を調 製した。 この断片を温度感受性複製起点(tsori )を有する相同組換え用ベクター である PMAN997 (上述) の Hindl l lサイ 卜と Pstlサイ 卜の間に挿入し、 プラスミ ド pMAN997guaC,#lを得た。 プラスミ ド p AN997guaC, #1で FADRadd-8-3株(purF— ,purA , deoD", purR", add一 )および FADRaddgsk株 (purF―, purA—, deoD— , purR—, add一 , gsk一 ) を 30°Cで形質転換し、 それそれ得られたコロニ一の複数個をアンピシリン 25 g/ mlを含む LB寒天プレートに塗布し、 30°Cで一晩培養した。 次にこれらの培養菌体 をシングルコロニーが得られるようにアンピシリン 25 zg/mlを含む LB寒天プレー トに塗布し、 42°Cで生育するコロニーを得た。 さらにもう一度、 42°Cで生育する シングルコロニーを得る操作を繰り返し、 相同組換えによりプラスミ ド全体が染 色体に組込まれたクローンを選択した。 本クローンがプラスミ ドを細胞質液中に 持たないことを確認した。 次にこのクローンの複数個を LB寒天プレートに塗布し、 30°Cで一晩培養した後に、 LB液体培地 (3ml/試験管) に接種し、 42°Cで 3〜4時 間、 振とう培養した。 これをシングルコロニーが得られるように適当に希釈(10 5〜10_ 6程度)し、 LB寒天プレートに塗布し、 42°Cで一晩培養し、 コロニーを得た。 出現したコロニーの中から無作為に 100コロニ一をピックアップしてそれぞれを L B寒天プレー卜とアンピシリン 25 ig/mlを含む LB寒天プレートに生育させ、 LB寒 天プレートにのみ生育するアンピシリン感受性のクロ一ンを選んだ。 これらのク ローンの染色体 DNAから PCIUこより guaCを含む約 2.2kb断片を増幅させ、 Bgl l lで切 断されないことを確認した。 以上を満足するクローンを guaC欠失株とし、 FADRad d-8- 3および FADRaddgsk由来のものをそれそれ FADRaddguaC株(purF—, purA" , deoD", purR", add— , uaC" )および FADRaddgskguaC株 ( purF― , purA", deoD— , purR", add— , gsk ― , guaC" )とした。 またこれらのクローンで G M Pリダクタ一ゼ活性が検出されな いことを確認した。 G M P リダクタ一ゼ活性の測定は、 B . B . Garberら(丄 Bacteriol., 43, 105(1980))の方法に従って行った。
3 )脱感作型 purFブラスミ ド導入株のプリンヌクレオシド生産能評価
2 )で作製した FADRaddguaC株( pur , purA— , deoD— , purR" , add—, guaC" )および FAD RaddgskguaC株( purF―, purA", deoD— , purR", add— , gsk— , guaC一 )に pKFpurFKQを導入 した形質転換体を作製し、 これらの株のプリンヌクレオシド生産能を評価した。 プリンヌクレオシド生産用の基本培地および培養方法ならびに分析方法は実施例 1と同じである。 MS培地 (基本培地) にアデニンが 5mg/L添加してある。
プリンヌクレオシド生産能の評価結果を表 8に示す。 guaCを欠失することによ り、 若干のグアノシン増産効果が認められた。 表 8
プリンヌクレオシド生産能評価 宿主 プラスミ ド プリンヌクレオシド蓄積
イノシン(mg/L ) グアノシン(mg/L ) 謹 add- 8- 3 pKFpurFKQ 1080 0
FADRaddguaC pKFpurFKQ 670 20
FADRaddgsk pKFpurFKQ 920 140
FADRaddgskguaC pKFpurFKQ 750 180
実施例 7
1 ) 6—フォスフォグルコン酸デヒドラーゼ遺伝子( edd)欠失株の取得
W3110株の染色体 MAを銪型として用い、 遺伝子データバンク (E. coli Gene Bank) において 「edd」 をキーワードにして検索される情報に基づいて作製され た、 CTCGMTTCGGATATCTGGMGMGAGGG (配列番号 20) と CTCMGCTTGGMTAGTCCCTTC GGTAGC (配列番号 21) の塩基配列を有する 29merと 29merの両端プライマーによる PCR法 (94°C,30sec ; 55°C , lmin; 72°C, 2min; 30サイクル; Gene Amp PCR System Mod el9600 (ハ。 -キン Iルマ-社製)) を行い、 ATGと翻訳終止コドンをカバ一する edd構造遺 伝子領域および ATGの 5,上流域約 810bpおよび翻訳終止コ ドンの下流域約 360bpを 含む約 3.0kbの増幅断片をそのまま pCRTMI Iベクタ一 (Invitrogen社製) にクロ一 ン化した。 本べクタ一には PCR産物増幅断片をそのままクローニングすることが でき、 またクローニングサイ トの両近傍に制限酵素サイ トとして EcoRIサイ 卜が 存在する。 また PCR用プライマ一には BaiiH Iサイ 卜と Hindl l lサイ トがそれそれデ ザィンされている。 クローン化された edd断片の約 3.0kbの 5'側から約 660bpと 190 Obpの位置に Stu lサイ トが 2ケ所あるのでプラスミ ドを Stu lで消化した。 約 1.2 5kbの Stul断片を除去したベクタ一側のセルフライゲイシヨンを T4 DNA リガ一ゼ で行った。 このライゲイシヨン液で E. coli HB101のコンビテント細胞を形質転換 し、 アンピシリン 25〃g/mlを含む LB寒天プレートに生育する形質転換体を得た。 10クローンの形質転換体からプラスミ ド DNAを調製し、 この中から Stu lでは 1.25 kbの断片が切りだされないプラスミ ド DNA(pCRTMI Iedd,#l )を選択した。 本プラス ミ ド DNAが有する eddはプロモ一夕一領域を含む夕ンパク質コ一ド領域が除去され ており、 酵素が生成しなくなると予測される (図 3 )。
次に、 pCRTMI Iedd' #lを EcoRIで消化し、 eddの一部とその近傍を含む約 1.75Kb の断片を調製した。 この断片を温度感受性複製起点(tsori )を有する相同組換え 用ぺク夕一である PMAN997 (上述) の EcoRIサイ トに揷入し、 プラスミ ド pMAN997e dd,# 1を得た。 プラスミ FpMAN997edd' # 1で FADRadd- 8- 3株(purF―, purA— ,deoD— , purR―, add—)を 30°Cで形質転換し、 得られたコロニーの複数個をアンビシリン 25 zg/mlを含む LB寒天プレートに塗布し、 30°Cでー晚培養した。 次にこれらの培養 菌体をシングルコロニーが得られるようにアンピシリン 25 /g/mlを含む LB寒天プ レートに塗布し、 42°Cで生育するコロニーを得た。 さらにもう一度、 42°Cで生育 するシングルコロニーを得る操作を繰り返し、 相同組換えによりプラスミ ド全体 が染色体に組込まれたクローンを選択した。 本クローンがプラスミ ドを細胞質液 中に持たないことを確認した。 次にこのクロ一ンの複数個を LB寒天プレー卜に塗 布し、 30°Cで一晩培養した後に、 LB液体培地 (3ml/試験管) に接種し、 42°Cで 3 〜4時間、 振とう培養した。 これをシングルコロニーが得られるように適当に希 釈(10— 5〜10— 6程度)し、 LB寒天プレートに塗布し、 42°Cで一晩培養し、 コロニー を得た。 出現したコロニーの中から無作為に 100コロニ一をピックアップしてそ れそれを LB寒天プレー卜とアンピシリン 25〃g/mlを含む LB寒天プレートに生育さ せ、 LB寒天プレートにのみ生育するアンピシリン感受性のクローンを選んだ。 こ れらの目的クローンの染色体 MAから、 先に示した PCRプライマーで PCRにより edd 領域を増幅させ、 増幅断片サイズが野生型の約 3. Okbではなく、 欠失型の約 1.75k bであるクローンを選択した。 これらのクローンを edd欠失株とし、 FADRaddedd株 ( purF" , purA—, deoD一 , purR" , add一 , edd— )とした 0
2 )脱感作型 purFプラスミ ド導入株のプリンヌクレオシド生産能評価
1 )で作製した FADRaddedd株( purF—, purA— , deoD—, purR" , add" , edd— )に pKFpurFKQ を導入した形質転換体を作製し、 これらの株のプリンヌクレオシド生産能を評価 した。 プリンヌクレオシド生産用の基本培地および培養方法ならびに分析方法は 実施例 1と同じである。 MS培地にアデニン 5mg/Lが添加されている。 eddがコード する 6—フォスフォグルコン酸デヒドラーゼはグルコン酸で誘導され、 グルコン 酸(gluconate )をェントナー · ドウ ドルフ(Entner- Doudoroff )経路でピルビン酸 へと代謝する第 1段階の酵素である。 この酵素が欠失することにより、 グルコン 酸がペント一スリン酸経路へのみ流入すると考えられるので、 ここでは MS培地中 の C源としてグルコース以外にグルコン酸 ( 48g/L添加)も使用し、 評価した。 プリンヌクレオシド生産能の評価結果を表 9に示す。 eddを欠失することによ り、 グルコン酸を C源とする時に顕著なイノシン生産増大効果が認められた。 ま た、 C源をグルコースとした場合にも効果が認められた。 表 9
プリンヌクレオシド生産能評価 宿主 プラスミ ド C源 プリンヌクレオシド蓄積
イノシン(mg/L ) グアノシン(mg/L )
FADRadd-8-3 pKFpurFKQ グルコース 1080 0
FADRaddedd pKFpurFKQ // 1340
FADRadd-8-3 pKFpurFKQ グルコン酸 1050
FADRaddedd pKFpurFKQ // 2600 0 実施例 8
1 )フォスフォグルコース ·イソメラーゼ遺伝子(pgi )欠失株の取得
W3110株の染色体 DNAを錡型として用い、 遺伝子データバンク (E. coli Gene Bank) において 「pgi」 をキーワードにして検索される情報に基づいて作製され た、 CTCGTCGACTCCATTTTCAGCCTTGGCAC (配列番号 22) と CTCGCATGCGTCGCATCAGGCAT CGGTTG (配列番号 23) の塩基配列を有する 29merと 29merの両端プライマ一による PCR法 (94°C, 30sec ; 55°C,lmin; 72°C, 2min; 30サイクル; Gene Amp PCR System Mod el9600 (ハ。 -キン Iルマ-社製)) を行い、 ATGと翻訳終止コドンをカバーする pgi構造遺 伝子領域を含む約 2.2kbの増幅断片を pUC18ベクター (宝酒造社製) の Sai lサイ 卜と Sph lサイ 卜の間にクローン化した。 PCR用プライマ一には Sal Iサイ 卜と Sph Iサイ トがそれそれデザインされている。 クロ一ン化された pgi断片の約 2.2kbの 5,側から約 1170bpと 1660bpの位置に BssHI Iサイ トと Mlulサイ トがそれそれ 1ケ所 あるのでプラスミ ドを BssHI Iと Mlulで消化した後、 T4 DNA ポリメラ一ゼで平滑 末端化した。 BssHI Iサイ トと Mlulサイ トの間の約 500bpの断片を除去したベクタ —側のセルフライゲイシヨンを T4 DNA リガ一ゼで行った。 このライゲイシヨン 液で E. col i JM109のコンビテント細胞を形質転換し、 アンピシリン 25〃g/mlを含 む LB寒天プレートに生育する形質転換体を得た。 10クローンの形質転換体からプ ラスミ ド MAを調製し、 この中から Sai lと Sphlでの処理で約 1.7kbの断片が切りだ されるプラスミ ド DNA(pUC18pgi,#l )を選択した。 本プラスミ ド DNAが有する pgiは BssHI Iサイ トと Mlulサイ トの間で欠失が生じることになり、 コードされる酵素は 機能を持たなくなると予測される (図 3 ) 。
次に、 pUC18pgi' #lを Sailと Sphlで消化し、 pgiを含む約 1.7Kbの断片を調製し た。 この断片を温度感受性複製起点(tsori )を有する相同組換え用べクタ一であ る PMAN997 (上述) の Sai lサイ 卜と Sphlサイ トの間に挿入し、 プラスミ ド pMAN997 pgi' # lを得た。 プラスミ ド pMAN997pgi,# 1で FADRadd-8- 3株 (purF―, purA―, deoD―, purR" , add— )および FADRaddedd(purF— , purA—, deoD—, purR", add— , edd— )を 30°Cで形 質転換し、 それそれ得られたコロニーの複数個をアンピシリン 25〃g/mlを含む LB 寒天プレートに塗布し、 30°Cで一晩培養した。 次にこれらの培養菌体をシングル コロニーが得られるようにアンピシリン 25 g/mlを含む LB寒天プレートに塗布し、 42°Cで生育するコロニーを得た。 さらにもう一度、 42°Cで生育するシングルコロ ニーを得る操作を繰り返し、 相同組換えによりプラスミ ド全体が染色体に組込ま れたクローンを選択した。 本クローンがプラスミ ドを細胞質液中に持たないこと を確認した。 次にこのクローンの複数個を LB寒天プレートに塗布し、 30°Cで一晩 培養した後に、 LB液体培地 (3ml/試験管) に接種し、 42°Cで 3〜4時間、 振とう 培養した。 これをシングルコロニーが得られるように適当に希釈(10— 5〜10— 6程 度)し、 LB寒天プレートに塗布し、 42°Cでー晚培養し、 コロニーを得た。 出現し たコロニーの中から無作為に 100コロニーをピックアップしてそれそれを LB寒天 プレートとアンピシリン 25 g/mlを含む LB寒天プレートに生育させ、 LB寒天プレ 一卜にのみ生育するアンピシリン感受性のクローンを選んだ。 これらの目的クロ —ンの染色体 DNAから先に示した PCRプライマーで PCRにより pgi領域を増幅させ、 増幅断片サイズが野生型の約 2.2kbではなく、 欠失型の約 1.7kbであるクローンを 選択した。 これらのクローンを pgi欠失株とし、 FADRadd- 8- 3および FADRaddedd由 来のものをそれそれ FADRaddpgi株(purF一, purA—, deoD" , purR" , add— , pgi— )および F ADRaddeddpgi株 (purF— , purA", deoD", purR" , add" , edd— ,pgi ,とした。
2 )脱感作型 purFプラスミ ド導入株のプリンヌクレオシド生産能評価
1 )で作製した FADRaddpgi株( purF— , purA", deoD" , purR" , add", pgi— )および FADRa ddeddpgi株(purF一, purA" , deoD" , purR" , add—, edd— , pgi— )に pKFpurFKQを導入した 形質転換体を作製し、 これらの株のプリンヌクレオシド生産能を評価した。 プリ ンヌクレオシド生産用の基本培地および培養方法ならびに分析方法は実施例 1と 同じであるが、 生産評価用に使用した培地は MS培地 (基本培地) 中のイーストェ キストラクトを 0.8%に増量している。
プリンヌクレオシド生産能の評価結果を表 1 0に示す。 pgiを欠失することに より、 これまでの MS培地にアデニンを 5mg/L添加した培地では生育が極度に悪く なったので、 イーストエキストラクトを 0.8%に増量した培地を用いたが、 pgi+の 親株では本培地では生育速度の増進とイノシン生産の低下および著量のヒポキサ ンチンの副生が見られた。 一方、 pgi欠失株では顕著なイノシン生産増大効果が められた 表 1 0
プリンヌクレオシド生産能評価 宿主 プラスミ ド プリンヌクレオシド蓄積
ィノシン(mg/L) ヒポキサンチン(mg/L )
FADRadd-8-3 pKFpurFKQ 450 260
FADRaddpgi pKFpurFKQ 2770 100
FADRaddedd pKFpurFKQ 780 210
FADRaddeddpgi pKFpurFKQ 3080 120
実施例 9
1 )アデニン .デァミナ一ゼ遺伝子(yicP)欠失株の取得
遺伝子データバンク (E. coli Gene Bank) において、 Baci llus subtilis由来 のアデニン ·デァミナ一ゼと相同性の高い 0RF(open reading frame,構造遺伝子) として、 yicPが登録されている。 そこで、 W3110株の染色体 DNAを錶型として用い、 「yicP」 をキ一ワードにして検索される情報に基づいて作製された、 CTCCTGCAGC GACGTTTTCTTTTATGACA (配列番号 24) と CTCMGCTTCGTAACTGGTGACTTTTGCC (配列番 号 25) の塩基配列を有する 29merと 29merの両端プライマ一による PCR法 (94°C, 30 sec ; 55°C, lmin; 72°C,2min; 30サイクル; Gene Amp PCR System Model9600 (ハ。 -キンエル マ-社製)) を行い、 ATGと翻訳終止コドンをカバーする yicP構造遺伝子領域および ATGの 5'上流域約 50bpおよび翻訳終止コドンの下流域約 40bpを含む約 1.9kb断片を 増幅した。 PCR用プライマ一には Pst lサイ トと Hindl l lサイ トがそれそれデザィ ンされている。 この PCR産物を Pstlと Hindl l lで切断後、 pUC18ベクター (宝酒造 社製) の Pst lサイ 卜と Hindl l lサイ 卜の間にクローン化した。 クローン化された yicP断片の約 1.9kbの 5,側から約 540bpと約 590bpの位置に Haplサイ トと EcoRVサ ィ トがそれそれ 1ケ所あるのでプラスミ ドを Haplと EcoRVで消化した後、 Hapl-E coRVの 47bpを除去した DNAのセルフライゲイシヨンを T4 DNA リガーゼで行った。 このライゲイシヨン液で E. coli JM109のコンビテント細胞を形質転換し、 アンピ シリン 25 g/mlを含む LB寒天プレートに生育する形質転換体を得た。 10クローン の形質転換体からプラスミ ド DNAを調製し、 この中から Haplあるいは EcoRV消化 で切断されないプラスミ ド DNA(pUC18yicP' #l )を選択した。 本プラスミ ド DNAが有 する yicPは HapI-EcoRVサイ 卜の 47bpを欠失させることでフレームシフ卜が生じ ることになり、 コードされる酵素は機能を持たなくなると予測される (図 3 ) 。
次に、 pUC18yicP' #lを Pstlと Hindlllで消化し、 yicP構造遺伝子を含む約 1.9Kb の断片を調製した。 この断片を温度感受性複製起点(tsori )を有する相同組換え 用べクタ一である PMAN997 (上述) の Pstlサイ 卜と Hindl l lサイ 卜の間に挿入し、 プラスミ ド p画 997yicP, # 1を得た。 プラスミ ド p画 997yicP, # 1で FADRaddedd(p urF", urA" , deoD— , purR— , add—, edcT )を 30°Cで形質転換し、 得られたコロニーの 複数個をアンピシリン 25 /g/mlを含む LB寒天プレートに塗布し、 30°Cでー晚培養 した。 次にこれらの培養菌体をシングルコロニーが得られるようにアンピシリン 25〃g/mlを含む LB寒天プレートに塗布し、 42°Cで生育するコロニーを得た。 さら にもう一度、 42°Cで生育するシングルコロニーを得る操作を繰り返し、 相同組換 えによりプラスミ ド全体が染色体に組込まれたクローンを選択した。 本クローン がプラスミ ドを細胞質液中に持たないことを確認した。 次にこのクローンの複数 個を LB寒天プレートに塗布し、 30°Cで一晩培養した後に、 LB液体培地 (3ml/試 験管) に接種し、 42°Cで 3〜4時間、 振とう培養した。 これをシングルコロニーが 得られるように適当に希釈(10— 5〜1(Γ6程度)し、 LB寒天プレートに塗布し、 42°C で一晩培養し、 コロニーを得た。 出現したコロニーの中から無作為に 100コロニ 一をピックァヅプしてそれそれを LB寒天プレートとアンピシリン 25〃 g/mlを含む LB寒天プレートに生育させ、 LB寒天プレートにのみ生育するアンピシリン感受性 のクローンを選んだ。 これらの目的クローンの染色体 MAから先に示した PCRブラ イマ一で PCRにより yicP領域を増幅させ、 増幅断片サイズが Haplあるいは EcoRV で切断されないクロ一ンを選択した。 またこれらのクロ一ンではアデニン ·デァ ミナ一ゼ活性が検出されないことを確認した。 アデニン ·デアミナーゼ活性は Per Nygaardら (J. Bacteriol., 178, 846-853(1996))の方法に従って行った。 これらのク ローンを yicP欠失株とし、 FADRaddeddyicP株(purF―, purA―, deoD_,purR—,add— , ed d―, yicP— )とした。 2)アデニン ·デァミナ一ゼ遺伝子 (yicP)欠失株よりフォスフォグルコース ·イソ メラーゼ遺伝子 (pgi )欠失株の取得
さらに FADRaddeddyicP株(purF―, purA", deoD—, purR" , add—, edd— , yicP— )に pgi欠 失を付与した。 実施例 8で作製した pMAN997pgi' #lを用いて、 実施例 8に示した と同様の方法で、 FADRaddeddy icPpgi株(purF— , purA— , deoD―, purR" , add—, edd— , yi cP一, pgi )を得た。
3)脱感作型 purFプラスミ ド導入株のプリンヌクレオシド生産能評価
1 )および 2 )で作製した FADRaddeddy i cP株( purF― , purA" , deoD— , purR" , add , edd", yicP— )および FADRaddeddy icPpgi株 (purF— , purA" , deoD" , purR" , add—, edd" , yicP— , pgi— )に pKFpurFKQを導入した形質転換体を作製し、 これらの株の生育におけるァ デニン量に対するリスポンスならびにプリンヌクレオシド生産能を評価した。 プ リンヌクレオシド生産用の基本培地および培養方法ならびに分析方法は実施例 1 と同じであるが、 MS培地にアデニンを 0〜 50mg/Lの範囲で添加した培地を使用し た。
アデニンに対する生育リスポンスおよびプリンヌクレオシド生産能の評価結果 を表 1 1に示す。 yicPを欠失することにより、 アデニン量に対する生育度が改善 されるとともに、 アデニン 50mg/Lおよび 20mg/L添加区でィノシン生産における yi cP欠失の効果が認められた。
表 1 1
プリンヌクレオシド生産能評価 宿主 プラスミ ド 添カロ 生育度 プリンヌクレオシド蓄禾 ί アデ二ン (0D) イノシン ヒポキサンチ
(mg/L)
FADRaddedd pKFpurFKQ 0 2.2 870 0
50 3.2 650 0
FADRaddeddyicP pKFpurFKQ 0 2.4 870 0
50 6.8 1100 40
FADRaddeddpgi pKFpurFKQ 5 2.2 1420 28
20 3.4 1760 48
FADRaddeddyicPpgi pKFpurFKQ 5 2. 1 1380 7
20 3.7 2350 19
実施例 1 0
1 ) P R P Pシンセ夕一ゼ遺伝子(prs )の取得
W3110株の染色体 DNAを鍊型として用い、 遺伝子データバンク (E. coli Gene Bank) の情報に基づき、 CTCGTCGACTGCCTAAGGATCTTCTCATGCCTGATATG (配列番号 2 6) と CTCGCATGCGCCGGGTTCGATTAGTGTTC (配列番号 27) の塩基配列を有する 38mer と 29merの両端プライマーによる PCR法 (94°C,30sec; 55°C, lmin; 72°C,2min; 30 サイクル; Gene Amp PCR System Model9600 (ハ。 -キンエルマ-社製)) を行い、 SD- ATGと翻訳 終止コドンをカバーする prs構造遺伝子領域の約 1Kbの増幅断片を pUC18ベクタ一 (宝酒造社製) にクローン化した。 PCR用プライマーには Sai lサイ トと Sphlサイ トがそれそれデザインされている。 この PCR産物を Sailと Sphlで切断後、 pUC18ベ クタ一の Sai lサイ 卜と Sphlサイ トの間にクローン化した(pUCprs)。
2)脱感作型 prsの作製
1 )でクローン化した約 lkbの prsを搭載したプラスミ ド pUCprsより Sai lと Sphl での消化により prs断片を切り出し、 変異導入用プラスミ ド pKF19k (宝酒造社製) のマルチクローニングサイ 卜の Sai lサイ トと Sphlサイ トの間に挿入し直し、 目 的のクローンを得た(pKFprs )。 S. G. Bowerら(J. Biol . Chem. , 264, 10287( 1989) ) により、 P R P Pシンセ夕一ゼ(Prs )は AMPや ADPによりフィードバック阻害を受 けることが示唆されている。 またその 128位の Asp(D )を Ala(A)に変異したものが 部分的脱感作されていると述べている。 そこで、 P R P Pシンセ夕ーゼ(Prs)の 1 28位の Asp(D)を Ala(A)に変異できるような遺伝子置換を行うために以下の合成 DN Aプライマ一を作製し、 Site-directed Mutagenesis System Mutan- Super Expres s Km (宝酒造社製) のプロトコ一ルに従って、 pKFprsに部位特異的変異を導入し た。
D128A変異用プライマ一: 5' -GCGTGCAGAGCCACTATCAGC-3' (配列番号 28)
変異導入操作後、 得られた形質転換体の 12ク口一ンを無作為にピックアップし、 プラスミ ドを調製し、 変異導入個所周辺の塩基配列を解析した結果、 目的のもの が 9クロ一ン得られたことが確認された。 この変異型 prsを持つ pKFprsDAから Sal Iと Sphlで prs断片を切り出し、 pUC18と pSTV18 (宝酒造社製) の Sailサイ 卜と Sph Iサイ 卜の間に乗せ換えた。 また野生型 prsをコントロールとして用いるために、 先に作製した pUCprsから Sai lと Sphlで prs断片を切り出し、 STV18 (宝酒造社製) の Sai lサイ 卜と Sphlサイ 卜の間に乗せ換えた。 これらの pUCprsDAと pSTVprsDAお よび pUCprsと pSTVprsはそれそれ pUC18および pSTV18由来の lacp/o (ラクト一スォ ペロンのプロモー夕一) の下流に変異型および野生型の prsが挿入されており、 本プロモーターの支配下に prsが発現する。
以上の 4つのプラスミ ドで E. coli JM109を形質転換した組換え体を LB液体培地 で 8時間培養した後に菌体を集め、 粗酵素抽出液を調製した。 これらの P R P P シンセ夕ーゼ活性および ADPによる阻害度の測定を K . F . Jensenら (Analytical Biochemistry, 98, 254-263(1979》の方法を一部改変して行った。 すなわち基質と して [ひ-3 2 P]ATPを使用し、 反応で生成する [ 3 2P]AMPを測定した。 その結果を表 1 2に示した。 表 1 2
P R P Pシンセ夕ーゼ(Prs)活性 宿主 プラスミ ド 性質 比活性(nmol/min/粗酵素液 mg) なし 5細 P
JM109 PUC18 : nントロー -ル 2.9 ND
JM109 pUCprs 问 _iピ一ヽ 野生型 75.9 ND
JM109 pUCprsDA 髙コピー、 変異型 80.8 20.2
JM109 pSTVprs 中コピー、 野生型 11.5 ND
JM109 pSTVprsDA 中コピ一、 変異型 10.6 2.7
3)脱感作型 prsプラスミ ド導入株のプリンヌクレオシド生産能評価
実施例 9の 3 )で作製した FADRaddeddyicPpgi株 (purF— , purA— , deoD" , purR—, add—, edd—, yicP―, pgi— )に pKFpurFKQを導入した形質転換体をさらに prsや prsDA遺伝子 を搭載した pSTVprsと pSTVprsDAでそれそれ形質転換し、 2プラスミ ド共存型の菌 株を作製し、 これらの株のプリンヌクレオシド生産能を評価した。 プリンヌクレ オシド生産用の基本培地および培養方法ならびに分析方法は実施例 1と同じであ るが、 MS培地中のィ一ストエキストラクト量を 0.4%にした培地を使用した。
プリンヌクレオシド生産能の評価結果を表 1 3に示す。 変異型 prsDAをプラス ミ ドとして導入することにより、 イノシン生産増大効果が認められた。 表 1 3
プリンヌクレオシド生産能評価 宿主 プラスミ ド プリンヌ 7レオシド蓄積
イノシン ヒポキサンチン
(mg/D (mg/D
FADRaddeddyicPpgi pKFpurFKQ 1600 8
pKFpurFKQ+pSTVprs 1450 3 pKFpurFKQ+pSTVprsDA 1815 10 実施例 1 1
1 )キサントシン ·フォスフオリラーゼ遺伝子(xapA)欠失株の取得
遺伝子デ一夕バンク (E. coli Gene Bank) において 「xapA」 をキ一ワードにし て検索される情報に基づいて作製された、 4種類のブラィマ一による Cross- over PCR法により、 一段階操作にて変異不活化遺伝子を構築した。 使用したプライマ 一を以下に示す。
N-out: 5' -CGCGGATCCGCGACATAGCCGTTGTCGCC-3' (配列番号 29)
N - in: 5,- CCCATCCACTAAACTTAAACATCGTGGCGTGAAATCAGG- 3, (配列番号 30) C-in: 5' -TGTTTAAGTTTAGTGGATGGGCATCAACCTTATTTGTGG-3' (配列番号 31) C-out: 5, -CGCAAGCTTCAAACTCCGGGTTACGGGCG-3' (配列番号 32)
まず、 N-out (29mer )と N- in( 39mer )および C-in( 39mer )と C-out(29mer )の両端プ ライマ一により、 W3110株の染色体 DNAを錶型として用い、 それそれ PCR法 (94°C , 30sec; 55°C, lmin; 72°C,2min; 30サイクル; Gene Amp PCR System Model9600 (ハ。 -キン エルマ-社製)) を行い、 2つの PCR産物 (ともに約 850bp断片) を得、 次に 2つの PCR 産物を混合して、 再度 N- outと C- outを両端プライマーとして PCRを行い、 xapA構 造遺伝子領域を含む遺伝子領域が約 2.4kb断片 (野生型のサイズ) から約 1.7kb断 片に短縮した遺伝子断片を増幅した。 また N-outと C- outの PCR用プライマーには B amH Iサイ トと Hindl l lサイ トがそれそれデザインされている。 この PCR産物を Bam HIと Hindi I Iで切断後、 この断片と温度感受性複製起点 (tsori )を有する相同組換 え用べクタ一である PMAN997 (上述) を BamHIと Hindl l lで切断したプラスミ ドと のライゲイシヨンを T4 DNA リガ一ゼで行った。 このライゲイシヨン液で E. coli JM109のコンビテント細胞を形質転換し、 アンビシリン 25〃g/mlを含む LB寒天プ レートに生育する形質転換体を得た。 10クローンの形質転換体からプラスミ ド DN Aを調製し、 この中から BajnHIと Hindl l lでの消化で約 1.7kbの切断断片が生じるプ ラスミ ド DNA(p画 997xapA' #l )を選択した。 本プラスミ ド DNAが有する xapAは構造 遺伝子の約 700bpが欠失することで、 コ一ドされる酵素は機能を持たなくなると 予測される (図 3 )。
このプラスミ ド pMAN997xapA,# 1で FADRaddeddyicPpgi株(purF—,purA— , deoD_,p urR— , add_,edd―, yicP―, pgi )を 30°Cで形質転換し、 それそれ得られたコロニーの 複数個をアンビシリン 25〃g/mlを含む LB寒天プレートに塗布し、 30°Cでー晚培養 した。 次にこれらの培養菌体をシングルコロニーが得られるようにアンピシリン 25 g/mlを含む LB寒天プレートに塗布し、 42°Cで生育するコロニーを得た。 さら にもう一度、 42°Cで生育するシングルコロニ一を得る操作を繰り返し、 相同組換 えによりプラスミ ド全体が染色体に組込まれたクローンを選択した。 本クローン がプラスミ ドを細胞質液中に持たないことを確認した。 次にこのクローンの複数 個を LB寒天プレートに塗布し、 30°Cで一晩培養した後に、 LB液体培地 (3ml/試 験管) に接種し、 42°Cで 3〜4時間、 振とう培養した。 これをシングルコロニーが 得られるように適当に希釈(1(Γ5〜: 10— 6程度)し、 LB寒天プレートに塗布し、 42°C でー晚培養し、 コロニーを得た。 出現したコロニーの中から無作為に 100コロニ —をピヅクアップしてそれそれを LB寒天プレ一トとアンピシリン 25 /g/mlを含む LB寒天プレートに生育させ、 LB寒天プレートにのみ生育するアンピシリン感受性 のクローンを選んだ。 これらの目的クローンの染色体 DNAから先に示した N- outと C - outの PCRブラィマーで PCRにより xapA領域を増幅させ、 増幅断片サイズが約 1.7 kbのクロ一ンを選択した。 これらのクローンを xapA欠失株とし、 FADRaddeddyicP pgixapA株 (purF一, purA一, deoD—, purR", add一 , edd—, yicP—, pgi一, xapA" )とした。 こ の xapA欠失株では、 キサントシンの添加培養によって、 培地中にキサンチンの生 成が認められず、 またキサントシン ·フォスフォリラ一ゼが誘導されていないこ とも確認できた。 キサントシン 'フォスフオリラーゼ活性の測定は K. Hammer Jespersenら(Molec. Gen. Genet., 179, 341-348(1980))の方法に従って行った。
2 )脱感作型 purFプラスミ ド導入株のプリンヌクレオシド生産能評価
1 )で作製した FADRaddeddyicPpgixapA株(purF―, purA—, deoD" ,purr, add" , edd—, yicP―, pgi— ,xapA— )に pKFpurFKQを導入した形質転換体を作製し、 これらの株のプ リンヌクレオシド生産能を評価した。 プリンヌクレオシド生産用の基本培地およ び培養方法ならびに分析方法は実施例 1と同じであるが、 MS培地中のィ一ストェ キストラクトを 0.8%に増量した培地を使用した。
プリンヌクレオシド生産能の評価結果を表 1 4に示す。 MS培地中のィーストェ キストラクトを増量した場合に、 培養後半の糖消費後に顕著に生じるヒポキサン チンの副生が、 xapAを欠失することにより減少するとともに、 イノシン生産増大 効果が認められた。 表 1 4
プリンヌクレオシド生産能評価 宿主 プラスミ ド 培養時間 プリンヌクレオシド蓄積
(days) イノシン ヒポキサンチン
(mg/L) (mg/L)
FADRaddeddyicPpgi pKFpurFKQ 3 4640 146
6 1850 1500
FADRaddeddyicPpgixapA pKFpurFKQ 3 5870 57
6 3810 915
実施例 1 2
1 )ヌクレオシドパ一ミア一ゼ遺伝子 (nupG)欠失株の取得
W3110株の染色体 MAを錶型として用い、 遺伝子デ一夕バンク (E. coli Gene Bank) の情報に基づき、 CTCGAATTCATGGTGCCGMCCACCTTGATAAACG (配列番号 33) と CTCGTCGACATGCCGAAACCGGCGAATATAGCGAC (配列番号 34) の塩基配列を有する 35m erと 35merの両端プライマーによる PCR法 (94°C, 30sec; 55°C, lmin; 72。C,2min; 30サイクル; Gene Amp PCR System Mode 19600 (ハ。 -キン Iルマ-社製)) を行い、 SD-ATGと翻 訳終止コドンをカバーする nupG構造遺伝子領域の約 2.7Kb断片を増幅した。 PCR用 プライマーには EcoR Iサイ トと Sailサイ トがそれそれデザインされている。 この 増幅断片を EcoRI、 Sai lおよび ΑΠΙ Ιで処理した。 Afl l lサイ トは PCR増幅断片中に 2ケ所あり、 約 750bp、 820bpおよび 1130bpの 3断片が生成する。 その中で Af I I I 切断断片の約 820bpを除く約 720bpと 1130bpの 2断片を回収し、 pUC18ベクタ一
(宝酒造社製) を EcoRIおよび Sai l切断した DNAと T4 DNA リガーゼでライゲ一シ ヨンした。 このライゲイシヨン液で E. coli HB101を形質転換し、 出現したコロニ —の 16個よりプラスミ ドを調製し、 EcoRIと Sai lでの切断断片が約 1.9kbのクロ一 ン(pUC18nupG' #l )を選択した。 さらに pUC18nupG, #1を EcoRIと Sai lで処理し、 生 じる約 1.9kbの断片と温度感受性複製起点 (tsori )を有する相同組換え用べクタ一 である PMAN997 (上述) を EcoRIと Sailで切断したプラスミ ドとのライゲイシヨン を T4 DNA リガーゼで行った。 このライゲイシヨン液で E. col i JM109のコンビテ ント細胞を形質転換し、 アンピシリン 25〃g/mlを含む LB寒天プレートに生育する 形質転換体を得た。 10クローンの形質転換体からプラスミ ド DNAを調製し、 この 中から EcoRIと Sailでの処理で約 1.9kbの切断断片が生じるプラスミ ド DNA(p匪 99 7nupG' #l )を選択した。 本プラスミ ド DNAが有する nupGは構造遺伝子の約 820bpを 欠失させることで、 コードされる酵素は機能を持たなくなると予測される (図 3 ) « このプラスミ ド p画 997nupG,# lで FADRaddeddyicPpgi株(purF_ ,purA―, deoD— , ρ urR", add", edd", y i cP―, pgi— )を 30°Cで形質転換し、 得られたコロニーの複数個を アンピシリン 25 //g/mlを含む LB寒天プレートに塗布し、 30°Cでー晚培養した。 次 にこれらの培養菌体を、 シングルコロニ一が得られるようにアンビシリン 25 /g/ mlを含む LB寒天プレートに塗布し、 42°Cで生育するコロニーを得た。 さらにもう 一度、 42°Cで生育するシングルコロニーを得る操作を繰り返し、 相同組換えによ りプラスミ ド全体が染色体に組込まれたクロ一ンを選択した。 本クローンがブラ スミ ドを細胞質液中に持たないことを確認した。 次にこのクローンの複数個を LB 寒天プレートに塗布し、 30°Cで一晩培養した後に、 LB液体培地 (3ml/試験管) に接種し、 42°Cで 3〜4時間、 振とう培養した。 これをシングルコロニーが得られ るように適当に希釈(10—5〜10—6程度)し、 LB寒天プレートに塗布し、 42°Cで一晩 培養し、 コロニーを得た。 出現したコロニーの中から無作為に 100コロニ一をピ ックアップしてそれそれを LB寒天プレートとアンピシリン 25〃g/mlを含む LB寒天 プレートに生育させ、 LB寒天プレートにのみ生育するアンピシリン感受性のクロ ーンを選んだ。 これらの目的クローンの染色体 DNAから先に示した PCRプライマー で PCRにより nupG領域を増幅させ、 増幅断片サイズが約 1.9kbのクローンを選択し た。 これらのクローンを nupG欠失株とし、 それそれ FADRaddeddyicPpginupG株(pu rF _ , purA", deoD— , purR", add―, edd一 , y i cP一, pg i— ,卿 G— )とした。
2)脱感作型 purFプラスミ ド導入株のプリンヌクレオシド生産能評価
1 )で作製した FADRaddeddyicPpginupG株(purF―, purA" , deoD" , purR", add", edd一, yicP―, pgi―, nupG— )に pKFpurFKQを導入した形質転換体を作製し、 これらの株のプ リンヌクレオシド生産能を評価した。 プリンヌクレオシド生産用の基本培地およ び培養方法ならびに分析方法は実施例 1と同じであるが、 MS培地中のィ一ストェ キストラクトを 1.2 に増量した培地を使用した。
プリンヌクレオシド生産能の評価結果を表 1 5に示す。 MS培地中のイーストェ キストラクトを増量した場合に、 nupGの欠失により、 培養後半の糖消費後に顕著 に生じるヒポキサンチンの副生が減少するとともに、 イノシン生産増大効果が認 められた。 表 1 5
プリンヌクレオシド生産能評価 宿主 プラスミ ド プリンヌクレオシド蓄積
イノシン ヒポキサンチン
(mg/L ) (mg/L)
FADRaddeddyicPpgi pKFpurFKQ 1190 835
FADRaddeddyicPpginupG pKFpurFKQ 3390 315
産業上の利用可能性
本発明によれば、 プリンヌクレオシド生合成系で制御を受ける酵素を脱抑制お よび脱感作し、 さらには分解系や転換系をブロックすることにより、 プリンヌク レオシド生産菌が創製される。 創製されたプリンヌクレオチド生産菌は、 プリン ヌクレオシドを発酵法により生産するために好適に使用できる。

Claims

請求の範囲
1 . ェシエリヒア属に属し、 プリンヌクレオシド生産能を有する微生物。
2 . プリンヌクレオシド生合成に関与する酵素の細胞内での活性が上昇すること によってプリンヌクレオシド生産能を獲得した請求項 1記載の微生物。
3 . プリンヌクレオシド生合成に関与する酵素の遺伝子の発現量が上昇すること によってプリンヌクレオシド生産能を獲得した請求項 1記載の微生物。
4 . プリンヌクレオシド生合成に関与する酵素の調節が解除されることによって プリンヌクレオシド生産能を獲得した請求項 1記載の微生物。
5 . フィ一ドバック阻害が解除されることによりプリンヌクレオシド生合成に関 与する酵素の調節が解除される請求項 4記載の微生物。
6 . プリンヌクレオシド生合成に関与する酵素が、 ホスホリボシルピロリン酸ァ ミ ドトランスフェラ一ゼである請求項 3から 5のいずれか 1項に記載の微生物。
7 . プリンヌクレオシド生合成に関与する酵素が、 ホスホリボシルピロリン酸シ ンセ夕一ゼである請求項 3または 4記載の微生物。
8 . プリン ' リブレッサ一が不活化することによりプリンヌクレオシド生合成に 関与する酵素の調節が解除される請求項 4記載の微生物。
9 . プリンヌクレオシド生合成から分岐して他の代謝産物にいたる反応が遮断さ れることによってプリンヌクレオシド生産能を獲得した請求項 1記載の微生物。
1 0 . プリンヌクレオシド生合成から分岐して他の代謝産物にいたる反応が、 サ クシニル一アデノシンモノリン酸シン夕一ゼ、 プリンヌクレオシド ·フォスフォ リラ一ゼ、 アデノシン ·デァミナ一ゼ、 イノシン一グアノシン 'キナーゼ、 グァ ノシンモノリン酸リダクタ一ゼ、 6—フォスフォグルコン酸デヒドラ一ゼ、 フォ スフォグルコース ·イソメラーゼ、 アデニン ·デァミナ一ゼ、 キサントシン,フ ォスフオリラーゼから選ばれる酵素に触媒される反応である請求項 9記載の微生 物。
1 1 . プリンヌクレオシドの細胞内への取り込みを弱化することによってプリン ヌクレオシド生産能を強化した請求項 1記載の微生物。
1 2 . プリンヌクレオシドの細胞内への取り込みが、 プリンヌクレオシドの細胞 内への取り込みに関与する反応の遮断により弱化され、 プリンヌクレオシドの細 胞内への取り込みに関与する反応がヌクレオシドパーミアーゼに触媒される反応 である請求項 1 1記載の微生物。
1 3 . 請求項 1から 1 2のいずれか 1項に記載の微生物を培地に培養し、 プリン ヌクレオシドを生成蓄積せしめ、 プリンヌクレオシドを回収することを特徴とす る発酵法によるプリンヌクレオシドの製造法。
PCT/JP1998/003239 1997-07-18 1998-07-17 Procede de production de nucleosides de purine par fermentation WO1999003988A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP50692199A JP3944916B2 (ja) 1997-07-18 1998-07-17 発酵法によるプリンヌクレオシドの製造法
BRPI9815557-1A BR9815557B1 (pt) 1997-07-18 1998-07-17 microrganismo transgênico, e, processo para produzir um nucleosìdeo de purina por fermentação.
US09/462,472 US7435560B1 (en) 1997-07-18 1998-07-17 Method for producing purine nucleoside by fermentation
DE69837041T DE69837041T2 (de) 1997-07-18 1998-07-17 Verfahren und Mikroorganismus zur Herstellung von Purin-Nukleosiden durch Fermentation
EP98932584A EP1004663B1 (en) 1997-07-18 1998-07-17 Process and microorganism for producing purine nucleosides via fermentation
KR10-2000-7000552A KR100511151B1 (ko) 1997-07-18 1998-07-17 발효에 의한 퓨린 뉴클레오사이드의 제조 방법
US11/682,083 US7776566B2 (en) 1997-07-18 2007-03-05 Method for producing purine nucleoside by fermentation
US11/682,103 US20070161090A1 (en) 1997-07-18 2007-03-05 Method for producing purine nucleoside by fermentation
US11/682,114 US7601519B2 (en) 1997-07-18 2007-03-05 Method for producing purine nucleoside by fermentation
US11/682,155 US7608432B2 (en) 1997-07-18 2007-03-05 Method for producing purine nucleoside by fermentation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/194603 1997-07-18
JP19460397 1997-07-18

Related Child Applications (5)

Application Number Title Priority Date Filing Date
US09/462,472 A-371-Of-International US7435560B1 (en) 1997-07-18 1998-07-17 Method for producing purine nucleoside by fermentation
US11/682,083 Division US7776566B2 (en) 1997-07-18 2007-03-05 Method for producing purine nucleoside by fermentation
US11/682,155 Division US7608432B2 (en) 1997-07-18 2007-03-05 Method for producing purine nucleoside by fermentation
US11/682,114 Division US7601519B2 (en) 1997-07-18 2007-03-05 Method for producing purine nucleoside by fermentation
US11/682,103 Division US20070161090A1 (en) 1997-07-18 2007-03-05 Method for producing purine nucleoside by fermentation

Publications (1)

Publication Number Publication Date
WO1999003988A1 true WO1999003988A1 (fr) 1999-01-28

Family

ID=16327302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003239 WO1999003988A1 (fr) 1997-07-18 1998-07-17 Procede de production de nucleosides de purine par fermentation

Country Status (9)

Country Link
US (5) US7435560B1 (ja)
EP (3) EP1004663B1 (ja)
JP (1) JP3944916B2 (ja)
KR (3) KR100511151B1 (ja)
CN (1) CN1187446C (ja)
BR (1) BR9815557B1 (ja)
DE (3) DE69840348D1 (ja)
ID (1) ID25613A (ja)
WO (1) WO1999003988A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521888A (ja) * 1999-07-23 2003-07-22 アーカー−ダニエルズ−ミッドランド カンパニー 細胞性nadphの増加によるl−アミノ酸の生成方法
KR100400338B1 (ko) * 1999-02-08 2003-10-01 교와 핫꼬 고교 가부시끼가이샤 푸린 뉴클레오티드의 제조법
WO2006078132A1 (en) * 2005-01-21 2006-07-27 Cj Corp. Escherichia strain capable of converting xmp to gmp and maintaining the inactivated state of gene(s) associated with gmp degradation and methods of using the same
EP1700910A2 (en) 2005-03-10 2006-09-13 Ajinomoto Co., Inc. Purine-derived substance-producing Bacillus and a method for producing purine-derived substance therewith
WO2007125783A1 (ja) 2006-04-24 2007-11-08 Ajinomoto Co., Inc. プリン系物質生産菌及びプリン系物質の製造法
WO2007125954A1 (ja) 2006-04-28 2007-11-08 Ajinomoto Co., Inc. L-アミノ酸を生産する微生物及びl-アミノ酸の製造法
WO2007125782A1 (ja) 2006-04-24 2007-11-08 Ajinomoto Co., Inc. プリン系物質生産菌及びプリン系物質の製造法
KR100779865B1 (ko) 2000-07-05 2007-11-27 아지노모토 가부시키가이샤 발효에 의한 뉴클레오타이드의 제조방법
WO2008020595A1 (fr) * 2006-08-15 2008-02-21 Ishihara Sangyo Kaisha, Ltd. Procédé innovant d'utilisation d'un mutant microbien
WO2008090770A1 (ja) 2007-01-22 2008-07-31 Ajinomoto Co., Inc. L-アミノ酸を生産する微生物及びl-アミノ酸の製造法
WO2008114721A1 (ja) 2007-03-14 2008-09-25 Ajinomoto Co., Inc. L-グルタミン酸系アミノ酸生産微生物及びアミノ酸の製造法
WO2008133161A1 (ja) 2007-04-17 2008-11-06 Ajinomoto Co., Inc. カルボキシル基を有する酸性物質の製造法
WO2009031565A1 (ja) 2007-09-04 2009-03-12 Ajinomoto Co., Inc. アミノ酸生産微生物及びアミノ酸の製造法
WO2009088049A1 (ja) 2008-01-10 2009-07-16 Ajinomoto Co., Inc. 発酵法による目的物質の製造法
WO2010027022A1 (ja) 2008-09-05 2010-03-11 味の素株式会社 L-アミノ酸生産菌及びl-アミノ酸の製造法
JP2010512732A (ja) * 2006-12-22 2010-04-30 味の素株式会社 エシェリヒア属又はバチルス属に属する細菌を使用した発酵によるプリンヌクレオシド及びヌクレオチドの製造方法
WO2012077739A1 (ja) 2010-12-10 2012-06-14 味の素株式会社 L-アミノ酸の製造法
WO2013069634A1 (ja) 2011-11-11 2013-05-16 味の素株式会社 発酵法による目的物質の製造法
WO2015060391A1 (ja) 2013-10-23 2015-04-30 味の素株式会社 目的物質の製造法
WO2020071538A1 (en) 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
US10704063B2 (en) 2015-05-19 2020-07-07 Lucite International Uk Limited Process for the biological production of methacrylic acid and derivatives thereof
JP2021512586A (ja) * 2019-03-28 2021-05-20 シージェイ チェイルジェダング コーポレイション 変異型ホスホリボシルピロリン酸アミドトランスフェラーゼ及びこれを用いたプリンヌクレオチドの製造方法
CN113260708A (zh) * 2018-12-18 2021-08-13 帝人株式会社 用于制造烟酰胺衍生物的重组微生物和方法、以及其中使用的载体
WO2024033603A1 (en) 2022-08-08 2024-02-15 Mitsubishi Chemical UK Limited Process for the biological production of methacrylic acid and derivatives thereof
US11981951B2 (en) 2016-11-23 2024-05-14 Mitsubishi Chemical UK Limited Process for the production of methyl methacrylate

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ID25613A (id) 1997-07-18 2000-10-19 Ajinomoto Kk Metode untuk menghasilkan purin nukleosida melalui fermentasi
JP4352716B2 (ja) * 2003-02-17 2009-10-28 味の素株式会社 バチルス属に属するイノシン生産菌及びイノシンの製造法
EP1484410B1 (en) 2003-06-05 2011-11-02 Ajinomoto Co., Inc. Fermentation methods using modified bacteria with increased byproduct uptake.
RU2271391C2 (ru) * 2003-09-03 2006-03-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" СПОСОБ ПОЛУЧЕНИЯ ИНОЗИНА И 5'-ИНОЗИНОВОЙ КИСЛОТЫ МЕТОДОМ ФЕРМЕНТАЦИИ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИЙ, ПРИНАДЛЕЖАЩИХ К РОДУ Escherichia
US20050176033A1 (en) 2003-11-10 2005-08-11 Klyachko Elena V. Mutant phosphoribosylpyrophosphate synthetase and method for producing L-histidine
DE102005019040A1 (de) 2005-04-23 2006-10-26 Degussa Ag Verfahren zur Herstellung von L-Aminosäuren unter Verwendung verbesserter Stämme der Familie Enterobacteriaceae
BRPI0907542A2 (pt) * 2008-02-25 2015-07-28 Ajinomoto Kk Método para produzir ácido 5'-guanílico, e, microrganismo com uma capacidade de converter ácido inosínico em ácido 5'-guanílico
CN101492484B (zh) * 2009-03-04 2012-02-29 湖南赛康德生物科技有限公司 一种鸟嘌呤核苷的综合循环生产工艺
KR101166027B1 (ko) 2009-04-01 2012-07-19 씨제이제일제당 (주) 5'-이노신산 생산성이 향상된 코리네박테리움 속 미생물 및 이를 이용한 핵산의 생산방법
AP3766A (en) 2009-07-09 2016-07-31 Du Pont Engineered microorganisms with enhanced fermentation activity
KR101599800B1 (ko) 2014-03-21 2016-03-04 씨제이제일제당 주식회사 L-아미노산의 생산능이 향상된 미생물 및 이를 이용하여 l-아미노산을 생산하는 방법
CN106282220B (zh) * 2015-05-29 2021-03-23 上海市农业科学院 一种提高枯草芽孢杆菌合成肌苷能力的方法
KR102013873B1 (ko) 2018-01-25 2019-08-23 씨제이제일제당 주식회사 퓨린 뉴클레오티드를 생산하는 코리네박테리움 속 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
CN108753669B (zh) * 2018-05-25 2022-04-08 苏州引航生物科技有限公司 一种腺嘌呤生产菌株及其构建方法和应用
CN110656073B (zh) * 2018-06-28 2022-06-28 中国科学院青岛生物能源与过程研究所 一种生产黄嘌呤的重组菌及其构建方法和应用
CN110656074B (zh) * 2018-06-28 2022-06-28 中国科学院青岛生物能源与过程研究所 一种合成次黄嘌呤的重组菌及其构建方法与应用
KR102006976B1 (ko) * 2019-02-26 2019-08-06 씨제이제일제당 주식회사 신규 프로모터 및 이를 이용한 퓨린 뉴클레오티드 제조방법
CN110904063A (zh) * 2019-05-10 2020-03-24 赤峰蒙广生物科技有限公司 一种核苷磷酸化酶的发酵工艺及其应用方法
CN110564660B (zh) * 2019-09-18 2023-03-21 苏州华赛生物工程技术有限公司 生产乳清酸的重组微生物及方法
CN111394268B (zh) * 2019-12-20 2021-06-18 合肥康诺生物制药有限公司 基因工程菌及其构建方法、应用,生产nad+的方法
CN113278596B (zh) * 2021-05-24 2022-07-29 廊坊梅花生物技术开发有限公司 可提高芽孢杆菌核苷产量的突变体及其应用
CN115851693B (zh) * 2022-10-24 2024-05-24 湖北大学 葡萄糖异构酶突变体及其高产葡萄糖异构酶的地衣芽胞杆菌工程菌及应用
CN118086166B (zh) * 2024-04-18 2024-07-09 天津科技大学 一种鸟苷生产菌株及其构建方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230094A (ja) * 1987-03-18 1988-09-26 Kyowa Hakko Kogyo Co Ltd 5′−イノシン酸の製造法
WO1990005784A1 (en) * 1988-11-22 1990-05-31 Kyowa Hakko Kogyo Co., Ltd. Process for preparing 5'-inosinic acid

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3152966A (en) 1961-03-11 1964-10-13 Kyowa Hakko Kogyo Kk Method for producing inosinic acid and adenylic acid by fermentation
US3258408A (en) * 1962-07-07 1966-06-28 Ajinomoto Kk Method of producing xanthosine
DE1442304A1 (de) 1962-08-08 1970-01-15 Takeda Chemical Industries Ltd Verfahren zur Herstellung von Purinderivaten
JPS515075B1 (ja) 1970-02-05 1976-02-17
JP2545078B2 (ja) * 1987-04-06 1996-10-16 協和醗酵工業株式会社 核酸関連物質の製造法
BR9407625A (pt) 1993-08-24 1997-01-21 Ajinomoto Kk Carboxilase fosfoenolpiruvato mutante fragmento de DNA microorganismo DNA recombinante e processo para produzir aminoácidos
EP0754756B1 (en) 1994-03-04 2005-11-09 Ajinomoto Co., Inc. Process for producing l-lysine
CA2180202A1 (en) 1995-06-30 1996-12-31 Mika Moriya Method of amplifying gene using artificial transposon
ID25613A (id) * 1997-07-18 2000-10-19 Ajinomoto Kk Metode untuk menghasilkan purin nukleosida melalui fermentasi
ATE330022T1 (de) 2000-12-22 2006-07-15 Ajinomoto Kk Verfahren zur herstellung einer zielsubstanz durch fermentation
JP2002345496A (ja) 2001-05-25 2002-12-03 Ajinomoto Co Inc アグマチンの製造方法およびアルギニン脱炭酸酵素の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230094A (ja) * 1987-03-18 1988-09-26 Kyowa Hakko Kogyo Co Ltd 5′−イノシン酸の製造法
WO1990005784A1 (en) * 1988-11-22 1990-05-31 Kyowa Hakko Kogyo Co., Ltd. Process for preparing 5'-inosinic acid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1004663A4 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400338B1 (ko) * 1999-02-08 2003-10-01 교와 핫꼬 고교 가부시끼가이샤 푸린 뉴클레오티드의 제조법
JP4841093B2 (ja) * 1999-07-23 2011-12-21 アーカー−ダニエルズ−ミッドランド カンパニー 細胞性nadphの増加によるl−アミノ酸の生成方法
JP2003521888A (ja) * 1999-07-23 2003-07-22 アーカー−ダニエルズ−ミッドランド カンパニー 細胞性nadphの増加によるl−アミノ酸の生成方法
KR100779865B1 (ko) 2000-07-05 2007-11-27 아지노모토 가부시키가이샤 발효에 의한 뉴클레오타이드의 제조방법
WO2006078132A1 (en) * 2005-01-21 2006-07-27 Cj Corp. Escherichia strain capable of converting xmp to gmp and maintaining the inactivated state of gene(s) associated with gmp degradation and methods of using the same
US7741101B2 (en) 2005-01-21 2010-06-22 Cj Cheiljedang Corporation Escherichia strain capable of converting XMP to GMP and maintaining the inactivated state of gene(s) associated with GMP degradation and methods of using the same
US8298791B2 (en) 2005-03-10 2012-10-30 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing purine-derived substance
EP1700910A2 (en) 2005-03-10 2006-09-13 Ajinomoto Co., Inc. Purine-derived substance-producing Bacillus and a method for producing purine-derived substance therewith
US7326546B2 (en) 2005-03-10 2008-02-05 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing purine-derived substance
WO2007125783A1 (ja) 2006-04-24 2007-11-08 Ajinomoto Co., Inc. プリン系物質生産菌及びプリン系物質の製造法
JP5251505B2 (ja) * 2006-04-24 2013-07-31 味の素株式会社 プリン系物質生産菌及びプリン系物質の製造法
US8409563B2 (en) 2006-04-24 2013-04-02 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing a purine-derived substance
JP5104754B2 (ja) * 2006-04-24 2012-12-19 味の素株式会社 プリン系物質生産菌及びプリン系物質の製造法
US8236531B2 (en) 2006-04-24 2012-08-07 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing a purine-derived substance
WO2007125782A1 (ja) 2006-04-24 2007-11-08 Ajinomoto Co., Inc. プリン系物質生産菌及びプリン系物質の製造法
WO2007125954A1 (ja) 2006-04-28 2007-11-08 Ajinomoto Co., Inc. L-アミノ酸を生産する微生物及びl-アミノ酸の製造法
WO2008020595A1 (fr) * 2006-08-15 2008-02-21 Ishihara Sangyo Kaisha, Ltd. Procédé innovant d'utilisation d'un mutant microbien
US8034767B2 (en) 2006-12-22 2011-10-11 Ajinomoto Co., Inc. Method for producing purine nucleosides and nucleotides by fermentation using a bacterium belonging to the genus Escherichia or Bacillus
JP2010512732A (ja) * 2006-12-22 2010-04-30 味の素株式会社 エシェリヒア属又はバチルス属に属する細菌を使用した発酵によるプリンヌクレオシド及びヌクレオチドの製造方法
WO2008090770A1 (ja) 2007-01-22 2008-07-31 Ajinomoto Co., Inc. L-アミノ酸を生産する微生物及びl-アミノ酸の製造法
EP2657332A1 (en) 2007-03-14 2013-10-30 Ajinomoto Co., Inc. Methods for producing an amino acid of the L-glutamic acid family
WO2008114721A1 (ja) 2007-03-14 2008-09-25 Ajinomoto Co., Inc. L-グルタミン酸系アミノ酸生産微生物及びアミノ酸の製造法
WO2008133161A1 (ja) 2007-04-17 2008-11-06 Ajinomoto Co., Inc. カルボキシル基を有する酸性物質の製造法
WO2009031565A1 (ja) 2007-09-04 2009-03-12 Ajinomoto Co., Inc. アミノ酸生産微生物及びアミノ酸の製造法
WO2009088049A1 (ja) 2008-01-10 2009-07-16 Ajinomoto Co., Inc. 発酵法による目的物質の製造法
EP2749652A2 (en) 2008-01-10 2014-07-02 Ajinomoto Co., Inc. A method for producing a target substance by fermentation
WO2010027022A1 (ja) 2008-09-05 2010-03-11 味の素株式会社 L-アミノ酸生産菌及びl-アミノ酸の製造法
WO2012077739A1 (ja) 2010-12-10 2012-06-14 味の素株式会社 L-アミノ酸の製造法
WO2013069634A1 (ja) 2011-11-11 2013-05-16 味の素株式会社 発酵法による目的物質の製造法
WO2015060391A1 (ja) 2013-10-23 2015-04-30 味の素株式会社 目的物質の製造法
US10704063B2 (en) 2015-05-19 2020-07-07 Lucite International Uk Limited Process for the biological production of methacrylic acid and derivatives thereof
US10724058B2 (en) 2015-05-19 2020-07-28 Lucite International Uk Limited Process for the biological production of methacrylic acid and derivatives thereof
US11248243B2 (en) 2015-05-19 2022-02-15 Mitsubishi Chemical UK Limited Process for the biological production of methacrylic acid and derivatives thereof
US11981951B2 (en) 2016-11-23 2024-05-14 Mitsubishi Chemical UK Limited Process for the production of methyl methacrylate
WO2020071538A1 (en) 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
US11965198B2 (en) 2018-10-05 2024-04-23 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
CN113260708A (zh) * 2018-12-18 2021-08-13 帝人株式会社 用于制造烟酰胺衍生物的重组微生物和方法、以及其中使用的载体
CN113260708B (zh) * 2018-12-18 2024-03-29 帝人株式会社 用于制造烟酰胺衍生物的重组微生物和方法、以及其中使用的载体
JP2021512586A (ja) * 2019-03-28 2021-05-20 シージェイ チェイルジェダング コーポレイション 変異型ホスホリボシルピロリン酸アミドトランスフェラーゼ及びこれを用いたプリンヌクレオチドの製造方法
WO2024033603A1 (en) 2022-08-08 2024-02-15 Mitsubishi Chemical UK Limited Process for the biological production of methacrylic acid and derivatives thereof

Also Published As

Publication number Publication date
US7776566B2 (en) 2010-08-17
KR100697552B1 (ko) 2007-03-21
DE69837041T2 (de) 2007-11-08
KR100697551B1 (ko) 2007-03-21
CN1187446C (zh) 2005-02-02
US7435560B1 (en) 2008-10-14
ID25613A (id) 2000-10-19
DE69840348D1 (de) 2009-01-22
EP1004663B1 (en) 2007-02-07
JP3944916B2 (ja) 2007-07-18
KR100511151B1 (ko) 2005-08-31
US20070161090A1 (en) 2007-07-12
KR20050043978A (ko) 2005-05-11
BR9815557A (pt) 2001-07-17
US20080044863A1 (en) 2008-02-21
US7601519B2 (en) 2009-10-13
US20070166799A1 (en) 2007-07-19
US7608432B2 (en) 2009-10-27
EP1584679A1 (en) 2005-10-12
EP1584679B1 (en) 2008-12-10
EP1577386B1 (en) 2009-03-18
DE69837041D1 (de) 2007-03-22
EP1577386A2 (en) 2005-09-21
EP1004663A1 (en) 2000-05-31
US20080038781A1 (en) 2008-02-14
BR9815557B1 (pt) 2011-10-04
KR20010021986A (ko) 2001-03-15
EP1577386A3 (en) 2005-10-12
EP1004663A4 (en) 2004-09-15
CN1270631A (zh) 2000-10-18
DE69840678D1 (de) 2009-04-30
KR20050043979A (ko) 2005-05-11

Similar Documents

Publication Publication Date Title
WO1999003988A1 (fr) Procede de production de nucleosides de purine par fermentation
EP1647593B1 (en) Method for producing l-histidine using bacteria of the enterobacteriaceae family
US20060275874A1 (en) Purine-derived substance-producing bacterium and a method for producing purine-derived substance
CN101432418B (zh) 能够产生嘌呤物质的细菌和用于产生嘌呤物质的方法
EP1510570B1 (en) Method for producing L-histidine using bacteria of enterobacteriaceae family
RU2422510C2 (ru) Способ получения пуриновых рибонуклеозидов и рибонуклеотидов
JP4352716B2 (ja) バチルス属に属するイノシン生産菌及びイノシンの製造法
KR101210704B1 (ko) 5'-크산틸산 및 5'-구아닐산 생산능이 향상된 미생물 및 이를 이용한 5'-크산틸산 또는 5'-구아닐산의 생산방법
EP1844135B1 (en) Escherichia strain capable of converting xmp to gmp and maintaining the inactivated state of gene(s) associated with gmp degradation and methods of using the same
JP2003259861A (ja) プリンヌクレオシドおよびヌクレオチドの製造方法
JP3965804B2 (ja) 発酵法によるキサントシンの製造法
RU2542387C1 (ru) БАКТЕРИЯ Bacillus subtilis, ПРОДУЦИРУЮЩАЯ 5`-АМИНОИМИДАЗОЛ-4-КАРБОКСАМИДРИБОЗИД (АИКАР), И СПОСОБ МИКРОБИОЛОГИЧЕСКОГО СИНТЕЗА АИКАР ПУТЕМ КУЛЬТИВИРОВАНИЯ ТАКОЙ БАКТЕРИИ
JP4375405B2 (ja) 発酵法によるプリンヌクレオシドの製造法
JP2007105056A (ja) 発酵法によるプリンヌクレオシドの製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98809054.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN ID JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09462472

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007000552

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998932584

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998932584

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007000552

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007000552

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998932584

Country of ref document: EP