WO2015180022A1 - 3d打印系统 - Google Patents

3d打印系统 Download PDF

Info

Publication number
WO2015180022A1
WO2015180022A1 PCT/CN2014/078433 CN2014078433W WO2015180022A1 WO 2015180022 A1 WO2015180022 A1 WO 2015180022A1 CN 2014078433 W CN2014078433 W CN 2014078433W WO 2015180022 A1 WO2015180022 A1 WO 2015180022A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmd
printing
mobile device
light
dmds
Prior art date
Application number
PCT/CN2014/078433
Other languages
English (en)
French (fr)
Inventor
沈震
唐迪
熊刚
王飞跃
Original Assignee
中国科学院自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院自动化研究所 filed Critical 中国科学院自动化研究所
Priority to US15/314,071 priority Critical patent/US20170232668A1/en
Priority to CN201480000261.1A priority patent/CN104093547B/zh
Priority to PCT/CN2014/078433 priority patent/WO2015180022A1/zh
Publication of WO2015180022A1 publication Critical patent/WO2015180022A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/232Driving means for motion along the axis orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/236Driving means for motion in a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/277Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention relates to a 3D printing system, and more particularly to a 3D printing system utilizing, in particular, digital light processing (DLP).
  • DLP digital light processing
  • Digital light processing technology is a development technology used in projectors and rear projection televisions.
  • the image signal is digitally processed and then projected.
  • the image is produced by a digital micromirror device (DMD), which is composed of a microlens (precision, miniature mirror) arranged on the semiconductor chip.
  • DMD digital micromirror device
  • the matrix, each microlens controls one pixel in the projected picture, ie the digital light processing projection technique applies a digital micromirror wafer as the primary key processing element to implement the digital optical processing process.
  • 3D printing is a kind of rapid prototyping technology.
  • the 3D model is layered and discretized by software.
  • the CNC molding system uses laser beam, ultraviolet light, hot melt, etc. to make special materials such as resin, ceramic powder and plastic in ⁇ - ⁇ .
  • the plane is scanned layer by layer, and stacked and bonded on the z-axis, and finally stacked into a solid product.
  • a digital light processing 3D printing technology which is a kind of 3D printing technology. It uses a high-resolution DLP device and an ultraviolet light source to project the cross section of a 3D object.
  • the liquid photopolymer photosensitive resin
  • the 3D printer controls the Z-axis to raise the thickness of the workbench to perform the curing of the i+1th layer. This process is repeated until the model is completely built.
  • An object of the present invention is to provide a 3D printing system that can effectively increase the cross-sectional area of a printed object in view of the deficiencies of the prior art.
  • the present invention provides a 3D printing system, the system comprising: a digital micromirror device DMD mobile device;
  • a plurality of DMDs mounted on the DMD mobile device for receiving ultraviolet light emitted by the light source to generate a 3D object cross-section light
  • a lens for receiving the 3D object cross-section light reflected by the DMD, and refracting the 3D object cross-section light
  • the 3D object cross-section light refracted by the lens is irradiated onto the printing material provided by the cartridge, and the printing material is solidified into a 3D object and carried on the working table;
  • a lifting device for lifting the workbench is
  • the DMD is a matrix composed of microlenses, each of which controls one pixel in the projected picture.
  • microlens changes the angle under the control of the digital driving signal generated by the DLP control panel.
  • the DMD mobile device is specifically a spliced DMD mobile device, and each of the DMDs corresponds to one of the light sources, and each set of the light sources is fixed with the DMD.
  • the DMD mobile device is specifically a strip mobile DMD mobile device, each of the DMDs corresponds to one of the light sources, and each set of the light sources is fixed with the DMD, and the DMD is synchronized with the light source. Move by bar. Further, the DMD moves in parallel in the first direction, thereby printing the first layer of the 3D object, and the DMD moves in parallel in the opposite direction of the first direction, thereby printing the second layer of the 3D object.
  • the DMD mobile device is specifically a block mobile DMD mobile device, each of the DMDs corresponds to one of the light sources, each set of the light sources is fixed with the DMD, and the DMD is synchronized with the light source. Move by block.
  • each of the DMDs corresponds to one printing area, and each of the DMDs prints the corresponding printing area layer by layer, thereby completing printing of the 3D object.
  • the printing material is a photosensitive resin.
  • the lifting device is specifically configured to: after the printing of the first layer of the 3D object on the workbench, lift the workbench to perform printing of the second layer of the 3D object.
  • the 3D printing system of the invention can flexibly realize a 3D printing object with a larger printing cross-sectional area and a constant DP I by changing the structure of the 3 system, moving the original DMD or splicing a plurality of DMDs.
  • 1 is one of three schematic diagrams of a 3D printing system of the present invention
  • FIG. 2 is a second schematic diagram of the 3D printing system of the present invention.
  • FIG. 3 is a third schematic view of the 3D printing system of the present invention. detailed description
  • the 3D printing system of the present invention is a DLP 3D printing system of a mobile/splicing DMD, a method of directly fixing a DMD or splicing a plurality of DMDs in a parallel mobile printing system, mainly for increasing the number of DMD microlenses.
  • the cross-sectional area of the 3D printed object that is, the original Dot s Per Inch (DPI) is unchanged, solves the bottleneck problem that the cross-sectional area of the original 3D printing system cannot exceed the projection range of a single fixed DMD light.
  • DPI Dot s Per Inch
  • the 3D printing system of the invention moves or splicing the fixed DMD of the printing system, breaking through the original DMD prints restrictions on the bottom surface of 3D objects, etc., maximizing the use of existing 3D printing system resources.
  • 1, 2 and 3 are three schematic views of a 3D printing system of the present invention, as shown in the figure:
  • the 3D printing system of the present invention comprises: DMD mobile device 1, light source 3, DMD2, lens 4, cartridge 5, work Table 6 and lifting device 7.
  • the number of the spliced DMDs and the portion N to be equally divided by the area to be printed are taken as 4, that is, 4 DMDs are spliced, or the area to be printed is equally divided into 4 parts.
  • the light source 3 is fixed on the DMD mobile device 2 for emitting ultraviolet light; the DMD2 is mounted on the DMD mobile device 1 for receiving the ultraviolet light emitted by the light source 3 to generate a 3D object cross-section light; and the lens 4 is for receiving the 3D reflected by the DMD 2
  • the object cross-section light, and the 3D object cross-section light is refracted; the cartridge 2 is used to hold and provide the printing material.
  • the printing material may be a photosensitive resin; the 3D object cross-section light refracted by the lens 4 is irradiated on the cartridge 5 On the printed material, the printed material is solidified into a 3D object, which is carried on the workbench 7; the lifting device 7 is used to lift the workbench 6.
  • DMD2 is a matrix composed of microlenses, each microlens controls one pixel in the projected picture, the number of microlenses is consistent with the resolution of the projected picture, and the microlens can quickly change the angle under the control of the digital driving signal.
  • the digital drive signal is controlled by the DLP control board. Therefore, through
  • the DLP control board controls the digital drive signal, and the digital drive signal controls the microlens angle.
  • the DMD can generate a 3D object cross section.
  • the mobile or spliced digital micromirror device is realized by moving the DMD 2 or loading a plurality of DMDs by the DMD mobile device 1.
  • the splicing rules are mainly based on user requirements, and generally the symmetrical halving method is adopted.
  • the area to be printed is divided into N parts, and each part is placed with a DMD.
  • Each DMD is equipped with a light source.
  • N DMDs work together and print together.
  • the key point of printing is the edge of every two adjacent DMD pairs. Handling, to ensure the integrity of the printed object and smooth transition.
  • the spliced DMD mobile device may be a spliced DMD mobile device, the DMD mobile device 1 may be used to load a DMD and a light source, each DMD is equipped with a light source, and each set of light sources is fixed to the DMD.
  • the spliced digital micromirror device method does not require moving DMD and light Source.
  • the strip-shaped mobile DMD mobile device wherein the strip-shaped movement is that the DMD moves in parallel in the first direction, thereby printing the first layer of the 3D object, and the DMD is parallel in the opposite direction of the first direction.
  • Moving, thereby printing the second layer of the 3D object Specifically, moving in parallel in one direction, moving from the left to the right to print the i-th layer, then moving from the right to the left to print the i+1th layer, so reciprocating until the printing completes the entire object, the strip movement is applied to Print 3D objects with large cross-sectional area and large aspect ratio.
  • the DMD mobile device 1 is a strip-shaped mobile DMD mobile device, and the DMD 2 can only move back and forth in a strip shape on the device.
  • the light source 3 and the DMD 2 are fixed together, and the two move together: moving from left to right Cross-section printing of the i-th 3D object is completed once, and the cross-sectional printing of the i+1th 3D object is completed once from right to left, and the process is repeated until the 3D object is completely printed.
  • the DMD mobile device 1 may be a strip-shaped mobile DMD mobile device for moving the DMD, where the DMD and the light source are spliced together, and the two are fixed together to move synchronously, and the moving manner is to move by the bar.
  • the block mobile DMD mobile device has a block moving similar to a spliced DMD, and each of the DMDs corresponds to one printing area, and each of the DMDs prints the corresponding printing area layer by layer, thereby The printing of the 3D object is completed.
  • the area to be printed is equally divided into N parts, and the DMD is sequentially moved from part 1 to part N. After all the parts are printed, the printing of the i-th layer is completed, the lifting device is raised by one layer, and the i-th layer is started to be printed.
  • the key point of printing is that the printing interval of part 1 to part N cannot be too long, so that the part that starts printing is cured before the part printed later, and the integrity and smooth transition of the printed object are also required.
  • the block movement is suitable for Print 3D objects with large cross-sectional areas and similar aspect ratios.
  • the DMD mobile device 1 may be a block mobile DMD mobile device for moving the DMD, where the DMD and the light source are in the same strip mobile DMD mobile device, and the two are fixed together to move synchronously, and the mobile mode is moving by block.
  • the DMD mobile device 1 is a block mobile DMD mobile device, and the DMD2 can be The movement is moved to the adjacent block area for printing, and the light source 3 and the DMD 2 are fixed together, and the two move together.
  • the area to be printed is equally divided into four parts, and the DMD2 is sequentially moved from the first part to the fourth part to calculate the cross-sectional printing of the 3D object, and the DMD is coordinated in the process of sequentially moving to each part.
  • the switching of the image to be printed on the DMD, in the printing process, the moving speed of the DMD in the adjacent two printing areas should be adapted to the printing speed of the DMD and the curing speed of the photosensitive resin, so as to prevent the portion printed first before printing.
  • the partial cure affects the integrity and smoothness of the printed object.
  • the light source 3 emits ultraviolet light.
  • the ultraviolet light is irradiated onto the photosensitive resin to cure it.
  • the light source emits ultraviolet light to the DMD.
  • the DMD reflects the cross-section light of the generated 3D object to the lens, and the lens refracts it to the photosensitive resin. Solidifies a 3D object section.
  • the lens 4 is used to refract the ultraviolet light reflected by the DMD to amplify the irradiation range of the ultraviolet light.
  • DMD2 generates a cross section of the 3D object to be printed.
  • the DMD controls the angle of the microlens by the software system, showing the cross section of the 3D object to be printed.
  • the DMD is used to reflect the ultraviolet light projected by the light source 3 through the DMD to the lens 4 and project the ultraviolet light of the cross-sectional shape of the 3D object.
  • the lens 4 amplifies the ultraviolet light of the cross-sectional shape of the 3D object reflected from the DMD, and refracts it onto the photosensitive resin of the 3D printing material to perform cross-section curing of the 3D object.
  • the cartridge 5 is a container for printing materials, and the printing material used here is a photosensitive resin.
  • the table 6 fixes the photosensitive resin 3D object formed by curing.
  • the lifting device 7 is used to raise the thickness of the workbench after the curing of the photosensitive resin of the i-th layer is completed, and at the same time, the i-+1 layer is solidified until the model is completely completed, that is, the entire object is printed.
  • the invention has the following advantages: under the current situation that the single fixed DMD area cannot increase the number of micro lenses, the traditional thinking of 3D printing is broken, and the printing cross-sectional area is flexibly realized by changing the structure of the 3D printing system, moving the original DMD or splicing multiple DMDs. Large, DPI-invariant 3D printed objects.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically programmable ROM
  • EEPROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or technical field Any other form of storage medium known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

一种3D打印系统,所述系统包括:数字微镜器件DMD移动设备(1);光源(3),固定在DMD移动设备(1)上,用于发出紫外光;多个DMD(2),装载在DMD移动设备(1)上,用于接收光源(3)发出的紫外光,生成3D物体截面光;透镜(4),用于接收DMD(2)反射的3D物体截面光,并将3D物体截面光折射放大;料盒(5),用于盛装和提供打印材料;工作台(6),透镜折射来的3D物体截面光,照射在料盒(5)提供的打印材料上,将打印材料固化为3D物体,承载在工作台(6)上;提升设备(7),用于提升工作台(6)。3D打印系统,通过改变系统结构,移动原有DMD或拼接多个DMD,灵活实现打印截面积更大、DPI不变的3D打印物体。

Description

3D打印系统
技术领域
本发明涉及 3D 打印系统, 尤其涉及一种利用特别涉及数字光处理 ( Dig i ta l Li ght Proces s ion, DLP ) 的 3D打印系统。 背景技术
数字光处理技术是一项使用在投影仪和背投电视中的显像技术, 先把影 像信号经过数字处理, 然后再把光投影出来。 在数字光处理投影仪中, 图像 是由数字微镜器件 (Dig i ta l Micromi rror Device, DMD )产生的, DMD是在半 导体芯片上布置一个由微镜片 (精密、 微型的反射镜) 所组成的矩阵, 每一 个微镜片控制投影画面中的一个像素, 即数字光处理投影技术应用了数字微 镜晶片作为主要关键处理元件以实现数字光学处理过程。
3D打印属于快速成形技术的一种,通过软件将 3D模型进行分层离散化处 理, 由数控成型系统利用激光束、 紫外线、 热熔等方式将树脂、 陶瓷粉末、 塑料等特殊材料在 χ-γ平面进行逐层成型扫描, 并在 z轴进行堆积黏结, 最 终叠加成实体产品。
将数字光处理技术与 3D打印技术相结合, 便形成了数字光处理 3D打印 技术, 它是 3D打印技术的一种, 利用高分辨率的 DLP 器件和紫外光源, 将 3D物体的截面投影在工作台上, 使液态光聚合物 (光敏树脂)逐层进行光固 化。 当第 i层的固化完成之后, 3D打印机控制 Z轴将工作台提升一层的厚度, 进行第 i+1层的固化。 该流程重复, 直至彻底将模型构建完成。
当前数字光处理打印机内部的 DMD有且仅有一个且只能固定, 这会造成 多方面的限制, 如: 打印物体的底面积固定等。 目前还没有一个针对当前 DMD 由于固定所造成的限制的解决方案, 因此, 如何改变数字光处理打印机 DMD 固定的现状, 成为一个亟待解决的问题。 发明内容
本发明的目的是针对现有技术的缺陷, 提供一种 3D打印系统, 可以有效 的增大打印物体的截面积。
为实现上述目的, 本发明提供了一种 3D打印系统, 所述系统包括: 数字微镜器件 DMD移动设备;
光源, 固定在所述 DMD移动设备上, 用于发出紫外光;
多个 DMD,装载在所述 DMD移动设备上,用于接收所述光源发出的紫外光, 生成 3D物体截面光;
透镜, 用于接收所述 DMD反射的所述 3D物体截面光, 并将所述 3D物体 截面光折射放大;
料盒, 用于盛装和提供打印材料;
工作台, 所述透镜折射来的所述 3D物体截面光, 照射在所述料盒提供的 打印材料上, 将所述打印材料固化为 3D物体, 承载在所述工作台上;
提升设备, 用于提升所述工作台。
进一步的, 所述 DMD是由微镜片组成的矩阵, 每个所述微镜片对应控制 投影画面中的一个像素。
进一步的, 所述微镜片在 DLP控制板产生的数字驱动信号的控制下改变 角度。
进一步的,所述 DMD移动设备具体为拼接式 DMD移动设备,每个所述 DMD 对应一个所述光源, 每组所述光源与所述 DMD固定在一起。
进一步的, 所述 DMD移动设备具体为条状移动式 DMD移动设备, 每个所 述 DMD对应一个所述光源, 每组所述光源与所述 DMD 固定在一起, 所述 DMD 和所述光源同步按条移动。 进一步的, 所述 DMD沿第一方向平行移动, 从而打印所述 3D物体的第一 层,所述 DMD沿第一方向的反方向平行移动,从而打印所述 3D物体的第二层。
进一步的, 所述 DMD移动设备具体为块状移动式 DMD移动设备, 每个所 述 DMD对应一个所述光源, 每组所述光源与所述 DMD 固定在一起, 所述 DMD 和所述光源同步按块移动。
进一步的, 每个所述 DMD对应一个打印区域, 每个所述 DMD逐层打印所 对应的所述打印区域, 从而完成所述 3D物体的打印。
进一步的, 所述打印材料为光敏树脂。
进一步的, 所述提升设备具体用于, 在所述工作台上的所述 3D物体打印 第一层结束后, 提升所述工作台, 从而进行所述 3D物体第二层的打印。
本发明 3D打印系统,通过改变 3系统结构,移动原有 DMD或拼接多个 DMD, 灵活实现打印截面积更大、 DP I不变的 3D打印物体。 附图说明
图 1为本发明 3D打印系统的三个示意图之一;
图 2为本发明 3D打印系统的三个示意图之二;
图 3为本发明 3D打印系统的三个示意图之三。 具体实施方式
下面通过附图和实施例, 对本发明的技术方案 #支进一步的详细描述。 本发明的 3D打印系统是一种移动式 /拼接式 DMD的 DLP 3D打印系统, 平 行移动打印系统内部原固定 DMD或拼接多个 DMD的方法, 主要为了在 DMD微 镜片数量一定的前提下, 增加 3D 打印物体的截面积, 即在原有每英寸点数 ( Dot s Per Inch, DPI ) 不变的前提下, 解决了原 3D打印系统打印物体的截 面积无法超越单个固定 DMD光投影范围的瓶颈问题。
本发明的 3D打印系统, 将打印系统的固定 DMD进行移动或拼接, 突破原 DMD打印 3D物体的底面固定等的限制, 最大化利用现有的 3D打印系统资源。 图 1、 图 2和图 3为本发明 3D打印系统的三个示意图, 如图所示: 本发 明的 3D打印系统包括: DMD移动设备 1、 光源 3、 DMD2、 透镜 4、 料盒 5、 工 作台 6和提升设备 7。
本实施例中将上述拼接 DMD的个数及待打印区域平分的部分 N取为 4,即 拼接 4个 DMD, 或将待打印区域平均分成 4部分。
光源 3固定在 DMD移动设备 2上, 用于发出紫外光; DMD2装载在 DMD移 动设备上 1, 用于接收光源 3发出的紫外光, 生成 3D物体截面光; 透镜 4用 于接收 DMD2反射的 3D物体截面光, 并将 3D物体截面光折射放大; 料盒 2用 于盛装和提供打印材料, 具体的, 打印材料可以是光敏树脂; 透镜 4折射来 的 3D物体截面光, 照射在料盒 5提供的打印材料上, 将打印材料固化为 3D 物体, 承载在工作台上 7; 提升设备 7用于提升工作台 6。
具体的, DMD2是由微镜片组成的矩阵, 每一个微镜片控制投影画面中的 一个像素, 微镜片的数量与投影画面的分辨率相符, 微镜片在数字驱动信号 的控制下能够迅速改变角度, 由 DLP控制板控制数字驱动信号。 因此, 通过
DLP控制板控制数字驱动信号, 再由数字驱动信号控制微镜片角度, DMD即可 生成 3D物体截面。
进一步的,通过 DMD移动设备 1移动 DMD2或装载多个 DMD2, 实现移动式 或拼接式数字微镜器件。 为了实现拼接式 DMD, 需按照需求, 拼接 2个至 N个 DMD2 , 拼接规则以用户需求为主, 一般是釆取对称平分方式。 将待打印区域, 平均分成 N部分, 每部分放置一个 DMD, 每个 DMD配备一个光源, 打印时, 由 N个 DMD协同工作,共同打印,打印的关键点是每两个相邻 DMD对边缘的处理, 要保证打印物体的完整性和平滑过渡性。
如图 1所示的拼接式 DMD移动设备, DMD移动设备 1可以是拼接式 DMD 移动设备, DMD移动设备 1可以用于装载 DMD和光源,每个 DMD配备一个光源, 每组光源与 DMD固定在一起, 拼接式数字微镜器件方法不需要移动 DMD和光 源。
而为了实现移动式 DMD, 釆取两种移动方式: 条状移动和块状移动。 如图 2所示的条状移动式 DMD移动设备, 其中, 条状移动是 DMD沿第一 方向平行移动, 从而打印所述 3D物体的第一层, 所述 DMD沿第一方向的反方 向平行移动, 从而打印所述 3D物体的第二层。 具体的, 按照一个方向平行移 动, 从左方移动至右方打印第 i层, 再从右方移动至左方打印第 i+1层, 如 此往复, 直至打印完成整个物体, 条状移动适用于打印截面积较大且长宽比 例较大的 3D物体。
再如图 1所示, DMD移动设备 1是条状移动 DMD移动设备, DMD2只能在 这个设备上以条状来回移动, 光源 3与 DMD2固定在一起, 两者一起移动: 从 左至右移动一次完成第 i层 3D物体的横截面打印, 从右至左移动一次完成第 i+1层 3D物体的横截面打印, 该流程重复, 直至彻底将 3D物体打印完成。
此外, DMD移动设备 1可以是条状移动式 DMD移动设备, 用于移动 DMD, 这里 DMD与光源同拼接式, 两者固定在一起同步移动, 移动方式是按条移动。
如图 3所示的块状移动式 DMD移动设备,块状移动类似于拼接式 DMD,每 个所述 DMD对应一个打印区域, 每个所述 DMD逐层打印所对应的所述打印区 域, 从而完成所述 3D物体的打印。
具体的,将待打印区域平均分成 N部分, DMD由部分 1依次移动至部分 N, 当打印过所有部分之后, 完成第 i 层的打印, 提升设备提升一层高度, 开始 打印第 i + 1层, 打印的关键点是部分 1到部分 N的打印间隔不能太长, 以免 开始打印的部分先于稍后打印的部分固化, 同样需要保证打印物体的完整性 和平滑过渡性, 块状移动适用于打印截面积较大且长宽比例相近的 3D物体。
此时, DMD移动设备 1可以是块状移动式 DMD移动设备, 用于移动 DMD, 这里 DMD与光源同条状移动式 DMD移动设备, 两者固定在一起同步移动, 移 动方式是按块移动。
再如图 3所示, DMD移动设备 1是块状移动 DMD移动设备, DMD2可以依 次移动到相邻的块状区域进行打印, 光源 3与 DMD2固定在一起, 两者一起移 动。 图 3中 3D打印系统中将待打印区域平均分成了 4部分, DMD2依次从第一 部分移动到第四部分算作一次 3D物体的横截面打印完成, DMD在依次移动到 每一部分的过程中要配合 DMD上待打印图像的切换,在打印过程中要保持 DMD 在相邻两个打印区域的移动速度与 DMD 的打印图像切换速度以及光敏树脂的 固化速度相适应, 以免先打印的部分早于后打印的部分固化, 影响打印物体 的完整性和平滑性。第 i层 3D物体横截面打印完成后,重复流程,进行第 i+1 层 3D物体横截面的打印, 直至彻底将 3D物体打印完成。
光源 3发射的是紫外光, 紫外光照射到光敏树脂可以使其固化, 光源发 射紫外光照射到 DMD, DMD将生成的 3D物体截面光反射到透镜, 透镜再将其 折射到光敏树脂, 光敏树脂固化出一个 3D物体截面。
透镜 4用来折射 DMD反射过来的紫外光, 作用是放大紫外光的照射域。 DMD2生成待打印 3D物体的横截面。 DMD由软件系统控制微镜片的角度, 显示 出待打印 3D物体的横截面, DMD的作用是将光源 3投射过来的紫外光通过 DMD 反射到透镜 4并投影出 3D物体横截面形状的紫外光。 透镜 4放大从 DMD反射 过来的 3D物体横截面形状的紫外光, 并将其折射到 3D打印材料光敏树脂上, 进行 3D物体的截面固化。
料盒 5是盛装打印材料的容器, 这里打印材料使用的是光敏树脂。 工作 台 6固定固化生成的光敏树脂 3D物体。 提升设备 7用于当第 i层的光敏树脂 固化完成之后, 将工作台提升一层的厚度, 同时进行第 i + 1 层的固化, 直至 彻底将模型构建完成, 即整个物体打印完成。
本发明具有如下优点: 在当前单个固定 DMD面积无法增加微镜片数量的 现状下, 突破 3D打印固有思维, 通过改变 3D打印系统结构, 移动原有 DMD 或拼接多个 DMD, 灵活实现打印截面积更大、 DPI不变的 3D打印物体。
专业人员应该还可以进一步意识到, 结合本文中所公开的实施例描述的 各示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来 实现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能 一般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来 执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每 个特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为 超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、 处理 器执行的软件模块, 或者二者的结合来实施。 软件模块可以置于随机存储器 ( RAM ) 、 内存、 只读存储器(ROM ) 、 电可编程 R0M、 电可擦除可编程 R0M、 寄存器、 硬盘、 可移动磁盘、 CD-R0M、 或技术领域内所公知的任意其它形式 的存储介质中。
以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进行 了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方式而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所做 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种 3D打印系统, 其特征在于, 所述系统包括:
数字微镜器件 DMD移动设备;
光源, 固定在所述 DMD移动设备上, 用于发出紫外光;
多个 DMD,装载在所述 DMD移动设备上,用于接收所述光源发出的紫外光, 生成 3D物体截面光;
透镜, 用于接收所述 DMD反射的所述 3D物体截面光, 并将所述 3D物体 截面光折射放大;
料盒, 用于盛装和提供打印材料;
工作台, 所述透镜折射来的所述 3D物体截面光, 照射在所述料盒提供的 打印材料上, 将所述打印材料固化为 3D物体, 承载在所述工作台上;
提升设备, 用于提升所述工作台。
2、 根据权利要求 1所述的系统,其特征在于,所述 DMD是由微镜片组成 的矩阵, 每个所述微镜片对应控制投影画面中的一个像素。
3、 根据权利要求 1所述的系统,其特征在于,所述微镜片在 DLP控制板 产生的数字驱动信号的控制下改变角度。
4、 根据权利要求 1所述的系统,其特征在于,所述 DMD移动设备具体为 拼接式 DMD移动设备, 每个所述 DMD对应一个所述光源, 每组所述光源与所 述 DMD固定在一起。
5、 根据权利要求 1所述的系统,其特征在于,所述 DMD移动设备具体为 条状移动式 DMD移动设备, 每个所述 DMD对应一个所述光源, 每组所述光源 与所述 DMD固定在一起, 所述 DMD和所述光源同步按条移动。
6、 根据权利要求 5所述的系统,其特征在于,所述 DMD沿第一方向平行 移动, 从而打印所述 3D物体的第一层, 所述 DMD沿第一方向的反方向平行移 动, 从而打印所述 3D物体的第二层。
7、 根据权利要求 1所述的系统,其特征在于,所述 DMD移动设备具体为 块状移动式 DMD移动设备, 每个所述 DMD对应一个所述光源, 每组所述光源 与所述 DMD固定在一起, 所述 DMD和所述光源同步按块移动。
8、 根据权利要求 7所述的系统,其特征在于,每个所述 DMD对应一个打 印区域, 每个所述 DMD逐层打印所对应的所述打印区域, 从而完成所述 3D物 体的打印。
9、 根据权利要求 1所述的系统,其特征在于,所述打印材料为光敏树脂。 根据权利要求 1 所述的系统, 其特征在于, 所述提升设备具体用于, 在 所述工作台上的所述 3D物体打印第一层结束后, 提升所述工作台, 从而进行 所述 3D物体第二层的打印。
PCT/CN2014/078433 2014-05-26 2014-05-26 3d打印系统 WO2015180022A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/314,071 US20170232668A1 (en) 2014-05-26 2014-05-26 3D Printing System
CN201480000261.1A CN104093547B (zh) 2014-05-26 2014-05-26 3d打印系统
PCT/CN2014/078433 WO2015180022A1 (zh) 2014-05-26 2014-05-26 3d打印系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/078433 WO2015180022A1 (zh) 2014-05-26 2014-05-26 3d打印系统

Publications (1)

Publication Number Publication Date
WO2015180022A1 true WO2015180022A1 (zh) 2015-12-03

Family

ID=51640962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078433 WO2015180022A1 (zh) 2014-05-26 2014-05-26 3d打印系统

Country Status (3)

Country Link
US (1) US20170232668A1 (zh)
CN (1) CN104093547B (zh)
WO (1) WO2015180022A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111002582A (zh) * 2019-09-17 2020-04-14 上海联泰科技股份有限公司 3d打印设备及其控制方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105589566B (zh) * 2014-11-13 2018-11-23 群光电子(苏州)有限公司 键盘保护膜盲键凸条加工工艺
CN104589651B (zh) * 2015-01-19 2017-06-27 中国科学院物理研究所 光固化打印设备及方法
US10976703B2 (en) * 2015-12-30 2021-04-13 Dualitas Ltd Dynamic holography focused depth printing device
CN107344421B (zh) * 2016-05-04 2018-10-09 珠海赛纳打印科技股份有限公司 一种混材3d物体的制作方法及系统
CN105856573A (zh) * 2016-05-18 2016-08-17 博纳云智(天津)科技有限公司 一种高精度高速度连续3d打印机及其打印方法
CN106042390B (zh) * 2016-07-28 2018-02-23 北京工业大学 一种多源大尺度面曝光3d打印方法
US11426993B2 (en) 2016-08-29 2022-08-30 Young Optics Inc. Three-dimensional printing system
CN110430989B (zh) * 2017-03-22 2021-11-05 爱尔康公司 具有光滑弯曲表面的人工晶状体的3d打印
US10953597B2 (en) 2017-07-21 2021-03-23 Saint-Gobain Performance Plastics Corporation Method of forming a three-dimensional body
US20190070777A1 (en) * 2017-09-06 2019-03-07 Ackuretta Technologies Pvt. Ltd. Digital light processing in three-dimensional printing system and method for improving the production rate of 3d printing
US20190129308A1 (en) 2017-11-02 2019-05-02 Taiwan Green Point Enterprises Co., Ltd. Digital masking system, pattern imaging apparatus and digital masking method
CN108608642B (zh) * 2018-04-26 2024-01-26 珠海天威增材有限公司 光固化三维打印机及其打印方法
CN109080132A (zh) * 2018-09-29 2018-12-25 上海黑焰医疗科技有限公司 一种用于3d生物打印机的uv光固化装置
EP3938179A4 (en) * 2019-03-12 2023-07-05 Trio Labs, Inc. METHOD AND APPARATUS FOR DIGITAL FABRICATION OF OBJECTS USING ACTUATED MICROPIXELATION AND DYNAMIC DENSITY CONTROL
CN111483140A (zh) * 2020-03-05 2020-08-04 上海莘临科技发展有限公司 一种用于拼接式面曝光3d打印机中零件摆放的方法
US11472120B2 (en) * 2020-05-07 2022-10-18 Kyndryl, Inc. Light-based 3D printing
CN111361147B (zh) * 2020-05-27 2020-08-25 上海唯视锐光电技术有限公司 渐变拼接的多次曝光大画幅3d打印系统及使用方法
WO2022268232A1 (zh) * 2021-06-25 2022-12-29 深圳市纵维立方科技有限公司 打印机
CN113306144A (zh) * 2021-07-09 2021-08-27 深圳市纵维立方科技有限公司 一种3d打印机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004957A1 (en) * 1996-07-17 1998-02-05 Image Technology International, Inc. 3d photographic printer using a digital micro-mirror device or a matrix display for exposure
JP2000338900A (ja) * 1999-05-27 2000-12-08 Sony Corp 三次元立体像表示装置および三次元立体像表示方法
CN103302860A (zh) * 2013-06-08 2013-09-18 王健犀 一种基于dlp投影光固化三维打印机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2119430C1 (ru) * 1995-12-26 1998-09-27 Ижевский государственный технический университет Стереолитографическая установка
US6500378B1 (en) * 2000-07-13 2002-12-31 Eom Technologies, L.L.C. Method and apparatus for creating three-dimensional objects by cross-sectional lithography
KR101995185B1 (ko) * 2009-12-17 2019-07-01 디에스엠 아이피 어셋츠 비.브이. 트라이아릴 설포늄 보레이트 양이온 광개시제를 포함하는 적층식 제작을 위한 액체 방사선 경화성 수지
KR101199496B1 (ko) * 2010-05-31 2012-11-09 주식회사 씨에이텍 소형 디엠디와 유브이-엘이디를 이용한 저가형 광조형 시스템에서 대면적 구조물의 가공방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004957A1 (en) * 1996-07-17 1998-02-05 Image Technology International, Inc. 3d photographic printer using a digital micro-mirror device or a matrix display for exposure
JP2000338900A (ja) * 1999-05-27 2000-12-08 Sony Corp 三次元立体像表示装置および三次元立体像表示方法
CN103302860A (zh) * 2013-06-08 2013-09-18 王健犀 一种基于dlp投影光固化三维打印机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111002582A (zh) * 2019-09-17 2020-04-14 上海联泰科技股份有限公司 3d打印设备及其控制方法

Also Published As

Publication number Publication date
CN104093547B (zh) 2016-11-16
CN104093547A (zh) 2014-10-08
US20170232668A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
WO2015180022A1 (zh) 3d打印系统
US11890805B2 (en) Three-dimensional printing apparatus and three-dimensional printing method
JP6800679B2 (ja) 光造形装置、光造形方法および光造形プログラム
JP5024001B2 (ja) 光造形装置および光造形方法
CN109532012A (zh) 基于光固化的3d打印系统及方法
TWI566918B (zh) 立體列印系統
US11747732B2 (en) Digital masking system, pattern imaging apparatus and digital masking method
JP2009132127A (ja) 光造形装置および光造形方法
JPH08192469A (ja) 光硬化性樹脂の硬化装置
JP2004249508A (ja) 光造形装置
CN111923411A (zh) 一种动态成像3d打印系统及其打印方法
CN105690754A (zh) 光固化型3d打印方法、设备及其图像曝光系统
JP2009113294A (ja) 光造形装置及び光造形方法
CN108549198A (zh) 一种跨尺度微纳制造方法
JP2009083240A (ja) 光造形装置
JP2023520296A (ja) 可変速度およびパワーのハイブリッド光源を備えた等方的ステレオリソグラフィ3d印刷のための予測方法および相対装置
EP3470210B1 (en) Three-dimensional printing apparatus
US11267195B2 (en) Three-dimensional printer including light exposure system for large screen divided into multiple screens
JP6833431B2 (ja) 光造形装置、光造形方法および光造形プログラム
CN104669622A (zh) 光固化型3d打印设备及其成像系统
JP2004155156A (ja) 3次元造形装置および3次元造形方法
KR101918979B1 (ko) 디엘피 프로젝터 및 레이저 스캐너를 병용하는 3차원 프린팅 장치
JP2021094753A (ja) 光造形装置、及び該装置を用いた光造形方法
KR102443272B1 (ko) 특정 경로를 따른 중복 광조사를 이용하는 3d 프린터 및 3d 프린팅 방법
JPS6299753A (ja) 立体形状の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14892984

Country of ref document: EP

Kind code of ref document: A1