WO1997005660A1 - Dispositif de prise de vues a semi-conducteurs et fabrication dudit dispositif - Google Patents

Dispositif de prise de vues a semi-conducteurs et fabrication dudit dispositif Download PDF

Info

Publication number
WO1997005660A1
WO1997005660A1 PCT/JP1996/002142 JP9602142W WO9705660A1 WO 1997005660 A1 WO1997005660 A1 WO 1997005660A1 JP 9602142 W JP9602142 W JP 9602142W WO 9705660 A1 WO9705660 A1 WO 9705660A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
state imaging
imaging device
package
opening
Prior art date
Application number
PCT/JP1996/002142
Other languages
English (en)
French (fr)
Inventor
Yoshikazu Sano
Sumio Terakawa
Eiichi Tsujii
Masaji Asaumi
Yoshikazu Chatani
Original Assignee
Matsushita Electronics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16373288&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1997005660(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electronics Corporation filed Critical Matsushita Electronics Corporation
Priority to DE69636920T priority Critical patent/DE69636920T2/de
Priority to EP96925131A priority patent/EP0790652B1/en
Priority to US08/809,845 priority patent/US5952714A/en
Publication of WO1997005660A1 publication Critical patent/WO1997005660A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Definitions

  • the present invention provides a solid-state imaging device in which a solid-state imaging device (hereinafter, referred to as a CCD chip) is mounted on a package (hereinafter, referred to as a package) using synthetic resin, ceramic, or glass.
  • a solid-state imaging device used for a video camera or the like using a CCD chip and a method of manufacturing the same.
  • a three-lens camera naturally requires extremely high positional accuracy to place three CCD chips in optically accurate positions, and is often more compact and portable.
  • a change in the structure of the solid-state imaging device itself has been required.
  • FIG. 2 is a cross-sectional view of a solid-state imaging device using a ceramic package that has become mainstream.
  • reference numeral 1 denotes a ceramic package having a metallized conductor 2 formed on a surface thereof, and a concave portion 3 is provided at a central portion thereof.
  • the CCD chip 4 is die-bonded and fixed to the recess 3 with a conductive adhesive 5 or the like, and the electrode pad 6 of the CCD chip is wire-bonded to the metallized conductor 2 by a metal wire 7.
  • Reference numeral 8 denotes a lead terminal welded to the end surface of the metallized conductor 2 exposed on the side surface of the ceramic package 1.
  • FIG. 1 denotes a ceramic package having a metallized conductor 2 formed on a surface thereof, and a concave portion 3 is provided at a central portion thereof.
  • the CCD chip 4 is die-bonded and fixed to the recess 3 with a conductive adhesive 5 or the like, and the electrode pad 6 of the CCD
  • a CCD 13 is provided in a concave portion 13 provided at the center of a resin package 12 in which a lead frame 11 including an inner lead 9 and an outer lead 10 is immobilized.
  • the chip 4 is die-bonded via the conductive paste 14, and the electrode pads 6 on the CCD chip 4 are wire-bonded to the inner leads 9 by metal wires 7, as in the case of the ceramic package shown in FIG.
  • the CCD chip 4 is die-bonded on the bottom surface of the concave portion 3 or the concave portion 13 in either the ceramic package 1 or the resin package 12.
  • the concave part 3 or the concave part 1 of the ceramic package 1 or resin package 1 where the CCD chip 4 is die-bonded It is necessary to make the processing accuracy of the bottom surface of 3 extremely high, and at the same time, to make the parallelism between the bottom surface and the top surface of the ceramic package 1 or the resin package 1 2 extremely accurate.
  • the method of connecting the electrode pads 6 of the CCD chip 4 to the metallized conductors 2 or the inner leads 9 via the metal wires 7 by the wire bonding process is a manufacturing technology that has been matured for many years, so the defective rate at the time of production is low. Fewer replacements of chips Although it is easy, there is a limit to miniaturization of the solid-state imaging device, and it has a problem that it cannot sufficiently meet the demand for miniaturization in the field of home video cameras.
  • the present invention provides a solid-state imaging device which can be mounted on a high-quality video camera capable of reproducing clear colors and obtaining delicate images, and which can be manufactured at low cost, and a method of manufacturing the same.
  • the purpose is to do.
  • the present invention provides a solid-state imaging device having a CCD chip mounted in a package in which a lead frame including inner leads and outer leads is provided with a through hole therein and sealed therein. Are provided with openings each having a different opening area on both end surfaces, and a through hole is sealed by loading a CCD chip from an opening having a large opening area.
  • the structure is such that the area of the opening of the package where the electrode pads of the CCD chip are in contact via the inner leads is smaller than the area of the entire CCD chip.
  • peripheral circuit elements are mounted on the upper surface of the semiconductor substrate on which the CCD chip is formed, excluding the CCD chip forming surface.
  • the substrate is loaded from an opening having a large opening area of a package having openings having different opening areas, and the electrode pads of the substrate are small in the package. It has a structure connected to the inner lead exposed at the peripheral end of the opening having an opening area.
  • the CCD chip is the first step of the package. And has a structure in which the peripheral circuit element is connected to and fixed to the second inner lead exposed at the second step portion of the package.
  • the present invention relates to a method for manufacturing a solid-state imaging device in which a CCD chip is mounted in a package in which a lead frame composed of an inner lead and an outer lead is provided with a through-hole therein and sealed therein, wherein the CCD chip is mounted on a package.
  • the solid-state image pickup device is connected to the inner lead via a bump or an anisotropic conductor to perform optical alignment and electrical connection. After that, the back of the CCD chip and the package are fixed with adhesive.
  • a method for manufacturing a solid-state imaging device in which a CCD chip and a peripheral circuit element are mounted in a package in which a lead frame formed of inner leads and outer leads is provided with a through hole formed therein and sealed therein.
  • the peripheral circuit elements are mounted on the surface of the substrate excluding the CCD chip, connected to the wiring group, and then the substrate is opened with a large opening area in the package.
  • the package is loaded into the through hole of the package, and the electrode pad provided around the top surface of the substrate is connected to the inner lead via a bump or an anisotropic conductor to perform optical alignment and electrical connection. After that, the package is fixed to the back surface of the substrate provided with the CCD chip and peripheral circuit elements and the package with an adhesive.
  • a CCD chip and peripheral circuit elements are placed in a package in which a lead frame consisting of inner leads and outer leads is provided with through holes inside and sealed.
  • a method of manufacturing a mounted solid-state imaging device wherein a CCD chip and peripheral circuit elements are mounted on a substrate provided with a wiring group and connected to the wiring group, and the substrate has a large opening area of a package. It is loaded into the through hole of the package through the opening, and the electrode pad provided on the periphery of the top surface of the board is connected to the inner lead via bumps or anisotropic conductors for optical alignment and electrical connection.
  • This is a method of fixing the package and the back surface of the substrate provided with the CCD chip and peripheral circuit elements with adhesive.
  • a method for manufacturing a solid-state imaging device in which a CCD chip and a peripheral circuit element are mounted in a package in which a lead frame formed of inner leads and outer leads is provided with through holes therein and sealed therein. Load into the through hole of the package from the opening with the area
  • a through hole is provided inside the package, and the CCD chip can be loaded from the bottom side of the package, that is, from the opening having a large opening area.
  • Optical alignment should be performed at the same time as the electrical connection between the inner lead exposed on the bottom surface of the opening and the electrode pad of the CCD chip via the bump or anisotropic conductor. This eliminates the need for two steps of die bonding of the CCD chip and wire bonding of the electrode pads as in the past, thus simplifying the process.
  • the jig for mounting the CCD chip can be arranged on the back of the CCD chip, Optical alignment is extremely easy, and highly accurate position adjustment is possible.
  • FIG. 1 is a partially cutaway perspective view of a solid-state imaging device according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the solid-state imaging device according to the first embodiment of the present invention
  • FIG. FIG. 4 is a cross-sectional view of the solid-state imaging device according to the third embodiment
  • FIG. 4 is a cross-sectional view of the solid-state imaging device according to the third embodiment
  • FIG. 7 is a cross-sectional view of the solid-state imaging device according to the sixth embodiment
  • FIG. 8 is a cross-sectional view of the solid-state imaging device according to the seventh embodiment.
  • FIG. 9 is a cross-sectional view of a conventional solid-state imaging device
  • FIG. 10 is a cross-sectional view of another conventional solid-state imaging device.
  • FIG. 1 is a partially cutaway perspective view of a solid-state imaging device according to an embodiment of the present invention.
  • reference numeral 21 denotes a package in which a lead frame 24 composed of an inner lead 22 and an outer lead 23 is immobilized.
  • a through hole is formed in the center of the package 21, an opening 25 having a small opening area is provided on the front surface, and an opening (having a large opening area) is provided on the back surface. (Hereinafter referred to as the insertion port.) 26 is formed.
  • the area of the opening 25 is smaller than the area of the CCD chip 27, and the inner lead 22 is exposed at the back of the step between the opening 25 and the insertion port 26. It is electrically connected to a bump 29 provided on the electrode pad 28 of the CCD chip 27.
  • FIG. 2 is a cross-sectional view of the solid-state imaging device according to the first embodiment of the present invention, in which an epoxy resin mixed with an inorganic filler is injected into a mold in which a lead frame 24 made of phosphor bronze or the like is arranged, and a high temperature is applied. And then remove it from the mold and lead frame The frame of 24 is cut off, and the outer lead 23 is bent in the direction of the insertion port 26 to form the package 21.
  • the back surface of the CCD chip 27 having the bumps 29 formed on the electrode pads 28 is held using a mounting jig (not shown), and inserted into the package 21 through the insertion port 26 of the package 21.
  • the bumps 29 are crimped to the inner leads 22 exposed on the back surface of the step portion between the opening portion 25 of the package 21 and the insertion opening 26 to be connected.
  • the position signal is fed back to the mounting jig from an optical position adjustment device (not shown) installed in front of the CCD chip 27, and the package 21 is stepped while finely adjusting the direction of the CCD chip 27.
  • a CCD chip 27 is placed on the back of the part, and at the same time, a UV curable adhesive 30 is injected in a fixed amount from a dispenser installed on the side of the crimping jig, and the four sides of the CCD chip 27 and the package 21 are And the CCD chip 27 is accurately mounted on the package 21.
  • FIG 3 is a cross-sectional view of the solid-state imaging device according to the second embodiment of the present invention.
  • the difference from the first embodiment is that the distal end portion 22 a of the inner lead 22 is closer to the opening portion 25 of the package 21. This is a point slightly protruding into the inside, and the elasticity of the inner lead tip 22 a makes optical alignment and bonding with the bump 29 easier.
  • the bumps 29 are provided on the electrode pads 28 of the CCD chip 27 .
  • the bumps 29 are provided at the tips of the inner leads 22 and the CCD chip is provided. It is also possible to join with 27 electrode pads 28.
  • FIG. 4 is a cross-sectional view of the solid-state imaging device according to the third embodiment of the present invention, and shows a cross section cut so that the arrangement of the inner leads 22 appears in parallel.
  • the connection between the electrode pad 28 of the CCD chip 27 and the inner lead 22 is made through an anisotropic conductor 31 having conductivity only in the vertical direction instead of the bump 29. It was done.
  • the elasticity of the anisotropic conductor 31 made of a conductive rubber or the like has the elasticity of the second embodiment. As in the case, there is an advantage that the optical alignment of the CCD chip 27 becomes easy.
  • a through-hole is provided inside a package, and a CCD chip is loaded from an inlet provided on the bottom side of the package, that is, on an outer lead side.
  • the inner leads exposed on the back of the step and the electrode pads of the CCD chip are electrically connected to the electrode pads of the CCD chip via bumps or anisotropic conductors, and at the same time, optical alignment is performed.
  • the mounting jig for the CCD chip can be arranged on the back of the CCD chip, optical alignment from the front of the CCD chip is extremely easy, and the position can be adjusted with higher precision.
  • FIG. 5 is a cross-sectional view of a solid-state imaging device according to a fourth embodiment of the present invention.
  • an inorganic material is placed in a mold in which a lead frame 24 made of phosphor bronze or the like is arranged. After injecting epoxy resin mixed with filler and in-molding at high temperature, take out from the mold, cut off the frame of lead frame 24, and bend outer lead 23 in the direction of insertion port 26 to package. 2 Create 1.
  • a peripheral circuit element 43 created in a separate process is formed on a part of the surface of a substrate 42 made of a semiconductor substrate such as a silicon wafer on which a wiring group (not shown) and a CCD chip 41 are formed.
  • the bumps 29 are crimped to the electrode pads 47 provided around the CCD module 46 on the inner leads 22 exposed on the back of the stepped portion between the insertion port 26 and 5 and connected. .
  • an optical position adjustment device (shown in the figure) installed in front of the CCD chip 41
  • the position signal is fed back to the mounting jig, and the CCD module 46 is placed on the back of the step portion of the package 21 while finely adjusting the orientation of the CCD chip 41.
  • the dispenser installed on the side of the crimping jig A fixed amount of the ultraviolet curing adhesive 30 is injected and the four sides of the CCD module 46 and the package 21 are adhered and fixed, so that the CCD chip 41 is mounted on the precise position of the package 21.
  • FIG. 6 is a sectional view of a solid-state imaging device according to a fifth embodiment of the present invention.
  • This embodiment is a modification of the embodiment of the fourth embodiment, A CCD module 46 on which a CCD chip, peripheral circuit elements, and wiring groups are formed or mounted is loaded from port 26
  • the CCD chip is formed through a circuit chip forming process such as a direct diffusion process on the upper surface of the semiconductor substrate serving as the substrate 42 of the CCD module 46, whereas in the present embodiment, the CCD chip 41 is also a peripheral circuit.
  • the substrate 42 can be made of a material other than the semiconductor substrate.
  • the CCD chip 41 manufactured in a separate process as in the present embodiment is mounted on the substrate 42, the electrodes of the CCD chip 41 and the electrode terminals of the wiring group on the substrate 42 The connection is made by wire bonding using the metal wire 47a.
  • FIG. 7 is a cross-sectional view of a solid-state imaging device according to a sixth embodiment of the present invention.
  • This embodiment is another modification of the embodiment of the fifth embodiment, and the present embodiment is different from the fifth embodiment.
  • the difference from the fifth embodiment is that the peripheral circuit is different from the fifth embodiment.
  • the circuit element 4 3 is connected to the substrate 42 via the bump 29 in a face-down manner as in the case of the fourth embodiment, but in the present embodiment, the peripheral circuit element 4 3 is also connected to the fifth embodiment.
  • the circuit forming surface is disposed on the substrate 42 with its circuit surface facing upward, and the electrodes of the peripheral circuit elements 43 are also connected to the electrode terminals of the self-line group and the metal wires 4 on the substrate 42. It is connected by wire bonding using 7a.
  • the configurations of the fourth, fifth, and sixth embodiments of the present invention have similarities and differences in structure.
  • the advantages of the solid-state imaging device in each of these embodiments will be described. I do.
  • the CCD chip 41 can be formed simultaneously with the other wiring groups on the substrate 42 which is a semiconductor substrate, the electrical connection between the electrodes of the CCD chip 41 and the electrode terminals of the wiring group is made possible. Connection is extremely easy and reliable, and it is also effective for miniaturization of solid-state imaging devices.
  • a high-precision CCD chip with a large number of pixels, which is generally considered to have a very low yield, is manufactured in a separate process, and the overall cost is reduced by using only good products.
  • both the electrodes of the CCD chip 41 and the peripheral circuit element 43 and the electrode terminals of the wiring group on the substrate 42 are mounted on the basis of mounting technology or a long-standing track record in automatic mounting machines. This is performed by wire bonding with high reliability, and the peripheral circuit element 43 is disposed with its circuit forming surface facing upward, so that the light shielding film 48 is required. Even if a failure occurs in the peripheral circuit element 43, it is easy to replace it and the component parts can be reused.
  • reference numeral 49 denotes a glass substrate on which the light-shielding film 48 is formed by vapor deposition of metal or the like or sputtering.
  • FIG. 8 shows a cross section of a solid-state imaging device according to a seventh embodiment of the present invention.
  • This embodiment is different from the above-described embodiments in that a CCD chip and a peripheral circuit element have a multilayer structure and a package. Therefore, unlike the structure of each of the above-described embodiments, the package is different from the above-described embodiments in that the through hole in the package is formed from an insertion hole having two different large opening areas through the CCD chip and the peripheral circuit. The device is loaded in the package.
  • reference numeral 50 denotes a package having a special structure used in the present embodiment, and a first opening 51 having a small opening area at one end face is provided with one force at the other end face.
  • a second opening 52 having a large opening area and a third opening 53 having an opening area larger than the second opening 52 are provided.
  • a first opening 51 and a second opening 52 are provided in the upper frame 50a, and inner leads 54 arranged in a bent shape are provided inside the first opening 51 and the second opening 52.
  • One end of the inner lead 54 is exposed at a first step between the first opening 51 and the second opening 52 to form a first inner lead terminal 54a. ing.
  • the other end 54 b of the inner lead 54 bent downward in the upper frame 50 a of the package 50 is connected to the lower frame 50 b and the upper frame 50 of the package 50.
  • a second inner lead terminal 54 c whose one end is exposed at the step between the second opening 52 and the third opening 53 and is outside the package 50. And is connected inside the package to a connection point with the outer lead 55 formed by bending downward.
  • the manufacturing method is as follows. First, as in the case of the first embodiment, an inorganic filler is placed in a mold in which a lead frame made up of an inner lead 54 and an outer lead 55 such as phosphor bronze is arranged. After injecting the mixed epoxy resin and in-molding at high temperature, remove it from the mold, cut off the lead frame, and bend the outer lead 55 in the direction of the insertion opening consisting of the third opening 53. Create 50. Next, the back surface of the CCD chip 27 having the bumps 29 formed on the electrode pads 28 from the third opening 53 having a large opening area of the package 50 is held by using a mounting jig (not shown).
  • the bump 29 is inserted into the package 50 and connected to the first inner lead terminal 54 a provided on the first step portion of the upper frame of the package 50 by crimping.
  • a position signal is fed back to a mounting jig from an optical position adjusting device (not shown) installed in front of the CCD chip 27, and the orientation of the CCD chip 27 is finely adjusted.
  • the position of the CCD chip 27 is adjusted to the first step part of the UV-curable adhesive 30 at the same time, and a fixed amount of UV curable adhesive 30 is injected from the dispenser installed on the side of the crimping jig.
  • the sides and the package 50 are bonded and fixed, and the CCD chip 27 is accurately mounted on the package 50.
  • the peripheral circuit element 43 is also inserted into the lower frame 50b of the package 50 through the insertion hole of the third opening 53, and the second is inserted into the electrode pad 44 of the peripheral circuit element 43.
  • the second inner lead terminal 54 C exposed at the step between the opening 52 and the third opening 53 is press-bonded via the bump 29.
  • the ultraviolet curable adhesive 30 is injected in a fixed amount from the dispenser installed on the side of the crimping jig, and the four sides of the peripheral circuit element 4 3 and the package 50 are adhered and fixed. Mounted correctly in package 50.
  • the CCD chip 27 and the peripheral circuit element 43 can be arranged in a multilayer structure, that is, three-dimensionally, in the package 50. By integrating them, the mounting area on the substrate can be reduced, and high-density mounting on a small video camera or the like is possible.
  • reference numeral 56 denotes a protective plate made of a transparent material such as glass for protecting the inside of the solid-state imaging device.
  • the purpose of the present invention is irrespective of whether or not it is used. There is no change in the function and effect.
  • the third embodiment of the present invention As in the case above, the tip of the inner lead can be slightly protruded from the opening of the package to the inside, and the elasticity of the tip of the inner lead makes optical alignment and bonding with the bump easier. Become.
  • the bump 29 is provided on the electrode pad 28 of the CCD chip 27 has been described. However, the bump 29 is provided at the tip of the inner lead 22 and the CCD 29 is provided. It is also possible to join with the electrode pads 47 of the module 46.
  • connection between the electrode pad 47 of the CCD module 46 and the inner lead terminal is replaced with a bump 29 as in the case of the fourth embodiment of the present invention. It is also possible to carry out through an anisotropic conductor having conductivity only in the vertical direction.
  • a CCD chip or a peripheral circuit element is mounted in a package in which a lead frame including an inner lead and an outer lead is provided with a through-hole and sealed therein.
  • a mounted solid-state imaging device and a method of manufacturing the same wherein the package has openings each having a different opening area on both end surfaces thereof, and the solid-state imaging device is loaded from the opening having a large opening area to seal the through hole.
  • the mounting jig for the CCD chip is located on the back of the CCD chip and the optical alignment is performed from the front of the CCD chip, extremely high-precision position adjustment is possible, enabling clear color reproduction and It has become possible to manufacture a low-cost solid-state imaging device that can be mounted on a high-quality video camera capable of obtaining delicate images.

Description

明 細 書 発明の名称
固体撮像装置およびその製造方法 技術分野
本発明は固体撮像素子 (以下、 C C Dチップという) を合成樹脂やセラ ミック又はガラスを用いたパッケージ (以下、 パッケージという) に搭載 した固体撮像装置、 特に厳しい光学的位置精度が要求される 3個の C C D チップを使用したビデオカメラ等に用いられる固体撮像装置およびその製 造方法に関する。
背景技術
近年、 ビデオカメラ、 特に家庭用として小型軽量で持ち運びに便利なビ デォカメラの高機能化が進んでおり、 特に忠実な色彩の再現性や微細なデ ィテールの表現など高画質に対する消費者の要求は最近著しく高度化して きている。 このような傾向に対してビデオカメラの多くの構成部品に関す る技術レベルも著しく向上し、 特にビデオカメラの心臓部と言われる固体 撮像素子いわゆる C C Dの画素数の拡大等の性能向上にはめざましいもの がある。 一方従来、 1枚の C C Dチップを使用した 1眼式ビデオカメラが 主体であった家庭用の分野にも高価な業務用ビデオ力メラに使用されてい た 3眼式すなわち R, G, Bそれぞれに対応する 3枚の C C Dチップを備 えたビデオ力メラが実用化されるに至った。 1眼式ビデオ力メラに比べて 3眼式の場合、 当然 3枚の C C Dチップを光学的に正確な位置に配置する ためには極めて高い位置精度が要求され、 小型、 携帯性のために多くの構 成部品が極限まで高密度実装された家庭用ビデオカメラにおいては固体撮 像装置の構造そのものの変革が要求されるようになった。
図 9、 図 1 0は従来の固体撮像装置の例を示すものであり、 図 9は従来 主流となっていたセラミックパッケージによる固体撮像装置の断面図であ る。 図において 1はその表面にメタライズ導体 2が形成されているセラミ ックパッケージであり、 その中央部分に凹部 3が設けられている。 凹部 3 には C C Dチップ 4が導電性接着剤 5等によりダイボンデイングされて固 定され、 C C Dチップの電極パッド 6がメタライズ導体 2に金属線 7によ つてワイヤボンディングされている。 また 8はセラミックパッケージ 1の 側面に露出したメタラィズ導体 2の端面に溶着されたリ一ド端子である。 図 1 0は樹脂パッケージによる固体撮像装置の断面図であり、 インナ一 リード 9とアウターリード 1 0よりなるリードフレーム 1 1をインモーノレ ドした樹脂パッケージ 1 2の中央に設けられた凹部 1 3に C C Dチップ 4 が導電性ペースト 1 4を介してダイボンディングされ、 図 9に示すセラミ ックパッケージの場合と同様に C C Dチップ 4上の電極パッド 6がィンナ 一リード 9に金属線 7によってワイヤボンディングされている。
しかしながら上記従来の固体撮像装置およびその製造方法では、 セラミ ックパッケージ 1または樹脂パッケージ 1 2のいずれにおいても C C Dチ ップ 4は凹部 3または凹部 1 3の底面上にダイボンドされており、 このよ うな従来の構造を有する固体撮像装置を 3眼式のビデオ力メラに搭載して 光学的な位置合わせをするためには C C Dチップ 4をダイボンドするセラ ミックパッケージ 1または樹脂パッケージ 1 2の凹部 3または凹部 1 3の 底面の加工精度を極めて高いものとすると同時にその底面とセラミックパ ッケージ 1または樹脂パッケージ 1 2の上面との平行度を極めて正確なも のとする必要があり、 セラミックパッケージ 1または樹脂パッケージ 1 2 の価格の高騰を招くのみならず、 C C Dチップ 4の実装工程におけるコス トアップの原因にもなるという課題があった。 また C C Dチップ 4の電極 パッド 6とメタライズ導体 2またはインナーリード 9との接続をワイヤボ ンデイング工程により金属線 7を介して行う方法は長年にわたって熟成さ れた製造技術であるため生産時の不良率は少なく、 チップの取り替えが容 易である反面、 固体撮像装置の小型化に限界があり、 家庭用ビデオカメラ の分野における小型化の要求に充分対応することができないという問題を 有している。
発明の開示
そこでこの発明は、 鮮明な色彩の再現や繊細な画像等を得ることができ る高画質ビデオ力メラに搭載することができ、 しかも安価に製造すること ができる固体撮像装置とその製造方法を提供することを目的とする。 そしてこの目的を達成するために本発明は、 インナーリードとアウター リードよりなるリードフレームを内部に貫通孔を設けて封止したパッケ一 ジ内に C C Dチップを搭載した固体撮像装置であって、 パッケージが両端 面に異なる開口面積をそれ 'ぞれ有する開口部を備え、 C C Dチップを大き い開口面積を有する開口部より装填して貫通孔を密閉した構造とするもの である。
また C C Dチッブの電極パッドがィンナーリードを介して接するパッケ ージの開口部における面積が、 C C Dチップ全体の面積よりも小さい構造 とするものである。
またィンナーリードとアウターリードよりなるリードフレームを内部に 貫通孔を設けて封止したパッケージ Λに、 C C Dチップと周辺回路素子と を載置した基板が異なる開口面積を有する開口部を備えるパッケージの大 きい開口面積を有する開口部より装填され、 かつ基板の電極パッドがパッ ケージの小さい開口面積を有する開口部の周辺端部に露出したインナーリ ードに接続された構造を有するものである。
またィンナーリードとアウターリードよりなるリードフレームを内部に 貫通孔を設けて封止したパッケージ内に、 C C Dチップを形成した半導体 基板の前記 C C Dチップ形成面を除く上面に周辺回路素子を載置してなる 基板が異なる開口面積を有する開口部を備えるパッケージの大きい開口面 積を有する開口部より装填され、 基板の電極パッドがパッケージの小さい 開口面積を有する開口部の周辺端部に露出したインナ一リードに接続され た構造を有するものである。
またィンナーリードとアウターリードよりなるリードフレームを内部に 貫通孔を設けて封止したパッケージ内に C C Dチップと周辺回路素子とを 搭載した固体撮像装置の構造において、 C C Dチップがパッケージの第一 の段差部に露出した第 1のィンナーリ一ドに接続して固定され、 周辺回路 素子がパッケージの第 2の段差部に露出した第 2のィンナーリ一ドに接続 して固定された構造を有するものである。
さらに本発明は、 インナーリードとアウターリードよりなるリードフレ —ムを内部に貫通孔を設けて封止したパッケージ内に C C Dチップを搭載 した固体撮像装置の製造方法であって、 C C Dチップをパッケージの大き い開口面積を有する開口部よりパッケージの貫通孔内に装填し、 固体撮像 装置の電極パッドをバンプまたは異方性導電体を介してィンナーリ一ドに 接続して光学的位置合わせと電気的接続を行ったのち C C Dチップの背面 とパッケージとを接着剤にて固定する方法である。
またインナーリードとアウターリードよりなるリードフレームを内部に 貫通孔を設けて封止したパッケージ内に C C Dチップと周辺回路素子とを 搭載した固体撮像装置の製造方法であって、 半導体基板よりなる基板上に C C Dチップおよび配線群を形成したのち、 基板の C C Dチップを除く面 上に周辺回路素子を載置して配線群と接続し、 つぎにその基板をパッケ一 ジの大きい開口面積を有する開口部よりパッケージの貫通孔内に装填し、 基板上面の周辺に設けられた電極パッドをバンプまたは異方性導電体を介 してィンナーリ一ドに接続して光学的位匱合わせと電気的接続を行ったの ち C C Dチップと周辺回路素子を備える基板の背面とパッケージとを接着 剤にて固定する方法である。
またインナーリードとアウターリードよりなるリードフレームを内部に 貫通孔を設けて封止したパッケージ内に C C Dチップと周辺回路素子とを 搭載した固体撮像装置の製造方法であって、 配線群が設けられた基板上に C C Dチップおよび周辺回路素子を載置して配線群と接続し、 つぎにその 基板をパッケージの大きい開口面積を有する開口部よりパッケージの貫通 孔内に装填し、 基板上面の周辺に設けられた電極パッドをバンプまたは異 方性導電体を介してィンナーリ一ドに接続して光学的位置合わせと電気的 接続を行ったのち C C Dチップと周辺回路素子を備える基板の背面とパッ ケージとを接着剤にて固定する方法である。
またィンナーリードとアウターリードよりなるリードフレームを内部に 貫通孔を設けて封止したパッケージ内に C C Dチップと周辺回路素子とを 搭載した固体撮像装置の製造方法であって、 C C Dチップをパッケージの 大きい開口面積を有する開口部よりパッケージの貫通孔内に装填して c C
Dチップの電極パッドをバンプまたは異方性導電体を介して第 1のインナ 一リードに接続して光学的位置合わせと電気的接続を行ったのち C C Dチ ッブの背面とパッケージとを接着剤にて固定したあと、 周辺回路素子を同 じくパッケージの大きい開口面積を有する開口部よりパッケージの貫通孔 内に装填して周辺回路素子の電極パッドをバンプまたは異方性導電体を介 して第 2のィンナーリ一ドに接続して電気的接続を行ったのち周辺回路素 子の背面とパッケージとを接着剤にて固定する方法である。
したがって本発明によれば、 パッケージの内部には貫通孔が設けられて おり、 C C Dチップはパッケージの底面側、 すなわち大きい開口面積を有 する開口部より装填することができ、 パッケージの小さい開口面積を有す る開口部の底面に露出しているインナーリードと C C Dチップの電極パッ ドとがバンプまたは異方性導電体を介して電気的接続が行われるのと同時 に光学的位置合わせを行うことができるので従来のように C C Dチップの ダイボンディングと電極パッドのワイヤボンディングを 2工程によって行 う必要がなく、 工程が簡略化される。 さらに C C Dチップの装着冶具を C C Dチップの背面に配置することができるので C C Dチップの前面からの 光学的位置合わせが極めて容易になり、 さらに高精度の位置調整が可能と なる。
図面の簡単な説明
第 1図は本発明の一実施例における固体撮像装置の一部切り欠き斜視図、 第 2図は本発明の第 1の実施例における固体撮像装置の断面図、 第 3図は 同第 2の実施例における固体撮像装置の断面図、 第 4図は同第 3の実施例 における固体撮像装置の断面図、 第 5図は同第 4の実施例における固体撮 像装置の断面図、第 6図は同第 5の実施例における固体撮像装置の断面図、 第 7図は同第 6の実施例における固体撮像装置の断面図、 第 8図は同第 7 の実施例における固体撮像装置の断面図、 第 9図は従来の固体撮像装置の 断面図、 第 1 0図は他の従来の固体撮像装置の断面図である。
発明を実施するための最良の形態
以下、 本発明の一実施例について図面を参照しながら説明する。 図 1は 本発明の一実施例における固体撮像装置の部分切り欠き斜視図であり、 図 において 2 1はインナ一リード 2 2とアウターリード 2 3よりなるリード フレーム 2 4をィンモーノレドしたパッケージである。 図より明らかなよう にパッケージ 2 1の中央部分には貫通孔が開けられており、 その前面には 小さい開口面積を有する開口部 2 5を、 またその背面には大きい開口面積 を有する開口部 (以下、 挿入口という) 2 6を形成している。 開口部 2 5 の面積は C C Dチップ 2 7の有する面積よりも小さく作られており、 かつ 開口部 2 5と挿入口 2 6との段差部背面にはインナーリード 2 2が露出し て配置されていて C C Dチップ 2 7の電極パッド 2 8上に設けられたバン プ 2 9と電気的に接続されている。
つぎに本実施例の製造方法について説明する。 図 2は本発明の第 1の実 施例における固体撮像装置の断面図であり、 リン青銅等よりなるリードフ レーム 2 4を配置した金型中に無機質フィラーを混合したエポキシ樹脂を 注入して高温でィンモーノレドしたのち金型から取り出してリードフレーム 2 4の枠体を切り放し、 アウターリード 2 3を挿入口 2 6の方向に折り曲 げてパッケージ 2 1を作成する。 一方電極パッド 2 8上にバンプ 2 9を形 成した C C Dチップ 2 7の背面を装着冶具 (図示せず) を用いて保持し、 パッケージ 2 1の挿入口 2 6よりパッケージ 2 1内に挿入してパッケージ 2 1の開口部 2 5と挿入口 2 6との段差部背面に露出して配置されている インナーリード 2 2にバンプ 2 9を圧着して接続する。 この圧着作業中に C C Dチップ 2 7の前面に設置された光学位置調整装置 (図示せず) から 装着冶具に位置信号がフィードバックされて C C Dチップ 2 7の方位を微 調整しながらパッケージ 2 1の段差部背面に C C Dチップ 2 7が配置され、 同時に圧着冶具の側部に設置されているデイスペンザから紫外線硬化型接 着剤 3 0がー定量射出されて C C Dチップ 2 7の 4辺とパッケージ 2 1と を接着固定し、 C C Dチップ 2 7がパッケージ 2 1に正確に搭載される。 図 3は本発明の第 2の実施例における固体撮像装置の断面図であり、 第 1の実施例と異なる点はインナーリード 2 2の先端部 2 2 aがパッケージ 2 1の開口部 2 5より内部へ僅か突出している点であり、 インナーリード 先端部 2 2 aの弾性によって光学的位置合わせやバンプ 2 9とのボンディ ングがより容易となる。
なお第 1、 第 2の実施例においてバンプ 2 9を C C Dチップ 2 7の電極 パッド 2 8上に設けた場合について説明したが、 このバンプ 2 9をインナ 一リード 2 2の先端に設けて C C Dチップ 2 7の電極パッド 2 8と接合す ることも可能である。
図 4は本発明の第 3の実施例における固体撮像装置の断面図であり、 ィ ンナーリード 2 2の配列が並列状に見えるように切断した断面を示してい る。 図に示すように本実施例では C C Dチップ 2 7の電極パッド 2 8とィ ンナーリード 2 2との接続をバンプ 2 9に代えて上下方向のみに導電性を 有する異方性導電体 3 1を介して行ったものである。 本実施例の場合、 導 電性ゴム等よりなる異方性導電体 3 1が有する弾性により第 2の実施例の 場合と同様に C C Dチップ 2 7の光学的位置合わせが容易となるという利 点を有する。
このように上記実施例によれば、 パッケージの内部に貫通孔を設け、 C C Dチップをパッケージの底面側、 すなわちアウターリード側に設けられ た揷入口より装填し、 パッケージの開口部と挿入口との段差部背面に露出 しているィンナーリードと C C Dチップの電極パッドとをバンプまたは異 方性導電体を介して電気的に接続すると同時に光学的位置合わせを行なつ ているので従来に比較して著しく工程を簡略化することができる。 さらに C C Dチップの装着冶具を C C Dチッブの背面に配置することができるの で C C Dチップの前面からの光学的位置合わせが極めて容易になり、 さら に高精度の位置調整が可能となる。
図 5は本発明の第 4の実施例における固体撮像装置の断面図であり、 第 1の実施例の場合と同じょうに、 リン青銅等よりなるリードフレーム 2 4 を配置した金型中に無機質フイラ一を混合したエポキシ樹脂を注入して高 温でインモールドしたのち金型から取り出してリードフレーム 2 4の枠体 を切り放し、 アウターリード 2 3を挿入口 2 6の方向に折り曲げてパッケ ージ 2 1を作成する。 一方配線群 (図示せず) と C C Dチップ 4 1をその 表面に形成したシリコンゥエーファ等の半導体基板よりなる基板 4 2の表 面の一部に別工程で作成した周辺回路素子 4 3をフェースダウンにて配置 し、 その周辺回路素子 4 3の電極パッド 4 4上に設けられているバンプ 2 9と基板 4 2上の配線群の電極パッド 4 5とを接続して得られた機能デバ イス (以下、 C C Dモジュールという) 4 6の背面を装着冶具(図示せず) を用いて保持し、 パッケージ 2 1の挿入口 2 6よりパッケージ 2 1内に挿 入してパッケージ 2 1の開口部 2 5と挿入口 2 6との段差部背面に露出し て配置されているインナーリード 2 2に C C Dモジュール 4 6の周辺に設 けられている電極パッド 4 7にバンプ 2 9を圧着して接続する。 この圧着 作業中に C C Dチップ 4 1の前面に設置された光学位置調整装置 (図示せ ず) から装着冶具に位置信号がフィードバックされて C C Dチップ 41の 方位を微調整しながらパッケージ 21の段差部背面に CCDモジュール 4 6が配置され、 同時に圧着冶具の側部に設置されているデイスペンザから 紫外線硬化型接着剤 30がー定量射出されて CCDモジュール 46の 4辺 とパッケージ 21とを接着固定することによって CCDチップ 41がパッ ケージ 21の正確な位匱に搭載される。
つぎに図 6は本発明の第 5の実施例における固体撮像装置の断面図であ り、本実施例は前記第 4の実施例における実施の形態の一変形例であって、 パッケージ 21の挿入口 26より C CDチップや周辺回路素子および配線 群が形成または載置された CCDモジュール 46を装填して CCDチップ
1の光学位置を微調整しながらパッケージに固定する点は、 その構造ま たは製造方法ともに上記第 4の実施例と同様であるが、 上記第 4の実施例 と異なる点は、 第 4の実施例において CCDチップが CCDモジュール 4 6の基板 42となる半導体基板の上面に直接拡散工程等の回路チップ形成 工程を経て作成されているのに対して、 本実施例では CCDチップ 41も 周辺回路素子 43と同じように別工程で予め作成された CCDチップであ り、 この周辺回路素子 43と CCDチップ 41を配線群が形成されている 基板 42上に配設し、 電気的接続を行って CCDモジュール 46とした点 である。
したがって本実施例の場合、 基板 42は半導体基板以外の材料を用いる ことも可能である。 図 6より明らかなように、 本実施例のように別工程で 作成された CCDチップ 41を基板 42上に載置する場合、 CCDチップ 41の電極と基板 42上の配線群の電極端子とは金属線 47 aを用いてヮ ィァボンディングによって接続されることになる。
図 7は本発明の第 6の実施例における固体撮像装置の断面図であり、 本 実施例も上記第 5の実施例における実施の形態のもう一つの変形例であつ て、 本実施例が第 5の実施例と異なる点は、 第 5の実施例において周辺回 路素子 4 3は第 4の実施例の場合と同様にフェイスダウン方式でバンプ 2 9を介して基板 4 2に接続されているが、 本実施例では周辺回路素子 4 3 も第 5の実施例における C C Dチップ 4 1と同様にその回路形成面を上方 に向けて基板 4 2上に配設され、 周辺回路素子 4 3の電極も基板 4 2上の g己線群の電極端子と金属線 4 7 aを用いてワイアボンディングによって接 続されている点である。
このように本発明の第 4、 第 5、 第 6の実施例における構成にはその構 造上の類似点と相違点があるが、 つぎにこれらそれぞれの実施例における 固体撮像装置の利点について説明する。 まず第 4の実施例においては C C Dチップ 4 1を半導体基板である基板 4 2上に他の配線群とともに同時に 形成することができるので、 C C Dチップ 4 1の電極と配線群の電極端子 との電気的接続が極めて容易であるとともに確実に行うことができ、 また 固体撮像装置の小型化にも有効である。 つぎに第 5の実施例においては、 一般的にその歩留まりが極めて低いとされる画素数の多い高精度の C C D チップを別工程で作成しており、 良品のみを用いることによって全体コス トの低減に寄与することができる。 さらに第 6の実施例においては、 C C Dチップ 4 1および周辺回路素子 4 3の電極と基板 4 2上の配線群の電極 端子とをともに実装技術またはその自動実装機における長年の実績に基づ く高い信頼性を有するワイアボンディングによって行われており、 周辺回 路素子 4 3がその回路形成面を上にして配置されているために遮光膜 4 8 を必要とはするが、 C C Dチップ 4 1や周辺回路素子 4 3に故障が発生し た場合においても、 その取り替えが容易であり、 構成部品の再利用ができ るという利点を有する。 なお図 7において 4 9は遮光膜 4 8を金属等の蒸 着やスパッタリングによって形成されたガラス基板である
上記説明したようにこれら第 4、 第 5、 第 6の実施例における固体撮像 装置はその要求性能、 価格および最適用途等に応じて適宜使用可能な形態 を取る得るものである。 つぎに図 8は本発明の第 7の実施例における固体撮像装置の断面を示す ものであり、 本実施例が上記した各実施例と異なる点は C C Dチップゃ周 辺回路素子を重層構造としてパッケージ内に装填した点であり、 したがつ てパッケージは上記各実施例の構造と異なり、 パッケージ内の貫通孔が 2 つの異なる大きい開口面積を有する開口部よりなる挿入孔から C C Dチッ ブおよび周辺回路素子がパッケージ内に装填される。
つぎに本実施例の構造についてその製造方法と共に説明する。 図 8にお いて、 5 0は本実施例に使用される特別な構造を有するパッケージであり、 その一端面には小さい開口面積を有する第 1の開口部 5 1力 他の端面に は 1つの大きな開口面積を有する第 2の開口部 5 2とその第 2の開口部 5 2よりも大きな開口面積を有する第 3の開口部 5 3が設けられている。 ま たパッケージ 5 0は、 その上部枠体 5 0 aに第 1の開口部 5 1と第 2の開 口部 5 2が設けられ、 その内部には屈曲して配置されたインナーリード 5 4を有し、 そのインナーリード 5 4の一端は第 1の開口部 5 1と第 2の開 口部 5 2との第 1の段差部において露出して第 1のインナーリード端子 5 4 aを形成している。 またパッケージ 5 0の上部枠体 5 0 a内を屈曲して '下方に延びたインナーリード 5 4の他の一端 5 4 bはパッケージ 5 0の下 部枠体 5 0 bと上部枠体 5 0 aとの間に封止されてその一端が第 2の開口 部 5 2と第 3の開口部 5 3との段差部に露出した第 2のインナーリード端 子 5 4 cとパッケージ 5 0より外部に出て下方へ折り曲げられて形成され たアウターリード 5 5との接続点にパッケージ内で接続している。
図 8に示すようにその製造方法は、 まず第 1の実施例の場合と同様にリ ン青銅等のインナーリード 5 4およびアウターリード 5 5よりなるリード フレームを配置した金型中に無機質フィラーを混合したエポキシ樹脂を注 入して高温でインモールドしたのち金型から取り出してリードフレームの 枠体を切り放し、 アウターリード 5 5を第 3の開口部 5 3よりなる挿入口 の方向に折り曲げてパッケージ 5 0を作成する。 つぎにパッケージ 5 0の大きい開口面積を有する第 3の開口部 5 3より 電極パッド 2 8上にバンプ 2 9を形成した C C Dチップ 2 7の背面を装着 冶具 (図示せず) を用いて保持し、 パッケージ 5 0内に挿入してパッケ一 ジ 5 0の上部枠体にある第 1の段差部に設けられた第 1のィンナーリード 端子 5 4 aにバンプ 2 9を圧着して接続する。 この圧着作業中に C C Dチ ップ 2 7の前面に設置された光学位置調整装置 (図示せず) から装着冶具 に位置信号がフィードバックされて C C Dチップ 2 7の方位を微調整しな がらパッケージ 5 0の第 1の段差部に C C Dチップ 2 7が位置調整され、 同時に圧着冶具の側部に設置されているデイスペンザから紫外線硬化型接 着剤 3 0がー定量射出されて C C Dチップ 2 7の 4辺とパッケージ 5 0と を接着固定し、 C C Dチップ 2 7がパッケージ 5 0に正確に搭載される。 つぎに周辺回路素子 4 3が同じく第 3の開口部 5 3の挿入孔よりパッケ ージ 5 0の下部枠体 5 0 b内に挿入され、 周辺回路素子 4 3の電極パッド 4 4に第 2の開口部 5 2と第 3の開口部 5 3との段差部に露出する第 2の インナーリード端子 5 4 Cがバンプ 2 9を介して圧着接続される。 同時に 圧着冶具の側部に設置されているデイスペンザから紫外線硬化型接着剤 3 0がー定量射出されて周辺回路素子 4 3の 4辺とパッケージ 5 0とを接着 固定し、 周辺回路素子 4 3がパッケージ 5 0に正確に搭載される。
このように上記実施例によれば、 C C Dチップ 2 7と周辺回路素子 4 3 をパッケージ 5 0内に重層構造で、 すなわち立体的に配置することができ るため、 固体撮像装置と駆動回路とを一体化することにより基板上の取付 面積を低减することができ、 小型ビデオ力メラ等への高密度実装が可能と なる。
なお、 図 8において 5 6は固体撮像装置の内部を保護するためのガラス 等の透明体よりなる保護板であるが本発明の上記各実施例において、 その 利用の有無に関わらず本発明の目的とする機能および効果に変化はない。 また上記第 5から第 8の実施例において、 前記本発明の第 3の実施例の 場合と同様にィンナーリ一ドの先端部がパッケージの開口部より内部へ僅 か突出させることも可能であり、 ィンナーリ一ド先端部の弾性によって光 学的位置合わせやバンプとのボンディングがより容易となる。 さらに前記 第 1、 第 2の実施例においてバンプ 2 9を C C Dチップ 2 7の電極パッド 2 8上に設けた場合について説明したが、 このバンプ 2 9をインナーリー ド 2 2の先端に設けて C C Dモジュール 4 6の電極パッド 4 7と接合する ことも可能である。
さらに上記第 5から第 8の実施例において、 C C Dモジュール 4 6の電 極パッド 4 7とインナーリード端子との接続を、 前記本発明の第 4の実施 例の場合と同様にバンプ 2 9に代えて上下方向にのみ導電性を有する異方 性導電体を介して行うことも可能である。
産業上の利用可能性
以上のように、 本発明の固体撮像装置およびその製造方法によれば、 ィ ンナーリードとアウターリードよりなるリードフレームを内部に貫通孔を 設けて封止したパッケージ内に C C Dチップまたは周辺回路素子等を搭載 した固体撮像装置およびその製造方法であって、 パッケージがその両端面 に異なる開口面積を有するそれぞれ開口部を備え、 固体撮像装置が大きい 開口面積を有する開口部より装填されてその貫通孔を密閉した構造とする ことにより、 C C Dチップや周辺回路素子の電極パッドをバンプまたは異 方性導電体を介してインナーリードに接続しているために、 著しく工程を 簡略化できた。 さらに C C Dチッブの装着冶具を C C Dチップの背面に配 置して C C Dチップの前面から光学的位置合わせを行っているために、 極 めて高精度の位置調整が可能となり、 鮮明な色彩の再現や繊細な画像等を 得ることができる高画質ビデオ力メラに搭載することができる固体撮像装 置を安価に製造することが可能となった。

Claims

請 求 の 範 囲
1 . インナーリードとアウターリードよりなるリードフレームを内部に貫 通孔を設けて封止したパッケージ内に固体撮像素子を搭載した固体撮像装 置であって、 前記パッケージが両端面に異なる開口面積をそれぞれ有する 開口部を備え、 前記固体撮像素子が大きい開口面積を有する開口部よりな る揷入孔より装填されて前記貫通孔を密閉した構造を有することを特徴と する固体撮像装置。
2 . ィンナーリードとアウターリードよりなるリードフレームを内部に貫 通孔を設けて封止したパッケージ内に固体撮像素子を搭載した固体撮像装 置であって、 前記固体撮像素子の電極パッドが前記インナーリードを介し て接するパッケージの開口部の面積が前記固体撮像素子全体の面積よりも ■ 小さいことを特徴とする固体撮像装置。
3 . 固体撮像素子の電極パッドがバンプを介してインナーリードに接続さ れている請求項 2記載の固体撮像装置。
4 . 固体撮像素子の電極パッドが異方性導電体を介してインナーリードに 接続されている請求項 2記載の固体撮像装置。
5 . 固体撮像素子の電極パッドが接続されるィンナーリ一ドの先端部がパ ッケージの開口部周縁より突出している請求項 2記載の固体撮像装置。
6 . インナーリードとアウターリードよりなるリードフレームを内部に貫 通孔を設けて封止したパッケージ内に、 固体撮像素子と周辺回路素子とを 載置した基板が異なる開口面積を有する開口部を備える前記パッケージの 大きい開口面積を有する開口部より装填され、 前記基板の電極パッドが前 記パッケージの小さい開口面積を有する開口部の周辺端部に露出した前記 ィンナーリ一ドに接続された構造を有することを特徴とする固体撮像装置。
7 . インナーリードとアウターリードよりなるリードフレームを内部に貫 通孔を設けて封止したパッケージ内に、 固体撮像素子を形成した半導体基 板の前記固体撮像素子形成面を除く上面に周辺回路素子を載置してなる半 導体基板が異なる開口面積を有する開口部を備える前記樹脂パッケ一 ジの大きい開口面積を有する開口部より装填され、 前記半導体基板の電極 パッドが前記パッケージの小さい開口面積を有する開口部の周辺端部こ露 出した前記ィンナーリ一ドに接続された構造を有することを特徴とする固 体撮像装置。
8 . 固体撮像素子の上面を除く基板の上部全面に遮光膜を配設した請求項 6または 7記載の固体撮像装置。
9 . 基板の電極パッドがバンプを介してインナ一リードに接続されている 請求項 6または 7記載の固体撮像装置。
1 0 . 基板の電極パッドが異方性導電体を介してインナーリードに接続さ れている請求項 6または 7記載の固体撮像装置。
1 1 . 基板の電極パッドが接続されるインナーリードの先端部がパッケ一 ジの開口部周縁より突出している請求項 6または 7記載の固体撮像装置。
1 2 . インナーリードとアウターリードよりなるリードフレームを内部に 貫通孔を設けて封止したパッケージ内に固体撮像素子と周辺回路素子とを 搭載した固体撮像装置であって、 前記固体撮像素子が前記パッケージの第 一の段差部に露出した第 1のィンナーリ一ドに接続され、 前記周辺回路素 子が前記パッケージの第 2の段差部に露出した第 2のィンナーリ一ドに接 続された構造を有することを特徴とする固体撮像装置。
1 3 . インナーリードとアウターリードよりなるリードフレームを内部に 貫通孔を設けて封止したパッケージ内に固体撮像素子を搭載した固体撮像 装置の製造方法であって、 前記固体撮像素子を前記パッケージの大きい開 口面積を有する開口部より前記パッケージの貫通孔内に装填し、 前記固体 撮像装置の電極パッドをバンプまたは異方性導電体を介してインナーリー ドに接続して光学的位置合わせと電気的接続を行ったのち前記固体撮像素 子の背面とパッケージとを接着剤にて固定することを特徴とする固体撮像 装置の製造方法。
1 4 . インナーリードとアウターリードよりなるリードフレームを内部に 貫通孔を設けて封止したパッケージ内に固体撮像素子と周辺回路素子とを 搭載した固体撮像装置の製造方法であって、 半導体基板よりなる基板上に 前記固体撮像素子および配線群を形成したのち、 前記基板の前記固体撮像 素子を除く面上に周辺回路素子を載置して前記配線群と接続し、 前記パッ ケージの大きい開口面積を有する開口部より前記パッケージの貫通孔内に 装填し、 前記基板上の周辺に設けられた電極パッドをバンプまたは異方性 導電体を介してィンナーリ一ドに接続して光学的位置合わせと電気的接続 を行ったのち前記固体撮像素子と周辺回路素子を備える基板の背面とパッ ケージとを接着剤にて固定することを特徴とする固体撮像装置の製造方法。
1 5 .ィンナーリードとアウターリードよりなるリードフレームを内部に 貫通孔を設けて封止したパッケージ内に固体撮像素子と周辺回路素子とを 搭載した固体撮像装置の製造方法であって、 配線群が設けられた基板上に 前記固体撮像素子および前記周辺回路素子を載置して前記配線群と接続し、 つぎにその基板を前記パッケージの大きい開口面積を有する開口部より前 記パッケージの貫通孔内に装填し、 前記基板上の周辺に設けられた電極パ ッドをバンプまたは異方性導電体を介してィンナーリ一ドに接続して光学 的位置合わせと電気的接続を行ったのち前記固体撮像素子と周辺回路素子 を備える基板の背面とパッケージとを接着剤にて固定する'ことを特徴とす る固体撮像装置の製造方法。
1 6 . インナーリードとアウターリードよりなるリードフレームを内部に 貫通孔を設けて封止したパッケージ内に固体撮像素子と周辺回路素子とを 搭載した固体撮像装置の製造方法であって、 前記固体撮像素子を前記パッ ケージの大きい開口面積を有する開口部より前記パッケージの貫通孔内に 装填して前記固体撮像素子の電極パッドをバンプまたは異方性導電体を介 して第 1のィンナーリ一ドに接続して光学的位置合わせと電気的接続を行 つたのち前記固体撮像素子の背面とパッケージとを接着剤にて固定したあ と周辺回路素子を同じく大きい面積を有する開口部より前記パッケージの 貫通孔内に装填して前記周辺回路素子の電極パッドをバンプまたは異方性 導電体を介して第 2のィンナーリ一ドに接続して電気的接続を行ったのち 前記周辺回路素子の背面とパッケージとを接着剤にて固定することを特徴 とする固体撮像装置の製造方法。
PCT/JP1996/002142 1995-08-02 1996-07-30 Dispositif de prise de vues a semi-conducteurs et fabrication dudit dispositif WO1997005660A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69636920T DE69636920T2 (de) 1995-08-02 1996-07-30 Festkörperbildaufnahmegerät und herstellungsverfahren
EP96925131A EP0790652B1 (en) 1995-08-02 1996-07-30 Solid-state image pickup device and its manufacture
US08/809,845 US5952714A (en) 1995-08-02 1996-07-30 Solid-state image sensing apparatus and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19736595 1995-08-02
JP7/197365 1995-08-02

Publications (1)

Publication Number Publication Date
WO1997005660A1 true WO1997005660A1 (fr) 1997-02-13

Family

ID=16373288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002142 WO1997005660A1 (fr) 1995-08-02 1996-07-30 Dispositif de prise de vues a semi-conducteurs et fabrication dudit dispositif

Country Status (6)

Country Link
US (1) US5952714A (ja)
EP (1) EP0790652B1 (ja)
KR (1) KR19990036077A (ja)
CN (2) CN1536659A (ja)
DE (1) DE69636920T2 (ja)
WO (1) WO1997005660A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358997A (ja) * 2000-06-12 2001-12-26 Mitsubishi Electric Corp 半導体装置
KR20020043049A (ko) * 2000-12-01 2002-06-08 조명기 열 융합 복합 부직포의 제조방법
JP2003125295A (ja) * 2001-10-15 2003-04-25 Sanyo Electric Co Ltd 半導体装置およびその製造方法
JP2005317564A (ja) * 2004-04-26 2005-11-10 Matsushita Electric Ind Co Ltd 光学デバイスおよびその製造方法
JP2005327893A (ja) * 2004-05-14 2005-11-24 Matsushita Electric Ind Co Ltd 光学デバイスおよびその製造方法
US7154156B2 (en) 2003-04-28 2006-12-26 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device and method for producing the same
JP2011054643A (ja) * 2009-08-31 2011-03-17 Canon Inc 固体撮像装置
US8120128B2 (en) 2007-10-12 2012-02-21 Panasonic Corporation Optical device
WO2017134972A1 (ja) * 2016-02-01 2017-08-10 ソニー株式会社 撮像素子パッケージ及び撮像装置

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3536504B2 (ja) * 1996-01-17 2004-06-14 ソニー株式会社 固体撮像素子及びその製造方法
FR2758630B1 (fr) * 1997-01-21 1999-04-09 Thomson Tubes Electroniques Procede de scellement etanche d'un detecteur de rayonnement a l'etat solide et detecteur obtenu par ce procede
US6307258B1 (en) * 1998-12-22 2001-10-23 Silicon Bandwidth, Inc. Open-cavity semiconductor die package
US6621522B1 (en) * 1999-04-28 2003-09-16 Silitek Corporation Adjustable fixing device of a CCD plate
JP4433519B2 (ja) * 1999-08-16 2010-03-17 株式会社ニコン 電子カメラ
FR2798226B1 (fr) * 1999-09-02 2002-04-05 St Microelectronics Sa Procede de mise en boitier d'une puce de semi-conducteur contenant des capteurs et boitier obtenu
JP3461332B2 (ja) 1999-09-10 2003-10-27 松下電器産業株式会社 リードフレーム及びそれを用いた樹脂パッケージと光電子装置
FR2800909B1 (fr) * 1999-11-04 2003-08-22 St Microelectronics Sa Boitier semi-conducteur optique et procede de fabrication d'un tel boitier
FR2800911B1 (fr) * 1999-11-04 2003-08-22 St Microelectronics Sa Boitier semi-conducteur optique et procede de fabrication d'un tel boitier
FR2800912B1 (fr) * 1999-11-04 2003-07-25 St Microelectronics Sa Boitier semi-conducteur optique et procede de fabrication d'un tel boitier
KR100388290B1 (ko) * 1999-12-10 2003-06-19 앰코 테크놀로지 코리아 주식회사 반도체패키지 및 그 제조방법
US6956615B2 (en) * 2000-01-28 2005-10-18 Pentax Corporation Structure for mounting a solid-state imaging device
JP2001257330A (ja) * 2000-03-09 2001-09-21 Sony Corp 固体撮像装置
JP3527166B2 (ja) * 2000-03-15 2004-05-17 シャープ株式会社 固体撮像装置及びその製造方法
US6809413B1 (en) * 2000-05-16 2004-10-26 Sandia Corporation Microelectronic device package with an integral window mounted in a recessed lip
US6384473B1 (en) * 2000-05-16 2002-05-07 Sandia Corporation Microelectronic device package with an integral window
US7273769B1 (en) 2000-08-16 2007-09-25 Micron Technology, Inc. Method and apparatus for removing encapsulating material from a packaged microelectronic device
KR20020032027A (ko) * 2000-10-25 2002-05-03 듀흐 마리 에스. Ccd 이미징 칩용 패키징 구조
US6646316B2 (en) * 2001-01-24 2003-11-11 Kingpak Technology, Inc. Package structure of an image sensor and packaging
US6521881B2 (en) * 2001-04-16 2003-02-18 Kingpak Technology Inc. Stacked structure of an image sensor and method for manufacturing the same
JP2003060948A (ja) * 2001-06-05 2003-02-28 Seiko Precision Inc 固体撮像装置
US6730536B1 (en) 2001-06-28 2004-05-04 Amkor Technology, Inc. Pre-drilled image sensor package fabrication method
US6548759B1 (en) * 2001-06-28 2003-04-15 Amkor Technology, Inc. Pre-drilled image sensor package
US6486545B1 (en) 2001-07-26 2002-11-26 Amkor Technology, Inc. Pre-drilled ball grid array package
US7276394B2 (en) * 2001-09-20 2007-10-02 Eastman Kodak Company Large area flat image sensor assembly
KR100877159B1 (ko) * 2001-11-30 2009-01-07 파나소닉 주식회사 고체 촬상 장치 및 그 제조 방법
JP3773177B2 (ja) * 2001-11-30 2006-05-10 松下電器産業株式会社 固体撮像装置およびその製造方法
JP4477811B2 (ja) * 2002-02-27 2010-06-09 Hoya株式会社 固体撮像素子の取付板及びその取付板への取付方法
JP2004104078A (ja) * 2002-06-28 2004-04-02 Sanyo Electric Co Ltd カメラモジュールおよびその製造方法
AU2002324413A1 (en) * 2002-07-30 2004-02-25 Infineon Technologies Ag Heat dissipation device for integrated circuits
JP3801121B2 (ja) * 2002-08-30 2006-07-26 松下電器産業株式会社 樹脂封止型半導体装置およびその製造方法
CN1234234C (zh) * 2002-09-30 2005-12-28 松下电器产业株式会社 固体摄像器件及使用该固体摄像器件的设备
JP2004140169A (ja) * 2002-10-17 2004-05-13 Rohm Co Ltd パッケージ型半導体装置
US6680525B1 (en) * 2003-01-09 2004-01-20 Kingpak Technology Inc. Stacked structure of an image sensor
US6740973B1 (en) * 2003-01-09 2004-05-25 Kingpak Technology Inc. Stacked structure for an image sensor
JP2004319530A (ja) * 2003-02-28 2004-11-11 Sanyo Electric Co Ltd 光半導体装置およびその製造方法
JP3813944B2 (ja) * 2003-04-28 2006-08-23 松下電器産業株式会社 撮像装置
WO2004107437A1 (en) * 2003-05-30 2004-12-09 Valen Technologies (S) Pte Ltd Image sensing module and method for constructing the same
IL159032A0 (en) * 2003-11-24 2004-05-12 Safety Quick Light Ltd Swivellable electric socket-plug combination
TWI296154B (en) * 2004-01-27 2008-04-21 Casio Computer Co Ltd Optical sensor module
CN100365813C (zh) * 2004-02-03 2008-01-30 旺宏电子股份有限公司 光感测芯片及半导体芯片堆叠封装结构
IL162251A0 (en) * 2004-05-31 2005-11-20 Medigus Ltd A reusable laparoscopic or endoscopic camera head
US20060016973A1 (en) * 2004-07-21 2006-01-26 Advanced Semiconductor Engineering, Inc. Multi-chip image sensor package module
JP2006245246A (ja) * 2005-03-02 2006-09-14 Sharp Corp 固体撮像装置
JP2006339291A (ja) * 2005-05-31 2006-12-14 Fujifilm Holdings Corp 中空パッケージとこれを用いた半導体装置及び固体撮像装置
US20070058069A1 (en) * 2005-09-14 2007-03-15 Po-Hung Chen Packaging structure of a light sensation module
JP4343177B2 (ja) * 2006-02-06 2009-10-14 富士通マイクロエレクトロニクス株式会社 半導体装置
US9050036B2 (en) 2007-06-19 2015-06-09 Minimally Invasive Devices, Inc. Device for maintaining visualization with surgical scopes
SG149709A1 (en) 2007-07-12 2009-02-27 Micron Technology Inc Microelectronic imagers and methods of manufacturing such microelectronic imagers
CN102313959B (zh) * 2007-11-21 2014-11-12 Lg伊诺特有限公司 摄像模块
US20090179290A1 (en) * 2008-01-15 2009-07-16 Huang Shuangwu Encapsulated imager packaging
SG142321A1 (en) 2008-04-24 2009-11-26 Micron Technology Inc Pre-encapsulated cavity interposer
CA2746371C (en) 2008-12-10 2015-08-04 Minimally Invasive Devices, Inc. Systems and methods for optimizing and maintaining visualization of a surgical field during the use of surgical scopes
US8299589B2 (en) * 2010-07-26 2012-10-30 TDK Taiwan, Corp. Packaging device of image sensor
WO2012019023A1 (en) 2010-08-04 2012-02-09 Minimally Invasive Devices, Llc Systems and methods for optimizing and maintaining visualization of a surgical field during the use of surgical scopes
WO2012075487A2 (en) 2010-12-03 2012-06-07 Minimally Invasive Devices, Llc Devices, systems, and methods for performing endoscopic surgical procedures
EP2575175B1 (de) * 2011-09-30 2017-04-26 First Sensor Microelectronic Packaging GmbH Bildsensor mit großer Chipfläche
JP5634380B2 (ja) * 2011-10-31 2014-12-03 アオイ電子株式会社 受光装置およびその製造方法
WO2014151824A1 (en) 2013-03-14 2014-09-25 Minimally Invasive Devices, Inc. Fluid dispensing control systems and methods
JP6310216B2 (ja) * 2013-09-06 2018-04-11 キヤノン株式会社 放射線検出装置及びその製造方法並びに放射線検出システム
EP3212939B1 (en) 2014-09-30 2024-03-13 Skyx Platforms Corp. Combination of a ceiling fan and heater with light effects
KR102574839B1 (ko) 2015-05-12 2023-09-06 에스케이와이엑스 플랫폼 코포레이션 전기설비용 스마트 퀵 연결장치
KR20170037459A (ko) * 2015-09-25 2017-04-04 삼성전기주식회사 이미지 센서 모듈 및 이의 제조 방법
CA3055254A1 (en) 2017-03-05 2018-09-13 Ran Roland Kohen Modular smart quick connect device for electrical fixtures
BR112019018693A2 (pt) 2017-03-10 2020-04-07 Roland Kohen Ran dispositivo de conexão rápida para instalações elétricas embutidas
CN110651153A (zh) 2017-04-17 2020-01-03 兰·罗兰·科恩 断开和支撑快速释放电气固定装置
WO2018204313A1 (en) 2017-05-01 2018-11-08 Kohen Ran Roland Connecting lighting to poles without tools
CN108172663B (zh) * 2017-12-27 2019-12-24 中国科学院长春光学精密机械与物理研究所 一种ZnMgO日盲紫外探测器的封装方法及封装结构
CN108155108B (zh) * 2017-12-27 2020-01-14 中国科学院长春光学精密机械与物理研究所 一种氧化锌紫外探测器的封装方法及封装结构
TWI657237B (zh) * 2018-02-21 2019-04-21 茂達電子股份有限公司 光學偵測裝置及光學封裝結構
JP6976201B2 (ja) * 2018-03-13 2021-12-08 京セラ株式会社 固定構造、電子機器、撮像装置、移動体、および固定構造の製造方法
TWI677745B (zh) * 2018-12-05 2019-11-21 海華科技股份有限公司 影像擷取模組及可攜式電子裝置
AU2020224649A1 (en) 2019-02-20 2021-10-14 Skyx Platforms Corp. Quick connect device with transverse release

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213891Y2 (ja) * 1973-06-25 1977-03-29
JPS62126665A (ja) * 1985-11-27 1987-06-08 Canon Inc センサ装置
JPS62205649A (ja) * 1986-03-06 1987-09-10 Toshiba Corp 半導体装置
JPS6386460A (ja) * 1986-09-29 1988-04-16 Nec Corp 混成集積化光センサ
JPH0195553A (ja) * 1987-10-08 1989-04-13 Sony Corp 固体撮像装置
JPH04235476A (ja) * 1991-01-10 1992-08-24 Olympus Optical Co Ltd 固体撮像装置
JPH0745803A (ja) * 1993-07-28 1995-02-14 Matsushita Electron Corp 固体撮像装置
JPH0799214A (ja) * 1993-05-28 1995-04-11 Toshiba Corp 光電変換素子の実装装置及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213891A (en) * 1975-07-11 1977-02-02 Mitsui Mining & Smelting Co Methof of getting rid of starfish
JPH0824155B2 (ja) * 1987-05-06 1996-03-06 富士通株式会社 半導体パッケ−ジ
CA2092165C (en) * 1992-03-23 2001-05-15 Tuyosi Nagano Chip carrier for optical device
US5327325A (en) * 1993-02-08 1994-07-05 Fairchild Space And Defense Corporation Three-dimensional integrated circuit package
KR100186329B1 (ko) * 1996-06-14 1999-03-20 문정환 고체 촬상 소자용 반도체 패키지

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213891Y2 (ja) * 1973-06-25 1977-03-29
JPS62126665A (ja) * 1985-11-27 1987-06-08 Canon Inc センサ装置
JPS62205649A (ja) * 1986-03-06 1987-09-10 Toshiba Corp 半導体装置
JPS6386460A (ja) * 1986-09-29 1988-04-16 Nec Corp 混成集積化光センサ
JPH0195553A (ja) * 1987-10-08 1989-04-13 Sony Corp 固体撮像装置
JPH04235476A (ja) * 1991-01-10 1992-08-24 Olympus Optical Co Ltd 固体撮像装置
JPH0799214A (ja) * 1993-05-28 1995-04-11 Toshiba Corp 光電変換素子の実装装置及びその製造方法
JPH0745803A (ja) * 1993-07-28 1995-02-14 Matsushita Electron Corp 固体撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0790652A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358997A (ja) * 2000-06-12 2001-12-26 Mitsubishi Electric Corp 半導体装置
KR20020043049A (ko) * 2000-12-01 2002-06-08 조명기 열 융합 복합 부직포의 제조방법
JP2003125295A (ja) * 2001-10-15 2003-04-25 Sanyo Electric Co Ltd 半導体装置およびその製造方法
US7154156B2 (en) 2003-04-28 2006-12-26 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device and method for producing the same
US7367120B2 (en) 2003-04-28 2008-05-06 Matsushita Electric Industrial Co., Ltd. Method for producing a solid-state imaging device
JP2005317564A (ja) * 2004-04-26 2005-11-10 Matsushita Electric Ind Co Ltd 光学デバイスおよびその製造方法
JP4686134B2 (ja) * 2004-04-26 2011-05-18 パナソニック株式会社 光学デバイスおよびその製造方法
JP2005327893A (ja) * 2004-05-14 2005-11-24 Matsushita Electric Ind Co Ltd 光学デバイスおよびその製造方法
JP4606063B2 (ja) * 2004-05-14 2011-01-05 パナソニック株式会社 光学デバイスおよびその製造方法
US8120128B2 (en) 2007-10-12 2012-02-21 Panasonic Corporation Optical device
JP2011054643A (ja) * 2009-08-31 2011-03-17 Canon Inc 固体撮像装置
WO2017134972A1 (ja) * 2016-02-01 2017-08-10 ソニー株式会社 撮像素子パッケージ及び撮像装置
US11094722B2 (en) 2016-02-01 2021-08-17 Sony Corporation Image sensor package and imaging apparatus

Also Published As

Publication number Publication date
KR19990036077A (ko) 1999-05-25
CN1536659A (zh) 2004-10-13
CN1192289A (zh) 1998-09-02
US5952714A (en) 1999-09-14
EP0790652B1 (en) 2007-02-21
DE69636920D1 (de) 2007-04-05
EP0790652A4 (en) 1998-12-09
EP0790652A1 (en) 1997-08-20
CN1104745C (zh) 2003-04-02
DE69636920T2 (de) 2007-11-22

Similar Documents

Publication Publication Date Title
WO1997005660A1 (fr) Dispositif de prise de vues a semi-conducteurs et fabrication dudit dispositif
US7242433B2 (en) Small-sized image pickup device having a solid-state image pickup element and a lens holder mounted on opposite sides of a transparent substrate
US6940141B2 (en) Flip-chip image sensor packages and methods of fabrication
KR100652375B1 (ko) 와이어 본딩 패키지를 포함하는 이미지 센서 모듈 구조물및 그 제조방법
US7964945B2 (en) Glass cap molding package, manufacturing method thereof and camera module
US7593636B2 (en) Pin referenced image sensor to reduce tilt in a camera module
US7138695B2 (en) Image sensor module and method for fabricating the same
KR960001345B1 (ko) 글래스 리드 탑재형 반도체 장치
JP3417225B2 (ja) 固体撮像装置とそれを用いたカメラ
JP2002231918A (ja) 固体撮像装置及びその製造方法
US20040256687A1 (en) Optical module, method of manufacturing the same, and electronic instrument
US7242538B2 (en) Optical device
JPH11111959A (ja) 固体撮像素子収納容器およびそれを用いた固体撮像装置および固体撮像装置の製造方法
JPH03155671A (ja) 固体撮像装置
US5990563A (en) Semiconductor package having a connection member
JPH01228178A (ja) 固体撮像装置
JP3100618U (ja) 映像センサーのチップスケールパッケージ(CSP:ChipScalePackage)構造
JPH04235477A (ja) 固体撮像装置
KR20050080652A (ko) Cog 타입의 이미지 센서 모듈 및 그 제조 방법
KR20010046879A (ko) 반도체 칩 조립 방법
KR20020034616A (ko) 반도체 패키지 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96196024.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: US, EUROPEAN PATENT(AT,BE,CH,DE,DK,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE)

WWE Wipo information: entry into national phase

Ref document number: 1996925131

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08809845

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996925131

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019980700742

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1019980700742

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019980700742

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996925131

Country of ref document: EP