WO1997003778A1 - Procede d'usinage de surface de materiaux en acier lamines a chaud et appareil correspondant - Google Patents

Procede d'usinage de surface de materiaux en acier lamines a chaud et appareil correspondant Download PDF

Info

Publication number
WO1997003778A1
WO1997003778A1 PCT/JP1996/002058 JP9602058W WO9703778A1 WO 1997003778 A1 WO1997003778 A1 WO 1997003778A1 JP 9602058 W JP9602058 W JP 9602058W WO 9703778 A1 WO9703778 A1 WO 9703778A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
hot
rolled steel
rotating
rotating drum
Prior art date
Application number
PCT/JP1996/002058
Other languages
English (en)
French (fr)
Inventor
Shigefumi Katsura
Hideyuki Nikaido
Shigeru Isoyama
Takeshi Hirabayashi
Atsushi Yuki
Masuto Shimizu
Toshiaki Amagasa
Kanji Hayashi
Shozo Tashiro
Tetsuo Ichikizaki
Mitsuhiro Takagi
Tadashi Nakagawa
Motofumi Kuroda
Original Assignee
Kawasaki Steel Corporation
Mitsubishi Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP18717695A external-priority patent/JPH0929528A/ja
Priority claimed from JP19871995A external-priority patent/JP3251817B2/ja
Priority claimed from JP20306395A external-priority patent/JP3300736B2/ja
Priority claimed from JP20548495A external-priority patent/JP3300737B2/ja
Priority claimed from JP21736295A external-priority patent/JP3391610B2/ja
Priority claimed from JP07238712A external-priority patent/JP3124712B2/ja
Priority to KR1019970701923A priority Critical patent/KR100249543B1/ko
Priority to CA002200740A priority patent/CA2200740C/en
Application filed by Kawasaki Steel Corporation, Mitsubishi Jukogyo Kabushiki Kaisha filed Critical Kawasaki Steel Corporation
Priority to US08/809,554 priority patent/US5951220A/en
Priority to DE69626622T priority patent/DE69626622T2/de
Priority to EP96924194A priority patent/EP0790093B1/en
Publication of WO1997003778A1 publication Critical patent/WO1997003778A1/ja
Priority to US09/326,684 priority patent/US6192564B1/en
Priority to US09/326,681 priority patent/US6086296A/en
Priority to US09/326,687 priority patent/US6195859B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B15/0085Joining ends of material to continuous strip, bar or sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/13Surface milling of plates, sheets or strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S29/00Metal working
    • Y10S29/094Debris remover, catcher, or deflector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S29/00Metal working
    • Y10S29/102Debris chute
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5182Flash remover
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/303752Process
    • Y10T409/303808Process including infeeding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/30392Milling with means to protect operative or machine [e.g., guard, safety device, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/304088Milling with means to remove chip
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/3042Means to remove scale or raised surface imperfection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/3042Means to remove scale or raised surface imperfection
    • Y10T409/304256Means to remove flash or burr
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/40Broaching
    • Y10T409/402625Means to remove flash or burr
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/40Broaching
    • Y10T409/40455Broaching with means to advance, infeed, or manipulate work
    • Y10T409/4056Broaching with means to advance, infeed, or manipulate work to infeed work past cutter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/50Planing
    • Y10T409/501476Means to remove flash or burr
    • Y10T409/50164Elongated work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/50Planing
    • Y10T409/501476Means to remove flash or burr
    • Y10T409/50164Elongated work
    • Y10T409/501968Transverse burr

Definitions

  • the present invention relates to a protruding portion (elevated portion) of a joint region generated in surface cutting of hot-rolled steel material, particularly a wide hot long plate material, and butt joining of pieces such as sheet bars, slabs, billets or blooms.
  • the present invention relates to a surface cutting method and apparatus which are advantageous for removing burrs.
  • An object of the present invention is to propose a method and an apparatus capable of completely solving the above-mentioned conventional problems which have occurred when cutting the surface of a steel material.
  • Disclosure of the invention 1 in the process of transporting a steel material having a joint portion, when cutting the front and back surfaces of the steel material by rotating a milling cutter sandwiched from the thickness direction, the type of the steel material and the temperature and depth of cut when cutting are determined.
  • the cutting force which is determined by the cutting conditions, is controlled by adjusting the depth of cut, and the tension generated in the steel due to the cutting resistance is set to less than the breaking strength of the joint, and cutting is performed while preventing the steel from breaking. This is a method for cutting steel surfaces (Claim 1).
  • Constant determined by steel type of C steel (kgf Noryu 2 )
  • the adjustment of the one-side cutting depth t satisfies the following formula (2). Range 4).
  • Vc Milling edge peripheral speed (thigh / S)
  • At least the cutting edge of the milling cutter is made of iron, and cooling water having a pressure corresponding to the rotation speed and the outer diameter is sprayed on the rake face or flank face of the milling cutter. 5).
  • the present invention includes a pair of main shafts which rotate the steel material in opposite directions while sandwiching the steel material in a thickness direction thereof.
  • the main shaft has a plurality of cutting blades all around its outer periphery, and the plurality of main shafts are detachably fitted to the main shaft.
  • a steel material surface cutting device comprising a rotating drum on which two disks are arranged (Claim 6).
  • the disks are arranged such that the phases of the blade edges of the disks adjacent to each other are shifted in the circumferential direction, and the axial arrangement of the blade edges is discontinuously arranged (Claim 7). 8) In the above 6), the spindle shall have a mechanism to fix the disk by expanding the shaft diameter (Claim 8).
  • the main shaft has a mechanism to fix the disk by expanding the shaft diameter, and has a contraction mechanism that contracts the shaft diameter instantly when an overload is applied to the disk. Range 9).
  • the present invention is an apparatus for continuously or intermittently cutting the front and back surfaces of a pair of rotating drums that rotate in opposite directions by passing a steel material between the opposite ends, or both ends or one end of at least one of the rotating drums
  • the steel surface cutting apparatus according to claim 10 further comprising an inter-drum gap recognition disc having a diameter larger than that of the rotating drum.
  • At least one of the above 6) and 10 at least one of the rotating drums is provided with a measuring means for measuring a wear amount of a tip of the rotating drum and adjusting a level of the rotating drum with respect to a steel material. ).
  • the present invention is an apparatus for continuously or intermittently cutting the front and back surfaces of a pair of rotating drums rotating in opposite directions by passing steel between them, the apparatus comprising: A steel material surface cutting device (Claim 12), comprising a chip discharge means for discharging generated chips.
  • a steel material surface cutting device (Claim 12), comprising a chip discharge means for discharging generated chips.
  • a running water injection means is provided on the chip discharge side of the rotary drum (Claim 13).
  • the present invention is an apparatus for continuously or intermittently cutting front and back surfaces of a pair of rotating drums by passing a steel material between the pair of rotating drums rotating in opposite directions, the apparatus comprising: A surface cutting device for a steel material, characterized by having a movable threading guide for holding the steel material from a point up to the exit side (Claim 14).
  • the present invention is an apparatus for continuously or intermittently cutting the front and back surfaces of a pair of rotating drums rotating in opposite directions by passing a steel material between the pair of rotating drums. That at least one of the sides has a press roll or a pinch roll that suppresses fluctuations in tension due to flutter during surface cutting of the steel material. It is a steel surface cutting device characterized by the following features (Claim 15).
  • FIG. 1 is a diagram showing a state of surface cutting of a steel material with respect to a side surface thereof.
  • FIG. 2 is a diagram showing a plane of FIG.
  • FIG. 3 is a diagram showing the configuration of a continuous hot rolling facility for steel materials.
  • FIG. 4 is a diagram showing a state of cooling at the tip of the blade edge of the rotary drum.
  • Fig. 5 shows the relationship between the peripheral speed of the milling machine and the cooling water pressure.
  • FIG. 6 is a diagram showing the relationship between the outer diameter of the milling cutter and the cooling water pressure.
  • FIG. 7 is a diagram showing the overall configuration of the cutting device.
  • FIG. 8 is a view showing the structure of a rotating drum having a conventional structure.
  • FIG. 9 is a diagram showing another structure of the rotating drum having the conventional structure.
  • FIG. 10 is an explanatory view of the configuration of a cutting device according to the present invention.
  • FIG. 11 is a view from AA and BB of FIG.
  • FIG. 12 is a view showing only the rotating drum of the device according to the present invention.
  • FIG. 13 shows another rotary drum taken out of the apparatus according to the present invention.
  • FIG. 14 is a view showing a structure for fixing a disk.
  • FIG. 15 is a diagram showing a main part of the cutting edge.
  • FIG. 16 is an explanatory view of the structure of another rotating drum of the device according to the present invention.
  • FIG. 17 is an explanatory view of the structure of another rotating drum of the device according to the present invention.
  • FIGS. 18a and 18b are enlarged views of a main part of the rotary drum shown in FIG. 'FIG. 19 is a diagram showing the positional fluctuation of the rotating drum over time.
  • FIG. 20 is a diagram showing the state of surface cutting of a steel material.
  • FIG. 21 (a) is a diagram showing the burden on the rotating drum in the width direction
  • FIG. 21 (b) is a diagram showing the outer diameter of the rotating drum.
  • FIG. 22 is a diagram showing a configuration of an apparatus according to the present invention which can avoid breakage of the blade tip and can recognize a gap between drums.
  • FIG. 11 is a diagram showing another configuration of the device according to the present invention, which enables recognition of an image.
  • FIG. 24 is a diagram showing another configuration of the device according to the present invention capable of measuring the amount of wear at the tip of the cutting edge.
  • FIG. 25 is a diagram showing an example in which measuring means is placed above and below a rotary drum, respectively.
  • FIG. 26 is a diagram showing another example of a cutting device according to the present invention.
  • FIG. 27 is a diagram showing a specific procedure for performing zero adjustment.
  • FIG. 28 is a view showing an example of the arrangement of the apparatus of the continuous hot rolling equipment.
  • FIG. 29 is a diagram showing the state of the joints of steel materials when continuous hot rolling is performed.
  • FIG. 30 is a view showing a situation where the joint shown in FIG. 29 is rolled.
  • FIG. 31 is a diagram showing a cutting state of a joint of steel materials.
  • FIG. 32 is an explanatory diagram of the processing status of chips generated during cutting of a steel material.
  • FIG. 33 is a view showing a configuration of a continuous hot rolling equipment in which a cutting device according to the present invention is arranged.
  • FIG. 34 is a diagram showing an arrow II-II in FIG. 33.
  • FIG. 35 is a view taken along the line III-III in FIG.
  • FIG. 36 is a view for explaining a situation in which the tip of a steel material hangs down in the cutting device.
  • FIG. 37 is a diagram showing a configuration of a side surface of the cutting device according to the present invention.
  • FIG. 38 is a view taken along the line ⁇ -III I in FIG.
  • FIG. 39 is a view showing a state of fluttering of a steel material during cutting.
  • FIG. 40 is a diagram showing a basic configuration of an apparatus configured to suppress flapping of a steel material during cutting.
  • FIG. 41 is a diagram showing a basic configuration of another device for suppressing fluttering of a steel material during cutting.
  • FIG. 42 is a diagram showing a relationship between cutting resistance and cutting resistance reaction force in surface cutting of a steel material.
  • FIG. 43 is a diagram showing a comparison of tension fluctuations when cutting is performed by holding down a steel material and when cutting is performed as it is.
  • Sho 533-111293 (a method for removing welding burrs on a sheet material), a technique for removing a weld portion of a sheet material is disclosed.
  • a means for detecting with a detector, operating a shearing device in accordance with the detection signal, and removing the welding burrs while running the plate material and Japanese Patent Application Laid-Open No. 63-16707 ( (Hot rolling equipment) has been proposed to cut the ridge of the joint with a blade of a surface treatment device provided in front of the hot rolling mill. It is very difficult to eliminate the bull.
  • the present invention solves the above-mentioned problems by employing the means described in 1) to 4).
  • the cutting force determined by the milling conditions type of steel (component composition), temperature, width, thickness, running speed, milling direction, cutting edge peripheral speed, depth of cut, etc.
  • the depth It is controlled by adjusting the depth, and the tension generated in the steel due to the cutting resistance is made less than the breaking strength of the joint to prevent the steel from breaking.
  • the case will be described as an example more specifically.
  • FIG. 1 and FIG. 2 are views showing a state where a surface of a running plate material is milled by a side surface and a plane.
  • 1 is a milling cutter having a cutting blade at the tip
  • 2 Is a plate material
  • 3 is a milling position control cylinder
  • 4 is a thermometer
  • 5 is a process computer
  • 6 is a control panel
  • 7 is a joint of the plate material 2.
  • Arrow A indicates the direction of travel of plate 2
  • arrow B indicates the direction of rotation of milling machine 1
  • arrow C indicates the direction of tension generated in plate 2 due to cutting resistance
  • b indicates the width of plate 2
  • T indicates the width of plate 2.
  • T denotes the depth of one side cut by the milling machine 1
  • w denotes the non-joining length at the end of the joint 7 in the sheet width direction.
  • FIG. 3 is a diagram showing an example of arrangement of a cutting device having a milling machine according to the present invention on a rolling line.
  • a sheet material (sheet bar) rolled by a roughing mill 8 is taken up by a take-up / rewind device 9, and then a scale breaker (not shown) while rewinding by a take-up / rewind device 9.
  • finishing mill 1 3 F, F 2 F 3 -!. -
  • first sheet S predetermined shape at each end of the cutting device 1 0 (Doramushiya etc.) of S 2
  • a clamp 1 la, Narrow pressure is supported in the thickness direction at 1 1b.
  • pressing means clamps 11a, 1 1b can be moved so as to be close to each other), and the two plates are pressed together to join them together. After maintenance, hot rolling is performed.
  • the joining of the sheet materials is usually performed by the induction heating method.
  • non-joined portions are formed in the width direction of the sheet for various reasons due to the non-uniformity in the direction. Therefore, the temperature of the joint 7 is higher than that of the base material due to heating during joining (base material: about 900 ° C, joint: about 130 ° C), and the non-joint Compared to the base material part because it has Strength is reduced.
  • FIG. 1 and FIG. 2 while the data (type, plate width b, plate thickness T) of the plate material 2 is input from the process computer 15 to the control panel 6, .
  • traveling plate 2 (SJ, S 2) feeding the control panel 6 from the thermometer 4 installed a temperature signal to the device entry side of, determining the one side cut depth t in the control panel 6 on the basis of these signals .
  • the milling position control cylinder 3 is operated by a signal from the control panel 6, and the cutting depth t determined above is cut by the milling cutter 1.
  • the joint 7 is detected by a sudden rise in temperature with the thermometer 4, and the milling position control cylinder 3 is operated through the control panel 6 based on this signal. By doing so, it is possible to perform reliable surface care at the site. At that time, it is important that the interval between the thermometer 4 and the milling cutter 1 is appropriately determined in consideration of the time lag.
  • surface treatment of the front and rear areas including the joint 7 of the plate 2 is important for removing the joint 7 and the protruding portion in the vicinity thereof, as well as displacement or clamp flaws generated in the thickness direction of the joint. And new scales are important, so it is important to cut deep enough to eliminate these problems.
  • the breaking strength of joint 7: f »(kgf) is the strength of joint 7: b (kgf / mm 2 ), non-joining length: w (thigh), cutting depth: t (mm), width of plate 2: b (mm) and thickness: T (mm)
  • f b and h b are values in consideration of the temperature, respectively.
  • a grinder equipped with a grindstone or the like is used, as seen in Japanese Patent Application Laid-Open No. 57-91856.
  • work efficiency is poor when processing wide and long pieces such as plates, especially when the surface of the slab is cleaned during direct rolling.
  • heat loss is large and energy loss is large.
  • a milling cutter with a body length that can cover the entire width of the plate is applied.
  • a non-ferrous cutting tool such as Ceramics-Tungsten Carbide
  • the rake face or the flank face of the milling material is sprayed with cooling water having a pressure corresponding to the rotation speed and the outer diameter, and the slab or heat is sprayed.
  • cooling water having a pressure corresponding to the rotation speed and the outer diameter
  • the slab or heat is sprayed.
  • the cooling water power FP is
  • Fig. 5 shows an experiment in which the outer diameter of the milling cutter was set to 80 O mm, and the peripheral speed was changed in the range of 20 to 120 mZ sec.
  • the solid line shows the lower limit of the cooling water pressure when the flow rate is Q
  • the broken line shows the lower limit of the cooling water pressure when the flow rate is 2 ⁇ Q.
  • the centrifugal force Fw increases with an increase in the peripheral speed of the milling cutter, so even if the cooling water pressure is reduced and the cooling water power FP decreases, erosion and clogging of the cutting edge occur. It turns out that it does not.
  • the cooling water pressure should be adjusted within the range of 3 to 300 kgf / cm 2 in the range of the peripheral speed of the milling machine of 20 to 120 m / sec.
  • Fig. 6 shows the case where the peripheral speed of the milling cutter is kept constant at 2 Om / sec, and the outer diameter is changed in the range of 200-100 mm, causing melting and clogging of the cutting edge.
  • the pressure of the cooling water that was not used was obtained by experiments.
  • the solid line shows the lower limit of the cooling water pressure at the flow rate Q, and the broken line shows the lower limit of the cooling water pressure at the flow rate of 2 ⁇ Q.
  • the centrifugal force Fw decreases in inverse proportion to the increase in the outer diameter of the milling cutter. Therefore, the cooling water pressure is increased by the 1.5th power law (the cooling water power FP is increased). It can be seen that there is no melting or clogging of the cutting edge. In other words, it is preferable that the larger the outer diameter of the milling cutter, the higher the pressure of the cooling water. New From these facts, it is only necessary to spray cooling water according to the rotation speed and outer diameter of the milling rake face.
  • the rotation speed of the milling machine is preferably set to 20 to 120 m / sec. The reason is that if the rotation speed of the milling cutter is lower than 2 O mZs ec, there is a problem that it will decelerate and stop due to the cutting force. If the rotation speed of the milling cutter is higher than 12 O mZs ec, the rotation speed will be reduced. This is because the vibration frequency caused by the vibration becomes equal to or higher than the critical speed, and the machine may resonate and break.
  • the outer diameter of the milling cutter be 600 to 100 mm. The reason is that if the outer diameter is smaller than 600 mm, the number of revolutions for achieving the peripheral speed increases, the vibration frequency exceeds the critical speed, or the speed drop due to cutting resistance stops large. If the outer diameter is larger than 100 mm, the rotation speed will decrease and it will be advantageous for vibration, but on the other hand, the centrifugal force will decrease and the cutting edge will be liable to melt and clog. At the same time, there is a problem that the output of the motor for driving increases.
  • Fig. 4 shows the situation in which cooling water is sprayed on the rake face of the milling cutter and the billet surface is cut using an iron-based milling cutter.
  • a milling machine Is a milling machine, 15a and 15b are main spindles, 16 is a cooling water spray nozzle, 17 is a bearing that rotatably supports the fryings 14a and 14b, 18 is a reduction cylinder, 19
  • Is a housing 20 is a power transmission spindle, 21 is a pinion stand, and 22 is an electric motor.
  • Fig. 7 shows the overall configuration of the equipment incorporating this milling machine.
  • the technology for removing the bulges of Japanese Patent Application Laid-Open Nos. Sho 57-137708, 63-16707, and Hei 5 Many proposals have already been made, such as Japanese Patent Publication No.
  • cutting is performed using a milling-type rotary drum that is about 100 times wider than the object to be processed, and the rotary drum is supported at both ends via bearings.
  • FIG. 8 centrifugal structure or the like
  • a rotary drum is attached to the main shaft via a key, and the like.
  • the main shaft and the rotating drum are separate parts, so the mounting and dismounting of the rotating drum is simpler than that of the integral type.
  • the main shaft and the rotating drum are separate parts, so the mounting and dismounting of the rotating drum is simpler than that of the integral type.
  • it is necessary to set tight fitting tolerances, which makes it difficult to mount the rotating drum on the spindle. If there is any deformation in the shaft or if there is seizure between the rotating drum and the spindle, it must be replaced together with the spindle, and the above problems remain as before.
  • a plurality of main shafts which sandwich a plate material in the thickness direction thereof and rotate in opposite directions to each other, have a cutting blade in the entire outer periphery, and are detachably fitted to the main shaft.
  • a configuration in which two disks are arranged is adopted.
  • the phase of the edges of adjacent disks is shifted in the circumferential direction, and the axial arrangement of the edges is discontinuously arranged.
  • the main shaft is designed to fix the disks by expanding the shaft diameter.
  • the main shaft has a contraction mechanism for instantaneously contracting the shaft diameter when an overload is applied to the disk.
  • a plurality of disks with cutting blades are arranged along the axis of the spindle (the number of disks covering the entire area of the object to be processed), and these are bound to form a rotating drum.
  • the rotating drum can be attached and detached very easily, and when the cutting blade has reached the end of its service life, only the corresponding disk can be replaced. If the phases of the cutting edges of adjacent disks are shifted in the circumferential direction so that the cutting edges are not aligned in the axial direction and are arranged continuously, the length of chips generated when cutting the surface of the plate material can be shortened. There is no danger that the cuttings will become entangled with the cutting tools and damage the blades, and the cuttings can be removed relatively easily. A sufficient effect can be expected even if the displacement of the blade of the disc in contact is about 1 to 2 thighs, but it can be displaced to about 12 of the blade tip pitch (the distance between the blade provided on the outer periphery of the disc).
  • the disk is fixed to the main shaft by expansion of the main shaft, and the disk is removed from the main shaft by contracting the main shaft. Therefore, the fitting tolerance with the main shaft does not need to be set as strictly as before.
  • the expansion and contraction of the spindle can be performed, for example, by making the interior of the spindle hollow, and injecting or discharging hydraulic oil to adjust the pressure inside the spindle. If an excessive load is applied during the cutting of the plate material, damage to the blade is inevitable.For example, a streak force is provided on the side of the disk fixing flange, and a plug is provided on the main shaft close to the streak force. When a certain amount of force is applied to the disk and the disk is about to rotate around the main shaft, a striking force causes the plug to fall off the main shaft and reduce the pressure inside the main shaft. It is particularly effective to provide them.
  • FIGS. 10 and 11 show a plate surface cutting apparatus according to the present invention, wherein S is a plate material, and 23a and 23b are main shafts which rotate the plate material S in opposite directions with respect to the thickness direction.
  • Reference numerals 4a and 24b denote rotating drums.
  • the rotating drum 24 has a plurality of disks i 1, 2 and 3 having cutting blades all around the outer periphery and detachably fitted to the spindles 23 a and 23 b.
  • i 2 - - - consists, this disc ii --- is not shown is fixed and held crowded viewed sandwiched by the flange or the like.
  • Numeral 25 is a bearing that rotatably holds the spindles 23a and 23b
  • 26 is a hydraulic cylinder that moves the spindles 23a and 23b up and down together with the bearing 25.
  • 27 a and 27 b are driving motors
  • 28 a and 28 b are universal joints connecting the driving motors 27 a and 27 b and the spindles 23 a and 23 b
  • 29 are The joint position detector 30 is a control device that operates the rotational speeds of the drive motors 27 a and 27 b and the hydraulic cylinder 26 based on the measurement point of the joint position detector 29 c. As shown in FIG.
  • the spindles 23a and 23b are tapered, and the disk 31 is fitted to the sleeve 31 that fits this taper. -If the ii is mounted and firmly bound and fixed with flanges and knuckle nuts, etc., it is possible to eliminate the rattling between the disc and the spindle as well as the rattling between the disc and the spindle. In addition, the mounting and dismounting of the disk can be further simplified.
  • rattling during cutting between adjacent disks can be prevented by providing irregularities on adjacent surfaces of the disks in advance and fitting the irregularities.
  • the phases of the blade edges of the disks adjacent to each other are shifted in the circumferential direction, and the axial arrangement of the blade edges is discontinuously arranged.
  • the length of the chips can be shortened, and breakage of the cutting blade due to entanglement of the chips can be avoided.
  • Fig. 16 shows the inside of the main shafts 23a and 23b, leaving the shaft ends near the outer periphery of the shaft, etc., to create a cavity 32, where oil or other liquid is supplied through the supply port 33, and the disks i, ---
  • the pressure inside the main shafts 23a and 23b is increased to expand the shaft diameter, and the disk is firmly fixed to the main shaft.
  • the machining accuracy of the inner diameter of the disc to be fitted to the spindle can be reduced within the range of the expansion allowance of the spindle.
  • the main shaft expands, close the supply port 33 with the screw 34. Then, the expansion of the main shaft can be easily maintained.
  • Fig. 17 shows how to reduce the pressure in the spindles 23a and 23b and instantaneously reduce the shaft diameter when excessive load is applied to the disk during surface cutting of a plate material or the like and the blade may be damaged.
  • 2 shows an example in which a contraction mechanism is provided.
  • Figs. 18a and 18b show the main parts of Fig. 17 above, and the contraction mechanism consists of a strike force 35 fixed and held on the side of the disk and a plug 36 mounted on the spindle. Disk i! —- i; is overloaded with disk i! —- When slipping between the i 5 and the spindles 2 3 a and 2 3 b, the strike force 35 provided on the side of the disk collides with the plug 36 on the spindle, the plug 36 comes off, and the passage 3 Liquid such as oil in the main shaft is discharged through 7 and the shaft diameter is contracted.
  • Fig. 19 shows an example of the ascending / descending pattern of the rotating drum (only the rotating drum positioned above the plate is shown).
  • Fig. 20 shows the cutting condition of the plate. Also, the diameter is 900 and the thickness is 100.
  • Figs. 21a and b show the wear of the blades of the rotating drum when the surface of the plate was cut with 20 disks of O mm set on the spindle.
  • the operator inputs the outer diameter of the drum measured in the off-line to a computer.
  • the rotary drum is moved up and down based on the input information to adjust the position to give a predetermined pushing amount to the cutting blade or grindstone.
  • the cutting blade of the rotating drum is used.
  • the grinding wheels may come into contact with each other and be damaged.
  • the present invention relates to an apparatus for continuously or intermittently processing the front and back surfaces of a pair of rotating drums that rotate in opposite directions by passing a plate between the rotating drum pairs. Since the disk for recognizing the gap between drums having a large diameter is arranged, this disk is brought into contact with the disk of the other rotating drum, and the zero point adjustment is performed based on this state. The error in the machining amount due to excessive indentation can be extremely small, and even if there is an input mistake in the disk outer diameter, the load becomes excessive due to contact between the discs, etc. Can be recognized.
  • a measuring means such as a non-contact type distance meter or an eddy current sensor
  • the measuring means for example, using an eddy current, An eddy current sensor that measures the distance by detecting the current value that changes according to the distance, or a laser type that measures the distance by detecting the reflected wave of the laser light applied to the tip of the blade or the surface of the grindstone using laser light
  • a distance sensor or the like can be used.
  • Cutting blades and grindstones are arranged on the outer periphery of the rotating drum according to the plate material to be processed. For example, when processing the dents and dents of hot steel, the swelling of slab joints, etc., use a rice cutting tool, etc. to apply cold steel, press flaws, hot oscillating marks, mild Use a grindstone to treat dents and the like.
  • Figure 22 is shows a structure of a cutting device according to the invention, 3 8 a, 3 8 b is continuously or intermittently processed front and back surfaces of the sheet material sandwiching the sheet material 3 1, S 2 in the vertical
  • This rotating drum is, for example, a disk in which a plurality of disks having cutting blades on the outer periphery are arranged along the rotation axis of the drum, and the positions of adjacent disk blades are alternately shifted.
  • 39a and 39b are discs for disc recognition of the gap between the drums shown in the example where they are arranged at both ends of the rotating drums 38a and 38b
  • 40 is a rotatable drum.
  • An axle box containing the bearings to be supported, 41 is a reduction cylinder, 42 is a housing, 43 is a spindle, 44 is a pinion stand, and 45 is an electric motor.
  • the rotating drums 38a and 38b are moved up and down to bring the disks 39a and 39b into contact with each other, and the upper and lower blades of each rotating drum to grasp the direction of the absolute position (zero adjustment), then the rotary drum 3 8 a, 3 8 b is rotated to a predetermined speed, which plate material S (S i, S 2) surface and the same level as the rear surface of the After the rotary drums 38a and 38b are respectively moved until the predetermined cutting allowance is reached, the raising and lowering operations of the rotary drums 38a and 38b are stopped.
  • the plate 1 passed between the pair is cut by a cutting blade or a grindstone on the outer periphery of the rotating drum.
  • the disks 39a and 39b can be provided only on one side of the rotating drums 38a and 38b, but instead of the disks 39a and 39b, 24 and 25, it is also possible to arrange several measuring means 46 along the axial direction of at least one of the rotating drums.
  • FIG. 24 shows an example in which the measuring means 46 is installed only on the upper side
  • FIG. 25 shows an example in which the measuring means 46 is installed on the upper side and the lower side.
  • the measuring means 46 is best placed on the upper side of the rotating drum, but it may be placed on both the upper and lower sides or only on the lower side.
  • the lower measurement method needs to be more robust in terms of waterproofing and dust protection of cutting powder when cutting or grinding with cooling water than in the upper case.
  • a cylinder is arranged on the measuring means 46, and the cylinder measures the measuring means 46 so that it can move forward and backward in the direction of approaching and separating from the rotating drum. There is an advantage that an accident in which the means 46 and the rotating drum 38a come into contact can be avoided beforehand.
  • the measuring means 46 may be configured to be movable along the width direction of the plate material S.
  • FIG. 26 shows another example of the device according to the present invention.
  • the discs 39a and 39b provided only on one side of the rotating drums 38a and 38b shown in FIG. 23 have a larger diameter than the rotating drum, but the discs shown in FIG.
  • the diameter of 39b is the same as or smaller than the diameter of rotating drum 38b, and when upper and lower rotating drums are approached by the pressing cylinder, the rotating drum 38a 'and rotating drum 38b are separated. Before the contact, the disc 39a and the disc 39b come into contact. If the diameter of the disc 39a is different from that of the disc 39b, rotating the upper and lower rotating drums at the same speed will cause a difference in peripheral speed between the discs, and the discs may be damaged due to frictional heating. It is better to make adjustments including zero adjustment without rotating the drum.
  • FIG. 27 An example of the specific procedure for performing zero adjustment is shown in Fig. 27. Reduce the distance between the upper and lower rotating drums together with the adjustment start command, and tighten to the position where the load is expected to be applied under hydraulic pressure. (When the disk width is 15 O mm, the load of 40 t is reduced. Multiply) Then, after confirming that the oil column value calculated from the outer diameter of the rotating drum matches the actual oil column value, rotate the blade and confirm that the load deviation due to the eccentricity of the disk is 2 t or less. Complete zero adjustment.
  • the amount of wear at the tips of the rotating drums 38a and 38b is measured by the measuring means 46 shown in FIG. 24, and the upper rotating drum 38a is rotated downward by an amount corresponding to the amount of wear. By moving the drum 38b upward, a constant processing amount can always be ensured.
  • a crop shear 49 is installed on the downstream side of the rough rolling mill group 47 between the rough rolling mill group 47 and the finishing mill 48.
  • the crops at the rear end of the preceding plate 3! And at the front end of the succeeding plate S 2 are cut and removed.
  • Joining device 5 0 The downstream side after the crop Shah one 4 9 is installed, the tip portion of the preceding sheet 3, the rear end portion of the succeeding sheet S 2 are joined by the joining equipment 5 0.
  • the joining device 50 is moved by the bogie 51 at the same speed as the advance of the leading plate 3, and the trailing plate S 2 , and the leading end of the trailing plate S 2 enters the inner frame 52.
  • Clamp 53 3a to clamp the rear end of preceding plate 8!
  • exit clamp 5 3b I do.
  • a junction portion heated was heated by the heater 5 4 due to eddy currents in the high-frequency coil, the trailing plate and the rear end portion of the preceding plate material 3 1 by moving the side out of the In'nafuremu 5 2 pressurizing a distal end of the S 2 in the traveling direction joining.
  • the downstream side of the joining device 5 0 provided cutting apparatus 5 5 for removing the uplink Sheng, the junction of the leading plate 3, the rear end portion and the trailing plate S 2 of the distal end portion of this equipment 5 5 Swelling is removed. That is, the upper and lower surfaces of the joint portion L of the preceding sheet 3 1 and the succeeding sheet S 2, as shown in FIG.
  • the protuberances M is generated by the compression of the pressure bonding.
  • Foreign matter M i such as scales gathers in the bulge M.
  • the cutting device 55 is provided with a pair of rotary drums 55a and 55b with a plate material interposed therebetween. As shown in FIG. 31, the cutting blades 56a of the rotary drums 55a and 55b are provided.
  • a chip removing device 57 as shown in FIG. 2 is provided.
  • a rotary grindstone 58 is provided so as to be movable in the width direction of the plate material, and the surface of the plate material is ground by the rotary grindstone 58 to scatter chips 59 in the lateral direction of the plate material. I have.
  • a dust collecting hood 60 is provided at the width end of the plate material, and water is supplied to the dust collecting hood 60 in a laminar flow form through a water supply pipe 61 and a water tank 62.
  • a water film 63 is formed on the entire surface. The hot chips 59 scattered toward the dust collecting hood 60 in the side direction of the plate material when ground by the rotating grindstone 58 are caught by the water film 63, cooled, dropped, and drained. And collected in a pit (not shown) along with water.
  • the surface of the sheet material is ground by the cutting device 55.
  • the chip removal device 57 is designed to process in the width direction of the plate material, so that large wall surfaces can be removed. This requires a dust collection hood 60, which is disadvantageous in terms of space.
  • the cutting device 55 has rotating drums 5 ⁇ a and 55b above and below the plate material, but the lower rotating drum 55b can form a water film 63 and water droplets to flow down.
  • the chip removing device 57 is provided only in the vicinity of the upper rotating drum 55a.
  • rotating drums having a width equal to or greater than the maximum plate width of the plate are arranged above and below the plate, respectively, and the upper rotating drum is supported on a chick that is moved up and down by a pressing cylinder, and a height adjusting cylinder is used.
  • the lower rotating drum is supported on the ascending and descending chuck, and the upper rotating drum is provided with upper chip discharging means on the chip discharging side, and the lower rotating drum is provided with lower chip discharging means on the chip discharging side.
  • Fig. 33 is a side view showing the concept of the continuous hot rolling equipment
  • Fig. 34 is a view taken along the line II-II in Fig. 33
  • Fig. 35 is a view taken along a line III-III in Fig. 34 .
  • the In FIG. 33 is on the downstream side of the rough rolling unit group 4 7 and Kuroppushiya 4 9 is provided, Kuroppushiya 4 9 by the prior plate 3 1 of the rear end portion and the trailing plate S 2 tip Are cut and removed.
  • a joining device 50 is provided on the downstream side of the crop shear 49, and the joining device 50 joins the rear end of the preceding plate 3, and the tip of the succeeding plate S 2 .
  • a cutting device 55 is provided between the joining device 50 and the finishing mill group 48, and the raised portion of the joint L is cut and removed by the device 55.
  • a pair of rotary drums 65a, 65b are arranged on the cutting device 55 with a plate material interposed therebetween, and the pair of rotary drums 65a, 65b are cut to a width equal to or greater than the maximum width of the rolled material.
  • Blades 66a and 66b are formed on the outer peripheral surface, respectively.
  • a roll chuck 68 is supported via a pressing cylinder 67 so as to be able to move up and down freely, and an upper rotating drum 65 a is rotatably supported by the roll chuck 68.
  • a roll chick 70 is supported by the housing h via a height adjusting cylinder 69 so as to be able to move up and down, and a lower rotary drum 65 b is rotatably supported by the roll chock 70.
  • An upper chip discharging duct 71 as an upper chip discharging means is provided near the rear side in the rotating direction of the upper rotating drum 65 a, and the upper chip discharging duct ⁇ 1 has a rotating drum 65 a
  • An opening 72 is formed on the lower side of the opening and is wider than the rotating drum 65a.
  • a flowing water jet header 73 as flowing water jetting means is provided in the upper cutting powder discharge duct 71, and the jet nozzles 74 of the flowing water jet header 73 are arranged downward from above.
  • the upper chip discharge duct 71 is provided with a discharge section 75, and the discharge section 75 extends from the working side (the left side in FIG. 34) of the rotating drum 65 to the drain groove 76.
  • Chips generated when cutting with the upper rotating drum 65a are collected in the upper chip discharge duct 71 from the opening 72, and the drainage gutter is injected by the jet of running water from the jet header 73. It is discharged to 76.
  • a lower chip discharging duct 78 as lower chip discharging means is provided near the rear side of the lower rotating drum 65 b in the rotating direction, and the lower chip discharging duct 78 is located above the rotating drum 65 b. And an opening 79 wider than the rotary drum 65 is formed.
  • a running water jet header 79 as running water jetting means is provided in the lower chip discharge duct 8, and the jet nozzle 80 of the running water jet header 79 is provided upward from below.
  • the lower chip discharge duct 78 is provided with a discharge portion 81, and the discharge portion 81 is provided to open above the drain groove 76. Chips 77 generated when cutting with the lower rotating drum 65 b are collected in the lower chip discharge duct 78 from the opening 79 and injected with flowing water from the flowing water header 79. Is discharged to the drain gutters 76 by
  • the rear end of the preceding plate 3 and the front end of the succeeding plate S 2 are joined by the joining device 50, and the rotating drums 65 a and 65 b of the cutting device 55 are joined together.
  • the ridge M at the joint L is cut away by the cutting blades 66a and 66b (see Fig. 31).
  • the height of the upper surface of the lower rotating drum 65b is adjusted in advance by the height adjusting cylinder 69, and the upper and lower rotating drums 65a and 65b are opposite to the direction of travel of the plate. , Respectively.
  • the rotary drums 65a and 65b Are lowered by the rolling cylinder 67 and the height adjusting cylinder 69, and the foreign matter with the scale of the joint L gathered is raised simultaneously with the upper and lower surfaces together with the rising M. Remove cutting (see Fig. 31).
  • the high-temperature chips 77 which were blown at a high speed by the high speed rotation of the rotating drum during cutting, are collected into the upper chip discharge duct 75 and the lower chip discharge duct 78, respectively.
  • the water is cooled by the jet water from the jet nozzles 74, 80 of the jet headers 73, 79, and is discharged into the discharge grooves 76 through the discharge portions 75, 81. This makes it possible to simultaneously cut and remove the swelling M of the joint L between the upper and lower surfaces of the plate material, and there is no possibility that the high-temperature chips 77 adhere to other devices.
  • the rotating drums 65a and 65b are rotated in the direction opposite to the traveling direction of the plate, but may be rotated in the traveling direction.
  • FIG. 36 shows a side view of a surface cutting device for a plate material.
  • the rotating drums 8 2 a and 8 are similar to those shown in FIG. 35 described above.
  • 2 b of the height-adjusted pair of rotary drum 8 of the leading edge of the preceding plate material 2 a, 8 2 b is passed through the opposing portion of the trailing sheet S 2 and junction pair of rotary drum 8 2 a of 8 Immediately before reaching the opposing part of 2b, it is rolled down while rotating at high speed to cut the swelling at the joint L of the plate material.
  • a fixed apron can be installed between the pair of rotating drums 8 2 a and 8 2 b No so, when the leading end of the trailing sheet S 2 is hanging downward, the exit side apron 8 4 and the lower strip passing incapable such Rukoto or the cutting edge damaged the rotating drum in contact with the cutting edge of the rotating drum Is also a concern.
  • FIGS. 37 and 38 show the configuration of a cutting device according to the present invention.
  • a pair of rotating drums 85a and 85b of the cutting device have cutting blades having a width equal to or greater than the maximum plate width of the plate material.
  • 86 a and 86 b are formed on the outer peripheral surface, respectively.
  • a roll chock 89 is supported on the housing 87 of the cutting device via a press-down cylinder 88 so as to be able to move up and down, and an upper rotating drum 85a is rotatably supported on the roll chock 89.
  • a roll chick 91 is supported on the housing 87 via a height adjusting cylinder 90 so as to be able to move up and down, and a lower rotating drum 85b is rotatably supported on the roll chick 91.
  • the roll chicks 89, 91 are supported by balance cylinders 92, respectively, and the height of the rotating drums 85a, 85b is adjusted.
  • An apron 93, a table roller 94, an apron 95, an apron 96, an apron 96, a table roller 94, and an apron 93 are provided from the upstream side on the pass line of the plate. Is guided by the entrance apron 93 and the table roller 94 and is conveyed from the entrance apron 95 between the pair of rotating drums 85 a and 85 b, passes through the exit apron 96, and exits the apron 9. It is guided and carried out by 3 and table rollers 94.
  • the lower part of the housing 87 has a rotating drum 85a. , 85b, a central axis 97 extending parallel to the rotation axis is provided, and the central end of the arm 97 is rotatably supported on the central axis 97. Arms 98 are rotating drums in the exit direction
  • a plurality of rows are provided in the axial direction of 85 a and 85 b, and a connecting plate 99 is attached to the tip of the arm 98.
  • the connecting plate 99 is provided with an arc-shaped passing plate guide 100, and the passing plate guides 100 are provided in a plurality of rows in the axial direction of the rotating drums 85a and 85b. arm
  • a threading guide 100 enters and exits from the rotating drum 85b and the threading surface of the sheet material from the exit side.
  • a connecting plate 101 is attached to an intermediate portion of the arm 98, and an operating rod 103 of a rotary cylinder 102 is pivotally supported on the connecting plate 101.
  • the operating port 103 expands and contracts by driving the rotary cylinder 102, the arm 98 rotates about the central axis 97 and the passing guide 100 lowers.
  • the leading end of the preceding plate 3 is guided by the threading guide 100 and guided from the entrance apron 95 to the exit apron 96 without falling off.
  • the rotary cylinder 102 is driven to contract the working port 103 and the passing guide 100. To its original position (the state shown by the solid line in Fig. 37).
  • the height of the rotating drum is adjusted by adjusting the pressing cylinder 104 and the height adjusting cylinder 90.
  • Prior plate 3 rotational joint L of the trailing sheet S 2 is vertically immediately before reaching between the rotary drum 8 5 a, 8 5 b and de
  • the ram is driven and rotated at high speed in the direction opposite to the direction of travel of the plate.
  • the rotating drums 85a and 85b are lowered by the rolling cylinder 104 and the height adjusting cylinder 90, and the upper and lower surfaces are simultaneously cut and deleted together with the ridge M of the joint L.
  • the rotary drums 85a and 85b are rotated in the direction opposite to the traveling direction of the plate, but may be rotated in the traveling direction.
  • the shape of the passing plate guide 100 was made into an arc shape, and the passage guide 100 was moved in and out by rotating the arm 98, but the plate-like passing plate guide was slid. By doing so, it may be made to come and go between the rotating drums.
  • the movable passing guide 100 is provided between the rotary drum of the cutting device and the passing surface of the plate, and the movable guide is provided when the leading end of the preceding plate 3 passes. Since the plate guide 100 is inserted and guided between the upper and lower rotating drums, the leading end of the preceding plate does not deform due to high-temperature deformation or the like, and does not come into contact with the outlet apron.
  • a movable threading guide as shown in Fig. 37 and Fig. 38 above, it is possible to advantageously avoid the problem of threading caused by deformation of the sheet material, especially at the tip.
  • Fig. 37 and Fig. 38 it is possible to advantageously avoid the problem of threading caused by deformation of the sheet material, especially at the tip.
  • Fig. 37 and Fig. 38 it is possible to advantageously avoid the problem of threading caused by deformation of the sheet material, especially at the tip.
  • Fig. 37 and Fig. 38 it is possible to advantageously avoid the problem of threading caused by deformation
  • At least one of the input side and the output side of the rotary drum, a press roll or a pinch roll for suppressing a fluctuation in tension due to flutter during surface cutting of a hot plate material is arranged.
  • FIG. 40 shows the basic structure of the device according to the present invention, in which a pinch roll is provided between the table rolls T on the entrance and exit sides of the rotating drums 105a and 105b.
  • FIG. 41 shows a case where the rotary drums 106a and 106b are installed, and FIG. 41 also shows a table immediately above each of the table rolls T on the entrance side and the exit side of the rotary drums 105a and 105b. This is an example in which presser rolls 107a and 107b that can move up and down the presser are arranged.
  • the plate member 5! Pinch the entire range of the rotary drum 1 0 5 a, 1 0 5 b plate S at the entry side and exit side of a local or a widthwise direction to perform cutting of S 2
  • the plate is held down by the holes 106a, 106b or the holding rolls 107a, 107b, so that the flutter of the surface during the surface cutting is not only extremely small but also uniform. A smooth processed surface can be obtained.
  • stable tension fluctuation occurs only due to the cutting reaction force, so it is possible to anticipate tension disturbance and feed back on the rolling side, and the thickness fluctuation caused by this can be reduced. It can also be reduced.
  • Fig. 43 shows the state of fluctuation of the tension when the plate material is pressed by the press roll as shown in Fig. 41 and the surface of the plate material is cut by the rotary drum.
  • An apparatus having such a configuration is used not only for removing a swelling portion of a joint portion when a preceding sheet material and a succeeding sheet material are joined and continuously hot-finished and rolled, but also for a ⁇ band (hot ⁇ band). It can be applied to the maintenance of slabs and slabs, or the maintenance of plate materials in a coarse mill.Specific equipment is shown in Fig. 1, Fig. 4, Fig. 7 ', Fig. 10, Fig. 12- It is applicable to any of FIG. 18, FIG. 22, FIG. 23, FIG. 24, FIG. 35, FIG. 37, FIG. 40 or FIG.
  • the cutting resistance is controlled by adjusting the depth of cut and the cutting is performed. Since the tension generated in the sheet material due to the resistance is made less than the breaking strength of the joint to prevent the sheet material from breaking, it is possible to improve the production efficiency in the subsequent hot rolling process (claims 1 to 10). 4)
  • the rotating drum is constituted by using a plurality of disks having cutting blades in the entire outer periphery, the attaching and detaching of the rotating drum is easy, and the working efficiency can be improved. In addition, it is only necessary to replace the disk in an area where the life has reached due to the progress of wear, so that the cost for the rotating drum can be reduced. Also, since the disk is fixedly held by expanding the spindle, not only is it easy to mount the disk, but also there is no need to set the tolerances for fitting the disk and the spindle particularly strictly. Design conditions can be relaxed.
  • the phases of the cutting edges of adjacent disks are shifted in the circumferential direction and the cutting edges are arranged in a discontinuous manner in the axial direction, the length of chips generated by surface cutting of the plate material can be shortened. There is no pleasure to cause damage to the cutting blade due to entanglement. In addition, since excessive force is applied to the rotating drum and at the same time, the diameter of the spindle can be reduced to allow the rotating drum to idle, there is no damage to the cutting blades or seizure of the spindle and the rotating drum. Range 6-9).
  • the absolute position of the cutting blade or grindstone can be grasped simply by moving the rotating drum up and down and bringing the discs into contact with each other. It is possible to supply stable quality plate material for a long period of time. Further, the blade or the grindstone provided on the outer periphery of the rotating drum does not come into contact with the drum, so that the blade and the grindstone can be prevented from being damaged. In particular, by using measuring means, the wear condition (wear deviation) of the cutting blades and grindstones along the body of the rotating drum can be grasped, and the blades etc. are automatically replaced as the deviation increases due to wear. It is possible to save labor (claims 10 and 11
  • Rotary drums with a width equal to or greater than the maximum plate width of the plate material are arranged above and below the hot-rolled steel material between the joining device and the finishing mill group, and the upper rotary drum is attached to a chinock that moves up and down by a rolling cylinder.
  • the lower rotating drum is supported on a chick that moves up and down by a height adjustment cylinder, and an upper chip discharging means having shallow water injection means is provided on the chip discharging side of the upper rotating drum. Since the lower chip discharge means having running water jetting means is provided on the chip discharge side of the rotating drum, the rotating blade is lowered at high speed through the chuck by the rolling cylinder and the height adjusting cylinder while rotating the rotating drum at high speed.
  • a continuous rolling mill is installed between the rough rolling mill group and the finishing rolling mill group to provide a joining device that joins the rear end of the preceding hot-rolled steel and the front end of the subsequent hot-rolled steel.
  • rotating drums with a width equal to or greater than the maximum plate width of the rolled material are placed above and below the steel material between the joining device and the finishing mill group, and the lower rotating drum is connected to the steel plate passing surface. Since the threading guide is provided so that it can be freely removed between them, the threading guide is inserted between the upper and lower rotating drums when the preceding steel material is threaded, and the leading end of the preceding steel material is guided to the threading guide.
  • the thread guide is removed from between the upper and lower rotating drums and the upper and lower guides are moved before the joint between the preceding steel and the following steel arrives.
  • the rotating drum and rolling down it becomes possible to cut the joint at a predetermined depth.
  • Pressing rolls and pinch rolls are provided on the entrance side or exit side of the rotating drum, and the flapping of the steel material generated during cutting of the plate material by pressing the plate during the cutting process
  • the tension fluctuations only occur due to the cutting reaction force.This tension disturbance can be predicted and fed back in the rolling process.
  • the thickness variation can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Metal Rolling (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Accessories And Tools For Shearing Machines (AREA)

Description

明 細 書 熱間圧延鋼材の表面切削方法及びその装置 技術分野
この発明は、 熱間圧延鋼材、 とくに幅広の熱間長尺板材の表面切削やシートバ 一、 スラブ、 ビレッ トあるいはブルーム等の鐧片の突き合わせ接合において生じ る接合領域の盛り'上がり部 (隆起部) やばりを除去するのに有利な表面切削方法 およびその装置に関するものである。
背景技術
熱間圧延の途中においてシートバ一等の熱間圧延鋼材の表面に生じた疵の手入 れゃ、 先行鋼片の後端部と後行鐧片の先端部を突き合わせ接合して圧延を行う連 铳熱間圧延において不可避に生じる接合領域の隆起部を除去する技術に関しては 特開昭 5 7— 1 3 7 0 0 8号公報、 特開昭 6 3 - 1 6 0 7 0 7号公報、 特開平 5 - 2 3 7 0 6号公報あるいは特開平 5— 1 0 4 2 6 1号公報、 特開昭 5 7 - 9 1 8 5 6号公報、 特開昭 5 3 - 1 1 2 5 9 3号公報等すでに多数の提案がみられる。 ところで、 これらの技術においては、 熱間圧延鋼材 (以下単に鋼材と記す) の 表面切削の際に鋼材が破断する不具合 (とくに先行鐧片と後行鐧片を接合して熱 間圧延する場合) がある他、 切削刃物の寿命が短く、 切削刃の局所的な摩耗が起 きた場合において迅速な対応ができないために切削効率の改善が望めない不利が あった。 また、 鋼材の切削に際して所定の加工代に調整するのが難しい不具合が あるし鋼材を上下において切削する切削刃同士の接触による設備の損傷、 あるい は切削した切粉の処理問題、 切削中における鋼材のばたつきの発生等の問題があ り、 未だ改善の余地が残されているのが現状であつた。
この発明の目的は、 鋼材の表面切削に際して発生していた上述のような従来の 問題を悉く解決できる方法およびその装置を提案するところにある。
発明の開示 1 ) この発明は接合部を有する鋼材の搬送過程で、 その板厚方向から挟み込んだ フライスの回転により該鋼材の表裏面を切削するに当たり、 鋼材の鐧種ならびに 切削時の温度および切込み深さを含む切削条件によって定まる切削抵抗を、 切込 み深さの調整により制御し、 その切削抵抗によって鋼材に生じる張力を接合部の 破断強度未満として鋼材の破断を防止しつつ切削することを特徴とする鋼材の表 面切削方法 (請求の範囲第 1項) である。
2 ) 上記 1 ) においてフライスの入側にて鋼材の急激な温度上昇を検出し、 その 検出しだ信号に基づいてフライスにて鋼材を挟み込み、 鋼材の接合部を含むその 近傍の表面を切削するものとする (請求の範囲第 2項) 。
3 ) 上記 1 ) において鋼材の走行する向きと、 切削面でのフライスの回転方向と が逆方向のとき、 片面切込み深さ tの調整が下記式 ( 1 ) を満たしたものとする (請求の範囲第 3項) 。
〔記〕
t≤ σ„ · (b - 2 w) - Ί / { 2 S f · C · exp CA/ (Tk + 2 7 3 ) 3 • b · VM /VC + 2 σ b · (b - 2 ) } — (1) 片面切込み深さ (匪)
S f 安全率
σ b 温度を考慮した鋼材接合部の強度 (kgf /匪2 )
b 鋼材の板幅 (mm)
鋼材の接合部板幅方向片側非接合長さ (mm)
T 鋼材の板厚 (匪)
C 鋼材の鋼種によって決まる定数 (kgf ノ龍2 )
A 鋼材の鋼種によって決まる定数 (°C)
TK 切削時鋼材温度 (で)
VM 鋼材の走行速度 (mm/ s )
Vc フライス刃先の周速度 (mm/s ) 4) 上記1 ) において鋼材の走行する向きと、 切削面でのフライスの回転方向と が同一方向のとき、 片面切込み深さ tの調整が下記式 (2 ) を満たしたものとす る (請求の範囲第 4項) 。
〔記〕
t≤ ob · (b - 2 w) · Ύ/ { 2 S i · C · exp 〔A/ (Tk + 2 7 3 ) 〕
Figure imgf000005_0001
t :片面切込み深さ ' (誦)
S f :安全率
σ„ :温度を考慮した鋼材接合部の強度 (kgf /mm2 )
b :鋼材の板幅 (mm)
w :鋼材の接合部板幅方向片側非接合長さ (匪)
T :鋼材の板厚 (mm)
C :鋼材の鋼種によって決まる定数 (kgf ノ腿 2 )
A :鋼材の鋼種によって決まる定数 (°C)
Τκ :切削時鋼材温度 (°C)
VM :鋼材の走行速度 (匪 Zs )
Vc : フライス刃先の周速度 (腿/ S )
5 ) 上記 1 ) においてフライスの少なくとも刃先が鉄系よりなり、 該フライスの すくい面または逃げ面に回転速度および外径に応じた圧力になる冷却水をスプレ —するものとする (請求め範囲第 5項) 。
6 ) また、 この発明は鋼材をその厚さ方向に挟み互いに逆向きに回転する一対の 主軸を備え、 この主軸に、 外周の全域に切削刃を有し該主軸に着脱可能に嵌まり 合う複数枚のディスクを配置した回転ドラムを有する、 ことを特徴とする鋼材の 表面切削装置である (請求の範囲第 6項) 。
7 ) 上記 6 ) においてディスクは、 互いに隣接するディスクの刃先位相を周方向 にずらし、 刃先の軸方向並びを不連続に配置したものとする (請求の範囲第 7項) 8 ) 上記 6 ) において主軸は軸径を膨張させることによってディスクを固定する 仕組みになるものとする (請求の範囲第 8項) 。
9 ) 上記 6 ) において主軸は軸径を膨張させることによってディスクを固定する 仕組みになり、 ィ スクに過負荷が加わった場合において瞬時に軸径を収縮さ せる収縮機構を有するものとする (請求の範囲第 9項) 。
10) この発明は、 互いに逆向きに回転する回転ドラム対の相互間に鋼材を通して その表裏面を連铳的または断続的に切削する装置であ.つて、 少なくとも一方の回 転ドラムの両端または一端に該回転ドラムよりも大きな径を有するドラム間ギヤ ップ認識ディスクを有する、 ことを特徴とする鋼材の表面切削装置である (請求 の範囲第 10項) 。
11 ) 上記 6 ) または 10) において回転ドラムの少なくとも一方に、 回転ドラムの 先端の摩耗量を計測して回転ドラムの鋼材に対するレベル調整を行う測定手段を 有するものとする (請求の範囲第 11項) 。
12) この発明は、 互いに逆向きに回転する回転ドラム対の相互間に鋼材を通して その表裏面を連続的または断続的に切削する装置であって、 該装置は、 回転ドラ ムによる鋼材の切削によって生じる切粉を排出する切粉排出手段を有する、 こと を特徴とする鋼材の表面切削装置 (請求の範囲第 12項) である。
13) 上記 12) において回転ドラムの切粉排出側に流水噴射手段を有する (請求の 範囲第 13項) 。
14) この発明は、 互いに逆向きに回転する回転ドラム対の相互間に鐧材を通して そめ表裏面を連続的または断続的に切削する装置であって、 該装置は、 回転ドラ ム対の入側から出側に至るまでの間にて鋼材を保持する可動式の通板ガイ ドを有 する、 ことを特徴とする鋼材の表面切削装置である (請求の範囲第 14項) 。
15) この発明は、 互いに逆向きに回転する回転ドラム対の相互間に鋼材を通して その表裏面を連続的または断続的に切削する装置であって、 該装置は、 回転ドラ ムの入側および出側の少なくとも一方に、 鋼材の表面切削中におけるばたつきに 起因した張力変動を抑制する押さえロールまたはピンチロールを有する、 ことを 特徴とする鋼材の表面切削装置である (請求の範囲第 15項) である。
図面の簡単な説明
第 1図は鋼材の表面切削の状況をその側面について示した図である。
第 2図は第 1図の平面を示した図である。
第 3図は鋼材の連続熱間圧延設備の構成を示した図である。
第 4図は回転ドラムの刃先先端における冷却の様子を示した図である。
.第 5図はフライスの周速と冷却水圧力の閑係を示した図である。
'第 6図はフライスの外径と冷却水圧力の関係を示した図である。
第 7図は切削装置の全体的な構成を示した図である。
第 8図は従来構造になる回転ドラムの構造を示した図である。
第 9図は従来構造になる回転ドラムの他の構造を示した図である。
第 10図はこの発明に従う切削装置の構成説明図である。
第 11図は第 10図の A— A, B— B視図である。
第 12図はこの発明に従う装置の回転ドラムのみを取り出して示した図である。 第 13図はこの発明に従う装置の他の回転ドラムを取り出して示した図である。 第 14図はディスクの固定構造を示した図である。
第 15図は刃先の要部を示した図である。
第 16図はこの発明に従う装置の他の回転ドラムの構造の説明図である。
第 17図はこの発明に従う装置の他の回転ドラムの構造の説明図である。
第 18図 a , bは第 17図に示した回転ドラムの要部を拡大して示した図である。 '第 19図は回転ドラムの経時的な位置変動を示した図である。
第 20図は鋼材の表面切削状況を示した図である。
第 21図 aは回転ドラムの幅方向における負担度を示した図であり、 bは回転ド ラムの外径を示した図である。
第 22図は刃先先端の破損等を回避することができるとともにドラム間ギヤップ の認識を可能としたこの発明に従う装置の構成を示した図である。
第 23図は刃先先端の破損等を回避することができるとともにドラム間ギヤップ の認識を可能としたこの発明に従う装置の他の構成を示した図である。
第 24図は刃先先端の摩耗量を測定し得るこの発明に従う装置の他の構成を示し た図である。
第 25図は測定手段を回転ドラムの上下にそれぞれ ¾置した例を示した図である 第 26図はこの発明に従う切削装置の他の例を示した図である。
第 27図はゼロ調整を行う場合の具体的な手順を示した図である。
第 28図は連続熱間圧延設備の装置の'配置例を示した図である。
第 29図は連続熱間圧延を行う場合における鋼材の接合部の状況を示した図であ る。
第 30図は第 29図に示した接合部が圧延された場合の状況を示した図である。 第 31図は鋼材の接合部の切削状況を示した図である。
第 32図は鋼材の切削に際して生じる切粉の処理状況の説明図である。
第 33図はこの発明に従う切削装置を配置した連続熱間圧延設備の構成を示した 図である。
第 34図は第 33図の I I- I I 線矢視を示した図である。
第 35図は第 34図の I I I - I I I 線矢視を示した図である。
第 36図は切削装置において鋼材の先端が垂れ下がる状況を説明した図である。 第 37図はこの発明に従う切削装置の側面の構成を示した図である。
第 38図は第 37図の Π Ι - I I I 線矢視を示した図である。
第 39図は切削加工中における鋼材のばたつき状況を示した図である。
第 40図は切削中における鋼材のばたつきを抑制する構成になる装置の基本的な 構成を示した図である。
第 41図は切削中における鋼材のばたつきを抑制する他の装置の基本的な構成を 示した図である。
第 42図は鋼材の表面切削における切削抵抗と切削抵抗反力の関係を示した図で ある。 第 43図は鋼材を押さえ込んで切削を行った場合とそのままで切削を行った場合 における張力変動を比較して示した図である。
発明を実施するための最良の形態
熱間圧延において .. 粗圧延と仕上げ圧延との間で先行する板材の後端部と後行 する板材の先端部とを接合し連続的に圧延することによって高能率化を図る場合 、 その接合によって盛り上った部分あるいはその前後を含めてフライス加工で表 面切削を行う板材の表面手入れ方法が実用化されているが、 フライス切削加工に おける切込み深さは全対象材とも同一とし、 特別な考慮がはらわれていないのが 実状であり、 このため、 板材の鋼種や温度等で切削抵抗を大きく変動する場合に は、 破断強度の弱い接合部で破断するという トラブルが生じる。 板材の接合部の 盛り上り部分 (隆起部) を除去する技術としては、 特開昭 5 3— 1 1 2 5 9 3号 公報 (板材の溶接いばり除去方法) のように、 板材の溶接部を検出器で検出し、 その検出信号により剪断装置を作動させ、 板材を走行させながら溶接いばりを除 去する手段が提案されおり、 また、 特開昭 6 3 - 1 6 0 7 0 7号公報 (熱間圧延 設備) のように、 接合部の隆起部を熱間圧延機前に設けた表面処理装置の刃物に より切削する手段が提案されているが、 これらの手段では接合部が破断するトラ ブル解消するのは非常に難しい。
この発明は、 前記の問題点を 1 ) 〜4 ) に掲げた手段を採用することによって 解決する。 すなわち、 フライスによる切削加工条件 (鋼材の鐧種 (成分組成) 、 温度、 板幅、 板厚、 走行速度ならびにフライスの回転方向、 刃先の周速度、 切り 込み深さ等) において定まる切削抵抗を切り込み深さの調整によって制御し、 そ の切削抵抗によって鋼材に生じる張力を、 その接合部の破断強度未満にして該鋼 材の破断を防止するものであり、 以下、 この点について板材を対象とした場合を 例にしてより具体的に説明する。
第 1図および第 2図は、 走行する板材の表面をフライス切削加工する状況をそ の側面および平面について示した図である。
これらの第 1図および第 2図において 1は先端に切削刃を有するフライス、 2 は板材、 3はフライスの位置制御シリ ンダー、 4は温度計、 5はプロセスコンビ ュ一タ一、 6は制御盤、 7は板材 2の接合部である。 そして、 矢印 Aは板材 2の 走行方向、 矢印 Bはフライス 1の回転方向、 矢印 Cは切削抵抗によって板材 2に 生じる引張りの方向を示し、 さらに、 bは板材 2の板幅、 Tは板材 2の板厚..、 t はフライス 1による片側切込み深さ、 wは接合部 7における板幅方向の端部にお ける非接合長さを示す。
また、 第 3図は、 この発明のフライスを有する切削装置の圧延ラインへの配置 例を示した図である。
第 3図において、 例えば粗圧延機 8によって圧延された板材 (シートバー) は 巻き取り巻き戻し装置 9で巻き取られ、 ついで、 巻き取り巻き戻し装置 9より卷 きもどしながらスケールブレーカ (図示省略) および熱間仕上げ圧延機 1 3 ( F !, F 2. F 3 - --)の入側で、 まず板材 S , , S 2 のそれぞれの端部を切断装置 1 0 ( ドラムシヤー等) にて所定の形状に切断し、 先行板材3 , の後端と後行板材 S 2 の先端とを微小なギヤップを開けて対向配置したのち、 その近傍域を走行可能な 接合装置 1 1に搭載したクランプ 1 l a , 1 1 bにて板厚方向において狭圧支持 する。 そして、 その状態で接合予定部の直上と直下の少なくとも一方に位置させ た例えば誘導加熱用のインダクタ一にて誘導加熱しながら、 または、 誘導加熱し たのち、 押圧手段 (クランプ 1 1 a , 1 1 bを相互に近接するように移動させる ことができる) にて両板材を相互に押圧して接合し、 この接合によって生じた隆 起部あるいはその前後を含めてフライス加工装置 1 2で表面を手入れしたのち、 熱間圧延を行う。
粗圧延機 8と仕上げ圧延機 1 3との間で表面切削による手入れを行う場合、 切 削抵抗によって板材に生じる張力は、 フライス 1の回転方向が第 1図および第 2 図に示すような方向 (アップカツ 卜) では、 フライス 1と下流側の仕上げ圧延機 1 3との間に作用し、 フライスの回転方向が上記と逆方向 (ダウンカツ ト) では 、 フライス 1と上流側のコイル巻き取り巻き戻し装置 9との間に作用する。
また、 板材の接合は、 通常、 誘導加熱法により行われるが、 その加熱が板幅方 向に均一にならないことに起因する種々の理由から、 板幅方向に非接合部を形成 しているのが現状である。 したがって接合部 7は、 接合時の加熱によってその母 材部にく らべ高温であること (母材部: 9 0 0 °C前後、 接合部: 1 3 0 0 °C前後 ) 、 非接合部を有することなどから母材部に比! 強度が低くなる。
この発明では、 第 1図および第 2図において、 板材 2のデーター (鐧種、 板幅 b、 板厚 T ) をインプッ 卜したプロセスコンピュータ一 5からこれらの情報を制 御盤 6に与えるとともに、 .走行する板材 2 ( S J , S 2 ) の温度信号を装置入側 に設置した温度計 4から制御盤 6に送り、 これらの信号をもとに制御盤 6で片側 切込み深さ tを決定する。 そしてこの制御盤 6からの信号によりフライス位置制 御シリンダー 3を作動させ、 フライス 1により上記で決定した切込み深さ tの切 削を行う。
接合部 7を含むその前後領域の表面手入れを行う場合、 接合部 7を温度計 4で の急激な温度上昇により検知し、 この信号をもとに制御盤 6を通してフライス位 置制御シリンダー 3を作動させることによりその部位における確実な表面手入れ を行うことができる。 その際、 温度計 4とフライス 1との間隔はタイムラグ等を 考慮して適当に定めることが重要である。
また、 板材 2の接合部 7を含むその前後領域の表面手入れは、 接合部 7および その近傍の隆起部を除去するのに重要である他、 接合部の板厚方向に生じたずれ あるいはクランプきずや新規スケール等を除去するために重要であり、 そのため にはこれらの不具合を除去できる程度に深く切込むことが肝要になる。
第 2図に示したようなアツプカツ卜の場合における切込み深さを求める実験式 の誘導手順は次のようになる。
まず、 接合部 7の破断強度: f » (kgf ) は、 接合部 7の強度: 。 b (kgf /mm2 ) 、 非接合長さ : w (腿) 、 切込み深さ : t (mm) 、 板材 2の板幅: b (mm) およ び板厚: T (mm) を用いて
f b = a b · ( b - 2 w) · ( T一 2 t ) --—(3)
であらわすことができる。 ここに、 上記 f b およびひ b はそれぞれ温度を考慮した値である。
—方、 フライス 1による切削抵抗: f a ( kgf ) は、 鐧種ごとの被切削抵抗: k (kgf /mm2 ) と切削時の板材の温度: TK (°C) との関係が実験により k =C · exp 〔A/ (T. + 2 7 3 ) ] —(4)
ただし、 C (kgf ノ腿2 ) および A (°C) は板材 2の鐧種によって決まる定数 を得、 この ( 4 ) 式から、 板材 2の走行速度: VM (匪/ s ) 、 フライス刃先の 周速度: V。 (腿 Zs ) を用いて
Figure imgf000012_0001
が与えられる。
これら (3) , ( 4 ) および (5 ) 式を用い、 かつ安全率 ·· Sf ( 2~5、 特 に非接合の切欠き効果による破断特性の劣化を考慮することが重要) を加味する と、 切削によって接合部 7が破断しない切込み深さ : t (蘭) は以下のようにし て求まる。
2 S f - f a = f b ---(6)
この ( 6 ) 式に、 (3 ) , (4 ) および (5 ) 式を代入すると
2 S , · C · exp 〔AZ (Tk + 2 7 3 ) 〕 · b · t · VM Z Vc = σ b · ( b - 2 w) · (T- 2 t ) —(7)
が得られ、 よって
t = ab · (b - 2 w) - Ύ / { 2 S f · C · exp CA/ (Tk + 2 7 3 ) 3
• b · VM /VC + 2 ob - (b - 2 w) } —(8)
を導き出すことができる。
また、 フライス 1の回転方向が第 2図に示した方向と逆のダウンカツ 卜の場合 においては、 切削抵抗: f a による板材 2に働く張力はフライス 1の入側になる ので、 有効板厚は板材板厚: Tとなり (接合部 7の盛り上りは無視する) 上記 ( 3 ) 式は
f b = σ b . ( b - 2 w) · Τ —(9)
となることから 2 S i · C · exp CA/ (Tk + 2 7 3 ) ) · b · t · VM /Vc = ob · ( b - 2 w) ♦ T —(10)
が得られ、 よって
t = σ„ · (b - 2 w) · Ί / { 2 S f · C · exp CA/ (Tk + 2 7 3 ) ?
Figure imgf000013_0001
が導き出される。
ここで、 上記切込み深さ : tの計算式の誘導にあたっては、 アップカツ 卜の場 合、 ダウンカッ トの場合ともに接合部 7の盛り上りを無視しているが、 これは通 常の工程条件では接合部 7は実質的切込み深さは深くなるものの温度が高いこと により切削抵抗が小さくなるためである。 なお、 このことは、 実工程において接 合部 7の破断が接合部 7 (盛り上り部) の切削中に生じることが皆無であること からも明らかである。
極低炭素鋼、 S U S 3 0 4ステンレス鋼をはじめとする種々の鐧種からなる板 材について、 熱間圧延における粗圧延と仕上げ圧延との間で表面手入れを行い、 その表面手入れの際の切込み深さ : tを、 アップカツ 卜の場合上記 (8 ) 式によ り、 ダウンカツ 卜の場合上記 ( 1 1 ) 式により計算される値以下に制御したとこ ろ、 接合部の破断は全く発生しなかった。
次に、 上記 5 ) に掲げた手段の採用によって板材の表面切削に使用するフライ スの寿命の延長化、 目詰まり等を回避して安定した表面切削を行う場合について 説明する。
スラブや熱延鋼板の表面手入れは、 特開昭 5 7 - 9 1 8 5 6号公報にも見られ るように、 砥石を備えたグラインダ一等が用いられているが、 このようなグライ ンダ一はプレートのような幅広で長さの長いものを処理する場合には作業能率が 悪く、 とくにダイレク ト圧延に当たってスラブの表面を手入れするような場合に は処理物の長時間にわたる滞留が避けられないためその有する熱が大気放散する ためエネルギーロスが大きい不利がある。 一方、 切削能率の改善を図る手段とし て、 プレー卜の幅方向の全域をカバーできる胴長を有するフライス式刃物が適用 されつつあるが、 かかる切削刃としてセラミ ックスゃタングステンカ一バイ ドと いった非鉄系刃物を用いる場合には摩耗による刃の寿命が極端に短くこれにかか る経費が嵩む欠点があり、 これに変えて鉄系の刃物を用いた場合にはセラミ ック スゃタングステン力一バーイ ドのような非鉄系刃 ¾のような問題はないものの、 刃先へ切り粉が付着しやすく切り粉から刃先への入熱により溶損を起こすととも に刃先の目詰まりを起こしゃすいため長時間にわたる安定した操業を実施するこ とができない。
このためこの発明においては、 鉄系のフライスを用いて板材の表面切削を行う に際し、 フライスのすくい面または逃げ面に回転速度および外径に応じた圧力に なる冷却水をスプレーしてスラブや熱延鋼板 (鋼帯) 等の板材の表面切削に使用 するフライスの寿命の延長化、 目詰まりを回避し安定した表面切削を実現する。 フライスの回転速度とその外径に応じた水圧になる冷却水を刃先のすくい面ま たは逃げ面に向けてスプレーすることにより切削によつて付着した高温の切り粉 をフライスの回転による遠心力と水の圧力によって即座に除去できるので、 刃先 における溶着物からの入熱が極めて小さくなり、 フライスの寿命が飛躍的に延び るとともに溶着物による刃先の目詰まり等がなくなる。
ここに、 フライスの回転による遠心力 F w は、
F w = m ( V 2 / r ) —(12)
m :切り粉の質量
V : フライスの回転速度
r : フライスの外径の 1 / 1
また、 冷却水のパワー F P は、
F P =1/2 · q V 2 = a ( P 2 / P i ) 3 /2 ---(13)
q :水の質量
v :水の衝突速度
a : ノズル型番に応じた水の基準圧力 P ! での流量から定まる定数
P 2 :水の供給圧力 にて表示されるので、 フライスによる切削において溶着した切り粉を除去するた めには、 冷却水の圧力を下記式を満足するようにして、 スプレーすればよい。
Figure imgf000015_0001
Α :切り粉の溶着物断面積
σΒ :板材の高温引張強度
フライス 1 4 a, 1 4 bを軸 1 5 a, 1 5 bの駆動により回転させそのすくい 面にノズル 1 6から冷却水を第 4図に示すようにスプレーした場合について説明 する。
第 5図はフライスの外径を 8 0 O mmとし、 その周速を 2 0〜 1 2 0 mZ s e cの範囲で変えて、 刃先の溶損や目詰まりが発生しない冷却水の圧力を実験で求 めたものであり、 実線は流量 Qのとき冷却水圧力の下限値を、 また、 破線は流量 2 · Qのときの冷却水圧力の下限値をそれぞれ示す。
これより、 フライスの周速の上昇にともなって遠心力 Fw が増加するために、 冷却水の圧力を小さく して冷却水のパワー F P が低下しても、 刃先の溶損や目詰 まりが発生しないことがわかる。
すなわち、 フライスの周速が増大するほど、 冷却水の圧力を減少することが好 ましい。 また、 この図よりフライスの周速 2 0〜 1 2 0 m/ s e cの範囲におい て、 冷却水圧力は 3 ~ 3 0 0 k g f /c m2 の範囲で調整すれば良いことがわか る。
第 6図はフライスの周速を 2 O m/s e cと一定にした場合で、 その外径を 2 0 0 - 1 0 0 0 mmの範面で変えて、 刃先の溶損や目詰まりが発生しない冷却水 の圧力を実験で求めたものであり、 実線は流量 Qのときの冷却水圧力の下限値を 、 また、 破線は流量 2 · Qのときの冷却水圧力の下限値を示す。
これより、 フライスの外径が増加すると遠心力 Fw はそれに対して反比例して 減少するために、 冷却水の圧力は 1. 5乗則で大きく (冷却水のパワー F P を增 大) することによって、 刃先の溶損や目詰まりが発生しないことがわかる。 すなわち、 フライスの外径が大きいほど、 冷却水の圧力を增大することが好ま しい。 これらのことから、 フライスのすくい面にフライスの回転速度および外径 に応じた冷却水をスプレーすれば良いことになる。
一方、 第 5図又は第 6図から冷却水の水量が 2倍になると刃先の溶損や目詰ま りが発生しない冷却水の圧力は小さくなっているが、 これは流量の増加によって 単位時間当たりに刃先に衝突する水量が増加するためと考えられる。
フライスの回転速度を 2 0~ 1 2 0 m/s e cとするのが好ましい。 その理由 は、 フライスの回転速度を 2 O mZs e cよりも小さくすると、 切削抵抗によつ て減速し停止するという問題があり、 フライスの回転速度を 1 2 O mZs e cよ りも大きくすると回転数による振動周波数が危険速度と一致するか又はそれ以上 となって、 機械が共振し破壊することがあるからである。
また、 フライスの外径を 6 0 0〜 1 0 0 0 mmとするのが好ましい。 その理由 は、 外径を 6 0 0 mmよりも小さくすると周速を達成するための回転数が上昇し 、 振動周波数が危険速度を越えるか、 または切削抵抗による速度降下が大きく停 止するという問題があり、 外径を 1 0 0 0 mmよりも大きくすると回転数は低下 して振動に対しては有利になるが、 反面、 遠心力が減少し刃先の溶損や目詰まり が発生しやすくなるとともに、 駆動するための電動機出力が大きくなるという問 題があるからである。
以上の説明ではフライス刃物のすくい面にスプレーする場合について述べたが 、 フライスの逃げ面にスプレーする場合も同一でありその説明は省略した。
上掲第 4図は鉄系のフライスを使用して冷却水をフライスのすくい面にスプレ 一して鋼片表面の切削を行う場合の状況を示したものであり、 1 4 a, 1 4 bは フライス、 1 5 a, 1 5 bは主軸、 1 6は冷却水のスプレーノズル、 1 7はフラ イス 1 4 a, 1 4 bを回転可能に支持する軸受、 1 8は圧下シリンダー、 1 9は ハウジング、 2 0は動力の伝達用スピンドル、 2 1 はピニオンスタンド、 2 2は 電動機である。 また、 第 7図にこのフライスを組み込んだ設備の全体構成を示す c 厚さ 1 2 0 mm. 幅 8 0 0 mmになるスラブを用い、 直径 8 0 Ommの鉄系のフ ライスを 6 5 m/S の速度で回転させるとともにそのすくい面に流量 5 0 0 1/ m i nZm、 圧力 5 0 kgf/cm2 の冷却水をスプレーしつつ表面切削を行った場合 と、 フライスの周速を 2 O m/s e c 冷却水の圧力を 3 k f /c m2 とした 従来の方法 (その他の条件は本発明と同一とした。 ) について刃先の溶損や目詰 まり状況について調査ところ、 従来の方法ではその 命が 3 0分程度であつたの に対してこの発明に従う方法では刃先の溶損や目詰まりは 7 2時間程度までは全 くなく、 フライスの寿命を 3 0日程度まで延ばすことができることが確認された。 冷却水をフライスの逃げ面にスプレーしたときの実施例は以下のとおりである c 上記の場合と同一の寸法になるスラブを用いて、 直径 8 0 O mmの鉄系のフライ スを 6 S mZs e cの速度で回転させると共に、 フライスの逃げ面に流量 5 0 0 1/m i n/m, 圧力 50 k g f Zc m2 の冷却水をスプレーしつつ表面切削を 行ったこの発明に従う場合と、 同じ直径のフライスを 2 0 m/s e cの速度で回 転させ、 流量 5 0 0 1/m i n/m, 圧力を 3 k g f /cm2 の冷却水をスプレ 一しつつ表面切削を行った従来方法 (その他の条件は発明と同一とした。 ) につ いて、 刃先の溶損や目詰まりの状況について調査した結果、 この場合においても フライスの寿命を 3 0日程度まで延ばすことができた。
なお、 この例においては、 先行して搬送される板材の後端部と後行の板材の先 端部を突き合わせ接合し、 その際に生じた隆起部を切削する場合についても調査 したが、 この場合もフライスの寿命が従来にも増して飛躍的に延長されることが 確かめられた。
次に、 上記 6 ) 〜9 ) に掲げた手段の採用により板材の表面切削に使用するフ ライスの寿命到来による捕修あるいは取り替えを簡便に行う場合について説明す る。
熱間圧延の途中において板材の表面に生じた疵の手入れや、 先行板材の後端部 と後行板材の先端部を突き合わせ接合して圧延を行う連铳熱間圧延において不可 避に生じる接合領域の隆起部を除去する技術に関しては先にも述べたように、 特 開昭 5 7— 1 3 7 0 0 8号公報、 特開昭 6 3— 1 6 0 7 0 7号公報、 特開平 5 - 2 3 7 0 6号公報あるいは特開平 5 - 1 0 4 2 6 1号公報等すでに多数の提案が みられるが、 通常は、 処理対象物よりも約 1 0 0誦程度幅が広いフライス形式の 回転ドラムを使用した切削が行われており、 かかる回転ドラムは、 両端を軸受け を介して支持される主軸部と一体になつた第 8図に示すようなもの (遠心銬造等 ) 、 あるいは第 9図に示すように回転ドラムをキーを介して主軸に装着したもの 等が一般的である。
ところで、 このような構造になる回転ドラム、 とくに、 回転ドラムと主軸が一 体になるものでは、 刃先のみの部分的な補修 (ロール胴に刃を付ける再刃付け作 業等) を行う場合であっても回転ドラムを主軸ごと取り外す煩雑な作業を必要と し、 組み込み作業を含めた作業効率の改善を図るのが難しい。
回転ドラムをキーを介して主軸に装着した構造のものにおいては主軸と回転ド ラムが別体であるから該回転ドラムの着脱は一体ものに比較して簡単ではあるも のの、 回転ドラムは主軸とともに回転するものであるから、 主軸の回転において 回転ドラムの振れを小さくするためにはめ合い公差を厳しく設定する必要性があ り、 このため回転ドラムを主軸に装着するのが困難となり、 回転ドラムに変形が 生じている場合や回転ドラムと主軸間において焼付きが生じているような場合に は主軸とともに取り替えらざるを得ず、 上記のような問題は以前として残ったま まになる。
このため、 この発明においては、 切削装置として、 板材をその厚さ方向に挟み 互いに逆向きに回転する一対の主軸に、 外周の全域に切削刃を有し該主軸に着脱 可能に嵌まり合う複数枚のディスクを配置した構成を採用する。 ディスクに関し ては、 互いに隣接するディスクの刃先位相を周方向にずらし、 刃先の軸方向並び を不連続に配置すること力 また、 主軸は軸径を膨張させることによってディス クを固定する仕組みとすることが、 さらに、 主軸はディスクに過負荷が加わった 場合において瞬時に軸径を収縮させる収縮機構を有することがこの発明において とくに有利に適合する。
外周の全域に切削刃を有するディスクを主軸の軸心に沿って複数枚配置 (処理 対象物の全域をカバーする枚数) し、 これらをバインドして回転ドラムを構成す ることにより、 回転ドラムの着脱が極めて簡便に行え、 しかも切削刃が局所的に 寿命に到達した場合等はそれに対応するディスクのみを取り替えることができる。 互いに隣接するディスクの刃先位相を周方向にずらし、 刃先の軸方向並びを不 , _連続に配置すると、 板材の表面を切削した際に発生する切り粉の長さを短くでき るので、 切削刃に切り粉が絡み付いて該刃物を損傷させるようなおそれはなく、 切り粉の除去も比較的簡単に行うことができる。 瞵接するディスクの刃のずれ量 は 1〜2腿程度でも十分な効果が期待できるが、 刃先ピッチ (ディスクの外周に 設けた刃と刃の間隔) の 1 2程度まではずらすことができる。
ディスクの主軸への固定は主軸の膨張にて、 ディスクの主軸からの取り外しは 主軸を収縮させて行うので主軸とのはめ合い公差も従来ほど厳密に設定する必要 がない。
主軸の膨張、 収縮は例えば主軸の内部を空洞にしておき、 ここに作動油を注入 したりあるいは排出し主軸内部の圧力を調整することによって行うことができる 。 板材の切削中に過大な負荷がかかった場合には刃の損傷は避けられないので、 たとえばディスク固定用フランジの側面にストライ力を、 このストライ力に近接 した主軸上にプラグをそれぞれ設け、 刃物にある程度の力が加わりディスクが主 軸の周りに回転しょうとする際にストライ力によってプラグを主軸上から脱落さ せて主軸内の圧力を低減させることによって瞬時に軸径を収縮させる収縮機構を 設けておくのがとくに有効になる。
第 10図、 第 11図はこの発明に従う板材の表面切削装置であって、 Sは板材、 2 3 a , 2 3 bは板材 Sをその厚さ方向に挟み互いに逆向きに回転する主軸、 2 4 a , 2 4 bは回転ドラムであって、 この回転ドラム 2 4は外周の全域に切削刃を 有し主軸 2 3 a, 2 3 bに着脱可能に嵌まり合う複数枚のディスク i , , i 2 - - - からなり、 このディスク i i --- は図示はしないがフランジ等によって挟 み込んで固定保持される。
また、 番号 2 5は主軸 2 3 a, 2 3 bを回転可能に保持する軸受、 2 6は主軸 2 3 a , 2 3 bを軸受 2 5とともに昇降移動させる液圧シリンダであり、 この液 圧シリンダ 2 6を作動させて回転ドラム 2 4 a , 2 4 bの相互間隔を調整する。 また、 2 7 a , 2 7 bは駆動用モータ、 2 8 a , 2 8 bは駆動用モータ 2 7 a , 2 7 bと主軸 2 3 a , 2 3 bを連結するユニバーサルジョイント、 2 9は接合 部位置検出器、 3 0は接合部位置検出器 2 9の計測鋩 :に基づいて駆動用モータ 2 7 a , 2 7 bの回転速度および液圧シリンダ 2 6を作動させる制御装置である c 回転ドラム 2 4 a, 2 4 bのみを取り出して第 12図に示すように、 この発明に おいては主軸 2 3 a, 2. 3 b上に複数枚のディスク i , -— を配置しこれを 回転ドラム 2 4 a , 2 4 bを構成するようにしたので回転ドラムの着脱を簡便に 行える。
第 13図に示すように、 主軸 2 3 a, 2 3 bにテーパーを付け、 このテーパーに 適合するスリーブ 3 1にディスク i ! -— i i を装着してフランジおよび口ック ナツ 卜等により強固にバインドして固定すれば、 ディスク間のがたつきはもとよ りディスクと主軸との間のがたつきをなくすことができ、 しかもディスクの着脱 をより一層簡便にできる。
隣接するディスク相互間の切削中におけるがたつきは例えば第 14図に示すよう にディスクの隣接面に予め凹凸を設けておき、 この凹凸をはめあわせることによ つて防止することができる。
回転ドラム 2 4 a , 2 4 bを構成するにあたっては、 第 15図に示すように互い に隣接するディスクの刃先位相を周方向にずらし、 刃先の軸方向並びを不連続に 配置すれば、 これによつて切り粉の長さを短くでき、 切り粉の絡み付による切削 刃の破損は回避されることになる。
第 16図は主軸 2 3 a , 2 3 bの内部につき、 その軸端を残して軸の外周近傍等 を空洞 3 2にしここに油等の液体を供給口 3 3を通して供給し、 ディスク i , -- - i i の装着後に主軸 2 3 a, 2 3 bの内部の圧力を高めて軸径を膨張させてデ ィスクを主軸に強固に固定する仕組みのものであって、 このような構造にすれば 、 主軸にはめ合わせるディスクの内径寸法の加工精度を主軸の膨張代の範囲内で 緩和することができる。 なお、 主軸の膨張後にねじ 3 4で供給口 3 3を閉塞させ れば、 主軸の膨張を容易に維持できる。
第 17図は板材等の表面切削においてディスクに過大な負荷がかかり刃物の損傷 するようなおそれがある場合に主軸 2 3 a , 2 3 b内の圧力を低減させ瞬時に軸 径を小さくするようにした収縮機構を設けた例を示したものである。
第 18図 a , bは上掲第 17図の要部を示したものであり、 収縮機構はディスクの 側面に固定保持されるストライ力 3 5と主軸上に設置されるプラグ 3 6からなり 、 ディスク i ! —- i; に過大な負荷が加わりディスク i ! —- i 5 と主軸 2 3 a , 2 3 bとの間でそれぞれスリップするとディスクの側面に設けたストライ力 3 5が主軸上のプラグ 3 6に衝突して該プラグ 3 6が外れ、 通路 3 7を通して主 軸内の油等の液体が排出され軸径を収縮させる。
回転ドラムの昇降パターンの一例 (板材の上側に位置する回転ドラムについて のみ表示) を第 19図に、 板材の切削状況を第 20図に、 また、 直径が 9 0 0匪で厚 さが 1 0 O mmになるディスクを主軸に 2 0枚設置して板材の表面切削を行った場 合の回転ドラムの刃の摩耗状況を第 21図 a, bにそれぞれ示す。
直径 9 0 0 mm、 厚さ 1 0 0匪、 刃先ピッチ 1 8 . 8 4 腿、 刃数 1 5 0枚になる ディスク (S 5 5 C製) を 2 0枚主軸に配置した上掲第 12図に示した構造になる 回転ドラム (隣接する刃先のずれ量は 9 . 4 2 mm) を備えた切削装置を使用し第 19図に示したパターンで接合シートバー (加熱温度: 1470°C、 押圧力: 2 k f/mm 2 の条件で接合) の隆起部の切削除去 (回転ドラムの周速: 100m/s) を行った結 果、 回転ドラムの取り替えを行うのに要する時間の比較において通常は 4 8 h r 程度かかっていたがこの発明においてはディスクの取り替えのみでよいので 8 h r程度であって、 作業効率の改善を図るのに有利であることが確認された。 次に、 上記 10) 〜11 ) に掲げた手段を採用することにより、 とくに切削装置の 操作ミスによる刃物の破損や加工対象物である板材に対する過大な押し込みによ る削り過ぎを回避する場合について説明する。
フライスあるいは砥石等の板材切削用回転ドラムを備えた装置においては、 ォ フラインにおいて測定したドラムの外径をオペレーターが計算機に入力し、 この 入力情報に基づいて回転ドラムを昇降移動させて位置の調整を行うことによって 切削刃や砥石に所定の押し込み量を付与する (具体的には回転ドラムの刃先また は砥石面のレベルと板材の表面のレベルを一致させる、 いわゆるゼロ調整を行い その状態から所定の加工代が得られるように回転ドラムを移動させる) 力、 回転 ドラムを高速で回転させて切削している状態では回転ドラムの刃先や砥石面の位 置の確認ができいなため、 正確なゼロ調整を行うことができず、 板材の加工代が 許容範囲を越えてしまったり、 逆に切削刃、 砥石の摩耗が予想以上に大きいため に目標とする加工代が確保できないために再度加工しなければならない不利があ る。 とくに、 オペレーターによる計算機へのィンプッ ト ミス (回転ドラムの直径 の設定の誤り等) や昇降移動用シリンダのサーボ弁等の故障によって回転ドラム にて板材が分断された場合には回転ドラムの切削刃あるいは砥石同士が相互に接 触して破損する事故を引き起こすおそれもある。
この発明は、 互いに逆向きに回転する回転ドラム対の相互間に板材を通してそ の表裏面を連続的または断続的に加工する装置において、 少なくとも一方の回転 ドラムの両端または一端に該回転ドラムよりも大きな径を有するドラム間ギヤッ プ認識ディスクを配置するように構成したので、 このディスクをもう一方の回転 ドラムのディスクに接触させ、 この状態を基準にしてゼロ点調整を行うことによ り回転ドラムの押し込み過多による加工量の誤差を極めて小さくでき、 また、 デ ィスク外径のィンプッ トミスがあっても、 ディスク同士の接触等により荷重が過 大になるので板材の加工前に圧下系においてィンプッ トミスを認識することがで きる。
また、 ディスクの代わりに回転ドラムの摩耗量 (回転ドラムにおける刃物の外 径) を把握できる測定手段 (非接触式距離計や渦電流式センサ等) を設けた場合 には、 板材の加工によって刃や砥石の摩耗が生じても、 オンラインで摩耗分だけ 回転ドラムを上下に正確に移動させることができる (ただ回転ドラムの速度は低 速とする) ので予定されている加工代に従ったより精密な加工を行うことが可能 になる。 測定手段としては、 例えば渦電流を用いて測定手段と鉄系刃物先端との 距離に応じて変化する電流値を検出して距離を測定する渦電流式センサやレーザ 光を用いて刃物先端や砥石表面に照射したレーザ光の反射波を検出して距離を測 定するレーザ式距離センサ等が使用できる。
回転ドラムの外周には処理する板材に応じて切削刃や砥石を配置する。 例えば 熱間鋼のへげ疵やへこみ疵、 鋼片接合部の盛り上がり部等を処理する場合にはフ ライス刃物等を適用し、 冷間鋼や押し疵、 熱間鐧のオシレーシヨ ンマーク、 軽度 のへこみ疵等を処理する場合には砥石を使う。
第 22図はこの発明に従う切削装置の構成を示したものであり、 3 8 a , 3 8 b は板材3 1 , S 2 を上下に挟み板材の表裏面を連続的または断続的に加工するよ うに配置された回転ドラム (この回転ドラムは例えば外周に切削刃を有するディ スクをドラムの回転軸に沿って複数枚並べるとともに互いに隣接するディスの刃 の位置を交互にずらして構成されるものを使用することができる。 ) 、 3 9 a, 3 9 bは回転ドラム 3 8 a , 3 8 bの両端に配置した例で示したドラム間ギヤッ プ認識ディスク、 4 0は回転ドラムを回転可能に支持する軸受を収容した軸箱、 4 1は圧下シリ ンダ一、 4 2はハウジング、 4 3はスピンドル、 4 4はピニオン スタンドそして 4 5は電動機である。
板材を所定の加工代にて表面切削するには、 回転ドラム 3 8 a , 3 8 b を昇降 移動させてディスク 3 9 a , 3 9 bを相互に接触させて各回転ドラムの刃物の上 下方向の絶対位置を把握し (ゼロ調整) 、 その後、 回転ドラム 3 8 a , 3 8 bを 所定の速度まで回転させて、 そこから板材 S ( S i , S 2 ) の表面および裏面と 同じレベルまで回転ドラム 3 8 a , 3 8 bをそれぞれ移動させたのち所定め切削 代が得られるレベルに達した時点で各回転ドラム 3 8 a , 3 8 bの昇降動作を停 止させる。 、 その対の相互間に通した板材 1を回転ドラムの外周の切削刃あるい は砥石にて切削する。 回転ドラム 3 8 a , 3 8 bの初期位置の設定ミス等によつ ては切削代が大きくなりすぎることも懸念されるが、 最大切削代になった状態で 回転ドラム 3 8 a, 3 8 bの端部に設けたディスク 3 9 a , 3 9 bが互いに接触 するようにしておく ことにより板材の削りすぎや研削のしすぎがない。 この発明では、 第 23図に示すようにディスク 3 9 a, 3 9 bを回転ドラム 3 8 a , 3 8 bの片側においてのみ設けることもできるが、 ディスク 3 9 a , 3 9 b のかわりに、 第 24図, 第 25図に示すように少なくとも一方の回転ドラムの軸方向 に沿って数個の測定手段 4 6を配置することも可能である。 第 24図は測定手段 4 6を上側のみ設置した例であり、 第 25図は上側および下側に設置した例である。 測定手段 4 6は回転ドラムの上側に設置するのが最もよいが、 上側および下側の 両方に設置しても良く、 あるいは下側にのみ設置してもよい。 下側の方の測定手 段は冷却水を用いて切削あるいは研削を行う場合の防水対策や切削粉の防塵対策 を上側に比較して強固にすることが必要とされる。 この測定手段 4 6によって回 転ドラムの外周における切削刃あるいは砥石の摩耗状況を把握しゼロ調整を行う ことによつて板材の削りすぎや研削のしすぎを回避することができる。 測定手段 4 6にシリンダーを配置し、 このシリ ンダ一にて測定手段 4 6を回転ドラムに対 して近接離隔する向きに進退移動できるようにしておくことにより回転ドラムが 昇降移動した際に測定手段 4 6と回転ドラム 3 8 aが接触するような事故は未然 に回避できる利点がある。 また、 測定手段 4 6は板材 Sの幅方向に沿って移動で きる構造にしておいてもよい。
第 26図はこの発明に従う装置の他の例を示したものである。
第 23図に示した回転ドラム 3 8 a , 3 8 bの片側にのみ設けたディスク 3 9 a , 3 9 bは回転ドラムよりも大きな直径とされているが、 第 26図に示したディス ク 3 9 bの直径は回転ドラム 3 8 bの直径と同じか又は小さく、 しかも上下の回 転ドラムを圧下シリンダ一で接近させたときに、 回転ドラム 3 8 a 'と回転ドラム 3 8 bとが接触する前に、 ディスク 3 9 aとディスク 3 9 bとが接触するように なっている。 ディスク 3 9 aとディスク 3 9 bの直径が異なるときは、 上下の回 転ドラムを同一回転数で回転させると前記ディスクに周速差が生じ、 摩擦発熱に よってディスクが破損するおそれがあるので、 ドラムを回転させずに、 ゼロ調を 含めた調整を行うのがよい。
ゼロ調整を行う場合の具体的手順の例は第 27図に示したとおりであって、 ゼロ 調整開始の指令とともに上下の回転ドラムの相互間隔を小さく していき油圧圧下 で荷重が加わると予想される位置まで締め込む (ディスク幅を 1 5 O mmとした場 合に 4 0 tの荷重をかける) 。 そして、 回転ドラムの外径から演算された油柱値 実油柱値とが一致することを確認したうえで刃物を回転させてディスクの偏心 による荷重偏差が土 2 t以下になることを確認しゼロ調整を完了する。
上掲第 24図に示したような測定手段 4 6によって回転ドラム 3 8 a , 3 8 bの 先端における摩耗量を測定し摩耗した分だけ上方の回転ドラム 3 8 aを下方へ、 下方の回転ドラム 3 8 bを上方へ移動させることによって常に一定の加工量を確 保できる。
切削刃や砥石が偏摩耗していてただ単に回転ドラムを上下動させただけでは幅 の異なる板材を加工する場合には均一な加工ができないこともあるので回転ドラ ムを取り替えるか、 あるいは外周に切削刃等を有するディスクを組み合わせ構成 した回転ドラムについては偏摩耗の激しい箇所のディスクを取り替える。
なお、 このようなゼロ調整はオンラインは勿論のことオフラインにおいても行 うことが可能であり、 いずれの場合もィンプッ トミスによる不都合が生じること はない。
次に、 上記 12) 、 13) に掲げた手段にて、 板材の表面切削に際して発生する高 温の切粉の効率的な回収を図ることについてとくに、 先行する板材と後行する板 材を接合して連続的に熱間圧延する場合を例にして説明する。
第 28図に示すように、 粗圧延機群 4 7と仕上圧延機 4 8との間における粗圧延 機群 4 7の後流側にはクロップシャ一 4 9が設置され、 クロップシヤー 4 9によ つて先行板材3 ! の後端部及び後行板材 S 2 の先端部のクロップがそれぞれ切断 除去される。 クロップシャ一 4 9の後流側には接合装置 5 0が設置られ、 接合装 置 5 0によって先行板材3 , の後端部と後行板材 S 2 の先端部が接合される。 つ まり、 接合装置 5 0を台車 5 1 によって先行板材3 , 、 後行板材 S 2 の進行と同 —速度で移動させると共に、 後行板材 S 2 の先端部をインナフレーム 5 2内の入 側クランプ 5 3 aにて、 先行板材8 ! の後端部を出側クランプ 5 3 bでクランプ する。 この状態で、 例えば、 高周波コイルの渦電流による加熱器 5 4によって接 合部分を加熱昇温し、 ィンナフレーム 5 2を出側に移動させることにより先行板 材3 1 の後端部と後行板材 S 2 の先端部とを進行方向に加圧して接合する。 接合装置 5 0の後流側には盛上りを除去する切削装置 5 5が設けられ、 この装 置 5 5によって先行板材3 , の後端部と後行板材 S 2 の先端部との接合部の盛り 上がりが除去される。 つまり、 先行板材3 1 と後行板材 S 2 との接合部 Lの上下 面には、 第 29図に示すように、 加圧接合の圧縮によって盛上り Mが発生する。 こ の盛上り Mにはスケール等の異物 M i が集まり、 盛上り Mが存在したまま仕上圧 延機群 4 8で仕上圧延材に圧延された場合、 第 30図に示すように、 異物 M , が延 ばされて長い範囲にわたって仕上圧延材に残存してしまう。 異物 が仕上圧延 材に残存すると、 異物 によって接合部の強度が著しく低下してしまう。 この ため、 切削装置 5 5によって接合部の盛り上がりを除去するようになっている。 切削装置 5 5には、 板材を挟んで一対の回転ドラム 5 5 a , 5 5 bが設けられ、 第 31図に示したように、 回転ドラム 5 5 a, 5 5 bの切削刃 5 6 a , 5 6 bによ り接合部の盛上り Mを切削して除去しているが、 切削装置 5 5にて板材の盛上り Mを除去する際に、 高温の切粉が切削刃 5 6 a, 5 6 bの回転側 (図示例では上 流側) に高速で飛散して板材の表面に付着し圧延材の品質低下が懸念されること から、 切削装置 5 5の出側には、 第 3 2図に示すような切粉除去装置 5 7が設け られている。 第 32図に示すように、 板材の幅方向に移動自在に回転砥石 5 8が備 えられ、 回転砥石 5 8によって板材の表面を研削して切粉 5 9を板材の側面方向 に飛散させている。 一方、 板材の幅端部には集塵フード 6 0が設けられ、 集塵フ —ド 6 0には、 給水管 6 1及び水タンク 6 2を介して水を層流状に供給されて壁 面全体に水膜 6 3が形成されている。 回転砥石 5 8によって研削された際に板材 の側面方向の集塵フード 6 0に向かって飛散する高温の切粉 5 9は水膜 6 3に捕 捉され、 冷却されて落下し排水溝 6 4を通って水と共に図示しないピッ 卜に回収 される。
このように、 連続熱間圧延設備では、 切削装置 5 5によって板材の表面を研削 する際に生じる高温の切粉が板材に付着するのを防止する手立てが採られている が、 切粉除去装置 5 7は、 板材の幅方向において処理するようになっているので 、 広い壁面を有する集塵フー ド 6 0が必要でありスペース面での不利である。 ま た、 切削装置 5 5は回転ドラム 5 ^ a , 5 5 bを板材の上下に設けているが、 下 側の回転ドラム 5 5 bについては流下させる水膜 6 3や水滴を形成することがで きないので、 切粉除去装置 5 7は上側の回転ドラム 5 5 aの近傍にしか設けられ ていないのが現状である。
この発明においては、 とくに、 板材の最大板幅以上の幅の回転ドラムを板材の の上下にそれぞれ配置し、 圧下シリンダにより昇降するチヨックに上側の回転ド ラムを支持するとともに、 高さ調整シリンダにより昇降するチヨックに下側の回 転ドラムを支持し、 上側の回転ドラムの切粉排出側に上切粉排出手段を、 また、 下側の回転ドラムの切粉排出側に下切粉排出手段を設けるように構成したもので あり、 板材の表面切削に際して生じる切粉を設備の大型化を招くことなしに回収 することができる。 また、 この発明においては、 上切粉排出手段および下切粉排 出手段のそれぞれに流水噴射手段を備えるので、 切粉の速やかな冷却が可能なの で、 該切粉を効率よく回収できることになる。
第 33図は連続熱間圧延設備の概念を表す側面、 第 34図は第 33図の I I - I I 線矢視 、 第 35図は第 34図の I I I - I I I 線矢視を示したものである。 第 33図において、 粗圧 延機群 4 7の後流側にはクロップシヤー 4 9が設けられており、 クロップシヤー 4 9によって先行板材3 1 の後端部及び後行板材 S 2 の先端部のクロップがそれ ぞれ切断除去される。 クロップシヤー 4 9の後流側には接合装置 5 0が設けられ 、 接合装置 5 0によって先行板材3 , の後端部と後行板材 S 2 の先端部が接合さ れる。 接合装置 5 0と仕上圧延機群 4 8の間には切削装置 5 5が設けられ、 この 装置 5 5によつて接合部 Lの盛上り部分が切削除去される。
切削装置 5 5には板材を挟んで一対の回転ドラム 6 5 a , 6 5 bが配設され、 一対の回転ドラム 6 5 a , 6 5 bには圧延材の最大板幅以上の幅の切削刃 6 6 a , 6 6 bが外周面にそれぞれ形成されている。 切削装置 5 5のハウジング hには 圧下シリンダ 6 7を介してロールチヨック 6 8が昇降自在に支持され、 ロールチ ョック 6 8には上側の回転ドラム 6 5 aが回転自在に支持されている。 また、 ハ ウジング hには高さ調整シリンダ 6 9を介してロールチヨック 7 0が昇降自在に 支持され、 ロールチョック 7 0には下側の回転ドラム 6 5 bが回転自在に支持さ れている。
上側の回転ドラム 6 5 aの回転方向後側に近接して上切粉排出手段としての上 切粉排出ダク ト 7 1が設けられ、 上切粉排出ダク ト Ί 1 には回転ドラム 6 5 aの 下側に開口し回転ドラム 6 5 aよりも広幅の開口部 7 2が形成されている。 上切 粉排出ダク ト 7 1内には流水噴射手段としての流水噴射ヘッダ 7 3が設けられ、 流水噴射ヘッダ 7 3の噴射ノズル 7 4は上方から下方に向けて配置されている。 上切粉排出ダク ト 7 1には排出部 7 5が設けられ、 排出部 7 5は回転ドラム 6 5 の作業側 (第 34図中左側) から排水溝 7 6に延びている。 上側の回転ドラム 6 5 aで切削された際に生じる切粉 7 7は開口部 7 2から上切粉排出ダク ト 7 1内に 回収され、 流水噴射ヘッダ 7 3からの流水の噴射によって排水溝 7 6に排出され る。 下側の回転ドラム 6 5 bの回転方向後側に近接して下切粉排出手段としての 下切粉排出ダク ト 7 8が設けられ、 下切粉排出ダク 卜 7 8には回転ドラム 6 5 b の上側に開口し回転ドラム 6 5 よりも広幅の開口部 7 9が形成されている。 下 切粉排出ダク ト Ί 8内には流水噴射手段としての流水噴射ヘッダ 7 9が設けられ 、 流水噴射ヘッダ 7 9の噴射ノズル 8 0は下方から上方に向けて設けられている 。 下切粉排出ダク ト 7 8には排出部 8 1が設けられ、 排出部 8 1は排水溝 7 6の 上方に開口して設けられている。 下側の回転ドラム 6 5 bで切削された際に生じ る切粉 7 7は開口部 7 9から下切粉排出ダク ト 7 8内に回収され、 流水噴射へッ ダ 7 9からの流水の噴射によって排水溝 7 6に排出される。
上述した連続熱間圧延設備では、 接合装置 5 0によって先行板材3 , の後端部 と後行板材 S 2 の先端部が接合され、 切削装置 5 5の回転ドラム 6 5 a, 6 5 b の切削刃 6 6 a, 6 6 bによって接合部 Lの盛上り Mが切削除去される (第 31図 参照) 。 切削装置 5 5では高さ調整シリンダ 6 9によって下側の回転ドラム 6 5 bの上 面の高さが予め調整され、 上下の回転ドラム 6 5 a , 6 5 bは板材の進行方向と 反対側にそれぞれ駆動回転される。 切削時には、 圧下シリンダ 6 7及び高さ調整 シリンダ 6 9によってそれぞれの回転ドラム 6 5 a , 6 5 b.を圧下し、 接合部 L のスケール等が集まつた異物を盛上り Mと共に上下面同時に切削削除する (第 31 図参照) 。
切削時に回転ドラムの高速回転によつて入側に高速で飛ばされた高温の切粉 7 7は、 上切粉排出ダク 卜 7 5内及び下切粉排出ダク 卜 7 8内にそれぞれ回収され 、 流入噴射ヘッダ 7 3 , 7 9の噴出ノズル 7 4 , 8 0からの噴出水によって冷却 されると共に、 排出部 7 5 , 8 1内を通って排出溝 7 6に排出される。 これによ り、 板材の上下両面の接合部 Lの盛上り Mを同時に切削して除去することが可能 になり、 高温の切粉 7 7が他の機器等に付着するおそれもない。
なお、 、 この例では、 回転ドラム 6 5 a , 6 5 bを板材の進行方向と逆向きに 回転させるようにしたが、 進行方向側に回転させることもできる。
次に、 上記 14) に掲げた手段によって高温状態における板材の、 とくに先端部 の下方における変形を回避して安定した搬送のもとで表面切削を実現する場合に ついて説明する。
第 36図は、 板材の表面切削装置の側面を示したものであって、 このような構成 になる装置においては、 上掲第 35図に示したものと同様に、 回転ドラム 8 2 a , 8 2 bの高さが調整されて先行板材 の先端を一対の回転ドラム 8 2 a, 8 2 bの対向部を通過させ、 後行板材 S 2 との接合部一対の回転ドラム 8 2 a, 8 2 bの対向部に到達する直前にそれを高速で回転させながら圧下し、 板材の接合部 Lにおける盛上りを切削することになるが、 この時、 一対の回転ドラム 8 2 a, 8 2 bの相互間を通過する先行板材3 , は、 800 度から 900 度程度の高温状態に あって強度が低下しているため、 図中二点鎖線で示したように、 入側エプロン 8 3を通過した先行板材3 i の先端が下方に垂れ下がるおそれがある。
—対の回転ドラム 8 2 a , 8 2 bの間には固定エプロンを設置することができ ないので、 後行板材 S 2 の先端が下方に垂れ下がると、 出側エプロン 8 4や下側 の回転ドラムの切削刃に接触して回転ドラムの切削刃を破損したり通板不能にな ることも懸念される。
この発明においては、 互いに逆向きに回転する回転ドラム対の相互間に熱間板 材を通してその表裏面を連続的または断続的に切削する装置において、 回転ドラ ム対の入側から出側に至るまでの間にて熱間板材を保持する可動式の通板ガイ ド を配置し、 先行板材の先端部が回転ドラムの相互間を通り出側エプロンに至るま では入側エプロン〜出側エプロンの間に通板ガイ ドを揷入しておき、 先行板材の 先端部を該通板ガイ ドにて誘導するようにしたので、 板材のとくに先端部におけ る変形は回避され通板が不能になるようなことはなく、 先行板材と後行板材の接 合部が到達する前に上下の回転ドラムを所定の間隔に設定することによって板材 の接合部を所定の深さで切削することができる。
第 37図、 第 38図はこの発明に従う切削装置の構成を示したものであり、 切削装 置の一対の回転ドラム 8 5 a , 8 5 bには板材の最大板幅以上の幅の切削刃 8 6 a , 8 6 bが外周面にそれぞれ形成されている。 切削装置のハウジング 8 7には 圧下シリンダ 8 8を介してロールチョック 8 9が昇降自在に支持され、 ロールチ ョック 8 9には上側の回転ドラム 8 5 aが回転自在に支持されている。 また、 ハ ウジング 8 7には高さ調整シリンダ 9 0を介してロールチヨック 9 1が昇降自在 に支持され、 ロールチヨック 9 1には下側の回転ドラム 8 5 bが回転自在に支持 されている。 ロールチヨック 8 9 , 9 1はそれぞれバランスシリンダ 9 2に支持 され、 回転ドラム 8 5 a , 8 5 bの高さが調整されている。 板材のパスライン上 には、 上流側からエプロン 9 3、 テーブルローラ 9 4、 入側エプロン 9 5、 出側 ェプロン 9 6、 テーブルローラ 9 4及びェプロン 9 3が設けられ、 先行板材3! は入側ェプロン 9 3及びテーブルローラ 9 4に案内されて入側ェプロン 9 5から 一対の回転ドラム 8 5 a, 8 5 b間に搬入され、 出側エプロン 9 6を通って出側 のェプロン 9 3及びテーブルローラ 9 4に案内されて搬出される。
第 37図, 第 38図に示したように、 ハウジング 8 7の下部には回転ドラム 8 5 a , 8 5 bの回転軸と平行に延びる中心軸 9 7が設けられ、 中心軸 9 7にはアーム 9 8の基端部が回転自在に支持されている。 アーム 9 8は出側方向に回転ドラム
8 5 a , 8 5 bの軸方向に複数列設され、 アーム 9 8の先端部には連結板 9 9が 装着されている。 連結板 9 9には円弧状の通板ガイ ド 1 0 0が設けられ、 通板ガ イ ド 1 0 0は回転ドラム 8 5 a , 8 5 bの軸方向に複数列設されている。 アーム
9 8が中心軸 9 7を中心に回動することより、 入側エプロン 9 5と出側エプロン 9 6の間の一対の回転.ドラム 8 5 a , 8 5 bの間、 すなわち、 下側の回転ドラム 8 5 bと板材の通板面との間に通板ガイ ド 1 0 0が出側から出入り (揷脱') する ようになつている。 アーム 9 8の中間部には連結板 1 0 1が取り付けられており 、 連結板 1 0 1には回動シリンダ 1 0 2の作動ロッ ド 1 0 3が枢支されている。 つまり、 回動シリンダ 1 0 2の駆動により作動口ッ ド 1 0 3が伸縮することによ り、 アーム 9 8が中心軸 9 7を中心に回動して通板ガイ ド 1 0 0が下側の回転ド ラム 8 5 bと板材の通板面との間に出入りする。
先行板材3 , と後行板材 S 2 とを接合する前の段階では上下の回転ドラム 8 5 a , 8 5 bを離しておき、 先行板材8 , および後行板材 S 2 を接合したのちは先 行板材3 1 の先端部が切削装置に到達する前に回動シリンダ 1 0 2の駆動によつ て作動ロッ ド 48を伸長させる。 作動ロッ ド 1 0 3の伸長によりアーム 9 8を中心 軸 9 7を中心に回動させ通板ガイ ド 1 0 0を下側の回転ドラム 8 5 bと板材の通 板面との間に出側方向から揷入する (第 37図中二点鎮線で示した状態) 。 この状 態で、 先行板材3 , の先端部は通板ガイ ド 1 0 0でガイ ドされて脱落することな く入側エプロン 9 5から出側エプロン 9 6へと誘導される。 先行板材3 ! め先端 部が出側のテーブルローラ 9 4及びエプロン 9 3に到達すると、 回動シリンダ 1 0 2を駆動して作動口ッ ド 1 0 3を縮めて通板ガイ ド 1 0 0を元の位置 (第 37図 中実線で示した状態) に戻す。
通板ガイ ド 1 0 0を元の位置に戻した後、 圧下シリ ンダ 1 0 4及び高さ調整シ リンダ 9 0の調整により回転ドラムの高さを調整する。 先行板材3 , と後行板材 S 2 の接合部 Lが回転ドラム 8 5 a, 8 5 bの間に到達する直前に上下の回転ド ラムを板材の進行方向と反対側にそれぞれ高速で駆動回転する。 切削時には、 圧 下シリンダ 1 0 4及び高さ調整シリンダ 9 0によってそれぞれの回転ドラム 8 5 a , 8 5 bを圧下して、 接合部 Lの盛上り Mと共に上下面同時に切削削除する。 この例では、 回転ドラム 8 5 a , 8 5 bを板材の進行方向 逆^きに回転させ るようにしたが、 進行方向側に回転させるようにすることも可能である。 また、 通板ガイ ド 1 0 0の形状を円弧状にし、 通板ガイ ド 1 0 0の出入りをアーム 9 8 を回動させることにより実施したが、 平板状の通板ガイ ドをスライ ドさせること により回転ドラムの間に出入りさせるようにしてもよい。
このように、 この発明では、 切削装置の回転ドラムと板材の通板面との間に可 動式の通板ガイ ド 1 0 0を設け、 先行板材3 , の先端部が通過する際に通板ガイ ド 1 0 0を上下の回転ドラム間に挿入して誘導するようにしたので、 先行板材の 先端部が高温変形等により変形して出側エプロンに接触するようなことはない。 上掲第 37図, 第 38図に示したような可動式の通板ガイ ドを備えた装置において は、 板材のとくに先端部における変形に起因した通板上の問題は有利に回避する ことができるが、 板材の切削中では第 39図に示すように、 回転ドラム 1 0 5 a , 1 0 5 bの切削刃と板材が接触する際その抵抗によって板がばたつくことがあり 、 このような場合には円滑な切削加工ができないことも懸念される。 また、 これ と同時に、 板材の張力変動が大きくなり、 圧延時の板厚変動や板材の接合工程あ るいはコイルボックス設備等の張力制御に関して大きな外乱を与える原因にもな り、 さらに、 板材のばたつきがひどい場合には、 切削装置を破損させるだけでな く板材が装置と干渉して板材表面に傷をつけ品質に悪影響を与える問題もある。 この発明では、 とくに、 上掲 15) に掲げた如く、 回転ドラムの入側および出側の 少なくとも一方に、 熱間板材の表面切削中におけるばたつきに起因した張力変動 を抑制する押さえロールまたはピンチロールを配置することによって、 装置の破 損や板材の品質劣化の防止を図る。
第 40図は、 この発明に従う装置の基本構成を示したものであって、 回転ドラム 1 0 5 a , 1 0 5 bの入側および出側のテーブルロール Tの相互間にピンチロー ル 1 0 6 a , 1 0 6 bを設置した場合を、 また、 第 41図は、 同じく回転ドラム 1 0 5 a , 1 0 5 bの入側および出側のテーブルロール Tのそれぞれの直上に押さ え昇降移動可能な押さえロール 1 0 7 a , 1 0 7 bを配置した場合を例として示 したものである。
上記のような構成においては、 板材5 ! 、 S 2 の切削を行う回転ドラム 1 0 5 a , 1 0 5 bの入側および出側において板材 Sが局所的あるいはその幅方向の全 域でピンチ口 ル 1 0 6 a, 1 0 6 b、 または押さえロール 1 0 7 a , 1 0 7 b にて押さえ込まれることになるから、 表面切削での板のばたつきは極めて小さく なるだけでなく、 均一で滑らかな加工面を得ることができる。 また、 第 42図に示 すように、 切削反力によってのみ発生する安定した張力変動になるので、 張力外 乱を予想し圧延側でのフィ一ドバックが可能となりこれに起因した板厚変動の軽 減も図ることができる。
第 43図は、 第 41図に示したような押さえロールにて板材を押さえ込み回転ドラ ムにて板材の表面を切削した場合における張力の変動状況を示したものであり、 切削加工中に板材を押さえ込まずに処理した場合には大きな張力変動が不規則に 発生していたのに対して押さえロールを適用した場合においては張力の変動は刃 の押し込み時あるいは退避時を除いてはほぼ一定している。
このような構成になる装置は、 先行板材と後行板材とを接合して連続的に熱間 仕上げ圧延する場合の接合部の盛り上がり部分する除去する場合は勿論、 鐧帯 ( 熱間鐧帯) やスラブの手入れ、 あるいは粗ミルでの板材の手入れ等に適用できる ものであり、 具体的な装置に関しては、 上掲第 1図、 第 4図、 第 7 '図、 第 10図、 第 12〜第 18図、 第 22図、 第 23図、 第 24図、 第 35図、 第 37図、 第 40図あるいは第 41 図の何れにおいても適用できるものである。
産業上の利用可能性
この発明によれば、 次のような効果が期待できる。
1 ) 接合部を有する熱間圧延鋼材、 とくに先行板材と後行板材等をフライスにて 表面手入れするに際し、 切削抵抗を切込み深さの調整によって制御し、 その切削 抵抗によって板材に生じる張力を接合部の破断強度未満にして板材の破断を防止 するので、 後の熱間圧延工程での生産効率の改善を図ることができる (請求の範 囲第 1項〜第 4項) 。
2 ) 長 t時問にわたって安定した表面切削を行うことができ切削効率を著しく向上 させることができる (請求の範囲第 5項) 。
3 ) 外周の全域に切削刃を有するディスクを複数枚用いて回転ドラムを構成する ようにしたので、 回転ドラムの着脱が容易であり、 作業効率の改善を図ることが できる。 また、 摩耗が進行して寿命に到達した領域のみのディスクを取り替えれ ばよいので回転ドラムにかかる経費を低減できる。 また、 主軸を膨張させること によってディスクを固定保持するようにしたので、 ディスクの取り付けが簡単で あるだけでなく、 またディスクと主軸のはめ合い公差をとくに厳密に設定する必 要がなく、 ディスクの設計条件を緩和することができる。 また、 互いに隣接する ディスクの刃先位相を周方向にずらし、 刃先の軸方向並びを不連続に配置した場 合には板材の表面切削によって生じた切り粉の長さを短くできるので、 切り粉の 絡み付きによる切削刃の損傷を起こすうれいがない。 さらに、 回転ドラムに過大 な力が加わったと同時に主軸の径を収縮させ回転ドラムを空回りさせることがで きるので、 切削刃が損傷したり主軸と回転ドラムが焼きつくようなことはない ( 請求の範囲第 6項〜 9項) 。
4 ) 回転ドラムを上下方向に移動させディスクを相互に接触させるだけで切削刃 あるいは砥石の絶対位置を把握することができるのでゼロ点調整が簡便に行え熱 間圧延鋼材を常に許容範囲内 (所定の加工代) で加工でき、 安定した品質の板材 を長期にわたって供給できる。 また、 回転ドラムの外周に設けた刃または砥石同 士が接触することがないので刃や砥石の破損を防止できる。 とくに、 測定手段を 用いることによって回転ドラムの胴に沿う向きの切削刃、 砥石の摩耗状況 (摩耗 偏差) が把握でき、 しかも摩耗による偏差量の増加に伴う刃等の交換を自動で実 施することが可能であり省力化を図ることができる (請求の範囲第 10項、 第 11項
) o 5 ) 接合装置と仕上圧延機群との間に板材の最大板幅以上の幅の回転ドラムを熱 間圧延鋼材の上下にそれぞれ配設し、 圧下シリンダにより昇降するチヨックに上 側の回転ドラムを支持すると共に、 高さ調整シリンダにより昇降するチヨックに 下側の回転ドラムを支持し、 上側の回転ドラムの切粉排出側に浅水噴射手段を有 する上切粉排出手段を設けると共に、 下側の回転ドラムの切粉排出側に流水噴射 手段を有する下切粉排出手段を設けたので、 回転ドラムをそれぞれ高速で回転さ せながら圧下シリンダ及び高さ調整シリンダによりチヨックを介して回転刃物を 圧下することで、 接合装置によつて接合された先行の熱間圧延鋼材の後端部と後 行の熱間圧延鋼材の先端部の盛上り部を上下一対の回転ドラムによつて切削除去 されると共に、 回転ドラムの高速回転によって回転方向に飛ばされた切粉は上下 の切粉排出手段にそれぞれ収容され、 流水噴射手段から流水が噴射されて切粉が 冷却されると共に下方に流して排出される。 この結果、 該鋼材の進行に合った連 続作業によって接合部の両面の盛上り部が同時に除去できると共に、 高温の切粉 が他の機器に付着することが防止できる。
6 ) 粗圧延機群と仕上圧延機群との間に先行する熱間圧延鋼材の後端部と後行す る熱間圧延鋼材の先端部を接合する接合装置を設けて連続圧延を行なうような場 合において、 接合装置と仕上圧延機群との間に圧延材の最大板幅以上の幅の回転 ドラムを鋼材の上下にそれぞれ配設し、 下方の回転ドラムと鋼材の通板面との間 に通板ガイ ドを揷脱自在に設けたので、 先行する鋼材の通板時に通板ガイドを上 下の回転ドラムの間に挿入し、 先行鋼材の先端部を通板ガイ ドに案内して出側ま で通板させ、 その先端部が出側に達した後に、 通板ガイ ドを上下の回転ドラム間 から外して先行鋼材と後行鐧材の接合部が到達する前に上下の回転ドラムを回転 させて圧下し、 接合部を所定の深さで切削することが可能となる。 この結果、 先 行鋼材の先端部の脱落ゃェプロン等への当接を防止することができ、 通板不能を 完全になくすことが可能になる。
7 ) 回転ドラムの入側もしくは出側に押さえロール、 ピンチロールを設け、 切削 加工時に板を押さえることにより板材の切削加工において発生した鋼材のばたつ きかなくなり、 均一で滑らかな切削面が得られるだけでなく、 切削反力によって のみ発生する張力変動となるので、 この張力外乱を予測して圧延工程においてフ ィ一ドバックすることができるので、 板厚変動の抑制を図ることができる。 また 、 鋼材のばたつきがないので、 表面傷の 生がなく、 それによつて設備が損傷を 受けるようなこともない。

Claims

1. 接合部を有する熱間圧延鋼材の搬送過程で、 その厚さ方向から挟み込んだフ ライスの 1 転により該熱間圧延鋼材の表裏面を切削するに当たり、
熱間圧延鋼材の鋼種ならびに切削時の温度および切込み深さを含む切削条件 によって定まる切削抵抗を、 切込み深さの調整により制御し、 その切削抵抗に よって熱間圧延鋼材に生じる張力を接合部の破断強度未満として熱間圧延鋼材 の破断を防止しつつ切削することを特徵とする熱間圧延鋼材の表面切削方法。
2. フライスの入側にて熱間圧延鋼求材の急激な温度上昇を検出し、 その検出した 信号に基づいてフライスにて熱間圧延の鋼材を挟み込み、 熱間圧延鋼材の接合部 を含むその近傍の表面を切削する請求の範囲第 1項記載の方法。
3. 熱間圧延鋼材の走行する向きと、 切削面で囲のフライスの回転方向とが逆方向 のとき、 片面切込み深さ tの調整が下記式 ( 1 ) を満たしたものである、 請求 の範囲第 1項記載の方法。
〔記〕
t≤ ob · (b - 2 w) · T/ {2 S, · C · exp 〔A/ (Tk + 2 7 3 ) 3
Figure imgf000037_0001
片面切込み深さ (腿)
S f 安全率
a b 温度を考慮した熱間圧延鋼材の接合部の強度 (kgf /mm2 ) b 熱間圧延鋼材の板幅 (mm)
w 熱間圧延鋼材の接合部板幅方向片側非接合長さ (mm)
T 熱間圧延鋼材の板厚 (讓)
C 熱間圧延鋼材の鐧種によって決まる定数 (kgf Z漏2 )
A 熟間圧延鋼材の鐧種によって決まる定数 (で)
TK 切削時熱間圧延鋼材の温度 (°C) VM :熱間圧延鋼材の走行速度 (誦/ S )
Vc : フライス刃先の周速度 (mm/s )
4. 熱間圧延鋼材の走行する向きと、 切削面でのフライスの回転方向とが同一方 向のとき、 片面切込み深さ tの調整が下記式 (2 ) を満たしたものである請求 の範囲第 1項記載の方法。
〔記〕
t ≤ o b · (b - 2 ) · T/ {.2 S f · C · exp 〔A/ (Tk + 2 7 3 ) )
Figure imgf000038_0001
V
t :片面切込み深さ (腿)
S :安全率
a b :温度を考慮した熱間圧延鋼材の接合部の強度 (kgf /mm2 ) b :熱間圧延鋼材の板幅 (匪)
w :熱間圧延鋼材の接合部板幅方向片側非接合長さ (龍)
T :熱間圧延鋼材の板厚 (匪)
C :熱間圧延鋼材の鋼種によって決まる定数 (kgf /mm2 )
A :熱間圧延鋼材の鐧種によって決まる定数 (°C)
Τκ :切削時熱間圧延鋼材温度 (で)
VM :熱間圧延鋼材の走行速度 (匪/ S )
Vc : フライス刃先の周速度 (誦 Zs )
5. フライスの少なくとも刃先は鉄系よりなり、 該フライスのすくい面または逃 げ面に回転速度および外径に応じた圧力になる冷却水をスプレーする請求の範 囲第 1項記載の方法。
6. 熱間圧延鋼材をその厚さ方向に挟み互いに逆向きに回転する一対の主軸を備 え、 この主軸に、 外周の全域に切削刃を有し該主軸に着脱可能に嵌まり合う複 数枚のディスクを配置した回転ドラムを有する、 ことを特徴とする熱間圧延鋼 材の表面切削装置。
7 . ディスクは、 互いに隣接するディスクの刃先位相を周方向にずらし、 刃先の 軸方向並びを不連続に配置したものである請求の範囲第 6項記載の装置。
8 . 主軸は軸径を膨張させることによってディスクを固定する仕組みになる、 請 求の範囲第 6項記載の装置。
9 . 主軸は軸径を膨張させることによってディスクを固定する仕組みになり、 該 ディスクに過負荷が加わった場合において瞬時に軸径を収縮させる収縮機構を 有する、 請求の範囲第 6項記載の装置。
10. 互いに逆向きに回転する回転ドラム対の相互間に熱間圧延鋼 を通してその 表裏面を連続的または断続的に切削する装置であって、
少なくとも一方の回転ドラムの両端または一端に該回転ドラムよりも大きな 径を有するドラム間ギヤップ認識ディスクを有する、 ことを特徴とする熱間圧 延鋼材の表面切削装置。
11. 回転ドラムの少なくとも一方に、 回転ドラムの先端の摩耗量を計測して回転 ドラムの熱間圧延鋼材に対するレベル調整を行う測定手段を有する、 請求の範 囲第 6項または 10項の何れかに記載の装置。
12. 互いに逆向きに回転する回転ドラム対の相互間に熱間板材を通してその表裏 面を連続的または断続的に切削する装置であって、
該装置は、 回転ドラムによる熱間圧延鋼材の切削によって生じる切粉を各回 転ドラム毎にそれぞれ排出する切粉排出手段を有する、 ことを特徴とする熱間 圧延鋼材の表面切削装置。
13. 回転ドラムの切粉排手段の内部に流水噴射手段を有する、 請求の範囲第 12項 記載の装置。
14. 互いに逆向きに回転する回転ドラム対の相互間に熱間圧延鋼材を通してその 表裏面を連続的または断続的に切削する装置であって、
該装置は、 回転ドラム対の入側から出側に至るまでの間にて熱間圧延鋼材を 保持する可動式の通板ガイ ドを有する、 ことを特徵とする熱間圧延鋼材の表面 切削装置。
15. 互いに逆向きに回転する回転ドラム対の相互間に熱間圧延鋼材を通してその 表裏面を連続的または断続的に切削する装置であって、
該装置は、 回転ドラムの入側および出側の少なくとも一方に、 熱間圧延鋼材 の表面切 におけるばたつきに起因した張力変動を抑制する押さえロールま たはピンチロールを有する、 ことを特徴とする熱間圧延鋼材の表面切削装置。
PCT/JP1996/002058 1995-07-24 1996-07-23 Procede d'usinage de surface de materiaux en acier lamines a chaud et appareil correspondant WO1997003778A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP96924194A EP0790093B1 (en) 1995-07-24 1996-07-23 Method of surface machining of hot rolled steel material
DE69626622T DE69626622T2 (de) 1995-07-24 1996-07-23 Methode zum oberflächenbearbeiten von heissgewalzten stahlmaterial
US08/809,554 US5951220A (en) 1995-07-24 1996-07-23 Surface cutting method and apparatus for hot-rolled steel products
KR1019970701923A KR100249543B1 (ko) 1995-07-24 1996-07-23 열간 압연 강재의 표면 절삭 방법 및 그 장치
CA002200740A CA2200740C (en) 1995-07-24 1996-07-23 Surface cutting method and apparatus for hot-rolled steel products
US09/326,687 US6195859B1 (en) 1995-07-24 1999-06-07 Surface cutting apparatus for hot-rolled steel products
US09/326,684 US6192564B1 (en) 1995-07-24 1999-06-07 Surface cutting apparatus for hot-rolled steel products
US09/326,681 US6086296A (en) 1995-07-24 1999-06-07 Surface cutting apparatus for hot-rolled steel products

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP7/187176 1995-07-24
JP18717695A JPH0929528A (ja) 1995-07-24 1995-07-24 板材の表面切削装置
JP7/198719 1995-08-03
JP19871995A JP3251817B2 (ja) 1995-08-03 1995-08-03 鋼板材の表面切削方法
JP7/203063 1995-08-09
JP20306395A JP3300736B2 (ja) 1995-08-09 1995-08-09 連続熱間圧延設備
JP20548495A JP3300737B2 (ja) 1995-08-11 1995-08-11 連続熱間圧延設備
JP7/205484 1995-08-11
JP21736295A JP3391610B2 (ja) 1995-08-25 1995-08-25 板材の表面加工装置
JP7/217362 1995-08-25
JP07238712A JP3124712B2 (ja) 1995-09-18 1995-09-18 熱間圧延鋼帯の表面手入れ方法
JP7/238712 1995-09-18

Publications (1)

Publication Number Publication Date
WO1997003778A1 true WO1997003778A1 (fr) 1997-02-06

Family

ID=27553591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002058 WO1997003778A1 (fr) 1995-07-24 1996-07-23 Procede d'usinage de surface de materiaux en acier lamines a chaud et appareil correspondant

Country Status (7)

Country Link
US (4) US5951220A (ja)
EP (4) EP1213076B1 (ja)
KR (1) KR100249543B1 (ja)
CN (1) CN1066657C (ja)
CA (1) CA2200740C (ja)
DE (4) DE69634103T2 (ja)
WO (1) WO1997003778A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462354B2 (en) 1999-12-28 2008-12-09 Pharmexa Inc. Method and system for optimizing minigenes and peptides encoded thereby
US11883897B1 (en) 2022-09-08 2024-01-30 David Teng Pong Flash welding for billets with down cut billet ends

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19717200B4 (de) * 1997-04-24 2005-05-25 Sms Demag Ag Vorrichtung zur Bearbeitung der Oberfläche von heißen Brammen oder Bändern
DE19721128A1 (de) * 1997-05-20 1998-11-26 Messer Griesheim Gmbh Teilweise oder vollständige Verwendung einer an sich bekannten Druckgasflasche für verdichtete, verflüssigte oder gelöste Gase
JP4211083B2 (ja) * 1998-04-27 2009-01-21 日産自動車株式会社 突き合せ溶接方法及び装置
SE519928C2 (sv) * 2000-08-11 2003-04-29 Abb Ab Anordning och förfarande för stabilisering av ett långsträckt metalliskt föremål
US6627840B2 (en) * 2001-03-09 2003-09-30 Revelation Technologies, Llc Method and means for processing butt welds
DE10145241C2 (de) * 2001-09-13 2003-07-17 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung von in der Dicke variierenden Blechprodukten
ITTO20020648A1 (it) * 2002-07-23 2004-01-23 Europa Metalli Spa Metodo di lavorazione di un laminato a nastro per effettuare l'asportazione di difettosita' superficiali e relativo impianto.
ES2305430T3 (es) * 2003-06-26 2008-11-01 Campagnolo S.R.L. Llanta aligerada para una rueda de bicicleta y procedimiento de fabricacion de dicha llanta.
US7646777B2 (en) * 2003-07-07 2010-01-12 At&T Intellectual Property I, L.P. Communication environment switchover
UA93406C2 (ru) * 2006-05-26 2011-02-10 Cmc Зимаг Акциенгезелльшафт Способ и устройство для изготовления металлической ленты непрерывной разливкой металла
DE102007022927A1 (de) 2006-05-26 2007-12-20 Sms Demag Ag Vorrichtung und Verfahren zum Herstellen eines Metallbandes durch Stranggießen
DE102007022928A1 (de) 2006-05-26 2007-12-13 Sms Demag Ag Vorrichtung zum Herstellen eines Metallbandes durch Stranggießen
DE102007022929A1 (de) 2006-05-26 2007-12-20 Sms Demag Ag Vorrichtung und Verfahren zum Herstellen eines Metallbandes durch Stranggießen
DE102007022930A1 (de) 2006-05-26 2007-12-20 Sms Demag Ag Vorrichtung zum Herstellen eines Metallbandes durch Stranggießen
DE102007022932A1 (de) 2006-05-26 2007-12-20 Sms Demag Ag Verfahren und Vorrichtung zum Herstellen eines Metallbandes durch Stranggießen
WO2008097931A1 (en) * 2007-02-06 2008-08-14 Smith Donald W Machine tool shield
DE102007015455C5 (de) 2007-03-30 2017-08-10 Contexo Ag Verfahren zur Herstellung von Spundwandkomponenten sowie Spundwandkomponente
DE102007057423A1 (de) 2007-11-29 2009-06-04 Sms Demag Ag Fräsmaschine zum Fräsen einer Bramme
US7988029B2 (en) * 2008-12-11 2011-08-02 Lumco Manufacturing Company External deburring of welded pipe
US8091817B2 (en) * 2009-12-11 2012-01-10 Flsmidth A/S Milling device
CN102672569A (zh) * 2011-03-07 2012-09-19 吴江市中信科技有限公司 一种抛光机
CH707775A1 (de) * 2013-03-18 2014-09-30 Rieter Ag Maschf Vorrichtung zur Bearbeitung von Laufflächen an Kopfendstücken von Wanderdeckeln.
CN105397161B (zh) * 2014-09-15 2019-02-05 苏州松北自动化科技有限公司 一种自动化齿轮铣碾薄板去毛刺装置
CN104625183B (zh) * 2015-01-12 2017-07-28 南京钢铁股份有限公司 一种获得9%Ni钢优质铣削表面的加工工艺
CN105598772A (zh) * 2016-02-02 2016-05-25 东莞市吉宏五金科技有限公司 Pcb磨披锋机、自动测厚调高装置及其自动测厚调高方法
CN106825618A (zh) * 2017-02-21 2017-06-13 浙江辛子精工机械股份有限公司 一种环形槽的加工方法
CN107553203A (zh) * 2017-10-10 2018-01-09 无锡华美钼业有限公司 设置刀具清洗箱的钼合金板材切割机
TWI650625B (zh) * 2017-11-16 2019-02-11 財團法人工業技術研究院 刀具磨耗檢測裝置、其檢測方法及刀具磨耗補償方法
CN108555600B (zh) * 2018-04-26 2020-04-14 东北大学 一种开卷、铣面一体机
CN109046684B (zh) * 2018-09-26 2023-09-05 扬州维邦园林机械有限公司 进料速度可调的树枝粉碎机及树枝粉碎机的进料调速方法
CN111203579B (zh) * 2020-03-16 2021-02-05 沈阳飞机工业(集团)有限公司 Af1410钢零件淬火前加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621712A (en) * 1979-07-25 1981-02-28 Nippon Steel Corp Surface cutting device for metallic material
JPS58191921U (ja) * 1982-06-15 1983-12-20 株式会社神戸製鋼所 スリツタ−あるいはサイドトリマ−における截断物の安内装置
JPS6033608B2 (ja) * 1974-01-15 1985-08-03 テヒニカ・グス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 連鋳材をフライス削りする方法
JPS6420214U (ja) * 1987-07-23 1989-02-01
JPH03161212A (ja) * 1989-11-17 1991-07-11 Nkk Corp 丸刃剪断装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL91201C (ja) * 1954-08-17
GB826194A (en) * 1956-05-28 1959-12-31 Bull Sa Machines Improvements relating to cooling systems for machine tools
US3307297A (en) * 1964-09-21 1967-03-07 Mark E Lawson Surfboard forming apparatus and method of using same
GB1214971A (en) * 1967-11-16 1970-12-09 Derek William Ross Walker Apparatus for removing surplus material from the surface of workpieces of elongate form
DE1946510A1 (de) * 1969-09-13 1971-03-18 Friedrich Dr Foerster Anlage zur automatischen Beseitung von Fehlern in Halbzeug aus metallischen Werkstoffen
US3822632A (en) * 1970-09-24 1974-07-09 Bocami Di Garibaldo Attillio S Automatic apparatus for scarfing semifinished products
US3954044A (en) * 1975-01-13 1976-05-04 The Ingersoll Milling Machine Company Over and under milling machine
JPS5269088A (en) * 1975-12-05 1977-06-08 Kobe Steel Ltd Device for removing flaw of steel piece
US4119015A (en) * 1975-12-05 1978-10-10 Kobe Steel, Limited Billet milling equipment
JPS5278738A (en) * 1975-12-26 1977-07-02 Hitachi Ltd Rolling roll
DE2558966A1 (de) * 1975-12-29 1977-07-07 Graenges Oxeloesunds Jaernverk Verfahren und vorrichtung zum produzieren von metallischen rohlingen, insbesondere stahlbrammen, die zumindest in einem vorbestimmten oberflaechenbereich im wesentlichen keine fehler aufweisen
AT351888B (de) * 1976-02-11 1979-08-27 Adamec Alfred Maschine zum gleichzeitigen fraesen der ober- und unterseite eines angenaehert bandfoermigen gussstranges
JPS53112593A (en) * 1977-03-14 1978-10-02 Nippon Steel Corp Method for removing welding fins of steel band
EP0000248B1 (en) * 1977-06-28 1981-03-18 DAVY McKEE (POOLE) LIMITED Milling machine with depth of cut control
JPS54115489A (en) * 1978-02-28 1979-09-08 Kobe Steel Ltd Control of cutting depth in cutting flaws from billet
DE2831311C2 (de) 1978-07-17 1986-10-30 Philips Patentverwaltung Gmbh, 2000 Hamburg Vorrichtung zur Ermittlung innerer Körperstrukturen mittels Streustrahlung
US4277868A (en) * 1979-04-30 1981-07-14 The Boeing Company Machine and method for single pass taper milling
DE3037571A1 (de) * 1980-10-04 1982-04-22 Thyssen Edelstahlwerke AG, 4000 Düsseldorf Verfahren zum mechanischen abtragen von material von stahlstrangguss-oberflaechen und schleifvorrichtung
JPS57137008A (en) * 1981-02-16 1982-08-24 Kawasaki Steel Corp Joining method of hot rolling material
US4587698A (en) * 1982-04-13 1986-05-13 Foster Wheeler Energy Corporation Scarfing method and apparatus
JPS58191921A (ja) 1982-05-06 1983-11-09 Nippon Denso Co Ltd 電子式走行距離計
US4633620A (en) * 1982-08-12 1987-01-06 Magnaflux Corporation System for processing of steel billets or the like to remove surface defects
US4543022A (en) * 1983-03-24 1985-09-24 Foster Wheeler Energy Corporation Self-positioning scarfing apparatus
US4640056A (en) * 1983-06-24 1987-02-03 Timesavers, Inc. Vertically self-centering feed assembly
JPS6033608A (ja) 1983-08-03 1985-02-21 Toshiba Corp 遠隔操作形ロボット
US4583893A (en) * 1984-05-08 1986-04-22 Matix Industries (Societe Anonyme) Reprofiling device for rails through continuous milling
IT1181133B (it) * 1984-10-25 1987-09-23 Int Supplies Co Srl Apparecchiatura di comando e controllo per macchine pulitrici di schede e fogli sottili, destinati alla fabbricazione di circuiti stampati e di parti metalliche ottenute per tranciatura chimica
US4802095A (en) * 1986-12-24 1989-01-31 The Boeing Company Method for indicating end mill wear
JPS63160707A (ja) * 1986-12-24 1988-07-04 Hitachi Ltd 熱間圧延設備
JPS63183729A (ja) * 1987-01-24 1988-07-29 Calsonic Corp コルゲ−トフインの成形方法およびその装置
JPS6420214A (en) 1987-07-15 1989-01-24 Matsushita Electric Works Ltd Curable resin composition
JPH0620799B2 (ja) * 1987-07-15 1994-03-23 平河ヒューテック株式会社 射出成形装置
AT390753B (de) * 1988-04-11 1990-06-25 Boehler Gmbh Fuehrung von flaechenmaterial in anlagen mit rundmessern
DE3902840A1 (de) * 1989-01-31 1990-08-23 Fraunhofer Ges Forschung Verfahren und vorrichtung zur ermittlung der oberflaechenstruktur
JPH0653288B2 (ja) * 1989-04-27 1994-07-20 川崎製鉄株式会社 形鋼の圧延装置
DE3939564A1 (de) * 1989-11-30 1991-06-06 Wilhelm Hirsch Fraesmaschine zum gleichzeitigen laengsprofilieren von fenstersprossen
JPH0796160B2 (ja) * 1990-10-15 1995-10-18 三菱電機株式会社 ビードトリミング装置
JP3115353B2 (ja) * 1991-07-15 2000-12-04 株式会社日立製作所 熱間板材の接合方法および接合設備並びに圧延方法
JP2598632B2 (ja) * 1991-10-18 1997-04-09 株式会社日立製作所 接合方法及び装置
WO1995026848A1 (fr) * 1994-04-05 1995-10-12 Mitsubishi Shindoh Co., Ltd. Systeme de dressage sur deux faces
US5709585A (en) * 1995-08-31 1998-01-20 Nkk Corporation Method and apparatus for removing burrs from joined billets in a continuous rolling process
JP3357788B2 (ja) * 1996-06-25 2002-12-16 日本原子力研究所 両面加工装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033608B2 (ja) * 1974-01-15 1985-08-03 テヒニカ・グス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 連鋳材をフライス削りする方法
JPS5621712A (en) * 1979-07-25 1981-02-28 Nippon Steel Corp Surface cutting device for metallic material
JPS58191921U (ja) * 1982-06-15 1983-12-20 株式会社神戸製鋼所 スリツタ−あるいはサイドトリマ−における截断物の安内装置
JPS6420214U (ja) * 1987-07-23 1989-02-01
JPH03161212A (ja) * 1989-11-17 1991-07-11 Nkk Corp 丸刃剪断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0790093A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462354B2 (en) 1999-12-28 2008-12-09 Pharmexa Inc. Method and system for optimizing minigenes and peptides encoded thereby
US11883897B1 (en) 2022-09-08 2024-01-30 David Teng Pong Flash welding for billets with down cut billet ends

Also Published As

Publication number Publication date
EP0790093A1 (en) 1997-08-20
EP1213077A3 (en) 2002-06-26
CN1166803A (zh) 1997-12-03
DE69626622T2 (de) 2003-08-21
US6195859B1 (en) 2001-03-06
CN1066657C (zh) 2001-06-06
EP1213076A3 (en) 2002-06-26
CA2200740A1 (en) 1997-02-06
DE69633689T2 (de) 2005-03-10
DE69633751D1 (de) 2004-12-02
KR100249543B1 (ko) 2000-04-01
DE69633751T2 (de) 2005-03-17
KR970706095A (ko) 1997-11-03
EP1213075A2 (en) 2002-06-12
EP1213077A2 (en) 2002-06-12
EP1213077B1 (en) 2004-10-20
DE69626622D1 (de) 2003-04-17
DE69634103D1 (de) 2005-01-27
EP1213075B1 (en) 2004-10-27
EP0790093A4 (en) 2000-09-20
EP1213075A3 (en) 2002-06-26
EP1213076A2 (en) 2002-06-12
US6192564B1 (en) 2001-02-27
DE69633689D1 (de) 2004-11-25
CA2200740C (en) 2004-02-24
EP1213076B1 (en) 2004-12-22
US5951220A (en) 1999-09-14
US6086296A (en) 2000-07-11
DE69634103T2 (de) 2005-05-19
EP0790093B1 (en) 2003-03-12

Similar Documents

Publication Publication Date Title
WO1997003778A1 (fr) Procede d'usinage de surface de materiaux en acier lamines a chaud et appareil correspondant
KR100249664B1 (ko) 금속편의 연속열간압연방법 및 그 방법에 사용하는 금속편의 접합장치, 금속편의 반송용 테이블롤라, 금속편의 접합불량부 제거장치 및 금속편의 냉각장치
KR101060124B1 (ko) 연속 주조를 통한 금속 스트립의 제조 장치
US20090250187A1 (en) Device for Producing a Metal Strip by Continuous Casting
US7121130B2 (en) Method and installation for hot-rolling strips using a Steckel rolling frame
JP5394724B2 (ja) 熱間スラブの表面手入れ方法
CN115301764B (zh) 多辊矫直机及高强钢板带热处理生产系统
US20160325324A1 (en) Method and device for producing a metal strip in a continuous casting and rolling process
JPH07171752A (ja) 熱間自動研削機
JP5232705B2 (ja) 金属板用面削装置
WO2004009272A1 (ja) 帯板製造設備
CA2366299C (en) Surface cutting of hot-rolled steel products
JP3354810B2 (ja) 熱間圧延材の接合部の表面切削装置
CN111318807A (zh) 一种激光焊机焊轮在线除渣装置及方法
JP3300737B2 (ja) 連続熱間圧延設備
KR200220533Y1 (ko) 강판용접부 표면의 러스트 자동제거장치
JPH07241713A (ja) 接合鋼片の隆起部切削装置
JPH0780088B2 (ja) 流体ヘッダを備えた高速切断機
JP3300736B2 (ja) 連続熱間圧延設備
CN112570471A (zh) 带钢连续轧制生产线及其运行方法
WO2001019543A1 (fr) Procede de laminage a chaud de pieces metalliques
JPS624450Y2 (ja)
JPS6321561B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96191107.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2200740

Country of ref document: CA

Ref document number: 2200740

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 08809554

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019970701923

Country of ref document: KR

Ref document number: 1996924194

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996924194

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970701923

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970701923

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996924194

Country of ref document: EP