USRE43676E1 - Alkyl ether derivatives or salts thereof - Google Patents

Alkyl ether derivatives or salts thereof Download PDF

Info

Publication number
USRE43676E1
USRE43676E1 US13/327,152 US200213327152A USRE43676E US RE43676 E1 USRE43676 E1 US RE43676E1 US 200213327152 A US200213327152 A US 200213327152A US RE43676 E USRE43676 E US RE43676E
Authority
US
United States
Prior art keywords
ethoxy
group
benzothiophen
propyl
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US13/327,152
Other languages
English (en)
Inventor
Akihito Saitoh
Noboru Iwakami
Tamotsu Takamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Chemical Co Ltd
Original Assignee
Toyama Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Chemical Co Ltd filed Critical Toyama Chemical Co Ltd
Priority to US13/327,152 priority Critical patent/USRE43676E1/en
Application granted granted Critical
Publication of USRE43676E1 publication Critical patent/USRE43676E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/12Oxygen or sulfur atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to novel alkyl ether derivatives or their salts, a process for production thereof, intermediates thereof and a therapeutic agent for central and peripheral nerves.
  • Dementia is divided into cerebrovascular dementia and neurodegenerative dementia, and various agents such as cerebral blood flow improvers and nootropics are used for treating these dementias.
  • Senile plaques characteristic of Alzheimer's disease which is most typical as neurodegenerative dementia, are mainly composed of amyloid ⁇ protein (A ⁇ ) derived from ⁇ amyloid precursor protein.
  • a ⁇ is considered as a substance that is deposited on the neurons or blood vessels of brain to cause a disease such as dementia.
  • a ⁇ itself injures neurons.
  • Inhibitors of neurotoxicity induced by A ⁇ are investigated as therapeutic agents for Alzheimer's disease.
  • the 1,2-ethanediol derivatives disclosed in JP-A-3-232830 and JP-A-4-95070, in particular, (R)-1-(benzo[b]thiophen-5-yl)-2-[2-(N,N-diethylamino)-ethoxy]ethanol hydrochloride has protective activity against the neuronal death caused by A ⁇ (SOCIETY FOR NEUROSCIENCE, Abstracts, Vol. 24, Part 1, p. 228, 1998) and activity to enhance the activity of nerve growth factor (NGF) (WO 96/12717) and hence is useful as a therapeutic agent for diseases in central and peripheral nerves.
  • NGF nerve growth factor
  • the present inventors earnestly investigated in order to solve the above problem, and consequently found that there are compounds having not only calcium-antagonistic activity but also inhibitory activity against neurotoxicity induced by A ⁇ , among the alkyl ether derivatives with calcium-antagonistic activity disclosed in WO 99/31056.
  • each of R 1 and R 2 which may be the same or different, represents one or more groups selected from a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl, aryl, aralkyl, alkoxy, aryloxy, alkylthio, arylthio, alkenyl, alkenyloxy, amino, alkylsulfonyl, arylsulfonyl, carbamoyl or heterocyclic group, a protected or unprotected amino, hydroxyl or carboxyl group, a nitro group, and an oxo group;
  • R 3 is a substituted or unsubstituted alkylamino group, or a protected or unprotected amino or hydroxyl group;
  • the ring A is a 5-membered or 6-membered heteroaromatic ring or a benzene ring; each of m and n is an integer of 1 to 6; and p is an integer of
  • halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom
  • alkyl group means a straight chain or branched chain C 1-12 alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl or the like
  • lower alkyl group means a straight chain or branched chain C 1-6 alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, hexyl or the like
  • alkoxy group means a straight chain or branched chain C 1-12 alkyloxy group such as
  • the 5-membered or 6-membered heteroaromatic ring as the ring A there are exemplified 5-membered or 6-membered heteroaromatic rings which contain at least one heteroatom selected from oxygen, nitrogen and sulfur atoms as the heteroatom forming the ring, such as triazine, pyridazine, pyrimidine, pyrazine, pyridine, furan, thiophene, pyrrole, oxazole, thiazole, imidazole, isoxazole, isothiazole, pyrazole, pyran, and the like.
  • each of the alkyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, alkylthio group, arylthio group, alkenyl group, alkenyloxy group, amino group, alkylsulfonyl group, arylsulfonyl group, carbamoyl group and heterocyclic group for each of R 1 and R 2 and the alkylamino group for R 3 there are exemplified groups selected from halogen atoms, lower alkyl groups, cycloalkyl groups, aryl groups, lower alkoxy groups, aryloxy groups, lower alkylthio groups, arylthio groups, lower alkenyl groups, lower alkylsulfonyl groups, arylsulfonyl groups, alkylamino groups, protected or unprotected amino groups, protected or unprotected hydroxyl groups, protected or unprotected carboxyl groups, acyl groups
  • the protecting group for the carboxyl group includes all conventional groups usable as carboxyl-protecting groups, for example, lower alkyl groups such as methyl, ethyl, propyl, isopropyl, 1,1-dimethylpropyl, butyl, tert-butyl and the like; aryl groups such as phenyl, naphthyl and the like; ar-lower alkyl groups such as benzyl, diphenylmethyl, trityl, 4-nitrobenzyl, 4-methoxybenzyl, bis(4-methoxyphenyl)methyl and the like; acyl-lower alkyl groups such as acetylmethyl, benzoylmethyl, 4-nitrobenzoylmethyl, 4-bromobenzoylmethyl, 4-methanesulfonylbenzoylmethyl and the like; oxygen-containing heterocyclic groups such as 2-tetrahydropyranyl, 2-tetrahydrofuranyl and the like; halogeno-
  • the protecting group for the hydroxyl group includes all conventional groups usable as hydroxyl-protecting groups, for example, alkoxy- and alkylthiocarbonyl groups such as benzyloxycarbonyl, 4-nitrobenzyloxycarbonyl, 4-bromobenzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 3,4-dimethoxybenzyloxycarbonyl, methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl, 1,1-dimethylpropoxycarbonyl, isopropoxycarbonyl, isobutyloxycarbonyl, diphenylmethoxycarbonyl, 2,2,2-trichloroethoxycarbonyl, 2,2,2-tribromoethoxycarbonyl, 2-(trimethylsilyl)ethoxycarbonyl, 2-(phenylsulfonyl)ethoxycarbonyl, 2-(triphenylphosphonio)ethoxycarbonyl, 2-furfuryloxycarbon
  • the protecting group for the amino group includes all conventional groups usable as amino-protecting groups, for example, alkoxycarbonyl groups such as methoxycarbonyl, 2,2,2-trichloroethoxycarbonyl, 2,2,2-tribromoethoxycarbonyl, 2-trimethylsilylethoxycarbonyl, 1,1-dimethylpropoxycarbonyl, tert-butoxycarbonyl, vinyloxycarbonyl, allyloxycarbonyl, 1-adamantyloxycarbonyl, benzyloxycarbonyl, 4-nitrobenzyloxycarbonyl, 2-bromobenzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 2,4-dichlorobenzyloxycarbonyl, diphenylmethoxycarbonyl, 4-(phenylazo)benzyloxycarbonyl, 2-furfuryloxycarbonyl, 8-quinolyloxycarbonyl and the like; acyl groups such as (mono-, di- or tri-) chloroacet
  • the salt of the compound of the general formula [1] includes usually known salts at basic groups such as amino group and the like and salts at acidic groups such as hydroxyl group, carboxyl group and the like.
  • the salts at the basic groups include, for example, salts with mineral acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid and the like; salts with organic carboxylic acids such as formic acid, acetic acid, citric acid, oxalic acid, fumaric acid, maleic acid, succinic acid, malic acid, tartaric acid, aspartic acid, trichloroacetic acid, trifluoroacetic acid and the like; and salts with sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, mesitylenesulfonic acid, naphthalenesulfonic acid and the like.
  • mineral acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid and the like
  • organic carboxylic acids such as formic acid, acetic acid, citric acid, oxalic acid, fumaric acid,
  • the salts at the acidic groups include, for example, salts with alkali metals such as sodium, potassium and the like; salts with alkaline earth metals such as calcium, magnesium and the like; ammonium salts; and salts with nitrogen-containing organic bases such as trimethylamine, triethylamine, tributylamine, pyridine, N,N-dimethylaniline, N-methylpiperidine, N-methylmorpholine, diethylamine, dicyclohexylamine, procaine, dibenzylamine, N-benzyl- ⁇ -phenethylamine, 1-ephenamine, N,N′-dibenzylethylenediamine and the like.
  • alkali metals such as sodium, potassium and the like
  • alkaline earth metals such as calcium, magnesium and the like
  • ammonium salts and salts with nitrogen-containing organic bases such as trimethylamine, triethylamine, tributylamine, pyridine, N,N-dimethylaniline
  • preferable salts are pharmacologically acceptable salts.
  • the alkyl ether derivative of the general formula [1] or its salt has isomers (for example, optical isomers, geometrical isomers and tautomers), the present invention includes all of these isomers, and the derivative or its salt may be in the form of a hydrate or solvate or in any crystal form.
  • alkyl ether derivative of the general formula [1] or salt thereof of the present invention are compounds of the general formula [1] in which the portion represented by
  • preferable examples of the derivative or salt thereof of the present invention are compounds in which R 1 is a hydrogen atom; and R 2 is a hydrogen atom, a halogen atom or an alkoxy group.
  • the alkyl ether derivative of the general formula [1] or its salt can be produced, for example, by any of the following production processes by adopting one or a proper combination of per se well-known methods.
  • R 1 , R 2 , R 3 , A, m, n and p are as defined above;
  • R 3a is a dialkylamino group, a protected monoalkylamino group, a protected amino group or a protected or unprotected hydroxyl group;
  • R 3b is a dialkylamino group, a protected monoalkylamino group, a protected amino group or a protected hydroxyl group;
  • R 3c is a protected hydroxyl group;
  • R 3d is a monoalkylamino group, an amino group or a hydroxyl group; and each of X 1 , X 2 and X 3 is a leaving group.
  • the leaving group includes, for example, halogen atoms, lower alkylsulfonyloxy groups and arylsulfonyloxy groups.
  • This reaction may be carried out by a per se well-known method, for example, the method described in Japanese Chemical Association, “Jikken Kagaku Koza” vol. 22, pages 137-173 (1992), Maruzen Co., Ltd. or a method based thereon.
  • the reactive derivative of the compound of the general formula [2] includes, for example, acid halides, acid anhydrides, activated amides and activated esters.
  • reaction is preferably carried out in the presence of a condensing agent.
  • the condensing agent includes, for example, N,N′-dialkylcarbodiimides such as N,N′-dicyclohexyl-carbodiimide and the like; halogenating agents such as thionyl chloride, oxalyl chloride and the like; acid halides such as ethoxycarbonyl chloride and the like; agents for conversion to an activated amide, such as carbonyldiimidazole and the like; and agent for conversion to an azide, such as diphenylphosphoryl azide and the like.
  • N,N′-dialkylcarbodiimides such as N,N′-dicyclohexyl-carbodiimide and the like
  • halogenating agents such as thionyl chloride, oxalyl chloride and the like
  • acid halides such as ethoxycarbonyl chloride and the like
  • agents for conversion to an activated amide such as carbonyldiimidazole and the like
  • the amount of the condensing agent used is 1 mole or more, preferably 1 to 5 moles, per mole of the compound of the general formula [2].
  • any solvent may be used so long as it has no undesirable influence on the reaction.
  • the solvent includes, for example, water; halogenated hydrocarbons such as methylene chloride, chloroform and the like; ethers such as tetrahydro-furan, dioxane and the like; aromatic hydrocarbons such as benzene, toluene, xylene and the like; sulfoxides such as dimethyl sulfoxide and the like; amides such as N,N-dimethylformamide and the like; esters such as ethyl acetate and the like; ketones such as acetone, methyl ethyl ketone and the like; nitrites such as acetonitrile and the like; and heteroaromatic compounds such as pyridine and the like. These solvents may be used singly or as a mixture thereof.
  • the reaction may be carried out in the presence of a base.
  • the base includes, for example, organic or inorganic bases such as triethylamine, diisopropylethylamine, 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU), pyridine, potassium tert-butoxide, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, sodium hydroxide and the like.
  • organic or inorganic bases such as triethylamine, diisopropylethylamine, 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU), pyridine, potassium tert-butoxide, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, sodium hydroxide and the like.
  • the amount of the base used is 0.5 mole or more, preferably 1 to 10 moles, per mole of the compound of the general formula [2].
  • the amount of the compound of the general formula [3] is 1 mole or more, preferably 1 to 20 moles, per mole of the compound of the general formula [2].
  • the reaction is carried out at usually ⁇ 100° C. to 200° C., preferably ⁇ 60° C. to 100° C., for 10 minutes to 20 hours.
  • the compound of the general formula [4] obtained may be used as it is in the subsequent reaction without isolation.
  • This reaction may be carried out by a per se well-known method, for example, the method described in Theodora W. Green, “Protective Groups in Organic Synthesis” pages 10-118 (1991), John Wiley & Sons. Inc., or a method based thereon.
  • a compound used in the reaction for protecting the hydroxyl group includes, for example, acid anhydrides such as acetic anhydride and the like; acid halides such as benzoyl chloride, pivaloyl chloride, methoxycarbonyl chloride, ethoxycarbonyl chloride and the like; halides such as methoxymethyl chloride, benzyloxymethyl chloride, benzyl chloride, benzyl bromide, trityl chloride, triethylsilyl chloride and the like; organic carboxylic acid compounds such as benzoic acid and the like; dialkoxyalkyl compounds such as dimethoxymethane and the like; and acyclic or cyclic alkoxyvinyl compounds such as 2-methoxypropene, 3,4-dihydro-2H-pyran and the like.
  • acid anhydrides such as acetic anhydride and the like
  • acid halides such as benzoyl chloride, pivaloyl chloride, me
  • the amount of the compound used in the reaction for protecting the hydroxyl group is 1 mole or more, preferably 1 to 2 moles, per mole of the compound of the general formula [4a].
  • the reaction for protecting the hydroxyl group by the use of any of the acid anhydrides, the acid halides and the halides is usually carried out in the presence of a base or a dehalogenating agent.
  • the base used includes, for example, organic or inorganic bases such as triethylamine, N,N-diisopropylethylamine, 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU), pyridine, 4-dimethylaminopyridine, potassium tert-butoxide, sodium hydroxide, potassium hydroxide, sodium hydride and the like.
  • the dehalogenating agent includes silver compounds such as silver oxide and the like.
  • the reaction for protecting the hydroxyl group by the use of the organic carboxylic acid compound is carried out in the presence of a dehydrating agent.
  • the reaction for protecting the hydroxyl group by the use of any of the acid anhydrides, the dialkoxyalkyl compounds and the acyclic or cyclic alkoxyvinyl compounds is usually carried out in the presence of an acid catalyst.
  • the acid used includes organic sulfonic acids such as p-toluenesulfonic acid and the like; inorganic acids such as hydrochloric acid, sulfuric acid and the like; and Lewis acids such as boron trifluoride, boron trifluoride diethyl ether complex, boron trifluoride tetrahydrofuran complex and the like.
  • the amount of the base, dehalogenating agent or dehydrating agent used in the reaction is 1 mole or more, preferably 1 to 2 moles, per mole of the compound used in the reaction for protecting the hydroxyl group.
  • the amount of the acid used as catalyst is 0.001 to 10 moles, preferably 0.01 to 1 mole, per mole of the compound of the general formula [4a].
  • any solvent may be used so long as it has no undesirable influence on the reaction.
  • the solvent includes, for example, halogenated hydrocarbons such as methylene chloride, chloroform and the like; ethers such as tetrahydrofuran, dioxane and the like; aromatic hydrocarbons such as benzene, toluene, xylene and the like; sulfoxides such as dimethyl sulfoxide and the like; amides such as N,N-dimethylformamide and the like; esters such as ethyl acetate and the like; ketones such as acetone, methyl ethyl ketone and the like; nitrites such as acetonitrile and the like; and heteroaromatic compounds such as pyridine and the like. These solvents may be used singly or as a mixture thereof.
  • the reaction is carried out at usually ⁇ 100° C. to 200° C., preferably ⁇ 60° C. to 100° C., for 10 minutes to 30 hours.
  • the reactants or base used in each of the above production methods may be used also as a solvent, depending on their properties.
  • the compound of the general formula [4a] obtained may be used as it is in the subsequent reaction without isolation.
  • This reduction may be carried out by a per se well-known method, for example, the method described in Japanese Chemical Association, “Shin Jikken Kagaku Koza” vol. 15, [II], pages 29-244 (1977), Maruzen Co., Ltd. or a method based thereon.
  • any solvent may be used so long as it has no undesirable influence on the reaction.
  • the solvent includes, for example, halogenated hydrocarbons such as methylene chloride, chloroform and the like; ethers such as tetrahydrofuran, dioxane and the like; aromatic hydrocarbons such as benzene, toluene, xylene and the like; and alcohols such as methanol, ethanol, isopropanol and the like. These solvents may be used singly or as a mixture thereof.
  • aluminum hydrides such as lithium aluminum hydride and the like
  • boron hydrides such as diborane, borane-tetrahydrofuran complexes, borane-dimethyl sulfide complexes, sodium borohydride and the like.
  • the reaction is preferably carried out in the presence of a Lewis acid such as boron trifluoride, boron trifluoride diethyl ether complex, boron trifluoride tetrahydrofuran complex or the like.
  • a Lewis acid such as boron trifluoride, boron trifluoride diethyl ether complex, boron trifluoride tetrahydrofuran complex or the like.
  • the amount of the reducing agent used is 0.2 mole or more, preferably 0.5 to 10 moles, per mole of the compound of the general formula [4] or the general formula [4a].
  • the amount of the Lewis acid used is 1 mole or more, preferably 4/3 to 2 moles, per mole of the reducing agent.
  • the reaction is carried out at usually ⁇ 50° C. to 200° C., preferably 0° C. to 110° C., for 10 minutes to 20 hours.
  • a compound of the general formula [1a] can be produced by reacting a compound of the general formula [5] with a compound of the general formula [3] in the presence or absence of a base.
  • any solvent may be used so long as it has no undesirable influence on the reaction.
  • the solvent includes, for example, water; halogenated hydrocarbons such as methylene chloride, chloroform and the like; aromatic hydrocarbons such as benzene, toluene, xylene and the like; ethers such as tetrahydrofuran, dioxane and the like; alcohols such as methanol, ethanol and the like; nitrites such as acetonitrile and the like; amides such as N,N-dimethylformamide and the like; and sulfoxides such as dimethyl sulfoxide and the like. These solvents may be used singly or as a mixture thereof.
  • the base optionally used includes, for example, organic or inorganic bases such as triethylamine, diisopropylethylamine, 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU), pyridine, potassium tert-butoxide, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, sodium hydroxide and the like.
  • organic or inorganic bases such as triethylamine, diisopropylethylamine, 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU), pyridine, potassium tert-butoxide, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, sodium hydroxide and the like.
  • the amount of the base used is 0.5 mole or more, preferably 1 to 20 moles, per mole of the compound of the general formula [5].
  • reaction may be carried out in the presence of a catalyst.
  • the catalyst includes, for example, potassium iodide and sodium iodide.
  • the amount of the catalyst used is 0.01 to 10 moles, preferably 0.1 to 1 mole, per mole of the compound of the general formula [5].
  • the amount of the compound of the general formula [3] used is 1 mole or more, preferably 1 to 20 moles, per mole of the compound of the general formula [5].
  • the reaction is carried out at usually 0° C. to 200° C., preferably 20° C. to 150° C., for 10 minutes to 20 hours.
  • the reactants or base used in the above production process may be used also as a solvent, depending on their properties.
  • a compound of the general formula [1b] can be produced by reacting a compound of the general formula [6] with a compound of the general formula [7] in the presence of a base.
  • the base includes, for example, sodium hydride, sodium hydroxide, potassium hydroxide and potassium tert-butoxide.
  • any solvent may be used so long as it has no undesirable influence on the reaction.
  • the solvent includes, for example, halogenated hydrocarbons such as methylene chloride, chloroform and the like; ethers such as tetrahydrofuran, dioxane and the like; aromatic hydrocarbons such as benzene, toluene, xylene and the like; sulfoxides such as dimethyl sulfoxide and the like; amides such as N,N-dimethylformamide and the like; and water. These solvents may be used singly or as a mixture thereof.
  • the reaction may be carried out in the presence or absence of a catalyst.
  • the reaction is carried out at usually ⁇ 50° C. to 200° C., preferably 0° C. to 150° C., for 10 minutes to 20 hours.
  • a compound of the general formula [1b] can be produced by reacting a compound of the general formula [8] with a compound of the general formula [9] in the presence or absence of a base.
  • This reaction may be carried out by a per se well-known method, for example, the same method as in production process 3.
  • This reaction may be carried out by a per se well-known method, for example, the method described in Theodora W. Green, “Protective Groups in organic Synthesis” pages 10-118 and 309-405 (1991), John Wiley & Sons. Inc., or a method based thereon.
  • the deprotecting reaction is carried out under conditions for, for example, hydrolysis and transesterification reaction in the presence of an acid or a base, substitution and elimination reaction in the presence of an acid catalyst, or hydrogenolysis in the presence of a metal catalyst.
  • the base used includes, for example, inorganic bases such as sodium hydroxide, potassium hydroxide, sodium hydride and the like.
  • the base used in the reaction may be used in an amount of 1 mole or more, preferably 1 to 5 moles, per mole of a combination of the compounds of the general formulas [1a] and [1b].
  • the amount of the acid used is 1 mole or more, preferably 1.1 to 100 moles, per mole of a combination of the compounds of the general formulas [1a] and [1b].
  • the amount of the metal catalyst used is a catalytic amount, preferably 0.01 to 30% by weight, relative to a combination of the compounds of the general formulas [1a] and [1b].
  • any solvent may be used so long as it has no undesirable influence on the reaction.
  • the solvent includes, for example, halogenated hydrocarbons such as methylene chloride, chloroform and the like; ethers such as tetrahydrofuran, dioxane and the like; aromatic hydrocarbons such as benzene, toluene, xylene and the like; sulfoxides such as dimethyl sulfoxide and the like; amides such as N,N-dimethylformamide and the like; esters such as ethyl acetate and the like; ketones such as acetone, methyl ethyl ketone and the like; nitrites such as acetonitrile and the like; alcohols such as methanol, ethanol and the like; organic carboxylic acids such as formic acid, acetic acid and the like; and water.
  • halogenated hydrocarbons such as methylene chloride, chloroform and the like
  • ethers such as
  • the reaction is carried out at usually ⁇ 100° C. to 200° C., preferably ⁇ 60° C. to 120° C., for 10 minutes to 20 hours.
  • the acid used in each of the above production methods may be used also as a solvent, depending on its properties.
  • the reaction for protecting a hydroxyl group may be carried out by a per se well-known method, for example, the method described in Theodora W. Green, “Protective Groups in Organic Synthesis” pages 10-118 (1991), John Wiley & Sons. Inc., or a method based thereon, namely, the reaction may be carried out by the same method as in the above item (1-2).
  • the reaction for protecting an amino group may be carried out by a per se well-known method, for example, the method described in Theodora W. Green, “Protective Groups in Organic Synthesis” pages 309-405 (1991), John Wiley & Sons. Inc., or a method based thereon.
  • a compound used in the reaction for protecting an amino group includes, for example, acid anhydrides such as acetic anhydride and the like; and acid halides such as acetyl chloride, benzoyl chloride, mesyl chloride, tosyl chloride and the like.
  • the amount of the compound used is 1 mole or more, preferably 1 to 2 moles, per mole of the compound of the general formula [1c].
  • the base includes, for example, organic or inorganic bases such as triethylamine, diisopropylethylamine, 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU), pyridine, potassium tert-butoxide, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, sodium hydride and the like.
  • organic or inorganic bases such as triethylamine, diisopropylethylamine, 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU), pyridine, potassium tert-butoxide, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, sodium hydride and the like.
  • the amount of the base used is 0.5 mole or more, preferably 1 to 10 moles, per mole of the compound of the general formula [1c].
  • any solvent may be used so long as it has no undesirable influence on the reaction.
  • the solvent includes, for example, halogenated hydrocarbons such as methylene chloride, chloroform and the like; ethers such as tetrahydrofuran, dioxane and the like; aromatic hydrocarbons such as benzene, toluene, xylene and the like; sulfoxides such as dimethyl sulfoxide and the like; amides such as N,N-dimethylformamide and the like; esters such as ethyl acetate and the like; ketones such as acetone, methyl ethyl ketone and the like; nitrites such as acetonitrile and the like; alcohols such as methanol, ethanol and the like; and water. These solvents may be used singly or as a mixture thereof.
  • the reaction is carried out at usually ⁇ 100° C. to 200° C., preferably ⁇ 60° C. to 100° C., for 10 minutes to 20 hours.
  • the alkylation of an amino group may be carried out by a per se well-known method, for example, the method described in Japanese Chemical Association, “Shin Jikken Kagaku Koza” vol. 14, [III], pages 1332-1399 (1977), Maruzen Co., Ltd. or a method based thereon.
  • a compound used in the alkylation of an amino group includes, for example, carbonyl compounds such as formaldehyde, paraformaldehyde, acetaldehyde, acetone and the like.
  • the amount of this compound used is 1 mole or more, preferably 1 to 5 moles, per mole of the compound of the general formula [1c].
  • This reaction is usually carried out in the presence of a reducing agent, and the reducing agent includes boron hydrides such as sodium borohydride and the like.
  • the amount of the reducing agent used is 0.5 mole or more, preferably 1 to 10 moles, per mole of the carbonyl compound.
  • any solvent may be used so long as it has no undesirable influence on the reaction.
  • the solvent includes, for example, water; halogenated hydrocarbons such as methylene chloride, chloroform and the like; aromatic hydrocarbons such as benzene, toluene, xylene and the like; ethers such as tetrahydrofuran, dioxane and the like; and alcohols such as methanol, ethanol and the like. These solvents may be used singly or as a mixture thereof.
  • the reaction is carried out at usually ⁇ 100° C. to 200° C., preferably 0° C. to 100° C., for 10 minutes to 30 hours.
  • the reactants used in each of the above production methods may be used also as a solvent, depending on their properties.
  • each of the compounds of the general formulas [2] to [9] can be used in the form of a salt.
  • the salt there are exemplified the same salts as in the case of the compound of the general formula [1].
  • salts of the compounds of the general formulas [1a], [1b] and [1c] there are exemplified the same salts as in the case of the compound of the general formula [1].
  • any of the compounds of the general formulas [1a], [1b], [1c] and [2] to [9] has isomers (for example, optical isomers, geometrical isomers and tautomers), each of these isomers can be used.
  • any of the compounds may be used in the form of a hydrate or solvate or in any crystal form.
  • any of the compounds of the general formulas [1], [1a], [1b], [1c] and [2] to [9] has a hydroxyl group, an amino group or a carboxyl group
  • each of the alkyl ether derivatives of the general formulas [1], [1a], [1b] and [1c] or its salt can be converted to another alkyl ether derivative of the general formula [1] or its salt by a proper combination of per se well-known methods such as oxidation, reduction, alkylation, halogenation, sulfonylation, substitution, dehydration, hydrolysis and the like.
  • alkyl ether derivatives of the general formulas [1], [1a], [1b] and [1c] or their salts can be isolated and separated according to one or more conventional operations which may be selected from extraction, crystallization, distillation, column chromatography and the like.
  • the compound of the general formula [2] can be produced, for example, by the following production process A by adopting one or a proper combination of per se well-known methods.
  • R 1 , R 2 , A, X 3 , m and n are as defined above;
  • R 4 is a cyano group, a lower alkoxycarbonyl group, a dialkylaminocarbonyl group or a cyclic aminocarbonyl group; and
  • X 4 is a leaving group.
  • This reaction may be carried out by a per se well-known method, for example, the method described in Japanese Chemical Association, “Shin Jikken Kagaku Koza” vol. 14, [I], pages 567-611 (1977), Maruzen Co., Ltd. or a method based thereon.
  • This reaction may be carried out by a per se well-known method, for example, the same method as in the production process (A-1).
  • This reaction may be carried out by a per se well-known method, for example, the method described in Japanese Chemical Association, “Shin Jikken Kagaku Koza” vol. 14, [II], pages 930-950 (1977), Maruzen Co., Ltd. and Theodora W. Green, “Protective Groups in Organic Synthesis” pages 152-192 (1981), John Wiley & Sons. Inc. or a method based thereon.
  • This reaction may be carried out by a per se well-known method, for example, the method described in any of “Chemical & Pharmaceutical Bulletin” vol. 41, pages 1659-1663 (1993), Japanese Chemical Association, “Shin Jikken Kagaku Koza” vol. 14, [I], pages 585-587 (1977), Maruzen Co., Ltd. and JP-A-3-99038, or a method based thereon.
  • This reaction may be carried out by a per se well-known method, for example, the same method as in (A-3).
  • the compound of the general formula [5] can be produced, for example, by the following production process B by adopting one or a proper combination of per se well-known methods.
  • R 1 , R 2 , X 1 , A, m and n are as defined above;
  • R 4a is an alkoxycarbonyl group;
  • R 5 is a hydroxyl-protecting group which is stable under basic conditions; and each of X 5 and X 6 is a leaving group.
  • the hydroxyl-protecting group stable under basic conditions includes, for example, lower alkyl groups such as tert-butyl and the like; lower alkenyl groups such as allyl and the like; ar-lower alkyl groups such as benzyl, 4-methoxybenzyl, 3,4-dimethoxybenzyl, diphenylmethyl, trityl and the like; oxygen-containing or sulfur-containing heterocyclic groups such as tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl and the like; lower alkoxy-lower alkyl groups such as methoxymethyl, 2-(trimethylsilyl)ethoxymethyl, 1-methyl-1-methoxyethyl and the like; and substituted silyl groups such as tert-butyldimethylsilyl, diphenylmethylsilyl and the like.
  • lower alkyl groups such as tert-butyl and the like
  • lower alkenyl groups
  • This reaction may be carried out by a per se well-known method, for example, the method described in Tetrahedron Letters, vol. 38, pages 3251-3254 (1975) and Japanese Chemical Association, “Shin Jikken Kagaku Koza” vol. 14, [I], pages 567-611 (1977), Maruzen Co., Ltd. or a method based thereon.
  • This reaction may be carried out by a per se well-known method, for example, the same method as in production process 3, and then the protecting group may be removed.
  • This reduction may be carried out by a per se well-known method, for example, the method described in “Shin Jikken Kagaku Koza” vol. 15, pages 26-244 (1977), Maruzen Co., Ltd. or a method based thereon.
  • a solvent used in this reaction includes, for example, halogenated hydrocarbons such as methylene chloride, chloroform and the like; ethers such as tetrahydrofuran, dioxane and the like; aromatic hydrocarbons such as benzene, toluene, xylene and the like; sulfoxides such as dimethyl sulfoxide and the like; amides such as N,N-dimethylformamide and the like; esters such as ethyl acetate and the like; and nitrites such as acetonitrile and the like. These solvents may be used singly or as a mixture thereof.
  • the base optionally used includes, for example, organic or inorganic bases such as triethylamine, diisopropylethylamine, 1,8-diazabicyclo[5,4,0]undec-7-ene, pyridine, potassium tert-butoxide, sodium carbonate, potassium carbonate, sodium hydride and the like.
  • organic or inorganic bases such as triethylamine, diisopropylethylamine, 1,8-diazabicyclo[5,4,0]undec-7-ene, pyridine, potassium tert-butoxide, sodium carbonate, potassium carbonate, sodium hydride and the like.
  • the halogenating agent includes, for example, phosphorus oxychloride, phosphorus oxybromide, phosphorus trichloride, phosphorus pentachloride, carbon tetrabromide-triphenylphosphine, and thionyl chloride.
  • the sulfonylating agent includes, for example, methanesulfonyl chloride and p-toluenesulfonyl chloride.
  • the amount of each of the halogenating agent or sulfonylating agent and the base used is 1 mole or more, preferably 1 to 2 moles, per mole of the compound of the general formula [15].
  • the reaction is carried out at usually ⁇ 50° C. to 200° C., preferably 0° C. to 50° C., for 10 minutes to 30 hours.
  • a and B has a hydroxyl group, an amino group or a carboxyl group, it is possible to previously protect the hydroxyl group, the amino group or the carboxyl group with a conventional protecting group and, if necessary, remove the protecting group by a per se well-known method after completion of the reaction.
  • any of the compounds of the general formulas [2], [2a], [6], [8], [10] to [16], [11a] and [11b] has isomers (for example, optical isomers, geometrical isomers and tautomers), each of these isomers can be used.
  • any of the compounds may be used in the form of a hydrate or solvate or in any crystal form.
  • the compound of the present invention can be formulated into pharmaceutical preparations such as oral preparations (e.g. tablets, capsules, powders, granules, fine granules, pills, suspensions, emulsions, solutions and syrups), injections, suppositories, external preparations (e.g. ointments and patches), aerosols and the like by blending therewith various pharmaceutical additives such as excipients, binders, disintegrators, disintegration inhibitors, consolidation•adhesion inhibitors, lubricants, absorption•adsorption carriers, solvents, fillers, isotonicity agents, solubilizers, emulsifying agents, suspending agents, thickening agents, coating agents, absorption accelerators, gelation.
  • oral preparations e.g. tablets, capsules, powders, granules, fine granules, pills, suspensions, emulsions, solutions and syrups
  • injections e.g. ointments and patches
  • coagulation accelerators light stabilizers, preservatives, dehumidifiers, emulsion.suspension.dispersion stabilizers, color protectors, deoxygenation.oxidation inhibitors, sweetening.flavoring agents, coloring agents, foaming agents, defoaming agents, soothing agents, antistatic agents, buffering and pH-adjusting agents, etc.
  • the oral solid pharmaceuticals such as tablets, powders and granules are prepared by a conventional method by using pharmaceutical additives for solid preparation, for example, excipients such as lactose, sucrose, sodium chloride, glucose, starch, calcium carbonate, kaolin, crystalline cellulose, anhydrous calcium secondary phosphate, partly pregelatinized starch, corn starch, alginic acid and the like; binders such as simple syrup, a glucose solution, a starch solution, a gelatin solution, polyvinyl alcohols, polyvinyl ethers, polyvinylpyrrolidones, carboxymethyl cellulose, shellac, methyl cellulose, ethyl cellulose, sodium alginate, gum arabic, hydroxypropylmethyl cellulose, hydroxypropyl cellulose, water, ethanol and the like; disintegrators such as dried starch, alginic acid, agar powder, starch, crosslinked polyvinylpyrrolidones, crosslinked carboxymethyl cellulose sodium
  • tablets can be made into tablets having a conventional coating, such as sugar coated tablets, gelatin coated tablets, gastric coated tablets, enteric coated tablets and water-soluble-film coated tablets.
  • the capsules are prepared by mixing the compound of the present invention with the above-exemplified various pharmaceutical additives and packing the resulting mixture into hard gelatin capsules, soft capsules or the like.
  • the compound of the present invention can be formulated into an aqueous or oily suspension, solution, syrup or elixir by a conventional method by using the above-exemplified various additives for liquid preparation, such as solvents, fillers, isotonicity agents, solubilizers, emulsifying agents, suspending agents, thickening agents and the like.
  • the suppositories are prepared by adding a suitable absorption accelerator to, for example, a polyethylene glycol, cacao butter, lanolin, a higher alcohol, a higher alcohol ester, gelatin, a semi-synthesized glyceride or Witepsol.
  • a suitable absorption accelerator for example, a polyethylene glycol, cacao butter, lanolin, a higher alcohol, a higher alcohol ester, gelatin, a semi-synthesized glyceride or Witepsol.
  • the injections are prepared by a conventional method by using pharmaceutical additives for liquid preparation, for example, diluents such as water, ethanol, Macrogol, propylene glycol, citric acid, acetic acid, phosphoric acid, lactic acid, sodium lactate, sulfuric acid, sodium hydroxide and the like; pH adjustors and buffers, such as sodium citrate, sodium acetate, sodium phosphate and the like; stabilizers such as sodium pyrosulfite, ethylenediaminetetraacetic acid, thioglycolic acid, thiolactic acid and the like; isotonicity agents such as sodium chloride, glucose, mannitol, glycerol and the like; solubilizers such as carboxymethyl cellulose sodium salt, propylene glycol, sodium benzoate, benzyl benzoate, urethane, ethanolamine, glycerol and the like; soothing agents such as calcium gluconate, chlorobutanol, glucose, benzyl
  • the ointments in the form of paste, cream or gel are prepared by mixing and formulation according to a conventional method by using pharmaceutical additives, for example, base ingredients such as white soft paraffin, polyethylenes, paraffin, glycerol, cellulose derivatives, polyethylene glycols, silicone, bentonite and the like; preservatives such as methyl p-oxybenzoate, ethyl p-oxybenzoate, propyl p-oxybenzoate and the like; stabilizers; and wetting agents.
  • base ingredients such as white soft paraffin, polyethylenes, paraffin, glycerol, cellulose derivatives, polyethylene glycols, silicone, bentonite and the like
  • preservatives such as methyl p-oxybenzoate, ethyl p-oxybenzoate, propyl p-oxybenzoate and the like
  • stabilizers such as methyl p-oxybenzoate, ethyl p-oxybenzoate, propyl p
  • the above-mentioned ointment, cream, gel or paste is applied on a conventional support by a conventional method.
  • a conventional support there can be used woven or nonwoven fabrics made of cotton, staple fiber or chemical fiber; and films or foamed sheets of soft vinyl chloride, a polyethylene, a polyurethane or the like.
  • a method for administering the above-mentioned pharmaceutical preparation is not particularly limited and is properly determined depending on the pharmaceutical form, the age, sex and other conditions of a patient, and the symptom of the patient.
  • the dose of active ingredient of the pharmaceutical preparation of the present invention is properly chosen depending on administration route, the age, sex and pathosis of a patient, and other conditions.
  • the active ingredient may be administered to an adult in a dose of 0.1 to 500 mg per day in one portion or several portions.
  • Ethyl acetate was added to the aqueous layer and the pH was adjusted to 10 with a 5 mol/L aqueous sodium hydroxide solution, after which the organic layer was separated.
  • the organic layer was washed with water and then a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate, and then distilled under reduced pressure to remove the solvent.
  • Ethyl acetate was added to the aqueous layer and the pH was adjusted to 10 with a 2 mol/L aqueous sodium hydroxide solution, after which the organic layer was separated.
  • the organic layer was washed with water and then a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate, and then distilled under reduced pressure to remove the solvent.
  • Ethyl acetate was added to the aqueous layer and the pH was adjusted to 9.5 with a 2 mol/L aqueous sodium hydroxide solution, after which the organic layer was separated.
  • the organic layer was washed with a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate, and then distilled under reduced pressure to remove the solvent.
  • Example 104 In the same manner as in Example 104, 1- ⁇ 3-[2-(1-benzothiophen-5-yl)ethoxy]propyl ⁇ -3-(tetrahydro-2H-pyran-2-yloxy)azetidine was obtained from 2-(1-benzothiophen-5-yl)-1-ethanol and 1-(3-chloropropyl)-3-(tetrahydro-2H-pyran-2-yloxy)azetidine.
  • the organic layer was washed with water and then a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate, and then distilled under reduced pressure to remove the solvent.
  • the residue was dissolved in 10.5 mL of a 90% aqueous ethanol solution, followed by adding thereto 0.91 g of sodium hydroxide, and the resulting mixture was heated under reflux for 3 hours. After the reaction mixture was cooled, water and ethyl acetate were added thereto and the pH was adjusted to 1 with 6 mol/L hydrochloric acid, after which the organic layer was separated.
  • PC12 cells [rat adrenomedullary chromaffinoma (NGF responders)] were cultured in an incubator (5% CO 2 , 37° C.) by using RPMI1640 medium (available from Nissui Pharmaceutical Co., Ltd.) containing 5% heat inactivated (56° C., 30 minutes) horse serum (available from Bio-Whittaker Inc.), 5% heat inactivated (56° C., 30 minutes) fetal calf serum (available from Sigma Chemical Co.) and 25 ⁇ g/ml gentamicin (available from GIBCO BRL).
  • RPMI1640 medium available from Nissui Pharmaceutical Co., Ltd.
  • horse serum available from Bio-Whittaker Inc.
  • fetal calf serum available from Sigma Chemical Co.
  • 25 ⁇ g/ml gentamicin available from GIBCO BRL
  • the cultured PC12 cells were incubated at 37° C. for 30 minutes in phosphate-buffered physiological saline containing 1 mM EDTA, to be detached from a culture flask.
  • the concentration of the cultured PC12 cells was adjusted to 5 ⁇ 10 4 cells/mL with RPMI1640 medium containing 1.5% heat inactivated horse serum, 1.5% heat inactivated fetal calf serum and 25 ⁇ g/ml gentamicin, and the resulting cell suspension was dispensed in 2 ml portions into 35-mm tissue culture dishes (mfd. by Falcon Inc.) coated with 0.01% polyornithine [dissolved in 150 mM borate buffer (pH 8.4)].
  • the activity to accelerate neutrite outgrowth was calculated according to the following expression as a neutrite outgrowth acceleration rate attained by the addition of each test compound, by taking a neutrite outgrowth rate due to NGF as 100%:
  • the neutrite outgrowth acceleration rate was found to be as follows: the compound of Example 2: 265%, the compound of Example 6: 300%, the compound of Example 12: 299%, the compound of Example 14: 207%, the compound of Example 29: 212%, the compound of Example 51: 216%, the compound of Example 59: 241%, the compound of Example 69: 233%, the compound of Example 71: 183%, the compound of Example 74: 246%, the compound of Example 80: 190%, and the compound of Example 81: 190%.
  • test was carried out according to the method described in J. Pharmaco. Exp. Ther., Vol. 290, page 348 (1999) and Neuroscience, vol. 88, page 257 (1999).
  • SD strain rats male, aged 6 to 7 weeks, and weighing 170 to 280 g were anesthetized with pentobarbital, and the left sciatic nerve of each rat was exposed in the femoral region, separated from the surrounding connective tissue, and then cut at a distal position which was about 1 cm apart from the gluteus.
  • the ends of the nerve were inserted into a sterilized silicone tube with a length of 8 mm (inside diameter 1.3 mm, and outside diameter 1.8 mm) to a depth of 3.5 mm so that a space of 1 mm might be formed in the middle of the tube.
  • the ends of the nerve were fixed and the nerve was put back to the muscular tissue together with the tube, after which the incised part was sutured.
  • each test compound dissolved in distilled water was orally administered in a dose of 1 mg/kg, and thereafter the test compound was administered once a day for 13 days in the same manner as above.
  • a stimulation electrode was set on the proximal side with respect to the cut position, and a recording electrode was set at the most distal position in the crural region.
  • An electric stimulus (voltage: 2 V, delay: 1 msec, and duration: 100 ⁇ sec) was given, and an action potential induced by the stimulus was recorded.
  • the recording electrode was gradually moved toward the proximal, and the distance between the cut position and the most distal position at which an action potential had been obtained was measured as regeneration distance. Only distilled water was administered to a control group.
  • the sciatic nerve regeneration rate of the test compound was calculated according to the following expression:
  • the sciatic nerve regeneration rate was found to be as follows: the compound of Example 4: 167%, the compound of Example 10: 186%, the compound of Example 12: 142%, the compound of Example 14: 150%, the compound of Example 31: 155%, and the compound of Example 33: 161%.
  • Cerebral cortices isolated from the brains of embryos (aged 17 to 19 days) of Wistar strain rats were sliced, and then neurons were dissociated by trypsin treatment.
  • the cells were seeded into a 48-well tissue culture plate at a density of 1 ⁇ 10 5 cells per well and cultured under conditions of 5% CO 2 and 37° C. on Dulbecco's modified Eagle's medium added B27 supplement (available from GIBCO BRL) and 3.6 mg/mL glucose.
  • a potassium chloride solution was added to the medium to adjust the final concentration of potassium chloride to 25 mmol/L.
  • each test compound was added to the medium.
  • a ⁇ (a peptides comprising 25 to 35 residues) dissolved in distilled water was added to the medium at a final concentration of 20 ⁇ mol/L.
  • the medium was replaced with Dulbecco's modified Eagle's medium added B27 supplement and 3.6 mg/mL glucose and test compound.
  • the inhibitory activity of the test compound against the death of cultured neurons was determined by inhibition against the decrease of reducing ability of MMT. That is, MTT assay [J. Immuno. Methods, vol. 65, page 55 (1983)] developed by Mosmann was carried out 48 hours after the medium replacement, and the inhibition rate (%) of the test compound against a decrease of a MTT assay value induced by A ⁇ was calculated.
  • Inhibition rate [(MTT assay value of a group treated with A ⁇ and the drug) ⁇ (MTT assay value of a group treated with A ⁇ )]/[MTT assay value of an untreated group ⁇ MTT assay value of a group treated with A ⁇ ] ⁇ 100(%).
  • the inhibition rate at a concentration of 1 ⁇ M was found to be as follows: the compound of Example 4: 63%, the compound of Example 6: 48%, the compound of Example 10: 42%, the compound of Example 14: 48%, the compound of Example 31: 50%, the compound of Example 33: 54%, the compound of Example 61: 52%, the compound of Example 69: 70%, the compound of Example 74: 50%, and the compound of Example 80: 75%.
  • a test tube In a test tube were placed 50 ⁇ L of 100 mmol/L potassium phosphate buffer (pH 7.4) and 25 ⁇ L of 3 mg protein/mL pooled human liver microsomes (available from Gentest Inc.), and a solution prepared by blending 10 ⁇ L of 66 mmol/L sodium glucose 6-phosphate, 10 ⁇ L of 10 units/mL glucose 6-phosphate dehydrogenase, 10 ⁇ L of 26 mmol/L nicotinamide adenine dinucleotide phosphate oxidized form, 10 ⁇ L of 66 mmol/L magnesium chloride and 135 ⁇ L of 100 mmol/L potassium phosphate buffer (pH 7.4) was added thereto, followed by preincubation for 5 minutes.
  • Residual rate (%) [(peak area due to the test compound after 60 minutes of the reaction)/(peak area due to the test compound in the case of stopping the reaction by adding acetonitrile simultaneously with the addition of the test compound after the preincubation)] ⁇ 100
  • the residual rate was found to be as follows: the compound of Example 4: 80%, the compound of Example 10: 70%, the compound of Example 12: 83%, the compound of Example 14: 75%, the compound of Example 61: 74%, the compound of Example 69: 74%, the compound of Example 71: 80%, and the compound of Example 74: 71%.
  • the alkyl ether derivative of the general formula [1] or salt thereof of the present invention has excellent activity to accelerate neurite outgrowth, activity to accelerate nerve regeneration and activity to protect neurons, is excellent also in stability to metabolism, and is useful as a therapeutic agent for diseases in central and peripheral nerves.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Neurosurgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Pyridine Compounds (AREA)
  • Indole Compounds (AREA)
US13/327,152 2001-10-19 2002-10-18 Alkyl ether derivatives or salts thereof Expired - Lifetime USRE43676E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/327,152 USRE43676E1 (en) 2001-10-19 2002-10-18 Alkyl ether derivatives or salts thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001321381 2001-10-19
JP2001-321381 2001-10-19
US13/327,152 USRE43676E1 (en) 2001-10-19 2002-10-18 Alkyl ether derivatives or salts thereof
US10/492,774 US7087594B2 (en) 2001-10-19 2002-10-18 Alkyl ether derivatives or salts thereof
PCT/JP2002/010827 WO2003035647A1 (fr) 2001-10-19 2002-10-18 Derives ou sels d'ether d'alkyle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/492,774 Reissue US7087594B2 (en) 2001-10-19 2002-10-18 Alkyl ether derivatives or salts thereof

Publications (1)

Publication Number Publication Date
USRE43676E1 true USRE43676E1 (en) 2012-09-18

Family

ID=19138603

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/327,152 Expired - Lifetime USRE43676E1 (en) 2001-10-19 2002-10-18 Alkyl ether derivatives or salts thereof
US10/492,774 Ceased US7087594B2 (en) 2001-10-19 2002-10-18 Alkyl ether derivatives or salts thereof
US11/416,321 Expired - Lifetime US7468443B2 (en) 2001-10-19 2006-05-03 Alkyl ether derivatives or salts thereof
US12/253,379 Expired - Lifetime US8129535B2 (en) 2001-10-19 2008-10-17 Alkyl ether derivatives or salts thereof

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/492,774 Ceased US7087594B2 (en) 2001-10-19 2002-10-18 Alkyl ether derivatives or salts thereof
US11/416,321 Expired - Lifetime US7468443B2 (en) 2001-10-19 2006-05-03 Alkyl ether derivatives or salts thereof
US12/253,379 Expired - Lifetime US8129535B2 (en) 2001-10-19 2008-10-17 Alkyl ether derivatives or salts thereof

Country Status (23)

Country Link
US (4) USRE43676E1 (zh)
EP (1) EP1437353B1 (zh)
JP (1) JP4398247B2 (zh)
KR (1) KR100956990B1 (zh)
CN (2) CN100500662C (zh)
AT (1) ATE364604T1 (zh)
AU (1) AU2002344107B2 (zh)
BR (1) BRPI0213393B8 (zh)
CA (1) CA2464358C (zh)
CY (1) CY1106714T1 (zh)
DE (1) DE60220694T2 (zh)
DK (1) DK1437353T3 (zh)
ES (1) ES2287324T3 (zh)
HU (1) HU230407B1 (zh)
IL (2) IL161308A0 (zh)
MX (1) MXPA04003541A (zh)
NO (1) NO325780B1 (zh)
NZ (1) NZ532328A (zh)
PL (2) PL215264B1 (zh)
PT (1) PT1437353E (zh)
RO (1) RO122203B1 (zh)
WO (1) WO2003035647A1 (zh)
ZA (1) ZA200402806B (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1437353E (pt) * 2001-10-19 2007-08-28 Toyama Chemical Co Ltd Derivados de éter de alquilo ou os seus sais.
ES2685923T3 (es) * 2002-06-14 2018-10-15 Toyama Chemical Co., Ltd. Composición medicinal para mejorar la función cerebral
US20060205709A1 (en) 2003-04-17 2006-09-14 Toyama Chemical Co., Ltd. Preventive/remedy for retinal nerve diseases containing alkyl ether derivatives or salts thereof
AU2011204959B2 (en) * 2005-03-28 2012-04-12 Toyama Chemical Co., Ltd. Process for production of 1-(3-(2-(1-benzothiophen-5-YL)- ethoxy)propyl)azetidin-3-ol or salts thereof
ZA200708262B (en) * 2005-03-28 2009-01-28 Toyama Chemical Co Ltd Process for production of 1-(3-(2-(1-benzothiophen-5-yl)-ethoxy)propyl)azetidin-3-ol or salts thereof
JP4902247B2 (ja) * 2005-04-08 2012-03-21 富山化学工業株式会社 2−(1−ベンゾチオフェン−5−イル)エタノールの新規製造法およびその中間体
JP2006328058A (ja) * 2005-04-27 2006-12-07 Toyama Chem Co Ltd 2−(1−ベンゾチオフェン−5−イル)エタノールの新規製造法およびその中間体
PL2011796T3 (pl) * 2006-04-26 2015-03-31 Toyama Chemical Co Ltd Induktor neurogenezy lub środek terapeutyczny do stosowania w neuropatii zawierający pochodną eteru alkilowego lub jej sól
US8119625B2 (en) 2006-04-26 2012-02-21 Toyama Chemical Co., Ltd. Neurogenesis inducer or neuropathy therapeutic agent comprising alkyl ether derivative or salt thereof
CA2659835A1 (en) * 2006-08-04 2008-02-07 Toyama Chemical Co., Ltd. Protein kinase c activity enhancer containing alkyl ether derivative or salt thereof
DK2287160T3 (da) * 2008-05-28 2014-06-10 Toyama Chemical Co Ltd Benzothiophenoxidderivat og salt deraf
IN2014DN06995A (zh) 2012-02-22 2015-04-10 Toyama Chemical Co Ltd
JP5837726B1 (ja) 2014-01-31 2015-12-24 富山化学工業株式会社 アルキルエーテル誘導体またはその塩を含有する神経損傷後のリハビリテーション効果促進剤
JP6761413B2 (ja) * 2015-06-11 2020-09-23 富士フイルム富山化学株式会社 シグマ受容体結合剤
RU2733404C2 (ru) 2015-12-25 2020-10-01 ФУДЖИФИЛМ Тояма Кемикал Ко., Лтд. Таблетка, включающая 1-(3-(2-(1-бензотиофен-5-ил)этокси)пропил)азетидин-3-ол или его соли
WO2018124281A1 (ja) 2016-12-28 2018-07-05 富山化学工業株式会社 外用組成物
CN110167551B (zh) 2016-12-28 2022-06-14 富士胶片富山化学株式会社 医药组合物
JP7079209B2 (ja) 2016-12-28 2022-06-01 富士フイルム富山化学株式会社 医薬組成物およびその製造方法
JP7057287B2 (ja) 2016-12-28 2022-04-19 富士フイルム富山化学株式会社 医薬組成物
CN110691594A (zh) 2017-06-02 2020-01-14 富士胶片富山化学株式会社 Tau蛋白病预防或治疗剂
CN110691593B (zh) 2017-06-02 2023-05-02 富士胶片富山化学株式会社 脊髓小脑变性症预防或治疗剂
US11666551B2 (en) * 2017-06-02 2023-06-06 Fujifilm Toyama Chemical Co., Ltd. Agent for reducing amount of amyloid β protein
EP3636262A4 (en) 2017-06-02 2020-06-10 FUJIFILM Toyama Chemical Co., Ltd. AGENT FOR PREVENTING OR TREATING ALZHEIMER-LIKE DEMENTIA
JP7282028B2 (ja) 2017-06-02 2023-05-26 富士フイルム富山化学株式会社 脳萎縮予防または治療剤
WO2019088083A1 (ja) 2017-10-30 2019-05-09 富士フイルム富山化学株式会社 エモパミル結合タンパク質結合剤およびその利用
CN114853619B (zh) * 2022-05-19 2024-05-10 神隆医药(常熟)有限公司 一种适于工业化生产的n-甲基酪胺盐酸盐的制备方法

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156973A (ja) 1987-09-04 1989-06-20 Tanabe Seiyaku Co Ltd ベンゾフラン誘導体
JPH03232830A (ja) 1990-02-05 1991-10-16 Toyama Chem Co Ltd 1,2―エタンジオール誘導体およびその塩
JPH0495070A (ja) 1990-08-09 1992-03-27 Toyama Chem Co Ltd 1,2―エタンジオール誘導体およびその塩
WO1995000486A1 (en) 1993-06-23 1995-01-05 Novo Nordisk A/S N-substituted azaheterocyclic carboxylic acids and esters thereof
WO1996012717A1 (fr) 1994-10-25 1996-05-02 Toyama Chemical Co., Ltd. Potentialisateur de l'activite du facteur de croissance nerveuse contenant un derive de 1,2-ethanediol ou un sel de celui-ci
JPH08268883A (ja) 1994-10-25 1996-10-15 Toyama Chem Co Ltd 1−フェニル−1,2−エタンジオール誘導体またはそ の塩を含有する神経成長因子の作用増強剤
WO1997011054A1 (en) 1995-09-22 1997-03-27 Yoshitomi Pharmaceutical Industries, Ltd. Benzoic acid compounds and medicinal use thereof
EP0790245A1 (de) 1996-02-15 1997-08-20 Hoechst Aktiengesellschaft Substituierte Thiophenylalkenylcarbonsäureguanidide, Verfahren zu ihrer Herstellung, ihre Verwendung als Medikament oder Diagnostikum sowie sie enthaltendes Medikament
WO1997030703A1 (fr) 1996-02-20 1997-08-28 Toyama Chemical Co., Ltd. Agent ameliorant les fonctions cerebrales contenant des derives de 1,2-ethanediol ou des sels de celui-ci
WO1999031056A1 (fr) * 1997-12-12 1999-06-24 Toyama Chemical Co., Ltd. Derives d'ether alcoylique ou leurs sels, et antagonistes du calcium les contenant
JPH11263773A (ja) 1997-12-12 1999-09-28 Toyama Chem Co Ltd アルキルエーテル誘導体またはその塩並びにそれらを含有するカルシウム拮抗剤
US6008233A (en) 1995-08-11 1999-12-28 Pfizer Inc (1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylipiperidin-1-yl)-1-propanolmethanesulfonate trihydrate
WO2000076957A1 (fr) 1999-06-11 2000-12-21 Toyama Chemical Co., Ltd. Derives de n-alkoxyalkyl, n-dialkylamine ou leurs sels et remedes contre les maladies a degenerescence nerveuse, qui les contiennent
US20050250843A1 (en) 2002-06-14 2005-11-10 Yasushi Nakada Medicinal compositions improving brain function and method for improving brain function
US7087594B2 (en) 2001-10-19 2006-08-08 Toyama Chemical Co., Ltd. Alkyl ether derivatives or salts thereof
US20060205709A1 (en) 2003-04-17 2006-09-14 Toyama Chemical Co., Ltd. Preventive/remedy for retinal nerve diseases containing alkyl ether derivatives or salts thereof
US20090093453A1 (en) 2006-04-26 2009-04-09 Toyama Chemical Co., Ltd Neurogenesis inducer or neuropathy therapeutic agent comprising alkyl ether derivative or salt thereof
US20100184997A1 (en) 2006-08-04 2010-07-22 Toyama Chemical Co., Ltd. Protein kinase c activity enhancer containing alkyl ether derivative or salt thereof
US20110098484A1 (en) 2005-03-28 2011-04-28 Toyama Chemical Co., Ltd. Process for production of 1-(3-(2-(1-benzothiophen-5-yl)- ethoxy)propyl)azetidin-3-ol or salts thereof
US8026232B2 (en) 2008-05-28 2011-09-27 Toyama Chemical Co., Ltd. Benzothiophene oxide derivative and salt thereof
US8119625B2 (en) 2006-04-26 2012-02-21 Toyama Chemical Co., Ltd. Neurogenesis inducer or neuropathy therapeutic agent comprising alkyl ether derivative or salt thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3232830B2 (ja) 1993-11-30 2001-11-26 三菱電機株式会社 フレキシブルディスク装置のキャリッジ機構

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156973A (ja) 1987-09-04 1989-06-20 Tanabe Seiyaku Co Ltd ベンゾフラン誘導体
JPH03232830A (ja) 1990-02-05 1991-10-16 Toyama Chem Co Ltd 1,2―エタンジオール誘導体およびその塩
JPH0495070A (ja) 1990-08-09 1992-03-27 Toyama Chem Co Ltd 1,2―エタンジオール誘導体およびその塩
WO1995000486A1 (en) 1993-06-23 1995-01-05 Novo Nordisk A/S N-substituted azaheterocyclic carboxylic acids and esters thereof
JPH08511783A (ja) 1993-06-23 1996-12-10 ノボ ノルディスク アクティーゼルスカブ N−置換アザ複素環式カルボン酸類とそのエステル類
WO1996012717A1 (fr) 1994-10-25 1996-05-02 Toyama Chemical Co., Ltd. Potentialisateur de l'activite du facteur de croissance nerveuse contenant un derive de 1,2-ethanediol ou un sel de celui-ci
JPH08268883A (ja) 1994-10-25 1996-10-15 Toyama Chem Co Ltd 1−フェニル−1,2−エタンジオール誘導体またはそ の塩を含有する神経成長因子の作用増強剤
EP0790246A1 (en) 1994-10-25 1997-08-20 Toyama Chemical Co., Ltd. Potentiator for nerve growth factor activity containing 1,2-ethanediol derivative or salt thereof
US6008233A (en) 1995-08-11 1999-12-28 Pfizer Inc (1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylipiperidin-1-yl)-1-propanolmethanesulfonate trihydrate
EP0873990A1 (en) 1995-09-22 1998-10-28 Yoshitomi Pharmaceutical Industries, Ltd. Benzoic acid compounds and medicinal use thereof
WO1997011054A1 (en) 1995-09-22 1997-03-27 Yoshitomi Pharmaceutical Industries, Ltd. Benzoic acid compounds and medicinal use thereof
EP0790245A1 (de) 1996-02-15 1997-08-20 Hoechst Aktiengesellschaft Substituierte Thiophenylalkenylcarbonsäureguanidide, Verfahren zu ihrer Herstellung, ihre Verwendung als Medikament oder Diagnostikum sowie sie enthaltendes Medikament
WO1997030703A1 (fr) 1996-02-20 1997-08-28 Toyama Chemical Co., Ltd. Agent ameliorant les fonctions cerebrales contenant des derives de 1,2-ethanediol ou des sels de celui-ci
WO1999031056A1 (fr) * 1997-12-12 1999-06-24 Toyama Chemical Co., Ltd. Derives d'ether alcoylique ou leurs sels, et antagonistes du calcium les contenant
JPH11263773A (ja) 1997-12-12 1999-09-28 Toyama Chem Co Ltd アルキルエーテル誘導体またはその塩並びにそれらを含有するカルシウム拮抗剤
WO2000076957A1 (fr) 1999-06-11 2000-12-21 Toyama Chemical Co., Ltd. Derives de n-alkoxyalkyl, n-dialkylamine ou leurs sels et remedes contre les maladies a degenerescence nerveuse, qui les contiennent
US7468443B2 (en) 2001-10-19 2008-12-23 Toyama Chemical Co., Ltd. Alkyl ether derivatives or salts thereof
US7087594B2 (en) 2001-10-19 2006-08-08 Toyama Chemical Co., Ltd. Alkyl ether derivatives or salts thereof
US8129535B2 (en) 2001-10-19 2012-03-06 Toyama Chemical Co., Ltd. Alkyl ether derivatives or salts thereof
US20050250843A1 (en) 2002-06-14 2005-11-10 Yasushi Nakada Medicinal compositions improving brain function and method for improving brain function
USRE42327E1 (en) 2002-06-14 2011-05-03 Toyama Chemical Co., Ltd. Medicinal compositions improving brain function and method for improving brain function
US20080103126A1 (en) 2002-06-14 2008-05-01 Toyama Chemical Co., Ltd. Medicinal compositions improving brain function and method for improving brian function
US7834053B2 (en) 2002-06-14 2010-11-16 Toyama Chemical Co., Ltd. Medicinal compositions improving brain function and method for improving brain function
US7897594B2 (en) 2003-04-17 2011-03-01 Toyama Chemical Co., Ltd. Preventive/remedy for retinal nerve diseases containing alkyl ether derivatives or salts thereof
US8067406B2 (en) 2003-04-17 2011-11-29 Toyama Chemical Co., Ltd. Preventive/remedy for retinal nerve diseases containing alkyl ether derivatives or salts thereof
US20060205709A1 (en) 2003-04-17 2006-09-14 Toyama Chemical Co., Ltd. Preventive/remedy for retinal nerve diseases containing alkyl ether derivatives or salts thereof
US20110098484A1 (en) 2005-03-28 2011-04-28 Toyama Chemical Co., Ltd. Process for production of 1-(3-(2-(1-benzothiophen-5-yl)- ethoxy)propyl)azetidin-3-ol or salts thereof
US7951963B2 (en) 2005-03-28 2011-05-31 Toyama Chemical Co., Ltd. Process for production of 1-(3-(2-(1-benzothiophen-5-yl)-ethoxy)propyl)azetidin-3-ol or salts thereof
US20090093453A1 (en) 2006-04-26 2009-04-09 Toyama Chemical Co., Ltd Neurogenesis inducer or neuropathy therapeutic agent comprising alkyl ether derivative or salt thereof
US8119625B2 (en) 2006-04-26 2012-02-21 Toyama Chemical Co., Ltd. Neurogenesis inducer or neuropathy therapeutic agent comprising alkyl ether derivative or salt thereof
US20100184997A1 (en) 2006-08-04 2010-07-22 Toyama Chemical Co., Ltd. Protein kinase c activity enhancer containing alkyl ether derivative or salt thereof
US20110245228A1 (en) 2006-08-04 2011-10-06 Toyama Chemical Co., Ltd. Protein kinase c activity enhancer containing alkyl ether derivative or salt thereof
US8026232B2 (en) 2008-05-28 2011-09-27 Toyama Chemical Co., Ltd. Benzothiophene oxide derivative and salt thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Alzheimer's Disease Treatment Phases, http://www.alzheimerstreatment.org/treatment/disease-treatment.htm (2008).
Alzheimer's Drugs, Consumer Reports Best Buy Drugs (p. 1-5) 2011.
http://mw1.merriam-webster.com/dictionary (**1 page only**).
Ono et al. (1999) "Alkyl Ether Derivative or Salt Therof and Calcium Antagonist Inclusive of the Same," Schreiber Translations. *
Ono et al. (1999) Alkyl Ether Derivative or Salt Therof and Calcium Antagonist Inclusive of the Same: Schreiber Translations.
Society for Neuroscience, Abstracts, vol. 24, part 1, p. 228, 1998.

Also Published As

Publication number Publication date
KR20040050919A (ko) 2004-06-17
CY1106714T1 (el) 2012-05-23
CA2464358C (en) 2011-05-24
DE60220694T2 (de) 2008-02-07
CN101643470A (zh) 2010-02-10
US20050070521A1 (en) 2005-03-31
CN1571786A (zh) 2005-01-26
US20090111992A1 (en) 2009-04-30
JP4398247B2 (ja) 2010-01-13
AU2002344107B2 (en) 2007-11-01
JPWO2003035647A1 (ja) 2005-07-28
PL217872B1 (pl) 2014-08-29
PL369601A1 (en) 2005-05-02
DK1437353T3 (da) 2007-08-06
US8129535B2 (en) 2012-03-06
EP1437353B1 (en) 2007-06-13
ATE364604T1 (de) 2007-07-15
RO122203B1 (ro) 2009-02-27
HU230407B1 (hu) 2016-04-28
PT1437353E (pt) 2007-08-28
IL161308A (en) 2011-06-30
EP1437353A1 (en) 2004-07-14
BR0213393A (pt) 2005-01-11
CN101643470B (zh) 2012-08-01
HUP0500017A2 (hu) 2005-04-28
HUP0500017A3 (en) 2011-07-28
EP1437353A4 (en) 2005-01-19
KR100956990B1 (ko) 2010-05-11
CA2464358A1 (en) 2003-05-01
BRPI0213393B8 (pt) 2021-05-25
ZA200402806B (en) 2005-06-29
NO20041531L (no) 2004-04-15
PL402986A1 (pl) 2013-04-29
NO325780B1 (no) 2008-07-14
NZ532328A (en) 2005-07-29
US7087594B2 (en) 2006-08-08
WO2003035647A1 (fr) 2003-05-01
US7468443B2 (en) 2008-12-23
BRPI0213393B1 (pt) 2018-12-04
ES2287324T3 (es) 2007-12-16
CN100500662C (zh) 2009-06-17
MXPA04003541A (es) 2004-07-22
DE60220694D1 (de) 2007-07-26
PL215264B1 (pl) 2013-11-29
IL161308A0 (en) 2004-09-27
US20060194781A1 (en) 2006-08-31

Similar Documents

Publication Publication Date Title
US7468443B2 (en) Alkyl ether derivatives or salts thereof
US8067406B2 (en) Preventive/remedy for retinal nerve diseases containing alkyl ether derivatives or salts thereof
JP4782961B2 (ja) N−アルコキシアルキル−n,n−ジアルキルアミン誘導体またはその塩、それらを含有する神経変性疾患の治療剤
WO2009145171A1 (ja) 新規なベンゾチオフェンオキシド誘導体またはその塩
JP4061059B2 (ja) N−アルコキシアルキル−n−アルキルアミン誘導体またはその塩

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12