WO2022268232A1 - 打印机 - Google Patents

打印机 Download PDF

Info

Publication number
WO2022268232A1
WO2022268232A1 PCT/CN2022/105683 CN2022105683W WO2022268232A1 WO 2022268232 A1 WO2022268232 A1 WO 2022268232A1 CN 2022105683 W CN2022105683 W CN 2022105683W WO 2022268232 A1 WO2022268232 A1 WO 2022268232A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
base
light source
source module
screen
Prior art date
Application number
PCT/CN2022/105683
Other languages
English (en)
French (fr)
Other versions
WO2022268232A9 (zh
WO2022268232A8 (zh
Inventor
付冬初
邓新桥
Original Assignee
深圳市纵维立方科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110709542.6A external-priority patent/CN113352610A/zh
Application filed by 深圳市纵维立方科技有限公司 filed Critical 深圳市纵维立方科技有限公司
Publication of WO2022268232A1 publication Critical patent/WO2022268232A1/zh
Publication of WO2022268232A9 publication Critical patent/WO2022268232A9/zh
Priority to US18/131,371 priority Critical patent/US20230271384A1/en
Publication of WO2022268232A8 publication Critical patent/WO2022268232A8/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses

Definitions

  • the present application belongs to the technical field of printing, and in particular relates to a printer.
  • the light source selected by the light-curing printer is generally a funnel-shaped light source.
  • the angles of light emitted by the funnel-shaped light source are scattered, it is difficult for the light emitted by the funnel-shaped light source to strike the screen vertically, thereby affecting the printing accuracy of the light-curing printer.
  • the purpose of the present application is to provide a printer capable of solving the problem of the verticality difference of the light rays hitting the screen in the related art.
  • the embodiment of the present application proposes a printer, including a base, a light source module, an optical refractor and a screen, the light source module and the optical refractor are both arranged on the base, and the light source module and the The screens are set corresponding to the optical refractors;
  • the refraction surface of the optical refractor is a concave curved surface
  • the light source module includes an integrated light-emitting element and a lens. light, and the light passing through the lens goes to the optical refractor, and after being refracted by the optical refractor, it goes vertically to the screen.
  • the light source module further includes a substrate and a lens holder, and the substrate includes a first surface and a second surface opposite to each other;
  • the lens is disposed on the first surface through the lens fixing seat, and the light-emitting element is disposed on the first surface and located between the lens and the first surface.
  • the light-emitting element includes a chip substrate and a light-emitting chip, the light-emitting chip is arranged on the first surface through the chip substrate, and the light emitted by the light-emitting chip passes through the lens and is converted into an emission A light with a fixed angle and uniform energy.
  • the light source module further includes a heat sink disposed on the second surface.
  • the printer further includes a sliding seat, the light source module is connected to the base through the sliding seat, and the sliding seat is slidably connected to the base.
  • the printer further includes a first limit post, the base is provided with a first limit hole adapted to the first limit post, and the first limit post is assembled on the first stop post. Inside a limiting hole;
  • the sliding seat can move relative to the base along the first limiting column.
  • the printer further includes a fixing seat, and the optical refracting mirror is arranged on the base through the fixing seat;
  • the fixing seat is detachably connected to the base, and the optical refractor is clamped with the fixing seat.
  • the printer further includes a second limit post, the base is provided with a second limit hole adapted to the second limit post, and the second limit post is assembled on the first stop post.
  • the second limiting column is used to limit the installation position of the fixing seat on the base.
  • the printer further includes a fixed plate, the screen is arranged on the fixed plate;
  • the printer also includes a device body on which both the base and the fixing plate are disposed.
  • the light source module and the optical refractor are located between the base and the screen, and the orthographic projection of the optical refractor on the first plane is the same as that of the screen on the first plane.
  • the orthographic projection of the light source module on the first plane is at least partially coincident, and the orthographic projection of the screen on the first plane is spaced apart;
  • the first plane is the plane where the bearing surface of the base is located.
  • the light source module can emit light with a fixed emission angle and uniform energy, and the light emitted by the light source module passes through the concave shape. After being refracted by the refracting surface of the curved surface, it can be converted into light that is vertical to the screen, that is, the light emitted by the light source module can be vertical to the screen, thereby achieving the purpose of improving the verticality of the light that is directed to the screen.
  • Fig. 1 is one of the structural schematic diagrams of the printer provided by the embodiment of the present application.
  • Fig. 2 is the second structural schematic diagram of the printer provided by the embodiment of the present application.
  • Fig. 3 is one of the structural schematic diagrams of the optical refractor provided by the embodiment of the present application.
  • Fig. 4 is the second structural diagram of the optical refractor provided by the embodiment of the present application.
  • Fig. 5 is an exploded schematic view of the light source module provided by the embodiment of the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
  • the embodiment of the present application provides a printer, which can be a light-curing printer, and the printer includes a base 10, a light source module 20, an optical refractor 30 and a screen 40, and the light source module 20 and the optical refractor 30 are both arranged on the base 10, and the light source module 20 and the screen 40 are set corresponding to the optical refractor 30;
  • the refraction surface of the optical refractor 30 is a concave curved surface
  • the light source module 20 includes an integrated light-emitting element 21 and a lens 22, and the light emitted by the light-emitting element 21 passes through the lens 22 and is converted into light with a fixed emission angle and uniform energy.
  • the light passing through the lens 22 is directed toward the optical refractor 30 , and is refracted by the optical refractor 30 and then vertically toward the screen 40 .
  • the light source module 20 can emit light with a fixed emission angle and uniform energy, and the light emitted by the light source module 20 passes through After being refracted by the refracting surface of the concave curved surface, it can be converted into light that is vertical to the screen 40, that is, the light emitted by the light source module 20 can be vertical to the screen 40, thereby achieving the purpose of improving the verticality of the light that is directed to the screen 40 .
  • the light emitted by the light source module 20 has the characteristic of uniform energy, the problem of energy deviation of the light directed to the screen 40 is improved, and the purpose of improving the printing accuracy and printing effect of the printer is achieved.
  • the screen 40 can be an LCD screen, and is used for transmitting light and displaying printed images.
  • the concave curved surface of the optical refractor 30 can be a concave spherical surface or a concave ellipsoid, and its concave parameters are associated with the optical parameters of the lens 22, that is, the inner concave surface can be set according to the optical parameters of the lens 22 Inset parameters for concave surfaces.
  • the light emitted through the lens 22 is defined as a type A light, that is, the light emitted by the light-emitting element 21 can be converted into a type A light after passing through the lens 22, that is, converted into a light with a fixed emission angle and uniform energy;
  • the light rays refracted by the optical refractor 30 are defined as B-type light rays, that is, after the A-type light rays are refracted by the optical refractor 30, they will be converted into B-type light rays, that is, they can be converted into light rays perpendicular to the screen 40, thereby The purpose of improving the verticality of the light rays incident on the screen 40 is achieved.
  • the printing area of the screen 40 is determined by the irradiation range of the light source module 20 on the screen 40 , and the farther the distance between the light source module 20 and the screen 40 is, the larger the irradiation range of the light source module 20 on the screen 40 is.
  • the printing area of the screen 40 is set to S, that is, when the irradiation range of the light source module 20 on the screen 40 is set to S, the distance between the light source module 20 and the screen 40 needs to be set to L, in order to meet the printing needs of the printer.
  • the transmission path of the light between the light source module 20 and the screen 40 is divided into two sections, that is, the transmission path section before refraction and the section after refraction.
  • the transmission path section that is, the light emitted from the light source module 20 is divided into A-type light and B-type light, and the sum of the transmission path length of A-type light and the transmission path length of B-type light needs to be equal to L, so as to meet the requirements of the printer. printing needs.
  • the length of the contour line of type A light is L1
  • the length of the contour line of type B light is L2, that is, the sum of L1 and L2 needs to be equal to L to meet the printing requirements of the printer.
  • the values of L1 and L2 can be flexibly set according to the size requirements of the printer to meet actual design requirements. For example, if a low-profile printer needs to be installed, the value of L2 can be reduced to reduce the height of the printer.
  • a plate may be provided first, then a concave curved surface is formed on the plate, and finally an optical reflection layer is arranged on the concave curved surface to obtain the optical refractor.
  • the optical reflective layer can be deposited on the concave curved surface by electroplating.
  • the light source module 20 further includes a base plate 23 and a lens holder 24, the base plate 23 includes a first surface (not shown) and a second surface (not shown) disposed opposite to each other;
  • the lens 22 is disposed on the first surface through the lens fixing seat 24
  • the light emitting element 21 is disposed on the first surface and located between the lens 22 and the first surface.
  • the lens fixing base 24 can be covered on the first surface, and a housing cavity can be formed between the lens fixing base 24 and the first surface, and the luminous element 21 can be located in the accommodating cavity, so as to realize the 21 and lens 22 integrated set.
  • the lens holder 24 is made of a light-shielding material, or the inner surface or the outer surface of the lens holder 24 is provided with a light-shielding layer, so as to prevent the light emitted by the light-emitting element 21 from emitting from directions other than the lens 22, and The purpose of improving the luminous effect of the light source module 20 is achieved.
  • the light-emitting element 21 includes a chip substrate 211 and a light-emitting chip 212.
  • the light-emitting chip 212 is arranged on the first surface through the chip substrate 211, and the light emitted by the light-emitting chip 212 passes through the lens 22 and is converted into an emission angle with a fixed emission angle and uniform energy. of light.
  • the light-emitting chip 212 may be a matrix light source chip, such as a COB light source chip, so that the light emitted by the light-emitting element 21 has characteristics of fixed emission angle and uniform energy.
  • the light emitted by the light source module 20 in this application may be ultraviolet light.
  • the light emitting element 21 may further include a chip base 213, the light emitting chip 212 is disposed on the chip substrate 211, the chip substrate 211 is disposed on the chip base 213, and the chip base 213 is disposed on the first surface.
  • the light source module 20 may further include a heat sink 25 disposed on the second surface, and the heat sink 25 is used to reduce the temperature of the light-emitting element 21 to avoid overheating of the light-emitting element 21 .
  • the printer further includes a sliding seat 50 through which the light source module 20 is connected to the base 10 , and the sliding seat 50 is slidably connected to the base 10 .
  • the distance between the light source module 20 and the optical refractor 30 can be adjusted, and then the coverage area of the optical refractor 30 directed to the screen 40 can be adjusted, that is, the printing area of the printer can be adjusted.
  • the printer also includes a first limit post 61, and the base 10 is provided with a first limit hole (not shown) adapted to the first limit post 61, and the first limit post 61 is assembled on the first stop post 61.
  • a first limit hole (not shown) adapted to the first limit post 61, and the first limit post 61 is assembled on the first stop post 61.
  • the sliding seat 50 can move relative to the base 10 along the first limiting column 61 .
  • the printer further includes a fixing seat 70, and the optical refracting mirror 30 is arranged on the base 10 through the fixing seat 70;
  • the fixing seat 70 is detachably connected to the base 10 , and the optical refractor 30 is clipped to the fixing seat 70 .
  • the optical refractor 30 is arranged on the base 10 through the fixing seat 70 , which can improve the stability of the connection between the optical refractor 30 and the base 10 .
  • the fixed seat 70 and the base 10 can be fixedly connected by bolts; the optical refractor 30 can be provided with a clip (not shown), and the fixed seat 70 can be provided with a slot (not shown) adapted to the clip , and fix the optical refractor 30 on the fixing seat 70 through the clamping of the clamping strip and the clamping slot.
  • the printer also includes a second limiting post 62
  • the base 10 is provided with a second limiting hole (not shown) adapted to the second limiting post 62
  • the second limiting post 62 is assembled on the second Inside the limit hole
  • the second limit post 62 is used to limit the installation position of the fixing base 70 on the base 10 .
  • the installation accuracy of the fixing seat 70 on the base 10 can be improved by providing the second limiting post 62 , and the refraction effect of the optical refractor 30 can be improved.
  • the printer further includes a fixed plate 80, on which the screen 40 is arranged;
  • the printer also includes a device body (not shown), on which the base 10 and the fixing plate 80 are both arranged.
  • the light source module 20 and the optical refractor 30 are located between the base 10 and the screen 40, and the orthographic projection of the optical refractor 30 on the first plane is the same as the orthographic projection of the screen 40 on the first plane.
  • the projections are at least partially overlapped, and the orthographic projection of the light source module 20 on the first plane is spaced apart from the orthographic projection of the screen 40 on the first plane;
  • the first plane is the plane where the base 10 is located on the bearing surface.
  • the light source module 20, the optical refractor 30 and the screen 40 are non-coaxially, that is, placing the light source module 20, the optical refractor 30 and the screen 40 in dislocation, especially the light source module 20 and The dislocation of the screen 40 can shorten the linear distance between the light source module 20 and the screen 40 , thereby reducing the overall height of the printer and meeting the development trend of miniaturization of the printer.
  • the light source module 20 and the optical refracting mirror 30 may both be disposed on the bearing surface of the base 10 .
  • the optical refractor 30 can be arranged directly below the screen, and the light source module 20 can be arranged directly in front of the refracting surface of the optical refractor 30, so that the distance between the light source module 20 and the screen 40
  • the optical transmission path is split into two sections, that is, the transmission path section L1 before refraction and the transmission path section L2 after refraction, and the sum of L1 and L2 is equal to the linear distance between the light source module 20 and the screen 40, thereby reducing the cost of the printer.
  • the overall height meets the miniaturization development trend of printers. ,
  • the coverage area of the optical refracting mirror 30 directed to the screen 40 can be increased, thereby increasing the size of the printing area of the printer.
  • references to the terms “one embodiment,” “some embodiments,” “exemplary embodiments,” “example,” “specific examples,” or “some examples” are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present application.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Abstract

本申请公开了一种打印机,包括底座、光源模组、光学折射镜和屏幕,所述光源模组和所述光学折射镜均设于所述底座上,且所述光源模组和所述屏幕均对应所述光学折射镜设置;其中,所述光学折射镜的折射面为内凹型曲面,所述光源模组包括集成设置的发光件和透镜,所述发光件发射的光线穿过所述透镜后转换成发射角度固定且能量均匀的光线,且穿过所述透镜的光线射向所述光学折射镜,并经所述光学折射镜折射后垂直射向所述屏幕。这样可以达到提高射向屏幕的光线的垂直度的目的。

Description

打印机 技术领域
本申请属于打印技术领域,具体涉及一种打印机。
背景技术
相关技术中,为保证光固化打印机的打印精度,需要射向屏幕的光线尽可能的保持平行。
目前,为保证射向屏幕的光线的均匀度,光固化打印机选用的光源一般为漏斗形光源。然而,由于漏斗形光源发射的光线的角度较为分散,导致其发射的光线难以垂直射向屏幕,进而影响光固化打印机的打印精度。
可见,相关技术中,射向屏幕的光线存在垂直度差的问题。
发明内容
本申请旨在提供一种打印机,能够解决相关技术中,射向屏幕的光线存在的垂直度差的问题。
为了解决上述技术问题,本申请是这样实现的:
本申请实施例提出了一种打印机,包括底座、光源模组、光学折射镜和屏幕,所述光源模组和所述光学折射镜均设于所述底座上,且所述光源模组和所述屏幕均对应所述光学折射镜设置;
其中,所述光学折射镜的折射面为内凹型曲面,所述光源模组包括集成设置的发光件和透镜,所述发光件发射的光线穿过所述透镜后转换成发射角度固定且能量均匀的光线,且穿过所述透镜的光线射向所述光学折射镜,并经所述光学折射镜折射后垂直射向所述屏幕。
可选地,所述光源模组还包括基板和透镜固定座,所述基板包括相背设置的第一表面和第二表面;
其中,所述透镜通过所述透镜固定座设于所述第一表面上,所述发光件设于第一表面上且位于所述透镜和所述第一表面之间。
可选地,所述发光件包括芯片基板和发光芯片,所述发光芯片通过所述芯片基板设于所述第一表面上,且所述发光芯片发射的光线穿过所述透镜后转换成发射角度固定且能量均匀的光线。
可选地,所述光源模组还包括散热片,所述散热片设于所述第二表面上。
可选地,所述打印机还包括滑座,所述光源模组通过所述滑座与所述底座连接,且所述滑座与所述底座滑动连接。
可选地,所述打印机还包括第一限位柱,所述底座上设有与所述第一限位柱适配的第一限位孔,所述第一限位柱装配于所述第一限位孔内;
其中,所述滑座可沿所述第一限位柱相对所述底座移动。
可选地,所述打印机还包括固定座,所述光学折射镜通过所述固定座设置在所述底座上;
其中,所述固定座与所述底座可拆卸连接,所述光学折射镜与所述固定座卡接。
可选地,所述打印机还包括第二限位柱,所述底座上设有与所述第二限位柱适配的第二限位孔,所述第二限位柱装配于所述第二限位孔内,所述第二限位柱用于限定所述固定座在所述底座上的安装位置。
可选地,所述打印机还包括固定板,所述屏幕设置在所述固定板上;
所述打印机还包括设备主体,所述底座和所述固定板均设置在所述设备主体上。
可选地,所述光源模组和所述光学折射镜位于所述底座和所述屏幕之间,所述光学折射镜在第一平面上的正投影与所述屏幕在所述第一平面上的正投影至少部分重合,所述光源模组在所述第一平面上的正投影与所述屏幕在所述第一平面上的正投影间隔设置;
其中,所述第一平面为所述底座的承载面所在的平面。
在本申请的实施例中,通过采用包括集成设置的发光件和透镜的光源模组,以使光源模组能够发射出发射角度固定且能量均匀的光线,且光源模组发射的光线经内凹型曲面的折射面折射后,可以转换成垂直射向屏幕的光线,即使得光源模组发射的光线可以垂直射向屏幕,进而达到提高射向屏幕的光线的垂直度的目的。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请实施例提供的打印机的结构示意图之一;
图2是本申请实施例提供的打印机的结构示意图之二;
图3是本申请实施例提供的光学折射镜的结构示意图之一;
图4是本申请实施例提供的光学折射镜的结构示意图之二;
图5是本申请实施例提供的光源模组的爆炸示意图。
具体实施方式
下面将详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制,且在不冲突的情况下,下述实施例及实施例中的特征可以相互组合。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
如图1至图5所示,本申请实施例提供一种打印机,该打印机可以是光固化打印机,且该打印机包括底座10、光源模组20、光学折射镜30和屏幕40,光源模组20和光学折射镜30均设于底座10上,且光源模组20和屏幕40均对应光学折射镜30设置;
其中,光学折射镜30的折射面为内凹型曲面,光源模组20包括集成设置的发光件21和透镜22,发光件21发射的光线穿过透镜22后转换成发射角度固定且能量均匀的光线,且穿过透镜22的光线射向光学折射镜30,并经光学折射镜30折射后垂直射向屏幕40。
本实施方式中,通过采用包括集成设置的发光件21和透镜22的光源模组20,以使光源模组20能够发射出发射角度固定且能量均匀的光线,且光源模组20发射的光线经内凹型曲面的折射面折射后,可以转换成垂直射向屏幕40的光线,即使得光源模组20发射的光线可以垂直射向屏幕40,进而达到提高射向屏幕40的光线的垂直度的目的。
而且,由于光源模组20射出的光线还具有能量均匀的特性,从而改善射向屏幕40的光线的能量偏差的问题,并达到提高打印机的打印精度和打印效果的目的。
可以理解的是,屏幕40可以是LCD屏幕,并用于透光和显示打印图像。
如图3和图4,光学折射镜30的内凹型曲面可以是内凹型球面或者内凹型椭球面,且其内凹参数与透镜22的光学参数相关联,即可以根据透镜22的光学参数设置内凹型曲面的内凹参数。
如图2所示,将经由透镜22射出的光线定义为A类光线,即发光件21发射的光线穿过透镜22后可以转换成A类光线,即转换成发射角度固定且能量均匀的光线;以及,将经由光学折射镜30折射后的光线定义为B类光线,即A类光线经由光学折射镜30折射后,会转换成B类光线,即可以转换成垂直射向屏幕40的光线,从而达到提高射向屏幕40的光线的垂直度的目的。
其中,屏幕40的打印面积由光源模组20在屏幕40上的照射范围确定,且光源模组20距离屏幕40的距离越远,光源模组20在屏幕40上的照射范围越大。比如,在屏幕40的打印面积设置为S的情况下,即光源模组20在屏幕40上的照射范围设置为S的情况下,则需要将光源模组20和屏幕40之间的间距设置为L,以便满足打印机的打印需求。
本申请中,由于光源模组20射出的光线需经光学折射镜30折射,因此光线在光源模组20和屏幕40之间的传输路径被分成两段,即折射前的传输路径段和折射后的传输路径段,即自光源模组20射出的光线分成了A类光线和B类光线,且A类光线的传输路径长度和B类光线的传输路径长度之和需要等于L,以便满足打印机的打印需求。
如图2所示,A类光线的轮廓线的长度为L1,B类光线的轮廓线的长度为L2,即L1和L2的和值需要等于L,以满足打印机的打印需求。
另外,还可以根据打印机的尺寸要求,灵活设置L1、L2的数值,以满足实际设计需求。 比如,需要设置低矮型打印机的情况下,则可以减小L2的数值,进而达到降低打印机高度的目的。
在制备光学折射镜30的过程中,可以先提供一板材,然后在板材上形成内凹型曲面,最后在内凹型曲面上设置光学反射层,以得到光学折射镜。其中,光学反射层可以电镀的方式沉积在内凹型曲面上。
可选地,如图5所示,光源模组20还包括基板23和透镜固定座24,基板23包括相背设置的第一表面(未图示)和第二表面(未图示);
其中,透镜22通过透镜固定座24设于第一表面上,发光件21设于第一表面上并位于透镜22和第一表面之间。
本实施方式中,透镜固定座24可以罩设于第一表面上,且透镜固定座24和第一表面之间可以形成一容置腔,发光件21可以位于容置腔内,以实现发光件21和透镜22的集成设置。
一示例中,透镜固定座24为遮光材料制成,或者透镜固定座24的内表面或外表面设于遮光层,以避免发光件21发射的光线从除透镜22之外的其他方向射出,并达到改善光源模组20的发光效果的目的。
可选地,发光件21包括芯片基板211和发光芯片212,发光芯片212通过芯片基板211设置在第一表面上,且发光芯片212发射的光线穿过透镜22后转换成发射角度固定且能量均匀的光线。
本实施方式中,发光芯片212可以是矩阵光源芯片,比如COB光源芯片,以使发光件21发射的光线具有发射角度固定且能量均匀的特性。
可以理解的是,本申请中的光源模组20发射的光线可以是紫外光线。
另外,发光件21还可以包括芯片基座213,发光芯片212设置在芯片基板211上,芯片基板211设置在芯片基座213上,芯片基座213设置在第一表面上。
而且,光源模组20还可以包括散热片25,散热片25设于第二表面上,散热片25用于降低发光件21处的温度,避免发光件21出现过热的问题。
可选地,打印机还包括滑座50,光源模组20通过滑座50与底座10连接,且滑座50与底座10滑动连接。
本实施方式中,通过设置滑座50,可以调整光源模组20与光学折射镜30之间的间距,进而调整光学折射镜30的射向屏幕40的覆盖面积,即调整打印机的打印区域。
比如,光源模组20距离光学折射镜30的距离越远,光学折射镜30的射向屏幕40的覆盖面积越大,即打印机的打印区域越大;而光源模组20距离光学折射镜30的距离越近,光学折射镜30的射向屏幕40的覆盖面积越小,即打印机的打印区域越小;进而实现打印机的打印区域的灵活调整。
可选地,打印机还包括第一限位柱61,底座10上设有与第一限位柱61适配的第一限位孔(未图示),第一限位柱61装配于第一限位孔内;
其中,滑座50可沿第一限位柱61相对底座10移动。
本实施方式中,通过设置第一限位柱61,可以避免滑座50在移动过程中出现偏移, 即光源模组20的移动精度,进而达到提升打印机的打印进度的目的。
可选地,打印机还包括固定座70,光学折射镜30通过固定座70设置在底座10上;
其中,固定座70与底座10可拆卸连接,光学折射镜30与固定座70卡接。
本实施方式中,通过固定座70将光学折射镜30设置在底座10上,可以提升光学折射镜30与底座10的连接的稳定性。
其中,固定座70和底座10之间可以通过螺栓固定连接;光学折射镜30上可以设置卡条(未图示),固定座70上可以设置与卡条适配的卡槽(未图示),并通过卡条与卡槽的卡接,将光学折射镜30固定在固定座70上。
可选地,打印机还包括第二限位柱62,底座10上设有与第二限位柱62适配的第二限位孔(未图示),第二限位柱62装配于第二限位孔内,且第二限位柱62用于限定固定座70在底座10上的安装位置。
本实施方式中,通过设置第二限位柱62,可以提高固定座70在底座10上的安装精度,并提高光学折射镜30的折射效果。
可选地,打印机还包括固定板80,屏幕40设置在固定板80上;
打印机还包括设备主体(未图示),底座10和固定板80均设置在设备主体上。
可选地,如图1所示,光源模组20和光学折射镜30位于底座10和屏幕40之间,光学折射镜30在第一平面上的正投影与屏幕40在第一平面上的正投影至少部分重合,光源模组20在第一平面上的正投影与屏幕40在第一平面上的正投影间隔设置;
其中,第一平面为底座10在承载面所在的平面。
本实施方式中,通过将光源模组20、光学折射镜30和屏幕40非同轴摆放,即将光源模组20、光学折射镜30和屏幕40错位摆放,尤其是将光源模组20和屏幕40错位摆放,可以缩短光源模组20到屏幕40之间的直线距离,进而降低打印机的整体高度,满足打印机的小型化发展趋势。
一示例中,光源模组20和光学折射镜30可以均设置在底座10的承载面上。
如图2所示,可以将光学折射镜30设于屏幕的正下方,以及将光源模组20设于光学折射镜30的折射面的正前方,以将光源模组20到屏幕40之间的光学传导路径拆分两段,即折射前的传输路径段L1和折射后的传输路径段L2,并使L1和L2的和值等于光源模组20到屏幕40之间的直线距离,从而降低打印机的整体高度,满足打印机的小型化发展趋势。,
而且,通过这样设置,可以提高光学折射镜30的射向屏幕40的覆盖面积,进而提高打印机的打印区域的大小。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离 本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (10)

  1. 一种打印机,其特征在于,包括底座、光源模组、光学折射镜和屏幕,所述光源模组和所述光学折射镜均设于所述底座上,且所述光源模组和所述屏幕均对应所述光学折射镜设置;
    其中,所述光学折射镜的折射面为内凹型曲面,所述光源模组包括集成设置的发光件和透镜,所述发光件发射的光线穿过所述透镜后转换成发射角度固定且能量均匀的光线,且穿过所述透镜的光线射向所述光学折射镜,并经所述光学折射镜折射后垂直射向所述屏幕。
  2. 根据权利要求1所述的打印机,其特征在于,所述光源模组还包括基板和透镜固定座,所述基板包括相背设置的第一表面和第二表面;
    其中,所述透镜通过所述透镜固定座设于所述第一表面上,所述发光件设于第一表面上且位于所述透镜和所述第一表面之间。
  3. 根据权利要求2所述的打印机,其特征在于,所述发光件包括芯片基板和发光芯片,所述发光芯片通过所述芯片基板设于所述第一表面上,且所述发光芯片发射的光线穿过所述透镜后转换成发射角度固定且能量均匀的光线。
  4. 根据权利要求2所述的打印机,其特征在于,所述光源模组还包括散热片,所述散热片设于所述第二表面上。
  5. 根据权利要求1至4中任一项所述的打印机,其特征在于,所述打印机还包括滑座,所述光源模组通过所述滑座与所述底座连接,且所述滑座与所述底座滑动连接。
  6. 根据权利要求5所述的打印机,其特征在于,所述打印机还包括第一限位柱,所述底座上设有与所述第一限位柱适配的第一限位孔,所述第一限位柱装配于所述第一限位孔内;
    其中,所述滑座可沿所述第一限位柱相对所述底座移动。
  7. 根据权利要求1至4中任一项所述的打印机,其特征在于,所述打印机还包括固定座,所述光学折射镜通过所述固定座设置在所述底座上;
    其中,所述固定座与所述底座可拆卸连接,所述光学折射镜与所述固定座卡接。
  8. 根据权利要求7所述的打印机,其特征在于,所述打印机还包括第二限位柱,所述底座上设有与所述第二限位柱适配的第二限位孔,所述第二限位柱装配于所述第二限位孔内,所述第二限位柱用于限定所述固定座在所述底座上的安装位置。
  9. 根据权利要求1至4中任一项所述的打印机,其特征在于,所述打印机还包括固定板,所述屏幕设置在所述固定板上;
    所述打印机还包括设备主体,所述底座和所述固定板均设置在所述设备主体上。
  10. 根据权利要求1至4中任一项所述的打印机,其特征在于,所述光源模组和所述光学折射镜位于所述底座和所述屏幕之间,所述光学折射镜在第一平面上的正投影与所述屏幕在所述第一平面上的正投影至少部分重合,所述光源模组在所述第一平面上的正投影与所述屏幕在所述第一平面上的正投影间隔设置;
    其中,所述第一平面为所述底座的承载面所在的平面。
PCT/CN2022/105683 2021-06-25 2022-07-14 打印机 WO2022268232A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/131,371 US20230271384A1 (en) 2021-06-25 2023-04-06 Light source assembly and printer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110709542.6A CN113352610A (zh) 2021-06-25 2021-06-25 打印机
CN202110709542.6 2021-06-25
CN202210453658 2022-04-27
CN202210453658.2 2022-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/131,371 Continuation US20230271384A1 (en) 2021-06-25 2023-04-06 Light source assembly and printer

Publications (3)

Publication Number Publication Date
WO2022268232A1 true WO2022268232A1 (zh) 2022-12-29
WO2022268232A9 WO2022268232A9 (zh) 2023-02-16
WO2022268232A8 WO2022268232A8 (zh) 2023-11-02

Family

ID=84544329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105683 WO2022268232A1 (zh) 2021-06-25 2022-07-14 打印机

Country Status (2)

Country Link
US (1) US20230271384A1 (zh)
WO (1) WO2022268232A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170232668A1 (en) * 2014-05-26 2017-08-17 Institute Of Automation Chinese Academy Of Sciences 3D Printing System
CN206589338U (zh) * 2017-03-14 2017-10-27 北京金达雷科技有限公司 用于光固化3d打印机的光路组件、树脂池和3d打印机
CN208044107U (zh) * 2018-04-13 2018-11-02 深圳市诺瓦机器人技术有限公司 一种新型透镜、光源装置和光固化3d打印机
CN209215862U (zh) * 2018-11-14 2019-08-06 富丽明企业有限公司 平行光曝光机的光源组件及光源系统
CN209971566U (zh) * 2019-05-23 2020-01-21 漳州市回声电子科技有限公司 一种具有平行光源的光固化3d打印机
CN113352610A (zh) * 2021-06-25 2021-09-07 深圳市纵维立方科技有限公司 打印机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170232668A1 (en) * 2014-05-26 2017-08-17 Institute Of Automation Chinese Academy Of Sciences 3D Printing System
CN206589338U (zh) * 2017-03-14 2017-10-27 北京金达雷科技有限公司 用于光固化3d打印机的光路组件、树脂池和3d打印机
CN208044107U (zh) * 2018-04-13 2018-11-02 深圳市诺瓦机器人技术有限公司 一种新型透镜、光源装置和光固化3d打印机
CN209215862U (zh) * 2018-11-14 2019-08-06 富丽明企业有限公司 平行光曝光机的光源组件及光源系统
CN209971566U (zh) * 2019-05-23 2020-01-21 漳州市回声电子科技有限公司 一种具有平行光源的光固化3d打印机
CN113352610A (zh) * 2021-06-25 2021-09-07 深圳市纵维立方科技有限公司 打印机

Also Published As

Publication number Publication date
WO2022268232A9 (zh) 2023-02-16
WO2022268232A8 (zh) 2023-11-02
US20230271384A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
KR100638611B1 (ko) 다중 렌즈 발광 다이오드
JP3931127B2 (ja) 照明装置及びそれを用いた表示装置
US20150219308A1 (en) Lighting device with a LED and an improved reflective collimator
TW201351955A (zh) 光源裝置及反射板支撐構造
CN103424973A (zh) 光源装置以及图像投影装置以及显示装置
JP2006106683A (ja) 光学エンジン、及び、該光学エンジンを具有するイメージプロジェクタ
JP5981390B2 (ja) 照明装置
WO2020134220A1 (zh) 激光器组件、激光光源和激光投影设备
JP2012256457A (ja) 車両用前照灯
US11365864B2 (en) Rear lamp having moving infinity mirror effect
WO2022268232A1 (zh) 打印机
CN116461092A (zh) 打印机
CN107643627B (zh) 显示设备及其具光路弯折的背光装置
CN217258454U (zh) 打印机
CN108227296A (zh) 面光源装置、显示装置以及面光源装置的制造方法
JP5307717B2 (ja) 自発光型の発光装置
US5163750A (en) Light apparatus
CN211979402U (zh) 一种立式投影仪
KR101577999B1 (ko) 차량용 led 램프 모듈
JP2007080520A (ja) バックライト装置
CN112519224A (zh) 光固化3d打印机及其光源系统
US11067247B2 (en) Collimator and a lighting unit
JP2020149877A (ja) 灯具ユニットおよび車両用灯具
CN212647233U (zh) 光投射器、相机模组和电子设备
CN210181257U (zh) 导光板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22827724

Country of ref document: EP

Kind code of ref document: A1