US20120259031A1 - Led curable liquid resin compositions for additive fabrication - Google Patents

Led curable liquid resin compositions for additive fabrication Download PDF

Info

Publication number
US20120259031A1
US20120259031A1 US13/515,629 US201013515629A US2012259031A1 US 20120259031 A1 US20120259031 A1 US 20120259031A1 US 201013515629 A US201013515629 A US 201013515629A US 2012259031 A1 US2012259031 A1 US 2012259031A1
Authority
US
United States
Prior art keywords
photocurable resin
resin composition
salts
sulfonium
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/515,629
Other languages
English (en)
Inventor
Ken Dake
Jigeng Xu
Timothy Bishop
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DSM IP Assets BV
Original Assignee
DSM IP Assets BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DSM IP Assets BV filed Critical DSM IP Assets BV
Priority to US13/515,629 priority Critical patent/US20120259031A1/en
Publication of US20120259031A1 publication Critical patent/US20120259031A1/en
Assigned to DSM ASSETS B.V. reassignment DSM ASSETS B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAKE, KEN
Assigned to DSM IP ASSETS B.V. reassignment DSM IP ASSETS B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XU, JIGENG, BISHOP, TIMOTHY EDWARD, DAKE, KEN
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/277Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/0011Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for shaping plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0037Production of three-dimensional images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C2033/0005Moulds or cores; Details thereof or accessories therefor with transparent parts, e.g. permitting visual inspection of the interior of the cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer

Definitions

  • the present invention relates to photocurable resin compositions used in additive fabrication applications.
  • Additive fabrication processes for producing three dimensional articles are known in the field.
  • Additive fabrication processes utilize computer-aided design (CAD) data of an object to build three-dimensional parts layer-by-layer. These three-dimensional parts may be formed from liquid resins, powders, or other materials.
  • CAD computer-aided design
  • SL stereolithography
  • CAD data of an object wherein the data is transformed into thin cross-sections of a three-dimensional object.
  • the data is loaded into a computer which controls a laser beam that traces the pattern of a cross section through a liquid radiation curable resin composition contained in a vat, solidifying a thin layer of the resin corresponding to the cross section.
  • the solidified layer is recoated with resin and the laser beam traces another cross section to harden another layer of resin on top of the previous layer.
  • the process is repeated layer by layer until the three-dimensional object is completed.
  • the three-dimensional object is, in general, not fully cured and therefore may be subjected to post-curing, if required.
  • An example of an SL process is described in U.S. Pat. No. 4,575,330.
  • lasers used in stereolithography There are several types of lasers used in stereolithography, ranging from 193 nm to 355 nm in wavelength.
  • the use of bulky and expensive gas lasers to cure liquid radiation curable resins is well known.
  • the delivery of laser energy in a stereolithography system can be Continuous Wave (CW) or Q-switched pulses.
  • CW lasers provide continuous laser energy and can be used in a high speed scanning process.
  • their output power is limited which reduces the amount of curing that occurs during object creation. As a result the finished object will need additional post process curing.
  • excess heat could be generated at the point of irradiation which may be detrimental to the resin.
  • the use of a laser requires scanning point by point on the resin which can be time-consuming.
  • LEDs Light emitting diodes
  • LEDs are semiconductor devices which utilize the phenomenon of electroluminescence to generate light.
  • LEDs consist of a semiconducting material doped with impurities to create a p-n junction capable of emitting light as positive holes join with negative electrons when voltage is applied.
  • the wavelength of emitted light is determined by the materials used in the active region of the semiconductor.
  • Typical materials used in semiconductors of LEDs include, for example, elements from Groups 13 (III) and 15 (V) of the periodic table. These semiconductors are referred to as III-V semiconductors and include, for example, GaAs, GaP, GaAsP, AlGaAs, InGaAsP, AlGaInP, and InGaN semiconductors.
  • Other examples of semiconductors used in LEDs include compounds from Group 14 (IV-IV semiconductor) and Group 12-16 (II-V1). The choice of materials is based on multiple factors including desired wavelength of emission, performance parameters, and cost.
  • LEDs used gallium arsenide (GaAs) to emit infrared (IR) radiation and low intensity red light. Advances in materials science have led to the development of LEDs capable of emitting light with higher intensity and shorter wavelengths, including other colors of visible light and UV light. It is possible to create LEDs that emit light across a wide wavelength spectrum, for example, from a low of about 100 nm to a high of about 900 nm. Typically, LED UV light sources currently emit light at wavelengths between 300 and 475 nm, with 365 nm, 390 nm, and 395 nm being common peak spectral outputs. See textbook,“Light-Emitting Diodes” by E. Fred Schubert, 2′′ Edition, ⁇ E. Fred Schubert 2006, published by Cambridge University Press.
  • LED lamps for commercial curing applications. For example, Phoseon Technology, Summit UV, Honle UV America, Inc., IST Metz GmbH, Jenton International Ltd., Lumos Solutions Ltd., Solid UV Inc., Seoul Optodevice Co., Ltd., Spectronics Corporation, Luminus Devices Inc., and Clearstone Technologies, are some of the manufacturers offering LED lamps for curing ink-jet printing compositions, PVC floor coating compositions, metal coating compositions, plastic coating composition, and adhesive compositions.
  • LED curing devices are used in dental work.
  • An example of such a device is the ELIPARTM FreeLight 2 LED curing light from 3M ESPE. This device emits light in the visible region with a peak irradiance at 460 nm. LED equipment is also being tested for use in the ink-jet printing, including, for example, by IST Metz.
  • U.S. Pat. No. 7,211,368 reportedly discloses a liquid stereolithography resin comprising a first urethane acrylate oligomer, a first acrylate monomer, a polymerization modifier, a second urethane acrylate oligomer different from the first urethane acrylate oligomer, and a stabilizer.
  • the first urethane acrylate oligomer is an aliphatic polyester urethane diacrylate oligomer
  • the first acrylate monomer is ethoxylated (3) trimethylolpropane acrylate
  • the polymerization modifier is selected from the group consisting of isobornyl acrylate, ethoxylated (5) pentaerythritol tetraacrylate, an aliphatic urethane acrylate, tris-(2-hydroxyethyl)isocyanurate triacrylate, and mixtures thereof.
  • the resin includes 5-35 weight % of an aliphatic polyester urethane diacrylate oligomer and 0.5-25 weight % ethoxylated (3) trimethylolpropane acrylate, wherein the resin includes 15-45 weight % ethoxylated (5) pentaerythritol tetraacrylate.
  • the '368 patent indicates that a laser is used to cure the resin. Further, the '368 patent fails to disclose the use of an acid generating photoinitiator, such as a cationic photoinitiator.
  • U.S. Pat. No. 6,927,018 and U.S. Patent Application Publication No. 2005/0227186 purportedly provide a method, article of manufacture and system for fabricating an article using photo-activatable building material.
  • the method according to the '018 patent and the '186 publication includes the steps of applying a layer of the photo-activatable building material to a preselected surface, scanning the layer using a plurality of light-emitting centers to photo-activate the layer of photo-activatable building material in accordance with a predetermined photo-initiation process to obtain polymerization of the building material.
  • Scanning is accomplished at a predetermined distance using a predetermined light intensity, and repeating the steps of applying the layer.
  • Each layer is applied to an immediately previous layer, and the layer is scanned with the plurality of light-emitting centers to polymerize the building material until the article is fabricated.
  • UV LEDs and laser diodes as suitable light-emitting centers, they fail to disclose detailed information on photo-activatable building material suitable for LED cure.
  • U.S. Pat. No. 7,270,528 purportedly discloses a flash curing system for solid freeform fabrication which generates a plurality of radiation emitting pulses that forms a planar flash.
  • the planar flash initiates curing of a curable material dispensed by a solid freeform fabrication apparatus.
  • the '528 patent while mentioning UV light-emitting diodes (LED) lamps in the specification, sets forth examples where a flash lamp is used to cure the resin composition.
  • the resin composition illustrated in the '528 patent does contain a cationically curable monomer or a cationic photoinitiator.
  • U.S. Patent Application Publication No. 2008/0231731 or 2008/0169589 or European Patent Application No. EP 1950032 purportedly discloses a solid imaging apparatus that includes a replaceable cartridge containing a source of build material and an extendable and retractable flexible transport film for transporting the build material layer-by-layer from the cartridge to the surface of a build in an image plane. If desired, the apparatus can produce a fully reacted build. A high intensity UV source is said to cure the build between layers.
  • the above publications state that the solid imaging radiation that is used to cure the build material can be “any actinic radiation which causes a photocurable liquid to react to produce a solid, whether a visible or UV source or other source,”
  • International Patent Publication No. WO 2008/118263 is directed to a system for building a three-dimensional object based on build data representing the three-dimensional object, wherein the system includes an extrusion head that deposits a radiation-curable material in consecutive layers at a high deposition rate. The radiation-curable material of each of the consecutive layers is cooled to a self-supporting state.
  • the system is said to include a radiation source that selectively exposes portions of the consecutive layers to radiation at a high resolution in accordance with the build data.
  • the exposure head includes a linear array of high resolution, UV light-emitting diodes (LEDs).
  • LEDs UV light-emitting diodes
  • P71-1464 CUREBARTM and P150-3072 PRINTHEADTM are described as examples of suitable UV-radiation sources for the exposure head.
  • the '263 publication fails to describe exemplary photocurable formulations suitable for curing by LED light in an additive fabrication process.
  • the invention in this PCT patent application relates to the use of LED curing in structural applications, in particular in applications for the lining or relining of objects, and to objects containing a cured resin composition obtained by LED curing.
  • This invention provides a simple, environmentally safe and readily controllable method for (re)lining pipes, tanks and vessels, especially for such pipes and equipment having a large diameter, in particular more than 15 cm.
  • the specification does not describe LED radiation curable photocurable resins.
  • U.S. Patent Application Publication No. 2007/0205528 reportedly discloses an optical molding process wherein the radiation source used is a non-coherent source of radiation.
  • the '528 publication indicates that the photocurable compositions are formulated so as to enable the production of three-dimensional articles having better performance when irradiated with conventional (non-coherent) UV rather than with Laser UV, and states that the photocurable compositions disclosed are more appropriate for UV non-coherent irradiation than for Laser UV.
  • the exposure system uses irradiation from non-coherent light sources, e.g., a xenon fusion lamp, or light emitting diode bars
  • the exemplified exposure was reportedly carried out according to the method of WO 00/21735, which is said to describe an apparatus and a method wherein the photosensitive material is exposed to a light source illuminating a cross-section of a material by at least two modulator arrangements of individually controllable light modulators.
  • U.S. Patent Application Publication No. 2009/0267269A or WO 2009/132245 reportedly discloses a continuous-wave (CW) ultraviolet (UV) curing system for solid freeform fabrication (SFF), wherein the curing system is configured to provide an exposure of UV radiation for one or more layers of UV-curable material. It is reported that one or more UV exposures may initiate curing of a curable material in the layer dispensed by a solid freeform fabrication apparatus. According to the '269 or '245 publication, one approach to provide the single or multiple UV exposures is the use of one or more UV LEDs, which generate UV radiation without generating any substantial amounts of infrared (IR) radiation at the same time.
  • IR infrared
  • the invention provides a photocurable resin composition for additive fabrication comprising a polymerizable component that is polymerizable by free-radical polymerization, by cationic polymerization, or by both free-radical polymerization and cationic polymerization, and a photoinitiating system capable of initiating the free-radical polymerization, cationic polymerization, or both free-radical polymerization and cationic polymerization.
  • the invention also provides a three-dimensional article comprising a cured resin composition which is obtained by curing the photocurable resin composition for additive fabrication, and a method of curing the photocurable resin composition for additive fabrication.
  • the ratio by weight of cationic photoinitiator to free-radical photoinitiator is less than about 4.0.
  • the ratio by weight of cationic polymerizable component to free-radical polymerizable component is less than about 7.0.
  • greater than at least 30 wt % of the ingredients in the photocurable resin composition for additive fabrication are bio-based, rather than petroleum based.
  • the invention provides a photocurable resin composition for additive fabrication comprising a polymerizable component that is polymerizable by free-radical polymerization, by cationic polymerization, or by both free-radical polymerization and cationic polymerization, and a photoinitiating system capable of initiating the free-radical polymerization, cationic polymerization, or both free-radical polymerization and cationic polymerization; wherein the photocurable resin composition for additive fabrication is a liquid at about 25° C., and is capable of curing to provide a solid upon irradiation with light emitted from a light emitting diode (LED), wherein the light has a wavelength of from about 100 nm to about 900 nm; and wherein the liquid photocurable resin composition for additive fabrication has a Critical Exposure (Ec) and a Depth of Penetration (Dp) as measured on a layer of the resin composition for additive fabrication as the composition is curing upon exposure to LED light, wherein
  • the invention provides a three-dimensional article comprising a cured photocurable resin, wherein the cured photocurable resin is obtained by curing a photocurable resin composition for additive fabrication by irradiating it with light emitted from a light emitting diode (LED) light having a wavelength from about 100 nm to about 900 nm;
  • the photocurable resin composition for additive fabrication comprising: a polymerizable component that is polymerizable by free-radical polymerization, cationic polymerization, or both free-radical polymerization and cationic polymerization, and a photoinitiating system capable of initiating the free-radical polymerization, cationic polymerization, or both free-radical polymerization and cationic polymerization;
  • the photocurable resin composition is a liquid at about 25° C., and is capable of curing to provide a solid upon irradiation with light emitted from a light emitting diode (LED), wherein the light has a
  • the invention provides a process for making a three-dimensional article comprising the steps of: forming and selectively curing a layer of a photocurable resin composition by irradiation with a light emitting diode (LED) light having a wavelength from about 100 nm to about 900 nm, the photocurable resin composition comprising: a polymerizable component that is polymerizable by free-radical polymerization, cationic polymerization, or both free-radical polymerization and cationic polymerization, and a photoinitiating system capable of initiating the free-radical polymerization, cationic polymerization, or both free-radical polymerization and cationic polymerization; wherein the photocurable resin composition is a liquid at about 25° C., and is capable of curing to provide a solid upon exposure to a light emitting diode (LED) light having a wavelength of from about 100 nm to about 900 nm, and wherein the liquid photocurable resin
  • the present invention provides a LED photocurable resin composition for additive fabrication comprising a polymerizable component that is polymerizable by at least one of a free-radically initiated polymerization and a cationically initiated polymerization, and a photoinitiating system capable of initiating the polymerization of a free-radically polymerizable component and/or the cationically polymerizable component.
  • the photocurable resin composition for additive fabrication of the invention is characterized by one or more advantages, for example, rapid cure and improved mechanical properties of the resulting cured resin and the three-dimensional article.
  • the photocurable resin composition is a liquid at about 25° C., and is capable of curing to provide a solid upon irradiation with light emitted from a light emitting diode (LED), wherein the light has a wavelength of from about 100 nm to about 900 nm.
  • LED light emitting diode
  • the wavelength of the light can be in the UV or visible region or higher into the infrared region.
  • UVA, UVB, and UVC are possible, which are characterized by the wavelength of from about 320 to about 400 nm, from about 280 to about 320 nm, and from about 100 to about 280 nm, respectively.
  • the photocurable resin composition for additive fabrication is highly photosensitive. For example, it has a Critical Exposure (Ec) and a Depth of Penetration (Dp) as measured on a layer of the photocurable resin composition as the composition is curing, wherein Ec is from about 0.01 seconds to about 6.0 seconds and Dp is about 1 ⁇ 4 to about 4 times the thickness of the layer.
  • the wavelength of the LED light is 365 nm.
  • Ec is about 0.01 seconds to about 1, 2, 3, 4, 5, or 6 seconds. In embodiments, Dp is about 1 ⁇ 4 to about 2 times the thickness of the layer. In an embodiment, Ec is from about 0.01 seconds to about 2.0 seconds.
  • the photosensitivity of the liquid formulations was determined by using a technique similar to the so-called WINDOWPANESTM technique, a technique known to those skilled in the art of stereolithography.
  • WINDOWPANESTM technique a technique known to those skilled in the art of stereolithography.
  • single-layer test specimens are produced by using different amounts of exposure energies to cure the liquid formulation to solid, and the solid resin layer thicknesses obtained are measured.
  • the resulting layer thickness is plotted on a graph against the natural logarithm of the irradiation energy used to provide a “working curve.”
  • the slope of this curve is termed Dp (given in mm or mils).
  • Ec The energy value at which the curve passes through the x-axis is termed Ec (and is the energy at which gelling of the material just takes place; P. Jacobs, Rapid Prototyping and Manufacturing, Soc.
  • the exposure time in seconds
  • the exposure energy in mW/cm 2
  • Dp is from about 1 to about 8 mils, more particularly from about 1 to about 7 mils, and in embodiments, from about 1 mil to about 7 mils or from about 2 to about 5 mils, even more particularly from about 2 mils to about 4 mils.
  • Embodiments of the invention include photocurable resin compositions which display advantageous mechanical properties such as storage modulus as it is curing.
  • the photocurable resin composition as it is curing has a storage shear modulus (G′) value greater than 1.0 ⁇ 10 5 Pa, e.g., from about 5.0 ⁇ 10 5 Pa to about 1.0 ⁇ 10 6 Pa or to about 1.0 ⁇ 10 7 Pa, when measured on a Real Time-Dynamic Mechanical Analyzer (RT-DMA) with an 8 mm plate and a sample gap of 0.10 mm at 3.9 seconds from the beginning of light exposure of 44-50 mW/cm 2 light intensity for 1.0 second.
  • the G′ value is from about 6.0 ⁇ 10 5 Pa to about 9.0 ⁇ 10 5 Pa, and in some other embodiments, the G′ value is from about 7.0 ⁇ 10 5 Pato about 8.0 ⁇ 10 5 Pa.
  • the photocurable resin composition for additive fabrication includes at least one free-radical polymerizable component and at least one cationic polymerizable component.
  • the photocurable resin composition for additive fabrication of the invention comprises at least one free-radical polymerizable component, that is, a component which undergoes polymerization initiated by free radicals.
  • the free-radical polymerizable components are monomers, oligomers, and/or polymers; they are monofunctional or polyfunctional materials, i.e., have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, or more functional groups that can polymerize by free radical initiation, may contain aliphatic, aromatic, cycloaliphatic, arylaliphatic, heterocyclic moiety(ies), or any combination thereof.
  • polyfunctional materials include dendritic polymers such as dendrimers, linear dendritic polymers, dendrigraft polymers, hyperbranched polymers, star branched polymers, and hypergraft polymers; see US 2009/0093564 A1.
  • the dendritic polymers may contain one type of polymerizable functional group or different types of polymerizable functional groups, for example, acrylates and methacrylate functions.
  • free-radical polymerizable components include acrylates and methacrylates such as isobornyl (meth)acrylate, bornyl (meth)acrylate, tricyclodecanyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, 4-butylcyclohexyl (meth)acrylate, acryloyl morpholine, (meth)acrylic acid, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, amyl (meth)acrylate, isobutyl (meth)acrylate,
  • polyfunctional free-radical polymerizable components include those with (meth)acryloyl groups such as trimethylolpropane tri(meth)acrylate, pentaerythritol (meth)acrylate, ethylene glycol di(meth)acrylate, bisphenol A diglycidyl ether di(meth)acrylate, dicyclopentadiene dimethanol di(meth)acrylate, [2-[1,1-dimethyl-2-[(1-oxoallyl)oxy]ethyl]-5-ethyl-1,3-dioxan-5-yl]methyl acrylate; 3,9-bis(1,1-dimethyl-2-hydroxyethyl)-2,4,8,10-tetraoxaspiro[5.5]undecane di(meth)acrylate; dipentaerythritol monohydroxypenta(meth)acrylate, propoxylated trimethylolpropane tri(meth)acrylate, propoxylated neopen
  • the polyfunctional (meth)acrylates of the polyfunctional component may include all methacryloyl groups, all acryloyl groups, or any combination of methacryloyl and acryloyl groups.
  • the free-radical polymerizable component is selected from the group consisting of bisphenol A diglycidyl ether di(meth)acrylate, ethoxylated or propoxylated bisphenol A or bisphenol F di(meth)acrylate, dicyclopentadiene dimethanol di(meth)acrylate, [2-[1,1-dimethyl-2-[(1-oxoallyl)oxy]ethyl]-5-ethyl-1,3-dioxan-5-yl]methyl acrylate, dipentaerythritol monohydroxypenta(meth)acrylate, dipentaerythritol hexa(meth)crylate, propoxylated trimethylolpropane tri(meth)acrylate,
  • the free-radical polymerizable component is selected from the group consisting of bisphenol A diglycidyl ether diacrylate, dicyclopentadiene dimethanol diacrylate, [2-[1,1-dimethyl-2-[(1-oxoallyl)oxy]ethyl]-5-ethyl-1,3-dioxan-5-yl]methyl acrylate, dipentaerythritol monohydroxypentaacrylate, propoxylated trimethylolpropane triacrylate, and propoxylated neopentyl glycol diacrylate, and any combination thereof.
  • the photocurable resin compositions for additive fabrication of the invention include one or more of bisphenol A diglycidyl ether di(meth)acrylate, dicyclopentadiene dimethanol di(meth)acrylate, dipentaerythritol monohydroxypenta(meth)acrylate, propoxylated trimethylolpropane tri(meth)acrylate, and/or propoxylated neopentyl glycol di(meth)acrylate, and more specifically one or more of bisphenol A diglycidyl ether diacrylate, dicyclopentadiene dimethanol diacrylate, dipentaerythritol monohydroxypentaacrylate, propoxylated trimethylolpropane triacrylate, and/or propoxylated neopentyl glycol diacrylate.
  • the photocurable resin composition for additive fabrication can include any suitable amount of the free-radical polymerizable component, for example, in certain embodiments, in an amount up to about 95% by weight of the composition, in certain embodiments, up to about 50% by weight of the composition, and in further embodiments from about 5% to about 25% by weight of the composition.
  • the photocurable resin compositions for additive fabrication of the invention comprise at least one cationically polymerizable component, that is, a component which undergoes polymerization initiated by cations or in the presence of acid generators.
  • the cationically polymerizable components may be monomers, oligomers, and/or polymers, and may contain aliphatic, aromatic, cycloaliphatic, arylaliphatic, heterocyclic moiety(ies), and any combination thereof.
  • Suitable cyclic ether compounds can comprise cyclic ether groups as side groups or groups that form part of an alicyclic or heterocyclic ring system.
  • the cationic polymerizable component is selected from the group consisting of cyclic ether compounds, cyclic acetal compounds, cyclic thioethers compounds, spiro-orthoester compounds, cyclic lactone compounds, and vinyl ether compounds, and any combination thereof.
  • cationically polymerizable components include cyclic ether compounds such as epoxy compounds and oxetanes, cyclic lactone compounds, cyclic acetal compounds, cyclic thioether compounds, Spiro orthoester compounds, and vinylether compounds.
  • cationically polymerizable components include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether, epoxy novolac resins, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexanecarboxylate, 2-(3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy)-cyclohexane-1,4-dioxane, bis(3,4-epoxycyclohexylmethyl)adipate, vinylcyclohexene oxide, 4-vinylepoxycyclohexane
  • dendritic polymers may contain one type of polymerizable functional group or different types of polymerizable functional groups, for example, epoxy and oxetane functions.
  • the cationic polymerizable component is at least one selected from the group consisting of a cycloaliphatic epoxy and an oxetane.
  • the cationic polymerizable component is an oxetane, for example, an oxetane containing 2 or more than 2 oxetane groups.
  • the cationic polymerizable component is a cycloaliphatic epoxy, for example, a cycloaliphatic epoxy with 2 or more than 2 epoxy groups.
  • the epoxide is 3,4-epoxycyclohexylmethyl-3′,4-epoxycyclohexanecarboxylate (available as CELLOXIDETM 2021 P from Daicel Chemical, or as CYRACURETM UVR-6105 from Dow Chemical), hydrogenated bisphenol A-epichlorohydrin based epoxy resin (available as EPONEXTM 1510 from Hexion), 1,4-cyclohexanedimethanol diglycidyl ether (available as HELOXYTM 107 from Hexion), a mixture of dicyclohexyl diepoxide and nanosilica (available as NANOPDXTM), and any combination thereof.
  • CELLOXIDETM 2021 P from Daicel Chemical
  • CYRACURETM UVR-6105 from Dow Chemical
  • EPONEXTM 1510 from Hexion
  • 1,4-cyclohexanedimethanol diglycidyl ether available as HELOXYTM 107 from Hexion
  • the above-mentioned cationically polymerizable compounds can be used singly or in combination of two or more thereof.
  • the photocurable resin composition for additive fabrication can include any suitable amount of the cationic polymerizable component, for example, in certain embodiments, in an amount up to about 95% by weight of the composition, and in certain embodiments, up to about 50% by weight of the composition. In further embodiments the amount of the cationic polymerizable component is from about 5% to about 70% by weight of the composition. In further embodiments from about 5% to about 25% by weight of the composition
  • the polymerizable component of the photocurable resin composition for additive fabrication is polymerizable by both free-radical polymerization and cationic polymerization.
  • a polymerizable component is a vinyloxy compound, for example, one selected from the group consisting of bis(4-vinyloxybutyl)isophthalate, tris(4-vinyloxybutyl) trimellitate, and combinations thereof.
  • Other examples of such a polymerizable component include those that contain an acrylate and an epoxy group, or an acrylate and an oxetane group, on a same molecule.
  • the photocurable resin composition for additive fabrication of the present invention includes a photoinitiating system.
  • the photoinitiating system can be a free-radical photoinitiator or a cationic photoinitiator or a photoinitiator that contains both free-radical initiating function and cationic initiating function on the same molecule.
  • the photoinitiator is a compound that chemically changes due to the action of light or the synergy between the action of light and the electronic excitation of a sensitizing dye to produce at least one of a radical, an acid, and a base.
  • free radical photoinitiators are divided into those that form radicals by cleavage, known as “Norrish Type I” and those that form radicals by hydrogen abstraction, known as “Norrish type II”.
  • the Norrish type II photoinitiators require a hydrogen donor, which serves as the free radical source.
  • the Norrish type II photoinitiators are generally slower than Norrish type I photoinitiators which are based on the unimolecular formation of radicals.
  • Norrish type II photoinitiators possess better optical absorption properties in the near-UV spectroscopic region.
  • Photolysis of aromatic ketones such as benzophenone, thioxanthones, benzil, and quinones
  • hydrogen donors such as alcohols, amines, or thiols
  • the photopolymerization of vinyl monomers is usually initiated by the radicals produced from the hydrogen donor.
  • the ketyl radicals are usually not reactive toward vinyl monomers because of the steric hindrance and the delocalization of an unpaired electron.
  • the photocurable resin composition for additive fabrication includes at least one free radical photoinitiator, e.g., those selected from the group consisting of benzoylphosphine oxides, aryl ketones, benzophenones, hydroxylated ketones, 1-hydroxyphenyl ketones, ketals, metallocenes, and any combination thereof.
  • at least one free radical photoinitiator e.g., those selected from the group consisting of benzoylphosphine oxides, aryl ketones, benzophenones, hydroxylated ketones, 1-hydroxyphenyl ketones, ketals, metallocenes, and any combination thereof.
  • the photocurable resin composition for additive fabrication includes at least one free-radical photoinitiator selected from the group consisting of 2,4,6-trimethylbenzoyl diphenylphosphine oxide and 2,4,6-trimethylbenzoyl phenyl, ethoxy phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropanone-1,2-benzyl-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl]-1-butanone, 2-dimethylamino-2-(4-methyl-benzyl)-1-(4-morpholin-4-yl-phenyl)-butan-1-one, 4-benzoyl-4′-methyl diphenyl sulphide, 4,4′-bis(diethylamino) benzophenone, and 4,4′-bis(N,N′-
  • suitable free-radical photoinitiators absorbing in this area include: benzoylphosphine oxides, such as, for example, 2,4,6-trimethylbenzoyl diphenylphosphine oxide (Lucirin TPO from BASF) and 2,4,6-trimethylbenzoyl phenyl, ethoxy phosphine oxide (Lucirin TPO-L from BASF), bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide (Irgacure 819 or BAPO from Ciba), 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropanone-1 (Irgacure 907 from Ciba), 2-benzyl-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl
  • benzoylphosphine oxides such as, for example, 2,4,6-trimethylbenzoyl diphenylphosphine oxide (Lucirin
  • photosensitizers are useful in conjunction with photoinitiators in effecting cure with LED light sources emitting in this wavelength range.
  • suitable photosensitizers include: anthraquinones, such as 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertbutylanthraquinone, 1-chloroanthraquinone, and 2-amylanthraquinone, thioxanthones and xanthones, such as isopropyl thioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, and 1-chloro-4-propoxythioxanthone, methyl benzoyl formate (Darocur MBF from Ciba), methyl-2-benzoyl benzoate (Chivacure OMB from Chitec), 4-benzoyl-4′-methyl diphenyl sulphide (Chivacure BMS from Chitec), 4,
  • LED UV light sources it is possible for LED UV light sources to be designed to emit light at shorter wavelengths.
  • a photosensitizer is used when curing with LED light sources emitting at wavelengths from between about 100 and about 300 nm.
  • photosensitizers such as those previously listed are present in the formulation, other photoinitiators absorbing at shorter wavelengths can be used.
  • photoinitiators include: benzophenones, such as benzophenone, 4-methyl benzophenone, 2,4,6-trimethyl benzophenone, and dimethoxybenzophenone, and, 1-hydroxyphenyl ketones, such as 1-hydroxycyclohexyl phenyl ketone, phenyl (1-hydroxyisopropyl)ketone, 2-hydroxy-1-[4-(2-hroxyethoxy)phenyl]-2-methyl-1-propanone, and 4-isopropylphenyl(1-hydroxyisopropyl)ketone, benzil dimethyl ketal, and oligo-[2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanone] (Esacure KIP 150 from Lambeth).
  • benzophenones such as benzophenone, 4-methyl benzophenone, 2,4,6-trimethyl benzophenone, and dimethoxybenzophenone
  • 1-hydroxyphenyl ketones such as 1-hydroxycycl
  • LED light sources can also be designed to emit visible light.
  • suitable free radical photoinitiators include: camphorquinone, 4,4′-bis(diethylamino)benzophenone (Chivacure EMK from Chitec), 4,4′-bis(N,N′-dimethylamino)benzophenone (Michler's ketone), bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide (Irgacure 819 or BAPO from Ciba), metallocenes such as bis(eta 5-2-4-cyclopentadien-1-yl) bis[2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl]titanium (Irgacure 784 from Ciba), and the visible light photoinitiators from Spectra Group Limited, Inc.
  • H-Nu 470 H-Nu-535, H-Nu-635, H-Nu-Blue-640, and H-Nu-Blue-660. It is often desirable to employ a photosensitizer with a photoinitiator for LED light sources emitting between 475 nm and 900 nm.
  • the light emitted by the LED is UVA radiation, which is radiation with a wavelength between about 320 and about 400 nm. In one embodiment of the instant claimed invention, the light emitted by the LED is UVB radiation, which is radiation with a wavelength between about 280 and about 320 nm. In one embodiment of the instant claimed invention, the light emitted by the LED is UVC radiation, which is radiation with a wavelength between about 100 and about 280 nm.
  • the photocurable resin composition for additive fabrication can include any suitable amount of the free-radical photoinitiator, for example, in certain embodiments, in an amount up to about 15% by weight of the composition, in certain embodiments, up to about 10% by weight of the composition, and in further embodiments from about 1% to about 5% by weight of the composition.
  • the photocurable resin composition for additive fabrication includes a photoinitiating system that is a photoinitiator having both cationic initiating function and free radical initiating function.
  • the photocurable resin composition for additive fabrication includes a cationic photoinitiator.
  • the cationic photoinitiator generates photoacids upon irradiation of light. They generate Brönsted or Lewis acids upon irradiation.
  • Any suitable cationic photoinitiator can be used, for example, those selected from the group consisting of onium salts, halonium salts, iodosyl salts, selenium salts, sulfonium salts, sulfoxonium salts, diazonium salts, metallocene salts, isoquinolinium salts, phosphonium salts, arsonium salts, tropylium salts, dialkylphenacylsulfonium salts, thiopyrilium salts, diaryl iodonium salts, triaryl sulfonium salts, sulfonium antimonate salts, ferrocenes, di(cyclopentadienyliron)arene salt compounds, and pyridinium salts, and any combination thereof.
  • onium salts halonium salts, iodosyl salts, selenium salts, sulfonium salts, sulfoxon
  • Onium salts e.g., iodonium salts, sulfonium salts and ferrocenes, have the advantage that they are thermally stable. Thus, any residual photoinitiator does not continue to cure after the removal of the irradiating light.
  • Cationic photoinitiators offer the advantage that they are not sensitive to oxygen present in the atmosphere.
  • the photocurable resin composition for additive fabrication of the invention includes at least one cationic photoinitiator, wherein the cationic photoinitiator is selected from the group consisting of aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, metallocene based compounds, aromatic phosphonium salts and silanol aluminium complexes, and any combination thereof.
  • the cationic photoinitiator is selected from the group consisting of aromatic sulfonium salts, aromatic iodonium salts, and metallocene based compounds, and any combination thereof.
  • the cationic photoinitiator is selected from the group consisting of triarylsulfonium salts, diaryliodonium salts, and metallocene based compounds, and any combination thereof.
  • the cationic photoinitiator has an anion selected from the group consisting of BF 4 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , PF 6 ⁇ , B(C 6 F 5 ) 4 ⁇ , perfluoroalkylsulfonates, perfluoroalkylphosphates, and carborane anions.
  • the cationic photoinitiator has a cation selected from the group consisting of aromatic sulfonium salts, aromatic iodonium salts, and metallocene based compounds with at least an anion selected from the group consisting of SbF 6 ⁇ , PF 6 ⁇ , B(C 6 F 5 ) 4 ⁇ , perfluoroalkylsulfonates, perfluoroalkylphosphates, and (CH 6 B 11 Cl 6 ) ⁇ .
  • the cationic photoinitiator is an aromatic sulfonium salt based cationic photoinitiator selected from the group consisting of 4-(4-benzoylphenylthio)phenyldiphenylsulfonium hexafluoroantimonate, 4-(4-benzoylphenylthio)phenylbis(4-hydroxyethyloxyphenyl)sulfonium hexafluoroantimonate, 4-(4-benzoylphenylthio)phenylbis(4-fluorophenyl)sulfonium hexafluoroantimonate, 4-(4-benzoylphenylthio)phenylbis(4-chlorophenyl)sulfonium hexafluoroantimonate, 4-[4-(3-chlorobenzoyl)phenylthio]phenylbis(4-fluorophenyl)sulfonium hexafluor
  • the cationic photoinitiator is an aromatic iodonium salt based cationic photoinitiator selected from the group consisting of diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis(pentafluorophenyl)borate, bis(dodecylphenyl)iodonium hexafluorophosphate, bis(dodecylphenyl)iodonium hexafluoroantimonate, bis(dodecylphenyl)iodonium tetrafluoroborate, bis(dodecylphenyl)iodonium tetrakis(pentafluorophenyl)borate, 4-methylphenyl-4-(1-methylethyl)phenyli
  • the cationic photoinitiator is selected from the group consisting of tetrakis(pentafluorophenyl)borate or hexafluoroantimonate salt of 4-(4-benzoylphenylthio)phenyldiphenylsulfonium, 4-(4-benzoylphenylthio)phenylbis(4-hydroxyethyloxyphenyl)sulfonium, 4-(4-benzoylphenylthio)phenylbis(4-fluorophenyl)sulfonium, 4-(4-benzoylphenylthio)phenylbis(4-chlorophenyl)sulfonium, 4-[4-(3-chlorobenzoyl)phenylthio]phenylbis(4-fluorophenyl)sulfonium, 4-[4-(2-chlorobenzoyl)phenylthio]phenylbis(4-fluoropheny
  • the photocurable resin composition for additive fabrication includes a cationic photoinitiator selected from the group consisting of triarylsulfonium SbF 6 ⁇ , triarylsulfonium borate, tris(4-(4-acetylphenyl)thiophenyl)sulfonium tetrakis(pentafluorophenyl)borate, diaryliodonium borate, iodonium [4-(1-methylethyl)phenyl](4-methylphenyl)-tetrakis(pentafluorophenyl)borate, and any combination thereof.
  • a normucleophilic anion serves as the counterion.
  • Examples of such anions include BF 4 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , PF 6 ⁇ , B(C 6 F 5 ) 4 ⁇ , perfluoroalkylsulfonates, perfluoroalkylphosphates, and carborane anions such as (CH 6 B 11 Cl 6 ) ⁇ .
  • Examples of cationic photoinitiators useful for curing at 300-475 nm, particularly at 365 nm UV light, without a sensitizer include 4-[4-(3-chlorobenzoyl)phenylthio]phenylbis(4-fluorophenyl)sulfonium hexafluoroantimonate, 4-[4-(3-chlorobenzoyl)phenylthio]phenylbis(4-fluorophenyl)sulfonium tetrakis(pentafluorophenyl)borate, and tris(4-(4-acetylphenyl)thiophenyl)sulfonium tetrakis(pentafluorophenyl)borate (GSID4480-1 also known as IRGACURE® PAG 290) from Ciba used in some of the example compositions.
  • the photocurable resin composition for additive fabrication it is desirable for the photocurable resin composition for additive fabrication to include a photosensitizer.
  • the term “photosensitizer” is used to refer to any substance that either increases the rate of photoinitiated polymerization or shifts the wavelength at which polymerization occurs; see textbook by G. Odian, Principles of Polymerization, 3 rd Ed., 1991, page 222.
  • Examples of photosensitizers include those selected from the group consisting of methanones, xanthenones, pyrenemethanols, anthracenes, pyrene, perylene, quinones, xanthones, thioxanthones, benzoyl esters, benzophenones, and any combination thereof.
  • photosensitizers include those selected from the group consisting of [4-[(4-methylphenyl)thio]phenyl]phenyl ⁇ methanone, isopropyl-9H-thioxanthen-9-one, 1-pyrenemethanol, 9-(hydroxymethyl)anthracene, 9,10-diethoxyanthracene, 9,10-dimethoxyanthracene, 9,10-dipropoxyanthracene, 9,10-dibutyloxyanthracene, 9-anthracenemethanol acetate, 2-ethyl-9,10-dimethoxyanthracene, 2-methyl-9,10-dimethoxyanthracene, 2-t-butyl-9,10-dimethoxyanthracene, 2-ethyl-9,10-diethoxyanthracene and 2-methyl-9,10-diethoxyanthracene, anthracene, anthraquinones, 2-methylanthraquinone
  • photosensitizers are useful in combination with photoinitiators in effecting cure with LED light sources emitting in the wavelength range of 300-475 nm.
  • suitable photosensitizers include: anthraquinones, such as 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertbutylanthraquinone, 1-chloroanthraquinone, and 2-amylanthraquinone, thioxanthones and xanthones, such as isopropyl thioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, and 1-chloro-4-propoxythioxanthone, methyl benzoyl formate (Darocur MBF from Ciba), methyl-2-benzoyl benzoate (Chivacure OMB from Chitec), 4-benzoyl-4′-methyl diphenyl sulphide (Chivacure
  • the photosensitizer is a fluorone, e.g., 5,7-diiodo-3-butoxy-6-fluorone, 5,7-diiodo-3-hydroxy-6-fluorone, 9-cyano-5,7-diiodo-3-hydroxy-6-fluorone, or a photosensitizer is
  • the photocurable resin composition for additive fabrication can include any suitable amount of the photosensitizer, for example, in certain embodiments, in an amount up to about 10% by weight of the composition, in certain embodiments, up to about 5% by weight of the composition, and in further embodiments from about 0.05% to about 2% by weight of the composition.
  • photoinitiators When photosensitizers are employed, other photoinitiators absorbing at shorter wavelengths can be used.
  • photoinitiators include: benzophenones, such as benzophenone, 4-methyl benzophenone, 2,4,6-trimethyl benzophenone, and dimethoxybenzophenone, and 1-hydroxyphenyl ketones, such as 1-hydroxycyclohexyl phenyl ketone, phenyl (1-hydroxyisopropyl)ketone, 2-hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methyl-1-propanone, and 4-isopropylphenyl(1-hydroxyisopropyl)ketone, benzil dimethyl ketal, and oligo-[2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanone] (Esacure KIP 150 from Lamberti).
  • These photoinitiators when used in combination with a photosensitizer are suitable for use with LED
  • LED light sources that emit visible light are also known.
  • suitable photoinitiators include: camphorquinone, 4,4′-bis(diethylamino) benzophenone (Chivacure EMK from Chitec), 4,4′-bis(N,N′-dimethylamino)benzophenone (Michler's ketone), bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide (Irgacure 819 or BAPO from Ciba), metallocenes such as bis(eta 5-2-4-cyclopentadien-1-yl)bis[2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl]titanium (Irgacure 784 from Ciba), and the visible light photoinitiators from Spectra Group Limited, Inc
  • a photosensitizer or co-initiator may be used to improve the activity of the cationic photoinitiator. It is for either increasing the rate of photoinitiated polymerization or shifting the wavelength at which polymerization occurs.
  • the sensitizer used in combination with the above-mentioned cationic photoinitiator is not particularly limited.
  • a variety of compounds can be used as photosensitizers, including heterocyclic and fused-ring aromatic hydrocarbons, organic dyes, and aromatic ketones. Examples of sensitizers include compounds disclosed by J. V. Crivello in Advances in Polymer Science, 62, 1 (1984), and by J. V. Crivello & K.
  • Dietliker “Photoinitiators for Cationic Polymerization” in Chemistry & technology of UV & EB formulation for coatings, inks & paints. Volume III, Photoinitiators for free radical and cationic polymerization. by K. Dietliker; [Ed. by P.K.T. Oldring], SITA Technology Ltd, London, 1991. Specific examples include polyaromatic hydrocarbons and their derivatives such as anthracene, pyrene, perylene and their derivatives, thioxanthones, ⁇ -hydroxyalkylphenones, 4-benzoyl-4′-methyldiphenyl sulfide, acridine orange, and benzoflavin.
  • cationic photoinitiators include, for example, onium salts with anions of weak nucleophilicity.
  • onium salts with anions of weak nucleophilicity examples are halonium salts, iodosyl salts or sulfonium salts, such as are described in published European patent application EP 153904 and WO 98/28663, sulfoxonium salts, such as described, for example, in published European patent applications EP 35969, 44274, 54509, and 164314, or diazonium salts, such as described, for example, in U.S. Pat. Nos. 3,708,296 and 5,002,856. All eight of these disclosures are hereby incorporated in their entirety by reference.
  • Other cationic photoinitiators are metallocene salts, such as described, for example, in published European applications EP 94914 and 94915, which are both hereby incorporated in their entirety by reference.
  • Suitable ferrocene type cationic photoinitiators include, for example, di(cyclopentadienyliron)arene salt compounds of formula (I) as disclosed in Chinese Patent No. CN 101190931:
  • anion MXn is selected from BF4, PF6, SbF6, AsF6, (C6F5) 4 B, C104, CF3SO3, FSO3, CH3SO3, C4F9SO3, and Ar is a fused ring or polycyclic arene.
  • illustrative ferrocene type cationic photoinitiators include, for example, ( ⁇ 6-Carbazole)( ⁇ 5-cyclopenta-dienyl) iron hexafluorophosphate salts, specifically [cyclopentadiene-Fe—N-butylcarbazole]hexafluoro-phosphate (C4-CFS PF6) and [cyclopentadiene-Fe—N-octyl-carbazole]hexafluorophosphate (C8-CFS PF6), bearing C4 and C8 alkyl chains, respectively, on the nitrogen atom (see Polymer Eng.
  • ( ⁇ 6-Carbazole)( ⁇ 5-cyclopenta-dienyl) iron hexafluorophosphate salts specifically [cyclopentadiene-Fe—N-butylcarbazole]hexafluoro-phosphate (C4-CFS PF6) and [cyclopentadiene-F
  • ferrocenium dication salts e.g., biphenyl bis[( ⁇ -cyclopentadienyl)iron]hexafluorophosphate ([bis(Cp-Fe)-biphenyl](PF6) 2 ) and straight cyclopentadien-iron-biphenyl hexafluorophosphate ([Cp-Fe-biphenyl]+PF6 ⁇ ) as disclosed in Chinese J. Chem.
  • alkoxy-substituted ferrocenium salts for example, [cyclopendadien-Fe-anisole]PF6, [cyclopendadien-Fe-anisole]BF4, [cyclopendadien-Fe-diphenylether]PF6, [cyclo-pendadien-Fe-diphenylether]BF4, and [cyclopendadien-Fe-diethoxy-benzene]PF6, as disclosed in Chinese J.
  • cyclopentadiene-iron-arene tetrafluoroborates for example, cyclopentadiene-iron-naphthalene tetrafluoroborate ([Cp-Fe-Naph] BF4) salt, as disclosed in Imaging Science J (2003), 51(4), 247-253; ferrocenyl tetrafluoroborate ([Cp-Fe-CP]BF4), as disclosed in Ganguang Kexue Yu Guang Huaxue (2003), 21(1), 46-52; [CpFe( ⁇ 6-tol)]BF4, as disclosed in Ganguang Kexue Yu Guang Huaxue (2002), 20(3), 177-184, Ferrocenium salts ( ⁇ 6- ⁇ -naphthoxybenzene) ( ⁇ 5-cyclopentadienyl)iron hexafluorophosphate (NOFC-1) and ( ⁇ 6-
  • Suitable onium type cationic photoinitiators include, for example, iodonium and sulfonium salts, as disclosed in Japanese Patent JP 2006151852.
  • Other illustrative onium type photoinitiators include, for example, onium salts such as, diaryliodonium salts, triarylsulfonium salts, aryl-diazonium salts, ferrocenium salts, diarylsulfoxonium salts, diaryl-iodoxonium salts, triaryl-sulfoxonium salts, dialkylphenacyl-sulfonium salts, dialkylhydroxy-phenylsulfonium salts, phenacyl-triarylphosphonium salts, and phenacyl salts of heterocyclic nitrogen-containing compounds, as disclosed in U.S.
  • BPEA Photoactive allyl ammonium salt
  • Illustrative iodonium type cationic photoinitiators include, for example, diaryliodonium salts having counterions like hexafluorophosphate and the like, such as, for example, (4-n-pentadecyloxy-phenyl)phenyliodonium hexafluoroantimonate, as disclosed in US2006041032; diphenyliodonium hexafluorophosphate, as disclosed in U.S. Pat. No.
  • diaryliodonium salts e.g., 4,4′-di-tert-butyldiphenyl-iodonium hexafluoroarsenate, as disclosed in J Polymr Sci, Polymr Chem Edition (1978), 16(10), 2441-2451;
  • Diaryliodonium salts containing complex metal halide anions such as diphenyliodonium fluoroborate, as disclosed in J Polymr Sci, Poly Sympos (1976), 56, 383-95; and any combination thereof.
  • Illustrative sulfonium type cationic photoinitiators include, for example, UVI 6992 (sulfonium salt) as disclosed in Japanese patent JP2007126612; compounds of the formula:
  • Suitable pyridinium type cationic photoinitiators include, for example, N-ethoxy 2-methylpyridinium hexafluorophosphate (EMP+PF6 ⁇ ), as disclosed in Turkish J of Chemistry (1993), 17(1), 44-49; Charge-transfer complexes of pyridinium salts and aromatic electron donors (hexamethyl-benzene and 1,2,4-trimethyoxy-benzene), as disclosed in Polymer (1994), 35(11), 2428-31; N,N′-diethoxy-4,4′-azobis(pyridinium)hexafluorophosphate (DEAP), as disclosed in Macromolecular Rapid Comm (2008), 29(11), 892-896; and any combination thereof.
  • EMP+PF6 ⁇ N-ethoxy 2-methylpyridinium hexafluorophosphate
  • EMP+PF6 ⁇ Charge-transfer complexes of pyridinium salts and aromatic electron donors (hexamethyl-benzene and 1,2,4
  • Suitable cationic photoinitiators include, for example, Acylgermane based photoinitiator in the presence of onium salts, e.g., benzoyltrimethylgermane (BTG) and onium salts, such as diphenyl-iodonium hexafluorophosphate (Ph2I+PF6 ⁇ ) or N-ethoxy-2-methyl-pyridinium hexafluorophosphate (EMP+PF6 ⁇ ), as disclosed in Macromolecules (2008), 41(18), 6714-6718; Di-Ph diselenide (DPDS), as disclosed in Macromolecular Symposia (2006), 240, 186-193; N-phenacyl-N,N-dimethyl-anilinium hexafluoroantimonate (PDA+SbF6 ⁇ ), as disclosed in Macromol Rapid Comm (2002), 23(9), 567-570; Synergistic blends of: diaryliodonium hexaflu
  • Suitable cationic photoinitiators include, for example, triarylsulfonium salts such as triarylsulfonium borates modified for absorbing long wavelength UV.
  • modified borates include, for example, SP-300 available from Denka, tris(4-(4-acetylphenyl)thiophenyl)sulfonium tetrakis(pentafluorophenyl)borate (GSID4480-1 or Irgacure PAG-290) available from Ciba/BASF, and those photoinitiators disclosed in WO1999028295; WO2004029037; WO2009057600; U.S. Pat. No. 6,368,769 WO2009047105; WO2009047151; WO2009047152; US 20090208872; and U.S. Pat. No. 7,611,817.
  • Preferred cationic photoinitiators include a mixture of: bis[4-diphenylsulfoniumphenyl]sulfide bishexafluoroantimonate; thiophenoxyphenylsulfonium hexafluoroantimonate (available as Chivacure 1176 from Chitec); tris(4-(4-acetylphenyl)thiophenyl)sulfonium tetrakis(pentafluorophenyl)borate (GSID4480-1 from Ciba/BASF), iodonium, [4-(1-methylethyl)phenyl](4-methylphenyl)-, tetrakis(pentafluorophenyl)borate (available as Rhodorsil 2074 from Rhodia), 4-[4-(2-chlorobenzoyl)phenylthio]phenylbis(4-fluorophenyl)sulfonium hexafluoroanti
  • the photocurable resin composition for additive fabrication can include any suitable amount of the cationic photoinitiator, for example, in certain embodiments, in an amount up to about 50% by weight of the composition, in certain embodiments, up to about 20% by weight of the composition, and in further embodiments from about 1% to about 10% by weight of the composition. In a further embodiment from about 0.4 wt % to about 6.5 wt % of the composition. In an embodiment, the above ranges are particularly suitable for use with epoxy monomers.
  • the photocurable resin composition for additive fabrication can further include a chain transfer agent, particularly a chain transfer agent for a cationic monomer.
  • the chain transfer agent has a functional group containing active hydrogen. Examples of the active hydrogen-containing functional group include an amino group, an amide group, a hydroxyl group, a sulfo group, and a thiol group.
  • the chain transfer agent terminates the propagation of one type of polymerization, i.e., either cationic polymerization or free-radical polymerization and initiates a different type of polymerization, i.e., either free-radical polymerization or cationic polymerization.
  • chain transfer to a different monomer is a preferred mechanism.
  • chain transfer tends to produce branched molecules or crosslinked molecules.
  • chain transfer offers a way of controlling the molecular weight distribution, crosslink density, thermal properties, and/or mechanical properties of the cured resin composition.
  • the chain transfer agent for a cationic polymerizable component is a hydroxyl-containing compound, such as a compound containing 2 or more than 2 hydroxyl-groups.
  • the chain transfer agent is selected from the group consisting of a polyether polyol, polyester polyol, polycarbonate polyol, ethoxylated or propoxylated aliphatic or aromatic compounds having hydroxyl groups, dendritic polyols, hyperbranched polyols.
  • An example of a polyether polyol is a polyether polyol comprising an alkoxy ether group of the formula [(CH 2 ) n O] m , wherein n can be 1 to 6 and m can be 1 to 100.
  • a particular example of a chain transfer agent is polytetrahydrofuran such as TERATHANETM.
  • the photocurable resin composition for additive fabrication can include any suitable amount of the chain transfer agent, for example, in certain embodiments, in an amount up to about 50% by weight of the composition, in certain embodiments, up to about 30% by weight of the composition, and in certain other embodiments from about 10% to about 20% by weight of the composition.
  • the photocurable resin composition for additive fabrication of the invention can further include one or more additives selected from the group consisting of bubble breakers, antioxidants, surfactants, acid scavengers, pigments, dyes, thickneners, flame retardants, silane coupling agents, ultraviolet absorbers, resin particles, core-shell particle impact modifiers, soluble polymers and block polymers, organic, inorganic, or organic-inorganic hybrid fillers of sizes ranging from about 8 nanometers to about 50 microns.
  • additives selected from the group consisting of bubble breakers, antioxidants, surfactants, acid scavengers, pigments, dyes, thickneners, flame retardants, silane coupling agents, ultraviolet absorbers, resin particles, core-shell particle impact modifiers, soluble polymers and block polymers, organic, inorganic, or organic-inorganic hybrid fillers of sizes ranging from about 8 nanometers to about 50 microns.
  • Stabilizers are often added to the compositions in order to prevent a viscosity build-up, for instance a viscosity build-up during usage in a solid imaging process.
  • Preferred stabilizers include those described in U.S. Pat. No. 5,665,792, the entire disclosure of which is hereby incorporated by reference.
  • Such stabilizers are usually hydrocarbon carboxylic acid salts of group IA and IIA metals. Most preferred examples of these salts are sodium bicarbonate, potassium bicarbonate, and rubidium carbonate. Rubidium carbonate is preferred for formulations of this invention with recommended amounts varying between 0.0015 to 0.005% by weight of composition.
  • Alternative stabilizers include polyvinylpyrrolidones and polyacrylonitriles.
  • additives include dyes, pigments, fillers (e.g. silica particles—preferably cylindrical or spherical silica particles—, talc, glass powder, alumina, alumina hydrate, magnesium oxide, magnesium hydroxide, barium sulfate, calcium sulfate, calcium carbonate, magnesium carbonate, silicate mineral, diatomaceous earth, silica sand, silica powder, titanium oxide, aluminum powder, bronze powder, zinc powder, copper powder, lead powder, gold powder, silver dust, glass fiber, titanic acid potassium whisker, carbon whisker, sapphire whisker, beryllia whisker, boron carbide whisker, silicon carbide whisker, silicon nitride whisker, glass beads, hollow glass beads, metaloxides and potassium titanate whisker), antioxidants, wetting agents, photosensitizers for the free-radical photoinitiator, chain transfer agents, leveling agents, defoamers, surfactants and the like.
  • fillers e.g. si
  • the photocurable resin composition for additive fabrication contains the polymerizable components such that the desired photosensitivity is obtained by choosing an appropriate ratio of the initiators and/or polymerizable components.
  • the ratio of the components and of the initiators affect the photosensitivity, speed of curing, degree of curing, crosslink density, thermal properties (e.g., T g ), and/or mechanical properties (e.g., tensile strength, storage modulus, loss modulus) of the photocurable resin composition for additive fabrication or of the cured article.
  • the ratio by weight of cationic photoinitiator to free-radical photoinitiator is less than about 4.0, preferably from about 0.1 to about 2.0, and more preferably from about 0.2 to about 1.0.
  • the photocurable resin composition for additive fabrication has a ratio by weight of cationic polymerizable component to free-radical polymerizable component (CPC/RPC) is less than about 7.0, or less than about 5.0, e.g., from about 0.5 to about 2.0, and more preferably from about 1.0 to about 1.5.
  • CPC/RPC ratio by weight of cationic polymerizable component to free-radical polymerizable component
  • the photocurable resin composition for additive fabrication is free or substantially free of antimony-containing initiator (less than 1.5% by weight).
  • the present invention further provides a three-dimensional article comprising a cured photocurable resin composition for additive fabrication, wherein the cured photocurable resin composition for additive fabrication is obtained by curing a photocurable resin composition for additive fabrication by irradiating it with light emitted from a light emitting diode (LED) light having a wavelength from about 100 nm to about 900 nm.
  • LED light emitting diode
  • the present invention further provides a process for making a three-dimensional article comprising the steps of forming and selectively curing a layer of a photocurable resin composition for additive fabrication by irradiation with a light emitting diode (LED) light having a wavelength from about 100 nm to about 900 nm, the photocurable resin composition and repeating the steps of forming and selectively curing a layer of the photocurable resin composition a plurality of times to obtain the three-dimensional article.
  • LED light emitting diode
  • the term “renewable resource material” is defined as a starting material that is not derived from petroleum but as a starting material derived from a plant including the fruits, nuts and/or seeds of plants. These plant derived materials are environmentally friendly and biologically based materials. Thus, these starting materials are also frequently called “bio-based” materials or “natural oil” materials.
  • biobased products are products determined by the U.S. Secretary of Agriculture to be “commercial or industrial goods (other than food or feed) composed in whole or in significant part of biological products, forestry materials, or renewable domestic agricultural materials, including plant, animal or marine materials.
  • Biobased content may be determined by testing to ASTM Method D6866-10, STANDARD TEST METHODS FOR DETERMINING THE BIOBASED CONTENT OF SOLID, LIQUID, AND GASEOUS SAMPLES USING RADIOCARBON ANALYSIS. This method, similar to radiocarbon dating, compares how much of a decaying carbon isotope remains in a sample to how much would be in the same sample if it were made of entirely recently grown materials. The percentage is called the product's biobased content.
  • bio-based raw materials can be found in polyols and other ingredients.
  • the photocurable resin compositions for additive fabrication comprise at least 30 wt % of bio-based ingredients, rather than petroleum based ingredients. In other embodiments, the photocurable resin compositions for additive fabrication comprise at least 40 wt % of bio-based ingredients, rather than petroleum based ingredients.
  • Tables 1A-1D describe the various components of the photocurable resin compositions for additive fabrication illustrated in Tables 2-7.
  • This Example illustrates some of the properties of the photocurable resin composition for additive fabrication embodiments set forth in Examples 1-56.
  • Tables 8-26 set forth the Dp, Ec, and E3-E5 values and Table 27 sets forth the CPI/RPI and CPC/RPC values.
  • the photosensitivity of the compositions are evaluated by measuring Critical Energy (Ec) values, Depth of Penetration (Dp) values, and Storage Shear Modulus (G′) upon exposure to curing light.
  • Ec Critical Energy
  • Dp Depth of Penetration
  • G′ Storage Shear Modulus
  • the photo cure speed test using 365 nm LED light is used to measure values for Ec and Dp.
  • a single UV LED “bare bulb” (Model No. NCSUO33A; Nichia Corporation, Japan) having a peak wavelength of 365 nm is used as the LED light source in a light curing apparatus, wherein the single LED light is bottom-mounted on a flat surface inside a 30° C. chamber and positioned in an upward-looking arrangement and pointing vertically.
  • the LED light is powered by a 3.30 V/0.050
  • a DC output from a Programmable Power Supply (Model No. PSS-3203; GW Instek).
  • a 10-mil sheet of polyester film (Melinex #515, Polybase Mylar D, 0.010 gauge) is placed at a distance of 12 mm above from the bottom of the LED light bulb.
  • a drop of the liquid resin is placed on the polyester film over the center of the LED light.
  • the resin is exposed to the LED light through the polyester film for a specific time interval. The process is repeated with fresh resin for 2, 4, 6, 8, 10 second exposure times or up to 12, 16, or 20 seconds for slow curing resin formulations.
  • the exposure energy mJ/cm 2
  • the exposure time in seconds
  • the tensile properties (tensile strength, percent elongation at break, and modulus) of cured samples of the photocurable resin compositions for additive fabrication are tested on films, where applicable, using a universal testing instrument, Instron Model 4201 equipped with a suitable personal computer and Instron software to yield values of tensile strength, percent elongation at break, and elastic modulus.
  • the tensile test is performed on the Instron with a crosshead speed of 1.00 inch/min and a crosshead jaw separation of 2.00 inches in a 50% relative humidity room at room temperature.
  • Samples are prepared for testing by curing the liquid resin composition applied on Mylar (0.01 gauge) with a 5 mil square draw bar, and cured on an unfiltered Fusion D bulb (600W) in nitrogen with an exposure of 300 mJ/cm 2 .
  • the cured film samples were cut within 1 hour of cure to have 0.5 ⁇ 4′′ strips and conditioned in a 50% relative humidity room at RT for 24 hours before the tensile test was performed.
  • Tensile test data was not performed for Examples 1-5, 13-27, 31-36, and 45-56.
  • RT-DMA Real Time Dynamic Mechanical Analysis
  • G′ storage shear modulus
  • RT-DMA is carried out under ambient lab conditions (20-23° C. and 25-35% RH), on compositions undergoing curing using a StressTech Rheometer (Reologicia Instruments AB, Sweden) with an 8 mm plate, a gap of 0.1 mm or 0.05 mm, as specified in the Tables 15-23, and modified to include a mercury lamp light source (OMNICURE Series 2000 available from EXFO), fitted with a 365 nm interference filter (also available from EXFO) placed in the light path and a liquid-filled light guide for conveying light from the source to the rheometer.
  • the 365 nm interference filter produces the spectral output shown in FIG. 1 .
  • the samples are evaluated under the following parameters: 10 s of equilibrium time; frequency of 10 Hz; 44-50 mW/cm2 light intensity (as specified in the Tables 15-23) by the IL 1400 radiometer with XRL140B detector (International Light, Newburyport, Mass.); 1.0 s exposure that starts at 2.1 seconds from the beginning of data collection; FFT smoothing of curves; G′ taken at 2.5, 2.7, 3, 4, and 6 s from the beginning of data collection by using the accompanying software for data analysis.
  • FIG. 2 shows a schematic of the RT-DMA apparatus.
  • the photocurable resin composition (1) is placed on a plane (2).
  • the amount of liquid resin used should be approximately the amount indicated in the figure.
  • the plane is a quartz plate that is sold with the StressTech Rheometer.
  • the 8 mm plate (3) is positioned with a 0.1 mm gap (4) between the plate and the plane. The gap is set via the software accompanying the StressTech Rheometer.
  • Light (5) is provided though the plane (2).
  • G′ data was not measured for Examples 45-56.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Dp (mil) 3.53 2.72 2.73 2.62 2.78 2.79 2.95 2.91 2.78 Ec (s) 1.13 1.27 0.94 0.81 0.97 0.77 0.70 0.71 1.00 E3 (s) 2.64 3.81 2.83 2.53 2.85 2.27 1.93 2.00 2.95 E4 (s) 3.50 5.50 4.08 3.71 4.09 3.25 2.71 2.82 4.24 E5 (s) 4.65 7.95 5.88 5.43 5.85 4.65 3.80 3.98 6.07
  • Example 43 Example 44 Example 45 Example 46 Example 47 Example 48 Example 49 Example 50 Dp (mil) 4.05 3.38 2.83 2.89 4.15 3.01 9.04 2.80 Ec (s) 0.77 0.59 0.88 0.91 1.39 1.19 2.00 1.19 E3 (s) 1.62 1.44 2.53 2.57 2.86 3.24 2.79 3.47 E4 (s) 2.08 1.94 3.59 3.63 3.63 4.52 3.12 4.96 E5 (s) 2.66 2.61 5.12 5.13 4.62 6.30 3.48 7.08
  • Example 12 Elastic Modulus (MPa) 1403 1023 666 537 1030 2262 1892 Elongation at Break (%) 5.8 10.9 19.5 14.6 7.9 2.9 2.2
  • This comparative example illustrates the results obtained when curing a typical laser curable resin with LED light.
  • a solid state laser emitting at 354.7 nm is used, with 1 mil scan spacing, 65 mW/cm 2 power, and 58 kHz frequency, for obtaining the Ec and Dp values from the “working curve” by using WINDOWPANESTM technique.
  • the LED is a single UV LED “bare bulb” (Model No. NCSUO33A; Nichia Corporation, Japan) having a peak wavelength of 365 nm and is used as the LED light source in a light curing apparatus, wherein the single LED light is bottom-mounted on a flat surface inside a 30° C. chamber and positioned in an upward-looking arrangement and pointing vertically.
  • the LED light is powered by a 3.30 V/0.050
  • a DC output from a Programmable Power Supply (Model No. PSS-3203; GW Instek).
  • Comparative Example 1 The composition of Comparative Example 1 is shown in Table 28. Ec and Dp data, as determined using the previously mentioned methods, when cured with both laser light and LED light is shown in Table 29.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Polymerisation Methods In General (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
US13/515,629 2009-12-17 2010-12-16 Led curable liquid resin compositions for additive fabrication Abandoned US20120259031A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/515,629 US20120259031A1 (en) 2009-12-17 2010-12-16 Led curable liquid resin compositions for additive fabrication

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28762009P 2009-12-17 2009-12-17
US13/515,629 US20120259031A1 (en) 2009-12-17 2010-12-16 Led curable liquid resin compositions for additive fabrication
PCT/US2010/060677 WO2011075555A1 (en) 2009-12-17 2010-12-16 Led curable liquid resin compositions for additive fabrication

Publications (1)

Publication Number Publication Date
US20120259031A1 true US20120259031A1 (en) 2012-10-11

Family

ID=43532791

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/515,629 Abandoned US20120259031A1 (en) 2009-12-17 2010-12-16 Led curable liquid resin compositions for additive fabrication
US13/515,664 Abandoned US20120251841A1 (en) 2009-12-17 2010-12-16 Liquid radiation curable resins for additive fabrication comprising a triaryl sulfonium borate cationic photoinitiator
US13/515,641 Active 2032-03-11 US9034236B2 (en) 2009-12-17 2010-12-16 Substrate-based additive fabrication process

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/515,664 Abandoned US20120251841A1 (en) 2009-12-17 2010-12-16 Liquid radiation curable resins for additive fabrication comprising a triaryl sulfonium borate cationic photoinitiator
US13/515,641 Active 2032-03-11 US9034236B2 (en) 2009-12-17 2010-12-16 Substrate-based additive fabrication process

Country Status (7)

Country Link
US (3) US20120259031A1 (pt)
EP (3) EP2512779B1 (pt)
JP (2) JP5849350B2 (pt)
KR (4) KR101995185B1 (pt)
CN (4) CN106125509B (pt)
BR (2) BR112012014900B1 (pt)
WO (3) WO2011084578A1 (pt)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148890A1 (en) * 2015-03-19 2016-09-22 Dow Global Technologies Llc Method of additive manufacturing using photoregulated radical polymerization
WO2017059222A1 (en) * 2015-10-01 2017-04-06 Dsm Ip Assets B.V. Liquid, hybrid uv/vis radiation curable resin compositions for additive fabrication
US20170120515A1 (en) * 2015-10-30 2017-05-04 Carbon, Inc. Dual cure article of manufacture with portions of differing solubility
US9840586B2 (en) * 2013-11-15 2017-12-12 Sabic Global Technologies B.V. Methods for measuring properties in crosslinked polycarbonate
WO2019191509A1 (en) * 2018-03-28 2019-10-03 Benjamin Lund Thiol-acrylate polymers, methods of synthesis thereof and use in additive manufacturing technologies
US10604659B2 (en) 2015-06-08 2020-03-31 Dsm Ip Assets B.V. Liquid, hybrid UV/VIS radiation curable resin compositions for additive fabrication
CN111303577A (zh) * 2020-02-28 2020-06-19 山东非金属材料研究所 一种增材制造用可见光敏液体树脂、其制备方法及使用方法
US10696782B2 (en) 2012-03-13 2020-06-30 Daicel Corporation Photosensitive resin composition, cured product thereof, and optical component
US10705424B2 (en) 2015-12-21 2020-07-07 Merck Patent Gmbh Negative-working photoresist compositions for laser ablation and use thereof
US11118716B2 (en) 2017-03-03 2021-09-14 Ina Acquisition Corp. Curing device for curing a pipe liner
US11384250B2 (en) 2017-11-07 2022-07-12 3D Systems, Inc. Inks for 3D printing having low print through depth
US20220228010A1 (en) * 2015-11-17 2022-07-21 Covestro (Netherlands) B.V. Antimony-free radiation curable compositions for additive fabrication, and applications thereof in investment casting processes
US11542384B2 (en) 2017-03-28 2023-01-03 Ford Global Technologies, Llc Stabilized additive manufacturing articles
US11655332B2 (en) 2018-04-20 2023-05-23 Adaptive 3D Technologies Sealed isocyanates
US11739177B2 (en) 2018-04-20 2023-08-29 Adaptive 3D Technologies Sealed isocyanates
US11911956B2 (en) 2018-11-21 2024-02-27 Adaptive 3D Technologies Using occluding fluids to augment additive manufacturing processes

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101995185B1 (ko) * 2009-12-17 2019-07-01 디에스엠 아이피 어셋츠 비.브이. 트라이아릴 설포늄 보레이트 양이온 광개시제를 포함하는 적층식 제작을 위한 액체 방사선 경화성 수지
US8865392B2 (en) 2010-07-14 2014-10-21 Nippon Kayaku Kabushiki Kaisha Photosensitive resin composition and cured product thereof
JP5749631B2 (ja) * 2010-12-07 2015-07-15 東京応化工業株式会社 厚膜用化学増幅型ポジ型ホトレジスト組成物及び厚膜レジストパターンの製造方法
KR101355855B1 (ko) * 2011-12-19 2014-01-29 제일모직주식회사 이방성 도전 필름
JP2013213188A (ja) * 2011-12-21 2013-10-17 Toyo Ink Sc Holdings Co Ltd 光重合性オキシラン系樹脂組成物、光重合性コーティング剤、光重合性接着剤、及び光学フィルム積層体
US10121254B2 (en) * 2013-08-29 2018-11-06 Disney Enterprises, Inc. Methods and systems of detecting object boundaries
CN104441641B (zh) * 2013-09-14 2017-09-29 航天信息股份有限公司 基于光固化快速成型的3d打印的实现方法和装置
GB201316815D0 (en) * 2013-09-23 2013-11-06 Renishaw Plc Additive manufacturing apparatus and method
US9096722B2 (en) 2013-10-18 2015-08-04 Hrl Laboratories, Llc Method for curing structures using a dual photoinitiator system and a structure made using the same
CN103587118B (zh) * 2013-10-30 2015-11-25 西安交通大学 一种基于螺旋扫描、柔性界面的光固化3d打印机
CN104610511B (zh) * 2013-11-05 2018-11-16 帝斯曼知识产权资产管理有限公司 用于加成制造的稳定的基质填充的液体可辐射固化树脂组合物
JP6556424B2 (ja) * 2014-01-31 2019-08-07 アイカ工業株式会社 光カチオン硬化型樹脂組成物
WO2015180022A1 (zh) * 2014-05-26 2015-12-03 中国科学院自动化研究所 3d打印系统
US20180016464A1 (en) * 2014-06-08 2018-01-18 Massivit 3D Printing Technologies Ltd Method and appratus for manufacture of 3d objects
EP4074485A1 (en) 2014-06-23 2022-10-19 Carbon, Inc. Three-dimensional objects produced from materials having multiple mechanisms of hardening
US10618998B2 (en) * 2014-11-12 2020-04-14 Purdue Research Foundation Poly(alkylene carbonate)-based amphiphilic block copolymers and methods of use thereof
CA2969592C (en) 2014-12-05 2023-02-14 University Of Florida Research Foundation, Inc. 3d printing using phase changing materials as support
WO2016153711A1 (en) * 2015-03-23 2016-09-29 Dow Global Technologies Llc Photocurable compositions for three-dimensional printing
JP6656574B2 (ja) * 2015-03-31 2020-03-04 日本電気硝子株式会社 立体造形用樹脂組成物
US11919229B2 (en) 2015-04-16 2024-03-05 Lawrence Livermore National Security, Llc Large area projection micro stereolithography
GB201508178D0 (en) * 2015-05-13 2015-06-24 Photocentric Ltd Method for making an object
US10302163B2 (en) 2015-05-13 2019-05-28 Honeywell International Inc. Carbon-carbon composite component with antioxidant coating
US10131113B2 (en) 2015-05-13 2018-11-20 Honeywell International Inc. Multilayered carbon-carbon composite
US9944526B2 (en) 2015-05-13 2018-04-17 Honeywell International Inc. Carbon fiber preforms
JP6493875B2 (ja) * 2015-06-08 2019-04-03 富士フイルム株式会社 3次元造形物の形成方法
JP2018517034A (ja) * 2015-06-08 2018-06-28 ディーエスエム アイピー アセッツ ビー.ブイ. 付加造形用液状ハイブリッドUV/vis線硬化性樹脂組成物
DE102015110264A1 (de) * 2015-06-25 2016-12-29 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur generativen Herstellung wenigstens eines dreidimensionalen Objekts
US10035305B2 (en) 2015-06-30 2018-07-31 Honeywell International Inc. Method of making carbon fiber preforms
JP6204420B2 (ja) 2015-08-07 2017-09-27 株式会社ダイセル 硬化性組成物、及びそれを用いた光学素子
WO2017033427A1 (ja) * 2015-08-26 2017-03-02 ナガセケムテックス株式会社 パターニング材料、パターニング方法、およびパターニング装置
CN108350145B (zh) 2015-09-04 2021-06-22 卡本有限公司 用于增材制造的氰酸酯双重固化树脂
EP3347399B1 (en) 2015-09-09 2020-12-09 Carbon, Inc. Epoxy dual cure resins for additive manufacturing
WO2017048710A1 (en) 2015-09-14 2017-03-23 Carbon, Inc. Light-curable article of manufacture with portions of differing solubility
US10022890B2 (en) 2015-09-15 2018-07-17 Honeywell International Inc. In situ carbonization of a resin to form a carbon-carbon composite
US10300631B2 (en) 2015-11-30 2019-05-28 Honeywell International Inc. Carbon fiber preforms
US10501572B2 (en) 2015-12-22 2019-12-10 Carbon, Inc. Cyclic ester dual cure resins for additive manufacturing
WO2017112682A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Fabrication of compound products from multiple intermediates by additive manufacturing with dual cure resins
WO2017112571A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Dual cure additive manufacturing of rigid intermediates that generate semi-rigid, flexible, or elastic final products
US10343331B2 (en) 2015-12-22 2019-07-09 Carbon, Inc. Wash liquids for use in additive manufacturing with dual cure resins
US10647054B2 (en) 2015-12-22 2020-05-12 Carbon, Inc. Accelerants for additive manufacturing with dual cure resins
WO2017112521A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Production of flexible products by additive manufacturing with dual cure resins
WO2017112653A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Dual precursor resin systems for additive manufacturing with dual cure resins
JP6714492B2 (ja) * 2015-12-24 2020-06-24 信越化学工業株式会社 有機膜形成用化合物、有機膜形成用組成物、有機膜形成方法、及びパターン形成方法
JP6714493B2 (ja) 2015-12-24 2020-06-24 信越化学工業株式会社 有機膜形成用化合物、有機膜形成用組成物、有機膜形成方法、及びパターン形成方法
CN108778688B (zh) 2016-03-14 2022-05-13 科思创(荷兰)有限公司 具有改善韧性耐高温性的加成法制造用可辐射固化组合物
GB201604322D0 (en) * 2016-03-14 2016-04-27 Ucl Business Plc Three-dimensional printing of impregnated plastics for chemical reactions
EP3439853A4 (en) * 2016-04-05 2019-12-11 Hewlett-Packard Development Company, L.P. SETS OF PHOTOSENSITIVE MATERIALS
CN109153874A (zh) * 2016-04-08 2019-01-04 陶氏环球技术有限责任公司 含有山梨酸酯和光催化剂的涂料组合物
US11007712B2 (en) * 2016-04-20 2021-05-18 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing with epoxy resin
EP3400128B1 (en) 2016-05-12 2021-07-07 Hewlett-Packard Development Company, L.P. Tracking cooling time for 3d printing trolley
JP6623121B2 (ja) * 2016-06-08 2019-12-18 デクセリアルズ株式会社 光硬化性樹脂組成物、並びに画像表示装置、及びその製造方法
US10500786B2 (en) 2016-06-22 2019-12-10 Carbon, Inc. Dual cure resins containing microwave absorbing materials and methods of using the same
US9902860B1 (en) * 2016-08-30 2018-02-27 Nano And Advanced Materials Institute Limited Photopolymer composition for 3D printing
US11124644B2 (en) 2016-09-01 2021-09-21 University Of Florida Research Foundation, Inc. Organic microgel system for 3D printing of silicone structures
JP7051336B2 (ja) * 2016-09-20 2022-04-11 ナガセケムテックス株式会社 三次元光造形用のパターニング材料およびそれを用いた鋳造方法
AU2017351802B2 (en) * 2016-10-28 2023-06-29 Stratasys, Inc. Thermosetting compositions and forming three-dimensional objects therefrom
WO2018087395A1 (de) * 2016-11-14 2018-05-17 Covestro Deutschland Ag Kompositwerkstoffe basierend auf isocyanuratpolymeren mit dualer härtung
JP6954554B2 (ja) * 2016-11-30 2021-10-27 公立大学法人大阪 光硬化性樹脂組成物の硬化物の製造方法および光照射装置
JP6880809B2 (ja) * 2016-12-09 2021-06-02 東亞合成株式会社 活性エネルギー線硬化型封止剤用組成物
US10239255B2 (en) 2017-04-11 2019-03-26 Molecule Corp Fabrication of solid materials or films from a polymerizable liquid
US10316213B1 (en) 2017-05-01 2019-06-11 Formlabs, Inc. Dual-cure resins and related methods
US11458673B2 (en) 2017-06-21 2022-10-04 Carbon, Inc. Resin dispenser for additive manufacturing
US10495973B2 (en) * 2017-06-30 2019-12-03 Align Technology, Inc. 3D printed composites from a single resin by patterned light exposures
CN107236096B (zh) * 2017-07-19 2020-05-26 中山大简科技有限公司 一种透明sla光敏树脂组合物
KR102181860B1 (ko) * 2017-09-22 2020-11-23 주식회사 엘지화학 접착제 조성물, 이를 이용하여 형성된 접착제층을 포함하는 편광판
JP6615849B2 (ja) * 2017-11-22 2019-12-04 マクセルホールディングス株式会社 モデル材用組成物
US11674030B2 (en) 2017-11-29 2023-06-13 Corning Incorporated Highly loaded inorganic filled aqueous resin systems
US11578221B2 (en) 2017-12-15 2023-02-14 Covestro (Netherlands) B.V. Compositions and methods for high-temperature jetting of viscous thermosets to create solid articles via additive fabrication
EP3732021A1 (en) 2017-12-29 2020-11-04 DSM IP Assets B.V. Compositions and articles for additive fabrication and methods of using the same
CN108407289B (zh) * 2018-02-12 2020-02-14 永嘉姜君科技有限公司 一种3d打印眼镜片的制备方法
WO2019169211A1 (en) * 2018-03-02 2019-09-06 Formlabs, Inc. Latent cure resins and related methods
CN112166039B (zh) * 2018-04-06 2023-09-05 聚合-医药有限公司 用于光致聚合增材制造的方法和组合物
WO2019203871A1 (en) * 2018-04-17 2019-10-24 Bmf Material Technology Inc. Membrane-coating stereolithography
US11084221B2 (en) 2018-04-26 2021-08-10 General Electric Company Method and apparatus for a re-coater blade alignment
GB201808384D0 (en) * 2018-05-22 2018-07-11 Photocentric Ltd Methods for making a metal, sand or ceramic object by additive manufacture and formulations for use in said methods
JP7393367B2 (ja) * 2018-06-26 2023-12-06 アルケマ フランス 多段ポリマーをベースとする硬化性組成物
JP7279919B2 (ja) * 2018-12-25 2023-05-23 岡本化学工業株式会社 光学的立体造形用組成物、並びに立体造形物、及びその製造方法
GB201901811D0 (en) * 2019-02-11 2019-03-27 Photocentric Ltd Method of making 3D printed objects using two distinct light sources
CN110171136A (zh) * 2019-06-11 2019-08-27 杭州德迪智能科技有限公司 一种高效线扫描光固化成像装置和方法
CN110342930A (zh) * 2019-07-15 2019-10-18 威海市济合材料工程研究院 一种用于dlp快速成型的3d打印氧化锆陶瓷的光固化树脂
US11602896B2 (en) * 2019-08-14 2023-03-14 Mighty Buildings, Inc. 3D printing of a composite material via sequential dual-curing polymerization
KR20220056207A (ko) 2019-08-30 2022-05-04 코베스트로 (네덜란드) 비.브이. 적층식 제조용 하이브리드 UV/vis 방사선 경화성 액체 수지 조성물
US20220332898A1 (en) * 2019-10-03 2022-10-20 3M Innovative Properties Company Silicone elastomers by free radical mediated cure
CN113045706B (zh) * 2019-12-27 2023-09-08 台科三维科技股份有限公司 低粘着度的光固化树脂组合物及高速三维打印方法
US11577460B2 (en) * 2020-01-17 2023-02-14 Hamilton Sundstrand Corporation Additive manufacturing spatter shielding
JP7442659B2 (ja) 2020-02-04 2024-03-04 キャボット コーポレイション 液状積層造形用組成物
KR102541648B1 (ko) * 2020-06-03 2023-06-08 삼성에스디아이 주식회사 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기층을 포함하는 유기발광소자 표시장치
EP4232285A1 (en) * 2020-10-21 2023-08-30 Stratasys Ltd. Additive manufacturing of three-dimensional objects containing a transparent material
KR102341722B1 (ko) * 2020-10-21 2021-12-20 창원대학교 산학협력단 3d 프린팅 시스템 및 이를 이용한 3d 구조물의 제조방법
WO2022232057A1 (en) * 2021-04-26 2022-11-03 3D Systems, Inc. Systems and methods for layer leveling in large-area microstereolithography
US20230014456A1 (en) * 2021-07-12 2023-01-19 Raytheon Company Ultraviolet curable epoxy dielectric ink
CN113715337B (zh) * 2021-09-26 2023-10-27 上海联泰科技股份有限公司 控制装置、方法、3d打印方法及打印设备
CN114479735A (zh) * 2022-02-14 2022-05-13 张河远 一种阳离子uv固化胶黏剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127092A (en) * 1997-06-30 2000-10-03 Siemens Ag Reaction resin mixtures and use thereof
WO2009057600A1 (ja) * 2007-11-01 2009-05-07 Adeka Corporation 塩化合物、カチオン重合開始剤およびカチオン重合性組成物

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3708296A (en) 1968-08-20 1973-01-02 American Can Co Photopolymerization of epoxy monomers
AU497960B2 (en) 1974-04-11 1979-01-25 Minnesota Mining And Manufacturing Company Photopolymerizable compositions
US4245029A (en) 1979-08-20 1981-01-13 General Electric Company Photocurable compositions using triarylsulfonium salts
US4339567A (en) 1980-03-07 1982-07-13 Ciba-Geigy Corporation Photopolymerization by means of sulphoxonium salts
US4383025A (en) 1980-07-10 1983-05-10 Ciba-Geigy Corporation Photopolymerization by means of sulfoxonium salts
US4398014A (en) 1980-11-04 1983-08-09 Ciba-Geigy Corporation Sulfoxonium salts and their use as polymerization catalysts
JPS58143042A (ja) 1982-02-19 1983-08-25 松下電器産業株式会社 断熱構造体
EP0094915B1 (de) 1982-05-19 1987-01-21 Ciba-Geigy Ag Härtbare, Metallocenkomplexe enthaltende Zusammensetzungen, daraus erhältliche aktivierte Vorstufen und deren Verwendung
DE3366408D1 (en) 1982-05-19 1986-10-30 Ciba Geigy Ag Photopolymerisation with organometal salts
DE3565013D1 (en) 1984-02-10 1988-10-20 Ciba Geigy Ag Process for the preparation of a protection layer or a relief pattern
US4920156A (en) 1984-03-23 1990-04-24 Union Carbide Chemicals And Plastics Company Inc. Blends of cyclic vinyl ether containing compounds and urethane acrylates
GB8414525D0 (en) 1984-06-07 1984-07-11 Ciba Geigy Ag Sulphoxonium salts
US4575330A (en) 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
JPS62156936A (ja) 1985-12-28 1987-07-11 日本特許管理株式会社 チヤツク付袋の製法
US4760013A (en) 1987-02-17 1988-07-26 International Business Machines Corporation Sulfonium salt photoinitiators
US5171490A (en) 1988-11-29 1992-12-15 Fudim Efrem V Method and apparatus for production of three-dimensional objects by irradiation of photopolymers
DE3924298A1 (de) 1989-07-22 1991-02-07 Basf Ag Neue sulfoniumsalze und deren verwendung
US5002856A (en) 1989-08-02 1991-03-26 E. I. Du Pont De Nemours And Company Thermally stable carbazole diazonium salts as sources of photo-initiated strong acid
FR2688783A1 (fr) * 1992-03-23 1993-09-24 Rhone Poulenc Chimie Nouveaux borates d'onium ou de complexe organometallique amorceurs cationiques de polymerisation.
US5705116A (en) 1994-06-27 1998-01-06 Sitzmann; Eugene Valentine Increasing the useful range of cationic photoinitiators in stereolithography
US5494618A (en) 1994-06-27 1996-02-27 Alliedsignal Inc. Increasing the useful range of cationic photoinitiators in stereolithography
US5639413A (en) 1995-03-30 1997-06-17 Crivello; James Vincent Methods and compositions related to stereolithography
US5665792A (en) 1995-06-07 1997-09-09 E. I. Du Pont De Nemours And Company Stabilizers for use with photoacid precursor formulations
EP0844255A1 (en) 1996-06-12 1998-05-27 Nippon Kayaku Kabushiki Kaisha Photopolymerization initiator and actinic radiation-curable composition comprising the same
JPH1087963A (ja) 1996-09-20 1998-04-07 Japan Synthetic Rubber Co Ltd 樹脂組成物および繊維質材料成形型
FR2757530A1 (fr) 1996-12-24 1998-06-26 Rhodia Chimie Sa Utilisation pour la stereophotolithographie - d'une composition liquide photoreticulable par voie cationique comprenant un photoamorceur du type sels d'onium ou de complexes organometalliques
JP4204113B2 (ja) 1997-12-04 2009-01-07 株式会社Adeka 新規な芳香族スルホニウム化合物、これからなる光酸発生剤およびこれを含む光重合性組成物、光造形用樹脂組成物ならびに光学的立体造形法
US5973020A (en) * 1998-01-06 1999-10-26 Rhodia Inc. Photoinitiator composition including hindered amine stabilizer
WO2000021735A1 (en) 1998-10-12 2000-04-20 Dicon A/S Rapid prototyping apparatus and method of rapid prototyping
JP2000239648A (ja) 1999-02-19 2000-09-05 Jsr Corp 光カチオン重合用光増感剤および光カチオン重合方法
JP2001205708A (ja) * 2000-01-27 2001-07-31 Teijin Seiki Co Ltd 光学的立体造形方法および装置
US6547552B1 (en) 2000-02-08 2003-04-15 Efrem V. Fudim Fabrication of three-dimensional objects by irradiation of radiation-curable materials
US6593388B2 (en) 2000-04-04 2003-07-15 Renssealer Polytechnic Institute Oligomeric and polymeric photosensitizers comprising a polynuclear aromatic group
DE20106887U1 (de) 2001-04-20 2001-09-06 Envision Technologies Gmbh Vorrichtung zum Herstellen eines dreidimensionalen Objekts
DE10119817A1 (de) 2001-04-23 2002-10-24 Envision Technologies Gmbh Vorrichtung und Verfahren für die zerstörungsfreie Trennung ausgehärteter Materialschichten von einer planen Bauebene
US6927018B2 (en) 2001-10-29 2005-08-09 Hewlett-Packard Development Company, L.P. Three dimensional printing using photo-activated building materials
US6865949B2 (en) 2003-01-31 2005-03-15 Hewlett-Packard Development Company, L.P. Transducer-based sensor system
US7270528B2 (en) 2002-05-07 2007-09-18 3D Systems, Inc. Flash curing in selective deposition modeling
JP5131888B2 (ja) 2002-09-25 2013-01-30 株式会社Adeka 新規な芳香族スルホニウム塩化合物、これからなる光酸発生剤およびこれを含む光重合性組成物、光学的立体造形用樹脂組成物並びに光学的立体造形法
US20040077745A1 (en) * 2002-10-18 2004-04-22 Jigeng Xu Curable compositions and rapid prototyping process using the same
US7211368B2 (en) 2003-01-07 2007-05-01 3 Birds, Inc. Stereolithography resins and methods
EP1477511A1 (en) * 2003-05-15 2004-11-17 DSM IP Assets B.V. Radiation curable thiol-ene composition
KR101109977B1 (ko) * 2003-07-23 2012-03-13 디에스엠 아이피 어셋츠 비.브이. 점도 감소성 방사선 경화 수지 조성물
US20050040562A1 (en) * 2003-08-19 2005-02-24 3D Systems Inc. Nanoparticle-filled stereolithographic resins
JP2007514805A (ja) * 2003-11-06 2007-06-07 ディーエスエム アイピー アセッツ ビー.ブイ. 硬化性組成物およびそれを用いるラピッドプロトタイピング法
US20050101684A1 (en) 2003-11-06 2005-05-12 Xiaorong You Curable compositions and rapid prototyping process using the same
TWI406086B (zh) 2004-03-22 2013-08-21 3D Systems Inc 可光硬化組合物
EP1591470A1 (en) * 2004-04-26 2005-11-02 DSM IP Assets B.V. Method for photocuring of resin compositions
EP1894705B1 (de) 2004-05-10 2010-08-25 Envisiontec GmbH Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Objekts mit Auflösungsverbesserung mittels Pixel-Shift
US7592376B2 (en) 2004-08-23 2009-09-22 Rensselaer Polytechnic Institute Photopolymerizable epoxide and oxetane compositions
JP4692874B2 (ja) 2004-11-26 2011-06-01 川崎化成工業株式会社 1,2,3,4−テトラヒドロアントラセン−9,10−ジエーテル及びその製造法
US20060172230A1 (en) 2005-02-02 2006-08-03 Dsm Ip Assets B.V. Method and composition for reducing waste in photo-imaging applications
US7758799B2 (en) 2005-04-01 2010-07-20 3D Systems, Inc. Edge smoothness with low resolution projected images for use in solid imaging
US7358283B2 (en) 2005-04-01 2008-04-15 3D Systems, Inc. Radiation curable compositions useful in image projection systems
US7807230B2 (en) 2005-06-16 2010-10-05 Rensselaer Polytechnic Institute Curcumin and curcuminoid compounds, and use thereof as photosensitizers of onium salts
EP1902019B1 (en) 2005-07-01 2010-07-07 Basf Se Sulphonium salt initiators
US8334025B2 (en) * 2005-10-27 2012-12-18 3D Systems, Inc. Antimony-free photocurable resin composition and three dimensional article
JP2007126612A (ja) 2005-11-07 2007-05-24 Kawasaki Kasei Chem Ltd 光増感剤、光感応性酸発生剤及び光硬化性組成物
KR101389057B1 (ko) * 2006-04-13 2014-05-13 시바 홀딩 인크 설포늄 염 개시제
CN101384959B (zh) * 2006-05-01 2012-01-11 Dsmip财产有限公司 辐射固化树脂组合物及应用其的快速三维成像方法
US7467939B2 (en) * 2006-05-03 2008-12-23 3D Systems, Inc. Material delivery tension and tracking system for use in solid imaging
JP5523101B2 (ja) * 2006-10-24 2014-06-18 チバ ホールディング インコーポレーテッド 熱安定性のカチオン光硬化性組成物
CN101190931A (zh) 2006-11-30 2008-06-04 北京化工大学 新型阳离子光引发剂双茂铁芳烃盐的制备及其应用
JP5073284B2 (ja) * 2006-12-22 2012-11-14 ローランドディー.ジー.株式会社 三次元造形装置
US20080292993A1 (en) 2006-12-22 2008-11-27 Canon Kabushiki Kaisha Photo-cationic polymerizable epoxy resin composition, liquid discharge head, and manufacturing method thereof
US7614866B2 (en) 2007-01-17 2009-11-10 3D Systems, Inc. Solid imaging apparatus and method
US7706910B2 (en) 2007-01-17 2010-04-27 3D Systems, Inc. Imager assembly and method for solid imaging
US7731887B2 (en) * 2007-01-17 2010-06-08 3D Systems, Inc. Method for removing excess uncured build material in solid imaging
US8221671B2 (en) 2007-01-17 2012-07-17 3D Systems, Inc. Imager and method for consistent repeatable alignment in a solid imaging apparatus
WO2008118263A1 (en) 2007-03-22 2008-10-02 Stratasys, Inc. Extrusion-based layered deposition systems using selective radiation exposure
US20090004579A1 (en) * 2007-06-27 2009-01-01 Dsm Ip Assets B.V. Clear and colorless three-dimensional articles made via stereolithography and method of making said articles
WO2009004710A1 (ja) 2007-07-02 2009-01-08 Ohara Inc. ガラス組成物
KR101173923B1 (ko) 2007-07-03 2012-08-16 미쓰비시덴키 가부시키가이샤 전력소자의 구동회로
JP5304977B2 (ja) 2007-10-04 2013-10-02 セイコーエプソン株式会社 光硬化組成物を用いた硬化物の形成方法およびその硬化物
CN102026967B (zh) 2007-10-10 2013-09-18 巴斯夫欧洲公司 锍盐引发剂
CN101952269B (zh) 2007-10-10 2014-06-25 巴斯夫欧洲公司 锍盐引发剂
EP2197840B1 (en) * 2007-10-10 2013-11-06 Basf Se Sulphonium salt initiators
JP5435879B2 (ja) * 2008-02-14 2014-03-05 株式会社ダイセル ナノインプリント用硬化性樹脂組成物
US8876513B2 (en) 2008-04-25 2014-11-04 3D Systems, Inc. Selective deposition modeling using CW UV LED curing
JP5247396B2 (ja) * 2008-07-02 2013-07-24 日本化薬株式会社 Mems用感光性樹脂組成物及びその硬化物
US20100056661A1 (en) 2008-09-03 2010-03-04 Pingyong Xu Radiation Curable Compositions Useful in Image Projection Systems
WO2010074566A1 (en) 2008-12-22 2010-07-01 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and apparatus for layerwise production of a 3d object
KR101995185B1 (ko) * 2009-12-17 2019-07-01 디에스엠 아이피 어셋츠 비.브이. 트라이아릴 설포늄 보레이트 양이온 광개시제를 포함하는 적층식 제작을 위한 액체 방사선 경화성 수지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127092A (en) * 1997-06-30 2000-10-03 Siemens Ag Reaction resin mixtures and use thereof
WO2009057600A1 (ja) * 2007-11-01 2009-05-07 Adeka Corporation 塩化合物、カチオン重合開始剤およびカチオン重合性組成物
US20100267857A1 (en) * 2007-11-01 2010-10-21 Adeka Corporation Salt compound, cationic polymerization initiator and cationically polymerizable composition

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10696782B2 (en) 2012-03-13 2020-06-30 Daicel Corporation Photosensitive resin composition, cured product thereof, and optical component
US9840586B2 (en) * 2013-11-15 2017-12-12 Sabic Global Technologies B.V. Methods for measuring properties in crosslinked polycarbonate
WO2016148890A1 (en) * 2015-03-19 2016-09-22 Dow Global Technologies Llc Method of additive manufacturing using photoregulated radical polymerization
US10647056B2 (en) 2015-03-19 2020-05-12 Dow Global Technologies Llc Method of additive manufacturing using photoregulated radical polymerization
US11396603B2 (en) 2015-06-08 2022-07-26 Covestro (Netherlands) B.V. Liquid, hybrid UV/vis radiation curable resin compositions for additive fabrication
US10604659B2 (en) 2015-06-08 2020-03-31 Dsm Ip Assets B.V. Liquid, hybrid UV/VIS radiation curable resin compositions for additive fabrication
JP2018532009A (ja) * 2015-10-01 2018-11-01 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. 付加造形用液状ハイブリッドUV/vis線硬化性樹脂組成物
CN108027558A (zh) * 2015-10-01 2018-05-11 帝斯曼知识产权资产管理有限公司 用于加成法制造的液体、混杂的可紫外/可见光辐射固化树脂组合物
US9708442B1 (en) 2015-10-01 2017-07-18 Dsm Ip Assets, B.V. Liquid, hybrid UV/vis radiation curable resin compositions for additive fabrication
WO2017059222A1 (en) * 2015-10-01 2017-04-06 Dsm Ip Assets B.V. Liquid, hybrid uv/vis radiation curable resin compositions for additive fabrication
US10647873B2 (en) * 2015-10-30 2020-05-12 Carbon, Inc. Dual cure article of manufacture with portions of differing solubility
US20170120515A1 (en) * 2015-10-30 2017-05-04 Carbon, Inc. Dual cure article of manufacture with portions of differing solubility
US20220228010A1 (en) * 2015-11-17 2022-07-21 Covestro (Netherlands) B.V. Antimony-free radiation curable compositions for additive fabrication, and applications thereof in investment casting processes
US10705424B2 (en) 2015-12-21 2020-07-07 Merck Patent Gmbh Negative-working photoresist compositions for laser ablation and use thereof
US11118716B2 (en) 2017-03-03 2021-09-14 Ina Acquisition Corp. Curing device for curing a pipe liner
US11542384B2 (en) 2017-03-28 2023-01-03 Ford Global Technologies, Llc Stabilized additive manufacturing articles
US11702559B2 (en) 2017-11-07 2023-07-18 3D Systems, Inc. Inks for 3D printing having low print through depth
US11384250B2 (en) 2017-11-07 2022-07-12 3D Systems, Inc. Inks for 3D printing having low print through depth
WO2019191509A1 (en) * 2018-03-28 2019-10-03 Benjamin Lund Thiol-acrylate polymers, methods of synthesis thereof and use in additive manufacturing technologies
US11655332B2 (en) 2018-04-20 2023-05-23 Adaptive 3D Technologies Sealed isocyanates
US11697706B2 (en) 2018-04-20 2023-07-11 Adaptive 3D Technologies Sealed isocyanates
US11739177B2 (en) 2018-04-20 2023-08-29 Adaptive 3D Technologies Sealed isocyanates
US11911956B2 (en) 2018-11-21 2024-02-27 Adaptive 3D Technologies Using occluding fluids to augment additive manufacturing processes
US11986994B2 (en) 2018-11-21 2024-05-21 Adaptive 3D Technologies, Llc Using occluding fluids to augment additive manufacturing processes
CN111303577A (zh) * 2020-02-28 2020-06-19 山东非金属材料研究所 一种增材制造用可见光敏液体树脂、其制备方法及使用方法

Also Published As

Publication number Publication date
CN102934026A (zh) 2013-02-13
KR101821426B1 (ko) 2018-01-23
KR101995185B1 (ko) 2019-07-01
CN106125509A (zh) 2016-11-16
EP2396299A1 (en) 2011-12-21
EP2512779B1 (en) 2017-01-25
CN102666073B (zh) 2015-07-22
KR101833078B1 (ko) 2018-02-27
WO2011075553A1 (en) 2011-06-23
WO2011084578A1 (en) 2011-07-14
JP2013514451A (ja) 2013-04-25
CN102858738A (zh) 2013-01-02
JP2013514213A (ja) 2013-04-25
BR112012014890A2 (pt) 2016-04-19
EP2512779A1 (en) 2012-10-24
KR20180132998A (ko) 2018-12-12
JP5849350B2 (ja) 2016-01-27
CN102934026B (zh) 2016-08-03
US20120251829A1 (en) 2012-10-04
BR112012014900A2 (pt) 2017-03-14
KR20120094954A (ko) 2012-08-27
BR112012014890B1 (pt) 2019-08-13
KR20120109558A (ko) 2012-10-08
US9034236B2 (en) 2015-05-19
BR112012014900B1 (pt) 2019-09-10
CN102666073A (zh) 2012-09-12
US20120251841A1 (en) 2012-10-04
EP2513722A1 (en) 2012-10-24
WO2011075555A1 (en) 2011-06-23
KR20120124410A (ko) 2012-11-13
CN106125509B (zh) 2019-12-17
CN102858738B (zh) 2015-07-22
EP2396299B1 (en) 2013-07-24
JP5699365B2 (ja) 2015-04-08
EP2513722B1 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
EP2513722B1 (en) Led curable liquid resin compositions for additive fabrication, process for making a three-dimensional object using the same
JP6414411B2 (ja) 積層造形用の低粘度液状放射線硬化型歯科アライナー成形型用樹脂組成物
US9864274B2 (en) Liquid radiation curable resins capable of curing into layers with selective visual effects and methods for the use thereof
CN107636025B (zh) 用于加成法制造的液体、混杂的紫外/可见光可辐射固化树脂组合物
US11396603B2 (en) Liquid, hybrid UV/vis radiation curable resin compositions for additive fabrication
US20170087765A1 (en) Color and/or opacity changing liquid radiation curable resins, and methods for using the same in additive fabrication
EP2502728A1 (en) Lightweight and High Strength Three-Dimensional Articles Producible by Additive Fabrication Processes
JP2017513729A (ja) 色および/または不透明度が変化する付加造形用の液状放射線硬化性樹脂
US11866526B2 (en) Liquid, hybrid UV/vis radiation curable resin compositions for additive fabrication
US20240092946A1 (en) Liquid, hybrid uv/vis radiation curable resin compositions for additive fabrication

Legal Events

Date Code Title Description
AS Assignment

Owner name: DSM ASSETS B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DAKE, KEN;REEL/FRAME:033599/0512

Effective date: 20140825

AS Assignment

Owner name: DSM IP ASSETS B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAKE, KEN;XU, JIGENG;BISHOP, TIMOTHY EDWARD;SIGNING DATES FROM 20140825 TO 20140923;REEL/FRAME:033809/0540

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION