US20150105734A1 - Syringe - Google Patents

Syringe Download PDF

Info

Publication number
US20150105734A1
US20150105734A1 US14/403,801 US201314403801A US2015105734A1 US 20150105734 A1 US20150105734 A1 US 20150105734A1 US 201314403801 A US201314403801 A US 201314403801A US 2015105734 A1 US2015105734 A1 US 2015105734A1
Authority
US
United States
Prior art keywords
syringe
plunger
stopper
rod
backstop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/403,801
Other languages
English (en)
Inventor
Andrew Bryant
Heinrich Buettgen
Wolfgang Papst
Marie Picci
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48577723&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20150105734(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Assigned to NOVARTIS PHARMA AG reassignment NOVARTIS PHARMA AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRYANT, ANDREW, BUETTGEN, HEINRICH, PAPST, WOLFGANG, PICCI, MARIE
Assigned to NOVARTIS AG reassignment NOVARTIS AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOVARTIS PHARMA AG
Publication of US20150105734A1 publication Critical patent/US20150105734A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0008Introducing ophthalmic products into the ocular cavity or retaining products therein
    • A61F9/0017Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00736Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/001Apparatus specially adapted for cleaning or sterilising syringes or needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/28Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31501Means for blocking or restricting the movement of the rod or piston
    • A61M5/31505Integral with the syringe barrel, i.e. connected to the barrel so as to make up a single complete piece or unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31511Piston or piston-rod constructions, e.g. connection of piston with piston-rod
    • A61M5/31513Piston constructions to improve sealing or sliding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3103Leak prevention means for distal end of syringes, i.e. syringe end for mounting a needle
    • A61M2005/3104Caps for syringes without needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3117Means preventing contamination of the medicament compartment of a syringe
    • A61M2005/3118Means preventing contamination of the medicament compartment of a syringe via the distal end of a syringe, i.e. syringe end for mounting a needle cannula
    • A61M2005/312Means preventing contamination of the medicament compartment of a syringe via the distal end of a syringe, i.e. syringe end for mounting a needle cannula comprising sealing means, e.g. severable caps, to be removed prior to injection by, e.g. tearing or twisting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/3129Syringe barrels
    • A61M5/3137Specially designed finger grip means, e.g. for easy manipulation of the syringe rod
    • A61M2005/3139Finger grips not integrally formed with the syringe barrel, e.g. using adapter with finger grips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31501Means for blocking or restricting the movement of the rod or piston
    • A61M2005/31508Means for blocking or restricting the movement of the rod or piston provided on the piston-rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0612Eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/3129Syringe barrels
    • A61M5/3137Specially designed finger grip means, e.g. for easy manipulation of the syringe rod
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the present invention relates to a syringe, particularly to a small volume syringe such as a syringe suitable for ophthalmic injections.
  • the invention also extends to a method of assembling such a syringe.
  • medicaments are delivered to a patient in a syringe from which the user can dispense the medicament. If medicament is delivered to a patient in a syringe it is often to enable the patient, or a caregiver, to inject the medicament. It is important for patient safety and medicament integrity that the syringe and the contents of that syringe are sufficiently sterile to avoid infection, or other, risks for patients. Sterilisation can be achieved by terminal sterilisation in which the assembled product, typically already in its associated packaging, is sterilised using heat or a sterilising gas.
  • the sterilisation can pose difficulties that are not necessarily associated with larger syringes. Changes in pressure, internal or external to the syringe, can cause parts of the syringe to move unpredictably, which may alter sealing characteristics and potentially compromise sterility. Incorrect handling, including assembly, of the syringe can also pose risks to product sterility.
  • the present invention provides a syringe, the syringe comprising a body, a stopper and a plunger, the body comprising an outlet at an outlet end and the stopper being arranged within the body such that a front surface of the stopper and the body define a variable volume chamber from which a fluid can be expelled though the outlet, the plunger comprising a plunger contact surface at a first end and a rod extending between the plunger contact surface and a rear portion, the plunger contact surface arranged to contact the stopper but not couple thereto, such that the plunger can be used to force the stopper towards the outlet end of the body, reducing the volume of the variable volume chamber, but not to move the stopper away from the outlet end.
  • Providing a plunger which does not couple to the stopper reduces the chances for incorrect handling of the syringe as the plunger can be withdrawn from the syringe without movement of the stopper away from the outlet end. This prevents a user from accidentally moving the plunger (and therefore a stopper connected thereto) and causing non-sterile air (or other fluid) to be drawn into the syringe, or causing movement of the stopper to a non-sterile area.
  • the body of the syringe may be a substantially cylindrical shell, or may include a substantially cylindrical bore with a non-circular outer shape.
  • the outlet end of the body includes an outlet through which a fluid housed within the variable volume chamber can be expelled as the volume of said chamber is reduced.
  • the outlet may comprise a projection from the outlet end through which extends a channel having a smaller diameter than that of the variable volume chamber.
  • the outlet may be adapted, for example via a luer lock type connection, for connection to a needle or other accessory such as a sealing device which is able to seal the variable volume chamber, but can be operated, or removed, to unseal the variable chamber and allow connection of the syringe to another accessory, such as a needle. Such a connection may be made directly between the syringe and accessory, or via the sealing device.
  • the body extends along a first axis from the outlet end to a rear end.
  • the body may be made from a plastic material or from glass, or from any other suitable material and may include indicia on a surface thereof to act as an injection guide.
  • the stopper may be made from rubber, silicone or other suitable resiliently deformable material.
  • the stopper provides a sealing function by defining the rear of the variable volume chamber with a fluid tight seal which also provides a sterility seal.
  • the stopper may be substantially cylindrical and the stopper may include one or more circumferential ribs around an outer surface of the stopper, the stopper and ribs being dimensioned such that the ribs form a substantially fluid tight seal with an internal surface of the syringe body.
  • the front surface of the stopper may be any suitable shape, for example substantially planar, or substantially conical.
  • the stopper may be substantially solid or may include recesses.
  • the rear surface of the stopper may include a substantially central recess which may be any shape provided the sealing function of the stopper is not compromised.
  • Said central recess may be substantially cylindrical in shape or said central recess may include an initial bore having a first diameter, the initial bore leading from the rear surface into the stopper to an inner recess having a second diameter, the second diameter being larger than the first diameter.
  • Such a central recess could be used to connect a plunger to the stopper using a snap fit feature in a known manner. Such a design allows a substantially standard stopper design to be used and this can reduce the parts cost for the syringe.
  • the stopper may be substantially rotationally symmetric about an axis through the stopper.
  • the plunger comprises a plunger contact surface and extending from that a rod extends from the plunger contact surface to a rear portion.
  • the rear portion may include a user contact portion adapted to be contacted by a user during an injection event.
  • the user contact portion may comprise a substantially disc shaped portion, the radius of the disc extending substantially perpendicular to the axis along which the rod extends.
  • the user contact portion could be any suitable shape.
  • the axis along which the rod extends may be the first axis, or may be substantially parallel with the first axis.
  • the plunger contact surface is adapted to make contact with the rear surface of the stopper, but not couple thereto.
  • the plunger contact surface may be substantially planar and may be substantially circular in shape.
  • the plunger contact surface may be substantially circular with an outer diameter less than the internal diameter of the body.
  • the diameter of the plunger contact surface may be substantially equal to the diameter of the rear surface of the stopper with which it is to make contact.
  • the plunger contact surface may be adapted to present a substantially rotationally symmetrical surface to the rear surface of the stopper as this assists in providing a repeatable and evenly distributed force to the stopper during use which can help to prevent distortions.
  • the plunger contact surface may not be planar and may comprise an annular contact surface to contact the stopper at or adjacent an out edge thereof.
  • the plunger contact surface may comprise a plurality of arms which extend from the plunger rod to make contact with the stopper.
  • the plunger contact surface may be substantially rotationally symmetrical in any of the above, or other, embodiments.
  • the rod may have a round or cross-form cross-section.
  • a cross-form cross section may be formed from ribs extending along at least part of the rod. The ribs may extend substantially parallel with the axis along which the rod extends.
  • the cross-form cross section provides rigidity to the rod without significantly increasing manufacturing complexity.
  • the rod may be manufactured from any suitable material, or combination of materials, and in one embodiment is made from a plastic material.
  • the rod may be substantially rigid under expected use conditions. Although some flexing of the materials in the plunger is unavoidable in a bulk manufactured product, it is advantageous that the rod cannot flex significantly during use, particularly for low volume, accurate, injections as any flexing could lead to unpredictable dosing results.
  • the syringe may include a backstop arranged at a rear portion of the body.
  • the backstop may be removable from the syringe. If the syringe body includes terminal flanges at the end opposite the outlet end the backstop may be configured to substantially sandwich terminal flanges of the body as this prevent movement of the backstop in a direction parallel to the first axis.
  • the rod may comprise at least one rod shoulder directed away from the outlet end and the backstop may include a backstop shoulder directed towards the outlet end to cooperate with the rod shoulder to substantially prevent movement of the rod away from the outlet end when the backstop shoulder and rod shoulder are in contact. Restriction of the movement of the rod away from the outlet end can help to maintain sterility during terminal sterilisation operations, or other operations in which the pressure within the variable volume chamber or outside the chamber may change. During such operations any gas trapped within the variable volume chamber, or bubbles that may form in a liquid therein, may change in volume and thereby cause the stopper to move. Movement of the stopper away from the outlet could result in the breaching of a sterility zone created by the stopper.
  • sterility zone as used herein is used to refer to the area within the syringe that is sealed by the stopper from access from either end of the syringe. This may be the area between a seal of the stopper, for example a circumferential ridge, closest to the outlet and a seal of the stopper, for example a circumferential ridge, furthest from the outlet. The distance between these two seals defines the sterility zone of the stopper since the stopper is installed into the syringe barrel in a sterile environment.
  • a terminal sterilisation process may be used to sterilise the complete article and such a process may use a known process such as an Ethylene Oxide or a Hydrogen Peroxide sterilisation process.
  • the inclusion of one or more circumferential ribs on the stopper can alter the force required to cause the stopper to move from a stationary position and can also alter the sealing properties of the stopper.
  • the stopper may comprise at least a front circumferential rib and a rear circumferential rib and those ribs may be separated in a direction along the first axis by at least 3 mm, by at least 3.5 mm, by at least 3.75 mm or by 4 mm or more.
  • One or more additional ribs (for example 2, 3, 4 or 5 additional ribs, or between 1-10, 2-8, 3-6 or 4-5 additional ribs) may be arranged between the front and rear ribs. In one embodiment there are a total of three circumferential ribs.
  • a stopper with such an enhanced sterility zone can also provide protection for the injectable medicament during a terminal sterilisation process.
  • Some medicaments example a biological medicament, could be damaged by exposure to Ethylene Oxide.
  • More ribs on the stopper, or a greater distance between the front and rear ribs, can reduce the potential exposure of the medicament to the sterilising agent.
  • the rod shoulder may be arranged within the external diameter of the rod, or may be arranged outside the external diameter of the rod. By providing a shoulder that extends beyond the external diameter of the rod, but still fits within the body, the shoulder can help to stabilise the movement of the rod within the body by reducing movement of the rod perpendicular to the first axis.
  • the rod shoulder may comprise any suitable shoulder forming elements on the rod, but in one embodiment the rod shoulder comprises a substantially disc shaped portion on the rod.
  • the variable volume chamber when arranged with the plunger contact surface in contact with the stopper and the variable volume chamber is at its intended maximum volume there is a clearance of no more than about 2 mm between the rod shoulder and backstop shoulder. In some embodiments there is a clearance of less than about 1.5 mm and in some less than about 1 mm. This distance is selected to substantially limit or prevent excessive rearward (away from the outlet end) movement of the stopper.
  • variable volume chamber has an internal diameter greater than 5 mm or 6 mm and less than 3 mm or 4 mm.
  • the internal diameter may be between 3 mm and 6 mm, or between 4 mm and 5 mm.
  • the syringe is dimensioned so as to have a nominal maximum fill volume of volume of between about 0.25 ml and 0.75 ml, or between 0.4 ml and 0.6 ml.
  • the length of the body of the syringe may be less than 70 mm, less than 60 mm or less than 50 mm. In one embodiment the length of the syringe body is between 45 mm and 50 mm, the internal diameter is between 4 mm and 5 mm and the fill volume is between 0.1 ml and 0.3 ml of liquid.
  • the syringe is suitable for ophthalmic injections, and as such has a suitably small volume.
  • the syringe may be adapted for ophthalmic injections.
  • the syringe may also be silicone free, or substantially silicone free, or may comprise a low level of silicone as lubricant.
  • the syringe may meet USP789.
  • variable volume chamber of the syringe may be filled with any suitable injectable liquid or medication, for example an injectable medicament.
  • the variable volume chamber is filled with an injectable medicament comprising an active suitable for the treatment of an ocular disease.
  • ocular diseases include choroidal neovascularisation, age-related macular degeneration (both wet and dry forms), macular edema secondary to retinal vein occlusion (RVO) including both branch RVO (bRVO) and central RVO (cRVO), choroidal neovascularisation secondary to pathologic myopia (PM), diabetic macular edema (DME), diabetic retinopathy, and proliferative retinopathy.
  • the medicament comprises a biologic active.
  • the biologic active may be an antibody (or fragment thereof) or a non-antibody protein.
  • the medicament comprises a VEGF antagonist.
  • Suitable VEGF antagonists include ranibizumab (LucentisTM), bevacizumab (AvastinTM), aflibercept (EyleaTM, also known as VEGF-Trap Eye), conbercept (KH902 from Chengdu Kanghong Biotechnologies Co. Ltd, described as FP3 in WO2005/121176, the contents of which are hereby incorporated by reference) and the related glycoform KH906 or pazopanib (from GlaxoSmithKline).
  • the syringe is filled with between about 0.01 ml and about 2 ml (for example between about 0.05 ml and about 1 ml, between about 0.1 ml and about 0.5 ml) of an injectable medicament.
  • a syringe is filled with more than the desired dose to be administered to the patient, to take into account wastage due to “dead space” within the syringe and needle.
  • the syringe is filled with a dosage volume (i.e. the volume of medicament intended for delivery to the patent) of between about 0.01 ml and about 2 ml (e.g.
  • the dosage volume is 0.05 ml or 0.03 ml (0.5 mg or 0.3 mg) of a 10 mg/ml injectable medicament solution; for Eylea, the dosage volume is 0.05 ml of a 40 mg/ml injectable medicament solution.
  • the outlet may be reversibly sealed to maintain sterility of the medicament.
  • This sealing may be achieved through the use of a sealing device as is known in the art.
  • a sealing device for example the OVSTM system which is available from Vetter Pharma International GmbH.
  • the sealing of the outlet should be such that that sterility of the contents of the variable volume chamber can be maintained until such time as the stopper is moved to breach the sterility seal or the outlet is unsealed.
  • the method may further comprise an additional step, step iii), of filling the variable volume chamber of the syringe, which may be filled with any suitable injectable medicament.
  • the variable volume chamber is filled with an injectable medicament suitable for the treatment of an ocular disease.
  • ocular diseases include choroidal neovascularisation, age-related macular degeneration (both wet and dry forms), macular edema secondary to retinal vein occlusion (RVO) including both branch RVO (bRVO) and central RVO (cRVO), choroidal neovascularisation secondary to pathologic myopia (PM), diabetic macular edema (DME), diabetic retinopathy, and proliferative retinopathy.
  • the medicament comprises a biologic active.
  • the biologic active may be an antibody (or fragment thereof) or a non-antibody protein.
  • the medicament comprises a VEGF antagonist.
  • Suitable VEGF antagonists include ranibizumab (LucentisTM), bevacizumab (AvastinTM), aflibercept (EyleaTM, also known as VEGF-Trap Eye), conbercept (KH902 from Chengdu Kanghong Biotechnologies Co. Ltd, described as FP3 in WO2005/121176, the contents of which are hereby incorporated by reference) and the related glycoform KH906 or pazopanib (from GlaxoSmithKline).
  • steps ii) and iii) above may be carried out in either order.
  • the method may comprise, in sequence, steps i), ii), iii) or steps i), iii), ii) or steps iii), i), ii).
  • the method may further comprise a step iv) of packaging the assembled syringe in a substantially sealed package.
  • the method may further comprise a terminal sterilisation step, step v), following packaging.
  • the terminal sterilisation step may comprise known techniques such as Ethylene Oxide sterilisation of Hydrogen Peroxide sterilisation.
  • the invention also extends to a sealed package containing a sterile pre-filled syringe substantially as described herein.
  • the backstop may be coupled to the syringe body after the plunger has been arranged in the body and the rod shoulder is arranged between the outlet end and the backstop shoulder.
  • step i) and iii) are carried out in a sterile, or substantially sterile, environment. At some point between the filling step and the final assembly being sealed into packaging the syringe is removed from the sterile, or substantially sterile, environment. A terminal sterilisation step can then be conducted on the packaged product.
  • the plunger rod is dropped into the syringe body. This is a simple operation and makes use of gravity rather than any automated assembly equipment. This is made possible because the rod does not need to be manipulated or forced to couple with the stopper.
  • the invention also provides a plunger suitable for use in the syringe or method described above.
  • FIG. 1 shows a side view of a syringe
  • FIG. 2 shows a cross section of a top down view of a syringe
  • FIG. 3 shows a view of a plunger
  • FIG. 4 shows a cross section though a plunger
  • FIG. 5 shows a stopper
  • FIG. 6 shows a flowchart of the assembly process.
  • FIG. 1 shows a view from a side of a syringe 1 comprising a body 2 , plunger 4 , backstop 6 and a sealing device 8 .
  • FIG. 2 shows a cross section through the syringe 1 of FIG. 1 from above.
  • the syringe 1 is suitable for use in an ophthalmic injection.
  • the syringe 1 comprises a body 2 , a stopper 10 and a plunger 4 .
  • the syringe 1 extends along a first axis A.
  • the body 2 comprises an outlet 12 at an outlet end 14 and the stopper 10 is arranged within the body 2 such that a front surface 16 of the stopper 10 and the body 2 define a variable volume chamber 18 .
  • the variable volume chamber 18 contains an injectable medicament 20 comprising ranibizumab.
  • the injectable fluid 20 can be expelled though the outlet 12 by movement of the stopper 10 towards the outlet end 14 thereby reducing the volume of the variable volume chamber 18 .
  • the plunger 4 comprises a plunger contact surface 22 at a first end 24 and a rod 26 extending between the plunger contact surface 22 and a rear portion 25 .
  • the plunger contact surface 22 is arranged to contact the stopper 10 but not couple thereto, such that the plunger 4 can be used to move the stopper 10 towards the outlet end 14 of the body 2 .
  • Such movement reduces the volume of the variable volume chamber 18 and causes fluid therein to be expelled though the outlet.
  • the plunger 4 since the plunger 4 is not coupled to the stopper 10 it is not possible to use the plunger 4 to move the stopper 10 away from the outlet end 14 .
  • the backstop 6 is attached to the body 2 by coupling to a terminal flange 28 of the body 2 .
  • the backstop 6 includes sandwich portion 30 which is adapted to substantially sandwich at least some of the terminal flange 28 of the body 2 .
  • the backstop 6 is adapted to be coupled to the body 2 from the side by leaving one side of the backstop 6 open so that the backstop 6 can be fitted to the syringe 2 .
  • the body 2 defines a substantially cylindrical bore 36 which has a bore radius.
  • the rod 26 comprises a rod shoulder 32 directed away from the outlet end 14 .
  • the rod shoulder 32 extends to a rod shoulder radius from the first axis A which is such that it slightly less than the bore radius so that the shoulder fits within the bore 36 .
  • the backstop 6 includes a backstop shoulder 34 directed towards the outlet end 14 .
  • the shoulders 32 , 34 are configured to cooperate to substantially prevent movement of the rod 26 away from the outlet end 14 when the backstop shoulder 34 and rod shoulder 32 are in contact.
  • the backstop shoulder 34 extends from outside the bore radius to a radius less than the rod shoulder radius so that the rod shoulder 32 cannot pass the backstop shoulder 34 by moving along the first axis A.
  • the rod shoulder 32 is substantially disc, or ring, shaped and the backstop shoulder 34 includes an arc around a rear end 38 of the body 2 .
  • the backstop 6 also includes two finger projections 40 which extend in opposite directions away from the body 2 substantially perpendicular to the first axis A to facilitate manual handling of the syringe 1 during use.
  • the syringe comprises a 0.5 ml body 2 , that is a body with a notional maximum fill volume of about 0.5 ml, filled with between about 0.1 and 0.3 ml of an injectable medicament 20 comprising a 10 mg/ml injectable solution comprising ranibizumab.
  • the syringe body 2 has an internal diameter of about between about 4.5 mm and 4.8 mm, a length of between about 45 mm and 50 mm.
  • FIG. 3 shows a perspective view of the plunger 4 of FIG. 1 showing the plunger contact surface 22 at the first end 24 of the plunger 4 .
  • the rod 26 extends from the first end 24 to the rear portion 25 .
  • the rear portion 25 includes a disc shaped flange 42 to facilitate user handling of the device.
  • the flange 42 provides a larger surface area for contact by the user than a bare end of the rod 26 .
  • the rod 26 comprises ribs 44 which extend along the rod 26 , the ribs forming a cross-form cross section for the rod 26 as shown in more detail in subsequent figures.
  • the rod 26 comprises a disc shaped portion 46 , the disc shaped portion 46 extending radially beyond the ribs 44 and also forming the rod shoulder 32 .
  • the ribs 44 may be substantially solid, or may include gaps 48 .
  • the disc portion 46 may be solid, or may include gaps 50 . Gaps 48 , 50 may be used to facilitate gas flow within the body 2 if necessary for sterilization, or other, purposes.
  • FIG. 4 shows a cross section though a syringe body 2 and rod 26 .
  • the rod 26 includes four longitudinal ribs 44 and the angle between the ribs is 90°.
  • FIG. 5 shows a detailed view of a stopper 10 showing a conical shaped front surface 16 and three circumferential ribs 52 , 54 , 56 around a substantially cylindrical body 58 .
  • the axial gap between the first rib 52 and the last rib 56 is about 3 mm.
  • the rear surface 60 of the stopper 10 includes a substantially central recess 62 .
  • the central recess 62 includes an initial bore 64 having a first diameter.
  • FIG. 6 shows a flow chart for the assembly of a syringe 1 .
  • a prefilled body 2 is provided.
  • the prefilled body comprises a body 2 filled with an injectable medicament 20 comprising ranibizumab, although other medicaments could be used in addition or instead, or a placebo solution could be used.
  • a stopper 10 is arranged in the body 2 to form a variable volume chamber 18 and the outlet 12 is sealed with a sealing device 8 .
  • a plunger 4 is arranged in the body 2 .
  • the plunger 4 is dropped into the body 2 . This may be by gravity alone, or the plunger may be placed into the body 2 using a machine or human and the body then oriented so that the plunger 4 falls into the body 2 until the plunger contact surface 22 makes contact with the stopper 10 .
  • a backstop 6 is coupled to the terminal flange 28 of the body.
  • the backstop 6 and rod being arranged such that the rod shoulder 32 is located between the outlet end of the body and the backstop shoulder 34 .
  • Step 4 the syringe is sealed into a package and in Step 5 the package and its contents is sterilised in a terminal sterilisation process.
  • the terminal sterilisation process may use known process such as an Ethylene Oxide or a Hydrogen Peroxide sterilisation process.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Surgery (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
US14/403,801 2012-06-01 2013-05-30 Syringe Abandoned US20150105734A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12170628 2012-06-01
EP12170628.7 2012-06-01
PCT/EP2013/061215 WO2013178771A1 (en) 2012-06-01 2013-05-30 Syringe

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/061215 A-371-Of-International WO2013178771A1 (en) 2012-06-01 2013-05-30 Syringe

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/409,291 Continuation US11103644B2 (en) 2012-06-01 2019-05-10 Syringe

Publications (1)

Publication Number Publication Date
US20150105734A1 true US20150105734A1 (en) 2015-04-16

Family

ID=48577723

Family Applications (8)

Application Number Title Priority Date Filing Date
US14/403,801 Abandoned US20150105734A1 (en) 2012-06-01 2013-05-30 Syringe
US16/409,291 Active 2033-06-25 US11103644B2 (en) 2012-06-01 2019-05-10 Syringe
US16/791,505 Active US11147925B2 (en) 2012-06-01 2020-02-14 Syringe
US16/811,430 Active US11110226B2 (en) 2012-06-01 2020-03-06 Syringe
US17/174,981 Active US11179521B2 (en) 2012-06-01 2021-02-12 Syringe
US17/335,684 Active US11185635B2 (en) 2012-06-01 2021-06-01 Syringe
US17/500,174 Abandoned US20220031952A1 (en) 2012-06-01 2021-10-13 Syringe
US18/063,918 Pending US20230113993A1 (en) 2012-06-01 2022-12-09 Syringe

Family Applications After (7)

Application Number Title Priority Date Filing Date
US16/409,291 Active 2033-06-25 US11103644B2 (en) 2012-06-01 2019-05-10 Syringe
US16/791,505 Active US11147925B2 (en) 2012-06-01 2020-02-14 Syringe
US16/811,430 Active US11110226B2 (en) 2012-06-01 2020-03-06 Syringe
US17/174,981 Active US11179521B2 (en) 2012-06-01 2021-02-12 Syringe
US17/335,684 Active US11185635B2 (en) 2012-06-01 2021-06-01 Syringe
US17/500,174 Abandoned US20220031952A1 (en) 2012-06-01 2021-10-13 Syringe
US18/063,918 Pending US20230113993A1 (en) 2012-06-01 2022-12-09 Syringe

Country Status (37)

Country Link
US (8) US20150105734A1 (sl)
EP (5) EP2854762A1 (sl)
JP (8) JP6781546B2 (sl)
KR (5) KR102453181B1 (sl)
CN (1) CN104780906A (sl)
AR (1) AR091817A1 (sl)
AU (1) AU2013269594C1 (sl)
BR (1) BR112014029795B1 (sl)
CA (2) CA2875193A1 (sl)
CL (1) CL2014003251A1 (sl)
CO (1) CO7141462A2 (sl)
CY (2) CY1124375T1 (sl)
DE (1) DE202013012825U1 (sl)
DK (4) DK3858405T3 (sl)
EA (1) EA033161B1 (sl)
ES (4) ES2895406T3 (sl)
GT (1) GT201400279A (sl)
HK (1) HK1202816A1 (sl)
HR (3) HRP20220558T1 (sl)
HU (2) HUE055994T2 (sl)
IL (3) IL235882B (sl)
IN (1) IN2014DN09689A (sl)
LT (3) LT3536310T (sl)
MA (2) MA37599A1 (sl)
MX (2) MX2014014722A (sl)
MY (1) MY165727A (sl)
NZ (1) NZ702313A (sl)
PE (1) PE20142396A1 (sl)
PH (1) PH12014502675A1 (sl)
PL (4) PL3858405T3 (sl)
PT (4) PT3679922T (sl)
SG (2) SG11201407241QA (sl)
SI (4) SI3679922T1 (sl)
TN (1) TN2014000471A1 (sl)
TW (1) TW201402165A (sl)
WO (1) WO2013178771A1 (sl)
ZA (1) ZA201408019B (sl)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20162072A1 (it) * 2016-06-30 2017-12-30 Platinum Corp Srl Dropper a volume controllato
US20180250474A1 (en) * 2017-03-03 2018-09-06 Min Wei Syringe Type Medication Delivery Device
US20180326126A1 (en) * 2015-11-18 2018-11-15 Formycon Ag Pre-filled plastic syringe containing a vegf antagonist
WO2019149869A3 (en) * 2018-02-02 2019-09-12 F. Hoffmann-La Roche Ag Prefilled syringe and method of sterilizing a prefilled syringe
US20200188599A1 (en) * 2016-04-08 2020-06-18 Allergan, Inc. Aspiration and injection device
US10898649B2 (en) 2017-05-05 2021-01-26 Alcon Inc. Syringe
US10905786B2 (en) 2017-03-27 2021-02-02 Regeneron Pharmaceuticals, Inc. Sterilisation method
US10912714B2 (en) 2013-03-11 2021-02-09 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
USD920519S1 (en) * 2019-06-28 2021-05-25 Oertli-Instrumente Ag Medical instrument for eye surgical purposes
WO2021132202A1 (ja) 2019-12-27 2021-07-01 テルモ株式会社 注射器バレル用グリップおよびバレル組立体ならびにシリンジ
US11066465B2 (en) 2015-12-30 2021-07-20 Kodiak Sciences Inc. Antibodies and conjugates thereof
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11103379B2 (en) 2015-04-10 2021-08-31 Dompe' Farmaceutici S.P.A. Dispensing device for eye drops
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US11123491B2 (en) 2010-11-12 2021-09-21 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
WO2021192637A1 (ja) 2020-03-24 2021-09-30 テルモ株式会社 注射器バレル用グリップおよびバレル組立体ならびにシリンジ
USD934069S1 (en) 2019-07-29 2021-10-26 Regeneron Pharmaceuticals, Inc. Packaging
US11155610B2 (en) 2014-06-28 2021-10-26 Kodiak Sciences Inc. Dual PDGF/VEGF antagonists
US11160918B2 (en) * 2019-07-29 2021-11-02 Regeneran Pharmaceuticals, Inc. Medical device packaging and related methods
US11291772B2 (en) * 2017-02-17 2022-04-05 Becton, Dickinson And Company Syringe and plunger rod with stopper guide
US11406765B2 (en) 2012-11-30 2022-08-09 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
USD961377S1 (en) 2020-07-29 2022-08-23 Regeneron Pharmaceuticals, Inc. Packaging
USD961376S1 (en) 2020-07-29 2022-08-23 Regeneron Pharmaceuticals, Inc. Packaging
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US11654046B2 (en) * 2015-11-18 2023-05-23 Sio2 Medical Products, Inc. Pharmaceutical package for ophthalmic formulations
US11724860B2 (en) 2011-11-11 2023-08-15 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11912784B2 (en) 2019-10-10 2024-02-27 Kodiak Sciences Inc. Methods of treating an eye disorder

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3858405T3 (da) 2012-06-01 2023-07-03 Novartis Ag Sprøjte
JOP20200175A1 (ar) 2012-07-03 2017-06-16 Novartis Ag حقنة
RU2702748C2 (ru) * 2014-05-12 2019-10-11 Формикон Аг Предварительно заполненный пластиковый шприц, содержащий антагонист vegf
WO2017011895A1 (en) * 2015-07-23 2017-01-26 Luc Magne Shroud for a dental syringe and combination thereof
US10800597B2 (en) * 2015-09-11 2020-10-13 New Product Development Concepts Llc Telescoping syringe with one-way valve
US10369292B2 (en) * 2016-01-15 2019-08-06 W. L. Gore & Associates, Inc. Syringe plunger assemblies
US11419985B2 (en) * 2016-09-12 2022-08-23 Min Wei Medication injection device
WO2018180458A1 (ja) * 2017-03-31 2018-10-04 武田薬品工業株式会社 シリンジ
US20200297919A1 (en) * 2017-09-29 2020-09-24 F. Hoffmann-La Roche Ag Prefilled syringe and method of preparing a prefilled syringe
JP7285842B2 (ja) 2017-12-13 2023-06-02 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 正確な用量の送達のためのデバイス及び方法
WO2019136163A1 (en) 2018-01-03 2019-07-11 Irenix Medical, Inc. Therapeutic agent delivery devices having integrated pain mitigation, and methods for using the same
WO2019199901A1 (en) * 2018-04-09 2019-10-17 Sio2 Medical Products, Inc. Stretchable plunger assemblies
WO2019217927A1 (en) 2018-05-10 2019-11-14 Regeneron Pharmaceuticals, Inc. High concentration vegf receptor fusion protein containing formulations
EP3801693A1 (en) * 2018-05-24 2021-04-14 Novartis AG Automatic drug delivery device
US20210260300A1 (en) * 2018-06-01 2021-08-26 Sun Pharma Advanced Research Company Limited An injection device
JP2019217105A (ja) 2018-06-21 2019-12-26 株式会社松風 注入器
PE20240329A1 (es) 2019-06-05 2024-02-27 Regeneron Pharma Dispositivos y metodos para administracion de dosis de precision
CA3178504A1 (en) * 2020-05-21 2021-11-25 Wendy SHIEU Systems and methods for producing sterile injection devices
KR20220085906A (ko) * 2020-12-15 2022-06-23 삼천당제약주식회사 안과용 제형을 포함하는 시린지
WO2022217194A1 (en) * 2021-04-06 2022-10-13 Vitrean Inc. A prefilled syringe containing a sterile ultraconcentrated hydrogel
WO2023097069A1 (en) * 2021-11-29 2023-06-01 Amgen Inc. Plunger rod removal force method and fixture
WO2023153535A1 (ko) * 2022-02-09 2023-08-17 삼천당제약주식회사 안과용 제형을 포함하는 시린지

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2236727A (en) * 1939-01-07 1941-04-01 Calbar Paint & Varnish Company Plastic material dispenser
US20010056264A1 (en) * 2000-06-21 2001-12-27 Hideto Sayama Syringe
US7077826B1 (en) * 2002-01-24 2006-07-18 Robin Scott Gray Syringe and method of using
US20060264967A1 (en) * 2003-03-14 2006-11-23 Ferreyro Roque H Hydraulic device for the injection of bone cement in percutaneous vertebroplasty
US20090326458A1 (en) * 2008-04-11 2009-12-31 Chong Colin A Reservoir plunger head systems and methods
US20100087796A1 (en) * 2008-10-03 2010-04-08 Reichert, Inc. Method For Controlling A Pump Drive
US20100288393A1 (en) * 2009-05-12 2010-11-18 Malmstrom Robert A Method of preparing multiple doses of a pharmaceutical solution from a single-dose
US20110190709A1 (en) * 2008-06-17 2011-08-04 Denki Kagaku Kogyo Kabushiki Kaisha Injector
US20120007821A1 (en) * 2010-07-11 2012-01-12 Lester F. Ludwig Sequential classification recognition of gesture primitives and window-based parameter smoothing for high dimensional touchpad (hdtp) user interfaces
US20120271245A1 (en) * 2011-04-21 2012-10-25 Achan Jr Leonard Malleable stopper for a syringe

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1704924A (en) * 1925-09-05 1929-03-12 Cook Lab Inc Syringe cartridge
US2602447A (en) 1947-12-20 1952-07-08 Kollsman Paul Device for hypodermic injection
US3148772A (en) * 1962-09-18 1964-09-15 Dentists Supply Co Sterile surgical packaging
US3248950A (en) * 1964-05-25 1966-05-03 Dow Chemical Co Stop mechanism for pipette filling device
FR2348708A1 (fr) 1976-04-23 1977-11-18 Becton Dickinson France Ampoule-seringue et son procede d'utilisation
JPH0725953Y2 (ja) * 1988-03-17 1995-06-14 株式会社大協精工 注射器の滑栓
US4946441A (en) 1988-07-21 1990-08-07 Maurice Laderoute Limited use hypodermic syringe
US5173258A (en) 1989-10-11 1992-12-22 American Sterilizer Company Recirculation, vapor and humidity control in a sealable enclosure
DE9011685U1 (sl) * 1990-08-10 1991-12-12 Thera Patent Gmbh & Co. Kg Gesellschaft Fuer Industrielle Schutzrechte, 8031 Seefeld, De
US5380295A (en) 1992-12-14 1995-01-10 Mallinckrodt Medical, Inc. Delivery apparatus with mechanism preventing rearward movement of a piston disposed therein
JPH0666689U (ja) * 1993-03-05 1994-09-20 浪華ゴム工業株式会社 注射器
JP3186422B2 (ja) 1993-05-14 2001-07-11 武田薬品工業株式会社 プラスチゾル
US5405326A (en) 1993-08-26 1995-04-11 Habley Medical Technology Corporation Disposable safety syringe with retractable shuttle for luer lock needle
US5795337A (en) * 1994-02-14 1998-08-18 Becton Dickinson And Company Syringe assembly and syringe stopper
US5597530A (en) 1994-08-18 1997-01-28 Abbott Laboratories Process for prefilling and terminally sterilizing syringes
US5688252A (en) 1994-09-30 1997-11-18 Takeda Chemical Industries, Ltd. Syringe
US5667495A (en) 1995-04-21 1997-09-16 Becton Dickinson France S.A. Backstop device for a syringe
US5607400A (en) 1995-05-19 1997-03-04 Becton, Dickinson And Company Pre-fillable syringe and stopper assembly therefor
US5607399A (en) 1995-09-22 1997-03-04 Becton, Dickinson And Company Backstop device for a flangeless syringe
DE19613035B4 (de) * 1996-03-19 2007-12-13 Ferring Gmbh System mit einer Spritze und einem Griffstück
JPH09308689A (ja) * 1996-05-21 1997-12-02 Nihon Medi Physics Co Ltd 突起を有するプランジャーおよび注射器
DE19622283A1 (de) 1996-05-23 1997-11-27 Schering Ag Verfahren zur terminalen Sterilisierung von befüllten Spritzen
DE69829891T2 (de) 1997-04-07 2005-10-06 Genentech, Inc., South San Francisco Anti-VEGF Antikörper
JP3387775B2 (ja) 1997-05-22 2003-03-17 株式会社大協精工 注射器用密封栓及びプレフィルド注射器
JP3831505B2 (ja) * 1997-12-26 2006-10-11 生化学工業株式会社 医療用滅菌包装における滅菌方法
US6228324B1 (en) 1997-11-28 2001-05-08 Seikagaku Corporation Sterilizing method for medical sterilization packaging and injection pack
EP2253549B1 (en) * 1998-03-13 2015-03-04 Becton Dickinson and Company Method for manufacturing, filling and packaging medical containers
EP1075293A1 (en) 1998-04-30 2001-02-14 Abbott Laboratories Syringe assembly
JP2000014779A (ja) 1998-07-02 2000-01-18 Wada Kiyoutaro プレフィールドシリンジ
US20030032928A1 (en) 2000-03-02 2003-02-13 Morihiro Sudo Prefilled syringe assembly
US6608038B2 (en) 2000-03-15 2003-08-19 Novartis Ag Methods and compositions for treatment of diabetes and related conditions via gene therapy
JP2001340455A (ja) 2000-05-31 2001-12-11 Yoshino Kogyosho Co Ltd シリンジ容器
JP4626064B2 (ja) 2000-09-28 2011-02-02 生化学工業株式会社 注射器
JP2002177388A (ja) 2000-12-15 2002-06-25 Daikyo Seiko Ltd 医薬・医療用既充填注射器
DE10103706A1 (de) 2001-01-26 2002-08-14 Aventis Behring Gmbh Verwendung eines Hydrogenperoxid-Plasma-Sterilisationsverfahrens für die schonende Sterilisation temperaturempfindlicher Produkte
DE10122959A1 (de) 2001-05-11 2002-11-21 West Pharm Serv Drug Res Ltd Pharmazeutischer Spritzenkolben sowie Verfahren und Vorrichtung zu dessen Herstellung
JP2003052819A (ja) 2001-08-10 2003-02-25 Seikagaku Kogyo Co Ltd 薬剤充填注射器包装物およびその滅菌または殺菌方法
JP4256643B2 (ja) * 2001-12-27 2009-04-22 昭和薬品化工株式会社 カートリッジ注射器、カートリッジ及び該注射器を備えた眼科用注射器セット
JP4141156B2 (ja) 2002-03-15 2008-08-27 日本ベクトン・ディッキンソン株式会社 プランジャ後退制限機構付きプレフィルドシリンジ
CA2501968C (en) * 2002-10-11 2013-07-23 Becton, Dickinson And Company Flush syringe having anti-reflux features
JP2006519070A (ja) 2003-02-27 2006-08-24 バクスター・インターナショナル・インコーポレイテッド 注射器のためのピストンアセンブリ
JP2004313369A (ja) 2003-04-15 2004-11-11 Menicon Co Ltd カートリッジ注入器、カートリッジ及び該注入器を備えた眼科用注入器セット
FR2855413B1 (fr) 2003-05-26 2005-12-30 Becton Dickinson France Seringue pre-remplie avec coiffe anti effraction
US20050129569A1 (en) 2003-12-15 2005-06-16 Becton, Dickinson And Company Terminal sterilization of prefilled containers
WO2005070479A1 (ja) 2003-12-26 2005-08-04 Wet Trust Japan Co., Ltd. 携帯用噴出注入具
US20050148947A1 (en) 2003-12-30 2005-07-07 Advanced Medical Optics, Inc. Cannula locking device
WO2005077443A1 (en) 2004-02-18 2005-08-25 Mcgill University A device for injecting a viscous material into a hard tissue
DE102004009919B4 (de) 2004-02-20 2007-02-08 Schott Ag Spritze, insbesondere für medizinische Anwendungen
KR100897379B1 (ko) 2004-06-08 2009-05-14 쳉두 캉홍 바이오테크놀로지스 코. 리미티드 혈관신생-저해 키메릭 단백질 및 그 사용
JP4759232B2 (ja) * 2004-07-02 2011-08-31 テルモ株式会社 包装されたプレフィルドシリンジの製造方法
EP1802334B1 (en) * 2004-10-21 2012-08-29 Genentech, Inc. Method for treating intraocular neovascular diseases
EP1888150A1 (en) * 2005-05-31 2008-02-20 Baxter International Inc. Polypropylene hollow barrel with sliding coated rubber piston
US20060293270A1 (en) * 2005-06-22 2006-12-28 Adamis Anthony P Methods and compositions for treating ocular disorders
JP4584057B2 (ja) 2005-07-08 2010-11-17 テルモ株式会社 プレフィルドシリンジ
DE102005037962A1 (de) 2005-08-11 2007-02-15 Arzneimittel Gmbh Apotheker Vetter & Co. Ravensburg Spritze
WO2007035621A1 (en) 2005-09-16 2007-03-29 (Osi) Eyetech, Inc. Ophthalmic syringe
JP4848784B2 (ja) * 2006-02-02 2011-12-28 ニプロ株式会社 プランジャーとこれを用いたシリンジ及びプレフィルドシリンジ
DE502006001489D1 (de) 2006-02-14 2008-10-16 Gerresheimer Buende Gmbh Verfahren zum Herstellen von vorfüllbaren Spritzen
EP2029103A2 (en) 2006-06-16 2009-03-04 Regeneron Pharmaceuticals, Inc. Vegf antagonist formulations suitable for intravitreal administration
JP4131001B2 (ja) 2006-07-28 2008-08-13 大成化工株式会社 定量吐出装置
EP1894590B1 (de) 2006-08-30 2012-04-25 Roche Diagnostics GmbH Injektionsvorrichtung mit vereinfachter Stopfenrückhaltung
US8038656B2 (en) 2006-09-29 2011-10-18 Tyco Healthcare Group Lp Detachable plunger rod syringe
US20080114306A1 (en) 2006-11-03 2008-05-15 Bare Rex O Small volume syringe with writing portion
WO2008077155A1 (en) 2006-12-21 2008-06-26 Genentech, Inc. Sterilization of objects containing biological molecules
US7972302B2 (en) 2007-06-12 2011-07-05 Becton, Dickinson And Company Syringe with disabling mechanism
EP2020245B1 (en) 2007-07-31 2011-11-30 AL.CHI.MI.A. S.r.l. Method for making a device for ophthalmic treatments
WO2009030976A1 (en) 2007-09-03 2009-03-12 Becton Dickinson France Medical device and smooth coating therefor
DE102008005938A1 (de) * 2008-01-24 2009-07-30 Arzneimittel Gmbh Apotheker Vetter & Co. Ravensburg Vorgefüllte Spritze und Verfahren zum Verpacken einer Spritze
JP5163882B2 (ja) 2008-05-27 2013-03-13 澁谷工業株式会社 滅菌方法
CN101640886B (zh) 2008-07-29 2012-04-25 上海华为技术有限公司 鉴权方法、重认证方法和通信装置
WO2010024209A1 (ja) 2008-08-25 2010-03-04 電気化学工業株式会社 注射器
CN201263820Y (zh) * 2008-09-02 2009-07-01 甘肃成纪生物药业有限公司 双室卡式瓶粉针剂预灌装注射器
WO2010040232A1 (en) * 2008-10-09 2010-04-15 Waratah Pharmaceuticals Inc. Use of scyllo-inositols for the treatment of macular degeneration-related disorders
US8221353B2 (en) 2008-10-21 2012-07-17 KMG Pharma, Inc Intravitreal injection device and system
US7678078B1 (en) 2008-10-21 2010-03-16 KMG Pharma LLC Intravitreal injection device, system and method
EP2371406A4 (en) 2008-12-03 2017-08-16 Denka Company Limited Syringe
WO2010081838A2 (en) * 2009-01-14 2010-07-22 Novartis Ag Sterile prefilled container
WO2010103919A1 (ja) * 2009-03-09 2010-09-16 テルモ株式会社 ガスケットおよびシリンジ
AR078060A1 (es) 2009-07-14 2011-10-12 Novartis Ag Descontaminacion de superficie de contenedores previamente llenados en empaque secundario
JP5431051B2 (ja) 2009-07-17 2014-03-05 株式会社大協精工 微少容量の注射器用ピストン及び該ピストンを取り付けたプランジャー
EP3556412B1 (en) 2009-10-29 2021-04-14 W.L. Gore & Associates Inc. Syringe stopper coated with expanded ptfe
JP5930959B2 (ja) * 2010-03-30 2016-06-08 テルモ株式会社 摺動性被覆層保有医療用具およびシリンジ
WO2011125475A1 (ja) * 2010-03-31 2011-10-13 テルモ株式会社 シリンジ
US9408746B2 (en) 2010-03-31 2016-08-09 Ocuject, Llc Device and method for intraocular drug delivery
JP2012045046A (ja) 2010-08-24 2012-03-08 Gc Corp 歯科用シリンジ
US20120078219A1 (en) 2010-09-29 2012-03-29 Tyco Healthcare Group Lp Syringe Assembly
FR2966044B1 (fr) 2010-10-18 2012-11-02 Sanofi Pasteur Procede de conditionnement d'un vaccin contenant un adjuvant d'aluminium
CN103415313B (zh) 2011-03-01 2017-06-13 泰尔茂株式会社 注射器及注射器组装体
DK3858405T3 (da) 2012-06-01 2023-07-03 Novartis Ag Sprøjte
JOP20200175A1 (ar) 2012-07-03 2017-06-16 Novartis Ag حقنة
CA2973151C (en) 2017-06-29 2023-12-19 Daniel B. Dix Devices and methods for overfilling drug containers

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2236727A (en) * 1939-01-07 1941-04-01 Calbar Paint & Varnish Company Plastic material dispenser
US20010056264A1 (en) * 2000-06-21 2001-12-27 Hideto Sayama Syringe
US7077826B1 (en) * 2002-01-24 2006-07-18 Robin Scott Gray Syringe and method of using
US20060264967A1 (en) * 2003-03-14 2006-11-23 Ferreyro Roque H Hydraulic device for the injection of bone cement in percutaneous vertebroplasty
US20090326458A1 (en) * 2008-04-11 2009-12-31 Chong Colin A Reservoir plunger head systems and methods
US20110190709A1 (en) * 2008-06-17 2011-08-04 Denki Kagaku Kogyo Kabushiki Kaisha Injector
US20100087796A1 (en) * 2008-10-03 2010-04-08 Reichert, Inc. Method For Controlling A Pump Drive
US20100288393A1 (en) * 2009-05-12 2010-11-18 Malmstrom Robert A Method of preparing multiple doses of a pharmaceutical solution from a single-dose
US20120007821A1 (en) * 2010-07-11 2012-01-12 Lester F. Ludwig Sequential classification recognition of gesture primitives and window-based parameter smoothing for high dimensional touchpad (hdtp) user interfaces
US20120271245A1 (en) * 2011-04-21 2012-10-25 Achan Jr Leonard Malleable stopper for a syringe

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US11123491B2 (en) 2010-11-12 2021-09-21 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US11884446B2 (en) 2011-11-11 2024-01-30 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11724860B2 (en) 2011-11-11 2023-08-15 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US11406765B2 (en) 2012-11-30 2022-08-09 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US11684546B2 (en) 2013-03-11 2023-06-27 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US11344473B2 (en) 2013-03-11 2022-05-31 SiO2Medical Products, Inc. Coated packaging
US10912714B2 (en) 2013-03-11 2021-02-09 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11155610B2 (en) 2014-06-28 2021-10-26 Kodiak Sciences Inc. Dual PDGF/VEGF antagonists
US11103379B2 (en) 2015-04-10 2021-08-31 Dompe' Farmaceutici S.P.A. Dispensing device for eye drops
AU2016356047B2 (en) * 2015-11-18 2021-10-21 Formycon Ag Pre-filled plastic syringe containing a VEGF antagonist
US20180326126A1 (en) * 2015-11-18 2018-11-15 Formycon Ag Pre-filled plastic syringe containing a vegf antagonist
US11654046B2 (en) * 2015-11-18 2023-05-23 Sio2 Medical Products, Inc. Pharmaceutical package for ophthalmic formulations
US20220362441A1 (en) * 2015-11-18 2022-11-17 Formycon Ag Pre-filled plastic syringe containing a vegf antagonist
US11066465B2 (en) 2015-12-30 2021-07-20 Kodiak Sciences Inc. Antibodies and conjugates thereof
US20200188599A1 (en) * 2016-04-08 2020-06-18 Allergan, Inc. Aspiration and injection device
US11890457B2 (en) * 2016-04-08 2024-02-06 Allergan, Inc. Aspiration and injection device
ITUA20162072A1 (it) * 2016-06-30 2017-12-30 Platinum Corp Srl Dropper a volume controllato
US11324630B2 (en) 2016-06-30 2022-05-10 Dompe' Farmaceutici S.P.A. Controlled volume dropper
WO2018002866A1 (en) * 2016-06-30 2018-01-04 Dompe' Farmaceutici S.P.A. Controlled volume dropper
EA039298B1 (ru) * 2016-06-30 2021-12-30 Домпе Фармачеутичи С.П.А. Пипетка-дозатор
US11291772B2 (en) * 2017-02-17 2022-04-05 Becton, Dickinson And Company Syringe and plunger rod with stopper guide
US10799639B2 (en) * 2017-03-03 2020-10-13 Min Wei Syringe type medication delivery device
US20180250474A1 (en) * 2017-03-03 2018-09-06 Min Wei Syringe Type Medication Delivery Device
US10918754B2 (en) 2017-03-27 2021-02-16 Regeneron Pharmaceuticals, Inc. Sterilisation method
US10905786B2 (en) 2017-03-27 2021-02-02 Regeneron Pharmaceuticals, Inc. Sterilisation method
US10898649B2 (en) 2017-05-05 2021-01-26 Alcon Inc. Syringe
WO2019149869A3 (en) * 2018-02-02 2019-09-12 F. Hoffmann-La Roche Ag Prefilled syringe and method of sterilizing a prefilled syringe
CN111670059A (zh) * 2018-02-02 2020-09-15 豪夫迈·罗氏有限公司 预填充式注射器和对预填充式注射器进行灭菌的方法
USD920519S1 (en) * 2019-06-28 2021-05-25 Oertli-Instrumente Ag Medical instrument for eye surgical purposes
USD980983S1 (en) 2019-06-28 2023-03-14 Oertli-Instrumente Ag Medical instrument for eye surgical purposes
US11160918B2 (en) * 2019-07-29 2021-11-02 Regeneran Pharmaceuticals, Inc. Medical device packaging and related methods
US11793926B2 (en) 2019-07-29 2023-10-24 Regeneron Pharmaceuticals, Inc. Medical device packaging and related methods
USD934069S1 (en) 2019-07-29 2021-10-26 Regeneron Pharmaceuticals, Inc. Packaging
US11912784B2 (en) 2019-10-10 2024-02-27 Kodiak Sciences Inc. Methods of treating an eye disorder
WO2021132202A1 (ja) 2019-12-27 2021-07-01 テルモ株式会社 注射器バレル用グリップおよびバレル組立体ならびにシリンジ
WO2021192637A1 (ja) 2020-03-24 2021-09-30 テルモ株式会社 注射器バレル用グリップおよびバレル組立体ならびにシリンジ
USD961376S1 (en) 2020-07-29 2022-08-23 Regeneron Pharmaceuticals, Inc. Packaging
USD961377S1 (en) 2020-07-29 2022-08-23 Regeneron Pharmaceuticals, Inc. Packaging

Also Published As

Publication number Publication date
SI3536310T1 (sl) 2021-08-31
PL3536310T3 (pl) 2021-11-02
EP3858405A1 (en) 2021-08-04
GT201400279A (es) 2017-09-28
EP3679922A1 (en) 2020-07-15
DK3777834T3 (da) 2022-05-16
LT3777834T (lt) 2022-05-25
MA42648A1 (fr) 2019-01-31
DK3536310T3 (da) 2021-07-19
MY165727A (en) 2018-04-20
SG10201900193YA (en) 2019-02-27
EP3777834A1 (en) 2021-02-17
KR20210035325A (ko) 2021-03-31
US20210283336A1 (en) 2021-09-16
AU2013269594B2 (en) 2016-06-02
JP6920269B2 (ja) 2021-08-18
EP3858405B1 (en) 2023-04-05
MX2020005315A (es) 2020-08-17
ES2895406T3 (es) 2022-02-21
CO7141462A2 (es) 2014-12-12
US20200214888A1 (en) 2020-07-09
AU2013269594C1 (en) 2020-12-17
KR20200140933A (ko) 2020-12-16
JP2020116400A (ja) 2020-08-06
KR102386843B1 (ko) 2022-04-15
LT3536310T (lt) 2021-07-26
KR102232708B1 (ko) 2021-03-30
IL296105A (en) 2022-11-01
MA37599A1 (fr) 2016-09-30
HUE055994T2 (hu) 2022-01-28
JP6781546B2 (ja) 2020-11-04
ES2881196T3 (es) 2021-11-29
JP2022081491A (ja) 2022-05-31
HRP20211572T1 (hr) 2022-02-04
EP3679922B1 (en) 2021-07-28
CN104780906A (zh) 2015-07-15
SI3858405T1 (sl) 2023-08-31
IN2014DN09689A (sl) 2015-07-31
ES2913198T3 (es) 2022-06-01
IL296105B1 (en) 2023-05-01
HUE055556T2 (hu) 2021-12-28
PE20142396A1 (es) 2015-02-02
US20230113993A1 (en) 2023-04-13
PL3679922T3 (pl) 2022-01-03
DK3858405T3 (da) 2023-07-03
JP2021180916A (ja) 2021-11-25
KR102453181B1 (ko) 2022-10-07
JP7042954B2 (ja) 2022-03-28
CL2014003251A1 (es) 2015-05-15
CY1124375T1 (el) 2022-07-22
IL235882A0 (en) 2015-01-29
ES2948322T3 (es) 2023-09-08
IL272913A (en) 2020-04-30
PH12014502675B1 (en) 2015-02-02
EA201492261A1 (ru) 2015-03-31
JP2021106905A (ja) 2021-07-29
JP7075521B2 (ja) 2022-05-25
EP3536310A1 (en) 2019-09-11
BR112014029795B1 (pt) 2021-09-21
JP2019058679A (ja) 2019-04-18
PH12014502675A1 (en) 2015-02-02
AR091817A1 (es) 2015-03-04
EA033161B1 (ru) 2019-09-30
IL296105B2 (en) 2023-09-01
JP7026991B2 (ja) 2022-03-01
IL272913B1 (en) 2023-01-01
WO2013178771A1 (en) 2013-12-05
LT3679922T (lt) 2021-10-25
MX2014014722A (es) 2015-02-17
PL3858405T3 (pl) 2023-07-31
HRP20220558T1 (hr) 2022-06-10
PT3777834T (pt) 2022-05-09
IL272913B2 (en) 2023-05-01
PT3679922T (pt) 2021-10-20
ZA201408019B (en) 2015-11-25
KR20210101329A (ko) 2021-08-18
US11110226B2 (en) 2021-09-07
US20210161706A1 (en) 2021-06-03
CA3126069A1 (en) 2013-12-05
US11179521B2 (en) 2021-11-23
JP2021184827A (ja) 2021-12-09
JP2022166261A (ja) 2022-11-01
AU2013269594A1 (en) 2014-11-27
HK1202816A1 (en) 2015-10-09
EP3777834B1 (en) 2022-02-16
BR112014029795A2 (pt) 2017-06-27
US20220031952A1 (en) 2022-02-03
US20190365565A1 (en) 2019-12-05
NZ702313A (en) 2016-04-29
HRP20211088T1 (hr) 2021-10-15
PL3777834T3 (pl) 2022-05-30
DK3679922T3 (da) 2021-10-18
KR102288287B1 (ko) 2021-08-11
CA2875193A1 (en) 2013-12-05
TN2014000471A1 (en) 2016-03-30
DE202013012825U1 (de) 2020-02-06
TW201402165A (zh) 2014-01-16
PT3536310T (pt) 2021-07-14
SG11201407241QA (en) 2014-12-30
MA42648B1 (fr) 2019-10-31
IL235882B (en) 2021-05-31
US20200179167A1 (en) 2020-06-11
US11185635B2 (en) 2021-11-30
KR20220048059A (ko) 2022-04-19
EP3536310B1 (en) 2021-04-28
SI3679922T1 (sl) 2021-11-30
EP2854762A1 (en) 2015-04-08
JP2015517860A (ja) 2015-06-25
US11103644B2 (en) 2021-08-31
CY1124585T1 (el) 2022-07-22
SI3777834T1 (sl) 2022-06-30
US11147925B2 (en) 2021-10-19
KR20150021924A (ko) 2015-03-03
PT3858405T (pt) 2023-06-26

Similar Documents

Publication Publication Date Title
US11179521B2 (en) Syringe

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOVARTIS PHARMA AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRYANT, ANDREW;BUETTGEN, HEINRICH;PAPST, WOLFGANG;AND OTHERS;REEL/FRAME:034307/0257

Effective date: 20130613

Owner name: NOVARTIS AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOVARTIS PHARMA AG;REEL/FRAME:034307/0316

Effective date: 20130625

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION