US20190178683A1 - System, Method And Object For High Accuracy Magnetic Position Sensing - Google Patents

System, Method And Object For High Accuracy Magnetic Position Sensing Download PDF

Info

Publication number
US20190178683A1
US20190178683A1 US16/301,021 US201616301021A US2019178683A1 US 20190178683 A1 US20190178683 A1 US 20190178683A1 US 201616301021 A US201616301021 A US 201616301021A US 2019178683 A1 US2019178683 A1 US 2019178683A1
Authority
US
United States
Prior art keywords
vector component
magnitude
controller
vector
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/301,021
Other languages
English (en)
Inventor
Rémi Tétreault
Louis Beaumier
Christian Hébert
Simon Riverin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kongsberg Inc
Original Assignee
Kongsberg Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kongsberg Inc filed Critical Kongsberg Inc
Publication of US20190178683A1 publication Critical patent/US20190178683A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/18Sensors; Details or arrangements thereof

Definitions

  • the subject invention relates to a system and method for high accuracy magnetic position sensing of an object, and more specifically, wherein magnetic position sensing is accomplished by measuring three vector components of a magnetic field produced by the object.
  • Magnetic position sensing technology is becoming an increasingly popular form of detection in various systems.
  • conventional methods of magnetic position sensing determine position using only two vector components of a magnetic field of an object being sensed.
  • automotive applications such as clutch position measurement systems and transmission gear position sensing systems
  • conventional methods of sensing position using only two vector components of a magnetic field are inadequate for providing high-accuracy and high-precision measurements required for modern time-sensitive and position-sensitive automotive control systems.
  • Another exemplary application is brushless DC motor control systems, where measurement of magnetic elements of rotors of brushless DC motors is required for tuning and efficient operation of the motors.
  • Conventional methods of magnetic position sensing measure only two vector components of a magnetic field of an object being sensed and base determination of location of the object thereon. Therefore, conventional methods are not accurate and precise enough to allow for reliable operation of innovative position-sensitive control systems that are reliant on high-accuracy position determination.
  • the system includes an object.
  • the object is configured to produce a magnetic field having a first vector component, a second vector component, and a third vector component.
  • the first, second, and third vector components are orthogonal to one another.
  • a sensor is configured to measure a magnitude of each of the first, second, and third vector components when the object is within a range of positions.
  • a controller is connected to the sensor.
  • the controller is configured to determine a relative position of the object within an undetermined cycle of a plurality of cycles based on the magnitude of the first vector component and the magnitude of the second vector component.
  • the controller is configured to determine a cycle of the plurality of cycles in which the object is located based on the magnitude of the third vector component.
  • the controller is configured to determine an absolute position of the object based on the relative position of the object and the cycle in which the object is located.
  • the system includes an object, a sensor, and a controller connected to the sensor.
  • the object is configured to move within a range of positions.
  • the object is further configured to provide a magnetic field having a first vector component, a second vector component, and a third vector component.
  • the first, second, and third vector components are orthogonal to one another.
  • the object is moved within the range of positions.
  • the sensor measures a magnitude of each of the first, second, and third vector components when the object is within the range of positions.
  • the controller determines a relative position of the object within an undetermined cycle of a plurality of cycles based on the magnitude of the first vector component and the magnitude of the second vector component.
  • the controller determines a cycle of the plurality of cycles in which the object is located based on the magnitude of the third vector component.
  • the controller determines an absolute position of the object based on the relative position of the object and the cycle in which the object is located.
  • the object has a length.
  • the object is configured to move linearly within a range of positions.
  • the object is configured to produce a magnetic field having a first vector component, a second vector component, and a third vector component.
  • the first, second, and third vector components are orthogonal to one another.
  • a magnitude of the first vector component and a magnitude of the second vector component each vary cyclically along the length of the object.
  • the magnitude of the third vector component is unique for every position of the sensor along the length of the object.
  • the system, method, and object advantageously provide high accuracy determination of position of the object through three-dimensional magnetic sensing.
  • position of the object By determining position of the object based on magnitudes of three dimensions of the magnetic field produced by the object, position of the object can be determined with extremely high accuracy and precision.
  • This allows the system and method to be implemented within innovative position-sensitive control systems that are reliant on high-accuracy position sensing, such as transmission control modules of automated manual transmissions for automobiles, which are reliant on high-accuracy position determinations for clutches, as well as high-efficiency and high-precision brushless DC motor control systems, which are reliant on high-accuracy position determinations for magnetic rotors.
  • FIG. 1 is a perspective view of one embodiment of a system for determining position of an object using a sensor located a fixed distance from the object and a controller in communication with the sensor.
  • FIG. 2 is a perspective view of another embodiment of the system for determining position, wherein the object includes a plurality of magnets.
  • FIG. 3 is a layout of one embodiment of an object for use in positions sensing.
  • FIG. 4 is a chart illustrating magnitudes of a first, a second, and a third vector component of the object acquired by the sensor according to one example.
  • FIG. 5 is a chart illustrating the relationship of the first and second vector components to a relative position of the object and the relationship of the third vector component to a cycle within a plurality of cycles in which the object is located according to one example.
  • FIG. 6 is a perspective view of yet another embodiment of the system for determining position, wherein the object is fixed to a clutch positioning component of an automated manual transmission.
  • FIG. 7 is a flowchart of an embodiment of a method of determining position.
  • FIG. 1 illustrates an embodiment of the system 10 .
  • the system 10 includes an object 12 , a sensor 14 , and a controller 16 .
  • the object 12 is configured to produce a magnetic field H.
  • the magnetic field H has a first vector component V 1 , a second vector component V 2 , and a third vector component V 3 .
  • the first, second, and third vector components V 1 , V 2 , V 3 are orthogonal to one another.
  • the object 12 can have several configurations.
  • the object 12 is substantially cylindrical and has a first end 18 and a second end 20 .
  • Each of the first, second, and third vector components V 1 , V 2 , V 3 has both a direction and a magnitude.
  • the direction of the first vector component V 1 extends radially from the object 12 in the direction of the sensor 14 .
  • the direction of the second vector component V 2 extends longitudinally through the object 12 orthogonal to the first vector component V 1 .
  • the direction of the third vector component V 3 extends radially from the object 12 orthogonal to both the first and second vector components V 1 , V 2 .
  • the object 12 can be any shape suitable to produce the magnetic field H.
  • the object 12 may have configurations other than those specifically described herein.
  • the object 12 is a single magnet configured to produce the magnetic field H.
  • the object 12 includes a plurality of magnets 26 configured to altogether produce the magnetic field H.
  • the magnets 26 are permanent magnets. In other embodiments, the magnets 26 are electromagnets.
  • the sensor 14 is a magnetic field sensor configured to measure the magnitudes of each of the first, second, and third vectors components V 1 , V 2 , V 3 of the magnetic field H when the object 12 is within a range of positions 22 .
  • the magnitudes of each of the first, second, and third vector components V 1 , V 2 , V 3 can be measured in terms of either magnetic flux density or magnetic field intensity.
  • the letter ‘H’ is used herein to refer to the magnetic field H, referring to strength of the magnetic field H expressed in amperes per meter, the magnetic field H can also be expression in terms of the Lorentz force it exerts on moving electric charges, i.e. ‘B’, or any other suitable method of expressing a field generated by magnetized material.
  • the range of positions 22 is defined such that as the object 12 is moved within the range of positions 22 , the object 12 moves along a single axis such that the sensor 14 is located between the first end 18 and the second end 20 and the sensor 14 remains a fixed distance 24 from the object 12 .
  • the object 12 may move along the single axis via a predetermined path.
  • the range of positions 22 is shorter due to an edge effect of the magnetic field H.
  • the edge effect affects measurement of the magnetic field H such that measuring the magnitudes of the first, second, and third vector components V 1 , V 2 , V 3 near the first end 18 or the second end 20 of the object 12 is undesirable.
  • the sensor 14 is configured to measure the magnitude of each of the first, second, and third vector components V 1 , V 2 , V 3 of the magnetic field H substantially simultaneously.
  • the sensor 14 can be any type of sensor capable of measuring the magnitude of each of the first, second, and third vector components V 1 , V 2 , V 3 of the magnetic field H, such as, but not limited to, a rotating coil, hall effect, magnetoresistive, fluxgate, superconducting quantum interference device, or spin-exchange relaxation-free atomic magnetometer.
  • the sensor 14 may have configurations other than those specifically described herein.
  • the controller 16 is in communication with the sensor 14 .
  • the controller 16 performs many of the high-accuracy position determination steps of the method 40 .
  • the controller 16 receives the magnitudes of the first, second, and third vector components V 1 , V 2 , V 3 of the magnetic field H from the sensor 14 .
  • the controller 16 can be a microcontroller, state machine, field-programmable gate array, CPU, or any other device suitable for receiving and analyzing the magnitudes of the first, second, and third vector components V 1 , V 2 , V 3 from the sensor 14 .
  • the object 12 is configured such that the magnitude of the first vector component V 1 and the magnitude of the second vector component V 2 measured by the sensor 14 as the object 12 is moved across the range of positions 22 are each periodic functions.
  • the magnitude of the first vector component V 1 and the magnitude of the second vector component V 2 are each sinusoidal.
  • the magnitudes of the first and second vector components V 1 , V 2 measured at any position within the range of positions 22 have a phase difference ⁇ .
  • the magnitude of the first vector component V 1 substantially resembles a cosine wave and the magnitude of the second vector component V 2 substantially resembles a sine wave.
  • the object 12 is configured such that the magnitude of the third vector component V 3 has a unique value for each possible position of the sensor 14 relative the object 12 as the object 12 is moved across the range of positions 22 .
  • the magnitude of the third vector component V 3 is a monotonic function.
  • the magnitude of the third vector component V 3 continually increases as the object 12 is moved across the range of positions 22 .
  • the magnitude of the third vector component V 3 continually decreases as the object 12 is moved across the range of positions.
  • FIG. 4 is a chart illustrating the magnitudes of the first, second, and third vector components V 1 , V 2 , V 3 of an exemplary embodiment of the invention.
  • the chart has a horizontal position axis and a vertical magnetic field axis.
  • the position axis corresponds to position of the object 12 within the range of positions 22 .
  • the left-most value on the position axis corresponds to the object 12 being located within the range of positions 22 such that the sensor 14 is nearest the first end 18 of the object 12 .
  • Increasing values of the position axis, i.e. values further toward the right of the position axis correspond to the object 12 being located such that the sensor 14 is nearer the second end 20 of the object 12 .
  • the right-most value on the position axis corresponds to the object 12 being located within the range of positions 22 such that the sensor 14 is nearest the second end 20 of the object 12 .
  • the magnetic field axis corresponds to the magnitudes of the first, second, and third vector components V 1 , V 2 , V 3 measured by the sensor 14 and communicated to the controller 16 at each position along the horizontal axis.
  • the magnitudes of the first and second vector components V 1 , V 2 are sinusoidal and the phase difference ⁇ is about ⁇ /2 radians, i.e. 90 degrees.
  • the magnitudes of the first and second vector components V 1 , V 2 are periodic functions related to the position of the object 12 within the range of positions 22 .
  • the magnitude of the third vector component V 3 is a monotonic function related to the position of the object 12 within the range of positions 22 .
  • the magnitude of the third vector component V 3 continually increases as the object 12 is moved across the range of positions 22 such that the sensor 14 measures the magnitude of the third vector component V 3 from near the first end 18 of the object 12 to near the second end 20 of the object 12 .
  • position of the object 12 over each period of the magnitudes of each of the first and second vector components V 1 , V 2 defines each cycle of a plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e.
  • the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e includes five cycles. The number of cycles is dependent upon the magnetic field H, and is thereby dependent upon configuration of the object 12 .
  • the object 12 can be configured in many ways, and the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e can include any amount of cycles.
  • FIG. 3 illustrates one embodiment of the object 12 including the plurality of magnets 26 .
  • the number of cycles included in the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e is dependent upon the number of magnetic included in the plurality of magnets 26 .
  • the plurality of magnets 26 includes five magnets, thereby causing the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e to include two cycles.
  • the edge effect prevents the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e from including more than two cycles, as the sensor 14 in unable to reliably measure the magnetic field H near the first and second ends 18 , 20 of the object 12 .
  • the magnets 26 each have a north pole N and a south pole S.
  • the magnets 26 are oriented such that the north and south poles N, S that are adjacent to one another have opposing polarities, i.e. each of the north poles N is adjacent only to one or more of the south poles S, and each of the south poles S is adjacent only to one or more of the north poles N.
  • the opposing polarities of the north and south poles N, S cause the magnitudes of the first and second vector components V 1 , V 2 to be sinusoidal with respect to position of the object 12 within the range of positions 22 as shown in FIG. 4 .
  • the controller 16 is configured to determine a relative position of the object 12 within an undetermined cycle of the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e based upon the magnitudes of the first and second vector components V 1 , V 2 .
  • the relative position of the object 12 is a position of the object 12 determined within an undetermined cycle of the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e.
  • the controller 16 determines precisely where the object 12 is located within one cycle of the five cycles, but within which cycle of the five cycles the object 12 is located is undetermined. In other words, although the controller 16 may accurately determine the relative position of the object 12 within any given single cycle, the controller 16 cannot determine which cycle of the plurality is being measured based upon the magnitudes of the first and second vector components V 1 , V 2 .
  • the controller 16 is configured to determine in which cycle of the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e the object 12 is located based on the magnitude of the third vector component V 3 .
  • the controller 16 determines the cycle in which the object 12 is located by corresponding the magnitude of the third vector component V 3 with the cycle in which the object 12 is located. The techniques by which the controller determines the cycle in which the object 12 is located are described in detail below.
  • a secondary object 30 is fixed to the object 12 .
  • the secondary object 30 is fixed to the object 12 such that the secondary object 30 has constant position relative the object 12 as the object 12 is moved within the range of positions 22 .
  • the secondary object 30 is fixed to the object 12 such that the secondary object 30 is located directly below the object 12 .
  • the controller 16 is programmed with location and of the secondary object 30 relative the object 12 . As the controller 16 determines location of the object 12 , the controller can also determine location of the secondary object 30 based on location of the secondary object 30 relative the object 12 .
  • an exemplary embodiment including a clutch actuation component 30 for an automobile, commonly a truck, having an automated manual transmission is shown.
  • the automated manual transmission allows an automobile transmission having a manual transmission gearbox to change gears without manual operation of a clutch pedal by a human operator.
  • the automobile transmission changes gears with automated clutch actuation by a transmission control module.
  • the transmission control module is a closed-loop control system.
  • the controller 16 includes the transmission control module.
  • the clutch actuation component 30 is fixed to a clutch positioning rod 32 .
  • the clutch positioning rod 32 is actuated according to signals from the transmission control module to control position of an automotive clutch during automated shifting operations of the automated manual transmission.
  • the transmission control module requires high-accuracy knowledge of position of the automotive clutch to facilitate smooth operation of the vehicle during gear shifting.
  • the object 12 is fixed to and extends along a length of the clutch actuation component 30 .
  • the object 12 is moved within the range of positions 22 as the clutch positioning rod is actuated.
  • the controller 16 communicates position of the object 12 to the transmission control module.
  • the transmission control module infers position of the automotive clutch by knowledge of fixed distances between the object 12 , the clutch actuation component 30 , and the automotive clutch.
  • FIG. 7 is a flowchart illustrating detailed operation of the method 40 for determining high-accuracy position of the object 12 . As described, the method 40 occurs while the object 12 is within the range of positions 22 .
  • the object 12 is moved to within the range of positions 22 .
  • the object 12 can be moved to within the range of positions 22 from a position within the range of positions 22 or can be moved to within the range of positions 22 from a position outside the range of positions 22 .
  • the sensor 14 measures a magnitude of each of the first, second, and third vector components V 1 , V 2 , V 3 .
  • the controller 16 determines the relative position of the object 12 within the undetermined cycle of the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e.
  • the relative position is expressed as a position parameter.
  • the controller 16 does so by determining a position parameter having a tangent equal to a quotient of both the magnitude of the first vector component V 1 and the magnitude of the second vector component V 2 .
  • the position parameter is a value between ⁇ /2 radians and ⁇ /2 radians, i.e. ⁇ 90 degrees and 90 degrees.
  • FIG. 5 is a chart having a horizontal position axis, a vertical magnetic field axis, and a vertical angle axis.
  • the position axis corresponds to position of the object 12 within the range of positions 22 .
  • the left-most value on the position axis corresponds to the object 12 being located within the range of positions 22 such that the sensor 14 is nearest the first end 18 of the object 12 .
  • moving toward the right of the position axis corresponds to the object 12 being located within the range of positions 22 such that the sensor 14 is nearer the second end 20 of the object 12
  • the right-most value on the position axis corresponds to the object 12 being located within the range of positions 22 such that the sensor 14 is nearest the second end 20 of the object 12 .
  • the magnetic field axis corresponds to the magnitude of the third vector component V 3 measured by the sensor 14 and communicated to the controller 16 at each position along the position axis.
  • the magnitude of the third vector component V 3 continually increases as the object 12 is moved across the range of positions 22 such that the sensor 14 measures the magnitude of the third vector component V 3 from near the first end 18 of the object 12 to near the second end 20 of the object 12 .
  • the angle axis corresponds to the value of the position parameter calculated at step 204 by the controller 16 for each position of the object 12 along the position axis.
  • the value of the position parameter is a periodic function having the same period as the sinusoids of the magnitudes of the first and second vector components V 1 , V 2 due to the position parameter being a function of the magnitudes of the first and second vector components V 1 , V 2 . Therefore, each period of the value of the position parameter corresponds to a cycle of the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e.
  • the undetermined cycle of the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e is undetermined due to the position parameter having an identical value ⁇ 1 , ⁇ 2 within each cycle of the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e. Therefore, determination of the position parameter allows for high-accuracy determination of the relative position of the object 12 within the undetermined cycle of the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e.
  • the controller 16 determines the relative position by retrieving the position parameter from a position parameter lookup table.
  • the position parameter lookup table is a section of memory accessible by the controller 16 having recorded values of the position value corresponding to the magnitudes of the first and second vector components V 1 , V 2 .
  • the controller 16 determined the relative position by calculating the position parameter as a function of the magnitudes of the first and second vector components V 1 , V 2 . Retrieving the position parameter from the position parameter lookup table is advantageous in situations where the controller 16 has limited processing power. Calculating the position parameter as a function of the magnitudes of the first and second vector components V 1 , V 2 is advantageous in situations where the controller 16 has limited memory.
  • the controller 16 determines the cycle in which the object 12 is located.
  • the magnitude of the third vector component V 3 is unique for each position of the object 12 within the range of positions 22 due to the magnitude of the third vector component V 3 being a monotonic function of the position of the object 12 within the range of positions 22 . Therefore, each cycle of the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e has a corresponding range of magnitudes of the third vector component V 3 that correspond thereto.
  • the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e includes 2.5 cycles.
  • the magnitude of the third vector component V 3 has a distinct range of magnitudes corresponding to each cycle of the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e.
  • the controller 16 determines the cycle in which the object 12 is located by retrieving from a cycle lookup table the cycle corresponding to the magnitude of the third vector component V 3 . In other embodiments, the controller 16 determines the cycle in which the object 12 is located by calculating the cycle in which the object 12 is located as a function of the magnitude of the third vector component V 3 .
  • FIG. 5 illustrates an exemplary position P 1 , a first exemplary position parameter ⁇ 1 , a second exemplary position parameter ⁇ 2 , and an exemplary third vector component HP 1 .
  • the exemplary position P 1 is within a first cycle 28 a.
  • the first and second exemplary position parameters ⁇ 1 , ⁇ 2 are determined when the object 12 is located at the exemplary position P 1 .
  • the first exemplary position parameter ⁇ 1 is within the first cycle 28 a.
  • the second exemplary position parameter ⁇ 2 has value equal to the first exemplary position parameter ⁇ 1 and is within a second cycle 28 b.
  • the exemplary third vector component HP 1 is the magnitude of the third vector component V 3 measured when the object 12 is located at the exemplary position P 1 .
  • the controller 16 calculates an absolute position of the object 12 based on the relative position and the cycle.
  • the absolute position of the object 12 is a high-accuracy determination of position of the object 12 within the cycle of the plurality of cycles 28 a, 28 b, 28 c, 28 d, 28 e within which the object 12 is located.
  • the controller 16 determines the absolute position of the object 12 by combining the determination of the relative position of the object 12 at step 204 with the determination of the cycle in which controller 16 determined the object 12 is located at step 206 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
US16/301,021 2016-05-17 2016-05-17 System, Method And Object For High Accuracy Magnetic Position Sensing Abandoned US20190178683A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2016/052876 WO2017199063A1 (fr) 2016-05-17 2016-05-17 Système, procédé et objet servant à la détection de position magnétique à haute précision

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/052876 A-371-Of-International WO2017199063A1 (fr) 2016-05-17 2016-05-17 Système, procédé et objet servant à la détection de position magnétique à haute précision

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/328,529 Continuation US11821763B2 (en) 2016-05-17 2021-05-24 System, method and object for high accuracy magnetic position sensing

Publications (1)

Publication Number Publication Date
US20190178683A1 true US20190178683A1 (en) 2019-06-13

Family

ID=60326282

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/301,021 Abandoned US20190178683A1 (en) 2016-05-17 2016-05-17 System, Method And Object For High Accuracy Magnetic Position Sensing
US17/328,529 Active US11821763B2 (en) 2016-05-17 2021-05-24 System, method and object for high accuracy magnetic position sensing

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/328,529 Active US11821763B2 (en) 2016-05-17 2021-05-24 System, method and object for high accuracy magnetic position sensing

Country Status (4)

Country Link
US (2) US20190178683A1 (fr)
EP (1) EP3458805B1 (fr)
CN (1) CN109313006B (fr)
WO (1) WO2017199063A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10983019B2 (en) 2019-01-10 2021-04-20 Ka Group Ag Magnetoelastic type torque sensor with temperature dependent error compensation
US11486776B2 (en) 2016-12-12 2022-11-01 Kongsberg Inc. Dual-band magnetoelastic torque sensor
US11821763B2 (en) 2016-05-17 2023-11-21 Kongsberg Inc. System, method and object for high accuracy magnetic position sensing
US12025521B2 (en) 2020-02-11 2024-07-02 Brp Megatech Industries Inc. Magnetoelastic torque sensor with local measurement of ambient magnetic field

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417191B (zh) * 2019-07-24 2024-06-18 桂林智神信息技术股份有限公司 获取辅助拍摄设备用电机的机械位置的方法及装置
CN112013754B (zh) * 2020-09-01 2022-03-15 瑞立集团瑞安汽车零部件有限公司 一种无接触离合器助力器主轴位移检测系统及检测方法
EP4427002A1 (fr) * 2021-11-02 2024-09-11 Landman, Werner Capteur et procédé de détection

Family Cites Families (187)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3263796A (en) * 1964-12-18 1966-08-02 Franklin E Parke Magnetic conveyor
JPS57179302A (en) 1981-04-25 1982-11-04 Toyoda Autom Loom Works Ltd Positive displacement type fluid compressor
US4414855A (en) 1981-06-01 1983-11-15 Aisin Seiki Kabushiki Kaisha Torque sensor
DE3206503C1 (de) 1982-02-24 1983-08-25 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur Kompensation der bei der Drehmomentmessung nach dem Wirbelstromprinzip an Wellen auftretenden durch die Inhomogenität der Permeabilität der Oberfläche der Welle erzeugten elektr. Störspannung
GB2159278B (en) 1984-05-23 1988-04-13 Stc Plc Heading sensor
JPS6141935A (ja) 1984-08-02 1986-02-28 Matsushita Electric Ind Co Ltd トルクセンサ
JPS6275328A (ja) 1985-09-30 1987-04-07 Toshiba Corp トルクセンサ
US4896544A (en) 1986-12-05 1990-01-30 Mag Dev Inc. Magnetoelastic torque transducer
US4760745A (en) 1986-12-05 1988-08-02 Mag Dev Inc. Magnetoelastic torque transducer
JPH0754273B2 (ja) 1987-12-26 1995-06-07 大同特殊鋼株式会社 トルクサンセ
JPH01187425A (ja) 1988-01-22 1989-07-26 Toshiba Corp 操舵軸用トルクセンサ
US4996890A (en) 1988-10-07 1991-03-05 Koyo Seiko Co. Ltd. Torque sensor
JP2512552B2 (ja) 1989-04-20 1996-07-03 株式会社クボタ 磁歪式トルクセンサ軸の製造方法
JP2512553B2 (ja) 1989-04-20 1996-07-03 株式会社クボタ 磁歪式トルクセンサ軸の製造方法
JP2800347B2 (ja) 1990-02-07 1998-09-21 株式会社豊田自動織機製作所 磁歪式トルクセンサ
JP2983246B2 (ja) 1990-04-18 1999-11-29 三菱製鋼株式会社 磁歪式トルクセンサ軸の製造方法
JPH04191630A (ja) 1990-11-26 1992-07-09 Japan Electron Control Syst Co Ltd 磁歪式トルクセンサ
US5520059A (en) 1991-07-29 1996-05-28 Magnetoelastic Devices, Inc. Circularly magnetized non-contact torque sensor and method for measuring torque using same
US5351555A (en) 1991-07-29 1994-10-04 Magnetoelastic Devices, Inc. Circularly magnetized non-contact torque sensor and method for measuring torque using same
US5307690A (en) 1991-07-29 1994-05-03 Kubota Corporation Temperature compensating device for torque measuring apparatus
US5591925A (en) 1991-07-29 1997-01-07 Garshelis; Ivan J. Circularly magnetized non-contact power sensor and method for measuring torque and power using same
JPH0545240A (ja) 1991-08-21 1993-02-23 Kubota Corp 磁歪式トルクセンサの過負荷防止装置
JPH0566164A (ja) 1991-09-05 1993-03-19 Japan Electron Control Syst Co Ltd 磁歪式トルクセンサ
JP2608498B2 (ja) 1991-11-05 1997-05-07 株式会社ユニシアジェックス 磁歪式トルクセンサ
JP2529980Y2 (ja) 1991-11-08 1997-03-26 株式会社ユニシアジェックス 磁歪式トルクセンサ
JPH0543040U (ja) 1991-11-14 1993-06-11 日本電子機器株式会社 磁歪式トルクセンサ
JPH0545537U (ja) 1991-11-22 1993-06-18 日本電子機器株式会社 磁歪式トルクセンサ
JPH0545538U (ja) 1991-11-22 1993-06-18 日本電子機器株式会社 磁歪式トルクセンサ
JPH05231967A (ja) 1992-02-19 1993-09-07 Yaskawa Electric Corp 磁歪式トルクセンサ
JPH05231966A (ja) 1992-02-19 1993-09-07 Yaskawa Electric Corp 磁歪式トルクセンサ
JP2673636B2 (ja) 1992-06-01 1997-11-05 株式会社ユニシアジェックス 磁歪式トルクセンサ用処理回路
JP2722296B2 (ja) 1992-06-16 1998-03-04 株式会社ユニシアジェックス 磁歪式トルクセンサ
JP2584419Y2 (ja) 1992-07-29 1998-11-05 株式会社ユニシアジェックス 磁歪式トルクセンサ
US5491369A (en) 1992-08-24 1996-02-13 Kubota Corporation Magnetostrictive torque sensor shaft
JPH0674844A (ja) 1992-08-24 1994-03-18 Unisia Jecs Corp 磁歪式トルクセンサ
JPH0628673U (ja) 1992-09-14 1994-04-15 日本電子機器株式会社 磁歪式トルクセンサ
JPH0647832U (ja) 1992-12-02 1994-06-28 日本電子機器株式会社 磁歪式トルクセンサ
JPH06258158A (ja) 1993-03-03 1994-09-16 Unisia Jecs Corp 磁歪式トルクセンサ
JP3161867B2 (ja) 1993-04-19 2001-04-25 株式会社ユニシアジェックス 磁歪式トルクセンサ
JPH0719971A (ja) 1993-05-07 1995-01-20 Unisia Jecs Corp トルク検出装置
JPH06323930A (ja) 1993-05-12 1994-11-25 Yaskawa Electric Corp 磁歪式トルクセンサの外乱磁界ノイズ補償装置
JPH072943U (ja) 1993-06-14 1995-01-17 株式会社ユニシアジェックス 磁歪式トルクセンサ
JPH0780756A (ja) 1993-09-16 1995-03-28 Omron Corp センサ内蔵チャック
US5589645A (en) 1993-11-30 1996-12-31 Unisia Jecs Corporation Structure of magnetostrictive shaft applicable to magnetostriction-type torque sensor for detecting torque applied to rotatable shaft and method for manufacturing the same
JPH07159258A (ja) 1993-12-09 1995-06-23 Unisia Jecs Corp 磁歪式トルクセンサ
JPH0743521U (ja) 1993-12-28 1995-08-22 株式会社ユニシアジェックス 磁歪式トルクセンサ
JPH07316658A (ja) 1994-05-30 1995-12-05 Unisia Jecs Corp 磁歪シャフトの製造方法
JPH085477A (ja) 1994-06-16 1996-01-12 Unisia Jecs Corp 磁歪式トルクセンサ
JPH0843216A (ja) 1994-08-03 1996-02-16 Yaskawa Electric Corp 多機能トルクセンサ装置
US5786690A (en) 1994-08-18 1998-07-28 International Business Machines Corporation High resolution three-axis scanning squid microscope having planar solenoids
US5526704A (en) 1994-11-01 1996-06-18 Unisia Jecs Corporation Structure of magnetostrictive torque sensor applicable to sensor for detecting torque applied to rotatable shaft
JPH0985587A (ja) 1995-09-28 1997-03-31 Mitsubishi Materials Corp 回転切削工具による切削状態の検出装置および検出方法
JP3655951B2 (ja) 1995-09-29 2005-06-02 ティーアールダブリュ オートモーティブ ジャパン株式会社 電動パワーステアリング装置
JPH09189624A (ja) 1996-01-10 1997-07-22 Seiko Epson Corp トルクセンサ
US6047605A (en) 1997-10-21 2000-04-11 Magna-Lastic Devices, Inc. Collarless circularly magnetized torque transducer having two phase shaft and method for measuring torque using same
US5939881A (en) 1997-11-13 1999-08-17 Raytheon Company High dynamic range digital fluxgate magnetometer
ATE308761T1 (de) 1998-03-30 2005-11-15 Sentron Ag Magnetfeldsensor
GB9808792D0 (en) 1998-04-23 1998-06-24 Effective Torque Technologies Magnetising arrangements for torque/force sensor
US6522130B1 (en) * 1998-07-20 2003-02-18 Uqm Technologies, Inc. Accurate rotor position sensor and method using magnet and sensors mounted adjacent to the magnet and motor
DE19836599A1 (de) * 1998-08-13 2000-02-17 Windhorst Beteiligungsgesellsc Verfahren zur berührungslosen magnetischen Erfassung linearer Relativbewegungen zwischen Dauermagneten und elektronischen Sensoren
US6222363B1 (en) 1999-01-08 2001-04-24 Methode Electronics, Inc. Switch-mode flux-gate magnetometer
JP2001050830A (ja) 1999-08-12 2001-02-23 Suzuki Motor Corp パワーステアリング用トルクセンサ
DE19943128A1 (de) 1999-09-09 2001-04-12 Fraunhofer Ges Forschung Hall-Sensoranordnung zur Offset-kompensierten Magnetfeldmessung
GB9923894D0 (en) 1999-10-08 1999-12-08 Fast Technology Gmbh Accelerometer
JP2003534180A (ja) 1999-12-29 2003-11-18 デルファイ・テクノロジーズ・インコーポレーテッド 電動式パワーステアリングシステムを組み込んだ自動車の安定性を改良するための方法及びシステム
US6341534B1 (en) 2000-03-03 2002-01-29 Ford Motor Company Integrated two-channel torque sensor
JP2001296193A (ja) 2000-04-17 2001-10-26 Suzuki Motor Corp 操舵力検出用磁歪式トルクセンサ
US6454911B1 (en) 2000-06-01 2002-09-24 Honeywell International Inc. Method and apparatus for determining the pass through flux of magnetic materials
JP2004503765A (ja) 2000-06-14 2004-02-05 ファースト テクノロジー アーゲー 磁気変換器トルク測定
GB0028385D0 (en) 2000-11-21 2001-01-03 Inertia Switch Ltd Torque sensing apparatus and method
DE10114218A1 (de) 2001-03-23 2002-10-02 Bosch Gmbh Robert Verfahren und Vorrichtung zur Auswertung von Signalen magnetoelastischer Sensoren
US6698299B2 (en) 2001-05-05 2004-03-02 Methode Electronics, Inc. Magnetoelastic torque sensor
JP2002333375A (ja) 2001-05-10 2002-11-22 Hitachi Metals Ltd 磁歪式トルクセンサ材、及びそれを用いてなる磁歪式トルクセンサ軸、及び該軸を用いて成る磁歪式トルクセンサ
JP2002340701A (ja) 2001-05-18 2002-11-27 Hitachi Metals Ltd 磁歪式トルクセンサ軸の製造方法
GB0116757D0 (en) 2001-07-10 2001-08-29 Hall Effect Technologies Ltd Apparatus for determining orientation relative to a magnetic field in a three dimensional space
DE10161803A1 (de) 2001-12-15 2003-07-10 Hilti Ag Elektromagnetischer Drehmomentsensor
GB0204213D0 (en) 2002-02-22 2002-04-10 Fast Technology Ag Pulsed torque measurement
DE10392253B4 (de) 2002-02-22 2006-11-30 Abas Inc., Chicago Magnetisch neutraler Verschiebungs-(Drehmoment-)Wandler für ein ferromagnetisches Element mit Spule(n) und Magnetfeldsensor(en)
JP2003307460A (ja) 2002-04-15 2003-10-31 Toyoda Mach Works Ltd トルクセンサ
EP1518131B1 (fr) 2002-07-01 2005-10-26 European Organisation for Nuclear Research CERN Dispositif d'etalonnage de capteurs magnetiques dans trois dimensions
JP2004037240A (ja) 2002-07-03 2004-02-05 Suzuki Motor Corp 磁歪式トルクセンサシャフトおよびその製造方法
JP2004053435A (ja) 2002-07-22 2004-02-19 Suzuki Motor Corp 磁歪式トルクセンサシャフトおよびその製造方法
JP2004053434A (ja) 2002-07-22 2004-02-19 Suzuki Motor Corp 磁歪式トルクセンサシャフトの製造方法
JP2004053433A (ja) 2002-07-22 2004-02-19 Suzuki Motor Corp 磁歪式トルクセンサ
US20040119470A1 (en) 2002-09-13 2004-06-24 Sankyo Seiki Mfg. Co., Ltd. Winding type magnetic sensor device and coin discriminating sensor device
JP3898610B2 (ja) 2002-09-18 2007-03-28 本田技研工業株式会社 トルクセンサ
JP2004225096A (ja) 2003-01-22 2004-08-12 Aisin Seiki Co Ltd 磁歪材料及び磁歪式トルクセンサ
JP2004264188A (ja) 2003-03-03 2004-09-24 Moric Co Ltd 磁歪トルクセンサ
JP2004340783A (ja) 2003-05-16 2004-12-02 Ntn Corp トルク検出装置
KR100779487B1 (ko) 2003-07-16 2007-11-26 주식회사 만도 토크 검출 장치
WO2005029106A1 (fr) 2003-08-22 2005-03-31 Sentron Ag Detecteur pour capter l'orientation d'un champ magnetique dans un plan
JP4292967B2 (ja) 2003-12-05 2009-07-08 日立電線株式会社 磁歪式トルクセンサ
KR20050075880A (ko) 2004-01-16 2005-07-25 주식회사 만도 자동차용 조향장치의 토오크센서
KR20050093025A (ko) 2004-03-18 2005-09-23 부광석 자기유도형 위치센서를 이용한 토크센서
US7225686B2 (en) 2004-03-22 2007-06-05 Tdk Corporation Torque sensing apparatus
JP4305271B2 (ja) 2004-05-07 2009-07-29 日立電線株式会社 磁歪式トルクセンサ
JP2006010669A (ja) 2004-05-28 2006-01-12 Aisin Seiki Co Ltd トルクセンサ装置
US7506554B2 (en) 2004-08-25 2009-03-24 Honda Motor Co., Ltd. Magnetostrictive torque sensor system and electric steering system
WO2006035505A1 (fr) 2004-09-29 2006-04-06 C & N Inc Procede de commande de capteur magnetique, module de commande de capteur magnetique et dispositif de terminal portable
JP2006126130A (ja) 2004-11-01 2006-05-18 Hitachi Cable Ltd 磁歪式トルクセンサ
US7845243B2 (en) 2004-11-12 2010-12-07 Stoneridge Control Devices, Inc. Torque sensor assembly
KR20060054775A (ko) 2004-11-16 2006-05-23 현대모비스 주식회사 모터 구동 차량용 조향장치
US7409878B2 (en) 2005-04-08 2008-08-12 Honeywell International Inc. Torqueshaft magnetic field measurement systems for gas turbine engines
JP4776619B2 (ja) * 2005-04-19 2011-09-21 パナソニック株式会社 位置センサ、光ヘッド装置、ヘッド移動機構、情報記録再生装置、および位置制御システム
KR100694201B1 (ko) 2005-07-04 2007-03-14 주식회사 만도 토크 센서 및 이를 구비한 자동차의 전기식 동력 보조 조향장치
JP4877905B2 (ja) * 2005-08-03 2012-02-15 日産自動車株式会社 自動マニュアルトランスミッションのシフト位置検出装置
US7640814B2 (en) 2005-08-12 2010-01-05 Continental Automotive Systems Us, Inc. Demagnetization-field enhancing magnetometer
ES2883120T3 (es) 2005-08-30 2021-12-07 Ncte Ag Dispositivo sensor, disposición de sensores, y método para medir una propiedad de un objeto
US7308835B2 (en) 2005-09-22 2007-12-18 Siemens Vdo Automotive Corporation Reduction of hysteresis in a magnetoelastic torque sensor
JP2007101427A (ja) 2005-10-06 2007-04-19 Hitachi Metals Ltd 磁歪式トルク検出装置用磁気ヘッド
US7362096B2 (en) 2005-10-21 2008-04-22 Delphi Technologies, Inc. Robust detection of strain with temperature correction
US7469604B2 (en) 2005-10-21 2008-12-30 Stoneridge Control Devices, Inc. Sensor system including a magnetized shaft
US7363827B2 (en) 2005-10-21 2008-04-29 Stoneridge Control Devices, Inc. Torque sensor system including an elliptically magnetized shaft
US7391211B2 (en) 2005-11-08 2008-06-24 Continental Automotive Systems Us, Inc. Digital fluxgate magnetometer
JP4713335B2 (ja) 2005-12-28 2011-06-29 株式会社日立産機システム モータ及び電動パワーステアリング装置
EP1979704B1 (fr) * 2006-02-03 2017-08-30 Moog Inc. Système d'analyse de signal codeur pour mesure de position haute résolution
CN101395450B (zh) * 2006-03-06 2012-06-13 日本电产三协株式会社 磁编码器装置
SE529789C8 (sv) 2006-03-10 2007-12-27 Abb Ab Mätanordning omfattande ett skikt av en magnetoelastisk legering och förfarande för tillverkning av mätanordningen
CN2903949Y (zh) 2006-06-08 2007-05-23 株洲卓越高科技实业有限公司 用于汽车电动助力转向系统电磁式扭矩传感器
WO2008010105A2 (fr) 2006-07-19 2008-01-24 Koninklijke Philips Electronics N. V. dispositif pour analyser des échantillons comprenant un moyen de dégagement de gaz
JP4936811B2 (ja) 2006-07-21 2012-05-23 株式会社東芝 磁歪式トルクセンサシャフトの製造方法
DE102006037226B4 (de) 2006-08-09 2008-05-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Im Messbetrieb kalibrierbarer magnetischer 3D-Punktsensor
KR100852182B1 (ko) 2006-08-22 2008-08-13 한국과학기술연구원 자기장 영역의 음·양 접합 구조를 갖는 반도체-자성물질융합 소자
FR2909170B1 (fr) * 2006-11-28 2010-01-29 Moving Magnet Tech Mmt Capteur de position linaire ou rotatif a profil d'aimant variable preferentiellement de maniere quasi sinusoidal.
US20080173102A1 (en) 2007-01-24 2008-07-24 Nehl Thomas W Villari torque sensor excitation and pickup arrangement for magnetrostrictive shafts
US20080221399A1 (en) 2007-03-05 2008-09-11 Triage Wireless, Inc. Monitor for measuring vital signs and rendering video images
JP5044372B2 (ja) 2007-11-16 2012-10-10 株式会社東芝 磁歪式トルクセンサシャフトの製造方法
JP4572227B2 (ja) 2007-11-29 2010-11-04 本田技研工業株式会社 磁歪式トルクセンサ及び電動ステアリング装置
JP2009204533A (ja) 2008-02-28 2009-09-10 Honda Motor Co Ltd 磁歪式トルクセンサとその製造方法、並びに電動パアーステアリング装置
US8087304B2 (en) 2008-03-14 2012-01-03 Seong-Jae Lee Magnetoelastic torque sensor with ambient field rejection
US7932684B2 (en) * 2008-03-25 2011-04-26 Bose Corporation Absolute position sensing
DE102008050236A1 (de) 2008-10-02 2010-04-08 Schaeffler Kg Tretlager
US8159219B2 (en) 2008-10-20 2012-04-17 University Of North Carolina At Charlotte MEMS 2D and 3D magnetic field sensors and associated manufacturing method
US9222992B2 (en) 2008-12-18 2015-12-29 Infineon Technologies Ag Magnetic field current sensors
US8486723B1 (en) 2010-08-19 2013-07-16 MCube Inc. Three axis magnetic sensor device and method
US8001849B2 (en) 2009-03-28 2011-08-23 Wensheng Weng Self-compensating magnetoelastic torque sensor system
EP2420810B1 (fr) 2009-04-16 2017-08-16 Amiteq Co., Ltd. Capteur de couple
WO2010119773A1 (fr) 2009-04-17 2010-10-21 本田技研工業株式会社 Capteur de couple à magnétostriction et dispositif de direction électrique
US8259409B2 (en) 2009-06-25 2012-09-04 Hitachi Global Storage Technologies Netherlands B.V. Spin torque oscillator sensor
FR2947902B1 (fr) * 2009-07-07 2011-07-22 Moving Magnet Technologies M M T Capteur de position absolue et multi-periodique
US20110106557A1 (en) 2009-10-30 2011-05-05 iHAS INC Novel one integrated system for real-time virtual face-to-face encounters
US20110162464A1 (en) 2010-01-02 2011-07-07 Smts Llc Reduced Ambient Fields Error In A Magnetoelastic Torque Sensor System
US20120296577A1 (en) 2010-01-11 2012-11-22 Magcanica, Inc. Magnetoelastic force sensors, transducers, methods, and systems for assessing bending stress
CN105277303A (zh) 2010-03-23 2016-01-27 翁庄明 具有自我补偿功能的磁致弹性扭矩传感器
US20110234218A1 (en) 2010-03-24 2011-09-29 Matthieu Lagouge Integrated multi-axis hybrid magnetic field sensor
US20120007597A1 (en) 2010-07-09 2012-01-12 Invensense, Inc. Micromachined offset reduction structures for magnetic field sensing
US8395381B2 (en) 2010-07-09 2013-03-12 Invensense, Inc. Micromachined magnetic field sensors
US20120029303A1 (en) 2010-07-30 2012-02-02 Fawzi Shaya System, method and apparatus for performing real-time virtual medical examinations
DE102010033308A1 (de) 2010-08-04 2012-02-09 Nctengineering Gmbh Windkraftanlage mit Drehmomenterfassung
US8468898B2 (en) 2010-10-28 2013-06-25 General Electric Company Method and apparatus for continuous sectional magnetic encoding to measure torque on large shafts
US8203334B2 (en) 2010-10-28 2012-06-19 General Electric Company Magnetically spirally encoded shaft for measuring rotational angel, rotational speed and torque
US8844379B2 (en) 2011-05-24 2014-09-30 Ford Global Technologies, Llc Transmissions with electronics interface assembly for torque sensor
US20120299587A1 (en) 2011-05-26 2012-11-29 Honeywell International Inc. Three-axis magnetic sensors
EP2559986B1 (fr) 2011-06-21 2016-04-06 NSK Ltd. Dispositif de detection de couple et dispositif de servodirection electrique
JP5597608B2 (ja) 2011-09-05 2014-10-01 本田技研工業株式会社 磁歪式トルクセンサ
JP2013053957A (ja) 2011-09-05 2013-03-21 Honda Motor Co Ltd 磁歪式トルクセンサ
DE102011115566A1 (de) 2011-10-10 2013-04-11 Austriamicrosystems Ag Hall-Sensor
US8424393B1 (en) 2011-10-18 2013-04-23 Methode Electronics, Inc. Magnetic torque sensor for transmission converter drive plate
US8635917B2 (en) 2011-10-18 2014-01-28 Methode Electronics, Inc. Magnetic torque sensor for transmission converter drive plate
US8893562B2 (en) 2011-11-21 2014-11-25 Methode Electronics, Inc. System and method for detecting magnetic noise by applying a switching function to magnetic field sensing coils
CN102519633B (zh) 2011-11-30 2014-07-16 浙江大学 磁弹磁电效应式应力监测装置
US9494556B2 (en) 2012-01-13 2016-11-15 Polyresearch Ag Active mechanical force and axial load sensor
DE102012202404B4 (de) 2012-02-16 2018-04-05 Infineon Technologies Ag Drehwinkelsensor zur absoluten Drehwinkelbestimmung auch bei mehrfachen Umdrehungen
DE102012203225A1 (de) 2012-03-01 2013-09-05 Tyco Electronics Amp Gmbh Verfahren zum berührungslosen messen einer relativen position mittels eines 3d-hallsensors mit messsignalspeicher
DE102012204634A1 (de) 2012-03-22 2013-09-26 Zf Friedrichshafen Ag Magnetfeldsensor, Betätigungsvorrichtung und Verfahren zur Bestimmung einer Relativposition
DE112012006270B4 (de) * 2012-04-26 2019-05-09 Mitsubishi Electric Corporation Magnetpositions-Erfassungsvorrichtung
US9205717B2 (en) 2012-11-07 2015-12-08 Polaris Industries Inc. Vehicle having suspension with continuous damping control
DE102013000431A1 (de) 2013-01-14 2014-07-17 Micronas Gmbh Schaltung und Messsystem
DE102013000430A1 (de) * 2013-01-14 2014-07-17 Micronas Gmbh Messsystem
EP2793009B1 (fr) 2013-04-15 2021-03-17 Methode Electronics Malta Ltd. Capteur magnéto-élastique, goupille de charge, couplage de remorquage et articulation à rotule comprenant ce capteur, procédé de détermination d'une direction d'un vecteur de charge
EP2799827B1 (fr) 2013-04-30 2017-12-06 Methode Electronics Malta Ltd. Capteur de couple magnétoélastique et procédé
EP2799327B1 (fr) 2013-05-03 2016-05-25 Methode Electronics Malta Ltd. Moyeu de roue libre comprenant un capteur magnéto-élastique et bicyclette, vélo à assistance électrique ou vélo à assistance électrique rapide ou e-bike comprenant le moyeu de roue libre
DE102013209514A1 (de) 2013-05-22 2014-11-27 Micronas Gmbh Dreidimensionaler Hallsensor zum Detektieren eines räumlichen Magnetfeldes
JP6047451B2 (ja) 2013-06-27 2016-12-21 ブリヂストンサイクル株式会社 トルクセンサの位置決め構造およびこれを備えた電動アシスト自転車
JP6061799B2 (ja) 2013-06-27 2017-01-18 ブリヂストンサイクル株式会社 トルクセンサの回転防止構造およびこれを備えた電動アシスト自転車
JP6406829B2 (ja) 2014-02-10 2018-10-17 トクデン株式会社 誘導発熱ローラ装置、及び誘導コイルの温度検出機構
US9733317B2 (en) * 2014-03-10 2017-08-15 Dmg Mori Seiki Co., Ltd. Position detecting device
JP2015194430A (ja) 2014-03-31 2015-11-05 本田技研工業株式会社 車両用パワーステアリング装置及びその製造方法
AU2015339673A1 (en) 2014-10-31 2017-06-15 Polaris Industries Inc. System and method for controlling a vehicle
DE102015202240B3 (de) 2015-02-09 2016-02-25 Schaeffler Technologies AG & Co. KG Anordnung zur Messung einer Kraft oder eines Momentes mit mindestens drei Magnetfeldsensoren
DE202015105090U1 (de) 2015-02-18 2015-11-23 Methode Electronics Malta Ltd. Redundanter Drehmomentsensor - Multiple Bandanordnung
DE102015122154B4 (de) 2015-12-17 2018-09-27 Methode Electronics Malta Ltd. Vorrichtung zur Feststellung externer magnetischer Streufelder auf einen Magnetfeldsensor
WO2017199063A1 (fr) 2016-05-17 2017-11-23 Kongsberg Inc. Système, procédé et objet servant à la détection de position magnétique à haute précision
WO2017214361A1 (fr) 2016-06-08 2017-12-14 Methode Electronic, Inc. Appariement et assemblage de composants de capteur de couple
US11486776B2 (en) 2016-12-12 2022-11-01 Kongsberg Inc. Dual-band magnetoelastic torque sensor
EP3364163B1 (fr) 2017-02-15 2020-04-08 Ncte Ag Capteur magnéto-élastique de couple de rotation
US10983019B2 (en) 2019-01-10 2021-04-20 Ka Group Ag Magnetoelastic type torque sensor with temperature dependent error compensation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11821763B2 (en) 2016-05-17 2023-11-21 Kongsberg Inc. System, method and object for high accuracy magnetic position sensing
US11486776B2 (en) 2016-12-12 2022-11-01 Kongsberg Inc. Dual-band magnetoelastic torque sensor
US10983019B2 (en) 2019-01-10 2021-04-20 Ka Group Ag Magnetoelastic type torque sensor with temperature dependent error compensation
US12025521B2 (en) 2020-02-11 2024-07-02 Brp Megatech Industries Inc. Magnetoelastic torque sensor with local measurement of ambient magnetic field

Also Published As

Publication number Publication date
WO2017199063A1 (fr) 2017-11-23
US11821763B2 (en) 2023-11-21
US20210278251A1 (en) 2021-09-09
EP3458805A1 (fr) 2019-03-27
CN109313006A (zh) 2019-02-05
EP3458805A4 (fr) 2019-12-25
EP3458805B1 (fr) 2020-09-23
CN109313006B (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
US11821763B2 (en) System, method and object for high accuracy magnetic position sensing
EP4040115B1 (fr) Capteur de champ magnétique formant un détecteur de mouvement
US9719771B2 (en) Rotation angle sensor for absolute rotation angle determination even upon multiple revolutions
JP6926209B2 (ja) 距離センサ
US10732009B2 (en) Angle sensing in an off-axis configuration
CN102686980B (zh) 用于检测运动元件位移的磁场传感器装置
US11984837B2 (en) Method for determining an angular position of a rotating component, in particular of an electric motor for a clutch actuation system of a vehicle
CN107150759B (zh) 用于电动自行车的轴集成角度感测设备和包括这种设备的电动自行车
US8547044B2 (en) Determining the rotor angle of a synchronous machine at standstill with the aid of iterative test pulses
US8836262B2 (en) Method and arrangement for determining the dynamic state of an electric motor
WO2013153015A1 (fr) Capteur de déplacement permettant de mesurer sans contact une position relative au moyen d'un réseau de capteurs de champ magnétique sur la base de l'effet hall
US20020049553A1 (en) Method for increasing the positioning accuracy of an element which is movably arranged relative to a stator
EP2180295A1 (fr) Appareil de détection de la vitesse, de la direction et de la position incrémentielle et procédé pour des cibles tournantes utilisant un capteur magnétorésistant
CN109565215A (zh) 用于磁传感器装置与致动器进行相互校准的方法及包括致动器和磁传感器装置的致动器设备
US11150109B2 (en) Displacement detecting device and continuously variable transmission device
US10989566B2 (en) Magnetic sensor system for measuring linear position
US7622882B2 (en) Position detection device for permanent magnetic machines
US10416001B2 (en) Magnet arrangement for rotational angle detection
TW201524089A (zh) 線性-旋轉致動器及其控制方法
KR20200019631A (ko) Gmr-센서에 대한 자석의 위치를 조정하기 위한 방법 및 장치
CN106556333B (zh) 确定被测物体运动位置的方法和传感装置
CN111602031A (zh) 用于检测行程的方法、行程检测装置和制动系统
KR20160076744A (ko) 회전각 측정센서

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION