WO1995031490A1 - Polymere du propylene, son procede de production, sa composition, constituant de catalyseur de polymerisation et son procede de production - Google Patents

Polymere du propylene, son procede de production, sa composition, constituant de catalyseur de polymerisation et son procede de production Download PDF

Info

Publication number
WO1995031490A1
WO1995031490A1 PCT/JP1994/000770 JP9400770W WO9531490A1 WO 1995031490 A1 WO1995031490 A1 WO 1995031490A1 JP 9400770 W JP9400770 W JP 9400770W WO 9531490 A1 WO9531490 A1 WO 9531490A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst component
solid catalyst
compound
propylene
polymerization
Prior art date
Application number
PCT/JP1994/000770
Other languages
English (en)
French (fr)
Inventor
Hisayoshi Yanagihara
Kazuyuki Watanabe
Satoshi Iwamoto
Hirotoshi Takahashi
Kazuharu Itoh
Original Assignee
Showa Denko K. K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K. K. filed Critical Showa Denko K. K.
Priority to AU65610/94A priority Critical patent/AU690907B2/en
Priority to BR9402947-4A priority patent/BR9402947A/pt
Priority to PCT/JP1994/000770 priority patent/WO1995031490A1/ja
Priority to DE69412266T priority patent/DE69412266T2/de
Priority to KR1019940702556A priority patent/KR100336338B1/ko
Priority to US08/256,407 priority patent/US5916990A/en
Priority to CN94190005A priority patent/CN1100069C/zh
Priority to EP94914610A priority patent/EP0712869B1/en
Publication of WO1995031490A1 publication Critical patent/WO1995031490A1/ja
Priority to AU52907/98A priority patent/AU706739B2/en
Priority to US09/519,750 priority patent/US6323298B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/904Monomer polymerized in presence of transition metal containing catalyst at least part of which is supported on a polymer, e.g. prepolymerized catalysts

Definitions

  • the present invention relates to a propylene-based polymer having excellent physical properties such as rigidity, surface hardness, heat resistance, and steam barrier properties, suitable for automobiles, home electric appliances, and packaging materials. Background technology for the manufacturing method
  • Propylene polymers are generally inexpensive and make use of their characteristics such as transparency, mechanical strength, heat resistance, surface gloss, chemical resistance, oil resistance, rigidity, and bending fatigue resistance. It is used in a wide range of fields, including industrial materials, food packaging materials, cosmetic packaging materials, and pharmaceutical packaging materials.
  • propylene-based polymers are widely used in various industries such as automobiles, home appliances, and miscellaneous goods, taking advantage of their features such as rigidity and impact resistance. Recently, it has been considered to increase the surface hardness to reduce the weight or cost of the product and to reduce the thickness of the product and prevent the surface of the product from being damaged. In other words, propylene polymers are required to have high rigidity, high surface hardness, and excellent impact resistance. Demands for physical properties and workability are also increasing at an increasingly higher level. In particular, there is a strong demand for improvements in rigidity and strength at high temperatures, durability, and moldability of large molded products.
  • the salts of la and mono-group III metals of monocarboxylic acids eg, For example, sodium benzoate
  • dicarboxylic acid adipic acid
  • aliphatic dicarboxylic acid! a group of metals such as salts of Group IV metals (for example, aluminum adipate), dibenzylidene sorbitol derivatives, and talc as nucleating agents
  • a method of broadening the molecular weight distribution of the propylene-based polymer JP-B-56-2307, JP-A-59-172507, JP-A-62-195007, etc.
  • propylene-based polymers suitable for automobiles, home appliances and packaging materials, and fillers such as talc are reduced. It is desired to lower the product density and make the product thinner.
  • Each is a catalyst system comprising a solid catalyst component containing magnesium, titanium, lipogen and an electron-donating compound as essential components, an organoaluminum and an electron-donating compound.
  • the propylene polymers disclosed in these prior arts have less than 99% of xylene-extracted insoluble parts, and have a polypropylene content measured by 13 C nuclear magnetic resonance spectrum (hereinafter abbreviated as 13 C-NMR).
  • 13 C-NMR 13 C nuclear magnetic resonance spectrum
  • the isotactic pentad fraction (mmmm) of the methyl group of the above was at most about 93 to 98%, and there was a limit in improving various physical properties such as rigidity and heat resistance. Disclosure of the invention
  • An object of the present invention is to provide automobiles and home appliances having rigidity, surface hardness, heat resistance, transparency, surface gloss, water vapor barrier property and the like without impairing the inherent characteristics of a propylene polymer.
  • An object of the present invention is to provide a propylene-based polymer suitable for the field and packaging materials, a method and composition for producing the same, and a polymerization catalyst component therefor and a method for producing the same.
  • the present inventors have studied various methods for solving the above-mentioned problems.
  • (1) the xylene-extracted insoluble portion (XI) is at least 99.0% by weight
  • the head fraction (IP) is 98.0% or more
  • (3) the average length of isotactic chain (N) is 500 or more
  • the inventors have found that the above-mentioned problems can be solved by using a propylene-based polymer in which the total of fractions (N,) is 800 or more is 10% by weight or more of the whole, and completed the present invention.
  • the xylene-extracted insoluble part (XI) is the weight percentage of the polymer insoluble in xylene at 25 ° C. Specifically, it is the weight percent of the polymer once dissolved in ortho-xylene at 135 ° C and precipitated at 25 ° C.
  • the XI of the propylene-based polymer of the present invention is 99.0% or more, preferably 99.5% or more, and more preferably 99.7% or more. If XI is less than 99.0%, desired rigidity, heat resistance, surface hardness, surface gloss, transparency, steam barrier properties, etc. are insufficient.
  • IP isotactic pentad fraction
  • a polypropylene molecular chain by 13 C nuclear magnetic resonance spectrum is described in A. Zambelli, Macromolecules, 6, 925. (1973). That is, it refers to the isotactic fraction in pentad units in the molecular chain of the propylene-based polymer measured by using nuclear magnetic resonance spectrum ( 13 C-NMR) of isotope carbon.
  • the IP of the present invention is a measured value of polypropylene itself obtained by polymerization, and is not a measured value of polypropylene after the above-described xylene extraction, other extraction, fractionation, and the like.
  • the IP in the propylene polymer measured in this way must be 98.0% or more.If it is lower than this value, the desired rigidity, heat resistance, surface hardness, surface gloss, transparency, water vapor barrier property, etc. Run out.
  • the IP in the propylene-based polymer is 98.5% or more.
  • Particularly preferred is a propylene-based polymer having an IP of 99.0% or more.
  • the average length of the isotactic chain (N) is the average length of the isotactic chain of the methyl group in the propylene molecule, as reported by J. Randall (Polymer Sequence Distribution, Academic Press). , New York 1977, chapter 2).
  • polypropylene is mixed with 1,2,4-trichlorobenzene in a mixed solvent of heavy benzene so that the polymer concentration becomes 10% by weight.
  • IP isotactic pentad fraction
  • the two-site model is
  • Homopolypropylene has a pentad methyl group due to stereoregularity. Divide into 10 peaks in units, but calculate, and ⁇ by the least squares method so that the actual measured value and the calculated intensity (area) match, and then use the following formula to calculate each pentad unit The amount of A, ⁇ ⁇ ,. Ask for.
  • N number of chains in meso field number of units in meso field
  • the N value in the present invention is a measured value of polypropylene itself obtained by polymerization, and is not a measured value of polypropylene after the above-mentioned xylene extraction, other extraction, fractionation and the like.
  • the N of the highly stereoregular propylene polymer of the present invention is 500 or more, preferably
  • the 13 C-NMR signal of polypropylene has three main peaks of methylene and methinemethyl.
  • the average isotactic chain length that can be crystallized is inversely related to the number of asymmetric bonds.
  • the average chain length (N) becomes shorter as the number of irregular bonds increases, that is, as the number of racemic structures that cut the mmmm structure increases.
  • the average chain length (N) obtained in this way represents the length of the sequence of the crystallizable isotactic structure as described above. The longer this length (that is, the smaller the number of asymmetric bonds) The properties such as rigidity, heat resistance, and steam barrier properties of propylene-based polymer are improved.
  • the average chain length (N f ) of each fraction by the column fractionation method for the xylene-insoluble part is obtained by converting the polypropylene in the xylene-extractable insoluble part obtained in (1) to para-xylene at a temperature of 130 ° C. Dissolve in C, add celite, cool at a rate of 10 ° C / hr to 30 ° C, attach to celite, pack it into a column, and heat from 70 to 130 ° C. 2 The temperature was raised every 5 ° C, fractionated by fraction, the average chain length (N) of each fraction was determined by the above method, and these were determined for each fraction. The average chain length (N,).
  • the total of the fractions having an average chain length (N,) of 800 or more for each fractionated fraction is 10% by weight or more based on the whole. Is good. It is preferably at least 30% by weight, particularly preferably at least 50% by weight. If the total of those having an average chain length (N f ) of 800 or more is 10% by weight or less, the effect of improving rigidity, surface hardness, heat resistance, and steam barrier property is poor, which is not preferable.
  • the propylene-based polymer of the present invention comprises (A) a first catalyst supported on a solid catalyst component for polymerization, which comprises a magnesium compound, a titanium compound, a halogen-containing compound and a first electron-donating compound as essential components.
  • a solid catalyst component for polymerization characterized in that the molar ratio (DZT) of the electron donating compound / titanium atom content of DZT ⁇ 1;
  • B an organoaluminum compound; and
  • C a second electron donor. It can be produced by polymerizing propylene using a polymerization catalyst composed of a neutral compound.
  • magnesium compounds include magnesium halides such as magnesium chloride, magnesium bromide, and magnesium iodide; dimethoxymagnesium, diethoxymagnesium, dipropoxymagnesium, dibutoxymagnesium, diphenyloxymagnesium. Alkoxymagnesium; carboxylic acid salts such as magnesium laurate, magnesium stearate, and magnesium acetate; and alkylmagnesium such as dimethylmagnesium, getylmagnesium, and butylethylmagnesium. .
  • these various magnesium compounds can be used alone or in combination of two or more.
  • a magnesium halide or an alkoxymagnesium is used, or a magnesium halide is formed during catalyst formation.
  • the halogen is chlorine.
  • Titanium compounds include titanium halides such as titanium tetrachloride, titanium trichloride, titanium tetrabromide, and titanium tetraiodide; Alkoxy titans such as titanium, tetraethoxy titanium, tetrapropoxy titan, tetrabutoxy titan, tetrabutoxy titan; ethoxyquin titanium chloride, butoxy titan chloride, phenoxy titanium chloride, dibutoxy titan dichloride And alkoxytitanium halides, such as tributyl chloride and the like. These various titanium compounds may be used alone or in combination of two or more. Preferably, it is a tetravalent titanium compound containing a halogen, and particularly preferably, titanium tetrachloride.
  • Halogen-containing compounds are those in which the halogen is fluorine, chlorine, bromine, or iodine, preferably chlorine, and the specific compounds actually exemplified depend on the method of preparing the catalyst component, but are not limited to titanium tetrachloride and titanium tetrabromide. Examples thereof include titanium halides such as titanium, gaylan tetrachloride, gaylanes such as gaylan tetrabromide, and phosphorus halides such as phosphorous trichloride and phosphorous pentachloride. Depending on the component preparation method, a halogenated hydrocarbon, a halogen molecule, or a hydrohalic acid may be used.
  • the first electron donating compound generally includes an oxygen-containing compound, a nitrogen-containing compound, a phosphorus-containing compound, a sulfur-containing compound, and the like.
  • oxygen-containing compound include alcohols, ethers, esters, acid halides, and acid anhydrides.
  • Acid chlorides such as acetyl chloride, benzoinolechloride, toluic acid chloride and phthalic acid chloride;
  • Acid anhydrides such as maleic anhydride and phthalic anhydride; and the like.These first electron donating compounds can be used alone or in combination of two or more. You can also. Preferred are esters, especially preferred are phthalates o
  • magnesium compounds titanium compounds, halogen compounds,
  • one compound can also serve as two or more of these four compounds.
  • the use amount of each of the above-mentioned components is arbitrary as long as the effect is recognized in the present invention. Generally, the following ranges are preferable.
  • the amount of the titanium compound used is preferably in the range of 0.0001 to 1000, and more preferably in the range of 0.01 to 100, as a molar ratio with respect to the amount of the magnesium compound used.
  • Halogen compounds are used as needed.When halogen compounds are used, the amount of magnesium used depends on whether the titanium compound or magnesium compound contains halogen or not.
  • the molar ratio is preferably in the range of 0.01 to 1000, more preferably in the range of 0.1 to 100.
  • the amount of the first electron donating compound used is preferably in the range of 0.001 to 10, more preferably in the range of 0.01 to 5, in terms of a molar ratio with respect to the amount of the magnesium compound.
  • the method for preparing the solid catalyst component used in the present invention is a method in which a magnesium compound, a titanium compound, a first electron-donating compound, and, if necessary, an auxiliary such as a halogen-containing compound are temporarily or stepwise mixed.
  • a conventionally known method for preparing a solid catalyst component obtained by specifically contacting and reacting can be used.
  • a method of treating a spherical magnesium compound alcohol complex with a first electron-donating compound, a titanium halide compound and the like is produced.
  • any of the solid catalyst component preparation methods described above may be employed, but at least the first electron-donating compound titanium supported on the solid catalyst component may be used. It is necessary to use a solid catalyst component for polymerization such that the molar ratio of the atomic contents (DZT) satisfies DZT ⁇ 1. In this case, it is more preferable if DZT ⁇ 1.5 (DZT)
  • a solid catalyst component comprising a magnesium compound, a titanium compound, a halogen compound and a first electron-donating compound as essential components, and a first electrode supported on the solid catalyst component
  • a solid catalyst component for mono-olefin polymerization wherein the molar ratio (D / T) of the endogenous compound (D) and titanium (T) is DZT ⁇ 1.
  • This solid catalyst component was developed for the production of polypropylene having a high stereoregularity as described above. It is also useful as a solid catalyst component for general polymerization of ⁇ -olefins other than pyrene-based polymers. In particular, to obtain a propylene-based polymer that requires high stereoregularity and rigidity and heat resistance, it is preferable that D / T ⁇ 1.5.
  • the solid catalyst component does not satisfy the above condition (D / T ⁇ l) in the conventional preparation method, it may be possible to satisfy the above condition by performing the following treatment. It may be improved to a solid catalyst component or even more preferable.
  • the molar ratio of the Ti atom content of the first electron-donating compound (DZT) i in the solid catalyst component before improvement and the molar ratio of the first electron-donating compound / Ti atom content in the improved catalyst component (D / T) m needs to be in the relationship of (D / T) ra / (D / T) i ⁇ 1, and if (DZT) m no (D / T) i ⁇ 2, I like it.
  • a solid catalyst component containing magnesium, titanium, halogen and a first electron donating compound as essential components is further combined with a first electron donating compound and Z
  • DZT can be made larger than before treatment to improve the catalyst.
  • the order and number of the treatment with the first electron donating compound and the treatment with the halogen compound are not particularly limited.
  • a general method for treating the solid catalyst component is to treat the solid catalyst component with the first electron donating compound to support the solid catalyst component. After that, it is treated with a halogen-containing compound, washed, and further washed with a hydrocarbon.
  • the first electron-donating compound used for improving the catalyst component may be the same as or different from the one used during the preparation of the solid catalyst component before the improvement.
  • the first electron donating compound can be used alone or in combination of two or more. Preferred are esters, especially phthalates.
  • the amount of the first electron-donating compound to be used is preferably in the range of 0.001 to 500 moles, and more preferably in the range of 0.01 to 50 moles, based on the titanium atom in the solid catalyst component. It is.
  • the orogen-containing compound used for improving the catalyst may be the same as or different from the one used at the time of preparing the solid catalyst component before the improvement.
  • titanium halide, halogenated gay, and halogenated hydrocarbon are preferred.
  • the halogen-containing compounds can be used alone or in combination of two or more.
  • the amount of the halogen-containing compound to be used is in the range of 0.1 to 10,000 mole ratio, preferably in the range of 1 to 3000 mole ratio, particularly preferably, 1 to 3000 mole ratio with respect to titanium atom in the solid catalyst component. It is in the range of 5-500 molar ratio. If the amount of the halogen-containing compound is extremely small, it is difficult to satisfy the relationship of (D / T) m / (DZT) i> 1, and conversely, if the amount of the halogen-containing compound is extremely large. Is not preferred because the polymerization activity decreases and the amount of waste liquid increases.
  • the temperature at which the solid catalyst component is treated with the first electron-donating compound for improvement is in the range of from 30 to 150 ° C, preferably from 0 to 100 ° C.
  • the temperature at which the solid catalyst component is treated with the halogen-containing compound is in the range of 0 to 200 ° C, preferably 50 to 150 ° C. Temperature conditions other than these are not preferred because polymerization activity is reduced.
  • the improvement treatment of the solid catalyst component with the first electron donating compound and the halogen-containing compound can be usually performed in a hydrocarbon solvent.
  • Pentane, hexane, hepta Preferred are aliphatic hydrocarbons such as benzene, octane and decane; and inert hydrocarbons such as aromatic hydrocarbons such as benzene and toluene xylene. Further, these hydrocarbons can be used as a washing solvent for the solid catalyst component after the treatment with the first electron-donating compound and the halogen-containing compound of the solid catalyst component.
  • the temperature when the solid catalyst component before the improvement is treated with the first electron-donating compound and the catalyst for the improved olefin polymerization after the washing with the halogen-containing compound is washed with the above hydrocarbon is in the range of 0 to 100 ° C. And preferably between 60 and 140 ° C. If the cleaning temperature is extremely low, the relationship of (D / T) m / (D / T) i> 1 is difficult to obtain, and if the cleaning temperature is extremely high, (DZT) m Although the relationship of / (D / T) i> 1 is taken, it is not preferred because polymerization activity is reduced.
  • the solid catalyst component When the solid catalyst component is treated with the first electron-donating compound, unless the treatment (washing) with the halogen-containing compound is performed, the polymerization activity is extremely reduced, and the effect of the present invention is not exhibited.
  • the number of times of treatment (washing) with the halogen-containing compound is not particularly limited, but is preferably 2 to 4 times in order to sufficiently exert the effects of the present invention.
  • the effect of the present invention is not sufficiently exhibited by one time, and if the number of times is too large, the polymerization activity is lowered, which is not preferable.
  • the first electron-donating compound in the present invention the general formula TiX a Y b (wherein, X is Cl, Br, a halogen atom I, a is 3 Moshiku is 4, Y is an electron-donating compound ( 1), 0 ⁇ b3), treated with this, and supported, washed with a halogen-containing compound, and further washed with a hydrocarbon to reduce the amount of D / T ⁇
  • the solid catalyst component can be improved to 1.
  • the number of treatments (washing) with the halogen-containing compound of the present invention is generally earlier.
  • TiX a (where X is a halogen atom of Cl, Br, I, a is 3 or 4) is, for example, RSP Coutts, PC Wailes, Advan. Organometal. Chem., _9_, 135 (1970), 4th Edition New Experimental Chemistry Course 17 Inorganic and Chelate Complexes Chemical Society of Japan Maruzen (1991) p.35, HK Kakkoen,
  • X of TiX a 'Y b is a halogen atom of CI, Br, I, Shiino favored in this is C1.
  • a is 3 or 4 but is preferably 4.
  • Y (first electron donating compound) can be selected from those described above, and may be the same as or different from the one used during the preparation of the solid catalyst component before improvement.
  • the first electron-donating compound can either be used alone, it may be used in a two or more ⁇ .
  • Preferred among Y are organic acid esters, and particularly preferred are phthalic esters.
  • B of Y are molar ratio TiX a in Y in preparing TiX a ⁇ Y b as the 0 ° B ⁇ 2 at 0 ° B ⁇ 3, a when the aforementioned a is 3 4 , Y depends on the number of electron donating groups and the valence of Ti. Most preferred is when a is 4 and b is 1.
  • the amount of TiX a and Y b used is based on the titanium atom in the solid catalyst component before improvement.
  • the molar ratio is preferably in the range of 0.001 to 500, more preferably in the range of 0.01 to 50, and particularly preferably in the range of 0.1 to 10.
  • (D ZT) m / ( DZT) s> difficulty take one relationship rather, extremely use amount of TiX a ⁇ Y b in the opposite If the amount is large, the polymerization activity is not preferred.
  • the amount of the halogen-containing compound to be used is in the range of 0.1 to 1000 mole ratio, preferably in the range of 1 to 500 mole ratio, particularly preferably 5 to 100 mole ratio with respect to titanium atom in the solid catalyst. Within the range of the ratio.
  • the temperature of processing a solid catalyst component TiX a ⁇ Y b is the same as the processing temperature of the first electron-donating compound of Further, the temperature at which the solid catalyst component is washed with the haeogen-containing compound can be the same as described above.
  • Treatment with TiX a * Y b of the solid catalyst component, also wash with halogen-containing compound may be the same as the cleaning by the processing and halogen-containing compounds according to the first electron-donating compound of.
  • the improved solid catalyst component prepared by the above method is used for the polymerization of propylene in combination with an organic aluminum compound and a second electron-donating compound described below, but a small amount of the monomer is used before the polymerization. Forecast It is possible to polymerize. Usually, about 0.01 g to about 100 g per 1 g of the prepared improved solid catalyst component, and the temperature of the prepolymerization is arbitrary, but is 30 to 80 ° C.
  • the pre-polymerization is usually carried out in the presence of an organic aluminum compound and a second electron-donating compound used in the polymerization described later.
  • the prepolymerization is generally carried out in an inert hydrocarbon solvent, and may be carried out in a liquid monomer or a gas phase monomer.
  • the monomers used in the prepolymerization include, in addition to propylene, for example, ethylene, 1-butene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 4, ⁇ -olefins such as 4-dimethyl-11-pentene, vinylcyclopentane and vinylcyclohexane; styrene derivatives such as styrene and ⁇ -methylstyrene; butenes such as butadiene and 1,9-decadiene; and arylinoletrialkylsilanes May be used. These monomers can be used not only in one kind but also in two or more kinds in a stepwise or mixed manner.
  • hydrogen can be used as a molecular weight regulator at the time of prepolymerization.
  • the improved solid catalyst component can polymerize a propylene-based polymer in the presence of an organic aluminum compound and a second electron-donating compound.
  • organoaluminum compound used in the present invention include trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, trihexylaluminum, and trioctylaluminum.
  • Trialkyl aluminum such as dimethyl aluminum hydride, alkyl such as getyl aluminum hydride, dibutyl aluminum hydride Aluminum aluminum hydrides; alkyl aluminum halides such as dimethyl aluminum chloride, getyl aluminum chloride, getyl aluminum bromide, and ethyl aluminum sesquik mouth light; and ethyl aluminum halides and getyl aluminum hydride.
  • Examples thereof include aluminoxanes such as alkylaluminumalkoxymethylaluminoxane, ethylaluminoxane, and propylaluminoxane.
  • these organic aluminum compounds can be used alone or in combination of two or more. Preferably, it is a trialkylaluminum.
  • the second electron-donating compound used in the present invention may be the same as or different from the first electron-donating compound, but is typically an aromatic carbonate compound, Si—0—C Or a silicon compound having an Si—N—C bond, an acetal compound, a germanium compound having a Ge—O—C bond, a nitrogen or oxygen complex reduction compound having an alkyl substituent, and the like.
  • aromatic carboxylic acid esters such as ethyl benzoate, p-ethyl toluate, and p-ethyl anilate; phenyl trimethoxy silane, diphenyl methoxy silane, Di-n-Propirdimethoxysilane, di-i-Propirdimethoxysilane, G-t-Butyldimethoxysilane, dicyclohexyldimethoxysilane, dicyclopentyldimethoxysilane, cyclohexylmethyldimethoxysilane, t-butyl Gay compounds such as trimethoxysilane, cyclohexyltrimethoxysilane, texyltrimethoxysilane, tetramethoxysilane, tetraethoxyethoxysilane; benzophenone dimethoxy acetal, benzophenone diazine Tokin Acetal, Acetophenoxy meth
  • These electron donating compounds can be used alone or in combination of two or more.
  • Preferred are a gay compound and an acetal compound, and particularly preferred are gay compounds having a Si-0-C bond.
  • the polymerization method in the production method of the present invention is not particularly limited, and a known method can be used.
  • the polymerization method can be applied to a gas phase polymerization method in addition to a liquid phase polymerization method such as slurry polymerization or park polymerization.
  • the present invention can be applied not only to patch polymerization but also to a method of performing continuous polymerization or batch polymerization.
  • a saturated aliphatic or aromatic hydrocarbon such as hexane, heptane, cyclohexane and toluene is used alone or in a mixture.
  • the polymerization method in the production method of the present invention can be used for multistage polymerization of two or more polymerization reactors.
  • the polymerization temperature is about 50 to 200 ° C, preferably 20 to 150 ° C
  • the polymerization pressure is atmospheric pressure to 100 kg / cm 2 G, preferably 3 to 50 kg_cm 2 G.
  • the molecular weight can be adjusted by adding an appropriate amount of hydrogen during the polymerization.
  • styrene derivatives such as styrene and monomethyl styrene, butadiene, 1,5-hexadiene, 1,7-octadiene, 1,9-decadiene and other gens, and aryltrialkylsilanes are exemplified. Is done.
  • these monomers can be used not only in one kind but also in a mixture of two or more kinds.
  • a propylene-ethylene block copolymer can be produced in a multistage polymerization of two or more polymerization reactors, and particularly, in the first stage, homopolypropylene is produced. It is preferable.
  • the finally obtained copolymer can also solve the problems of the present invention and obtain the same. It can have the given physical properties.
  • the propylene-based polymer obtained in the present invention can be made into a resin composition further improved in crystallinity and high-speed moldability by adding a known nucleating agent.
  • nucleating agent la and n a group metal salts of monocarboxylic acids (such as benzoic Sanna Application Benefits um), a dicarboxylic acid (adipic acid), aliphatic dicarboxylic acids! !
  • group of fillers such as salts of metals from group W to metals (eg, p-t monobutyl benzoate), dibenzylidene sorbitol derivatives, and talc.
  • 1,3,2,4-dibenzylidene sorbitol Particularly preferred is 1,3,2,4-dibenzylidene sorbitol.
  • 1,3,2,4-G p-methylbenzylidene) sorbitol, 1,3,2,4-g (p-ethylbenzyl sorbitol) Dent) sorbitol, 1,3,2,4-g (p-chlorbenzilidene) sorbitol, 1,3-p-chlorobenzylidene 2,4,1-p-methylbenzili Densorbitol, sodium-bis- (4-tert-butylphenyl) phosphate, sodium- 1,2,2-methylenebis (4,4-di-t-butylphenyl) ) Phosphate and sodium 2- (2 ')-ethylidene-bis (4,6-di-tert-butylphenyl) phosphate and inorganic phthalate such as talc and calcium carbonate
  • the first class
  • the effect of the present invention is remarkably preferable.
  • thermoplastic resins e.g., antioxidants, weathering stabilizers, antistatic agents, lubricants, antiblocking agents
  • An antifogging agent, a dye, a pigment, a foil, a wax, etc. may be appropriately added within a range not to impair the object of the present invention.
  • examples of such additives include 2,5-di-tert-butyl hydroquinone, 2,6-di-tert-butyl-p-cresol, and 4,4-thiobis as antioxidants.
  • (6-t-butylphenol) 2,2-methylene-bis (4-methyl-16-t-butylphenol) -octadecyl-3- (3 ', 5'-di-t-butyl-1') Hydroxyphenyl) propionate
  • 4,4'-thiobis (6-butyl phenol)
  • UV absorbers include ethyl 2-, cyano 3, 3, 3- diphenyl acrylate, 2-(2'-hydroxy) One 5 — meth (Ruphenyl) benzotriazole, 2-hydroxy-1-benzobenzodiphenyl, dimethyl phthalate, getyl phthalate, wax, liquid paraffin, phosphate, Monostearate and sorbitan monono are antistatic agents.
  • Lumi- tate sulfated oleic acid, polyethylene oxide, carbon wax, ethylene bisstearamide, butyl stearate, etc. as lubricants, carbon black, phthalocyanine as coloring agents , Quinacridone, indolin, azo pigments, titanium oxide, red iron oxide, etc.
  • fillers such as: glass fiber, asbestos, my strength, and no. Lasttonite, calcium gayate, aluminum gayate and the like.
  • many other polymer compounds can be blended to such an extent that the effects of the present invention are not impaired.
  • the melting index (MFR to JIS-7210, Table 1 condition 14) of the propylene-based polymer of the present invention is not particularly limited and is selected depending on the molding method and application, but is usually 0.1 to 500 g. A range of Z 10 minutes is appropriate.
  • the propylene-based polymer of the present invention can be molded into injection molded articles, films, sheets, tubes, bottles, etc. by known melt molding methods and compression molding methods, and can be used alone or laminated with other materials. Can be used.
  • a laminating method a dry laminating adhesive such as a polyurethane-based or polyester-based adhesive is used, and a single-layer product of the propylene-based polymer or the resin composition of the present invention is used. It is carried out by the so-called dry laminating method or sandwich laminating method of laminating a thermoplastic resin layer, or by co-extrusion laminating method, co-extrusion method (feed block method, multi-matrix method). Two-hold method), co-injection molding method, and co-extrusion pipe molding method.
  • the multilayer laminate thus obtained is then reheated and subjected to a stretching operation using a vacuum forming machine, a press forming machine, a stretch blow molding machine or the like.
  • the multilayer laminate or the single molded product can be subjected to a heat stretching operation using a uniaxial or biaxial stretching machine.
  • FIG. 1 is an example of a 13 C-NMR spectrum diagram of the methyl region of homopropylene.
  • the mmmm fraction is an isotactic fraction of a methyl group in a propylene-based polymer molecular chain in pentad units.
  • the measurement was performed using JNM-GSX400 ( 13C nuclear resonance frequency 100MHz) manufactured by JEOL Ltd. Each signonole belongs to Macromolecules, 13, 267, (1980) of A. Zambel H et al. The measurement conditions are shown below.
  • the average length of the isotactic chain (N) was calculated based on the method reported by J. C. Radall (Polymer Sequence Distribution, Academic Press, New York 1977, chapter 2). Specifically, polypropylene is dissolved in a mixed solvent of 1,2,4-trichlorobenzene benzene Z heavy benzene at 130 ° C so that the polymer concentration becomes 10% by weight.
  • the propylene polymer in the xylene-insoluble part is dissolved in para-xylene at a temperature of 130 ° C, celite is added, and the temperature is lowered to a temperature of 30 ° C at a rate of 10 ° C for an hour, and adhered to the ceramic. Fill the column with the adhered substance, raise the temperature from 70 ° C to 130 ° C every 2.5 ° C, and separate by fraction.
  • Izod impact test specimen Using IS-170FII manufactured by Toshiba Machine Co., Ltd. (theoretical injection capacity 250cm 3 ), Izod impact test specimen, flexural modulus test specimen, load deflection temperature at a molding temperature of 220 ° C and a mold cooling temperature of 50 ° C Test specimens and test specimens for surface gloss (thickness: 2 x 15 cm x 11 cm flat plate) were prepared. Next, the samples were left in a constant temperature room at a humidity of 50% and a temperature of 23 ° C for two days and nights, and their properties were measured. (6) Izod impact strength (with notch)
  • the test was performed using an HDTe VSPT tester manufactured by Toyo Seiki Seisaku-Sho, Ltd. in accordance with the JIS K7207B method.
  • a sample for measurement was prepared using a press molding machine at a temperature of 230 ° C, and the measurement was performed in accordance with JIS K7202 using an AR-10 type Rockwell hardness tester manufactured by Toyo Seiki Seisaku-sho, Ltd.
  • a film with a thickness of 60 m was created under the conditions of a die temperature of 230 ° C, a cooling temperature of 30 ° C, and a take-up speed of 10 mZ. The amount, haze, and surface gloss were measured.
  • the measurement was performed using a VG-1D type gloss meter manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with the JIS K7105 method.
  • the solid catalyst component before the improvement and the solid catalyst component for the improved olefin polymerization were decomposed with dilute sulfuric acid, and the organic matter was extracted with heptane.
  • Ti was quantified using an atomic absorption type AA610S manufactured by Shimadzu Corporation.
  • the amount of the electron donating compound in the heptane layer was determined by Hitachi, Ltd. gas chromatograph 263-50.
  • Spherical solid 30g of the obtained MgCl 2 * 2.5C 2 H 5 0H was suspended in anhydrous hept down 200. While stirring at 0 ° C, 500 ⁇ (4.5 mol) of titanium tetrachloride was added dropwise over 1 hour. Next, when heating was started and the temperature reached 40 ° C, 4.96 g (17.8 mmol) of diisobutyl phthalate was added, and 100 ° C in about 1 hour. After reacting at 100 ° C for 2 hours, a solid portion was collected by hot filtration. Thereafter, 500 md (4.5 mol) of titanium tetrachloride was suspended in this reaction product, and the mixture was reacted at 120 for 1 hour.
  • the solid portion was collected again by hot filtration, and washed with 1.0 liter of hexane at 60 ° C seven times, and washed three times with 1.0 liter of hexane at room temperature three times.
  • the titanium content in the catalyst component was measured and was 2.25% by weight.
  • the electron donating compound (1) was contained at 7.81% by weight.
  • n-heptane 500; ⁇ triethylaluminum 6.6.0 g (53 mmol), dicyclopentyldimethoxysilane 0.39 g (17 mmol), and (2) was charged and the resulting improved Orefi emissions catalyst component 10 g and stirred for 5 minutes at a temperature range of 0 to 5 e C.
  • propylene was reformed so that 10 g of propylene was polymerized per 1 g of the improved olefin polymerization catalyst component.
  • the obtained prepolymerized solid catalyst component was washed three times with n-heptane 500 and used for the production of the following propylene-based polymer.
  • a pre-polymerized solid catalyst component prepared in the manner described above was placed in an autoclave with a stirrer having an internal volume of 60 liters, 2.0 g, triethyl aluminum 11.4 g (100 mmol), dicyclopentyldimethoxysilane 6.84 g. (30 mmol), and then hydrogen was charged to 18 kg of propylene and 13000 mol ppm based on propylene, and the temperature was raised to 70 ° C.
  • hexane 1.0 l to include titanium tetrachloride 19g (lOOmmol), diisobutyl phthalate: CeKCOOi 0 ⁇ 9) 2 27.8 g of (lOOmmol), was added dropwise in about 30 minutes while maintaining 0 ° C. After the completion of the dropwise addition, the temperature was raised to 40 ° C and the reaction was carried out for 30 minutes. After the completion of the reaction, a solid portion was collected and washed three times with hexane 500 to obtain an intended product.
  • n-heptane 500, triethylaluminum 6.0 g (53 mmol), dicyclopentyldimethoxysilane 0.39 g (17 mmol), and the above (3 ) was added, and the mixture was stirred for 5 minutes in a temperature range of 0 to 5 ° C.
  • propylene was fed into the autoclave so that 10 g of propylene was polymerized per 1 g of the improved olefin polymerization catalyst component, and prepolymerized for 1 hour in a temperature range of 0 to 5 ° C.
  • the obtained prepolymerized solid catalyst component was washed three times with n-heptane 500 and used for the production of the following propylene polymer.
  • Example 2 shows the results of evaluating the physical properties of the polymer. Examples 3 to 5
  • Example 2 was repeated except that the amount of hydrogen charged during the production of the propylene polymer was adjusted so that the MFR of the produced polypropylene was 10.5 gZlO, 2.7 g and 10 g, and 0.7 g and 10 minutes, respectively.
  • Polypropylene was produced under the same method and conditions. Table 2 shows the physical property evaluation results of the obtained polymer. Comparative Example 3
  • the MFR of the resulting propylene polymer should be 3.2 g
  • a propylene polymer was produced in the same manner and under the same conditions as in Comparative Example 1 except that the amount of hydrogen charged during the production of the propylene polymer was adjusted. Table 2 shows the physical property evaluation results of the obtained polymer.
  • anhydrous magnesium chloride 47.6 g, 500 mmol
  • decane 250 and 2-ethylhexyl alcohol 234 (1.5 mol) were heated at 130 ° C for 2 hours to form a homogeneous solution.
  • Ig (75 mmol) of acid was added, and the mixture was further stirred and mixed at 130 ° C. for 1 hour to dissolve phthalic anhydride in the homogeneous solution.
  • the whole amount was dropped into 2.0 liter (18 mol) of titanium tetrachloride kept at 120 ° C. over 1 hour.
  • the temperature of the mixed solution was raised to 110 ° C over 4 hours, and when the temperature reached 110 ° C, 26.8 ⁇ (125 mmol) of diisobutyl phthalate was added, followed by stirring at 110 ° C for 2 hours. I let it. After completion of the reaction, a solid portion was collected by hot filtration. Thereafter, 2.0 liters (18 mol) of titanium tetrachloride was suspended in the reaction product, and the mixture was reacted at 110 ° C for 2 hours.
  • the solid catalyst component 40g obtained in the above (1) was suspended in toluene 600, and TiC obtained in the above (2) 90 ° C [C 6 H 4 (C00 '0 4 ⁇ 9) 2] 10.3 g (22 mmol) for 1 hour for loading. After loading, when hot The solid part was collected by filtration, and toluene 600 and titanium tetrachloride were collected.
  • n-heptane 500; ⁇ triethylaluminium 6.0 g (0.053 mmol), difudildimethoxysilane 4.15 g (0.017 mniol)
  • 10 g of the improved olefin polymerization catalyst component obtained in (3) of Example 2 was added, and the mixture was stirred for 5 minutes in a temperature range of 0 to 5 ° C.
  • propylene was fed into the autoclave so that 10 g of propylene was polymerized per 1 g of the improved olefin polymerization catalyst component, and prepolymerized for 1 hour in a temperature range of 0 to 5 ° C.
  • the obtained prepolymerized solid catalyst component was washed three times with n-heptane 500, and used for producing the following propylene-based polymer.
  • Example 1 1.7 17 900 130 104 86.0 120 5.6 2.4
  • Example 2 1.8 18 100 131 104 86.4 122 5.6 2.4 Comparative Example 1 2.0 14 600 119 93 83.2 46 7.9 23.3 Comparative Example 2 1.8 16 200 127 101 84.2 116 6.1 3.2
  • Example 3 2.0 17 900 130 103 85.1 117 5.5 2.8
  • Example 4 2.8 17 200 130 102 84.3 113 5.4 3.0
  • Example 5 4.4 14 200 110 96 83.9
  • di-t-butyl-p-cresol 0.05% by weight, pentaerythyl-trityl-tetrakis [3— (3, 5-dibutyl 4-hydroxyl: Lnil)] 0.10% by weight of propionate and 0.10% by weight of calcium stearate are blended into a 20 liter supermixer (manufactured by Kawada Seisakusho). SMV20) and pelletized using a 30 mm ⁇ twin-screw extruder manufactured by Nakayuji Machinery Co., Ltd. The following nucleating agents were used, and the amounts were appropriately changed.
  • Nucleating agent B 2,2-methylenebis (4,6-di-tert-butylphenyl) sodium phosphate
  • Example 11 and Comparative Example 6 The composition obtained by blending the above nucleating agent and the like with the polypropylene obtained in Example 2 (Examples 9 and 10) and the composition obtained by blending the nucleating agent with the polypropylene obtained in Comparative Example 1 (Comparative Example 5) Table 4 shows the results of the physical property evaluation for).
  • Example 11 and Comparative Example 6 The composition obtained by blending the above nucleating agent and the like with the polypropylene obtained in Example 2 (Examples 9 and 10) and the composition obtained by blending the nucleating agent with the polypropylene obtained in Comparative Example 1 (Comparative Example 5) Table 4 shows the results of the physical property evaluation for). Example 11 and Comparative Example 6
  • Table 4 shows the physical property evaluation results of the compositions obtained by blending the propylene-ethylene-block copolymers obtained in Example 8 and Comparative Example 4 with a nucleating agent and the like in the same manner as in Example 9.
  • Example 9 1.7 22000 141 105 91.7 81 5.3 13.5
  • Example 10 1.9 24 500 148 109 93.8 84 5.1 11.6 Comparative Example 5 1.7 19 200 131 102 86.3 32 7.2 28.9
  • Example 11 6.2 3.8 16800 134 99 72.2 Compare Example 6 5.3 3.0 14 600 124 91 67.2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明 細 書 プロ ピレン系重合体、 その製法及び組成物、 並びに重合用触媒成分 及びその製法 技術分野
本発明は、 剛性、 表面硬度、 耐熱性、 水蒸気バリヤ一性等の物性 に優れる自動車、 家電分野、 包装材料に好適なプロ ピレン系重合体. その製造方法および組成物並びに重合用触媒成分とその製法に関す る 背景技術
プロピレン系重合体は一般的に安価であり、 かつその特徴である 透明性、 機械的強度、 耐熱性、 表面光沢性、 耐薬品性、 耐油性、 剛 性、 耐屈曲疲労性等の性質を生かし、 工業材料、 食品包装材料、 化 粧品包装材料、 薬品包装材料等幅広い分野で用いられる。
プロ ピレン系重合体は先に述べたように、 剛性、 耐衝撃性等の特 長を生かし、 自動車、 家電分野、 雑貨等の各産業で広く用いられて いる。 最近、 製品の軽量化、 またはコス トを下げるため、 製品の薄 肉化や製品の表面の傷つき防止のため、 表面硬度を上げることが検 討されている。 すなわち、 プロピレン系重合体は高剛性で、 表面硬 度が高く、 耐衝撃性に優れるものが要求されている。 また、 物性、 加工性に対する要求もますます高いレベルになってきており、 特に 高温時の剛性と強度の保持、 耐久性、 大型成形品の成形性向上が強 く望まれている。
従来、 プロ ピレン系重合体の高剛性化や透明性改良、 表面光沢改 良に関しては、 モノカルボン酸の l a および Π 3 族金属の塩 (例え ば安息香酸ナ ト リウム) 、 ジカルボン酸 (アジピン酸) 、 脂肪族ジ カルボン酸の!!!〜 IV族金属の塩 (例えばアジピン酸アルミニウム) 、 ジベンジリデンソルビトール誘導体、 タルク等のフイ ラ一類を造核 剤と して用いる方法 (特公昭 39— 1 809号公報、 特開昭 60— 1 39731号 公報等) や、 プロ ピレン系重合体の分子量分布を広くする方法 (特 開昭 56— 2307号公報、 特開昭 59— 172507号公報、 特開昭 62— 1 95007 号公報等) がよく知られている。
しかし、 これら造核剤を用いた場合は前述の物性改良効果はある ものの、 用途によっては必ずしも十分とはいえなかった。
従って、 耐衝撃性、 剛性等の機械的強度および、 表面硬度、 耐熱 性に優れる自動車、 家電分野、 包装材料に好適なプロ ピレン系重合 体および、 タルク等のフイ ラ一類等を減らすことにより、 製品密度 を低く し、 製品を薄肉化することが望まれている。
また、 プロピレン系重合体の立体規則性 (ァイソタクチシチ一) を向上させたり、 分子量分布を広げて、 高分子量成分に依存する強 度、 耐久性を高め、 押し出し成形や中空成形等の成形性を改善する といった努力も続けられている。
この中でも、 特に高活性でかつ高立体規則性を示す触媒の開発は、 近年、 精力的に検討されている。 いずれもマグネシウム、 チタン、 ハ口ゲンおよび電子供与性化合物を必須成分として含有する固体触 媒成分と、 有機アルミニウム、 電子供与性化合物からなる触媒系で あり、 例えば、 特開昭 57 - 63310、 特開昭 58 - 32604、 特開昭 58 - 83006、 特開昭 59— 206408、 特開昭 59— 21931 1、 特開昭 60— 130607、 特開昭 61— 209207、 特開昭 61— 21 1309、 特開昭 62- 72702、 特開昭 62— 1 0481 1. 特開昭 62 - 1 1705、 特開昭 63— 199703、 特開昭 63— 264609、 特開平 1 - 1 26306、 特開平 1 一 31 1 106、 特開平 3 - 62805 、 特開平 3 - 7071 0 . 特開平 4 — 103604、 特開平 4 一 1 14009、 特開平 4 — 202505号公報の ようなものが開示されている。
また、 発明者らも、 最近、 特開平 4 - 43407 、 特開平 4 一 149217、 特開平 4 — 178406、 特開平 4 — 180903、 特開平 4 — 185613、 特開平 4 一 198202、 特開平 4 — 198204、 特開平 5 — 9209、 特開平 5 — 287019 各号公報に開示してきた。
これら先行文献に開示されたプロピレン系重合体では、 キシレン 抽出不溶部が 99%未満であり、 1 3 C核磁気共鳴スぺク トル (以下、 1 3 C - NMRと略す) で測定したポリプロ ピレンのメチル基のアイ ソタ クチッ クペンタ ッ ド分率 (mmmm) が高々 93〜98%程度であり、 剛性、 耐熱性等の諸物性の向上には限界があった。 発明の開示
本発明の目的は、 プロピレン系重合体の本来備えている特性を損 なう ことなく、 剛性、 表面硬度、 耐熱性、 透明性、 表面光沢、 水蒸 気バリヤ一性等に傻れる自動車、 家電分野、 包装材料に好適なプロ ピレン系重合体、 その製造方法および組成物並びにそのための重合 触媒成分とその製法を提供することにある。
本発明者らは、 前記課題を解決する方法を種々検討した結果、 ( 1 ) キシレン抽出不溶部 (XI) が 99.0重量%以上、 ( 2 ) 13 C核 磁気共鳴スぺク トルによるアイ ソタクチッ クペンタ ツ ド分率 (IP) が 98.0%以上、 ( 3 ) ァイソタクチッ ク平均連鎖長 (N) が 500以 上で、 かつ ( 4 ) キシレン不溶部のカラム分別法による各フラク シ ョ ンの平均連鎖長 (N , ) が 800以上であるフラク ショ ンの合計が 全体の 10重量%以上であるプロピレン系重合体とすることにより前 述の課題を解決できることを見い出し、 本発明を完成した。 発明を実施するための最良の形態
本発明のプロピレン系重合体の特徵について具体的に説明する。
( 1 ) キシレン抽出不溶部 (XI) は、 25°Cのキシレンに不溶なポ リマーの重量%である。 詳しく は 135°Cのオル トキシレンに一旦溶 解し、 25°Cで析出したポリマーの重量%である。 本発明のプロ ピレ ン系重合体の XIは、 99.0%以上であり、 好ま しく は、 99.5%以上、 更に好ま しく は 99.7%以上である。 XIが 99.0%未満であると、 所望 とする剛性、 耐熱性、 表面硬度、 表面光沢、 透明性、 水蒸気バリヤ —性等が不足する。
( 2 ) 13 C核磁気共鳴スぺク トルによるポリプロピレン分子鎖中 のァイ ソタクチッ クペンタ ツ ド分率 (以下、 IPと略記する場合もあ る) とは、 A. Zambelli, Macromolecules, 6 , 925 (1973)による方 法に従った。 すなわち、 同位体炭素による核磁気共鳴スぺク トル (13C -NMR) を使用 して、 測定されるプロピレン系重合体分子鎖中 のペンタ ツ ド単位でのアイソタクチッ ク分率をいう。 なお本発明の IPは重合で得られたポリプロ ピレンそのものの測定値であって、 前 記キシレン抽出、 その他抽出、 分別等を行なった後のポリプロ ピレ ンの測定値ではない。
ピークの帰属は、 Macromolecules, _8_, 687 (1975)に記載してあ る上記文献の改訂版に基づいて、 13C- NMRスぺク トルのメチル炭素 領域の全吸収ピーク中の議誦ピークの強度分率をもつて IPを測定し た。
このように測定されるプロピレン系重合体中の IPは 98.0%以上で ある必要があり、 この値より低いと所望とする剛性、 耐熱性、 表面 硬度、 表面光沢、 透明性、 水蒸気バリヤ一性等が不足する。 好ま し く は、 プロ ピレン系重合体中の IPは 98.5%以上が良い。 特に好ま し く は、 IPが 99.0%以上のプロピレン系重合体が良い。 ( 3 ) ァイ ソタクチッ ク平均連鎖長 (N) とは、 ポリプロ ピレン 分子内のメ チル基のアイ ソタクチッ ク平均連鎖長であり、 J. Randall によって報告されている方法 (Polymer Sequence Distribution, Academic Press, New York 1977, chap ter2)をもとに算出すること ができる。
具体的にはポリプロ ピレンを 1 , 2, 4 — ト リ ク ロ口ベンゼン 重ベンゼンの混合溶媒にポリマー濃度が 10重量%となるように温度
130 °Cに加温して溶解する。
この溶液を内径 10誦 øのガラス製試料管に入れ、 先のアイソタク チックペンタ ッ ド分率 (IP) と同一の測定条件で1 3 C - NMRを測定す
「Shan-Nong ZHU. Xiao-Zhen YANG, Riichiro CHUJO; Polymer Journal, vol.15, No.12, p859- 868 (1983) に記載している 2サイ トモデルの定義、 すなわち、 重合時の活性点が 2種類あると仮定す る。 そのうち 1 種類は触媒支配重合、 もう一方は末端支配重合と呼 ばれるものである。 (この触媒支配重合と末端支配重合については、 古川淳ニ ; 高分子のエッセンスと ト ピッ クス 2、 「高分子合成」 、 p 73. (株) 化学同人発行 (1986年) に詳細に述べられている。 )
2サイ トモデルは、
a : 触媒支配重合 (ェナンチォモルフィ ッ ク過程) 重合末端に D 体および L体が付加する確率、 即ちアイソタクチッ ク成分中 の乱れの程度の指標
σ : 末端支配重合 (ベルヌーィ過程) 重合末端と同じものが付加
するメ ソ体ができる確率
ω : αサイ 卜の割合
と整理できる。
ホモポリプロピレンは、 メチル基が立体規則性によりペンタ ツ ド 単位で 10ピークに分裂するが、 実際の測定値と計算強度 (面積) が 一致するように、 ひ , び, ωを最小自乗法で求め、 その上で次式に よって、 各ペンタ ツ ド単位の量 A , 〜Α ,。を求める。
A , =mmmm= ω (1— 5)S +5 S 2) + (1— ω)び 4 メ ソ 体 A 2 =mmmr= ω (2 — 6 2) + 2(l一 ω)び 3 (1— び
A 3 =rmmr= ω ^ 2+ (1- ω)σ 2(1- σ)2
A * =關 = ω(2/5 - β 2) + 2(1- ω)σ 2(1-σ)2|
A 5 =mmrm=2o) 2 + 2(1-ω)び 3 (1—び)
A 6 =rmrr = 2 ) /S 2 + 2 ト ω)び (1一 び) 3
ラセ ミ構造
A 7 =rmrni=2w /82 + 2(1— ω)び 2 U— σ)2
A 8 =rrrr= ω 2 + 2(1— ω) (卜び ) 4
A 9 =mrrr=2w /92 + 2(1一 ω)び (1—び ) 3
A i o = mrrm= — 3/52) + (1— ω)σ 2(1— σ )2
* β = a ( 1 一ひ ) 次に前述の J. C. Randallの文献に記載されている平均連鎖長
(N) の定義式
N =メ ソ体の連鎖数ノメ ソ体のュニッ ト数
に上記で求めた A , 〜A7 の各ペンタ ツ ド単位をあてはめると、
A , + A 2 + A a + 0.5 (A4 + A 5 + As + A 7 )
N =
0.5 (A4 + A 6 + A 6 + A 7 )
によって求めることができる。
なお、 本発明における N値は、 重合で得られたポリプロピレンそ のものの測定値であって、 前記キシレン抽出、 その他抽出、 分別等 を行なつた後のボリプロピレンの測定値ではない。 本発明の高立体 規則性プロ ピレン系重合体の Nは、 500以上であり、 好ま しく は
700 以上、 更に好ま しく は 800以上である。 Nが 500未満であると 所望とする剛性、 耐熱性が不足する。
一般に、 ポリプロピレンの 1 3 C -NMRシグナルはメチレン、 メチン メチルの 3つの主ピークが得られる。
このうちメチル領域のピークを拡大すると図 1 のようなデータが 得られ、 …匪 mmr匪議 …, ··· mmmmmmrrmmmmm …等の不整結合の开 が ゎカヽる。
結晶化可能なアイソタクチッ ク平均連鎖長は不整結合の数と逆数 関係にあると考えて良い。
不整結合の数が多い程、 つま り mmmmの構造を切つているラセミ構 造が多い程、 平均連鎖長 (N ) は短く なる。
このようにして求められる平均連鎖長 (N ) は、 前述のように結 晶化可能なアイソタクチッ ク構造のシーケンスの長さを表わすので. この長さが長い程 (つまり不整結合が少ない程) 、 プロ ピレン系重 合体の剛性や耐熱性、 水蒸気バリヤー性等の物性が向上するものと
^" X.られ o
( 4 ) キシレン不溶部のカラム分別法による各フラ ク シ ョ ンの平 均連鎖長 (N f ) とは、 ( 1 ) で得られるキシレン抽出不溶部のポ リプロ ピレンをパラキシレンに温度 130°Cで溶解し、 セライ トを入 れ、 10°C /時間の降温速度で温度 30°Cまで下げ、 セライ トに付着さ せ、 これをカラムに充塡し、 温度 70から 130°Cまで 2. 5°Cごとに昇 温して、 フラク ショ ン別に分取し、 分取された各フラク ショ ンごと の平均連鎖長 (N ) を先の方法で求め、 これらをフラ ク シ ョ ンごと の平均連鎖長 (N , ) とする。
本発明のプロ ピレン系重合体においては、 この分取された各フラ ク シヨ ンごとの平均連鎖長 (N , ) 力く 800以上であるフラク ショ ン の合計が全体に対し、 10重量%以上のものが良い。 好ま しく は、 30 重量%以上、 特に好ま しく は 50重量%以上のものが良い。 平均連鎖長 (N f ) が 800以上のものの合計が全体に対し、 10重 量%以下では剛性、 表面硬度、 耐熱性、 水蒸気バリ ヤ一性の改善効 果が乏しく好ま しく ない。
次に本発明のプロピレン系重合体の製造方法について説明する。 本発明のプロ ピレン系重合体は、 (A ) マグネシウム化合物、 チ タ ン化合物、 ハロゲン含有化合物及び第 1 の電子供与性化合物を必 須成分とする重合用固体触媒成分中に担持された第 1 の電子供与性 化合物/チタン原子含有量のモル比 (D Z T ) が D Z T≥ 1 である ことを特徵とする重合用固体触媒成分、 (B ) 有機アルミニウム化 合物、 ( C ) 第 2の電子供与性化合物からなる重合触媒を用いてプ ロ ピレンの重合を行なう ことによって製造することができる。
ここで、 マグネシウム化合物と しては、 塩化マグネシウム、 臭化 マグネシウム、 ヨウ化マグネシウムのようなハロゲン化マグネシゥ ム ; ジメ トキシマグネシウム、 ジエ トキンマグネシウム、 ジプロボ キシマグネシウム、 ジブトキシマグネシウム、 ジフヱノキシマグネ シゥムのようなアルコキシマグネシウム ; ラウ リル酸マグネシウム, ステア リ ン酸マグネシウム、 酢酸マグネシウムのようなカルボン酸 塩 ; ジメチルマグネシウム、 ジェチルマグネシウム、 ブチルェチル マグネシゥムのようなアルキルマグネシゥム等を例示することがで きる。 また、 これらの各種マグネシウム化合物は、 1種単独で使用 することもできる し、 2種類以上併用して使用することもできる。 好ま しく は、 ハロゲン化マグネシウム、 アルコキシマグネシウムを 使用するもの、 も しく は触媒形成時にハロゲン化マグネシウムを形 成するものである。 特に好ま しく は、 前記ハロゲンが塩素であるも のである。
チタン化合物と しては、 四塩化チタン、 三塩化チタン、 四臭化チ タン、 四ヨウ化チタンのようなハロゲン化チタン ; テ トラメ トキシ チタ ン、 テ トラエ トキシチタン、 テ トラプロポキシチタ ン、 テ トラ ブ トキシチタ ン、 テ トラフ ノキシチタンのようなアルコキシチタ ン ; エ トキンチタ ンクロ リ ド、 ブ トキシチタ ンク ロ リ ド、 フエノキ シチタンクロ リ ド、 ジブトキシチタ ンジクロ リ ド、 ト リブ トキシチ タンクロ リ ドのようなアルコキシチタンハライ ド等を例示すること ができる。 また、 これら各種チタン化合物は、 1 種単独で使用する こともできる し、 2種類以上併用 して使用することもできる。 好ま しく は、 ハロゲンを含む四価のチタ ン化合物であり、 特に好ま しく は四塩化チタ ンである。
ハロゲン含有化合物は、 ハロゲンがフ ッ素、 塩素、 臭素、 または ヨウ素、 好ま しく は塩素であり、 実際に例示される具体的化合物は 触媒成分調製法に依存するが、 四塩化チタン、 四臭化チタ ン等のハ ロゲン化チタン、 四塩化ゲイ素、 四臭化ゲイ素等のハロゲン化ゲイ 素、 三塩化リ ン、 五塩化リ ンのようなハロゲン化リ ン等を例示でき るが、 触媒成分調製法によってはハロゲン化炭化水素、 ハロゲン分 子、 ハロゲン化水素酸を用いても良い。
第 1 の電子供与性化合物と しては、 一般に含酸素化合物、 含窒素 化合物、 含リ ン化合物、 含硫黄化合物等があげられる。 含酸素化合 物と しては、 例えば、 アルコール類、 エーテル類、 エステル類、 酸 ハライ ド類、 酸無水物類等があげられる。
更に具体的には、 メチルアルコール、 エチルアルコール、 プロ ピ ノレアルコール、 ブチルアルコール、 ペンチルアルコール、 へキシル アルコール、 ヘプチルアルコール、 ォクチルアルコール、 ノニルァ ルコール、 デシルアルコール、 2 —エチルアルコール、 ォレイルァ ルコール、 ベンジルアルコール、 フヱニルェチルァノレコール、 フエ ノール、 ク レゾール、 ェチルフエノール、 ナフ トールのようなアル コール類 ; メ チルエーテル、 ェチルエーテル、 プロ ピルエーテル、 ブチルェ 一テル、 ァ ミ ルエーテル、 へキシルエーテル、 テ ト ラ ヒ ドロ フラ ン. ァニソ一ル、 ジフェニルエーテルのようなエーテル類ゃジエーテル 類 ;
酢酸ェチル、 ク ロル酢酸ェチル、 プロ ピオン酸ェチル、 酪酸ェチ ル、 アク リル酸ェチル、 クロ ト ン酸ェチル、 ォレイ ン酸ェチル、 ス テア リ ン酸ェチル、 フヱニル酢酸ェチル、 安息香酸メチル、 安息香 酸ェチル、 安息香酸プロピル、 安息香酸プチル、 トルィル酸メチル. トルィル酸ェチル、 トルィル酸プロ ピル、 トルィル酸ブチル、 ェチ ル安息香酸メチル、 ァニス酸メチル、 ァニス酸ェチル、 エ トキン安 息香酸メチル、 エ トキン安息香酸ェチル、 ゲイ皮酸ェチル、 フタル 酸ジメチル、 フタル酸ジェチル、 フタル酸ジプロピル、 フタル酸ジ n—ブチル、 フタル酸ジイソブチル、 フタル酸ジへキシル、 フタル 酸ジォクチル、 ァ一プチロラク ト ン、 5—バレロラク ト ン、 炭酸ェ チレンのようなエステル類 ;
ァセチルクロ リ ド、 ベンゾィノレクロ リ ド、 トルィル酸クロ リ ド、 フタル酸クロ リ ドのような酸クロ リ ド類 ;
無水マレイ ン酸、 無水フタル酸のような酸無水物等があげられる < また、 これらの第 1 の電子供与性化合物は、 1種単独で使用する こともできる し、 2種類以上併用して使用することもできる。 好ま しく はエステル類であり、 特に好ま しいものはフタル酸エステル類 ある o
勿論、 マグネシウム化合物、 チタン化合物、 ハロゲン化合物、 第
1 の電子供与性化合物は、 1 つの化合物がこれら 4種の化合物のう ち 2つ以上を兼ねることができる。
前記各成分の使用量は、 本発明において効果が認められる限り任 意のものである力 一般的に次の範囲が好ま しい。 チタ ン化合物の使用量は、 使用するマグネシウム化合物の使用量 に対してモル比で 0. 0001〜1000の範囲内が良く、 好ま しく は 0. 01〜 100 の範囲内である。 必要に応じてハロゲン化合物を使用するわけ であるが、 ハロゲン化合物を使用する場合には、 その使用量はチタ ン化合物、 マグネシウム化合物がハロゲンを含む、 含まないによら ず、 使用するマグネシウムの使用量に対してモル比で 0. 01〜 1000の 範囲内が良く、 好ま しく は 0. 1〜100 の範囲内である。 第 1 の電子 供与性化合物の使用量は、 前記マグネシゥム化合物の使用量に対し てモル比で 0. 001〜10の範囲内が良く、 好ま しく は 0. 01〜 5の範囲 内である。
本発明において用いられる固体触媒成分の調製方法は、 マグネシ ゥム化合物、 チタ ン化合物および第 1 の電子供与性化合物、 更に必 要に応じてハロゲン含有化合物等の助剤とを一時的、 または段階的 に接触、 反応させて得られる従来公知の固体触媒成分の調製方法を 用いることができる。
公知方法の具体例と して、 以下の調製方法がある。
( 1 ) ハロゲン化マグネシウムと必要に応じて第 1 の電子供与性 化合物とチタン化合物を接触させる方法。
( 2 ) ハロゲン化マグネシウムとテ トラアルコキシチタ ンおよび 特定のポリマーゲイ素化合物を接触させて得られる固体成分に、 ハ ロゲン化チタン化合物および またはゲイ素のハロゲン化合物を接 触させる方法。
( 3 ) マグネシウム化合物をテ トラアルコキシチタンおよび第 1 の電子供与性化合物で溶解させて、 ハ口ゲン化剤またはハロゲン化 チタ ン化合物で析出させた固体成分に、 チタン化合物を接触させる 方法。
( 4 ) アルミ ナまたはマグネシァをハ口ゲン化リ ン化合物で処理 し、 それにハロゲン化マグネシウム、 第 1 の電子供与性化合物、 ハ ロゲン化チタ ン化合物を接触させる方法。
( 5 ) 有機マグネ シウム化合物に代表されるグリニヤール試薬を 還元剤や、 ハロゲン化剤等と作用させた後、 第 1の電子供与性化合 物とチタ ン化合物とを接触させる方法。
( 6 ) アルコキシマグネシウム化合物にハロゲン化剤および Zま たはチタ ン化合物を第 1の電子供与性化合物の存在も しく は不存在 下に接触させる方法。
( 7 ) マグネ シウム化合物をテ ト ラアルコキシチタ ンで溶解し、 ポリマーゲイ素化合物で処理した後、 ゲイ素のハロゲン化合物およ び有機金属化合物で処理する方法。
( 8 ) 球状のマグネシウム化合物 アルコール錯体を第 1の電子 供与性化合物およびハロゲン化チタン化合物等で処理する方法。 本発明のプロ ピレン系重合体を製造するためには、 上記のいずれ の固体触媒成分調製方法を採用しても良いが、 少なく とも固体触媒 成分中に担持された第 1の電子供与性化合物 チタン原子含有量の モル比 (DZT) が DZT≥ 1 となるような重合用固体触媒成分を 用いる必要がある。 この場合、 DZT≥1.5 であれば更に好ま しい (
D/T < 1では本発明の高立体規則性プロピレン系重合体が得ら れにく い。
このようにして、 本発明によれば、 マグネシウム化合物、 チタン 化合物、 ハロゲン化合物及び第 1の電子供与性化合物を必須成分と する固体触媒成分であり、 固体触媒成分に担持された第 1の電子供 与性化合物 (D) とチタ ン (T) のモル比 (D/T) が DZT≥ 1 であるな一ォレフィ ン重合用固体触媒成分が提供される。 なお、 こ の固体触媒成分は上記の立体規則性の高いポリプロ ピレン製造用に 開発ざれたものであるが、 一般のプロピレン系重合体あるいはプロ ピレン系重合体以外の α—才レフィ ン一般の重合用の固体触媒成分 としても有用である。 特に立体規則性が高く、 剛性、 耐熱性が要求 されるプロピレン系重合体を得るには、 D/T≥1.5 であることが 好ま しい。
また、 従来の調製方法では上記の条件 (D/T≥ l ) を満足しな い固体触媒成分であつても、 更に以下に示すような処理を施すこと によつて上記条件を満足するような固体触媒成分に改良しても良い し、 更に好ま しく もある。
この場合改良前の固体触媒成分中の第 1の電子供与性化合物ノ Ti 原子含有量のモル比 (DZT) i と改良触媒成分中の第 1の電子供 与性化合物/ Ti原子含有量モル比 (D/T) m が、 (D/T) ra / (D/T) i 〉 1の関係にあることが必要であり、 (DZT) m ノ (D/T) i ≥ 2であれば更に好ま しい。
例えば、 前述したような種々の公知の方法で調製された、 マグネ シゥム、 チタン、 ハロゲン及び第 1の電子供与性化合物を必須成分 とする固体触媒成分を、 さらに第 1の電子供与性化合物及び Z又は ハロゲン含有化合物で処理することにより、 DZTを処理前より大 きく して、 触媒を改良することができる。 第 1の電子供与性化合物 による処理とハロゲン化合物による処理の順序と回数は特に制限は ないが、 一般的な固体触媒成分の処理法としては、 第 1の電子供与 性化合物で処理して担持させた後、 ハロゲン含有化合物で処理, 洗 浄し、 更に炭化水素で洗浄する。
触媒成分の改良に用いる第 1の電子供与性化合物は、 改良前の固 体触媒成分調製時に使用したものと同様であっても異なっていても 良い。 第 1の電子供与性化合物は、 1種単独で使用することもでき るし、 2種類以上併用して使用することもできる。 好ま しいものは エステル類であり、 特に好ま しく はフタル酸エステル類である。 第 1 の電子供与性化合物の使用量は、 固体触媒成分中のチタ ン原 子に対して、 0. 001〜 500 モル倍の範囲がよく、 好ま しく は 0. 01〜 50モル倍の範囲内である。
第 1 の電子供与性化合物の使用量が極端に少ない場合は、 (D Z T ) ra / ( D Z T ) , 〉 1 の関係を取りにく く、 反対に第 1 の電子 供与性化合物の使用量が極端に多い場合は、 重合活性が低下するた め好ま しく ない。
触媒改良に用いるハ口ゲン含有化合物は、 改良前の固体触媒成分 調製時に使用したものと同様であっても異なっていても良い。 なか でも、 ハロゲン化チタン、 ハロゲン化ゲイ素、 ハロゲン化炭化水素 が好ま しい。 ハロゲン含有化合物は、 1種単独で使用すること もで きる し、 2種類以上併用 して使用することもできる。
ハロゲン含有化合物の使用量は、 固体触媒成分中のチタン原子に 対して、 0. 1 〜10000 モル比の範囲内であり、 好ま しく は 1 〜3000 モル比の範囲内であり、 特に好ま しく は 5〜500 モル比の範囲内で ある。 また、 ハロゲン含有化合物の使用量が極端に少ない場合は、 ( D / T ) m / ( D Z T ) i > 1 の関係を取りにく く、 反対にハロ ゲン含有化合物の使用量が極端に多い場合は、 重合活性が低下した り、 廃液量が多く なるため好ま しく ない。
改良のために固体触媒成分を第 1 の電子供与性化合物で処理する 温度は、 一 30〜150 °C、 好ま しく は 0〜100 °Cの範囲内である。 ま た、 固体触媒成分をハロゲン含有化合物で処理する温度は、 0〜200 °C、 好ま しく は 50〜: 150 °Cの範囲内である。 これら以外の温度条件 の場合は、 重合活性が低下するため好ま しく ない。
固体触媒成分の第 1 の電子供与性化合物、 ハロゲン含有化合物に よる改良処理は、 通常、 炭化水素溶媒中で行なう ことができる。 こ の際に用いられる炭化水素と しては、 ペンタン、 へキサン、 ヘプタ ン、 オクタン、 デカ ンなどの脂肪族炭化水素 ; ベンゼン、 トルエン キシレンなどの芳香族炭化水素などの不活性炭化水素が好ま しい。 また、 これらの炭化水素は、 固体触媒成分の第 1 の電子供与性化合 物、 ハロゲン含有化合物による処理後の固体触媒成分の洗浄溶媒と して用いることができる。
改良前固体触媒成分の第 1 の電子供与性化合物による処理、 ハロ ゲン含有化合物による洗浄後の改良ォレフィ ン重合用触媒を上記炭 化水素で洗浄する際の温度は、 0〜 100 °cの範囲であり、 好ま しく は 60〜140 °Cである。 この際の洗浄温度が極端に低い場合は、 (D /T) m / (D/T) i 〉 1の関係を取りにく く、 反対に洗浄温度 が極端に高い場合は、 (DZT) m / (D/T) i > 1 の関係は取 るものの重合活性が低下するため好ま しくない。
固体触媒成分を第 1 の電子供与性化合物で処理した場合、 ハロゲ ン含有化合物による処理 (洗浄) を行なわないと、 重合活性が極め て低下し、 かつ本発明の効果が発現しない。 ハロゲン含有化合物に よる処理 (洗浄) の回数は、 特に制限しないが、 本発明の効果を十 分に発現させるためには、 2ないし 4回が好ま しい。 1回では本発 明の効果が十分に発現せず、 回数を多く重ねすぎると重合活性が低 下し好ま しくない。
また、 本発明では第 1の電子供与性化合物として、 一般式 TiXa Y b (式中、 Xは Cl, Br, Iのハロゲン原子、 aは 3 もしく は 4、 Yは電子供与性化合物 ( 1 ) 、 0≤ b 3を表わす) で表わされる チタン化合物を用い、 これで処理して担持させた後、 ハロゲン含有 化合物で洗浄し更に炭化水素で洗浄することによって、 担持量が D /T≥ 1 となる固体触媒成分に改良することができる。 これによつ て、 固体触媒成分を第 1の電子供与性化合物で処理した場合、 一般 的には本発明のハロゲン含有化合物による処理 (洗浄) の回数は前 記のごと く最低 2回は必要であるが、 TiX a · Y b を用いた場合に は、 ハロゲン含有化合物による処理 (洗浄) 回数は 1 ないし 2 回で 本発明の効果は十分に発現する。 さ らに、 後述のごと くハロゲン含 有化合物の使用量も減らすことができるため、 炭化水素による改良 固体触媒成分の洗浄時に排出される廃液量も大幅に減らすことがで
TiX a (式中、 Xは Cl, Br, I のハロゲン原子、 aは 3 も しく は 4 ) は、 例えば、 R. S. P. Coutts, P. C. Wai les, Advan. Organometal. Chem. ,_9_, 135 (1970)、 第 4版新実験化学講座 17 無機錯体 · キ レー ト錯体 日本化学会丸善 (1991) p.35, H. K. Kakkoen,
J. Pursiainen, T. A. Pkkanen, M. Ahlgren, E. I i skola,
J. Organomet. Chem. , 453 , 175 (1993)等に記載されているよう に、 一般に電子供与性化合物とは容易に錯体を形成することが知ら れている。
TiX a ' Yb の Xは CI, Br, I のハロゲン原子であり、 この中で 好ま しいのは C1である。 aは 3 もしく は 4であるが、 好ま しく は 4 である。 Y (第 1 の電子供与性化合物) は、 前述したものの中から 選択でき、 改良前固体触媒成分調製時に使用 したものと同様であつ ても異なっていても良い。 TiX a * Yb を調製する際、 第 1 の電子 供与性化合物は 1種単独で使用することもできる し、 2種類以上併 用 して使用することもできる。 Yの中で好ま しいものは有機酸エス テル類であり、 特に好ま しいものはフタル酸エステル類である。 Y の bは、 前述 aが 3の時は 0 く b≤ 3、 aが 4の時は 0 く b≤ 2の ように TiX a · Yb を調製する際の Yの TiX a に対する仕込みモル 比、 Yの有する電子供与性基数、 Tiの原子価による。 最も好ま しい のは aが 4、 bが 1 の場合である。
TiX a · Y b の使用量は、 改良前の固体触媒成分中のチタ ン原子 に対して、 0.001 〜500 モル比の範囲内が良く、 好ま しく は 0.01〜 50モル比の範囲内であり、 特に好ま しく は 0.1 〜10モル比の範囲内 である。 また、 TiX a · Y b の使用量が極端に少ない場合は、 (D ZT) m / (DZT) s > 1の関係を取りにく く、 反対に TiX a · Y b の使用量が極端に多い場合は、 重合活性が低下するため好ま し くない。
ハロゲン含有化合物の使用量は、 固体触媒中のチタン原子に対し て 0.1 〜1000モル比の範囲内であり、 好ま しく は 1 〜500 モル比の 範囲内であり、 特に好ま しく は 5〜100 モル比の範囲内である。
なお、 ハロゲン含有化合物の選択も前記と同様であることができ さらに、 固体触媒成分を TiX a · Y b で処理する温度は、 前記の 第 1の電子供与性化合物の処理温度と同様であることができ、 また 固体触媒成分をハ口ゲン含有化合物で洗浄する温度も前記と同様で あることができる。
固体触媒成分の TiX a * Y b による処理、 ハロゲン含有化合物に よる洗浄も、 前記の第 1 の電子供与性化合物による処理及びハロゲ ン含有化合物による洗浄と同様でよい。
TiX - Yb による処理回数、 ハロゲン含有化合物による洗浄回 数については特に制限はないが、 前述のごとく、 TiX a · Y b 処理 した後、 ハロゲン含有化合物で 1 回ないし 2回洗浄すれば本発明の 効果は十分に発現する。 ハ口ゲン含有化合物で洗浄しない場合には. 本発明で得られる高い性能は得られない。
予備重合
上記の方法で調製された改良固体触媒成分は、 後述する有機アル ミニゥム化合物、 第 2の電子供与性化合物との組み合わせにより、 プロ ピレンの重合に使用されるが、 重合の前に少量のモノ マーを予 備重合させておく ことが可能である。 通常は、 調製された改良固体 触媒成分 1 gあたり、 約 0. 01 g〜約 l OOO g、 予備重合の温度は任意 であるが— 30〜80°Cである。 予備重合は、 通常、 後述する重合時に 用いられる有機アルミニゥム化合物と第 2の電子供与性化合物の共 存下にて行なわれる。 予備重合は、 一般に不活性炭化水素溶媒中で 行なう ことができる力く、 液体モノマー中、 気相モノマー中で行なう ことも可能である。
予備重合で用いられるモノマーと しては、 プロ ピレンのほか、 例 えば、 エチレン、 1 —ブテン、 3 —メ チルー 1 ーブテン、 3 —メ チ ルー 1 一ペンテン、 4 —メチルー 1 —ペンテン、 4, 4 ージメチル 一 1 一ペンテン、 ビニルシクロペンタン、 ビニルシク ロへキサン等 の α—ォレフイ ン類、 スチレン、 α—メチルスチレン等スチレン誘 導体、 ブタジエン、 1, 9 ーデカジエン等のジェン類、 ァリノレ ト リ アルキルシラ ン類を用いてもよい。 また、 これらのモノマーは、 1 種類だけでなく 2種類以上段階的にあるいは混合して使用すること もできる。 なお、 予備重合時に分子量調節剤と して水素を用いるこ ともできる。
プロピレン重合
上記の改良固体触媒成分は、 有機アルミニゥム化合物と第 2の電 子供与性化合物の共存下で、 プロピレン系重合体を重合することが できる。
本発明で使用される有機アルミニウム化合物は、 代表的なものと して ト リ メチルアルミニウム、 ト リェチルアルミニウム、 ト リプロ ピルアルミニウム、 ト リブチルアルミニウム、 ト リへキシルアルミ 二ゥム、 ト リオクチルアルミニウムのような ト リアルキルアルミ二 ゥム ; ジメチルアルミニウムハイ ドライ ド、 ジェチルアルミニウム ハイ ドライ ド、 ジブチルアルミニウムハイ ドライ ドのようなアルキ ルアルミ ニウムハイ ドライ ド ; ジメ チルアルミ ニウムク ロ ライ ド、 ジェチルアルミ ニウムク ロライ ド、 ジェチルアルミ ニウムブロマイ ド、 ェチルアルミ ニウムセスキク 口ライ ド等のアルキルアル ミ ニゥ ムハライ ド ; ジェチルアルミ ニウムェ トキサイ ド、 ジェチルアル ミ 二ゥムフ ヱ ノ キサイ ドのよ う なアルキルアルミ ニウムアルコキシ ド メ チルアルミ ノ キサン、 ェチルアルミ ノ キサン、 プロ ピルアル ミ ノ キサンのようなアルミ ノ キサンを例示する こ とができ る。 また、 こ れらの有機アルミニゥム化合物は、 1 種単独で使用することもでき る し、 2種類以上併用 して使用することもできる。 好ま しく は、 ト リ アルキルアルミ ニウムである。
本発明で使用される第 2の電子供与性化合物は、 第 1 の電子供与 性化合物と同一でも異なってもよいが、 代表的には、 芳香族カルボ ン酸エステル化合物、 S i— 0— Cまたは S i— N— C結合を有するケ ィ素化合物、 ァセタール化合物と、 Ge— 0— C結合を有するゲルマ ニゥム化合物、 アルキル置換基を有する窒素または酸素の複素還化 合物等があげられる。
これらの化合物の具体例と しては、 安息香酸ェチル、 p— トルイ ル酸ェチル、 p —ァニス酸ェチルのよ うな芳香族カルボン酸エステ ル ; フ エニル ト リ メ トキシシラ ン、 ジフ エニルメ トキシシラ ン、 ジ — n —プロ ピルジメ トキシシラ ン、 ジ一 i —プロ ピルジメ トキシシ ラ ン、 ジー t —ブチルジメ トキシシラ ン、 ジシク ロへキシルジメ ト キシシラ ン、 ジシク ロペンチルジメ トキシシラ ン、 シク ロへキシル メ チルジメ トキシシラ ン、 t ーブチル ト リ メ トキシシラ ン、 シク ロ へキシル ト リ メ トキシシラ ン、 テキシル ト リ メ トキシシラ ン、 テ ト ラメ トキシシラ ン、 テ トラエ トキシシラ ンのようなゲイ素化合物 ; ベンゾフ エ ノ ンジメ トキシァセタール、 ベンゾフ エ ノ ンジエ トキン ァセタール、 ァセ トフ エ ノ ンジメ トキシァセタール、 ァセ ト フ エ ノ ンジェ トキシジェ トキシァセタールのよ う なァセタール化合物 ; ジ フ エ二ルジメ トキシゲルマン、 フ ニル ト リ エ トキシゲルマンのよ うなゲルマニウム化合物 ; 2 , 2, 6, 6 —テ トラメ チルピベリ ジ ン、 2, 2, 6, 6 —テ ト ラ メ チルピラ ンのよ う な複素環化合物を 例示することができる。
また、 これらの電子供与性化合物は、 1 種単独で使用することも できる し、 2種類以上併用 して使用することもできる。 好ま しく は ゲイ素化合物、 ァセタール化合物であり、 特に好ま しく は、 S i— 0 一 C結合を有するゲイ素化合物である。
本発明の製造方法における重合方法は特に限定されず公知の方法 を用いることができ、 スラ リ ー重合やパルク重合のような液相重合 法のほか、 気相重合法にも適用できる。 また、 パッチ重合のみなら ず、 連続重合、 回分式重合を行なう方法にも適用できる。 スラ リ ー 重合の場合の重合溶媒と しては、 へキサン、 ヘプタン、 シク ロへキ サン、 トルエン等の飽和脂肪族または芳香族炭化水素の単独あるい は混合物が使用される。 更に、 重合リ アクター 2基以上の多段重合 にも本発明の製造方法における重合方法は用いることができる。 重合温度は、 一 50〜200 °C程度、 好ま しく は 20〜150 °Cであり、 重合圧力は、 大気圧〜 100 kg/ cm 2 G、 好ま しく は 3〜50kg_ cm 2 Gである。 また、 重合時には水素を適当量添加することにより、 分 子量を調節することができる。
本発明の製造方法ではプロピレンの単独重合のほか、 プロピレン を一般式 R— CH = CH 2 ( Rは水素原子、 または炭素数 1〜20の炭化 水素残基であり、 分岐基であっても良い) で表わされる —ォレフ ィ ンと共重合させることもできる。 具体的には、 エチレン、 1 —ブ テン、 3 —メ チル一 1 —ブテン、 3 —メ チル一 1 —ペンテン、 4 — メ チル一 1 一ペンテン、 4, 4 一 ジメ チルー 1 一ペンテン、 ビニル シク ロペンタ ン、 ビニルシク ロへキサン等が例示される。 更にスチ レン、 一メ チルスチ レン等のスチ レン誘導体、 ブタ ジエン、 1 , 5 —へキサジェン、 1 , 7 —ォク タ ジェン、 1 , 9 ーデカ ジエン等 のジェン類、 ァリル ト リアルキルシラ ン類が例示される。 また、 こ れらのモノ マーは、 1 種類だけでなく 2種類以上混合して使用する こともできる。
なお、 本発明のプロ ピレン系重合体のうち、 プロ ピレンーェチレ ンブロ ッ ク共重合体については、 重合リアクター 2基以上の多段重 合で製造することができ、 特に第 1 段でホモポリプロ ピレンを製造 することが好ま しい。
この場合には、 1段目の重合終了後に抜き出したホモポリプロピ レンが、 本発明の構成要件を満たすようにすれば、 最終的に得られ る共重合体も本発明の課題を解決しまた得られた物性を有すること ができる。
また、 本発明で得られるプロ ピレン系重合体は、 公知の造核剤を 添加することにより結晶性、 高速成形性を更に向上させた樹脂組成 物とすることができる。
造核剤の例と しては、 モノカルボン酸の l a および n a 族金属の 塩 (例えば安息香酸ナ ト リ ウム) 、 ジカルボン酸 (アジピン酸) 、 脂肪族ジカルボン酸の!!!〜 W族金属の塩 (例えば p— t 一ブチル安 息香酸アルミニウム塩) 、 ジベンジリデンソルビ トール誘導体、 タ ルク等のフイ ラ一類を示すことができる。
特に好ま しく は、 1 , 3 , 2 , 4 —ジベンジ リ デンソルビ トール. 1 , 3 , 2 , 4 ー ジー ( p—メ チルベンジ リデン) ソルビ トール、 1 , 3 , 2, 4 ージー ( p—ェチルベンジ リ デン) ソルビ トール、 1 , 3 , 2 , 4 ー ジー ( p—ク ロルべンジ リ デン) ソルビ トール、 1 , 3 — p—ク ロルべンジ リ デンー 2, 4, 一 p—メ チルベンジ リ デンソルビ トール、 ナ ト リ ウム一 ビス一 ( 4 — t ーブチルフ ヱニル) フ ォスフ ェー ト、 ナ ト リ ウム一 2, 2 —メ チ レ ン一 ビス一 ( 4, 4 — ジ一 t —ブチルフ エニル) フ ォスフ ェー ト、 ナ ト リ ウム一 2 — 2 ' —ェチ リ デン一 ビス ( 4, 6 — ジー t 一ブチルフ エニル) フ ォ スフ エー ト等、 及びタルク、 炭酸カルシウム等の無機フ イ ラ一類があげ り し
これら造核剤の添加量は、 プロ ピレン系重合体に少なく とも造核 剤を 0. 05〜15重量%の範囲で配合すると、 本発明の効果が著しく好 ま しい。
好ま しく は、 0. 08〜0. 8 重量%、 特に好ま しく は、 0. 1〜0. 5 重 量%添加するのが好ま しい。 ただし、 タルク等の無機化合物は、 上 記に例示した造核剤より も核剤効果が小さいため、 1〜15重量%添 加すると良い。 好ま しく は、 2〜13重量%、 特に好ま しく は 5〜10 重量%である。
本発明のプロ ピレン系重合体または樹脂組成物に対しては、 熱可 塑性樹脂に慣用の他の添加物 (例えば、 酸化防止剤、 耐候性安定剤、 帯電防止剤、 滑剤、 ブロ ッキング防止剤、 防曇剤、 染料、 顔料、 ォ ィル、 ワ ッ クス等) を本発明の目的を損なわない範囲で適宜配合で さ O
例えば、 このような添加剤の例と しては、 酸化防止剤と して 2 , 5 —ジー t 一ブチルハイ ドロキノ ン、 2 , 6 —ジ一 t ーブチルー p —ク レゾール、 4, 4 —チォビス一 ( 6 — t 一ブチルフエノール) 、 2, 2 —メチレン一ビス ( 4 一メチル一 6 — t —ブチルフエノール) - ォク タデシル一 3 — ( 3 ' , 5 ' — ジ一 t —プチルー 1 ' — ヒ ドロ キシフヱニル) プロピオネー ト、 4, 4 ' ーチォビス ( 6 —ブチル フヱノール) 、 紫外線吸収剤と しては、 ェチルー 2 —シァノ 一 3 , 3 — ジフ エニルァク リ レー ト、 2 — ( 2 ' ー ヒ ドロキシ一 5 —メ チ ルフエニル) ベンゾ ト リアゾール、 2 —ヒ ドロキシ一 4 —ォク トキ シベンゾフ ヱノ ン、 可塑剤と しては、 フタル酸ジメチル、 フタル酸 ジェチル、 ワ ッ クス、 流動パラフ ィ ン、 リ ン酸エステル、 帯電防止 剤と してはモノステアレー ト、 ソルビタ ンモノノ、。ルミ テー ト、 硫酸 化ォレイ ン酸、 ポリエチレンォキシ ド、 カーボンワ ッ クス、 滑剤と してはエチレンビスステアロ ミ ド、 プチルステアレー ト等、 着色剤 と しては、 カーボンブラ ッ ク、 フタロシアニン、 キナク リ ドン、 ィ ン ドリ ン、 ァゾ系顔料、 酸化チタン、 ベンガラ等、 充塡剤と しては. グラスフ ァイバ一、 アスベス ト、 マイ力、 ノ、。ラス トナイ ト、 ゲイ酸 カルシウム、 ゲイ酸アルミニウム等である。 また、 他の多く の高分 子化合物も本発明の作用効果が阻害されない程度にブレン ドするこ ともできる。
本発明のプロピレン系重合体の溶融指数(MFR〜 J I S- 7210、 表 1 条 件 14) は特に限定されるものではなく、 成形法、 用途によって選ば れるが、 通常は 0. 1〜 500 g Z 10分の範囲が適当である。
本発明のプロピレン系重合体は公知の溶融成形法および圧縮成形 法により、 射出成形体、 フィルム、 シー ト、 チューブ、 ボ トル等に 成形でき、 単体での使用および他の材料を積層しても使用できる。 例えば、 このような積層方法と しては、 ポリ ウ レタン系、 ポリエ ステル系等の ドライラ ミネ一 ト接着剤を用い、 本発明のプロ ピレン 系重合体または樹脂組成物の単層品にその他の熱可塑性樹脂層を積 層するいわゆる ドライラ ミネ一 ト成形法やサン ドウイ ッチラ ミネ一 シヨ ン法によって行なわれるか、 また共押出ラ ミネー ト法、 共押出 法 (フ ィ ー ドブロ ッ ク法、 マルチマ二ホール ド方式) 、 共射出成形 法、 共押出パイプ成形法である。
このようにして得られた多層積層体は、 次に真空成形機、 圧空成 形機、 延伸ブロー成形機等を用い、 再加熱し延伸操作を加える方法 あるいはこの多層積層体または単体成形物を一軸あるいは二軸延伸 機を用いて、 加熱延伸操作を施すことができる。 図面の簡単な説明
図 1 はホモポリプロ ピレンのメチル領域の 13 C - NMRスぺク トル図 の一例である。
以下、 実施例をあげ本発明を更に詳しく説明する。 実施例
なお、 本発明における各物性値の測定方法および装置を以下に示 す。
( 1 ) キシレン不溶部 (XI)
2.5 gのポリマーを 135°Cのオル トキシレン(250 ) に溶解し、 25°Cで析出したポリマー (重量%) をキシレン不溶部 (XI) と した。
( 2 ) ァイ ソタクチッ クペンタ ツ ド分率 (mmmm)
mmmm分率は、 プロ ピレン系重合体分子鎖中のメチル基のペンタ ッ ド単位でのァイソタクチッ ク分率である。 測定は日本電子 (株) 製 の JNM- GSX400 (13 C核共鳴周波数 100MHz)を用いて行なった。 それ ぞれのシグナノレは、 A. Zambel Hらの Macromolecules, 13, 267, (1980) で帰属した。 測定条件を以下に示す。
測定モー ド : プロ ト ンデカ ップリ ング法
パルス幅 8.0 s
パルス繰返時間 3.0// s
積算回数 20000回
溶媒 1, 2 , 4 — ト リ クロ口ベンゼン/重ベン
ゼンの混合溶媒 (75Z25容量%)
内部標準 : へキサメチルジシロキサン 試料濃度 : 300mgZ3. 溶媒
測定温度 : 120°C
( 3 ) ァイソタクチッ ク平均連鎖長 (N)
ァイ ソタクチッ ク平均連鎖長 (N) は、 J. C. Radallによって報告 されている方法 (Polymer Sequence Distribution, Academic Press, New York 1977, chapter 2) をもとに算出したものである。 具体的 にはポリプロ ピレンを 1 , 2 , 4 — ト リ クロ口ベンゼン Z重べンゼ ンの混合溶媒にポ リマー濃度が 10重量%となるように温度 130°Cに 加温して溶解する。
この溶液を内径 lOmm0のガラス製試料管に入れ、 先のアイ ソタク チッ クペンタ ッ ド分率 (IP) と同一の測定条件で1 3 C - NMRを測定す る。 次に、 先に説明したように、 メ ソ体の連鎖数とメ ソ体のュニッ ト数から、 平均連鎖長 (N) は次の定義によって求めることができ る 0
=メ ソ体の連鎖数ノメ ソ体のュニッ ト数
( 4 ) カラム分別法
キシレン不溶部のプロピレン系重合体をパラキシレンに温度 130 °Cで溶解し、 セライ トを入れ、 10°Cノ時間の降温速度で温度 30°Cま で下げセラィ トに付着させる。 この付着物をカラムに充塡し、 温度 70°Cから 130°Cまで 2.5°Cごとに昇温して、 フラ ク シ ョ ン別に分取 する。
( 5 ) 射出成形
東芝機械 (株) 製 IS— 170FII (理論射出容量 250cm3)を用い、 成 形温度 220°C、 金型冷却温度 50°Cで、 アイゾッ ト衝撃試験片、 曲げ 弾性率試験片、 荷重たわみ温度試験片、 表面光沢用試験片 (厚み 2 匪 X 15cmX 11cm平板) を作成した。 次に、 湿度 50%、 温度 23°Cの恒 温室に二昼夜放置後、 これらの物性を測定した。 ( 6 ) アイゾッ ト衝撃強度 (ノ ッチ付き)
JIS K7110 に準拠して行なった。 装置は上島製作所 (株) 製の U — Fイ ンパク トテスターを用いた。
( 7 ) 曲げ弾性率
JIS K7203 に準拠して行なった。
( 8 ) ェチレン含有量
C. J. Carmanらによって報告されている '3 C -NMR法による方法 ( acromolecules, 10, 537 (1977)) をもとに算出した。
( 9 ) MFR (メ ル トフ ロー レ一ト)
J IS K7210 表 1 条件 14に準拠して行なった。 装置はタカラ (株) 製のメ ル トイ ンデクサ一を用いた。
(10) 荷重たわみ温度
JIS K7207B法に準拠し、 (株) 東洋精機製作所製の HDTe VSPTテ スターを用いて行なつた。
(11) ロ ッ クゥュル表面硬度
温度 230°Cのプレス成形機で、 測定用サンプルを作成し東洋精機 製作所 (株) 製の AR— 10型ロ ックウェル硬度計を用い、 JIS K7202 に準拠して行なつた。
(12) フ ィ ルム成形
吉井鉄工 (株) 製 4Omm0 Tダイフ ィ ルム成形機を用い、 ダイス温 度 230°C、 冷却温度 30°C、 引き取り速度 10mZ分の条件で、 厚み 60 mのフ ィ ルムを作成し、 水蒸気透過量、 Haze、 表面光沢度を測定 した。
(13) Haze
JIS K7105 法に準拠し、 スガ試験機 (株) 製 HGM— 2D型の Hazeメ 一ターを用いて行なった。 (14) 表面光沢度
JIS K7105 法に準拠し、 日本電色工業 (株) 製 VG— 1D型のグロス メーターを用いて行なった。
(15) 水蒸気透過量
ASTM- E96に準拠し、 MODERN CONTROLS INC社製 PERMATRAN Wを用 いて、 温度 37.8°C、 相対湿度 90%の条件で測定を行なった。
(16) 触媒分析
改良前の固体触媒成分、 改良ォレフィ ン重合用固体触媒成分を希 硫酸で分解し、 ヘプタンで有機物を抽出した。 水層は島津製作所 (株) 製の原子吸光 AA610S型を用いて Tiを定量した。 ヘプタ ン層は 日立製作所 (株) ガスクロマ トグラフ 263- 50により電子供与性化合 物を定量した。 実施例 1
( 1 ) 改良前固体触媒成分の調製 (慣用法)
無水塩化マグネシウム 56.8g (597mmol) を、 無水エタノール 100 g (174mmol). 出光興産 (株) 製のワセリ ンオイル CP15N 500 お よび信越シリ コーン (株) 製のシリ コール油 KF96 500; ^中、 窒素雰 囲気下、 120°Cで完全に溶解させた。 この混合物を、 特殊機化工業 (株) 製の TKホモミキサーを用いて 120°C、 3000回転ノ分で 3分間 撹拌した。 撹拌を保持しながら、 2 リ ッ トルの無水へプタン中に 0 °Cを越えないように移送した。 得られた白色固体は無水へプタンで 十分に洗浄し室温下で真空乾燥した。
得られた MgCl2 * 2.5C2H50Hの球状固体 30gを無水ヘプタ ン 200 中に懸濁させた。 0 °Cで撹拌しながら、 四塩化チタン 500^(4.5 mol)を 1 時間かけて滴下した。 次に、 加熱を始めて 40°Cになったと ころで、 フタル酸ジイソブチル 4.96g (17.8mmol) を加えて、 100 °Cまで約 1 時間で昇温させた。 100°Cで 2時間反応させた後、 熱時 ろ過にて固体部分を採取した。 その後、 この反応物に四塩化チタン 500 md (4.5mol) を懸濁させた後、 120でで 1 時間反応させた。 反 応終了後、 再度、 熱時ろ過にて固体部分を採取し、 60°Cのへキサン 1.0 リ ッ トルで 7回、 室温のへキサン 1.0リ ッ トルで 3回洗浄した, 得られた固体触媒成分中のチタン含有率を測定したところ、 2.25重 量%であった。 また、 電子供与性化合物 ( 1 ) は 7.81重量%含まれ ていた。
( 2 ) 改良固体触媒成分の調製
上記で得られた固体触媒成分 20 gをトルエン 300^に懸濁させ、 25°Cでフタル酸ジイソブチル 2.78g (lOmmol) と 1 時間反応させた, 反応終了後、 四塩化チタン 100n (900mmol) を加えて 90 Cで 1 時間 反応させた。 反応終了後、 熱時ろ過にて固体部分を採取し、 その後- この反応物にトルエン 300m 四塩化チタン
Figure imgf000030_0001
を懸濁 させた後、 90eCで 1 時間反応させた。 反応終了後、 再度、 熱時ろ過 にて固体部分を採取し、 90°Cの トルエン 500 で 7回、 室温のへキ サン 500 で 3回洗浄した。 得られた固体触媒成分中のチタン含有 率を測定したところ、 1.01重量%であった。 また、 第 1 の電子供与 性化合物は 12.0重量%含まれていた。 改良前後における触媒成分の 分析結果の比較を表 1 に示す。
( 3 ) 予備重合
窒素雰囲気下のもと内容積 3 リ ッ トルのオー トク レープ中に、 n 一ヘプタン 500;^、 ト リェチルアルミニウム 6..0g (53mmol) 、 ジ シクロペンチルジメ トキシシラン 0.39 g (17mmol) 、 および、 上記 ( 2 ) で得られた改良ォレフィ ン重合触媒成分 10 gを投入し、 0〜 5 eCの温度範囲で 5分間撹拌した。 次に、 改良ォレフィ ン重合触媒 成分 1 gあたり 10gのプロピレンが重合するようにプロピレンをォ — トク レーブ中に供給し、 0〜 5 °Cの温度範囲で 1 時間予備重合し た。 得られた予備重合固体触媒成分は、 n—ヘプタン 500 で 3回 洗浄を行ない、 以下のプロ ピレン系重合体の製造に使用した。
( 4 ) 本重合
窒素雰囲気下、 内容積 60リ ツ トルの撹拌機付きォー トク レーブに 上記の方法で調製された予備重合固体触媒成分 2.0g、 ト リェチル アルミニウム 11.4 g (lOOmmol) 、 ジシクロペンチルジメ トキシシラ ン 6.84g (30mmol) を入れ、 次いでプロピレン 18kg、 プロ ピレンに 対して 13000molppmになるように水素を装入し、 70°Cまで昇温させ
1 時間の重合を行なった。 1 時間後、 未反応のプロ ピレンを除去し 重合を終結させた。 その結果、 6.56kgのポリプロピレンが得られ重 合活性は 32.8kg/ g—固体触媒成分、 重合体の MFRは 33. OgZlO分 であった。 重合体の物性評価結果を表 2に示す。 実施例 2
( 1 ) 改良前固体触媒成分の調製
実施例 1 と同じにした。
( 2 ) TiC [C6H (COO1 C Hfl)2] の調製
四塩化チタン 19g (lOOmmol)を含むへキサン 1.0リ ッ トルの溶液 に、 フタル酸ジイソブチル : CeKCOOi 0^9) 2 27.8 g (lOOmmol) を、 0 °Cを維持しながら約 30分間で滴下した。 滴下終了後、 40°Cに 昇温し 30分間反応させた。 反応終了後、 固体部分を採取しへキサン 500 で 3回洗浄し目的物を得た。
( 3 ) 改良ォレフィ ン重合触媒成分の調製
上記 ( 1 ) で得られた固体触媒成分 20gを トルエン 300; ^に懸濁 させ、 25°Cで TiCし [C6H4 (C00j C4H9)2] 5.2g (llmmol) で 1 時 間処理して担持させた。 担持終了後、 熱時ろ過にて固体部分を採取 し、 トルエン 300 と四塩化チタ ン (90mmol) に再懸濁させ、 90°Cで 1 時間撹拌洗浄し、 熱時ろ過にて固体部分を採取し、 その後. この反応物を 90°Cの トルエン 500 で 5 回、 室温のへキサン 500 で 3 回洗净した。 得られた固体触媒成分中のチタ ン含有率を測定し たところ、 0.91重量%であった。 また第 1 の電子供与性化合物は 10.6重量%含まれていた。 改良前後における触媒分析結果の比較を 表 1 に示す。
( 4 ) 予備重合
窒素雰囲気下のもと内容積 3 リ ッ トルのオー トク レープ中に、 n —ヘプタン 500 、 ト リェチルアルミニウム 6.0g (53mmol) 、 ジ シクロペンチルジメ トキシシラ ン 0.39 g (17mmol) 、 および、 上記 ( 3 ) で得られた改良ォレフィ ン重合触媒成分 10 gを投入し、 0〜 5 °Cの温度範囲で 5分間撹拌した。 次に、 改良ォレフィ ン重合触媒 成分 1 gあたり 10gのプロ ピレンが重合するようにプロ ピレンをォ 一トク レーブ中に供給し、 0〜 5 °Cの温度範囲で 1 時間予備重合し た。 得られた予備重合固体触媒成分は、 n—へブタン 500 で 3回 洗浄を行ない、 以下のプロ ピレン系重合体の製造に使用 した。
( 5 ) 本重合
窒素雰囲気下、 内容積 60リ ッ トルの撹拌機付きォー トク レーブに 上記の方法で調製された予備重合固体触媒成分 2.0g、 ト リェチル アルミ ニウム 11.4g (lOOmmol) 、 ジシク ロペンチルジメ トキシシラ ン 6.84g (30mmol) を入れ、 次いでプロピレン 18kg、 プロピレンに 対して 13000molppmになるように水素を装入し、 70°Cまで昇温させ 1 時間の重合を行なった。 1 時間後、 未反応のプロピレンを除去し 重合を終結させた。 その結果、 6.64kgのポ リ プロ ピレンが得られ重 合活性は 34kgZ g—固体触媒成分、 重合体の MFRは 34.2gZlO分で あった。 重合体の物性評価結果を表 2 に示す。 比較例 1
窒素雰囲気下、 内容積 60リ ッ トルの撹拌機付きオー トク レープに 東ソ一. ァクゾ一 (株) 製の AA型三塩化チタ ン 6.0g、 ジェチルァ ルミニゥムクロライ ド 23.5 g (195mmol) を入れ、 次いでプロピレン 18kg, プロピレンに対して 8000molppmになるように水素を装入し、 70°Cまで昇温させ 1 時間の重合を行なった。 1 時間後、 未反応のプ ロ ピレンを除去し重合を終結させた。 その結果、 6.23kgのポリプロ ピレンが得られ、 重合体の MFRは 32.2gZlO分であった。 重合体の 物性評価結果を表 2 に示す。 比較例 2
実施例 1 の ( 1 ) で調製された改良前の固体触媒成分を用いたこ と、 プロピレン重合時に水素の仕込み量を 9300molppinと したほかは、 すべて実施例 2 と同様な方法、 条件で予備重合およびプロピレン重 合を行なった。 その結果、 6.88kgのポリプロ ピレンが得られ、 重合 体の MFRは 33.0gノ 10分であった。 重合体の物性評価結果を表 2 に 示す。 実施例 3〜 5
生成するポリプロピレンの MFRが、 それぞれ、 10.5gZlO分、 2.7 gノ 10分、 0.7g 10分になるように、 プロピレン系重合体製造時 の水素の仕込み量を調節した以外は、 すべて実施例 2 と同様な方法、 条件でポリプロピレンを製造した。 得られた重合体の物性評価結果 を表 2 に示す。 比較例 3
生成するプロ ピレン系重合体の MFRが、 3.2gノ10分になるよう に、 プロピレン系重合体製造時の水素の仕込み量を調節した以外は すべて比較例 1 と同様な方法、 条件でプロ ピレン系重合体を製造し た。 得られた重合体の物性評価結果を表 2 に示す。 実施例 6
( 1 ) 改良前の固体触媒成分の調製
窒素雰囲気下、 無水塩化マグネシウム 47.6g (500mmol) 、 デカン 250 および 2 —ェチルへキシルアルコール 234 (1.5mol) を 130 °Cで 2時間加熱反応を行ない均一溶液と した後、 この溶液中に 無水フタル酸 11. lg (75mmol) を添加し、 130°Cにて更に 1 時間撹 拌混合を行ない、 無水フタル酸を該均一溶液に溶解させた。 得られ た均一溶液を室温に冷却した後、 一 20°Cに保持された四塩化チタン 2.0 リ ッ トル(18mol) 中に 1時間にわたつて全量滴下した。 滴下終 了後、 混合溶液の温度を 4時間かけて 110°Cに昇温し、 110°Cに到 達したところでフタル酸ジィソブチル 26.8^(125mmol) を添加し、 2時間 110°Cで撹拌反応させた。 反応終了後、 熱時ろ過にて固体部 分を採取し、 その後、 この反応物に四塩化チタン 2.0リ ッ トル (18 mol)を懸濁させた後、 110°Cで 2時間反応させた。 反応終了後、 再 度、 熱時ろ過にて固体部分を採取し、 110°Cのデカン 2.0リ ッ トル で 7回、 室温のへキサン 2.0リ ツ トルで 3回洗浄して固体触媒成分 を得た。 触媒分析結果を表 1 に示す。
( 2 ) TiCし CC6H4 (C00j C4H9)2] の調製
実施例 2の ( 2 ) と同じにした。
( 3 ) 改良ォレフィ ン重合触媒成分の調製
上記 ( 1 ) で得られた固体触媒成分 40gを トルエン 600 に懸濁 させ、 90°Cで上記 ( 2 ) で得られた TiCし [C6H4 (C00' 04Η9)2] 10.3g (22mmol) で 1時間処理して担持させた。 担持終了後、 熱時 ろ過にて固体部分を採取し、 トルエン 600 と四塩化チタン
(180mmol) に再懸濁させ、 90°Cで 1 時間撹拌洗浄し、 熱時ろ過にて 固体部分を採取し、 その後、 この反応物を 90°Cの トルエン 1.0リ ツ トルで 5回、 室温のへキサン 1.0リ ツ トルで 3回洗浄して改良ォレ フィ ン重合触媒成分を得た。 触媒分析結果を表 1 に示す。
( 4 ) 予備重合
窒素雰囲気下のもと内容積 3 リ ッ トルのオー トク レープ中に、 n 一ヘプタ ン 500;^、 ト リ ェチルアルミ ニウム 6.0g (0.053mmol)、 ジフ ユ二ルジメ トキシシラ ン 4.15 g (0.017mniol)および、 上記実施 例 2の ( 3 ) で得られた改良ォレフィ ン重合触媒成分 10 gを投入し. 0〜 5 °Cの温度範囲で 5分間撹拌した。 次に、 改良ォレフィ ン重合 触媒成分 1 gあたり 10gのプロピレンが重合するようにプロピレン をオー トク レープ中に供給し、 0〜 5 °Cの温度範囲で 1 時間予備重 合した。 得られた予備重合固体触媒成分は、 n—ヘプタン 500 で 3回洗浄を行ない、 以下のプロピレン系重合体の製造に使用した。
( 5 ) プロ ピレンの重合
窒素雰囲気下、 内容積 60リ ツ トルの撹拌機付きォー トク レーブに 上記の方法で調製された予備重合固体触媒成分 200mg、 ト リェチル アルミ ニウム 11.4g (lOOmmol) 、 ジフ エ二ルジメ トキシシラ ン 7.32 g (30mmol)を入れ、 次いでプロピレン 18kg、 プロピレンに対して 5300molppmになるように水素を装入し、 70°Cまで昇温させ 1 時間の 重合を行なった。 1時間後、 未反応のプロピレンを除去し重合を終 結させた。 重合活性は 22. OkgZ g—固体触媒成分であった。 また、 得られたポリプロピレンの MFRは 14.5g/10分であった。 重合体の 物性評価結果を表 2に示す。 実施例 7
( 1 ) 改良前の固体触媒成分の調製
ジエ トキシマグネシウム 50. Og (440mmol)、 フタル酸ジ一 n—ブ チル 15.3g (55mmol) を塩化メチレン 250 中で窒素雰囲気下、 1 時間還流撹拌した。 得られた懸濁液を四塩化チタン 2.0リ ッ トル (18mol) 中に圧送し、 110°Cまで昇温し 2時間反応させた。 反応終 了後、 析出した固体を四塩化チタン 2.0リ ッ トル(18mol) と 110°C で 2時間反応させた。 反応終了後、 110°Cの n—デカン 2.0リ ッ ト ルで 3回洗浄し、 室温下、 n—へキサン 2.0リ ツ トルで塩素イオン が検出されなくなるまで洗浄した。 40°Cで減圧乾燥し目的とする固 体触媒成分を得た。 触媒分析結果を表 1 に示す。
( 2 ) TiCし [CeH. (COO' C4H9)2] の調製
実施例 2の ( 2 ) と同じにした。
( 3 ) 改良ォレフィ ン重合触媒成分の調製
上記 ( 1 ) で得られた固体触媒成分 40gを トルエン 600 に懸濁 させ、 90°Cで上記 ( 2 ) で得られた TiCし [C6H4 (COO* C4H9)2] 10.3g (22mmol) で 1時間処理して担持させた。 担持終了後、 熱時 ろ過にて固体部分を採取し、 トルエン 600 と四塩化チタン 20^ (180龍 ol) に再懸濁させ、 90°Cで 1 時間撹拌洗浄し、 熱時ろ過にて 固体部分を採取し、 その後、 この反応物を 90°Cの トルエン 1.0リ ツ トルで 5回、 室温のへキサン 1.0リ ッ トルで 3回洗浄した。 触媒分 析結果を表 1 に示す。
予備重合およびプロピレン重合はすべて実施例 6 と同様な方法、 条件で行なった。 その結果、 重合活性は 21. lkgZg—固体触媒成分 であった。 また、 得られたポリプロピレンの MFRは 16.3g 10分で あった。 重合体の物性評価結果を表 2に示す。 表 1 触媒分析結果
¾¾才レフィ ^¾¾^
Ti (D/T), Dm CDZT)m (D/T)m
( t%) (wt%) (wt%) バ D/T)i m n 7.81 2.25 0.60 12.0 1.01 2.05 3.42
7.81 2.25 0.60 10.6 0.91 2.01 3.35
10.1 2.57 0.75 15.6 1.01 1.98
9.80 31 0.73 13.3 1.22 1.53 10
表 2 _ 1 実施例 キシレン抽 ァイソタクチック ァイソタク ァイソタクチック平均連鎖 MFR および 出不溶部 XI ペンタツ ド分率 チック平均 長 N>800 のフラクション
比較例 (重量%) IP mm隱 (%) 連鎖長 N 重量分率 Nf (重量%) (gZlO分) 実施例 1 99.5 99.5 816 80 33.0 実施例 2 99.5 99.5 836 81 34.2 比較例 1 98.6 97.7 225 <1 32.2 比較例 2 98.8 98.9 326 7 33.0 実施例 3 99.5 99.5 715 76 10.5 実施例 4 99.5 99.4 651 72 2.7 実施例 5 99.4 99.3 588 65 0.7 実施例 6 99.3 99.3 703 68 14.5 実施例 7 99.3 99.4 765 70 16.3 比較例 3 98.1 96.3 105 <1 3.2
表 2— 2 射 出 成 形 品 フ イ ノレ ム
実施例 アイゾッ ト
および 衝撃強度 曲げ弾性率 荷重たわみ ciックウェ 表 面 表 面 Haze 比較例 (kg · cm/ cm) 温 度 ル表面硬度 光沢度 光沢度
(kg/cnf) (°C) Rスケール (%) (%) 1 gZ cnf · day) {%)
23°C -20°C
実施例 1 1.7 17900 130 104 86.0 120 5.6 2.4 実施例 2 1.8 18100 131 104 86.4 122 5.6 2.4 比較例 1 2.0 14600 119 93 83.2 46 7.9 23.3 比較例 2 1.8 16200 127 101 84.2 116 6.1 3.2 実施例 3 2.0 17900 130 103 85.1 117 5.5 2.8 実施例 4 2.8 17200 130 102 84.3 113 5.4 3.0 実施例 5 4.4 14200 110 96 83.9
実施例 6 2.0 17300 128 101 85.2
実施例 7 2.0 17500 128 101 85.3
比較例 3 2.5 12300 104 88 81.6 42 7.7 20.9
実施例 8
実施例 2 と同様に内容積 60リ ッ トルの撹拌機付きォー トク レーブ でプロ ピレンを重合した後 ( 1 段目) 、 液体プロ ピレンを除去し 75 。( でエチレンノプロ ピレン =40 60 (モル比) の混合ガス 2.2Nm3 /時間、 水素 20NL/時間の供給速度で、 40分間共重合した ( 2段目) 40分後、 未反応ガスを除去し重合を終結させた。 その結果、 8.0kg のプロ ピレン—エチレン一ブロ ッ ク共重合体が得られた。 13 C -NMR によるエチレン含有量は 9.7重量%、 MFRは 17.8gノ10分であった。 重合体の物性評価結果を表 3 に示す。 なお、 表 3 中の XI, IP, Nは、 1 段目の重合終了後に抜き出したホモポリプロピレンのものである。 比較例 4
比較例 1 と同様に内容積 60リ ッ トルの撹拌機付きォー トク レーブ でプロピレンを重合した後、 液体プロピレンを除去し 65°Cでェチレ ンノプロピレン = 40Z60 (モル比) の混合ガス 2.2Nm3 Z時間、 水 素 20NLZ時間の供耠速度で、 40分間供給した。 40分後、 未反応ガス を除去し重合を終結させた。 その結果、 7.7kgのプロ ピレン—ェチ レン一ブロ ッ ク共重合体が得られた。 13C-NMRによるェチレン含有 量は 9.6重量%、 MFRは 18.3g,10分であった。 重合体の物性評価 結果を表 3 に示す。 なお、 表 3 中の XI, IP, Nは、 1段目の重合終 了後に抜き出したホモポリプロピレンのものである。
表 3— 1 実施例 キシレン抽 ァイソタクチック ァイソタク ァイソタクチック平均連鎖 MFR および 出不溶部 XI ペンタツ ド分率 チック平均 長 N〉800 のフラクシヨン
比較例 IP mmmm (%) 連鎖長 N 重量分率 Nf (重量 (gZlO分)
実施例 8 99.5 99.5 830 79 17.8
比較例 4 98.5 97.7 217 <1 18.3
表 3— 2 射 出 成 形 品 フ ィ ル ム
実施例 アイゾッ ト
および 衝撃強度 曲げ弾性率 荷重たわみ ロックゥ 表 面 表 面 水蒸気透過量 Haze 比較例 (kg · cm/ cm) 度 ル表面硬度 光沢度 光沢度
(kg/crf) (°C) Rスケール (%) (%) (g/cnf · day) (%)
23°C 一 20。C
実施例 8 6.4 3.9 14100 124 92 68.1
比較例 4 5.5 3.3 12100 112 87 62.3
実施例 9 , 10および比較例 5
プロピレン系重合体組成物の例として、 本発明で得られるプロピ レン系重合体にジ— t —ブチル一 p —ク レゾール 0. 05重量%、 ペン タエリ スリ チル一テ トラキス 〔 3 — ( 3 , 5 —ジブチル一 4 ー ヒ ド ロキシフ: Lニル) 〕 プロ ピオネー ト 0. 10重量%、 ステア リ ン酸カル シゥム 0. 10重量%を配合し、 川田製作所社製 20リ ッ トルスーパーミ キサー(SMV20型) を用いて配合して、 ナカ夕二機械社製 AS30型 30mm ø二軸押出機を用いてペレツ ト化した。 なお、 造核剤と して以下の ものを用い、 配合量を適宜変更した。
(造核剤の種類)
造核剤 A : p - t -ブチル安息香酸アルミニゥム塩
造核剤 B : リ ン酸 2 , 2 —メチレンビス ( 4 , 6 —ジ一 t e r t— ブチルフエニル) ナ ト リ ウム
実施例 2で得られたポリプロ ピレンに上記の造核剤等を配合した 組成物 (実施例 9 , 10) および比較例 1 で得られたポリプロピレン に造核剤を配合した組成物 (比較例 5 ) についての物性評価結果を 表 4 に示す。 実施例 1 1および比較例 6
実施例 8および比較例 4で得られたプロピレン一エチレン—プロ ック共重合体に実施例 9 と同様に造核剤等を配合した組成物につい ての物性評価結果を表 4 に示す。
表 4 — 1 実施例 キンレン抽 ァイソタク ァイソタク ァイソタクチック 造核剤の および 出不溶部 XI チックペン チック平均 平均連鎖長 Ν> 800 FR 種類および 比較例 タッ ド分率 連鎖長 Ν のフラクョン重量 (gZio分) 配 合 量 実施例 9 99.5 99.5 836 81 34.2 A 0.2 実施例 10 99.5 99.5 836 81 34.2 B 0.4 比較例 5 98.8 98.9 326 7 32.2 B 0.4 実施例 11 99.5 99.5 830 79 17.8 A 0.2 比較例 6 98.5 97.7 217 <1 18.3 A 0.2
表 4— 2 射 出 成 形 品 フ ィ ル ム
実施例 アイゾッ ト
および 衝撃強度 曲げ弾性率 荷重たわみ ロックゥヱ 表 面 表 面 水蒸気透過量 Haze 比較例 (kg · cm/ cm) 温 度 ノレ表面硬度 光沢度 光沢度
(kg/cnf) (。c) Rスケール (%) (%) ( g /< - day) (%)
23°C — 20°C 実施例 9 1.7 22000 141 105 91.7 81 5.3 13.5 実施例 10 1.9 24500 148 109 93.8 84 5.1 11.6 比較例 5 1.7 19200 131 102 86.3 32 7.2 28.9 実施例 11 6.2 3.8 16800 134 99 72.2 比較例 6 5.3 3.0 14600 124 91 67.2
産業上の利用可能性
本発明を実施することにより、 従来より も更に剛性、 表面硬度、 耐熱製、 水蒸気バリヤ一性等の物性に優れる自動車、 家電分野、 包 装に好適なプロ ピレン系重合体および組成物が製造できるため、 ェ 業的にも十分な価値がある。

Claims

請 求 の 範 囲
1. ( 1 ) 25°Cのキシ レン抽出不溶部 (XI) が 99.0重量%以上、 ( 2 ) 13 C核磁気共鳴スぺク トルによるアイ ソタクチッ クペンタ ツ ド分率 (IP) が 98.0%以上、 ( 3 ) ァイ ソタクチッ ク平均連鎖長 (N) 力く 500以上で、 かつ (4 ) キシレン不溶部のカラム分別法に よる各フラク ショ ンの平均連鎖長 (Nf ) が 800以上であるフラク ショ ンの合計が全体の 10重量%以上であるプロ ピレン系重合体。
2. ( 1 ) 25°Cのキシレン抽出不溶部 (XI) が 99.0重量%以上、 ( 2 ) 13 C核磁気共鳴スぺク トルによるァイ ソタクチッ クペンタ ツ ド分率 (IP) が 98.5%以上、 ( 3 ) ァイ ソタクチッ ク平均連鎖長 (N) 力 500 以上で、 かつ (4 ) キシレン不溶部のカラム分別法に よる各フラ ク シ ョ ンの平均連鎖長 (Nf ) が 800以上であるフラク ショ ンの合計が全体の 30重量%以上である請求の範囲第 1項記載の プロ ピレン系重合体。
3. ( i ) マグネシウム化合物、 チタ ン化合物、 ハロゲン化合物 及び第 1の電子供与性化合物を必須成分とする重合用固体触媒成分 であり、 固体触媒成分中に担持された第 1の電子供与性化合物 (D) とチタ ン (T) のモル比 (DZT) が DZT≥ 1である重合用固体 触媒成分、
(ii) 有機アルミニウム化合物、 及び
(iii) 第 2の電子供与性化合物
を含む重合触媒を用いて、 プロピレンの重合を行う工程を含むプロ ピレン系重合体の製造方法。
4. D/T≥1.5 である前記固体触媒成分を用いる請求の範囲第 3項記載の製造方法。
5. ( 1 ) 25°Cのキシレン抽出不溶部 (XI) が 99.0重量%以上、 ( 2 ) 13C核磁気共鳴スぺク トルによるアイソタクチッ クペンタ ツ ド分率 (IP) が 98.0%以上、 ( 3 ) ァイ ソタクチッ ク平均連鎖長 (N) が 500以上で、 かつ ( 4 ) キシレン不溶部のカラム分別法に よる各フラク ショ ンの平均連鎖長 (N , ) 力 800以上であるフラク ショ ンの合計が全体の 10重量%以上であるプロ ピレン系重合体を製 造する請求の範囲第 3項記載の製造方法。
6. マグネシウム化合物、 チタ ン化合物、 ハロゲン化合物及び第 1 の電子供与性化合物を必須成分と し、 固体触媒成分中に担持され た第 1の電子供与性化合物 (D) とチタン (T) のモル比 (DZT) が DZT≥ 1であるプロピレン重合用固体触媒成分。
7. D/T≥l.5 である請求の範囲第 6項記載の固体触媒成分。
8. マグネシウム化合物、 チタン化合物、 ハロゲン化合物及び第
1の電子供与性化合物を必須成分とする重合用固体触媒成分であり、 担持された第 1の電子供与性化合物 (D) とチタン (T) のモル比 が (DZT) i である重合用固体触媒成分を形成し、
前記重合用固体触媒成分を処理して、 担持された第 1 の電子供与 性化合物 (D) とチタ ン (T) のモル比が (DZT) m である重合 用固体触媒成分に改良し、 ここに (DZT) m / (DZT) i 〉 1 である、
工程を含むプロ ピレン重合用固体触媒成分の製造方法。
9. (D/T) m / (D/T) i ≥ 2である請求の範囲第 8項記 載の方法。
10. 前記固体触媒成分の処理が第 1の電子供与性化合物で処理し て担持させた後、 ハロゲン含有化合物で処理、 清浄し、 更に炭化水 素で洗浄する工程を含む請求の範囲第 8項記載の方法。
11. 前記固体触媒成分の処理が、 前記固体触媒成分を一般式 TiXa Yb (式中、 Xは Cl, Br及び Z又は Iのハロゲン原子を示し、 aは 3又は 4であり、 Yは第 1 の電子供与性化合物を示し、 0 < b≤ 3 である。 ) で表されるチタ ン化合物で処理して担持させた後、 ハロ ゲン含有化合物で洗浄し、 更に炭化水素で洗浄する工程を含む請求 の範囲第 8項記載の方法。
12. 請求の範囲第 1 項記載のプロ ピレン系重合体に少なく とも造 核剤を 0. 05〜15重量%の範囲で配合したプロ ピレン系重合体組成物,
PCT/JP1994/000770 1994-05-12 1994-05-12 Polymere du propylene, son procede de production, sa composition, constituant de catalyseur de polymerisation et son procede de production WO1995031490A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AU65610/94A AU690907B2 (en) 1994-05-12 1994-05-12 Propylene polymer, process for producing the same, composition thereof, polymerization catalyst component, and process for producing the same
BR9402947-4A BR9402947A (pt) 1994-05-12 1994-05-12 Processo para a producao de um componente catalisador lido para a polimerizacao de propileno, processo para a producao de um polimero em base de propileno e processo para a producao de uma composicao polimerica
PCT/JP1994/000770 WO1995031490A1 (fr) 1994-05-12 1994-05-12 Polymere du propylene, son procede de production, sa composition, constituant de catalyseur de polymerisation et son procede de production
DE69412266T DE69412266T2 (de) 1994-05-12 1994-05-12 Propylenepolymer, herstellungsverfahren, zusammensetzung davon, polmerisationskatalysatorkomponente und herstellungsverfahren
KR1019940702556A KR100336338B1 (ko) 1994-05-12 1994-05-12 프로필렌계폴리머,그의제조방법,그조성물,중합용촉매성분,및그제조방법
US08/256,407 US5916990A (en) 1994-05-12 1994-05-12 Propylene-based polymer, method of its production, composition thereof, catalyst component for polymerization, and method for its production
CN94190005A CN1100069C (zh) 1994-05-12 1994-05-12 丙烯系聚合物及其制法
EP94914610A EP0712869B1 (en) 1994-05-12 1994-05-12 Propylene polymer, process for producing the same, composition thereof, polymerization catalyst component, and process for producing the same
AU52907/98A AU706739B2 (en) 1994-05-12 1998-02-03 A method for the production of propylene-based polymers, catalyst component or polymerization and method for its production
US09/519,750 US6323298B1 (en) 1994-05-12 2000-03-06 Propylene-based polymer, method for its production, composition thereof, catalyst component for polymerization, and method for its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP1994/000770 WO1995031490A1 (fr) 1994-05-12 1994-05-12 Polymere du propylene, son procede de production, sa composition, constituant de catalyseur de polymerisation et son procede de production
CN94190005A CN1100069C (zh) 1994-05-12 1994-05-12 丙烯系聚合物及其制法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/256,407 Continuation US5916990A (en) 1994-05-12 1994-05-12 Propylene-based polymer, method of its production, composition thereof, catalyst component for polymerization, and method for its production

Publications (1)

Publication Number Publication Date
WO1995031490A1 true WO1995031490A1 (fr) 1995-11-23

Family

ID=37102013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000770 WO1995031490A1 (fr) 1994-05-12 1994-05-12 Polymere du propylene, son procede de production, sa composition, constituant de catalyseur de polymerisation et son procede de production

Country Status (7)

Country Link
US (1) US5916990A (ja)
EP (1) EP0712869B1 (ja)
CN (1) CN1100069C (ja)
AU (1) AU690907B2 (ja)
BR (1) BR9402947A (ja)
DE (1) DE69412266T2 (ja)
WO (1) WO1995031490A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834814A (ja) * 1994-05-19 1996-02-06 Mitsui Petrochem Ind Ltd オレフィン重合用固体状チタン触媒成分、これを含むオレフィン重合用触媒およびオレフィンの重合方法
EP0708146A1 (en) * 1994-10-19 1996-04-24 Showa Denko Kabushiki Kaisha Propylene resin composition, molded articles thereof and propylene resin laminate
JPH08283489A (ja) * 1995-04-17 1996-10-29 Showa Denko Kk ポリプロピレン系樹脂組成物及びその成形体
JPH09220757A (ja) * 1995-09-15 1997-08-26 Montell North America Inc ポリプロピレン容器製造のための延伸ブロー成形法
JPH10298224A (ja) * 1997-04-24 1998-11-10 Nippon Polyolefin Kk チタン錯化合物、チタン錯化合物を用いたオレフィン重合用固体触媒成分、オレフィン重合用触媒及びオレフィン重合体の製造方法
JPH11116615A (ja) * 1997-08-11 1999-04-27 Mitsui Chem Inc 固体状チタン触媒成分の調製方法、オレフィン重合用触媒およびオレフィンの重合方法
JP2001522918A (ja) * 1997-11-07 2001-11-20 ボレアリス エイ/エス 着色されたポリプロピレン組成物
US6677403B1 (en) 1999-12-14 2004-01-13 Basell Poliolefine Italia S.P.A. Propylene resin composition
JP2004527636A (ja) * 2001-05-29 2004-09-09 ユニオン・カーバイド・ケミカルズ・アンド・プラスチックス・テクノロジー・コーポレーション オレフィン重合触媒組成物及びその製造方法
US6797794B2 (en) 1998-08-03 2004-09-28 Basell Poliolefine Italia S.P.A. Olefins produced from pre-polymerized catalyst component catalysts
JP2004315582A (ja) * 2003-04-11 2004-11-11 Mitsui Chemicals Inc ポリプロピレン樹脂組成物および二軸延伸フィルム
JP2006527271A (ja) * 2003-06-06 2006-11-30 ボレアリス テクノロジー オイ 高収率ジーグラーナッタ触媒を使用するポリプロピレンの製造方法
JP2007523989A (ja) * 2004-02-27 2007-08-23 サムソン トータル ペトロケミカルズ カンパニー リミテッド オレフイン重合用固体チタン触媒の製造方法
JP2007523990A (ja) * 2004-02-27 2007-08-23 サムソン トータル ペトロケミカルズ カンパニー リミテッド オレフイン重合用固体チタン触媒の製造方法
WO2013125504A1 (ja) * 2012-02-20 2013-08-29 サンアロマー株式会社 シート成形用ポリプロピレン系樹脂組成物
WO2017010306A1 (ja) * 2015-07-10 2017-01-19 東洋紡株式会社 空洞含有ポリエステル系フィルムおよびその製造方法
WO2019004418A1 (ja) * 2017-06-30 2019-01-03 三井化学株式会社 プロピレン系重合体、その製造方法、プロピレン系樹脂組成物および成形体
JP2020105356A (ja) * 2018-12-27 2020-07-09 株式会社プライムポリマー コンデンサフィルムおよびその製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403708B2 (en) 1996-05-27 2002-06-11 Mitsui Chemicals Inc Crystalline polypropylenes, process for preparing thereof, polypropylene compositions, and thermoformed products
JP3749547B2 (ja) * 1996-05-27 2006-03-01 三井化学株式会社 結晶性ポリプロピレン、その製法、ポリプロピレン組成物および熱成形体
WO1998004600A1 (fr) * 1996-07-31 1998-02-05 Japan Polyolefins Co., Ltd. Polypropylene a forte cristallinite
KR100223105B1 (ko) * 1996-10-09 1999-10-15 유현식 올레핀 중합용 촉매와 이를 이용한 올레핀 중합방법
DE19710761A1 (de) * 1997-03-14 1998-09-17 Basf Ag Hochkristalline Propylenhomopolymerisate
TW539690B (en) * 1997-08-11 2003-07-01 Mitsui Chemicals Inc Process for preparing solid titanium catalyst component, olefin polymerization catalyst, and olefin polymerization process
US6562886B1 (en) * 1997-08-19 2003-05-13 Idemistsu Petrochemical Co., Ltd. Propylene polymer composition and films made therefrom
US6197910B1 (en) * 1997-12-10 2001-03-06 Exxon Chemical Patents, Inc. Propylene polymers incorporating macromers
US7022795B1 (en) 1998-03-13 2006-04-04 Novolen Technology Holdings, C.V. Highly crystalline propylene homopolymers
BR9904880A (pt) * 1998-03-23 2000-09-19 Montell Technology Company Bv Componente catalìco prepolimerizado para a polimerização de olefinas ch2=chr,processo para a sua preparação, catalisador e processo de polimeração de olefinas ch2=chr
DE19813399A1 (de) 1998-03-26 1999-09-30 Basf Ag Statistische Propylencopolymerisate
DE10124929B4 (de) * 2001-05-21 2004-09-30 Metso Paper Inc. Verfahren zur kontinuierlichen Herstellung von Faserplatten
CA2499951C (en) 2002-10-15 2013-05-28 Peijun Jiang Multiple catalyst system for olefin polymerization and polymers produced therefrom
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
KR101077463B1 (ko) * 2002-11-28 2011-10-27 바셀 폴리올레핀 이탈리아 에스.알.엘 부텐-1 공중합체 및 그들의 제조 방법
EP1847555A1 (en) 2006-04-18 2007-10-24 Borealis Technology Oy Multi-branched Polypropylene
EP2142369B1 (en) * 2008-05-05 2012-06-20 A. Schulman, Inc. Multilayer clear over color polyolefin sheets
CN112175115B (zh) * 2019-07-02 2023-07-21 中国石油化工股份有限公司 烯烃聚合催化剂的固体催化剂组分及其制备方法和烯烃聚合催化剂及烯烃聚合的方法
CN112175118B (zh) * 2019-07-02 2023-11-14 中国石油化工股份有限公司 用于烯烃聚合的固体催化剂组分及其制备方法和烯烃聚合催化剂及烯烃聚合的方法
CN112175117B (zh) * 2019-07-02 2023-07-21 中国石油化工股份有限公司 用于烯烃聚合的固体催化剂组分及其制备方法和用于烯烃聚合的催化剂及烯烃聚合的方法
CN112175119B (zh) * 2019-07-02 2023-08-15 中国石油化工股份有限公司 烯烃聚合用固体催化剂组分及其制备方法、烯烃聚合催化剂和烯烃聚合的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104813A (ja) * 1985-10-31 1987-05-15 Chisso Corp ポリオレフイン製造法
JPH03195751A (ja) * 1989-12-22 1991-08-27 Chisso Corp ポリプロピレン組成物
JPH059226A (ja) * 1991-06-28 1993-01-19 Idemitsu Petrochem Co Ltd ポリプロピレン樹脂及びその組成物

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103819A (en) * 1980-12-19 1982-06-28 Mitsubishi Petrochem Co Ltd Manufacture of biaxially stretched polypropylene film of excellent rigidity and heat-shrinking resistance
JPS5883006A (ja) * 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
US4442276A (en) * 1982-02-12 1984-04-10 Mitsui Petrochemical Industries, Ltd. Process for polymerizing or copolymerizing olefins
US4541067A (en) * 1982-05-10 1985-09-10 American Microsystems, Inc. Combinational logic structure using PASS transistors
JPS5947418A (ja) * 1982-09-07 1984-03-17 Chisso Corp 熱収縮性改良フラツトヤ−ン
JPS59221310A (ja) * 1983-05-31 1984-12-12 Mitsui Toatsu Chem Inc 延伸フイルム用ポリプロピレン樹脂
CA1310955C (en) * 1987-03-13 1992-12-01 Mamoru Kioka Process for polymerization of olefins and polymerization catalyst
DE3713943A1 (de) * 1987-04-25 1988-11-03 Basf Ag Verfahren zum herstellen von homo- und copolymerisaten des propens mittels eines ziegler-natta-katalysatorsystems
US4914069A (en) * 1987-05-04 1990-04-03 Shell Oil Company Preparation of olefin polymerization catalyst component
US5354820A (en) * 1987-12-07 1994-10-11 Idemitsu Petrochemical Company Limited Process for the preparation of olefin polymer
DE3743321A1 (de) * 1987-12-21 1989-06-29 Hoechst Ag 1-olefinpolymerwachs und verfahren zu seiner herstellung
JPH072799B2 (ja) * 1988-12-16 1995-01-18 住友化学工業株式会社 高立体規則性a―オレフィン重合体の製造方法
US5077341A (en) * 1989-06-19 1991-12-31 Chisso Corporation Process for producing a high-stiffness polypropylene and a highly stereoregular polypropylene
DE4011160A1 (de) * 1990-04-06 1991-10-17 Basf Ag Copolymerisate des propylens mit anderen alk-1-enen
DE69127220T2 (de) * 1990-04-13 1998-01-02 Mitsui Petrochemical Ind Festes Titan enthaltendes Katalysatorbestandteil und Katalysator für Olefinpolymerisation, vorpolymerisierte Olefinpolymerisationskatalysator und Verfahren für Olefinpolymerisation
JPH0432085A (ja) * 1990-05-29 1992-02-04 Canon Inc 磁気記憶部付フィルムを用いるカメラ
US5239022A (en) * 1990-11-12 1993-08-24 Hoechst Aktiengesellschaft Process for the preparation of a syndiotactic polyolefin
JPH04190510A (ja) * 1990-11-26 1992-07-08 Furukawa Electric Co Ltd:The 配線用薄肉電気絶縁電線
JPH04272907A (ja) * 1991-02-27 1992-09-29 Mitsubishi Petrochem Co Ltd オレフィン重合体の製造法
JP3132030B2 (ja) * 1991-03-22 2001-02-05 東ソー株式会社 立体規則性ポリオレフィンの製造方法
EP0544308B1 (en) * 1991-11-28 1998-02-18 Showa Denko Kabushikikaisha Novel metallocene and process for producing polyolefin using the same
JPH05199169A (ja) * 1992-01-20 1993-08-06 Nec Corp 位置検知システム
IT1260497B (it) * 1992-05-29 1996-04-09 Himont Inc Polimeri cristallini del propilene aventi migliorata processabilita' allo stato e processo per la loro preparazione
EP0579510A3 (en) * 1992-07-17 1994-08-24 Mitsubishi Chem Ind Propylene polymers and process for preparing the same
IT1270842B (it) * 1993-10-01 1997-05-13 Himont Inc Componenti e catalizzatori per la polimerizzazione di olefine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104813A (ja) * 1985-10-31 1987-05-15 Chisso Corp ポリオレフイン製造法
JPH03195751A (ja) * 1989-12-22 1991-08-27 Chisso Corp ポリプロピレン組成物
JPH059226A (ja) * 1991-06-28 1993-01-19 Idemitsu Petrochem Co Ltd ポリプロピレン樹脂及びその組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0712869A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834814A (ja) * 1994-05-19 1996-02-06 Mitsui Petrochem Ind Ltd オレフィン重合用固体状チタン触媒成分、これを含むオレフィン重合用触媒およびオレフィンの重合方法
EP0708146A1 (en) * 1994-10-19 1996-04-24 Showa Denko Kabushiki Kaisha Propylene resin composition, molded articles thereof and propylene resin laminate
JPH08283489A (ja) * 1995-04-17 1996-10-29 Showa Denko Kk ポリプロピレン系樹脂組成物及びその成形体
JPH09220757A (ja) * 1995-09-15 1997-08-26 Montell North America Inc ポリプロピレン容器製造のための延伸ブロー成形法
JPH10298224A (ja) * 1997-04-24 1998-11-10 Nippon Polyolefin Kk チタン錯化合物、チタン錯化合物を用いたオレフィン重合用固体触媒成分、オレフィン重合用触媒及びオレフィン重合体の製造方法
JPH11116615A (ja) * 1997-08-11 1999-04-27 Mitsui Chem Inc 固体状チタン触媒成分の調製方法、オレフィン重合用触媒およびオレフィンの重合方法
JP2001522918A (ja) * 1997-11-07 2001-11-20 ボレアリス エイ/エス 着色されたポリプロピレン組成物
US6797794B2 (en) 1998-08-03 2004-09-28 Basell Poliolefine Italia S.P.A. Olefins produced from pre-polymerized catalyst component catalysts
US6677403B1 (en) 1999-12-14 2004-01-13 Basell Poliolefine Italia S.P.A. Propylene resin composition
JP2004527636A (ja) * 2001-05-29 2004-09-09 ユニオン・カーバイド・ケミカルズ・アンド・プラスチックス・テクノロジー・コーポレーション オレフィン重合触媒組成物及びその製造方法
JP2004315582A (ja) * 2003-04-11 2004-11-11 Mitsui Chemicals Inc ポリプロピレン樹脂組成物および二軸延伸フィルム
JP2006527271A (ja) * 2003-06-06 2006-11-30 ボレアリス テクノロジー オイ 高収率ジーグラーナッタ触媒を使用するポリプロピレンの製造方法
JP2007523989A (ja) * 2004-02-27 2007-08-23 サムソン トータル ペトロケミカルズ カンパニー リミテッド オレフイン重合用固体チタン触媒の製造方法
JP2007523990A (ja) * 2004-02-27 2007-08-23 サムソン トータル ペトロケミカルズ カンパニー リミテッド オレフイン重合用固体チタン触媒の製造方法
WO2013125504A1 (ja) * 2012-02-20 2013-08-29 サンアロマー株式会社 シート成形用ポリプロピレン系樹脂組成物
WO2017010306A1 (ja) * 2015-07-10 2017-01-19 東洋紡株式会社 空洞含有ポリエステル系フィルムおよびその製造方法
CN107835745A (zh) * 2015-07-10 2018-03-23 东洋纺株式会社 含有空洞的聚酯系膜及其制造方法
JPWO2017010306A1 (ja) * 2015-07-10 2018-03-29 東洋紡株式会社 空洞含有ポリエステル系フィルムおよびその製造方法
US11878495B2 (en) 2015-07-10 2024-01-23 Toyobo Co., Ltd. Cavity-containing polyester film and method for producing same
US11945201B2 (en) 2015-07-10 2024-04-02 Toyobo Co., Ltd. Cavity-containing polyester film and method for producing same
WO2019004418A1 (ja) * 2017-06-30 2019-01-03 三井化学株式会社 プロピレン系重合体、その製造方法、プロピレン系樹脂組成物および成形体
JPWO2019004418A1 (ja) * 2017-06-30 2020-02-06 三井化学株式会社 プロピレン系重合体、その製造方法、プロピレン系樹脂組成物および成形体
US11292899B2 (en) 2017-06-30 2022-04-05 Mitsui Chemicals, Inc. Propylene-based polymer, method for producing the same, propylene-based resin composition and molded article
JP2020105356A (ja) * 2018-12-27 2020-07-09 株式会社プライムポリマー コンデンサフィルムおよびその製造方法

Also Published As

Publication number Publication date
US5916990A (en) 1999-06-29
BR9402947A (pt) 1999-06-01
EP0712869A4 (en) 1996-10-09
AU6561094A (en) 1995-12-05
CN1100069C (zh) 2003-01-29
DE69412266T2 (de) 1999-02-11
EP0712869B1 (en) 1998-08-05
EP0712869A1 (en) 1996-05-22
CN1127510A (zh) 1996-07-24
DE69412266D1 (de) 1998-09-10
AU690907B2 (en) 1998-05-07

Similar Documents

Publication Publication Date Title
WO1995031490A1 (fr) Polymere du propylene, son procede de production, sa composition, constituant de catalyseur de polymerisation et son procede de production
KR100372473B1 (ko) 프로필렌블록공중합체및이의제조방법
US6184328B1 (en) Propylene-based polymer, method for its production, composition thereof, catalyst component for polymerization, and method for its production
KR100338875B1 (ko) 프로필렌블럭공중합체,이의제조방법및이를포함하는수지조성물
JP3497080B2 (ja) プロピレン系重合体の重合用触媒成分の製法
JP2831574B2 (ja) プロピレンブロック共重合体、その製造方法およびその組成物
JP3385099B2 (ja) ポリプロピレン系フィルムおよびシート
JP3552801B2 (ja) ポリプロピレン系樹脂組成物
JPH07292022A (ja) プロピレン系重合体、その製造方法およびその組成物
JP3369007B2 (ja) プロピレン系樹脂組成物
JPH10168251A (ja) プロピレン系重合体組成物およびその成形品
JPH0885714A (ja) プロピレンブロック共重合体、その製造方法およびその組成物
JP2845624B2 (ja) プロピレン系重合体、その製法及び組成物
EP0821012B1 (en) Propylene-based polymer, method for its production, composition thereof
KR100336338B1 (ko) 프로필렌계폴리머,그의제조방법,그조성물,중합용촉매성분,및그제조방법
JP2019167499A (ja) プロピレン系重合体、プロピレン系樹脂組成物および成形体
AU706739B2 (en) A method for the production of propylene-based polymers, catalyst component or polymerization and method for its production
JP3002119B2 (ja) プロピレンブロック共重合体およびその製造方法
JP3552802B2 (ja) ポリプロピレン系樹脂組成物
JPH0925316A (ja) プロピレン−α−オレフィンランダム共重合体およびその製造方法
TW419498B (en) Propylene-based polymer and composition thereof
CA2127721A1 (en) Propylene-based polymer, method for its production, composition thereof, catalyst component for polymerization, and method for its production
JPH0912636A (ja) エチレン−α−オレフィンランダム共重合体およびその製造法
JPH07330828A (ja) プロピレン系重合体混合物の製造法
JPH03153709A (ja) ポリプロピレンおよびその製造方法と成形品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94190005.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1994914610

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2127721

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08256407

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994914610

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994914610

Country of ref document: EP