US20110270025A1 - Remotely powered remotely adjustable gastric band system - Google Patents
Remotely powered remotely adjustable gastric band system Download PDFInfo
- Publication number
- US20110270025A1 US20110270025A1 US13/076,139 US201113076139A US2011270025A1 US 20110270025 A1 US20110270025 A1 US 20110270025A1 US 201113076139 A US201113076139 A US 201113076139A US 2011270025 A1 US2011270025 A1 US 2011270025A1
- Authority
- US
- United States
- Prior art keywords
- motor
- voltage
- signal
- motor coil
- gastric band
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000002496 gastric effect Effects 0.000 title claims abstract description 149
- 230000033228 biological regulation Effects 0.000 claims description 168
- 238000000034 method Methods 0.000 claims description 41
- 238000005259 measurement Methods 0.000 claims description 38
- 230000001052 transient effect Effects 0.000 claims description 32
- 238000004891 communication Methods 0.000 claims description 28
- 238000004804 winding Methods 0.000 claims description 27
- 230000015556 catabolic process Effects 0.000 claims description 26
- 230000004044 response Effects 0.000 claims description 24
- 230000007423 decrease Effects 0.000 claims description 20
- 230000000087 stabilizing effect Effects 0.000 claims description 18
- 230000001965 increasing effect Effects 0.000 claims description 14
- 230000008878 coupling Effects 0.000 claims description 13
- 238000010168 coupling process Methods 0.000 claims description 13
- 238000005859 coupling reaction Methods 0.000 claims description 13
- 210000002784 stomach Anatomy 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 9
- 238000004873 anchoring Methods 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims 1
- 239000007943 implant Substances 0.000 abstract description 203
- 230000005540 biological transmission Effects 0.000 abstract description 32
- 238000003032 molecular docking Methods 0.000 description 30
- 230000008569 process Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 15
- 239000012528 membrane Substances 0.000 description 13
- 230000001105 regulatory effect Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 9
- 230000001276 controlling effect Effects 0.000 description 8
- 230000004907 flux Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000012544 monitoring process Methods 0.000 description 7
- 238000003825 pressing Methods 0.000 description 7
- 230000007704 transition Effects 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 6
- 238000005253 cladding Methods 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 238000002513 implantation Methods 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 239000004696 Poly ether ether ketone Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 229920002530 polyetherether ketone Polymers 0.000 description 5
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 4
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 4
- 208000008589 Obesity Diseases 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 235000020824 obesity Nutrition 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229920002379 silicone rubber Polymers 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 241000237983 Trochidae Species 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 3
- 238000009529 body temperature measurement Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- 101100408787 Arabidopsis thaliana PNSL1 gene Proteins 0.000 description 2
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229960004716 idoxuridine Drugs 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 244000045947 parasite Species 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101100191225 Arabidopsis thaliana PPL1 gene Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010020710 Hyperphagia Diseases 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910005813 NiMH Inorganic materials 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 241001227561 Valgus Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 210000002318 cardia Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 229920000295 expanded polytetrafluoroethylene Polymers 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000019525 fullness Nutrition 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 235000020830 overeating Nutrition 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000019627 satiety Nutrition 0.000 description 1
- 230000036186 satiety Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F5/00—Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
- A61F5/0003—Apparatus for the treatment of obesity; Anti-eating devices
- A61F5/0013—Implantable devices or invasive measures
- A61F5/005—Gastric bands
- A61F5/0053—Gastric bands remotely adjustable
- A61F5/0059—Gastric bands remotely adjustable with wireless means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0042—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/10—The network having a local or delimited stationary reach
- H02J2310/20—The network being internal to a load
- H02J2310/23—The load being a medical device, a medical implant, or a life supporting device
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/70—Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/0071—Regulation of charging or discharging current or voltage with a programmable schedule
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/00714—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/007182—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
- H04B5/72—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
- H04B5/79—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
Definitions
- the present invention generally relates to medical systems and apparatus and uses thereof for treating obesity and/or obesity-related diseases, and more specifically, related to gastric band systems that are remotely adjustable and remotely powered by a wireless control device.
- Adjustable gastric banding apparatus have provided an effective and substantially less invasive alternative to gastric bypass surgery and other conventional surgical weight loss procedures.
- sustained weight loss can be achieved through a laparoscopically-placed gastric band, for example, the LAP-BAND® (Allergan, Inc., Irvine, Calif.) gastric band or the LAP-BAND AP® (Allergan, Inc., Irvine, Calif.) gastric band.
- gastric bands are placed about the cardia, or upper portion, of a patient's stomach forming a stoma that restricts the passage of food into a lower portion of the stomach.
- the gastric band apparatus are reversible and require no permanent modification to the gastrointestinal tract.
- a stoma created by a gastric band may need adjustment in order to maintain an appropriate size, which is neither too restrictive nor too passive.
- Some non-invasive procedures for adjustment of gastric bands without the use of a hypodermic needle have been proposed.
- a remotely adjustable gastric band is a medical device which allows a healthcare worker to adjust a gastric band without requiring hypodermic needles to connect to an implanted, subcutaneous access port.
- a handheld controller can be used to send radio frequency waves for powering and communicating with the implanted device.
- the implanted device can tighten or relax the gastric band as requested by the healthcare worker via the handheld controller.
- Some mechanically adjustable implantable devices have a disadvantage of becoming inoperable if the adjustment mechanism fails. Furthermore, because the motor and the driving mechanisms are located near the restricting band itself, they are more subject to strain and damage from the implantation process. Therefore, it is desirable to develop a remotely adjustable gastric band where the motor is separated from the restricting band to reduce the strain from the implantation process such that the risk of damage during implantation is decreased.
- remotely adjustable and remotely powered gastric band systems and methods of use thereof.
- the apparatus, systems and methods described herein aid in facilitating obesity control and/or treating obesity related dieses while being non-invasive once implanted.
- the present may provide a power system for use in conjunction with a gastric band coupled with an implantable antenna for receiving a telemetric signal from a remote control device.
- the power system may include a rectifying device coupled to the implantable antenna, and configured to rectify the received telemetric signal to form a DC input voltage at a DC input node, a power sensing device configured to receive the DC input voltage and generate a regulation signal when the DC input voltage exceeds a predetermined threshold, a regulation device coupled to the power sensing device, and configured to generate a regulation voltage based on the regulation signal, and a switching device coupled to the regulation device, and configured to generate a feedback signal having a frequency based on the regulation voltage.
- the present invention may provide a communication system for use in conjunction with a gastric band coupled with an implantable antenna for receiving a telemetric signal from a remote control device.
- the communication system may include a regulation device configured to generate a regulation voltage at a first node, the regulation voltage based on a margin between a DC input voltage and a predetermined threshold, a data path arranged in parallel with the regulation device, and configured to adjust the regulation voltage to a set voltage at a second node, the set voltage based partially on an output data sequence, and a frequency modulation device coupled to the second node, and configured to generate a frequency modulation signal having a modulated frequency corresponding to the set voltage.
- the present invention may provide a remotely powered and remotely adjustable gastric band system, which may include a remote control device configured to transmit a telemetric signal having an amplitude and a carrier frequency, an implantable power device telemetrically coupled to the remote control device, and configured to extract power from the telemetric signal and generate a feedback signal having a message frequency based on the extracted power, and a gastric band for forming a ventral ring surface around a stomach of a patient, the gastric band coupled to the implantable power device, and configured to receive the extracted power from the implantable power device and adjust the ventral ring surface in response to the telemetric signal.
- a remotely powered and remotely adjustable gastric band system may include a remote control device configured to transmit a telemetric signal having an amplitude and a carrier frequency, an implantable power device telemetrically coupled to the remote control device, and configured to extract power from the telemetric signal and generate a feedback signal having a message frequency based on the extracted power, and a gastric band for forming a vent
- the present invention may provide a method for detecting motor blockage of a motor for use in conjunction with an implantable gastric band.
- the motor may include a motor coil for conducting a motor coil current and a plurality of gears for adjusting an inner ring surface of the implantable gastric band in response to the motor coil current.
- the method may include the steps of applying a voltage pulse across the motor coil, measuring a plurality of transient motor coil currents, measuring a maximum motor coil current, and detecting the motor blockage based on the plurality of transient motor coil currents and the maximum motor coil current.
- the present invention may provide a tangible computer medium for storing instructions, upon being executed by a processor, that cause the processor to perform a method, which may comprise the steps of receiving measurements of a plurality of transient motor coil currents conducted by a motor coil of a motor for use in conjunction with an implantable gastric band, receiving a measurement of a maximum motor coil current conducted by the motor coil, and detecting a blockage of the motor based on the measurements of the plurality of transient motor coil currents and the measurement of the maximum motor coil current.
- the present invention may provide a motorized gastric band system, which may include an implantable gastric band for forming a loop having a ventral surface for contacting a stomach of a patient, a motor coupled to the implantable gastric band, and including a motor coil for conducting a motor coil current, and a gear responsive to the motor coil current, and for adjusting the ventral surface of the implantable gastric band, and a processor coupled to the motor, and configured to receive measurements of a plurality of transient motor coil currents conducted by the motor coil, receive a measurement of a maximum motor coil current conducted by the motor coil, and detect a blockage of the motor based on the measurements of the plurality of transient motor coil currents and the measurement of the maximum motor coil current.
- a motorized gastric band system may include an implantable gastric band for forming a loop having a ventral surface for contacting a stomach of a patient, a motor coupled to the implantable gastric band, and including a motor coil for conducting a motor coil current, and a gear
- the present invention may include a retractable antenna device for a remotely adjustable and remotely powered an implantable gastric band.
- the retractable antenna device may include a housing having a top wall and a bottom wall, a winding drum disposed within the housing and along the axle, the winding drum having a neck and a base, the winding drum is configured to rotate about an axis between a first position and a second position, an antenna disposed between the base of the winding drum and the bottom wall of the housing, a cable configured to coil around the neck of the winding drum when the winding drum is at the first position, and configured to uncoil and substantially extend outside of the housing when the winding drum is at the second position, and a locking device configured to lock the winding drum when the winding drum rotates from the first position to reach the second position, so that the winding drum remains stationary at the second position.
- the present invention may provide a remote control device for use in conjunction with a remotely adjustable and remotely powered implantable gastric band.
- the remote control device may include a handle, a display screen having a proximal side and a distal side, the proximal side positioned between the handle and the distal side, a sensing device configured to determine an orientation of the remote control device by sensing the relative position of the distal side and the proximal side of the display screen, and a processing device coupled to the sensing device, configured to transmit a display signal to the display screen for displaying an image on the display screen with a first image orientation or a second image orientation depending on the orientation of the remote control device, and configured to adjust the implantable gastric band.
- the present invention may provide a system for rapidly charging a remote control device for remotely adjusting and powering an implantable gastric band via a telemetric coupling.
- the system may include a battery for providing power to the remote control device, and having a battery voltage, and a charging station for charging the battery, the charging station configured to monitor the battery voltage of the battery, deliver a constant charging current to the battery until the battery voltage reaches a predefined threshold, and deliver a constant charging voltage to the remote control device thereafter to maintain the battery voltage.
- the present invention may provide a system for remotely adjusting and powering an implantable gastric band configured to be installed around a stomach of a patient.
- the system may include an implantable memory configured to be disposed inside the patient and to store a patient record relatable to the patient and an adjustment record relatable to an adjustment history of the implantable gastric band, and a processor coupled to the memory, and configured to retrieve the adjustment history upon receiving a telemetric data retrieval signal from a remote control device, generate a signal for adjusting the implantable gastric band upon receiving a telemetric band adjustment signal from the remote control device, and update the adjustment record based on the telemetric band adjustment signal.
- the present invention may provide an implantable gastric band, which may include a tubular member having a first end and a second end, the second end defining an opening, the first end having a flange configured to engage the second end of the tubular member, thereby forming a tubular ring having an adjustable ventral ring surface and a substantially rigid dorsal ring surface, a skeleton disposed between the adjustable ventral ring surface and the substantially rigid dorsal ring surface of the tubular ring, the skeleton having a distal end pushing against the first end of the tubular member and a proximal end pushing against the second end of the tubular member, the skeleton configured to support the substantially rigid dorsal ring surface of the tubular ring, a flexible screw slid between the skeleton and the adjustable ventral ring surface, the flexible screw having a hook anchoring the distal end of the skeleton and a crimped end extending beyond the opening of the tubular member, the flexible screw having an outer
- FIG. 1 shows a perspective view of a remotely adjustable remotely powered (RARP) gastric band system according to an embodiment of the present invention
- FIG. 2 shows a perspective view of various external components of the RARP gastric band system according to an embodiment of the present invention
- FIG. 3 shows a block diagram of the RARP gastric band system according to an embodiment of the present invention
- FIG. 4 shows a system architecture block diagram of the RARP gastric band system according to an embodiment of the present invention
- FIGS. 5A-5B show the button configuration and display screen orientation of a control device according to an embodiment of the present invention
- FIG. 6 shows an exploded view of a control device according to an embodiment of the present invention
- FIG. 7 shows the perspective bottom and top views of a Human Interface Device (HID) Printed Circuit Board (PCB) being coupled to a Radio Frequency (RF) Printed Circuit Board (PCB) according to an embodiment of the present invention
- HID Human Interface Device
- RF Radio Frequency
- FIGS. 8A-8R show the sample screen shots of the control device according to an embodiment of the present invention.
- FIG. 9 shows a schematic view of the HID subsystem according to an embodiment of the present invention.
- FIG. 10 shows a perspective view of the HID PCB components and connectors according to an embodiment of the present invention.
- FIG. 11 shows a schematic view of the RF subsystem according to an embodiment of the present invention.
- FIG. 12 shows a perspective view of the RF PCB components and connectors according to an embodiment of the present invention
- FIG. 13 shows a schematic view of a power regulation subsystem of the RARP gastric band system according to an embodiment of the present invention
- FIG. 14 shows a schematic view of a modulation device according to an embodiment of the present invention.
- FIG. 15 shows a diagram with an ideal voltage curve and an ideal current curve of a Class E amplifier according to an embodiment of the present invention
- FIG. 16 shows the adjustability of tail end of the voltage curve in the Class E amplifier according to an embodiment of the present invention
- FIG. 17 shows a schematic view of a rectifying device according to an embodiment of the present invention.
- FIG. 18 shows an implant power regulation subsystem according to an embodiment of the present invention
- FIG. 19 shows various waveforms of various signals of the implant power regulation subsystem according to an embodiment of the present invention.
- FIG. 20 shows various waveforms of a double modulation (frequency modulated amplitude modulation) scheme according to an embodiment of the present invention
- FIG. 21 shows a schematic view of a double modulation subsystem according to an embodiment of the present invention.
- FIG. 22 shows a frequency chart of the double modulation scheme according to an embodiment of the present invention.
- FIG. 23A shows a frequency spectrum of the frequency modulation feedback signal according to an embodiment of the present invention
- FIG. 23B shows a demodulation of the frequency modulated amplitude modulation signal according to an embodiment of the present invention
- FIG. 24 shows a schematic view of a demodulation device according to an embodiment of the present invention.
- FIG. 25 shows the relationship among various signals of the demodulation device and a distance between the external antenna and the implant antenna according to an embodiment of the present invention
- FIG. 26 shows the communication protocol among the HID subsystem, RF subsystem and the implant according to an embodiment of the present invention
- FIG. 27 shows the state diagram of an HID subsystem algorithm according to an embodiment of the present invention
- FIG. 28 shows the state diagram of an RF subsystem algorithm according to an embodiment of the present invention
- FIG. 29A shows a command only communication protocol between the HID and RF subsystems according to an embodiment of the present invention
- FIG. 29B shows a command-data communication protocol between the HID and RF subsystems according to an embodiment of the present invention
- FIG. 30 shows an answer message communication protocol from the RF subsystem according to an embodiment of the present invention
- FIG. 31 shows a notification message communication protocol from the RF subsystem according to an embodiment of the present invention.
- FIGS. 32A-32C show an exploded view, a front view and a back view of a docking station according to an embodiment of the present invention
- FIG. 33 shows a schematic view of the docking station interacting with the RF Board according to an embodiment of the present invention
- FIG. 34 shows a fast charge mode voltage-current chart according to an embodiment of the present invention.
- FIGS. 35A-35B show a perspective view and an exploded view of an external antenna with a retractable cable according to an embodiment of the present invention
- FIGS. 36A-36B show a perspective front view and a perspective back view of the retractable external antenna being stored at the back of the control device according to an embodiment of the present invention
- FIGS. 37A-37B show a perspective view and an exploded view of the implant according to an embodiment of the present invention
- FIGS. 38A-38F show the perspective views of various implant electronic device protection case components according to an embodiment of the present invention.
- FIGS. 39A-39B show a top view and a bottom view of an implant electronic system board according to an embodiment of the present invention.
- FIGS. 40A-40C show various views of a manipulation handle according to an embodiment of the present invention.
- FIG. 41 shows a state diagram of implant electronic device software algorithm according to an embodiment of the present invention.
- FIGS. 42A-42B show a transmission sequence and a data structure of an identification message to the control device according to an embodiment of the present invention
- FIGS. 43A-43B show the command only protocol and a data structure of the command according to an embodiment of the present invention
- FIGS. 44A-44B show the command-parameter protocol and a data structure of the command-parameter according to an embodiment of the present invention
- FIGS. 45A-45B show the data structures of an ACK message and a NACK message according to an embodiment of the present invention
- FIG. 46A shows a command-response protocol according to an embodiment of the present invention
- FIG. 46B shows a data structure of a response message according to an embodiment of the present invention.
- FIG. 47A shows a time out protocol with control device checksum according to an embodiment of the present invention
- FIG. 47B shows a time out protocol with implant checksum according to an embodiment of the present invention
- FIG. 48 shows a data structure of implant adjustment history record according to an embodiment of the present invention.
- FIG. 49 shows a timing diagram of a computer interrupt upon a detection of a control device command at the implant according to an embodiment of the present invention
- FIG. 50 shows a timing diagram of the control device's command and the implant's response according to an embodiment of the present invention
- FIG. 51 shows a schematic view of a motor coil current measurement system according to an embodiment of the present invention.
- FIG. 52 shows a graph for measuring an integral motor coil current according to an embodiment of the present invention
- FIG. 53 shows a graph for measuring a maximum motor coil current according to an embodiment of the present invention.
- FIG. 54 shows a software algorithm for detecting motor blockage according to an embodiment of the present invention
- FIGS. 55A-55B show a perspective top view and a perspective bottom view of a motor according to an embodiment of the present invention
- FIGS. 55C-55D show a perspective bottom view and a perspective top view of a motor cap according to an embodiment of the present invention
- FIGS. 55E-55F show a perspective bottom view and a perspective top view of a motor traveling PCB protection cap according to an embodiment of the present invention
- FIGS. 55G-55H show a perspective side view and a side view of a motor sleeve according to an embodiment of the present invention
- FIG. 55I shows an exploded view of a motor coil according to an embodiment of the present invention.
- FIGS. 55J-55K show various views of the motor cable according to an embodiment of the present invention.
- FIG. 56 shows a side view of a flexible screw according to an embodiment of the present invention.
- FIGS. 57A-57H show various views of the motor engaging the flexible screw according to an embodiment of the present invention.
- FIGS. 58A-58C show various views of a bendable skeleton embedded with a stabilizing tube according to an embodiment of the present invention
- FIGS. 59A-59B show a perspective view and a cross-sectional view of the stabilizing tube according to an embodiment of the present invention
- FIGS. 60A-60D show various views of a dorsal element according to an embodiment of the present invention.
- FIGS. 61A-61C show various views of an anti-slip cushion according to an embodiment of the present invention.
- FIGS. 62A-62C show various views of a membrane shell according to an embodiment of the present invention.
- FIGS. 63A-63C show various views of a cushioned membrane shell according to an embodiment of the present invention.
- a remotely adjustable and remotely powered (RARP) gastric band system 100 is shown according to an embodiment of the present invention.
- the RARP gastric band system 100 may include an external subsystem and an implant (internal) subsystem.
- the external subsystem may include a control device (a.k.a. control unit) 110 , an external antenna 120 , and a retractable antenna cable 114 , which may be used for coupling the external antenna 120 to the control device 110 .
- the control device 110 may serve various functions.
- the control device 110 may be used as an interface for a user, such as a physician or a care taker.
- the control device 110 may be used for transmitting telemetric signal 122 to the implant 130 for inducing power therein.
- the control device 110 may be used for remotely controlling various functionalities of the implant 130 , such as adjusting the size of a gastric band 180 , retrieving information from the implant memory device 150 , and/or regulating power inside the implant 130 .
- the implant subsystem (a.k.a. the implant) 130 may be implanted inside a patient's body 101 , and it may include an implant electronic device 132 , a gastric band 180 , a motor 170 , and a motor cable 142 .
- the gastric band 180 may be used for forming a stoma around the patient's stomach 102
- the motor 170 may be used for controlling the gastric band 180 , which may in turn, adjust the size of the stoma.
- the implant electronic device 132 may include an implant (internal) antenna 160 , a microprocessor (a.k.a. microcontroller) 140 , and a memory device 150 .
- the microprocessor 140 may serve various functions.
- the microprocessor 140 may coordinate the reception, rectification, and regulation of power received via the implant antenna 160 .
- the implant antenna 160 may receive the signal transmitted from the external antenna 120 when they are separated by a distance of about 3 cm or less.
- the microprocessor 140 may retrieve past gastric band adjustment information from the memory device 150 or store current gastric band adjustment information to the memory device 150 .
- the microprocessor 140 may control the motor 170 for adjusting the gastric band 180 , and for detecting and preventing motor blockage.
- the external subsystem 200 may include a carrying case 201 , a power adaptor 202 , a power cord 204 , and a docking station 208 .
- the power adaptor 202 may connect a power source (not shown) to the docking station 208 , such that the docking station 208 may receive electricity for charging the control device 110 .
- the external antenna 120 may be connected to the control device 110 (interchangeably “control unit”) during gastric band adjustment.
- the external antenna 120 may be stored at the back of the control device 110 when it is not in use.
- the control device 110 may be docked at the docking station 208 for recharging.
- the connection between the control device 110 and the docking station 208 may be established by contacting several spring loaded connectors located on the docking station 208 with several matching metallic surfaces located on the control device 110 .
- the spring loaded connectors and the matching metallic surfaces may provide additional physical stability when the control device 206 is docked at the docking station 208 .
- FIG. 3 shows a block diagram of a RARP gastric band system 300 according to an embodiment of the present invention.
- the RARP gastric band system 300 may include the control device 110 , the docking station 208 , the external antenna 120 , and the implant 130 .
- the control device 110 may include a Human Interface Device (HID) board 310 and a Radio Frequency (RF) board 320 .
- HID Human Interface Device
- RF Radio Frequency
- the HID board 310 may be used for implementing an HID subsystem.
- the HID subsystem may receive input from a user and generate output for the user during or in between gastric band adjustments.
- a physician and/or a care taker may use the HID subsystem to adjust the size of the gastric band and to retrieve information regarding the gastric band adjustment history of a particular patient.
- the size of the gastric band can be understood as diameter of a ventral (inner) ring surface of the gastric band.
- the RF board 320 may be used for implementing an RF subsystem.
- the RF subsystem may execute various tasks as instructed by the HID subsystem.
- the HID subsystem and the RF subsystem may setup a master-slave configuration 324 , in which the HID subsystem may command the RF subsystem to perform a recharging task, a power transmission task, a band adjustment task, and/or an information retrieval task.
- the RF subsystem may establish a power connection 326 with the docking station 208 .
- the power connection 326 may be used for transmitting power from the docking station 208 to the RF board 320 .
- the power connection 326 may conduct signals that may be used for monitoring and controlling the recharge process.
- the RF subsystem may drive the external antenna 120 with an RF signal that induces power in the implant 130 .
- the RF signal may be amplitude modulated and have a carrier frequency within the radio frequency range.
- the carrier frequency may range from about 30 kHz to about 300 GHz.
- the carrier frequency may range from about 10 MHz to about 50 MHz.
- the carrier frequency may approximately be about 27 MHz.
- the RF subsystem may momentarily transmit adjustment instruction via the external antenna 120 to the implant 130 .
- the transmission of the adjustment instruction may include a series of handshake protocols, which may ensure that the adjustment instruction is being received and executed properly by the implant 130 .
- the RF subsystem may sense and demodulate a feedback signal from the implant 130 .
- the feedback signal may be a double modulation signal, which may include a frequency modulation component and an amplitude modulation component.
- the frequency modulation component may be used for embedding gastric band adjustment data and power regulation signal while the amplitude modulation component may be used as a carrier.
- the amplitude modulation component may be used for embedding gastric band adjustment data and power regulation signal while the amplitude modulation component may be used as the carrier.
- FIG. 4 shows a system architecture block diagram of a RARP gastric band system 400 according to an embodiment of the present invention.
- the RARP gastric band system 400 may include an external system 410 and an implant (internal) system 470 .
- the external system 410 may include an HID subsystem 420 , an RF subsystem 430 , an external antenna 440 , a docking station 450 , and a rechargeable battery 460 .
- the implant system 470 may include an implant antenna 472 , an RF transponder subsystem 473 , a power management subsystem 474 , an implant microcontroller (microprocessor) 476 , and a motor interface device 478 .
- the RF transponder subsystem 473 may include various electronic components connecting the antenna 472 and the microcontroller 476 .
- the RF transponder subsystem 473 may include rectifying circuits and a LTC6900 chip.
- the HID subsystem 420 may include: several input keys (buttons) 425 for receiving input from a user, a video device (OLED Display) 427 for outputting visual information to the user, an audio device 426 for outputting audio information to the user, a real-time control (RTC) device 424 for monitoring the charge level of the rechargeable battery 460 , an HID microcontroller (microprocessor) 421 for processing information received from the keys 425 and the RTC device 424 .
- the HID subsystem 420 may include several memory devices, such as a data flash device 428 , a serial flash device 422 , a SRAM device 423 , and an optional EEPROM device 429 .
- the RF subsystem 430 may include: an EEPROM device 432 for storing various data, an RF microcontroller (microprocessor) 431 for performing various tasks requested by the HID microcontroller 421 , an RF transponder 434 for driving and receiving information from the external antenna 440 , and a battery management device 436 for interfacing with the docking station 450 and for controlling the recharging of the battery 460 .
- an EEPROM device 432 for storing various data
- an RF microcontroller (microprocessor) 431 for performing various tasks requested by the HID microcontroller 421
- an RF transponder 434 for driving and receiving information from the external antenna 440
- a battery management device 436 for interfacing with the docking station 450 and for controlling the recharging of the battery 460 .
- FIGS. 5A-5B show the button configuration and display screen orientation of a control device 500 according to an embodiment of the present invention.
- the front surface of the control device 500 may include a display screen 502 , a power button (sensor) 532 , a first set of auxiliary buttons (sensors) 504 , 506 , and 508 , a second set of auxiliary buttons (sensors) 534 , 536 , and 538 , and a set of adjustment control buttons (sensors), such as a band open button (sensor) 540 , a stop adjustment button (sensor) 542 , and a band close button (sensor) 544 .
- the first and second set of auxiliary buttons 504 , 506 , 508 , 534 , 536 , and 538 may be configured to adapt to both left-handed and right-handed users.
- the button configuration and the display screen orientation as shown in FIG. 5A may be used by a left-handed user.
- the first set of auxiliary buttons 504 , 506 , and 508 may be inactivated or disabled, whereas the second set of auxiliary buttons 534 , 536 , and 538 may serve as the left, center, and right buttons, respectively.
- the button configuration and the display screen orientation as shown in FIG. 5B may be used by a right-handed user.
- the second set of auxiliary buttons 534 , 536 , and 538 may be inactivated or disabled, whereas the first set of auxiliary buttons 504 , 506 , and 508 serve as the right, center, and left buttons, respectively.
- the display screen 502 may be reoriented as well.
- the display screen 502 may have a first (left-handed) orientation as shown in FIG. 5A .
- the display screen 502 may have a second (right-handed) orientation as shown in FIG. 5B .
- the control device 500 may have a gyroscopic device (not shown) for sensing its orientation.
- control device 500 may use the sensed orientation to generate one or more signals for reconfiguring the first and second set of auxiliary buttons 504 , 506 , 508 , 534 , 536 , and 538 , and for reorienting the display screen 502 .
- FIG. 6 shows an exploded view of a control device 600 according to an embodiment of the present invention.
- the control device 600 may include a bottom shell 601 , a bottom shell lid 602 , a battery pack 603 , a left battery holder 604 , a right battery holder 605 , a metal plate 606 , a magnet 607 , a metal pad 608 , an RF PCB 609 , a regulatory sticker 610 , an RF cable 611 , a top shell 612 , a bottom shell 613 , an adhesive display glass 614 , a display glass 615 , an auxiliary buttons group 616 , an adjustment control buttons group 617 , a power button 618 , a display OLED 619 , a Gasket display 620 , and an HID PCB 621 .
- the components of the control device can be grouped as the top shell assembly (right) and the bottom shell assembly (left).
- the two assemblies can be snapped or screen fastened together after the HID PCB 621 and the RF PCB 609 are properly coupled as shown in FIG. 7 .
- FIGS. 8A-8R show the sample screen shots of the control device according to an embodiment of the present invention.
- the control device may be powered up and it may display a “Welcome” screen, which include a logo and/or a slogan.
- the control device may display the “Code Entering” screen for receiving authentication information.
- a battery strength symbol 801 and a user code request message 802 may be displayed. Accordingly, a user may enter a four-digit access code 803 .
- the user may use the left auxiliary button, which may be associated with the plus sign 804 , to increase the value of a digit, the center auxiliary button, which may be associated with the minus sign 805 , to decrease the digit value, and the right auxiliary button, which may be associated with the arrow sign 806 , to go to the next digit and eventually to accept the entry.
- the left auxiliary button which may be associated with the plus sign 804
- the center auxiliary button which may be associated with the minus sign 805
- the right auxiliary button which may be associated with the arrow sign 806
- the control device may display the “Antenna Search” screen, in which the user may be instructed to place the external antenna near the implant antenna.
- a number of reception bars 807 may be shown in the “Antenna Search” screen once the control device detects a nearby implant antenna.
- the number of reception bars 807 may indicate the strength of the connection between the external antenna and the implant antenna. For example, a signal strength represented by two or less reception bars 807 may be considered insufficient, whereas a signal strength represented by three or more reception bars 807 may be considered sufficient.
- the control device may display the “Loading” screens once the control device detects a signal strength represented by two or more reception bars 807 .
- the “Loading” screens may show the progress of downloading the patient's information from the implant.
- the control device may display the “Adjustment” screen (a.k.a. “Default” screen) as shown in FIG. 8F .
- the user may adjust the implanted gastric band.
- the user may use the band open button, which may be associated with the band open symbol 812
- the band close button which may be associated with the band close symbol 813 .
- the user may choose to perform other functions.
- the user may use the left auxiliary button, which may be associated with the chart symbol 814 , to review the past adjustment history of a patient.
- the user may use the center auxiliary button, which may be associated with the code change symbol 815 , to change the password (or pass code) of the control device.
- the user may use the right auxiliary button, which may be associated with the lock symbol 816 , to lock the control device.
- the control device may display the “Opening” screen as shown in FIG. 8G .
- the “Opening” screen the user may increase the size of the patient's stoma by loosening the implanted gastric band.
- the control device may display the “Closing” screen as shown in FIG. 8H .
- the “Closing” screen the user may decrease the size of the patient's stoma by tightening the implanted gastric band.
- the user may press the stop button to stop the loosening process or the tightening process to terminate the adjustment process, after which the “Adjustment” screen may be reloaded.
- the control device may display the “Adjustment History Plot” screen as shown in FIG. 8I .
- the user may use the left or center auxiliary button, which may be associated with the left and right arrow signs 818 , to view previous and/or current records.
- the user may use the right auxiliary button, which may be associated with the list symbol 817 , to view the adjustment history list.
- the control device may display the “Adjustment History List” screen as shown in FIG. 8J .
- the user may use the left or center auxiliary button, which may be associated with the up and down arrow signs 818 , to view previous and/or current records.
- the user may use the right auxiliary button, which may be associated with the forward symbol 819 , to return to the “Adjustment History Plot” screen.
- the user may lock the control device 110 by selecting the lock symbol 816 .
- the control device may display the “Locked” screen as shown in FIG. 8K .
- the user may press any button except for the power button.
- the control device may display the “Code Entering” screen as shown in FIG. 8B .
- the user may be instructed to enter the pass code again.
- the user may change the old pass code by selecting the code change symbol 815 .
- the control device may display the “Old Code Entering” screen, in which the user may enter the old pass code.
- the control device may display the “New Code Entering” screen as shown in FIG. 8M .
- the control device may display the “Confirm or Cancel Code” screen as shown in FIG. 8N .
- the user may select the left auxiliary button, which may be associated with the OK symbol 804 , to accept the new code 822 , or select the right auxiliary button, which may be associated with the CANCEL symbol 825 , to cancel the new code 822 .
- the control device may display the “Code Changed” screen as shown in FIG. 80 .
- the “Battery Recharge” screen may be displayed when the control device is being recharged.
- the “Adjustment” screen may return once the control device is disconnected from the docking station.
- FIGS. 8Q and 8K show the “Error Message” screens, which may notify the user with warning messages.
- the “Error Message” screen may notify the user when the implant is malfunction or when the battery level is low.
- Table 1 below may provide a summary of screen shot with respect to the button functionality.
- the HID subsystem 900 may include eleven device blocks, such as a microcontroller block 902 , a memory block 904 , a display screen block 906 , a buzzer and vibrator block 908 , a sound interface block 910 , an accelerometer and RTC block 914 , an interface block 918 , a USB block 920 , an input button block 916 , a JTAG/TRACE connector block 922 , and a power supply block 912 .
- eleven device blocks such as a microcontroller block 902 , a memory block 904 , a display screen block 906 , a buzzer and vibrator block 908 , a sound interface block 910 , an accelerometer and RTC block 914 , an interface block 918 , a USB block 920 , an input button block 916 , a JTAG/TRACE connector block 922 , and a power supply block 912 .
- FIG. 10 a perspective view of the HID PCB 1000 is shown according to an embodiment of the present invention.
- each of the components on the HID PCB 1000 may be included in, associated with, or controlled by one of the eleven device blocks of the HID subsystem 900 .
- the microcontroller block 902 may include the microcontroller device (microprocessor) 1004 , which may be configured as the master of the control device and may control all the user interface components, such as the display screen, the buttons, the sound interface, and the memory.
- the microcontroller block 902 may also include a crystal oscillator, two pull-down resistors and a pull-up resistor.
- the memory block 904 may include a 128-Mb flash memory 1034 and a 1-Mb EEPROM 1046 , along with five pull-up resistors and four regulating capacitors.
- the display screen block 906 may include an OLED display, an OLED display flat connector 1048 and a display driver supply (not shown).
- the buzzer and vibrator block 908 may include various components for driving a buzzer 1038 and a vibrator 1008 .
- the sound interface block 910 may include an audio power amplifier 1010 , which may be connected to the speaker (not shown).
- the accelerometer and RTC block 914 may include an RTC chip 1041 and a PC30 accelerometer chip 1035 as well as a lithium ion battery 1044 for back-up power.
- the input button block 916 may include a power button (not shown) for sending power up signals to the HID PCB and the RF PCB.
- the input button block 916 may also include two set of triplet buttons (auxiliary buttons) selectable by three output keys.
- the interface block 918 may include two connectors 1050 and 1052 for connecting cards together and for connecting between RF PCB.
- the USB block 920 may include two mini USB connectors 1020 and 1030 , an ESD input protection chip (not shown), and an RS232 translator chip FT232RL (not shown).
- the JTAG block 922 may include two connectors (not shown).
- the power block 912 may comprise a 3.3V voltage regulator (not shown) and several 3.3V power connections.
- the RF subsystem 1100 may include seven device blocks, such as a main controller block 1104 , a modulation block 1106 , a demodulation block 1108 , an auxiliary controller block 1110 , an RF power supplies block 1112 , a system power block 1101 , and a battery block 1102 .
- each of the components on the HID PCB 1200 may be included in, associated with, or controlled by one of the seven device blocks of the RF subsystem 1100 .
- the RF main controller block 1104 may include a microcontroller (processing device) 1201 , which may perform as a slave to the HID microcontroller block 902 .
- the RF microcontroller 1201 may control the power induction in the implant, the charging circuitry in the docking station, the communication to and from the implant, and the communication with the HID microcontroller block 902 .
- the RF microcontroller 1201 may further receive multiple monitoring inputs and the reset command from the HID microcontroller block 902 .
- the USB connection may be established through a mini USB connector 1274 with the USB protocol translated into a UART serial interface through an RS232 translator chip (not shown).
- the modulation block 1106 may include a class E amplifier 1234 for generating an amplitude modulation signal with carrier frequency at about 27 MHz. Particularly, the modulation block 1106 may be involved in generating a 27 MHz carrier frequency with an amplitude that equals the RF supply voltage VSUP, while the data signal may contain the digital command being sent to the implant via the external antenna.
- the demodulation block 1108 may include a FM demodulator chip 1208 to demodulate the signals received from the implant and extracted from the external antenna via a directional coupler 1272 .
- the FM demodulator chip 1208 may be used for retrieving useful information, such as the received signal strength RSSI and the feedback message from the implant.
- the RF demodulator chip 1208 may also generate regulating signals, including REG_LEVEL, VSUP_CTRL, VSUP, and FORCE_RF_LEVEL.
- the power supplies block may comprise a LT1961 voltage regulator (not shown), the amplitude of which may be controlled by either the VSUP_CTRL input indirectly from the implant or the DAC IN input from the RF controller.
- the VSUP_CTRL input helps implement the control loop between the implant and the control device which adjusts the power induced in the implant.
- the RF microcontroller 1201 may also shutdown VSUP through the VSUP_ON/OFF input.
- VSUP_INHIBIT 1 may shutdown VSUP whenever the control device is powered from an external source to avoid any danger to the patient from power line surges.
- BSUP_INHIBIT 2 may provide another shutdown path from the auxiliary controller block.
- the auxiliary controller block 1110 may include an auxiliary controller 1244 and the associating connectors.
- the auxiliary controller 1244 may allow the overall system to implement a software oriented version of the implant power induction control.
- the system power block 1101 may comprise the LM22672M voltage regulator 1256 for regulating the power supplies at 3.6V, the LP2985-33 voltage regulator U 18 1276 for regulating the power supplies at 3.3V, and several monitoring signals indicating the power being turned on (KON), the presence of external power (EXTPWR_PRESENT) and the current load to the battery (ILOAD).
- the battery block 1102 may include a battery management related circuitry 1268 , the battery connectors 1246 and 1264 , as well as two batteries connected in series, which may be monitored by the signals BATMON, BATMONZ, BATT_TH, EXT_BAT_MES 1 and EXT_BAT_MES 2 .
- FIG. 13 a schematic view of a power regulation subsystem 1300 is shown according to an embodiment of the present invention.
- the power regulation subsystem 1300 may be implemented by various devices (blocks) of the RF Board and of the Implant.
- the RF Board may include a modulation device (block) 1320 , an external antenna 1324 , a demodulation device (block) 1330 , a power supply device (block) 1340 , and a controller device (block) 1310 .
- the Implant may include an implantable antenna 1352 , a rectifying device (first device block) 1350 , a maximum power sensing device (second device block) 1360 , a regulation device (third device block) 1370 , and an impedance switching device (fourth device block) 1380 .
- the controller device 1310 may send a transmission signal 1312 to enable the modulation device 1320 .
- the transmission signal 1312 can be activation based or interrupt based.
- the modulation device 1320 may generate an amplitude modulation signal for driving the external antenna node 1322 .
- the external antenna node 1322 may be a transmission line that couples between the external antenna 1324 and the modulation device 1320 .
- the external antenna 1324 may transmit a telemetric signal 1326 according to the amplitude modulation signal.
- the telemetric signal 1326 may travel across air and penetrate the body tissue of the patient, such that it may be received by the implantable antenna 1352 .
- an alternate current AC
- the rectifying device 1350 may rectify the voltage associate with the alternate current, so as to deliver a DC input voltage (V IN ) on the DC input voltage (V IN ) node 1356 .
- the maximum power sensing device 1360 may monitor the level of the DC input voltage V IN . When the DC input voltage V IN exceeds a certain predetermined threshold voltage value, the maximum power sensing device 1360 may generate a regulation signal 1362 to activate the regulation device 1370 .
- the regulation device 1370 may generate a regulation voltage 1372 .
- the magnitude of which may depend on a voltage difference (potential difference) between the DC input voltage V IN and the predetermined threshold voltage value.
- the magnitude of the regulation voltage 1372 may represent or indicate the amount of regulation that may be needed.
- the DC input voltage V IN may be a function of a transmission distance between the external antenna 1324 and the implantable antenna 1352 .
- the signal strength of the telemetric signal 1326 may increase, thereby causing the DC input voltage V IN to rise.
- the regulation voltage 1372 may increase.
- the regulation voltage 1362 may be used for generating one or more feedback signals and/or messages.
- the impedance switching device (switching device) 1380 may receive and process the regulation voltage 1362 . After processing the regulation voltage 1362 along with other signals, the impedance switching device 1380 may couple and decouple the DC input voltage V IN node 1356 to and from an additional impedance component at a feedback frequency.
- the feedback frequency may be determined based on the regulation voltage 1362 and some other factors. In one embodiment, for example, the feedback frequency may be inversely proportional to the regulation voltage 1362 . In another embodiment, for example, the feedback frequency may be directly proportional to the regulation voltage 1362 .
- the impedance switching device 1380 may generate a feedback signal 1382 , which may superimpose the regular DC input voltage V IN . That is, the overall load impedance (Z LOAD ) may be adjusted by the feedback frequency of feedback signal 1382 .
- the fluctuation of the overall load impedance and/or the feedback signal 1382 may manifest as a passive telemetric signal 1356 , which may be received by the external antenna 1324 . Consequently, the feedback frequency of the feedback signal may be seen as a message (envelop) frequency of the passive telemetric signal 1357 .
- the RF Board may use a sensing device (block) 1332 to sense or extract a feedback profile 1334 of the passive telemetric signal 1357 from the external antenna node 1322 .
- the feedback profile 1334 may have a frequency tracking the feedback frequency of the feedback signal.
- the sensing device 1332 may be a directional coupler.
- the demodulation device 1330 may receive the feedback profile 1334 and determine and/or extract the message frequency embedded in the feedback profile 1334 .
- the demodulation device 1330 may generate a voltage supply control signal 1336 based on the feedback frequency.
- the power supply device 1340 may process the voltage supply control signal 1336 and regulate the RF supply voltage 1342 accordingly. Because the modulation device 1320 may be powered by the RF supply voltage 1342 , the amplitude modulation signal may be indirectly regulated by the power supply device 1340 . As a result, the power induced by the amplitude modulation signal may be increased or decreased depending on the feedback signal 1382 .
- the amplitude modulation signal may have a carrier frequency and a magnitude (modulation amplitude).
- the carrier frequency may be selected from a range of radio frequencies (about 30 kHz to about 300 GHz) for maximum power transfer.
- the carrier frequency may be about 27 MHz when the load impedance is about 50 ⁇ .
- the modulation amplitude may be controlled by the RF supply voltage 1342 , and it may determine the amount of power being transferred from the RF Board to the implant.
- power transfer may be regulated by adjusting the modulation amplitude, which may depend on the RF supply voltage 1342 .
- the RF supply voltage 1342 may be lowered to reduce the modulation amplitude of the amplitude modulation signal.
- the RF supply voltage 1342 may be augmented to increase the modulation amplitude of the amplitude modulation signal.
- the modulation device 1400 may be used for implementing the functional features of the modulation device 1320 .
- the modulation device 1400 may include an activation block (activation device path) 1430 for enabling or disabling the generation of the amplitude modulation signal, an oscillating device 1450 for generating a carrier frequency signal 1452 , and a class E amplifier block (amplifier device path) 1410 for generating the amplitude modulation signal 1420 .
- the oscillating device 1450 may be a crystal oscillator, and it may be used for controlling the carrier frequency of the amplitude modulated signal 1420 .
- the activation block 1430 may include a first stage amplifier 1432 for amplifying the transmission signal 1312 , and a second stage amplifier 1434 for generating a data override signal 1436 .
- the carrier frequency signal 1452 may be buffered by a first stage inverter 1453 and a second stage inverter 1454 .
- the first stage inverter 1453 may be powered on by a separate power source
- the second stage inverter 1454 may be enabled or disabled by the data override signal 1436 .
- the data override signal 1436 may be low, such that the carrier frequency signal 1452 may drive a switching node 1401 .
- the data override signal 1436 may be high, such that the second inverter stage 1454 may be turned off momentarily during data transmission. As a result, the carrier frequency signal 1452 may be blocked from driving the switching node 1401 .
- the class E amplifier block 1410 may have a common source stage 1404 for driving a first intermediate node 1402 .
- the output of the common source stage 1404 may have a frequency component, which may be controlled by the carrier frequency signal 1452 of the oscillating device 1450 , and an amplitude component, which may be controlled by the RF supply voltage 1342 .
- the amplitude component may change as the transmission distance varies. In one embodiment, for example, the amplitude component may range from about 3 V to about 16 V. In another embodiment, for example, the amplitude component may range from about 5V to about 14 V.
- the power induced in the Implant may be regulated by adjusting the amplitude component of the amplitude modulation signal 1420 , which may be dictated by the RF supply voltage 1342 .
- the class E amplifier block 1410 may have a relatively low sensitivity to any variation in the load Z L , and it may have a high efficiency as long as the transitions at the(common source state) MOS switch 1404 occur while the current or the voltage is null.
- the capacitor C 2 and the impedance Zh 2 may be the adjustable components in the amplifier block 1410 , such that the transition point may be moved left and/or right by adjusting the value of the capacitor C 2 , and it may be moved up and/or down by adjusting the value of the impedance Zh 2 .
- FIG. 17 a schematic view of a rectifying device 1700 is shown according to an embodiment of the present invention.
- the rectifying device 1700 may implement the functional features of the rectifying device 1350 as discussed in FIG. 13 .
- the rectifying device 1700 may include a first capacitor 1712 , a second capacitor 1714 , a first diode 1722 , and a second diode 1724 .
- the first and second capacitors 1712 and 1714 may function as a pair of charge storage (or bootstrap) devices, while the first and second diodes 1722 and 1724 may function as a pair of voltage directing devices.
- the modulation device 1320 may drive the external antenna 1324 with an amplitude modulation signal 1701 , which may generate an alternate current in the external antenna 1324 .
- electromagnetic waves may be emitted from the external antenna 1324 , and they may propagate through air and penetrate the body tissue of the patient. A small portion of the electromagnetic waves may be absorbed by a secondary parasite 1704 , while a large portion of the electromagnetic waves may induce alternate voltage 1703 in the implantable antenna 1352 .
- the amplitude of the induced voltage 1703 may be affected by a transmission distance 1720 separating the external antenna 1324 and the implantable antenna 1352 .
- the amplitude of the induced voltage 1703 may decrease when the transmission distance 1720 increases from 10 mm to 20 mm.
- the amplitude of the induced voltage 1703 may increase when the transmission distance 1720 decreases from 35 mm to 20 mm.
- the induced voltage 1703 may be rectified by the first and second diodes 1722 and 1724 .
- the output nodes 1730 of the rectifying device 1700 may deliver the DC input voltage (V IN ) 1705 .
- the two-diode configuration may allow the V IN to have a relatively high magnitude, which may be slightly less than two times of the induced voltage 1703 .
- the transmission distance 1702 is large (e.g. greater than 35 mm)
- the transmission distance 1702 is small (e.g. less than 10 mm)
- the relative high magnitude V IN may be problematic because it may produce excessive energy, which may lead to overheating within the implant.
- the Implant may include a power regulation subsystem to provide feedback information to adjust the output energy of the modulation device.
- an implant power regulation subsystem (a.k.a. the power system) 1800 is shown according to an embodiment of the present invention.
- the implant power regulation subsystem 1800 may include the maximum power sensing device (second device block) 1360 , the regulation device (third device block) 1370 , and the impedance switching device (fourth device block) 1380 .
- the maximum power sensing device 1360 may include a Zener diode 1862 and a first pull down resistor 1844 .
- the positive terminal of the Zener diode 1862 may be coupled to the DC input voltage (V IN ) node and the negative terminal of the Zener diode 1862 may be coupled to the first pull down resistor 1844 , which may be coupled to an internal ground node.
- the Zener diode 1862 may have a breakdown voltage V BD across its positive and negative terminals. When the DC input voltage (V IN ) is less than the breakdown voltage V BD , the Zener diode 1862 may be under forward bias, such that the Zener diode 1862 is unlikely to sink any current from the DC input voltage (V IN ) node. As a result, the first pull down resistor 1864 may pull the regulation signal to ground.
- the Zener diode 1862 may be under reverse bias, such that the Zener diode 1862 may begin to draw a breakdown current I BD from the DC input voltage (V IN ) node.
- the regulation signal 1362 may maintain a voltage level V R across the first pull down resistor 1864 .
- the breakdown voltage V BD may be predetermined to accommodate the power consumption of the implant. That is, the breakdown voltage V BD may be chosen at a range that is substantially equal to or close by the predetermined threshold voltage. In one embodiment, for example, the breakdown voltage V BD may be about 3 V. In another embodiment, for example, the breakdown voltage V BD may be about 7 V. In yet another embodiment, for example, the breakdown voltage V BD may be about 5.6 V.
- the voltage level V R of the regulation signal 1362 may indicate or represent a desirable level of regulation.
- the breakdown current I BD may be highly sensitive to the change of V IN value, so that the regulation signal voltage level V R may track closely to the amount of the excessive DC input voltage V IN .
- the regulating device 1370 may include a voltage regulator 1872 , a first pull up resistor 1874 , a second pull up resistor 1875 , a transistor 1876 , and a second pull down resistor 1878 .
- the voltage regulator 1872 may be used for generating a relatively constant local voltage V CC at a first node (e.g., the V CC node).
- the constant local voltage V CC may supply power to various electronic components of the implant.
- the local voltage V CC may supply power to the current path formed partially by the first and second pull up resistors 1874 and 1875 .
- the local voltage V CC may be less than the DC input voltage V IN and the predefined threshold voltage, which may be approximated by the breakdown voltage V BD of the Zener diode 1862 .
- the regulation voltage V REG may be substantially equal to the local voltage V CC
- the regulation signal voltage level V R may begin to rise, and eventually, it may overcome the threshold voltage of the transistor 1876 . As a result, the transistor 1876 may be turned on and draw the regulation current I R .
- the regulation current I R may cause a potential drop across the first pull up resistor 1874 , which is connected between the first node and a second node (e.g., the V REG node). Consequently, the regulation voltage V REG may decline as the regulation signal voltage level V R increase.
- the regulation current I R creates a regulation margin (i.e., potential difference) between the V CC node and the V REG node.
- the regulation voltage V REG may achieve substantial linearity with the regulation signal voltage V R , which may be driven primarily by the breakdown current I BR .
- the regulation device 1370 may perform the power regulation task when the DC input voltage V IN exceeds the breakdown voltage V BD by a regulation margin.
- the regulation margin may be represented by the voltage level V R of the regulation signal 1362 .
- the regulation margin may range from about 0.05 V to about 10V.
- the regulation margin may range from about 0.1 V to about 5V.
- the regulation margin may range from about 1 V to about 3 V.
- the transistor 1876 may amplify the regulation margin between the DC input voltage and the predefined threshold. As such, the potential difference between the local voltage V CC and the regulation voltage V REG may be highly responsive and sensitive to any slight change in the regulation margin.
- the impedance switching device 1380 may be activated.
- the impedance switching device 1380 may include a frequency modulation device (block) 1820 , a switch 1840 , and an impedance component 1844 .
- the frequency modulation device 1880 may generate a frequency modulation signal 1822 .
- the frequency modulation signal 1822 may have a modulated frequency that is based on and/or represent the value of the regulation voltage V REG . In one embodiment, for example, the modulated frequency of the frequency modulation signal 1822 may be directly proportional to the potential difference between the local voltage V CC and the regulation voltage V REG .
- the modulated frequency of the frequency modulation signal 1822 may be inversely proportional to the potential difference between the local voltage V CC and the regulation voltage V REG .
- the feedback signal as discussed in FIG. 13 may include the frequency modulation signal 1822 .
- the frequency modulation signal 1822 may be used for turning on and off the switch 1840 .
- the impedance component 1844 may be periodically connected to and disconnected from the DC input voltage (V IN ) node.
- the impedance component 1844 may act as an additional load and in the form of a pull down device. Because additional switching current I Z is sunk by the impedance component 1844 , the DC input voltage V IN may drop and rise at the modulated frequency of the frequency modulation signal 1822 .
- the profile of the DC input voltage V IN may be superimposed by the profile of the frequency modulation signal 1822 .
- the superimposed V IN profile may become a modulated amplitude (e.g., the message envelop) of the passive telemetric signal 1357 .
- the switch 1840 may transform the frequency modulation signal 1822 to a frequency modulated amplitude modulated signal, such as the passive telemetric signal 1357 .
- the passive telemetric signal 1357 may be received and demodulated by the RF Board as part of the power regulation process.
- V ZENER voltage across the Zener diode 1862
- V BD Zener diode 1862
- V R regulation signal voltage level
- the regulation signal voltage level V R does not overcome the threshold voltage of the transistor 1876 , there may be minimum or no regulation current I R flowing through the first and second pull down resistors 1874 and 1875 .
- the regulation voltage V REG may track closely to the local voltage V CC . Since V CC may be set a voltage level (e.g. 5 V) lower than the breakdown voltage V BD (e.g. 5.6 V), the regulation voltage VREG may be saturated before the regulation mechanism is triggered. At this stage, the impedance component 1844 may be decoupled from the V IN node, such that only minimum or no switching current I Z may be sunk from the V IN node.
- the Zener diode 1862 may begin to conduct the breakdown current I BD .
- the regulation signal voltage level V R may begin to rise and it may eventually overcome the threshold voltage of the transistor 1876 . From the point when the transistor 1876 begins to conduct the regulation current I R to the point when the transistor 1876 becomes saturated (i.e. maximum I R ), the power regulation subsystem 1800 may be under rapid regulation. That is, the regulation voltage V REG may be highly sensitive to the slightest increase in the DC input voltage V IN .
- the regulation voltage V REG may begin to decline, which may cause the frequency modulation device 1820 to generate the frequency modulation signal 1822 .
- the switch 1840 may cause the impedance component 1844 to be coupled to or decoupled from the V IN node. Accordingly, the switching current I Z may share the frequency of the frequency modulation signal 1840 .
- the frequency of the frequency modulation signal 1840 may be inversely proportional to the difference between the local voltage V CC and the regulation voltage V REG .
- the frequency of the frequency modulation signal 1840 which may be represented by the profile of the switching current I Z , may decrease as regulation voltage VREG drops further away from local voltage V CC .
- the feedback information may include the value of the regulation voltage V REG and/or the patient's biometrics data.
- the Implant may include a memory device for storing the patient's biometrics data, such as the patient's identity and event records pertinent to the patient's gastric band adjustment history. Among other information, each of the event records may record the current gastric band position and the adjustment date. It is desirable that the Implant may telemetrically transmit various pieces of feedback information in a compact and efficient manner.
- FIG. 20 waveforms of a double modulation (frequency modulated amplitude modulation) scheme are shown according to an embodiment of the present invention.
- the data signal 2010 may have a high state 2012 and a low state 2014 , each of which may represent one of the binary states.
- the data signal 2010 may have the high state 2012 during time period (TP) 1 , the low state 2014 during TP 2 , the high state 2012 during both TP 3 and TP 4 , and the low state 2014 during TP 5 .
- TP time period
- a frequency modulation may be applied to the digital signal 2010 to form a frequency modulation signal 2020 .
- the frequency modulation may be performed by the frequency modulation device 1820 or any other similar devices, such as a LTC6900 chip.
- the frequency modulation signal 2020 may have one or more modulated frequencies, such as a first (low) frequency 2022 and a second (high) frequency 2024 .
- the first and second frequencies 2022 and 2024 may be assigned to one of the low state 2012 or the high state 2024 of the data signal 2010 .
- the first frequency 2022 may be assigned to the high state 2012
- the second frequency 2024 may be assigned to the low state 2024
- the frequency modulation signal 2020 may have the first frequency 2022 during TP 1 , the second frequency 2024 during TP 2 , the first frequency 2022 during TP 3 and TP 4 , and the second frequency 2022 during TP 5 .
- the frequency modulation signal 2020 may be used for encoding two or more signals simultaneously.
- the frequency modulation signal 2020 may be used for encoding two digital signals with four logic states.
- the frequency modulation signal 2020 may have four frequency levels assigned to the four logic states.
- the frequency modulation signal 2020 may be used for encoding three digital signals with eight logic states. Accordingly, the frequency modulation signal 2020 may have eight frequency levels assigned to the eight logic states.
- the frequency modulation signal 2020 may be used for encoding one digital signal and one analog signal.
- the digital signal may carry feedback information regarding the patient's biometrics.
- the analog signal may carry feedback information regarding the value of the regulation voltage V REG .
- the frequency modulation signal 2020 may have a first frequency band and a second frequency band. Particularly, the high state of the digital signal and the spectrum of the analog signal may be jointly represented by the first frequency band, while the low state of the digital signal and the spectrum of the analog signal may be jointly represented by the second frequency band.
- the frequency modulation signal 2020 may be combined, mixed, or superimposed with the original amplitude modulated carrier to form a frequency modulated amplitude modulation signal 2030 .
- the original amplitude modulated carrier may be originated from the RF Board, and it may retain its carrier frequency at the implant antenna.
- the frequency modulated amplitude modulation signal 2030 may have a common carrier frequency and a message frequency.
- the common carrier frequency may be constant throughout the entire transmission period, while the message (envelop) frequency may track closely to the first and second frequencies 2022 and 2024 of the frequency modulation signal 2020 .
- the frequency modulated amplitude modulation signal 2030 may have a first message(envelop) frequency 2032 during TP 1 , a second message (envelop) frequency 2034 during TP 2 , and the first message frequency 2032 during TP 3 .
- the transmission of the frequency modulated amplitude modulation signal 2030 may consume very little energy from the Implant because it may take advantage of the original amplitude modulation signal and it may be passively transmitted.
- the intermediate frequency modulation scheme may allow multiple pieces of information to be transmitted simultaneously, thereby increasing the transmission efficiency and shortening the total transmission time.
- the frequency modulated amplitude modulation signal 2030 may only require one communication channel. As such, the external antenna and the implant antenna may be transferring power and communicating at the same time.
- the frequency modulated amplitude modulation signal 2030 may have a high tolerance to parasitic noise.
- the underlying information may be encoded in different frequency levels and/or frequency bands, which may be highly resistive to distortion caused by parasitic noise.
- FIG. 21 shows a schematic view of a double modulation subsystem 2100 according to an embodiment of the present invention.
- the double modulation subsystem 2100 may help generate the feedback signal for communicating the value of the regulation voltage V REG to the RF Board.
- the double modulation subsystem 2100 may be used as a communication system and in conjunction with the power regulation subsystem 1800 .
- the double modulation subsystem 2100 may include a frequency modulation device 2120 , an output transistor 2150 , a data switch 2112 , a voltage regulation resistor R REG , a data resistor R CMD , and a bias resistor R BO .
- the frequency modulation device 2120 may have similar functional features as the frequency modulation device 1820 .
- the frequency modulation device 2120 may adjust a switching frequency (f SW ) of the frequency modulated signal 1822 according to the regulation voltage and the status of the data switch 2112 .
- the data switch 2112 may be used for generating serial data signals similar to the data signal 2010 as shown in FIG. 20 . More specifically, the data switch 2112 may be controlled by the implant microcontroller 476 (previously shown in FIG. 4 ), which may encode various information to the data signal. In one embodiment, for example, the implant microcontroller may encode the patient's identification information to the data signal. In another embodiment, for example, the implant microcontroller may encode the patient's gastric band adjustment record to the data signal. In yet another embodiment, for example, the implant microcontroller may encode a handshake confirmation message to the data signal.
- the frequency modulation device 2120 may be implemented by a LTC 6900 chip or other equivalent devices. From a functional standpoint, the frequency modulation device 2120 may determine the switching frequency according to the local voltage V CC , a set voltage V SET and an input current I RES . Similar to the power system as shown in FIG. 18 , the regulation voltage V REG may be generated by the regulation device 1370 at a first node (e.g., the V REG node). The set voltage V SET at a second node (e.g., the V SET node) may be controlled by a data path, which may include the data switch 2112 and the command resistor R CMD . Moreover, the voltage regulator 1872 may generate the local voltage V CC at a third node (e.g., the V CC node). The local voltage V CC may perform as a current source for the pull up resistor 1874 and the data path.
- the regulation voltage V REG may be generated by the regulation device 1370 at a first node (e.g
- the frequency modulation device 2120 may include a differential amplifier 2132 , a pass transistor 2134 , and an oscillator 2140 .
- the differential amplifier 2132 may generate an input differential voltage V DIFF by amplifying the potential difference between the local voltage V CC and a set voltage V SET (i.e. V CC ⁇ V SET ).
- the pass transistor 2134 may be biased by a bias voltage V BIAS to pass the input current I RES from the V SET node to the oscillator 2140 .
- the oscillator 2140 may generate the frequency modulation signal 1822 with the switching frequency f SW , which may be modeled by Equation 1:
- the input current I RES may be a summation of several currents joining at the V SET node.
- the data current I CMD may be characterized as (V CC ⁇ V SET )/R REG .
- a regulation current I REG may be conducted across the regulation resistor R REG .
- the magnitude of the regulation current I REG may depend on the level of regulation, such that it may range from (V CC ⁇ V SET )/R REG to about 0.5*(V CC ⁇ V SET )/R REG .
- a bias current I BO may be conducted across the bias resistor R BO , and it may be characterized as (V CC ⁇ V SET )/R BO .
- Equation 2 When the data signal is at a low state (i.e. data switch 2112 closed) and when there is no power regulation, the switching frequency may be modeled by Equation 2, which recites:
- Equation 3 When the data signal is at a high state (i.e. data switch 2112 open) and when there is no power regulation, the switching frequency may be modeled by Equation 3, which recites:
- the switching frequency may be modeled by Equation 4, which recites:
- f SW , LL , MR f SW , LL , NR - 1 ⁇ ⁇ MHz ⁇ 10 ⁇ ⁇ k ⁇ ⁇ ⁇ ⁇ ( V CC R REG ⁇ ( V CC - V SET ) ) .
- the switching frequency may be modeled by Equation 5, which recites:
- f SW , HL , MR f SW , HL , NR - 1 ⁇ ⁇ MHz ⁇ 10 ⁇ ⁇ k ⁇ ⁇ ⁇ ⁇ ( V CC R REG ⁇ ( V CC - V SET ) ) .
- Equation 6 When the data signal is at a low state and when the regulation voltage is at V REG , the switching frequency may be modeled by Equation 6, which recites:
- Equation 7 For low output level and regulation voltage at V REG , the switching frequency may be modeled by Equation 7, which recites:
- the value of the swing frequency f SW may depend on the resistances of the various resistors, which may be adjusted to meet various design goals.
- the resistance of the bias resistor R BO may be about 29.43 k ⁇ .
- the resistance of the regulation resistor R REG may be about 1 M ⁇ .
- the resist R CMD may be about 430 k ⁇ .
- V CC may be set at about 5V, such that V SET may be at about 3.9V.
- the swing frequency f SW,LL,NR may be about 746 kHz
- the swing frequency f SW,HL,NR may be about 699.5 kHz
- the swing frequency f SW,LL,MR may be about 700.5 kHz
- the swing frequency f SW,HL,MR may be about 654 kHz
- the swing frequency f SW,LL,VR may range from about 746 kHz to about 700.5 kHz
- the swing frequency f SW,HL,VR may range from about 699.5 kHz to about 654 kHz.
- the double modulation scheme may include a low state band 2202 and a high state band 2204 .
- the low state band 2202 may represent the range of swing frequencies that may be assigned to the low state value of the data signal.
- the high state band 2204 may represent the range of swing frequencies that may be assigned to the high state value of the data signal.
- each of the low and high state bands 2202 and 2204 may have a maximum swing frequency (i.e. f SW,LL,NR and f SW,HL,NR ) for representing a no-regulation scenario, a transient swing frequency (i.e. f SW,LL,VR and f SW,HL,VR ) for representing a rapid regulation scenario, and a minimum swing frequency (i.e. f SW,LL,MR and f SW,HL,RM ) for representing a maximum-regulation scenario.
- the frequency modulation device 2100 may provide two or more swing frequency bands. In one embodiment, for example, the frequency modulation device 2100 may provide four swing frequency bands for encoding two binary data signals. In another embodiment, for example, the frequency modulation device 2100 may provide eight swing frequency bands for encoding three binary data signals. In yet another embodiment, for example, the frequency modulation device 2100 may provide sixteen swing frequency bands for encoding four binary data signals.
- FIG. 23A shows a frequency spectrum of the frequency modulation feedback signal according to an embodiment of the present invention.
- the frequency modulation feedback signal may occupy one of the low state band 2202 or the high state band 2204 to transmit a single binary bit of data.
- the frequency modulation feedback signal may shift from a higher end of the band to a lower end of the band as the regulation voltage V REG of the implant increases.
- Such intra-band frequency shift may occur during the transmission of the single binary bit of data.
- the RF Board may be able to regulate the power within the Implant in real time, so that the regulation process may be independent of the data transmission process.
- FIG. 23B shows a demodulation 2300 of the frequency modulated amplitude modulation signal according to an embodiment of the present invention.
- the demodulation signal may map a low frequency band to a high voltage state, and it may map a high frequency band to a low voltage state.
- the demodulation signal may have a first DC level 2310 when the implant requests no regulation, and it may have a second DC level 2330 when the Implant requests power reduction (or power regulation). Accordingly, a potential difference 2320 between the first and second DC levels 2310 and 2320 may correspond to the level of power reduction requested by the Implant.
- FIG. 23B shows that the maximum regulation demodulation signal may overlap with the no regulation demodulation signal.
- the maximum regulation demodulation signal and the no regulation demodulation signal may occupy non-overlapping voltage ranges.
- the demodulation device 2400 may implement the functional features of the demodulation device 1330 as discussed in FIG. 13 .
- the demodulation device 2400 may include a demodulation processor 2410 , a low pass filter 2420 , a signal strength amplifying stage 2422 , a data amplifying stage 2432 , a three-stage power control amplifying stage 2440 , and a power override device 2450 .
- the demodulation processor 2410 may be used for processing the signal ANT_RX, which may be received and extracted from the external antenna.
- the signal strength amplifying stage 2422 may receive the processed signal and generate a signal strength indicator signal RSSI.
- the signal strength indicator signal RSSI may indicate the strength of the telemetric coupling between the external antenna and the implant antenna.
- the low pass filter 2420 may be used for filtering out the high frequency component of the processed signal. As such, the carrier frequency may be eliminated, and the frequency modulated feedback signal may be further processed.
- the data amplifying stage 2432 may receive the filtered signal and generate a data signal RF_RX according to the state band of the filtered signal.
- the three-stage power control amplifying stage 2440 may receive the filtered signal and generate a voltage supply control signal VSUP_CTRL according to the frequency shift caused by the regulation voltage VREG.
- the power supply device 1340 may use the voltage supply control signal VSUP_CTRL to adjust the RF supply voltage 1342 .
- the modulation device 1320 may be powered by the RF supply voltage 1342
- the amplitude component of the amplitude modulation signal may be controlled indirectly by the RF supply voltage 1342 .
- the power transmission may be regulated by reducing the amplitude component of the amplitude modulation signal.
- the three-stage power control amplifying stage may include a second stage 2444 for generating a regulation level signal REG_LEVEL, which may indicate the level of regulation requested by the Implant.
- REG_LEVEL a regulation level signal
- the level of regulation may be higher when the Implant's DC input voltage VIN is much higher than the breakdown voltage VBD.
- the level of regulation may be lower when the Implant's DC input voltage VIN is below or slightly above the breakdown voltage VBD.
- FIG. 25 shows the relationship among various output signals of the demodulation device and a transmission distance separating the external antenna and the implant antenna.
- the signal strength indicator signal RSSI and the regulation level signal REG_LEVEL may increase.
- the RF voltage supply VSUP may decrease to reduce the power transmission to the Implant.
- the RF Board and the Implant may undergo rapid power regulation when the transmission distance ranges from 30 mm to about 40 mm.
- the RF Board and the Implant may undergo maximum power regulation when the transmission distance is below 20 mm.
- the FM demodulator in the RF demodulator block 1108 may generate a received signal strength indicator (RSSI), a REG_LEVEL signal and a VSUP_CTRL signal.
- RSSI received signal strength indicator
- REG_LEVEL REG_LEVEL
- VSUP_CTRL VSUP_CTRL signal controls the output voltage VSUP.
- FIG. 25 shows some examplary results of the RSSI signal, the REG_LEVEL signal, and the output voltage VSUP at various transmission distances.
- FIG. 26 shows the communication protocol UART 2600 among the HID subsystem, RF subsystem, and the implant according to an embodiment of the present invention.
- the HID microcontroller 2622 may function as the master device within the control device (control unit) 2620 and it may control most user interfaces, such as the display device, the buttons, the audio output device (e.g., speaker), and the memory devices.
- the HID microcontroller 2622 may send command message 2602 to the RF microcontroller 2624 , and request the RF microcontroller 2624 to perform several functions.
- the RF microcontroller 2624 may perform as a slave to the HID microcontroller 2622 . Nevertheless, the RF microcontroller 2624 may send notification messages 2604 to the HID microcontroller 2622 even without being requested.
- the RF microcontroller 2626 may control the power induction process in the implant, the charging circuit in the docking station, the communication to and from the implant, and the communication with the HID microcontroller 2622 .
- the GND-GND link 2608 may provide the “0 Volt” reference for all other signals.
- the RTS-CTS link 2606 may be a flux control line, which may be used for stopping the incoming flux of data from the HID sub-system when the RF sub-system is not ready to accept them.
- FIG. 27 shows the state diagram of the HID subsystem algorithm 2700 according to an embodiment of the present invention. Each state and transition will be discussed in detail in conjunction with FIGS. 8A-8R , which shows various screen shots of the control device. Generally, there may be five major blocks of states, including the power off block 2710 , the active or power on block 2720 , the charge block 2750 , the error block 2760 , and the warning block 2770 .
- the transition from the power off block 2710 to the power on block 2720 may be triggered by pressing the power on button on the control device 110 as shown in FIGS. 5A and 5B .
- the transition from the power on block 2720 to the power off block 2710 may be triggered by pressing the power off button or after a 10-minute time out delay since a user has not interacted with the HID subsystem.
- any state within the power on block 2720 may transit to the warning block 2770 and/or the error block 2760 .
- the user may enter the power off block 2710 by pressing the power off button or waiting for the 10-minute time out delay.
- the charge block 2750 may be entered when the control device is connected to the docking station during the active mode. Once the control device is disconnected from the docking station, the charge block 2750 may return to a previous state of the power on block 2720 . Normally, the returned state may be a state from which the charge block 2750 is transited initially.
- the INIT state 2722 may initialize the HID subsystem, display the welcome screen, and load the code entry screen. After that, the ASKING FOR CODE state 2724 may be entered. The ASKING FOR CODE state 2724 may repeat itself until a correct 4-digit pass code is received, upon which the SEARCHING state 2726 may be entered. Once the external antenna is positioned close enough to the implant to establish a sufficient good telemetric (or electromagnetic) coupling, which may be represented by three out of five search bars in the searching screen, the UPLOADING state 2728 may be initiated.
- the loading start screen may be displayed, followed by the loading end screen.
- the implant is powered up and the communication with the implant is initiated. If, at any point of the UPLOADING state 2728 , the telemetric coupling deteriorates and becomes insufficient, the HID subsystem may return to the SEARCHING state 2726 . Otherwise, the patient information is uploaded from the implant such that the STANDBY state 2730 may be initiated.
- the STANDBY state 2730 may lead to several states depending on the triggering conditions. For example, if the magnetic coupling deteriorates and becomes insufficient, the HID subsystem may return to the SEARCHING state 2726 . For another example, if the Locked key is pressed, the HID subsystem may enter the LOCKED state 2732 in which the locked screen may be displayed, and from which any key may be pressed to return to the ASKING FOR CODE state 2724 .
- the HID subsystem may enter the ASKING FOR OLD CODE state 2734 in which the enter-old-code screen may be displayed.
- the ASKING FOR NEW CODE state 2736 may be entered, in which the enter-new-code screen may be displayed.
- the HID subsystem may enter the CONFIRM NEW CODE state 2738 , in which the confirm-or-cancel-code screen may be displayed and the user may elect to either confirm or cancel the entered code.
- the HID subsystem may return to the STANDBY state 2730 ; otherwise, if the user presses the Cancel auxiliary key to cancel the entered new code, the HID subsystem may simply return to the STANDBY state 2730 .
- the user may request a graph of the patient's gastric band adjustment history by pressing the Chart auxiliary key. Accordingly, the GRAPH state 2740 may be entered, and the history plot screen may be displayed. From the GRAPH state 2740 , the HID subsystem may enter the LIST state 2742 if the user presses the List auxiliary key, thereby loading the history list screen. After reviewing the history plot screen and/or the history list screen, the user may press the Return key to return to the STANDBY state 2730 .
- the user may adjust the width of the gastric band from the STANDBY state 2730 .
- the HID subsystem may enter the MOVE IMPLANT state 2744 , in which the opening screen may be displayed. Accordingly, the implant motor may drive the gastric band to expand its diameter.
- the HID subsystem may initiate the MOVE IMPLANT state 2744 , in which the closing screen may be displayed. Accordingly, the implant motor may drive the gastric band to constrict its diameter.
- the user may repeat the above process either by pressing the Open button or Close button repeatedly, or by pressing the Open button and the Close button alternately.
- the HID subsystem may return to the STANDBY state 2730 .
- the HID subsystem may return to the SEARCHING state 2726 .
- the CHARGE block 2750 may be entered, during which the battery recharging may be performed and the battery recharging screen may be displayed.
- the initial state is the FAST CHARGE state 2752 , during which the recharging process is controlled by current.
- the NORMAL CHARGE state 2754 may be entered, and the battery recharging process may be controlled by voltage.
- the HID subsystem may enter the FULL CHARGE state 2756 .
- the HID subsystem may alternate between the NORMAL CHARGE state 2754 and the FULL CHARGE state 2756 if the control device remained connected to the docking station long enough for the battery to dissipate some of the charges.
- FIG. 28 shows the state diagram of an RF subsystem algorithm 2800 according to an embodiment of the present invention.
- the RF subsystem powers and communicates with the implant, such that it may manage the implant's telemetric (electromagnetic) coupling, control the implant's power consumption, count the motor steps, and receive feedback information from the implant.
- the RF subsystem may also communicate with the HID subsystem, monitor battery recharging, respond errors and interrupts, and perform cyclic redundant check (CRC), delay, filtering and driving.
- CRC cyclic redundant check
- the RF module cycles among four different states, each of them may last about 500 ⁇ s.
- the first state may be the HID Communication state 2810 , in which the RF subsystem may receive up to two commands from the HID subsystem. In response, the RF subsystem may respond to these commands by sending up to eight notification messages.
- the second state may be the RF Power state 2820 , in which the power level to the implant may be monitored and controlled.
- the third state may be the Implant Communication state 2830 , in which data may be sent to and/or received from the implant. The received data may be further analyzed in this state.
- the fourth state may be the Battery Charger state 2840 , in which battery power may be monitored and controlled if the control device (control device) is properly connected to the docking station.
- the RF subsystem may cycle or return back to the HID Communication state 2810 after completing the Battery Charger state 2840 .
- the HID microcontroller 2622 may interact with the RF microcontroller 2624 through a UART interface 2600 .
- the HID microcontroller 2622 master
- the HID microcontroller 2622 may demand answer messages from the RF microcontroller 2624 (slave).
- the slave may send up to eight notifications consecutively to the master.
- Table 2 below shows the data structures for the command, the answer message and the notification message.
- command and messages may share a similar data structure, which may includes a six-byte header followed by a 2*LENGTH-byte long data field and a two-byte CRC code.
- LENGTH may be a predefined parameter specifying the length of the data.
- the first two bytes contain the command code, the next two bytes contain a sequence number, and the last two bytes describe the LENGTH of the following data field.
- the data field may be empty if LENGTH equals 0.
- the HID master does not transmit all the header bytes at one time.
- FIG. 29A shows a command only communication protocol between the HID and RF subsystems. More particularly, the HID master may send a two-byte command code to the RF slave, which may respond by sending back an ACK message. Upon receiving the ACK message, the HID master may begin transmitting the Sequence bytes, the LENGTH bytes, and the CRC bytes according to the shown order.
- FIG. 29B shows a command-data communication protocol between the HID and RF subsystems.
- the protocol illustrated in FIG. 29B may be similar to the protocol illustrated in FIG. 29A except that the Data bytes may be sent after the LENGTH bytes.
- FIG. 30 shows an answer message communication protocol from the RF subsystem according to an embodiment of the present invention.
- the RF slave may send back an answer message with data structure as shown in Table 2.
- FIG. 31 shows that the RF slave may initiate notification message without receiving prior command from the HID master.
- FIGS. 32A-32C show an exploded view, a front view and a back view of a docking station 3200 according to an embodiment of the present invention.
- the docking station 3200 may include a bottom shell 3202 , a top shell 3204 , four rubber foot 3206 , a regulatory sticker 3208 , a ballast 2 bottom 3210 , a ballast 1 top 3212 , a magnet 3214 , two alignment pins 3216 , a main PCB 3218 , and a supplementary PCB 3220 .
- the docking station 3200 may have a saddle structure 3232 , which may provide one or more contact point for coupling with the control device.
- the main PCB 3218 may be used for performing power protection to protect the docking station 3200 and the control device from the power surge of the power adapter. Moreover, the main PCB 3218 may assist the RF subsystem in monitoring the charging status and the charging temperature.
- FIG. 33 shows a schematic view of the docking station subsystem 3310 interacting with the RF Board 3350 according to an embodiment of the present invention.
- the docking station system 3310 may be implemented by the main PCB 3218 (see FIG. 32 ), and it may include a temperature measurement block 3312 , a power supply management block 3314 , a protection block 3316 , and a shunt resistance device 3318 .
- the power supply management block 3314 may interact with the RF board 3350 to perform battery charging (charging status) management and charging temperature (overheat prevention) management.
- Charging current may be estimated by measuring voltage across the shunt resistance device 3318 .
- the shunt resistance device 3318 may have a resistance of about 0.015 ⁇ .
- FIG. 34 shows a fast charge mode voltage-current chart according to an embodiment of the present invention.
- the charging process is controlled through a constant current I ch .
- I ch may be about 5 A.
- V B After the battery charge V B reaches a certain voltage, it will decrease by ⁇ V and the charging circuit then switches to the normal charge mode.
- the RF board may perform the charge monitoring.
- a dedicated NiMh charger chip e.g., the LTC1759 chip
- the LTC1759 chip may use temperature measurement of the battery pack to adjust its charging algorithm.
- the LTC1759 chip may be a high current DC-to-DC power supply controlled by a NiMH charger controller, both of which may be included in a single chip.
- the LTC1759 chip may control the power given to the battery pack and ensure that it complies with the charging profile as shown in FIG. 34 .
- FIGS. 35A-35B show a perspective view and an exploded view of an external antenna with retractable cable according to an embodiment of the present invention.
- the retractable external antenna 3500 may include an antenna bottom 3502 , an antenna top 3504 , a winding drum 3506 , a gear wheel 3508 , a button 3510 , a button ring 3512 , a metal plate 3514 , a PCB 3516 , a tap 3518 , a compression spring 3522 , a drive spring 3524 , an antenna cable 3526 , a gear wheel pin 3528 , a center axis 3530 , a winding drum lid 3532 , a sound barrier 3534 , a glide plate 3536 , and a ball bearing 3538 .
- the retractor components are placed inside of the winding drum 3506 while the antenna cable 3526 retracts on the circumferential surface of the winding drum 3506 .
- the cable of the antenna may be fully deployed until a green marker can be seen. Otherwise, the coiled antenna cable may absorb excessive power induction energy.
- the retractable external antenna can be attached to the control device by pushing the connector against the control device until a “click” is heard, which signifies that the antenna cable 3626 is locked. Once locked, the antenna cable 3626 is in a suitable configuration.
- the locking mechanism ensures a good electromagnetic coupling by establishing a unique and stable resting position for the cable.
- the gear wheel 3508 may include a small spring loaded pin (gear wheel pin) 3528 .
- the antenna top 3504 may have a small hole (not shown). The “click” sound may be produced when the spring loaded pin 3528 enters into the small hole. This may occur when the spring loaded pin 3528 is in front of the hole after the antenna cable 3526 is fully unwound. When the bottom ring 3512 is pressed, the spring loaded pin 3528 may be disengaged, thereby releasing the antenna cable 3526 .
- the retractable external antenna 3500 may be stored at the back of the control device according to an embodiment of the present invention.
- the magnetic pins 3606 of the control device provide easy connection points for connecting to the docking station.
- FIGS. 37A-37B a perspective view and an exploded view of the implant 3700 (e.g., a gastric band system) are shown according to an embodiment of the present invention.
- the implant 3700 e.g., a gastric band system
- the implant 3700 may include a membrane shell 3702 , a dorsal element 3704 , a motor sleeve 3706 , an implant electronic device enclosure (protection case) base and cable sleeve 3708 , a manipulation handle 3710 , a cable sleeve 3712 , a skeleton 3714 , an implant electronic device enclosure (protection case) cover 3716 , a motor and cable assembly 3718 , a flexible screw assembly 3720 , an implant electronic device PCB 3722 , and a stabilizing tube 3724 .
- the dorsal element 3704 may have a first end, a second end, and a curvy semi-tubular body connecting the first and second ends.
- the first end of the dorsal element 3704 may have a flange lock and a first opening, while the second end of the dorsal element 3704 may have an open compartment.
- the skeleton 3714 may have a distal end, a proximal end, and a ladder body connecting the distal end and the proximal end.
- the proximal end of the skeleton 3714 may have an open compartment for receiving the motor assembly 3718 .
- the distal end of the skeleton 3714 may slide into the second end of the dorsal element 3704 , along its semi-tubular body, and stop at the first end of the dorsal element 3704 .
- the distal end of the skeleton 3714 may be secured to the first end of the dorsal element 3704 , while the open compartment of the skeleton 3714 may fit into the open compartment of the dorsal element 3704 .
- the ladder body of the skeleton 3714 may push against the inner surface of the semi-tubular body of the dorsal element 3704 . Accordingly, the skeleton 3714 may provide support to the semi-tubular body of the dorsal element.
- the stabilizing tube 3724 may be inserted into the ladder body of the skeleton 3714 , such that it may be used for filling in the space defined by the ladder body and for stabilizing the ladder structure.
- the motor assembly 3718 may have a motor coupled to a motor cable.
- the motor may be arranged to receive and maneuver the flexible screw assembly 3720 .
- the motor may have one or more set of rotors and/or gears for engaging a threaded section of the flexible screw assembly 3720 .
- the motor may move a crimped end of the flexible screw assembly 3720 towards or away from the motor.
- the flexible screw assembly 3720 may have a hooked end, which may be guided through a center conduit (space) of the stabilizing tube 3724 . Because the stabilizing tube 3724 is adapted to the curvy shape of the dorsal element 3704 , the flexible screw assembly 3720 may be bended with the stabilizing tube 3724 . After leaving the stabilizing tube 3724 , the hook end of the flexible screw assembly 3720 may be secured to the distal end of the skeleton, which may be secured to the first end of the dorsal element.
- the motor of the motor assembly 3718 may engage the flexible screw assembly 3720 .
- the flexible screw assembly may have an inner section that is inserted into the stabilizing tube 3724 .
- the flexible screw assembly 3720 may have an outer section that stays outside of the stabilizing tube 3724 and extends beyond the open compartments of the skeleton 3714 and of the dorsal element 3704 .
- the motor of the motor assembly 3718 may then engage the threaded section of the flexible screw assembly 3720 , and move the crimped end of the flexible screw assembly 3720 away from the motor.
- the membrane shell 3102 may have a tubular body, which may be used for covering the semi-tubular body of the dorsal element 3704 .
- the cable sleeve 3712 may be used for covering and protecting the motor cable, and the motor sleeve 3706 may be used for covering and protecting the motor.
- the open end of the motor cable may be soldered onto the implant electronic device PCB 3722 , which may be protected by the enclosure cover 3716 and the enclosure base 3708 .
- the flange of the manipulation handle 3710 may be inserted through the hole of the implant electronic device enclosure, folded over, and secured to the implant electronic device enclosure by applying an appropriate amount of MED2-4213 silicon glue or the equivalent thereof on the flange and the cavity of the manipulation handle 3710 .
- the tapered end of the manipulation handle may be inserted and guided through the opening located at the first end of the dorsal element 3704 , thereby leading the second end of the dorsal element 3704 to be inserted into the first end of the dorsal element 3704 .
- the dorsal element 3704 may form a ring structure.
- the ring structure may have an adjustable ventral (inner) ring surface and a rigid dorsal (outer) ring surface.
- the adjustable ventral ring surface may be equipped with several cushion members for applying pressure against the stomach of a patient.
- an appropriate amount of MED2-4213 silicon glue, or the equivalence thereof, may be applied to various components, and the various junctions of thereof, of the implant 3700 for strengthening the overall structure of the implant 3700 .
- the implant electronic device PCB 3722 may be coupled to the motor cable, such that the implant electronic device PCB 3722 may send control signals to the motor and sense a motor coil current of the motor.
- the implant electronic device PCB 3722 , and the junction at which the implant electronic device is coupled to the motor cable, may be protected by the implant electronic device enclosure, which may include the enclosure cover 3716 , the enclosure base 3708 , and the strain relieving sheath 3850 .
- FIGS. 38A and 38B shows a top perspective view and a bottom perspective view of an enclosure base shell 3810 according to an embodiment of the present invention.
- the enclosure base shell 3810 may be part of the enclosure base 3708 .
- the enclosure base shell 3810 may include a compartment 3814 for fitting the electronic device PCB 3722 , a cable port 3812 for receiving and guiding the motor cable, and a handle hinge 3816 for receiving the flange of the manipulation handle 3710 .
- a perspective view of a cladding 3820 is shown according to an embodiment of the present invention.
- the cladding 3820 may be part of the enclosure cover 3716 .
- the cladding 3820 may be coupled to and cooperate with the enclosure base shell 3810 for guiding and protecting the motor cable.
- the cladding 3820 may include a plurality of openings to allow silicon material to be overmolded therein.
- FIG. 38D a perspective view of an enclosure cover shell 3830 is shown according to an embodiment of the present invention.
- the enclosure cover shell 3830 may be part of the enclosure cover 3716 .
- the enclosure cover shell 3830 may be detachably coupled to the enclosure base shell 3810 and the cladding 3820 to form the enclosure case.
- the enclosure case may provide stability and protection for the implant electronic device PCB 3722 and for the connection established between the implant electronic device PCB 3722 and the motor cable.
- the strain relieving sheath 3850 may be used for providing flexible support for the motor cable around the cable port 3812 area.
- the strain relieving sheath 3850 may help prevent breakage of the motor cable by restraining the motion of the motor cable around the cable port 3812 area.
- the extremity of the strain relieving sheath 3850 may have a silicone-PEEK overmolding and a plurality of internal bumps 3852 for keeping the cladding 3820 centered and for distributing the glue evenly.
- FIGS. 39A-39B show a top view and a bottom view of an implant electronic system board (PCB) 3900 , which may be used for implementing the functional features of the implant electronic device PCB 3722 .
- the PCB 3900 may include a power regulation subsystem circuitry 3901 , a microprocessor 3902 , and an implant antenna 3904 .
- the implant (internal) antenna 3904 may loop around the periphery of the PCB 3900 , and it may be responsible for receiving the RF signals transmitted from the external antenna of the control device.
- the power regulation subsystem circuitry 3904 may be coupled to the implant antenna 3904 via the L2 connection port 3906 .
- the power regulation subsystem circuitry 3901 may include a power regulator 3908 for maintaining the local voltage V cc .
- the power regulation subsystem circuitry 3904 may receive the induced power and generate the power regulation signals when the DC input voltage V IN is above certain predetermined threshold (e.g. 5.6 V).
- the microprocessor 3902 may be coupled to the power regulation subsystem circuitry 3901 .
- the microprocessor 3902 may be coupled with the implant antenna 3904 .
- the microprocessor 3902 may be used for generating frequency modulation signals, which may be embedded with power regulation information and gastric band adjustment history information.
- the microprocessor 3902 may be used for receiving and processing commands send from the control device 110 as shown in FIG. 1 .
- the microprocessor 3902 may receive a gastric band adjustment command from the control device 110 .
- the microprocessor 3902 may send motor step signal to the motor for adjusting the width of the gastric band.
- the microprocessor 3902 may receive a gastric band adjustment history request command from the control device 110 . In, response, the microprocessor 3902 may retrieve the requested data from a memory device (not shown) and send the retrieved data back to the control device. In one embodiment, the microprocessor 3902 may have about 8 kB of programmable memory, 512 Bytes of data memory, 512 Bytes of SRAM, two timers, several input and out pins, one comparator, an A/D converter and several interrupt sources.
- the bottom surface of the implant electronic system board 3900 may have nine oval connection pads 3912 , each of which may be soldered to one of nine motor wires of the motor cable. Among the nine ovals connection pads 3912 , eight of them may be grouped in four parallel pairs to provide redundancy protection. The remaining one oval connection pad 3912 may be soldered to an FC wire. The large metallic surface 3914 may be soldered to a motor cable center ground wire (GND).
- GND motor cable center ground wire
- FIGS. 40A-40C show various views of a manipulation hand 4000 , which may be used for implementing the functional features of the manipulation handle 3710 .
- the manipulation hand 4000 may have a tapered end 4042 , a base end 4044 , an elongated body 4043 connecting the tapered end 4042 and the base end 4044 , and a flange 4052 coupled to the base end 4044 .
- the flange 4052 may engage the handle hinge 3816 of the implant electronic device enclosure 3810 .
- the profiled of the elongated body 4043 may allow easier insertion into the opening of the dorsal element.
- the elongated body 4043 may have an increase thickness from the tapered end 4042 to the base end 4044 .
- the elongated body 4043 may have helicoidal arrows 4046 , which may be used for indicating the direction for insertion.
- the helicoidal arrows 4046 may form on one side of the elongated body 4043 .
- the helicoidal arrows 4046 may form on both sides of the elongated body 4043 as shown in FIG. 40C . Accordingly, the helicoidal arrows 4046 may be viewed at most angles during the implant procedure.
- the manipulation handle 4000 may have first, second, third and fourth widths.
- the first width 4002 may be about 10.34 mm
- the second width 4004 may be about 17 mm
- the third width 4006 may be about 3.33 mm
- the fourth width 4008 may be about 4.2 mm.
- the manipulation handle 4000 may have a flange length 4010 and a body length 4038 .
- the flange length 4010 may be about 13.5 mm, and the body length 4038 may be about 100.3 mm.
- the flange 4052 may have a flange thickness 4012 , which may be about 1.4 mm.
- the elongated body 4043 may have twelve thicknesses.
- the first thickness 4014 may be about 4.96 mm
- the second thickness 4016 may be about 4.5 mm
- the third thickness 4018 may be about 3.9 mm
- the fourth thickness 4020 may be about 3.6 mm
- the fifth thickness 4022 may be about 3.45 mm
- the sixth thickness 4024 may be about 3.42 mm
- the seven thickness 4026 may be about 3.4 mm
- the eighth thickness 4028 may be about 3.2 mm
- the ninth thickness 4030 may be about 3.03 mm
- the tenth thickness 4032 may be about 2.9 mm
- the eleventh thickness 4034 may be about 2.8 mm
- the twelfth thickness 4036 may be about 1.7 mm.
- FIG. 41 a state diagram of implant electronic device software algorithm is shown according to an embodiment of the present invention.
- the implant electronic device software algorithm may be executed by the microprocessor 3902 to perform various functions, such as driving the motor, counting the motor steps, detecting and eliminating motor blockage, storing and sending the patient's identification number and record information, such as the implantation date and the history of the last ten adjustments, and performing a self test on motor coils and other electronic components.
- the implant electronic system may enter the “Init” state 4100 , in which the microprocessors, the A/D converters, the input/output devices, interrupt devices, comparator, and watchdog devices may be initialized. Once the initialization is completed, the implant electronic system may enter the “Power On Self Test” state 4102 , in which the motor coils may be tested. If the self test is successful, the implant electronic system may enter the “Send ID” state 4108 . Otherwise, the implant electronic system may enter the “Error Detected” state 4104 , in which the RF transponder may notify the control device 110 with the appropriate message.
- the “Send ID” state 4102 may be the default state, such that it may loop itself and continuously send ID messages back to the control device 110 until additional command is sent form the control device.
- the data structure of the ID messages may include three ID bytes, two status bytes, three motor position bytes, and one CRC code check byte.
- the implant electronic system may transit out of the “Send ID” state 4102 once it receives a command from the control device.
- the implantation date will be recorded in the EEPROM in the “Record Date” state 4112 if a “record date” command is received and the implantation flag is False.
- the last 10 implant's positions will be sent back to the control device during the “Send History” state 4116 if a “send history” command is received.
- the implant electronic system may enter the “Adjust Band” state 4110 if an “Open” or “Close” command is received.
- the motor sequence may be activated, such that the motor may be directed to rotate clockwise or counter-clockwise.
- FIGS. 43B and 44B A complete list of commands and the associating transmission protocol can be found on FIGS. 43B and 44B . Particularly, FIG. 43B illustrates the data structure of commands that do not require additional parameters being sent to the implant, whereas FIG. 44B illustrates the data structure of commands that require additional parameter.
- the “ImplantRequestStopPower” command may instruct the implant to stop powering the motor; the “ImplantRequestSelfTest” command may request the implant to perform a self test procedure; the “ImplantGetCurrentDate” command may request the implant to get the current date; the “ImplantGetSerialNumber” may instruct the implant to get the serial number; the “ImplantGetFirmwareVersion” may instruct the implant to get the firmware version; the “ImplantGetStepCounter” command may instruct the implant to gets the current motor step counter; the “ImplantEepromRecovery” command may instruct the implant to recover all stored EEPROM memory; and the “ImplantGetExtendedStatusRegister” command may instruct the implant to get value of an extended status register.
- the “ImplantOpenNStep” command may ask the implant to turn the stepper motor clockwise by a number of steps in order to open the band; the “ImplantCloseNStep” command may ask the implant to turn the stepper motor counter-clockwise by N number of steps in order to close the band; the “ImplantWriteByteEeprom” command may instruct the implant to write a byte of data into the EEPROM; the “ImplantSetCurrentDate” command may instruct the implant to set and store the current date; the “ImplantReadHistory” command may instruct the implant to read the adjustment history; the “ImplantGetParameters” command may instruct the implant to get some specific parameters; and the “ImplantReadEepromRecovery” may instruct the implant to recover a specific record stored in EEPROM.
- motor coil currents may be monitored during the motor sequence initialization and throughout the motor rotation phase for detecting and eliminating motor blockage. If a motor blockage is detected, the implant electronic system may enter the “Unblock Motor” state 4106 to resolve the motor blockage issue. In one embodiment, the motor may be directed to reduce its rotation speed, so that it may generate more torque to overcome the motor blockage. In another embodiment, the motor may be directed to change the rotation direction if the motor speed reduction scheme fails to remove the motor blockage.
- the implant electronic system may enter the “Error Detected” state 4104 , in which an error message will be sent to the control device 110 .
- the implant electronic system may return to the “Adjust Band” state 4110 to continue adjusting the gastric band.
- the implant electronic system may enter the “Record Implant Position” state 4118 , in which the last adjustment and the received date will be recorded in the EEPROM.
- FIG. 49 shows a timing diagram of a computer interrupt sequence upon a detection of a control device command at the implant.
- the command 4904 may be sent by the control device, and it may be carried by an amplitude modulation signal at a carrier frequency of about 27 MHz.
- the command 4904 may be fed to a comparator to generate the interrupt sequence 4902 .
- the interrupts may be used for starting and/or stopping a timer. For example, a low state values (bit 0 ) and a high state values (bit 1 ) may be characterized as a short period and a long period, respectively.
- the implant may acknowledge the reception of a command by responding with an ACK message if the command does not contain any parameter.
- the control device may send a command with parameters.
- the parameters and the Cyclic Redundant Check (CRC) code may be sent at about 2 ms intervals. If the CRC code verification is successful, the implant may then respond with an ACK message, which may confirm that the command is properly received. Otherwise, the implant may send a NACK message to prompt the control device to resend the command.
- CRC Cyclic Redundant Check
- the implant may send a NACK message to prompt the control device to resend the command.
- the data structures of the ACK message and the NACK message may be similar except for the last four bits.
- several commands may request information from the implant.
- the implant may embed the requested information in a response message.
- the control device may respond with an ACK message.
- the response message may include a start bit, two synchronization bits, eight “length” bits, several response message bits the size of which is defined by the value contains in the “length” bits, and eight CRC bits.
- timeout conditions may be met when the implant takes more than 200 ms to send back either an ACK message or a response message.
- timeout conditions and/or a NACK message from the implant may trigger the resending of commands from the control device.
- this resending mechanism may repeat up to about five times.
- FIG. 50 shows a screen shot of the timing diagrams of the control device's command and the implant's response.
- the response time t resp may be measured from the sending of the command 5010 (from the control device 110 ) to the sending of the response 5020 (from the implant).
- the start pulse duration t sd may be the duration for transmitting the first response pulse
- the data bit duration t db may be the duration for transmitting one message data bit.
- the start pulse duration t sd may be set at 400 ⁇ s and the data bit duration t db may be set at 200 ⁇ s.
- the start bit duration may be set to low.
- a data structure of implant adjustment history record 4800 (hereafter “history data record”) may be shown according to an embodiment of the present invention.
- the history data record 4800 may reserve four bytes for storing gastric band position information, three bytes for storing date information, and one byte for storing CRC code.
- the gastric band position may be represented by about 71,000 motor steps, which may be stored in the four-byte data field.
- the EEPROM in the CAD has a size of about 512 bytes, information may normally be stored in duplicates of 256-byte size in a first record location and a second record location.
- the implant electronic device may be able to use the second set of records for data if the first set of records is corrupted.
- the motor used in the implant may be a step motor.
- One step of the motor may correspond to one binary value stored in the counter.
- the stored value of “0” may represent a substantially (or fully) open band, while a stored value of “71,000” may represent a substantially (or fully) closed band.
- more than one control devices may access and retrieve information from the implant, such that multiple care-takers and/or physicians may monitor and adjust the gastric band for the patient.
- FIGS. 55A-55B a perspective top view and a perspective bottom view of a motor 5500 according to an embodiment of the present invention.
- the motor 5500 may be used for implementing the functional features of the motor assembly 3718 as shown in FIG. 37B .
- the motor 5500 may include the upper bearings 5504 , lower bearings 5508 , a set of motor gears 5505 , a first motor coil 5506 , a second motor coil 5507 , a maneuver channel 5510 , and a motor switch PCB 5530 .
- the motor switch PCB 5530 may have a layer of gold plate over the copper layer and large pads for cleaner thermo soldering, and the set of motor gears 5505 may be covered by dry lubrication with a diamond like coating (DLC) to achieve better surface tension for avoiding water drop formation.
- DLC diamond like coating
- the maneuver channel 5510 may be used for receiving the threaded section of the flexible screw.
- the flexible screw When the set of gears 5505 are turned, the flexible screw may be maneuvered along the maneuver channel 5510 .
- the flexible screw In a band widening step, for example, the flexible screw may be maneuvered from the upper bearing 5504 side of the maneuver channel 5510 to the lower bearing 5508 side of the maneuver channel 5510 .
- a band tightening step for example, the flexible screw may be maneuvered from the lower bearing 5508 side of the maneuver channel 5510 to the upper bearing 5504 side of the maneuver channel 5510 .
- the motor 5500 , the motor wires 5522 , and the flexible screw may be protected by several devices. Before entering the motor 5500 , for example, the motor wires 5522 may be protected by the motor cable 5524 . At or near the lower bearings 5508 , for example, the motor wires 5522 may be protected by a cable cone 5542 of a motor traveling PCB protection cap 5540 .
- the motor traveling PCB protection cap 5540 may include the cable cone and a PCB brace 5544 .
- the cable cone 5542 may be used for protecting the motor wires 5522 .
- the PCB brace 5544 may be used for protecting the lower bearings 5508 and holding the motor switch PCB 5530 .
- the motor traveling PCB protection cap 5540 may be made of a PEEK material, and it may be mounted to the lower bearing 5508 of the motor 5500 .
- FIGS. 55C-55D show a perspective bottom view and a perspective top view of motor cap 5520 according to an embodiment of the present invention.
- the motor cap 5520 may cover the motor traveling PCB protection cap 5540 and thereby providing further protection for the lower bearing 5508 of the motor 5500 .
- the motor cap 5520 may define a maneuver aperture 5526 , which may help guide the longitudinal movement of the flexible screw 5560 .
- the motor cap 5520 may include a set of flanges 5527 , which may be used for anchoring to the skeleton 5800 .
- the motor 5500 may be partially secured by the motor cap 5520 and the motor traveling PCB protection cap 5540 . After receiving and securing the motor 5500 , the motor cap 5520 may anchor the motor 5500 to the skeleton 5800 .
- the motor cap 5520 may have several rails to allow silicone to form overmolding thereon.
- the motor cable 5524 and part of the flexible screw may be further protected by an overmold motor sleeve.
- FIGS. 55G-55H a perspective side view and a perspective front view of a motor sleeve 5550 are shown according to an embodiment of the present invention.
- the motor sleeve 5550 may be made of an LSR silicon material overmolded on a PEEK material.
- the LSR silicon overmolded PEEK may provide a sealing surface to protect fluid from entering the motor 5500 .
- the motor sleeve 5550 a plurality of internal bumps 5552 to facilitate even gluing between the interior of the motor sleeve 5550 and the motor cable 5524 .
- FIG. 55I shows an exploded view of a motor coil 5560 according to an embodiment of the present invention.
- the motor coil 5560 may be used for implementing the first and/or second motor coils 5506 and 5507 .
- the motor coil 5560 may include a first connection board 5564 , a second connection board 5566 , a core 5562 , an inner shield 5570 , a coil body 5568 , and an outer shield 5572 .
- the first and second connection boards 5564 and 5566 may provide a connection interface between the motor wires and the coil body 5568 . Moreover, the first and second connection boards 5564 and 5568 may help secure the coil body 5568 around the center of the core 5562 . The first and second connection boards 5564 and 5568 may engage the core 5562 and sandwich the coil body 5568 between both ends of the core 5562 .
- the coil body 5568 may have several coils that are made of silver wire. When current passes through the coils, the coil body 5568 may induce a magnetic flux along the core 5562 .
- the inner and outer shield 5570 and 5572 may shield the coil body 5568 from electromagnetic interference, such that the magnetic flux generated by one motor coil (e.g., the motor coil 5506 or 5507 ) will not interfere with the magnetic flux generated by another motor coil (e.g., the motor coil 5507 or 5506 ).
- FIGS. 55J-55K show various views of the motor cable 5524 according to an embodiment of the present invention.
- the motor cable 5524 may include a central conductor 5521 , nine twisted wires 5522 , and a PTFE tape 5525 .
- the central conductor 5521 may be crimped and attached to the motor 5500 on one end, and it may be crimped and soldered to the implant electronic system PCB 3722 on the other end.
- the central conductor 5521 may be a ground wire or a skeleton wire depending on the particular circuit configuration being used.
- the central conductor 5521 may include ninety-one MP35NLT alloy wires each with diameter of 0.04 mm.
- the nine twisted wires 5522 may be connected to the first and second motor coils or the end of a travel switch.
- Each of the nine twisted wires 5522 may include seven AISI316L silver plated stainless steel wires 5523 , each of which may have a diameter of 0.12 mm.
- FIG. 56 shows a side view of a flexible screw assembly 5600 according to an embodiment of the present invention.
- the flexible screw assembly 5600 may be used for implementing the functional features of the flexible screw assembly 3720 .
- the flexible screw assembly 5600 may have a hook end 5602 , a central wire 5604 , an intercalary wire (threaded section) 5605 , and a crimped end 5608 .
- the central wire 5604 may be surrounded by the stabilizing tube as discussed in FIG. 37B , and it may be attached to the end of the intercalary wire 5605 opposite to a crimped end 5608 .
- the central wire 5604 may be used for controlling the size of the gastric band when the intercalary wire 5605 is being moved back and forth the maneuver channel 5510 of the motor 5500 (see FIGS. 55A and 55B ).
- the flexible screw assembly 5600 may have an overall length 5612 of about 136.20 mm and with a tolerant range of about 0.1 mm.
- the intercalary wire 5605 may have an overall length 5614 of about 52 mm and with a tolerant range of about 0.1 mm.
- the hook member 5602 may have a width 5601 and a length 5618 .
- the width 5601 may be about 2.5 mm and with a tolerant range of about 0.1 mm, whereas the length 5618 may be about 8 mm and with a tolerant range of about 0.1 mm.
- FIGS. 57A-57H provide various views of the motor 5500 engaging the flexible screw 5600 to illustrate the structural and functional relationships between the motor 5500 and the flexible screw assembly 5600 .
- each of the first and second motor coils 5506 and 5507 may receive a motor current from the implant electronic device PCB 3722 and via the motor wires 5522 .
- the first and second motor coils 5506 may each generate a magnetic flux in response to the received motor current.
- the generated magnetic flux may be collected by the stator 5547 , which may convert the magnetic flux to mechanical force for driving a set of rotors 5541 .
- the set of rotors 5541 may be engaged to and for driving the set of gears 5505 .
- the set of gears 5505 may include a set of auxiliary gears 5543 and a primary gear 5545 .
- the set of auxiliary gears 5543 may be engaged between the rotor 5541 and the primary gear 5545 , such that the set of auxiliary gears 5543 may redirect the mechanical force from the rotor 5543 to the primary gear 5545 .
- the primary gear 5545 may be positioned within the maneuver channel 5510 .
- the upper bearings 5504 and the lower bearings 5508 may help position, stabilize, and secure the primary gear 5545 within the maneuver channel 5510 .
- the primary gear 5545 may have an internal threaded section for engaging the external thread of the intercalary wire 5606 of the flexible screw 5600 . When the primary gear 5545 is set to rotate, it may move the intercalary wire 5606 along the maneuver channel 5510 . As such, upon receiving the mechanical force, the primary gear 5545 may actual a relative longitudinal movement between the motor 5500 and the flexible screw 5600 .
- the motor 5500 may slide along the intercalary wire 5606 .
- the hook end 5602 of the flexible screw 5600 may be positioned in the proximity of the motor 5500 .
- the size of the gastric band which can be defined in diameter and/or circumference, may be adjusted by varying a relative distance between the hook end 5602 and an engagement position on the intercalary wire 5606 . More specifically, the engagement position is a position at which the motor 5500 may engage the intercalary wire 5606 .
- the size of the gastric band may be increased by sliding the motor 5500 toward the crimped end 5608 of the flexible screw 5600 .
- the size of the gastric band may be reduced by sliding the motor 5500 toward the hook end 5602 of the flexible screw 5600 .
- FIG. 51 a schematic view of a motor coil current measurement system 5100 is shown according to an embodiment of the present invention.
- the connection between the motor and the implant electronic device may be established via ten conductor cable wires.
- the cable wires 5122 and 5124 may be connected to the screw end of a travel switch.
- the cable wire 5122 may be one of the motor wires 5522
- the cable wire 5124 may be the center conductor 5521 as shown in FIG. 55K .
- the eight cable wires connecting to the motor coils may be duplicated and connected in parallel.
- the cable wire 5102 may duplicate the cable wire 5104
- the cable wire 5106 may duplicate the cable wire 5108
- the cable wire 5112 may duplicate the cable wire 5114
- the cable wire 5116 may duplicate the cable wire 5118 .
- Each of the cable wires 5102 , 5104 , 5106 , 5108 , 5112 , 5114 , 5116 , and 5118 may be implemented by one of the nine motor wires 5522 as shown in FIG. 55K .
- the cable wires 5102 and 5104 may be connected to a first end of the motor coil 2 , while the cable wires 5106 and 5108 may be connected to a second end of the motor coil 2 .
- the cable wires 5112 and 5114 may be connected to a first end of the motor coil 1
- the cable wires 5116 and 5118 may be connected to a second end of the motor coil 1 .
- control device may request the patient's identification number and history data from the implant electronic system before the gastric band adjustment process.
- the implant electronic system may retrieve and send back the requested information.
- the control device may be ready for adjustment.
- the user may elect to tighten or loosen the gastric band.
- the electronic device When the electronic device receives band adjustment commands from the control device, it may initiate a motor-on sequence which may include a motor positioning phase, a motor startup phase, and a motor drive phase. During the motor position phase, the motor is moved to a known position prior to the actual rotation start. Table 3 may illustrate the motor positioning phase:
- a positive pulse POS and a negative pulse NEG may be used for driving the motor coils.
- the first motor coil may receive a negative pulse for 5 ms and then another negative pulse for 60 ms, whereas the second motor coil may receive a positive pulse for 5 ms and a negative pulse for 60 ms.
- Table 4 may provide four pulse pair steps for rotating the motor:
- the pulse pair (PP) combination parameters may be stored in the implant electronic device's EEPROM.
- two pairs of pulses may drive a full turn of the motor, thereby completing a single motor step.
- two motor steps may be completed after executing pulse pairs PPL 0 to PPL 3 .
- the completion of each motor step may be reported back to the control device for monitoring purposes.
- the duration of the pulses may be gradually decreased from about 5.12 ms down to about 2.6 ms with a delta of about 0.15 ms after each pulse.
- a motor blockage may be detected.
- the motor drive phase may be used for refining a minimal pulse duration, which may range from about 2.6 ms to about 1.2 ms.
- the minimal pulse duration may allow the motor coils to turn smoothly without any motor blockage.
- the minimal pulse duration may be refined by detecting the motor coil currents across the resistors 5132 and/or 5134 .
- the motor coil currents may be amplified by an analog amplifier and then digitized by an analog-to-digital converter (ADC).
- ADC analog-to-digital converter
- the analog amplifier may be configured to have an amplifying power of 32, and the ADC may be configured to generate a 10-bit digital number for representing the value of the motor coil current.
- the resistance of the resistors 5132 and 5134 may be much smaller than the resistance of the motor coils 5142 and 5144 .
- the resistance of the motor coil 5142 or 5144 may be 167 times of the resistance of the resistor 5132 or 5134 .
- the resistance of the resistors 5132 and 5134 may each be about 3.6 ⁇ , whereas the resistance of the motor coils 5142 and 5144 may each be about 600 ⁇ .
- the voltage drop across the resistors 5132 and 5134 may be minimal when compared to the voltage drop across the motor coil resistors 5142 and 5144 . Therefore, the resistance of the resistors 5132 and 5134 may have little effect on the overall current flowing of the first and second motor coils.
- Sources of motor blockage may include increased force required to close the band as its materials get more compressed. As the radius of the band reduces, it would also become more difficult to pull on the flexible screw 5600 regardless of the presence of other materials. Biological tissue also gets more compressed as radius decreases, leading to more required force from the motor.
- the motor may be rated at a pulling force of 20 N but with typical pulling force of 27 N, such that it would get stalled as the required force would be higher than the typical pulling force.
- a first current profile 5206 may represent a motor coil current of an unblocked motor
- a second current profile 5208 may represent a motor coil current of a blocked motor.
- the resistance of a blocked motor may be higher than an unblocked motor.
- the motor coil current of a blocked motor e.g., the second current profile 5208
- the motor coil current of a blocked motor may increase rapidly during an initial period 5201 of a motor step but slowly during a middle period 5202 of the motor step.
- the resistance of an unblocked motor is typically lower than that of a blocked motor.
- the motor coil current of an unblocked motor e.g., the first current profile 5206
- Both motor coil currents e.g., the first and second current profiles 5206 and 5208
- the integral sum of the blocked motor coil current e.g., the second current profile 5208
- the integral sum of the unblocked motor coil current may be much greater than the integral sum of the unblocked motor coil current (e.g., the first current profile 5206 ). This phenomenon may be attributed by the early ramping of the blocked motor coil current and the late ramping of the unblocked motor coiled current.
- the integral sum of the blocked motor current during the middle period 5202 is typically greater than the maximum motor coil current 5209 .
- the integral sum of the unblocked motor current during the middle period 5202 is typically less than the maximum motor coil current 5209 .
- the integral sum of a particular motor coil current during the middle period 5202 may be compared to the maximum motor coil current 5209 in determining whether the motor is blocked.
- the implant electronic device may execute a software algorithm for detecting motor blockage.
- the software algorithm may take advantage of the aforementioned principle, and it may be stored in a tangible computer readable medium.
- the tangible computer readable medium may include a flash memory in the implant electronic device.
- the tangible computer readable medium may include, but not limited to, random access memory (RAM), flash memory, read-only memory (ROM), EPROM, EEPROM, registers, hard disk, removable disk, CD-ROM, DVD, Blu-ray disk, wireless channels, and various other media capable of storing, containing or carrying instruction(s) and/or data.
- the motor coil current may be measured by the implant electronic device, while the motor blockage detection software algorithm may be stored in and executed by the control unit.
- an integral sum value (idt) may be calculated by measuring the integral sum of motor coil current (Integral_idt) and normalizing the measurement.
- the measurement may be performed during the PPL 2 pulse pair, and the normalization may be performed by multiplying the measured integral sum of motor coil current (Integral_idt) by a predetermined parameter (constant_idt).
- the maximum current (crt) may be calculated by measuring the maximum motor coil current (Current_Max) and normalizing the measurement.
- the measurement may be performed during the PPL 3 pulse pair, and the normalization may be performed by multiplying the measured maximum motor coil current (Current_Max) by a predetermined parameter (constant_Max).
- step 5308 a determination can be made regarding whether the integral sum value (idt) is greater than the maximum current (crt). If a positive determination is made, the algorithm may proceed to step 5308 , in which the value of a block register (iBlock) may be augmented.
- the block register value augmentation may be representative of the possibility that the motor is blocked. Hence, the higher the value of block register is, the more likely that the motor blockage has occurred.
- step 5308 the algorithm may proceed to step 5312 , in which the value of the block register (iBlock) may be compared with a predefined value. If the value of the block register is less than the predefined value, a reduction step 5316 may be executed for reducing the value of the block register. In one embodiment, the value of the block register may be a negative number. If the value of the block register is greater than the predefined value, an increment step 5314 may be executed for augmenting the value of the block register.
- the value of the block register may be compared with a predefined threshold.
- the predefined threshold may represent a threshold probability that a motor blockage has occurred. If the value of the block register does not reach the predefined threshold, the algorithm may assume no motor blockage has happened yet, and it may return to step 5302 for the next motor sequence. However, if the value of the block register exceeds the predefined threshold, the algorithm may determine that the motor is blocked, and it may enter a different sequence.
- the implant electronic device may direct the motor to decrease its speed and to enhance the motor torque.
- the implant electronic device may decrease the pulse duration to about 1.2 ms to produce more motor torque. If the motor load decreases, thereby requiring less motor torque, the implant electronic device may direct the motor to increase its speed again.
- FIGS. 58A-58C various views of a bendable skeleton 5800 may be shown according to an embodiment of the present invention.
- the bendable skeleton 5800 may be used for implementing the functional features of the skeleton 3814 .
- the bendable skeleton may be made of a PEEK material, which may be corrosion resistive and durable against stress.
- the bendable skeleton 5800 may have an open compartment 5802 for receiving and securing the motor, a ladder body 5804 for supporting the dorsal ring surface of the gastric band, and a distal end member 5806 for providing an anchor point for the hook end (element) 5602 of the flexible screw 5600 to the first end of the dorsal element.
- the ladder body 5804 may also embrace the stabilizing tube 5820 .
- the stabilizing tube 5802 may guide the center wire of the flexible screw assembly to travel from the open compartment 5802 to the distal end member 5806 of the bendable skeleton 5800 .
- the open compartment 5802 may have a diameter 5808 , a vertical distance 5810 separating the open compartment 5802 and the distal end member 5806 , and an overall length 5812 .
- the diameter 5805 may be about 13.6 mm
- the vertical distance 5810 may be about 67.6 mm
- the overall length 5812 may be about 111.23 mm.
- FIGS. 59A-59B show a perspective view and a cross-sectional view of the stabilizing tube 5820 according to an embodiment of the present invention.
- the stabilizing tube 5820 may be made of an ePTFE material.
- the stabilizing tube 5820 may have an overall length 5912 , a first height 5914 , a second height 5916 , a radius 5922 , a thickness 5920 , and a channel radius 5918 .
- the overall length 5912 may be about 130 mm
- the first height 5914 may be about 2.55 mm
- the second height 5916 may be about 4.4 mm
- the radius 5922 may be about 5 mm
- the thickness 5920 may be about 3.5 mm
- the channel diameter 5918 may be about 3 mm.
- FIGS. 60A-60D show various views of a dorsal element 6000 according to an embodiment of the present invention.
- the dorsal element 6000 may be used for implementing the functional features of the dorsal element 3704 as shown in FIG. 37B .
- the dorsal element 6000 may include an open compartment 6001 , an opening 6002 , and a semi-tubular ring (body) 6022 connecting the open compartment 6001 and the opening 6002 .
- the side wall of the open compartment 6001 may have a locking protrusion and a ring-locked indicator 6030 formed on the locking protrusion.
- the open compartment 6001 may be inserted into the opening 6002 , which may have a clip ring with a locking flange 6006 .
- the locking flange may have a port for securing the locking protrusion. Once the locking protrusion is secured by the flange port, the ring-lock indicator 6030 may become visible.
- FIGS. 61A-61C show various views of an anti-slip cushion 6100 according to an embodiment of the present invention.
- the cushion 6100 may have a width 6102 , a thickness 6104 , a first length 6106 , and a second length 6110 .
- the width 6102 may be about 17.92 mm
- the thickness 6104 may be about 4.42 mm
- the first length 6106 may be about 17.3 mm
- the second length 6110 may be slightly shorter than the first length 6106 .
- the front surface of the cushion 6100 may be symmetrical along a vertical axis, and it may have a convex shield-like surface with an array of curvy groove lines 6108 to provide more friction.
- the curvy groove lines 6108 may help the gastric band to remain in contact with the patient stomach and reduce the likelihood of band slippage.
- the shield-like convex surface of the cushion 6100 may efficiently stimulate the valgus nerve of the patient.
- FIGS. 62A-62C show various views of a membrane shell 6200 according to an embodiment of the present invention.
- the membrane shell 6200 may include a tubular structure made of several segments 6208 .
- the tubular structure 6202 may have a circular contour, and it may be used for encapsulating the dorsal element 6000 , the skeleton 5800 , and part of the flexible screw 5600 .
- the segments 6208 may be used for receiving the cushions 6100 .
- the membrane shell 6200 may be made of several NuSil LSR silicones, depending on the level of hardness it is designed to achieve. In one embodiment, for example, the membrane shell 6200 may be made of MED-4870, which is a silicone with a hardness of about 70 Shore A.
- FIGS. 63A-63C show various views of a cushioned membrane shell 6300 according to an embodiment of the present invention.
- the cushioned membrane shell 6300 may include several cushions 6308 , which may be made of MED-4801. When compared to MED-4870, MED-4801 may have a hardness of about 1 Shore A. Accordingly, the cushioned membrane shell 6300 may have a soft inner circumferential surface and a hard outer circumferential surface.
- the cushions 6308 may be made of a silicone elastomer external shell filled with saline solution or made of a silicone elastomer external shell filled with silicone gel.
- the silicone elastomer for the cushions may have a hardness ranges from about 1 Shore A to about 10 Shore A, whereas the silicone elastomer for the membrane shell may have a hardness ranges from about 20 Shore A to about 45 Shore A.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Biomedical Technology (AREA)
- Obesity (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nursing (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Child & Adolescent Psychology (AREA)
- Surgical Instruments (AREA)
- Electrotherapy Devices (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/076,139 US20110270025A1 (en) | 2010-04-30 | 2011-03-30 | Remotely powered remotely adjustable gastric band system |
US14/075,964 US9192501B2 (en) | 2010-04-30 | 2013-11-08 | Remotely powered remotely adjustable gastric band system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US34357110P | 2010-04-30 | 2010-04-30 | |
US13/076,139 US20110270025A1 (en) | 2010-04-30 | 2011-03-30 | Remotely powered remotely adjustable gastric band system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/075,964 Continuation US9192501B2 (en) | 2010-04-30 | 2013-11-08 | Remotely powered remotely adjustable gastric band system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110270025A1 true US20110270025A1 (en) | 2011-11-03 |
Family
ID=44351403
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/076,139 Abandoned US20110270025A1 (en) | 2010-04-30 | 2011-03-30 | Remotely powered remotely adjustable gastric band system |
US14/075,964 Expired - Fee Related US9192501B2 (en) | 2010-04-30 | 2013-11-08 | Remotely powered remotely adjustable gastric band system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/075,964 Expired - Fee Related US9192501B2 (en) | 2010-04-30 | 2013-11-08 | Remotely powered remotely adjustable gastric band system |
Country Status (6)
Country | Link |
---|---|
US (2) | US20110270025A1 (fr) |
EP (2) | EP2604234B1 (fr) |
AU (1) | AU2011246960B2 (fr) |
CA (1) | CA2797894A1 (fr) |
ES (1) | ES2523967T3 (fr) |
WO (1) | WO2011135443A2 (fr) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130046197A1 (en) * | 2011-08-16 | 2013-02-21 | Daniel F. Dlugos, Jr. | Docking station for patient bedside monitoring units |
WO2013090822A1 (fr) * | 2011-12-15 | 2013-06-20 | Autodesk, Inc. | Dispositifs implantés et interfaces utilisateur associées |
US20130166642A1 (en) * | 2011-12-22 | 2013-06-27 | Richard J. Polefko | Communication for implantable medical devices |
US20130198463A1 (en) * | 2012-01-27 | 2013-08-01 | Medtronic, Inc. | Retrieval of information from an implantable medical device |
EP2858258A1 (fr) * | 2013-10-07 | 2015-04-08 | Nxp B.V. | Station de base pour communication RF |
US9011365B2 (en) | 2013-03-12 | 2015-04-21 | Medibotics Llc | Adjustable gastrointestinal bifurcation (AGB) for reduced absorption of unhealthy food |
US9067070B2 (en) | 2013-03-12 | 2015-06-30 | Medibotics Llc | Dysgeusia-inducing neurostimulation for modifying consumption of a selected nutrient type |
CN104753572A (zh) * | 2013-12-27 | 2015-07-01 | 兄弟工业株式会社 | 通信装置 |
US20150270875A1 (en) * | 2011-08-30 | 2015-09-24 | L & P Property Management Company | Docking station for inductively charged portable electronic device |
US9159224B2 (en) | 2013-09-12 | 2015-10-13 | Nxp B.V. | Wireless power and data apparatus, system and method |
US20160020637A1 (en) * | 2014-07-15 | 2016-01-21 | Rf Micro Devices, Inc. | Wireless charging circuit |
US9456916B2 (en) | 2013-03-12 | 2016-10-04 | Medibotics Llc | Device for selectively reducing absorption of unhealthy food |
CN110346745A (zh) * | 2019-07-30 | 2019-10-18 | 福建星云电子股份有限公司 | 一种电池模组检测工具用校验工装 |
US10559970B2 (en) | 2014-09-16 | 2020-02-11 | Qorvo Us, Inc. | Method for wireless charging power control |
US10603195B1 (en) | 2015-05-20 | 2020-03-31 | Paul Sherburne | Radial expansion and contraction features of medical devices |
EP3849444A4 (fr) * | 2018-09-10 | 2022-06-22 | AMB Orthopedics, Inc. | Systèmes et procédés de réglage une tige pouvant s'agrandir |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL3138672T3 (pl) * | 2011-11-10 | 2020-05-18 | Packsize Llc | Maszyna przekształcająca |
CN108815700B (zh) * | 2018-04-10 | 2022-03-11 | 西安八水健康科技有限公司 | 一种经颅电神经调控治疗抽动症仪器及防止误操作的方法 |
US20220396959A1 (en) * | 2019-11-06 | 2022-12-15 | S.R. Smith, Llc | Deck or slab anchor housing power supply for pool and other high-moisture operating environment powered devices |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050143766A1 (en) * | 2002-09-04 | 2005-06-30 | Endoart Sa | Telemetrically controlled band for regulating functioning of a body organ or duct, and methods of making, implantation and use |
US20050288739A1 (en) * | 2004-06-24 | 2005-12-29 | Ethicon, Inc. | Medical implant having closed loop transcutaneous energy transfer (TET) power transfer regulation circuitry |
Family Cites Families (861)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1174814A (en) | 1915-09-17 | 1916-03-07 | Manville E J Machine Co | Automatic threader. |
US1830947A (en) | 1927-04-18 | 1931-11-10 | Edward L Klingel | Ground clamp |
US1702974A (en) | 1928-05-12 | 1929-02-19 | Spalding & Bros Ag | Collapsible valve and method of making same |
US1999683A (en) | 1933-12-01 | 1935-04-30 | Helge A Borresen | Hose clamp |
US2163048A (en) | 1937-02-13 | 1939-06-20 | Mckee Brothers Corp | Band clamp |
US2339138A (en) | 1942-09-18 | 1944-01-11 | Central Equipment Co | Clamp |
US2405667A (en) | 1944-01-20 | 1946-08-13 | Ottesen Andrew | Receptacle cover |
US2438231A (en) | 1946-01-18 | 1948-03-23 | Schultz | Closure for fountain pens and the like |
US2635907A (en) | 1950-11-13 | 1953-04-21 | Brummer Mfg Corp | Seal for shafts |
US2936980A (en) | 1954-10-01 | 1960-05-17 | Illinois Tool Works | Cable strap |
US2714469A (en) | 1954-11-24 | 1955-08-02 | Emery Carpenter Container Comp | Locking ring construction |
US3059645A (en) | 1960-11-28 | 1962-10-23 | Paul A Hasbrouck | Adjustable clamp |
US3189961A (en) | 1963-09-17 | 1965-06-22 | Rotron Mfg Co | Hose clamp |
SE344275B (fr) | 1966-02-10 | 1972-04-10 | R Gruenert | |
US3587115A (en) | 1966-05-04 | 1971-06-28 | Donald P Shiley | Prosthetic sutureless heart valves and implant tools therefor |
FR1566202A (fr) | 1967-12-27 | 1969-05-09 | ||
US3569660A (en) | 1968-07-29 | 1971-03-09 | Nat Res Dev | Laser cutting apparatus |
US3596660A (en) | 1969-05-12 | 1971-08-03 | Illinois Tool Works | Injection device |
BE758322A (fr) | 1969-11-03 | 1971-04-01 | Bosch Gmbh Robert | Dispositif pour l'essuyage des glaces telles que glaces de phares et defeux arriere de vehicules automobiles |
US3731352A (en) | 1970-06-15 | 1973-05-08 | Toray Industries | Method of manufacturing a fibrous sheet |
US3688764A (en) | 1970-08-20 | 1972-09-05 | Bard Hamilton Co Inc | Intracutaneous injection system |
CA949965A (en) | 1971-12-03 | 1974-06-25 | Robert H. Marchessault | Method of preparing cross-linked starch and starch derivatives |
US3955834A (en) | 1972-02-11 | 1976-05-11 | Aktiebolaget Svenska Flaktfabriken | Apparatus for connecting ducts with a self-sealing joint |
US3719973A (en) | 1972-03-03 | 1973-03-13 | Might Mac Inc | T-bar zipper tab handle |
US3840018A (en) | 1973-01-31 | 1974-10-08 | M Heifetz | Clamp for occluding tubular conduits in the human body |
US3971376A (en) | 1973-02-26 | 1976-07-27 | Ceskoslovenska Akademie Ved | Method and apparatus for introducing fluids into the body |
US3958562A (en) | 1974-05-30 | 1976-05-25 | Hakim Company Limited | Implantable pressure sensor |
US3919724A (en) | 1974-06-07 | 1975-11-18 | Medical Eng Corp | Implantable prosthesis having a self-sealing valve |
US4053176A (en) | 1975-10-15 | 1977-10-11 | West Chester Chemical Co., Inc. | Collar for sealing pipe joints |
US4019499A (en) | 1976-04-22 | 1977-04-26 | Heyer-Schulte Corporation | Compression implant for urinary incontinence |
FR2351646A1 (fr) | 1976-05-19 | 1977-12-16 | Nogier Paul | Perfectionnements aux procedes et appareils d'acupuncture |
US4133315A (en) | 1976-12-27 | 1979-01-09 | Berman Edward J | Method and apparatus for reducing obesity |
US4118805A (en) | 1977-02-28 | 1978-10-10 | Codman & Shurtleff, Inc. | Artificial sphincter |
US4157713A (en) | 1977-05-11 | 1979-06-12 | Clarey Michael T | Air-pressure splint |
DE2721548C2 (de) | 1977-05-13 | 1982-11-04 | Friedrich Gerd 5000 Köln Lauterjung | Sonde |
DE2732547A1 (de) | 1977-07-19 | 1979-02-01 | Bisping Hans Juergen | Implantierbare elektrode |
US4164943A (en) | 1977-09-30 | 1979-08-21 | Thoratec Laboratories Corporation | Catheter anchor |
US4117727A (en) | 1977-12-12 | 1978-10-03 | Friswell David R | Bubble sensor and method |
US4151835A (en) | 1978-03-08 | 1979-05-01 | John Copeland | Foetal scalp electrodes |
US4265252A (en) | 1978-04-19 | 1981-05-05 | The Johns Hopkins University | Intracranial pressure implant |
US4286584A (en) | 1978-06-16 | 1981-09-01 | Infusaid Corporation | Septum locating apparatus |
US4190040A (en) | 1978-07-03 | 1980-02-26 | American Hospital Supply Corporation | Resealable puncture housing for surgical implantation |
US4176412A (en) | 1978-09-15 | 1979-12-04 | The Kendall Company | Urine collection device |
US4299012A (en) | 1979-05-08 | 1981-11-10 | Hans Oetiker | Hose clamp |
US4271827A (en) | 1979-09-13 | 1981-06-09 | Angelchik Jean P | Method for prevention of gastro esophageal reflux |
CA1156003A (fr) | 1979-10-30 | 1983-11-01 | Juan Voltas Baro | Appareil pour stomises |
US4370982A (en) | 1980-09-10 | 1983-02-01 | Medrad, Inc. | Method and apparatus for injecting and for controlling the pressure of fluid being injected into a catheter |
GB2086792B (en) | 1980-11-07 | 1984-12-12 | Microsurgical Administrative S | Gripping devices |
DE3048051C2 (de) | 1980-12-19 | 1985-08-29 | Siemens AG, 1000 Berlin und 8000 München | Längsgeteiltes Muffenrohr aus thermoplastischem Kunststoff mit Formgedächtnis |
DK13881A (da) | 1981-01-14 | 1982-07-15 | O G Nien | Fremgangsmaade og apparat til nedfoering oppustning og efterladelse af et fremmedlegeme fritliggende i mavesaekken paa mennesker |
JPH036454Y2 (fr) | 1981-04-22 | 1991-02-19 | ||
US4417567A (en) | 1981-08-12 | 1983-11-29 | Medical Engineering Corporation | Artificial sphincter |
US4413985A (en) | 1981-09-02 | 1983-11-08 | The United States Of America As Represented By The Dept. Of Health & Human Services | Hydrocephalic antenatal vent for intrauterine treatment (HAVIT) |
US4474572A (en) | 1981-09-29 | 1984-10-02 | Syntex (U.S.A.) Inc. | Implanting device and implant magazine |
US4424208A (en) | 1982-01-11 | 1984-01-03 | Collagen Corporation | Collagen implant material and method for augmenting soft tissue |
US4582640A (en) | 1982-03-08 | 1986-04-15 | Collagen Corporation | Injectable cross-linked collagen implant material |
US4408597A (en) | 1982-04-23 | 1983-10-11 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Prosthetic occlusive device for an internal passageway |
US4545367A (en) | 1982-07-16 | 1985-10-08 | Cordis Corporation | Detachable balloon catheter and method of use |
US4485805A (en) | 1982-08-24 | 1984-12-04 | Gunther Pacific Limited Of Hong Kong | Weight loss device and method |
US4492004A (en) | 1982-12-03 | 1985-01-08 | Hans Oetiker | Earless clamp structure |
US4551862A (en) | 1982-12-15 | 1985-11-12 | Haber Terry M | Prosthetic sphincter |
US4558699A (en) | 1983-01-03 | 1985-12-17 | Bashour Samuel B | Method of and apparatus for restricting the passage of food through the stomach |
IL67773A (en) | 1983-01-28 | 1985-02-28 | Antebi E | Tie for tying live tissue and an instrument for performing said tying operation |
US4430392A (en) | 1983-02-11 | 1984-02-07 | Honeywell Inc. | Heat activated vent |
US4607618A (en) | 1983-02-23 | 1986-08-26 | Angelchik Jean P | Method for treatment of morbid obesity |
DE3309788C2 (de) | 1983-03-18 | 1985-12-05 | Karl Dr. 6301 Pohlheim Aigner | Implantierbarer Zuspritzkatheder |
US4557722A (en) | 1983-04-13 | 1985-12-10 | Cordis Corporation | Fill port for an implantable dispensing system |
US4502335A (en) | 1983-05-04 | 1985-03-05 | Honeywell Inc. | Fluid pressure transmitter assembly |
US4569675A (en) | 1983-09-12 | 1986-02-11 | Infusaid Corporation | Transcutaneous infusion system |
US4543088A (en) | 1983-11-07 | 1985-09-24 | American Hospital Supply Corporation | Self-sealing subcutaneous injection site |
US4588394A (en) | 1984-03-16 | 1986-05-13 | Pudenz-Schulte Medical Research Corp. | Infusion reservoir and pump system |
US4655765A (en) | 1984-06-01 | 1987-04-07 | Parker Hannifin Corporation | Fitting with prestressed septum |
SE442820B (sv) | 1984-06-08 | 1986-02-03 | Pharmacia Ab | Gel av tverbunden hyaluronsyra for anvendning som glaskroppssubstitut |
US4559699A (en) | 1984-06-08 | 1985-12-24 | Westinghouse Electric Corp. | Method of constructing a padmounted distribution transformer |
SE456346B (sv) | 1984-07-23 | 1988-09-26 | Pharmacia Ab | Gel for att forhindra adhesion mellan kroppsvevnader och sett for dess framstellning |
US4634427A (en) | 1984-09-04 | 1987-01-06 | American Hospital Supply Company | Implantable demand medication delivery assembly |
US4603699A (en) | 1984-11-20 | 1986-08-05 | Himpens Jacques M | Apparatus and method for measuring osmotic pressure in situ |
US4582865A (en) | 1984-12-06 | 1986-04-15 | Biomatrix, Inc. | Cross-linked gels of hyaluronic acid and products containing such gels |
US4636213A (en) | 1985-01-24 | 1987-01-13 | Pakiam Anthony I | Implantable prosthesis |
US4881939A (en) | 1985-02-19 | 1989-11-21 | The Johns Hopkins University | Implantable helical cuff |
US4723547A (en) | 1985-05-07 | 1988-02-09 | C. R. Bard, Inc. | Anti-obesity balloon placement system |
US4598699A (en) | 1985-06-10 | 1986-07-08 | Garren Lloyd R | Endoscopic instrument for removing stomach insert |
US4601713A (en) | 1985-06-11 | 1986-07-22 | Genus Catheter Technologies, Inc. | Variable diameter catheter |
US4592339A (en) | 1985-06-12 | 1986-06-03 | Mentor Corporation | Gastric banding device |
SE449430B (sv) | 1985-06-25 | 1987-05-04 | Per Fredlund | Protes for inplantation vid kirurgisk behandling av fetma |
US4671351A (en) | 1985-07-17 | 1987-06-09 | Vertech Treatment Systems, Inc. | Fluid treatment apparatus and heat exchanger |
US4696288A (en) | 1985-08-14 | 1987-09-29 | Kuzmak Lubomyr I | Calibrating apparatus and method of using same for gastric banding surgery |
US4840615A (en) | 1985-09-30 | 1989-06-20 | Mcghan Medical Corporation | Self-sealing injection reservoir |
US4738657A (en) | 1985-09-30 | 1988-04-19 | Mcghan Medical Corporation | Self-sealing injection reservoir |
US4692146A (en) | 1985-10-24 | 1987-09-08 | Cormed, Inc. | Multiple vascular access port |
US4767410A (en) | 1985-12-16 | 1988-08-30 | Surgical Engineering Associates, Inc. | Implantable infusion port |
US4778452A (en) | 1985-12-16 | 1988-10-18 | Surgical Engineering Associates, Inc. | Implantable infusion port |
US4710174A (en) | 1985-12-16 | 1987-12-01 | Surgical Engineering Associates, Inc. | Implantable infusion port |
US4753086A (en) | 1986-01-13 | 1988-06-28 | Schmidt Kenneth J | Costume jewelry circlet |
US4694827A (en) | 1986-01-14 | 1987-09-22 | Weiner Brian C | Inflatable gastric device for treating obesity and method of using the same |
US4673394A (en) | 1986-01-17 | 1987-06-16 | Strato Medical Corporation | Implantable treatment reservoir |
US5120313A (en) | 1986-03-28 | 1992-06-09 | Nancy W. Elftman | Method for measuring blood pressure in an animal or human using a percutaneous access port |
US4693695A (en) | 1986-03-31 | 1987-09-15 | Cheng Peter S C | Ascending and descending balloon action toy |
US4708140A (en) | 1986-05-08 | 1987-11-24 | Baron Howard C | Atraumatic vascular balloon clamp |
US4802885A (en) | 1986-06-17 | 1989-02-07 | Medical Engineering Corporation | Self sealing subcutaneous infusion and withdrawal device |
US4803075A (en) | 1986-06-25 | 1989-02-07 | Collagen Corporation | Injectable implant composition having improved intrudability |
US4832054A (en) | 1986-07-07 | 1989-05-23 | Medical Engineering Corporation | Septum |
GB8618253D0 (en) | 1986-07-25 | 1986-09-03 | Wallace Ltd H G | Intermittent administration of therapeutic substance |
US4704103A (en) | 1986-08-21 | 1987-11-03 | Burron Medical Inc. | Implantable catheter means |
JPS6382961A (ja) | 1986-09-17 | 1988-04-13 | 品川商工株式会社 | 結束具 |
JPS6397259A (ja) | 1986-10-14 | 1988-04-27 | Shinkawa Ltd | ペ−スト吐出装置 |
US4904241A (en) | 1986-10-16 | 1990-02-27 | Medical Engineering Corp. | Septum with a needle stop at the fluid transfer port |
US5091171B2 (en) | 1986-12-23 | 1997-07-15 | Tristrata Inc | Amphoteric compositions and polymeric forms of alpha hydroxyacids and their therapeutic use |
GB8701731D0 (en) | 1987-01-27 | 1987-03-04 | Patcentre Benelux Nv Sa | Pumps |
US4902278A (en) | 1987-02-18 | 1990-02-20 | Ivac Corporation | Fluid delivery micropump |
US4760837A (en) | 1987-02-19 | 1988-08-02 | Inamed Development Company | Apparatus for verifying the position of needle tip within the injection reservoir of an implantable medical device |
US4781680A (en) | 1987-03-02 | 1988-11-01 | Vir Engineering | Resealable injection site |
US4919650A (en) | 1987-03-30 | 1990-04-24 | Bionica Pty. Limited | Infusion pump |
DE3862797D1 (de) | 1987-04-22 | 1991-06-20 | Siemens Ag | Kolbenpumpe fuer ein medikamentendosiergeraet. |
JPS63264078A (ja) | 1987-04-22 | 1988-10-31 | オリンパス光学工業株式会社 | ダイエツト用バル−ン |
JPS63279854A (ja) | 1987-05-12 | 1988-11-16 | Olympus Optical Co Ltd | ダイエットバル−ン摘出装置 |
US4930535A (en) | 1987-05-14 | 1990-06-05 | Mcghan Medical Corporation | Folding leaf valve and method of making |
US4804054A (en) | 1987-06-01 | 1989-02-14 | Intelligent Medicine, Inc. | Device and method for precise subcutaneous placement of a medical instrument |
US4772270A (en) | 1987-06-18 | 1988-09-20 | Catheter Technology Corp. | Inseparable port/catheter tube assembly and methods |
US4858619A (en) | 1987-06-29 | 1989-08-22 | Toth Marie A | Intracranial pressure monitoring system |
US4796641A (en) | 1987-07-06 | 1989-01-10 | Data Sciences, Inc. | Device and method for chronic in-vivo measurement of internal body pressure |
US4858623A (en) | 1987-07-13 | 1989-08-22 | Intermedics, Inc. | Active fixation mechanism for lead assembly of an implantable cardiac stimulator |
FR2623167B2 (fr) | 1987-08-14 | 1992-08-07 | Genus Int | Perfectionnement aux articles munis d'articulations elastiques se rigidifiant lors de leur mise en tension |
US4886501A (en) | 1987-08-25 | 1989-12-12 | Shiley Infusaid Inc. | Implantable device |
US6174999B1 (en) | 1987-09-18 | 2001-01-16 | Genzyme Corporation | Water insoluble derivatives of polyanionic polysaccharides |
US5084061A (en) | 1987-09-25 | 1992-01-28 | Gau Fred C | Intragastric balloon with improved valve locating means |
US5282856A (en) | 1987-12-22 | 1994-02-01 | Ledergerber Walter J | Implantable prosthetic device |
US4850227A (en) | 1987-12-22 | 1989-07-25 | Delco Electronics Corporation | Pressure sensor and method of fabrication thereof |
US4872483A (en) | 1987-12-31 | 1989-10-10 | International Medical Products, Inc. | Conveniently hand held self-contained electronic manometer and pressure modulating device |
US5108377A (en) | 1988-02-02 | 1992-04-28 | C.R. Bard, Inc. | Micro-injection port |
US4915690A (en) | 1988-02-02 | 1990-04-10 | C. R. Bard, Inc. | Micro-injection port |
DE8804765U1 (de) | 1988-04-12 | 1989-05-11 | Witzel, Lothar, Prof. Dr., 1000 Berlin | Magenballon zur Gewichtsreduktion |
US4978338A (en) | 1988-04-21 | 1990-12-18 | Therex Corp. | Implantable infusion apparatus |
US4929236A (en) | 1988-05-26 | 1990-05-29 | Shiley Infusaid, Inc. | Snap-lock fitting catheter for an implantable device |
CH676164A5 (fr) | 1988-05-28 | 1990-12-14 | Sc Techn Dipl Ing Peter A Neuk | |
US4925446A (en) | 1988-07-06 | 1990-05-15 | Transpharm Group Inc. | Removable inflatable intragastrointestinal device for delivering beneficial agents |
US4861341A (en) | 1988-07-18 | 1989-08-29 | Woodburn Robert T | Subcutaneous venous access device and needle system |
US4913702A (en) | 1988-08-15 | 1990-04-03 | Alza Corporation | Fluid imbibing pump with catheter |
US4929230A (en) | 1988-09-30 | 1990-05-29 | Pfleger Frederick W | Syringe construction |
NL8802577A (nl) | 1988-10-19 | 1990-05-16 | Klaas Dijkstra | Implanteerbare injectiekamerinrichting. |
US5125408A (en) | 1988-10-24 | 1992-06-30 | The United States Of America As Represented By The Of The Department Of Health And Human Services | Pressure sensor element and method to measure contact stress |
US5013298A (en) | 1989-02-13 | 1991-05-07 | Surgical Engineering Associates, Inc. | Laterally compressed septum assembly and implantable infusion port with laterally compressed septum |
US4967755A (en) | 1989-02-28 | 1990-11-06 | Medtronic, Inc. | Electromedical lead with pressure sensor |
US4969899A (en) | 1989-03-08 | 1990-11-13 | Cox-Uphoff International | Inflatable implant |
US5185003A (en) | 1989-04-11 | 1993-02-09 | B. Braun Melsungen Ag | Port for injecting medicaments |
US5045060A (en) | 1989-04-26 | 1991-09-03 | Therex Corp. | Implantable infusion device |
US5147483A (en) | 1989-04-26 | 1992-09-15 | Therex Corporation | Implantable infusion device and method of manufacture thereof |
US5041098A (en) | 1989-05-19 | 1991-08-20 | Strato Medical Corporation | Vascular access system for extracorporeal treatment of blood |
US5006115A (en) | 1989-07-25 | 1991-04-09 | Medtronic, Inc. | Needle placement sensor |
US5171228A (en) | 1989-07-25 | 1992-12-15 | Medtronic, Inc. | Apparatus for medical instrument placement verification |
US4994019A (en) | 1989-07-28 | 1991-02-19 | Micro-Magnetics, Inc. | Magnetic occluding device |
EP0416250A3 (en) | 1989-08-01 | 1991-08-28 | The Research Foundation Of State University Of New York | N-acylurea and o-acylisourea derivatives of hyaluronic acid |
US5356883A (en) | 1989-08-01 | 1994-10-18 | Research Foundation Of State University Of N.Y. | Water-insoluble derivatives of hyaluronic acid and their methods of preparation and use |
US5133753A (en) | 1989-08-07 | 1992-07-28 | Medical Engineering Corporation | Method for expanding a self-sealing tissue prosthesis |
DE3927001A1 (de) | 1989-08-16 | 1991-02-21 | Lucien C Dr Med Olivier | Kathetersystem |
US5094244A (en) | 1989-08-25 | 1992-03-10 | Health Monitors, Inc. | Apparatus and process for determining systolic blood pressure, diastolic blood pressure, mean arterial blood pressure, pulse rate, pulse wave shape, respiratory pattern, and respiratory rate |
US5284479A (en) | 1989-08-30 | 1994-02-08 | N.V. Nederlandsche Apparatenfabriek Nedap | Implanter |
FR2652736A1 (fr) | 1989-10-06 | 1991-04-12 | Neftel Frederic | Dispositif implantable d'evaluation du taux de glucose. |
US5167638A (en) | 1989-10-27 | 1992-12-01 | C. R. Bard, Inc. | Subcutaneous multiple-access port |
US5089019A (en) | 1989-12-06 | 1992-02-18 | Medtronic, Inc. | Muscle work output monitor by intramuscular temperature variation measurement |
US5137529A (en) | 1990-02-20 | 1992-08-11 | Pudenz-Schulte Medical Research Corporation | Injection port |
US5092897A (en) | 1990-03-15 | 1992-03-03 | Forte Mark R | Implantable acetabular prosthetic hip joint with universal adjustability |
SE464558B (sv) | 1990-03-22 | 1991-05-13 | Hepar Ab | Implanterbar anordning foer avstaengning av en kanal i en levande varelses kropp |
US5527340A (en) | 1990-04-20 | 1996-06-18 | S & T Marketing Ag | Surgical instrument with gripping portion |
US5143724A (en) | 1990-07-09 | 1992-09-01 | Biomatrix, Inc. | Biocompatible viscoelastic gel slurries, their preparation and use |
US5246698A (en) | 1990-07-09 | 1993-09-21 | Biomatrix, Inc. | Biocompatible viscoelastic gel slurries, their preparation and use |
DE4092642C1 (de) | 1990-07-10 | 1995-11-23 | Musashi Engineering Inc | Flüssigkeitsausgabevorrichtung |
US5074868A (en) | 1990-08-03 | 1991-12-24 | Inamed Development Company | Reversible stoma-adjustable gastric band |
US5226894A (en) | 1990-09-11 | 1993-07-13 | Sterling Winthrop Inc. | Safety syringe assembly with radially deformable body |
US5207644A (en) | 1991-03-04 | 1993-05-04 | Strecker Ernst P | Device with implantable infusion chamber and a catheter extending therefrom |
JP3115625B2 (ja) | 1991-03-30 | 2000-12-11 | 帝國製薬株式会社 | リドカイン含有外用貼付剤 |
US5391164A (en) | 1991-05-03 | 1995-02-21 | Giampapa; Vincent C. | Subcutaneous implantable multiple-agent delivery system |
US5090954A (en) | 1991-05-17 | 1992-02-25 | Geary Gregory L | Subcutaneous access device for peritoneal dialysis |
US5458568A (en) | 1991-05-24 | 1995-10-17 | Cortrak Medical, Inc. | Porous balloon for selective dilatation and drug delivery |
US5226429A (en) | 1991-06-20 | 1993-07-13 | Inamed Development Co. | Laparoscopic gastric band and method |
DE4211045A1 (de) | 1992-04-02 | 1993-10-07 | Zeljko Milosevic | Implantierbarer Port |
DE9107798U1 (de) | 1991-06-25 | 1991-10-10 | Steinbeck, Ulrich, Dr.med., 2000 Hamburg | Metallortungsgerät zur Lokalisierung eines in einen menschlichen oder tierischen Körper eingedrungenen oder implantierten metallischen Fremdkörpers |
US5188609A (en) | 1991-07-08 | 1993-02-23 | Bryman Medical Inc. | Swivel clip medical tube holder |
US5211371A (en) | 1991-07-22 | 1993-05-18 | Advanced Control Technologies, Inc. | Linearly actuated valve |
US5425716A (en) | 1991-08-09 | 1995-06-20 | Atom Kabushiki Kaisha | Infusion apparatus |
US5289817A (en) | 1991-08-20 | 1994-03-01 | Linvatec Corporation | Endoscopic surgical retractor |
US5360407A (en) | 1991-08-29 | 1994-11-01 | C. R. Bard, Inc. | Implantable dual access port with tactile ridge for position sensing |
US5213574A (en) | 1991-09-06 | 1993-05-25 | Device Labs, Inc. | Composite implantable biocompatible vascular access port device |
US5318545A (en) | 1991-09-06 | 1994-06-07 | Device Labs, Inc. | Composite implantable biocompatible vascular access port device |
US5360445A (en) | 1991-11-06 | 1994-11-01 | International Business Machines Corporation | Blood pump actuator |
US5160338A (en) | 1991-11-13 | 1992-11-03 | Inamed Development Co. | Device for removing implantable articles |
US5318533A (en) | 1992-02-21 | 1994-06-07 | Scimed Life Systems, Inc. | Balloon catheter inflation device including apparatus for monitoring and wireless transmission of inflation data, and system |
US5259399A (en) | 1992-03-02 | 1993-11-09 | Alan Brown | Device and method of causing weight loss using removable variable volume intragastric bladder |
US5273537A (en) | 1992-03-06 | 1993-12-28 | Scimed Life Systems, Inc. | Power-assisted inflation apparatus |
US5281205A (en) | 1992-03-11 | 1994-01-25 | Mcpherson William E | Vascular access system and clearing method |
FR2688693A1 (fr) | 1992-03-19 | 1993-09-24 | Ferriere Xavier | Sphincter artificiel, notamment urinaire. |
US5224494A (en) | 1992-03-19 | 1993-07-06 | Enhorning Goran E | Vaginal pessary |
US5250026A (en) | 1992-05-27 | 1993-10-05 | Destron/Idi, Inc. | Adjustable precision transponder injector |
US5314462A (en) | 1992-05-27 | 1994-05-24 | Cardiac Pacemakers, Inc. | Positive fixation device |
US5556388A (en) | 1992-06-04 | 1996-09-17 | Advanced Medical Concepts Incorporated | Safety retention and recapping devices for hypodermic needles/intravenous injection/ports |
US5246456A (en) | 1992-06-08 | 1993-09-21 | Wilkinson Lawrence H | Fenestrated gastric pouch |
DE4219888C2 (de) | 1992-06-17 | 2003-01-02 | Storz Endoskop Gmbh Schaffhaus | Medizinischer Druckwandler |
GR930100244A (el) | 1992-06-30 | 1994-02-28 | Ethicon Inc | Εύκαμπτο ενδοσκοπικό χειρουργικό στόμιο εισόδου. |
US5326349A (en) | 1992-07-09 | 1994-07-05 | Baraff David R | Artificial larynx |
US5325873A (en) | 1992-07-23 | 1994-07-05 | Abbott Laboratories | Tube placement verifier system |
DE4225524C2 (de) | 1992-08-01 | 1994-08-04 | Fresenius Ag | Implantierbare Infusionsvorrichtung |
US5676651A (en) | 1992-08-06 | 1997-10-14 | Electric Boat Corporation | Surgically implantable pump arrangement and method for pumping body fluids |
US5653718A (en) | 1994-05-16 | 1997-08-05 | Yoon; Inbae | Cannula anchoring system |
US6402718B1 (en) | 1992-08-17 | 2002-06-11 | Medrad, Inc. | Front-loading medical injector and syringe for use therewith |
US5383858B1 (en) | 1992-08-17 | 1996-10-29 | Medrad Inc | Front-loading medical injector and syringe for use therewith |
US5540648A (en) | 1992-08-17 | 1996-07-30 | Yoon; Inbae | Medical instrument stabilizer with anchoring system and methods |
US5855609A (en) | 1992-08-24 | 1999-01-05 | Lipomatrix, Incorporated (Bvi) | Medical information transponder implant and tracking system |
US5716407A (en) | 1992-08-24 | 1998-02-10 | Lipomatrix, Incorporated | Method of rendering identifiable a living tissue implant using an electrical transponder marker |
US5300120A (en) | 1992-08-24 | 1994-04-05 | Lipomatrix Incorporated | Implant with electrical transponder marker |
US5725578A (en) | 1992-08-24 | 1998-03-10 | Lipomatrix Incoporated | Temporary implant with transponder and methods for locating and indentifying |
US5972000A (en) | 1992-11-13 | 1999-10-26 | Influence Medical Technologies, Ltd. | Non-linear anchor inserter device and bone anchors |
US5449368A (en) | 1993-02-18 | 1995-09-12 | Kuzmak; Lubomyr I. | Laparoscopic adjustable gastric banding device and method for implantation and removal thereof |
ES2125310T3 (es) | 1993-02-18 | 1999-03-01 | Lubomyr Ihor Kuzmak | Banda gastrica ajustable para laparoscopia. |
WO1994021299A1 (fr) | 1993-03-19 | 1994-09-29 | Medinvent | Composition et procede d'activation tissulaire |
US5591143A (en) | 1993-04-02 | 1997-01-07 | Medrad Inc. | Luer connector with torque indicator |
US5601604A (en) | 1993-05-27 | 1997-02-11 | Inamed Development Co. | Universal gastric band |
US5505735A (en) | 1993-06-10 | 1996-04-09 | Mitek Surgical Products, Inc. | Surgical anchor and method for using the same |
JP3105702B2 (ja) | 1993-06-11 | 2000-11-06 | レーザーテック株式会社 | 光学式欠陥検査装置 |
EP0708670A4 (fr) | 1993-06-23 | 1998-07-01 | Cytotherapeutics Inc | Procede et appareil de fermeture hermetique de dispositifs d'encapsulage membranaire implantable |
US5368040A (en) | 1993-08-02 | 1994-11-29 | Medtronic, Inc. | Apparatus and method for determining a plurality of hemodynamic variables from a single, chroniclaly implanted absolute pressure sensor |
WO1995005860A1 (fr) | 1993-08-23 | 1995-03-02 | Boston Scientific Corporation | Catheter a ballonnet ameliore |
US5944751A (en) | 1993-09-17 | 1999-08-31 | Zertl Medical, Inc. | Vibratory heart valve |
US5531716A (en) | 1993-09-29 | 1996-07-02 | Hercules Incorporated | Medical devices subject to triggered disintegration |
US5496312A (en) | 1993-10-07 | 1996-03-05 | Valleylab Inc. | Impedance and temperature generator control |
SE9303319D0 (sv) | 1993-10-11 | 1993-10-11 | Gambro Ab | Sätt att beräkna och/eller styra flöder under en viss tidsperiod genom en peristaltisk pump samt en monitor anpassad för utövning av detta sätt |
US5658298A (en) | 1993-11-09 | 1997-08-19 | Inamed Development Company | Laparoscopic tool |
CA2135706C (fr) | 1993-11-15 | 1999-06-15 | Walter E. Cover | Ensemble d'insertion pour canule a aiguille retractable avec carateristiques permettant d'eviter les ecoulements, de freiner la retraction et d'empecher la reutilisation |
FR2712696B1 (fr) | 1993-11-17 | 1996-02-02 | Inst Francais Du Petrole | Procédé et dispositif pour mesurer le volume poreux d'un échantillon solide. |
DE69410487T2 (de) | 1993-12-28 | 1998-11-05 | Westonbridge Int Ltd | Mikropumpe |
US6929631B1 (en) | 1994-01-18 | 2005-08-16 | Vasca, Inc. | Method and apparatus for percutaneously accessing a pressure activated implanted port |
US5562617A (en) | 1994-01-18 | 1996-10-08 | Finch, Jr.; Charles D. | Implantable vascular device |
US5387192A (en) | 1994-01-24 | 1995-02-07 | Sims Deltec, Inc. | Hybrid portal and method |
DE69529216T2 (de) | 1994-03-04 | 2007-08-30 | Coloplast A/S | Selbstdichtende injektionsvorrichtung und verfahren zu deren herstellung |
US5476460A (en) | 1994-04-29 | 1995-12-19 | Minimed Inc. | Implantable infusion port with reduced internal volume |
US5762599A (en) | 1994-05-02 | 1998-06-09 | Influence Medical Technologies, Ltd. | Magnetically-coupled implantable medical devices |
US5449363A (en) | 1994-05-06 | 1995-09-12 | Browne Medical Systems, Inc. | Endoscopic lithotripsy system |
IL109669A (en) | 1994-05-17 | 1997-09-30 | Hadasit Med Res Service | System and method for coronary angioplasty |
DE4417927B4 (de) | 1994-05-19 | 2005-02-03 | Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin | Telemetrievorrichtung, insbesondere für ein Gewebestimulator-System |
AU701572B2 (en) | 1994-07-11 | 1999-02-04 | Dacomed Corporation | Vessel occlusive prosthesis |
US5509888A (en) | 1994-07-26 | 1996-04-23 | Conceptek Corporation | Controller valve device and method |
US5923001A (en) | 1994-08-05 | 1999-07-13 | Surgical Resources, L.L.C. | Automatic surgical sponge counter and blood loss determination system |
US5496313A (en) | 1994-09-20 | 1996-03-05 | Conmed Corporation | System for detecting penetration of medical instruments |
US5681284A (en) | 1994-10-31 | 1997-10-28 | Glenn Herskowitz | Infusion pump with tube spike holder |
JP3285458B2 (ja) | 1994-12-26 | 2002-05-27 | キヤノン株式会社 | シート搬送装置およびシート搬送装置を有するプリンタ |
US5591217A (en) | 1995-01-04 | 1997-01-07 | Plexus, Inc. | Implantable stimulator with replenishable, high value capacitive power source and method therefor |
SE9500274D0 (sv) | 1995-01-26 | 1995-01-26 | Siemens Elema Ab | Anordning för lokalisering av port på medicinskt implantat |
US5562714A (en) | 1995-02-03 | 1996-10-08 | Medtronic, Inc. | Magnetic field strength regulator for implant |
US5591344A (en) | 1995-02-13 | 1997-01-07 | Aksys, Ltd. | Hot water disinfection of dialysis machines, including the extracorporeal circuit thereof |
US5695504A (en) | 1995-02-24 | 1997-12-09 | Heartport, Inc. | Devices and methods for performing a vascular anastomosis |
US5904697A (en) | 1995-02-24 | 1999-05-18 | Heartport, Inc. | Devices and methods for performing a vascular anastomosis |
US5535752A (en) | 1995-02-27 | 1996-07-16 | Medtronic, Inc. | Implantable capacitive absolute pressure and temperature monitor system |
DE69615007T2 (de) | 1995-02-27 | 2002-06-13 | Medtronic, Inc. | Externer referenz-messfühler für einen patienten |
DE19509634C1 (de) | 1995-03-17 | 1996-03-28 | Fresenius Ag | Implantierbare Infusionspumpe |
DE19509632C1 (de) | 1995-03-17 | 1996-03-28 | Fresenius Ag | Implantierbare Infusionspumpe |
JP3707822B2 (ja) | 1995-03-23 | 2005-10-19 | 富士写真フイルム株式会社 | 画像表示装置 |
WO1996030064A1 (fr) | 1995-03-31 | 1996-10-03 | Boston Scientific Corporation | Ballonnet d'administration de medicaments a orifices multiples |
FR2733426B1 (fr) | 1995-04-25 | 1997-07-18 | Debacker Yves | Dispositif medical pour le comblement des deformations du volume de la peau telles que rides et cicatrices par injection de 2 formes physico-chimiques differentes d'un polymere biologique |
US5688237A (en) | 1995-05-04 | 1997-11-18 | Cedars-Sinai Medical Center | Implantable catheter and method of use |
US5752522A (en) | 1995-05-04 | 1998-05-19 | Cardiovascular Concepts, Inc. | Lesion diameter measurement catheter and method |
US5771902A (en) | 1995-09-25 | 1998-06-30 | Regents Of The University Of California | Micromachined actuators/sensors for intratubular positioning/steering |
US5637102A (en) | 1995-05-24 | 1997-06-10 | C. R. Bard, Inc. | Dual-type catheter connection system |
US5704910A (en) | 1995-06-05 | 1998-01-06 | Nephros Therapeutics, Inc. | Implantable device and use therefor |
US5695490A (en) | 1995-06-07 | 1997-12-09 | Strato/Infusaid, Inc. | Implantable treatment material device |
US5989216A (en) | 1995-06-29 | 1999-11-23 | Sims Deltec, Inc. | Access portal and method |
US5607418A (en) | 1995-08-22 | 1997-03-04 | Illinois Institute Of Technology | Implantable drug delivery apparatus |
US6102922A (en) | 1995-09-22 | 2000-08-15 | Kirk Promotions Limited | Surgical method and device for reducing the food intake of patient |
US5716342A (en) | 1995-10-10 | 1998-02-10 | Circuit Tree Medical, Inc. | Non-invasive pressure sensor |
FR2740977A1 (fr) | 1995-11-13 | 1997-05-16 | Mazzella Gilbert | Chambre implantable pour acces a une forme anatomique par voie transcutanee |
US6098405A (en) | 1995-12-18 | 2000-08-08 | Nippon Zeon Co., Ltd. | Drive unit for medical equipment |
US5683447A (en) | 1995-12-19 | 1997-11-04 | Ventritex, Inc. | Lead with septal defibrillation and pacing electrodes |
AU2260397A (en) | 1996-01-31 | 1997-08-22 | Trustees Of The University Of Pennsylvania, The | Remote control drug delivery device |
DE69738884D1 (de) | 1996-02-15 | 2008-09-18 | Armand P Neukermans | Verbesserte biokompatible wandler |
US6048309A (en) | 1996-03-04 | 2000-04-11 | Heartport, Inc. | Soft tissue retractor and delivery device therefor |
US5833603A (en) | 1996-03-13 | 1998-11-10 | Lipomatrix, Inc. | Implantable biosensing transponder |
US6117086A (en) | 1996-04-18 | 2000-09-12 | Sunscope International, Inc. | Pressure transducer apparatus with disposable dome |
US5766232A (en) | 1996-05-10 | 1998-06-16 | Medtronic, Inc. | Method and apparatus for altering the Q of an implantable medical device telemetry antenna |
US5951512A (en) | 1996-05-28 | 1999-09-14 | Horizon Medical Products, Inc. | Infusion port with modified drug reservoir |
US5944696A (en) | 1996-06-03 | 1999-08-31 | Bayless; William Brian | Swivel clip medical tube holder |
US5718682A (en) | 1996-06-28 | 1998-02-17 | United States Surgical Corporation | Access port device and method of manufacture |
US5935083A (en) | 1996-07-03 | 1999-08-10 | Williams; Paul A. | Device for body fluid pressure measurement |
US5833698A (en) | 1996-07-23 | 1998-11-10 | United States Surgical Corporation | Anastomosis instrument and method |
US5785295A (en) | 1996-08-27 | 1998-07-28 | Industrial Technology Research Institute | Thermally buckling control microvalve |
US5713911A (en) | 1996-10-03 | 1998-02-03 | United States Surgical Corporation | Surgical clip |
IT1287967B1 (it) | 1996-10-17 | 1998-09-10 | Fidia Spa In Amministrazione S | Preparazioni farmaceutiche per uso anestetico locale |
US6264676B1 (en) | 1996-11-08 | 2001-07-24 | Scimed Life Systems, Inc. | Protective sheath for transvaginal anchor implantation devices |
DE19749011A1 (de) | 1996-11-19 | 1998-05-20 | Lang Volker | Mikroventil |
US5906596A (en) | 1996-11-26 | 1999-05-25 | Std Manufacturing | Percutaneous access device |
US6024340A (en) | 1996-12-04 | 2000-02-15 | Active Control Experts, Inc. | Valve assembly |
EP1563861A3 (fr) | 1997-01-10 | 2005-08-24 | Japan Servo Co. Ltd. | Dispositif de perfusion de liquide |
US5833654A (en) | 1997-01-17 | 1998-11-10 | C. R. Bard, Inc. | Longitudinally aligned dual reservoir access port |
US5931829A (en) | 1997-01-21 | 1999-08-03 | Vasca, Inc. | Methods and systems for establishing vascular access |
US6258079B1 (en) | 1997-01-21 | 2001-07-10 | Vasca, Inc. | Method and systems for establishing vascular access |
US5997517A (en) | 1997-01-27 | 1999-12-07 | Sts Biopolymers, Inc. | Bonding layers for medical device surface coatings |
FR2759577B1 (fr) | 1997-02-17 | 1999-08-06 | Corneal Ind | Implant de sclerectomie profonde |
FR2759576B1 (fr) | 1997-02-17 | 1999-08-06 | Corneal Ind | Implant de sclero-keratectomie pre-descemetique |
DE19706139C1 (de) | 1997-02-18 | 1998-10-01 | Tricumed Gmbh | Implantierbares Doppel-Zuspritzport |
CH692239A5 (de) | 1997-03-26 | 2002-04-15 | Disetronic Licensing Ag | Portkörper zur Arzneimittelverabreichung. |
EP0867808B1 (fr) | 1997-03-29 | 2002-04-10 | IMEC vzw | Méthode et appareil pour optimisation de grandeur des unités de stockage |
JP3274384B2 (ja) | 1997-03-31 | 2002-04-15 | 株式会社パイオラックス | 留置カテーテル及びその挿入装置 |
EP0869283B1 (fr) | 1997-04-04 | 2003-08-06 | Christian Péclat | Pompe péristaltique |
US6042345A (en) | 1997-04-15 | 2000-03-28 | Face International Corporation | Piezoelectrically actuated fluid pumps |
US5861014A (en) | 1997-04-30 | 1999-01-19 | Medtronic, Inc. | Method and apparatus for sensing a stimulating gastrointestinal tract on-demand |
US5938669A (en) | 1997-05-07 | 1999-08-17 | Klasamed S.A. | Adjustable gastric banding device for contracting a patient's stomach |
US6129668A (en) | 1997-05-08 | 2000-10-10 | Lucent Medical Systems, Inc. | System and method to determine the location and orientation of an indwelling medical device |
US5808203A (en) | 1997-05-12 | 1998-09-15 | Medrad, Inc. | Fluid pressure measurement devices |
US6321124B1 (en) | 1997-05-28 | 2001-11-20 | Transneuronix, Inc. | Implant device for electrostimulation and/or monitoring of endo-abdominal cavity tissue |
US6030369A (en) | 1997-07-03 | 2000-02-29 | Target Therapeutics Inc. | Micro catheter shaft |
US5902598A (en) | 1997-08-28 | 1999-05-11 | Control Delivery Systems, Inc. | Sustained release drug delivery devices |
US6090131A (en) | 1997-09-25 | 2000-07-18 | Daley; Robert J. | Bioabsorbable staples |
FR2769491B1 (fr) | 1997-10-15 | 2000-01-07 | Patrick Sangouard | Sphincter artificiel reglable a commande magnetique |
DE19745654A1 (de) | 1997-10-16 | 1999-04-22 | Hans Peter Prof Dr Med Zenner | Vorrichtung zur subkutanen Infusion und deren Verwendung |
SE510303C2 (sv) | 1997-10-21 | 1999-05-10 | Hemapure Ab | Anslutningsanordning för medicinska ändamål |
NL1007349C2 (nl) | 1997-10-24 | 1999-04-27 | Suyker Wilhelmus Joseph Leonardus | Systeem voor het mechanisch vervaardigen van anastomoses tussen holle structuren; alsmede inrichting en applicator voor gebruik daarbij. |
US6039712A (en) | 1997-11-04 | 2000-03-21 | Terence M. Fogarty | Implantable injection port |
US5993473A (en) | 1997-11-19 | 1999-11-30 | Chan; Yung C. | Expandable body device for the gastric cavity and method |
DE19751791A1 (de) | 1997-11-22 | 1999-05-27 | Arnold Dipl Ing Dr Med Pier | Chirurgisches Klammersetzinstrument |
US6213973B1 (en) | 1998-01-12 | 2001-04-10 | C. R. Bard, Inc. | Vascular access port with elongated septum |
US6193734B1 (en) | 1998-01-23 | 2001-02-27 | Heartport, Inc. | System for performing vascular anastomoses |
DE19802615A1 (de) | 1998-01-24 | 1999-08-12 | Manfred Adolfs | Verbindungselement zur Verbindung eines Meßwertaufnehmers mit einem abgedichteten Fluidsystem |
US6682500B2 (en) | 1998-01-29 | 2004-01-27 | David Soltanpour | Synthetic muscle based diaphragm pump apparatuses |
US6305381B1 (en) | 1998-02-02 | 2001-10-23 | Medtronic Inc. | System for locating implantable medical device |
US6203523B1 (en) | 1998-02-02 | 2001-03-20 | Medtronic Inc | Implantable drug infusion device having a flow regulator |
JPH11244395A (ja) | 1998-02-19 | 1999-09-14 | Due Eng & Dev Ltd | 経皮的エネルギ移送装置並びにその電力結合の制御及び調整方法 |
US6664897B2 (en) | 1998-03-09 | 2003-12-16 | William R. Pape | Method and system for livestock data collection and management |
DE19918694C2 (de) | 1998-04-27 | 2002-03-14 | Matsushita Electric Works Ltd | Verfahren zum Messen des Drucks eines Fluids und Miniaturpumpe zur Durchführung dieses Verfahrens |
US5910149A (en) | 1998-04-29 | 1999-06-08 | Kuzmak; Lubomyr I. | Non-slipping gastric band |
US6024704A (en) | 1998-04-30 | 2000-02-15 | Medtronic, Inc | Implantable medical device for sensing absolute blood pressure and barometric pressure |
US6152885A (en) | 1998-04-30 | 2000-11-28 | Medtronic, Inc. | Barometric pressure sensor for use with implantable absolute pressure sensor |
US6601604B1 (en) | 1998-05-08 | 2003-08-05 | Michael S. Cooper | Fire-control sprinkler system |
US6113609A (en) | 1998-05-26 | 2000-09-05 | Scimed Life Systems, Inc. | Implantable tissue fastener and system for treating gastroesophageal reflux disease |
GB9811398D0 (en) | 1998-05-27 | 1998-07-22 | Pbt Limited | Spool valve |
US6074341A (en) | 1998-06-09 | 2000-06-13 | Timm Medical Technologies, Inc. | Vessel occlusive apparatus and method |
FR2780730B1 (fr) | 1998-07-01 | 2000-10-13 | Corneal Ind | Compositions biphasiques injectables, notamment utiles en chirurgies reparatrice et esthetique |
US6704602B2 (en) | 1998-07-02 | 2004-03-09 | Medtronic, Inc. | Implanted medical device/external medical instrument communication utilizing surface electrodes |
US6221024B1 (en) | 1998-07-20 | 2001-04-24 | Medtronic, Inc. | Implantable pressure sensor and method of fabrication |
JP3426510B2 (ja) | 1998-07-27 | 2003-07-14 | ペンタックス株式会社 | 内視鏡用高周波スネア |
US6090066A (en) | 1998-07-30 | 2000-07-18 | Dsu Medical Corporation | Injection site with outer flange |
US6210347B1 (en) | 1998-08-13 | 2001-04-03 | Peter Forsell | Remote control food intake restriction device |
US6460543B1 (en) | 1998-08-13 | 2002-10-08 | Obtech Medical Ag | Non-injection port food intake restriction device |
US6067991A (en) | 1998-08-13 | 2000-05-30 | Forsell; Peter | Mechanical food intake restriction device |
FR2783153B1 (fr) | 1998-09-14 | 2000-12-01 | Jerome Dargent | Dispositif de constriction gastrique |
US6371942B1 (en) | 1998-09-23 | 2002-04-16 | Mayo Foundation For Medical Education And Research | Automatic manifold for vascular catheter |
US6306088B1 (en) | 1998-10-03 | 2001-10-23 | Individual Monitoring Systems, Inc. | Ambulatory distributed recorders system for diagnosing medical disorders |
WO2000033901A1 (fr) | 1998-12-07 | 2000-06-15 | Std Manufacturing, Inc. | Dispositif d'acces vasculaire implantable |
US6024755A (en) | 1998-12-11 | 2000-02-15 | Embol-X, Inc. | Suture-free clamp and sealing port and methods of use |
US6290575B1 (en) | 1999-03-01 | 2001-09-18 | John I. Shipp | Surgical ligation clip with increased ligating force |
US6183449B1 (en) | 1999-03-04 | 2001-02-06 | Wilmer L. Sibbitt | Safety caps for sharps |
IL129032A (en) | 1999-03-17 | 2006-12-31 | Moshe Dudai | Stomach strap |
SE9901056D0 (sv) | 1999-03-23 | 1999-03-23 | Pacesetter Ab | Sensor system |
US6470213B1 (en) | 1999-03-30 | 2002-10-22 | Kenneth A. Alley | Implantable medical device |
US6319275B1 (en) | 1999-04-07 | 2001-11-20 | Medtronic Ave, Inc. | Endolumenal prosthesis delivery assembly and method of use |
US6349740B1 (en) | 1999-04-08 | 2002-02-26 | Abbott Laboratories | Monolithic high performance miniature flow control unit |
US6171252B1 (en) | 1999-04-29 | 2001-01-09 | Medtronic, Inc. | Pressure sensor with increased sensitivity for use with an implantable medical device |
US6635049B1 (en) | 1999-04-30 | 2003-10-21 | Medtronic, Inc. | Drug bolus delivery system |
EP1176998B1 (fr) | 1999-05-04 | 2008-01-09 | Simon Marcus Horner | Appareil d'assistance cardiaque |
FR2794360B1 (fr) | 1999-06-03 | 2001-08-24 | Bourhane Eddine Benelouezzane | Prothese de derivation biliaire |
DE19930240A1 (de) | 1999-06-25 | 2000-12-28 | Biotronik Mess & Therapieg | Verfahren zur Datenabfrage bei der Implantatsnachsorge |
US20050192629A1 (en) | 1999-06-25 | 2005-09-01 | Usgi Medical Inc. | Methods and apparatus for creating and regulating a gastric stoma |
DE19931990C1 (de) | 1999-07-09 | 2001-01-11 | Festo Ag & Co | Elektroventil |
EP1072282A1 (fr) | 1999-07-19 | 2001-01-31 | EndoArt S.A. | Dispositif de régulation de débit |
FR2797181B1 (fr) | 1999-08-05 | 2002-05-03 | Richard Cancel | Dispositif telecommande de bande gastrique pour former une ouverture restreinte de stoma dans l'estomac |
NZ516962A (en) | 1999-08-12 | 2003-09-26 | Potencia Medical Ag | Stoma opening forming apparatus |
US6482145B1 (en) | 2000-02-14 | 2002-11-19 | Obtech Medical Ag | Hydraulic anal incontinence treatment |
US6464628B1 (en) | 1999-08-12 | 2002-10-15 | Obtech Medical Ag | Mechanical anal incontinence |
US6453907B1 (en) | 1999-08-12 | 2002-09-24 | Obtech Medical Ag | Food intake restriction with energy transfer device |
US6454699B1 (en) | 2000-02-11 | 2002-09-24 | Obtech Medical Ag | Food intake restriction with controlled wireless energy supply |
US6461292B1 (en) | 1999-08-12 | 2002-10-08 | Obtech Medical Ag | Anal incontinence treatment with wireless energy supply |
US6454701B1 (en) | 1999-08-12 | 2002-09-24 | Obtech Medical Ag | Heartburn and reflux disease treatment apparatus with energy transfer device |
US6306116B1 (en) | 1999-09-30 | 2001-10-23 | Origin Medsystems, Inc. | Method and apparatus for pressurizing the right atrium or right ventricle to assist cardiac function during beating heart surgery |
FR2799118B1 (fr) | 1999-10-01 | 2002-07-12 | Medical Innovation Dev | Implant gastrique reglable |
US6340025B1 (en) | 1999-10-04 | 2002-01-22 | American Biosystems, Inc. | Airway treatment apparatus with airflow enhancement |
IL132635A0 (en) | 1999-10-28 | 2001-03-19 | Niti Alloys Tech Ltd | Shape memory alloy clip and method of use thereof |
US6733513B2 (en) | 1999-11-04 | 2004-05-11 | Advanced Bioprosthetic Surfaces, Ltd. | Balloon catheter having metal balloon and method of making same |
IT1315260B1 (it) | 1999-12-07 | 2003-02-03 | Valerio Cigaina | Bendaggio gastrico rimovibile |
US20030208212A1 (en) | 1999-12-07 | 2003-11-06 | Valerio Cigaina | Removable gastric band |
US6939299B1 (en) | 1999-12-13 | 2005-09-06 | Kurt Petersen | Implantable continuous intraocular pressure sensor |
FR2802407B1 (fr) | 1999-12-21 | 2002-12-13 | Rc Medical | Anneau de gastroplastie desserrable |
US6283949B1 (en) | 1999-12-27 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Refillable implantable drug delivery pump |
JP2003518973A (ja) | 2000-01-07 | 2003-06-17 | イマテック アーゲー | 骨内または骨上の圧力および圧力変化の生体内測定用装置 |
US6572587B2 (en) | 2000-01-10 | 2003-06-03 | Benjamin S. Lerman | Anchoring device for medical apparatus |
FR2804011B1 (fr) | 2000-01-20 | 2002-07-19 | Rc Medical | Anneau de gastroplastie a commande unique |
US6694191B2 (en) | 2000-01-21 | 2004-02-17 | Medtronic Minimed, Inc. | Ambulatory medical apparatus and method having telemetry modifiable control software |
US7204821B1 (en) | 2000-01-31 | 2007-04-17 | Ethicon, Inc. | Surgical fluid management system with suction control |
US6454700B1 (en) | 2000-02-09 | 2002-09-24 | Obtech Medical Ag | Heartburn and reflux disease treatment apparatus with wireless energy supply |
US6497676B1 (en) | 2000-02-10 | 2002-12-24 | Baxter International | Method and apparatus for monitoring and controlling peritoneal dialysis therapy |
US6470892B1 (en) | 2000-02-10 | 2002-10-29 | Obtech Medical Ag | Mechanical heartburn and reflux treatment |
US6463935B1 (en) | 2000-02-10 | 2002-10-15 | Obtech Medical Ag | Controlled heartburn and reflux disease treatment |
MXPA02007704A (es) | 2000-02-11 | 2002-10-17 | Obtech Medical Ag | Aparato de limitacion de ingestion de alimento con suministro inalambrico de energia controlado. |
US6450946B1 (en) | 2000-02-11 | 2002-09-17 | Obtech Medical Ag | Food intake restriction with wireless energy transfer |
US6475136B1 (en) | 2000-02-14 | 2002-11-05 | Obtech Medical Ag | Hydraulic heartburn and reflux treatment |
MXPA00001922A (es) | 2000-02-24 | 2002-03-08 | De Hayos Garza Andres | Cateter de balon intragastrico percutaneo para tratamiento de la obesidad. |
US6503264B1 (en) | 2000-03-03 | 2003-01-07 | Bioenterics Corporation | Endoscopic device for removing an intragastric balloon |
FR2805986B1 (fr) | 2000-03-13 | 2002-10-11 | Districlass Madical | Dispositif intra-gastrique a volume variable |
US6691047B1 (en) | 2000-03-16 | 2004-02-10 | Aksys, Ltd. | Calibration of pumps, such as blood pumps of dialysis machine |
DE10013519A1 (de) | 2000-03-20 | 2001-10-04 | Adeva Medical Ges Fuer Entwick | Implantierbare Sphinkterprothese |
US6810880B1 (en) | 2000-04-10 | 2004-11-02 | Gore Enterprise Holdings, Inc. | Surgical implant system |
US20050049578A1 (en) | 2000-04-14 | 2005-03-03 | Hosheng Tu | Implantable ocular pump to reduce intraocular pressure |
US20040111050A1 (en) | 2000-04-14 | 2004-06-10 | Gregory Smedley | Implantable ocular pump to reduce intraocular pressure |
CA2407643C (fr) | 2000-04-26 | 2009-06-30 | Std Manufacturing, Inc. | Dispositif d'acces pour hemodialyse implantable |
FR2808674B1 (fr) | 2000-05-12 | 2002-08-02 | Cie Euro Etude Rech Paroscopie | Anneau de gastroplastie a pattes de prehension |
US6459917B1 (en) | 2000-05-22 | 2002-10-01 | Ashok Gowda | Apparatus for access to interstitial fluid, blood, or blood plasma components |
CA2410306C (fr) | 2000-05-25 | 2009-12-15 | Westonbridge International Limited | Dispositif fluidique micro-usine et son procede de fabrication |
US6478783B1 (en) | 2000-05-26 | 2002-11-12 | H. Robert Moorehead | Anti-sludge medication ports and related methods |
US20030191433A1 (en) | 2000-05-31 | 2003-10-09 | Prentiss John Gilbert | Breast pump |
WO2001095813A1 (fr) | 2000-06-09 | 2001-12-20 | Vasca, Inc. | Procedes, instruments et kits pour l'implantation sous-cutanee d'articles |
US20020032435A1 (en) | 2000-06-20 | 2002-03-14 | Levin Bruce H. | Tracking surgical implements with integrated circuits |
US6419696B1 (en) | 2000-07-06 | 2002-07-16 | Paul A. Spence | Annuloplasty devices and related heart valve repair methods |
FR2811671B1 (fr) | 2000-07-17 | 2003-02-28 | Corneal Ind | Hydrogel de polymere(s), resistant a la biodegration, preparation et utilisation a titre de support de regeneration tissulaire |
FR2811996B1 (fr) | 2000-07-19 | 2003-08-08 | Corneal Ind | Reticulation de polysaccharide(s), preparation d'hydrogel(s) ; polysaccharide(s) et hydrogel(s) obtenus,leurs utilisations |
US20030167022A1 (en) | 2000-07-26 | 2003-09-04 | Gerrat Dijkman | Catheter for measuring pressure |
CA2416126C (fr) | 2000-07-28 | 2011-07-05 | Anika Therapeutics, Inc. | Composites bioabsorbables d'acide hyaluronique derive |
US6685668B1 (en) | 2000-07-31 | 2004-02-03 | Abbott Laboratories | Closed-loop IV fluid flow control |
JP4240779B2 (ja) | 2000-07-31 | 2009-03-18 | ソニー株式会社 | 液晶プロジェクタと調整方法 |
FR2813786B1 (fr) | 2000-09-11 | 2003-03-14 | Medical Innovation Dev | Procede et dispositif de commande du gonflement d'une enveloppe prothetique gonflable et prothese en faisant application |
US6432040B1 (en) | 2000-09-14 | 2002-08-13 | Nizam N. Meah | Implantable esophageal sphincter apparatus for gastroesophageal reflux disease and method |
US7198250B2 (en) | 2000-09-18 | 2007-04-03 | Par Technologies, Llc | Piezoelectric actuator and pump using same |
US6671550B2 (en) | 2000-09-20 | 2003-12-30 | Medtronic, Inc. | System and method for determining location and tissue contact of an implantable medical device within a body |
JP2004509714A (ja) | 2000-09-26 | 2004-04-02 | トランスニューロニックス インコーポレイテッド | 検知された活動を利用した胃腸道の電気刺激による肥満の治療方法および装置 |
US7499742B2 (en) | 2001-09-26 | 2009-03-03 | Cvrx, Inc. | Electrode structures and methods for their use in cardiovascular reflex control |
US6527701B1 (en) | 2000-09-29 | 2003-03-04 | Precision Medical Devices, Inc. | Body fluid flow control device |
US6871090B1 (en) | 2000-10-13 | 2005-03-22 | Advanced Bionics Corporation | Switching regulator for implantable spinal cord stimulation |
US6681135B1 (en) | 2000-10-30 | 2004-01-20 | Medtronic, Inc. | System and method for employing temperature measurements to control the operation of an implantable medical device |
US7033373B2 (en) | 2000-11-03 | 2006-04-25 | Satiety, Inc. | Method and device for use in minimally invasive placement of space-occupying intragastric devices |
AU2001295350A1 (en) | 2000-11-03 | 2002-05-15 | Endoart S.A. | Implantable medical device for delivering a liquid |
US6615084B1 (en) | 2000-11-15 | 2003-09-02 | Transneuronix, Inc. | Process for electrostimulation treatment of morbid obesity |
SE0004224D0 (sv) | 2000-11-16 | 2000-11-16 | St Jude Medical | Medical device |
US6579301B1 (en) | 2000-11-17 | 2003-06-17 | Syntheon, Llc | Intragastric balloon device adapted to be repeatedly varied in volume without external assistance |
FR2816828B1 (fr) | 2000-11-23 | 2004-10-22 | Richard Cancel | Dispositif de mise en oeuvre a distance et sans lien materiel d'un implant et implant mis en oeuvre par ce dispositif |
US6629776B2 (en) | 2000-12-12 | 2003-10-07 | Mini-Mitter Company, Inc. | Digital sensor for miniature medical thermometer, and body temperature monitor |
CN1245226C (zh) | 2000-12-14 | 2006-03-15 | 控制释放系统公司 | 可植入的可再填充的由端口控制释放的药物输送装置 |
US6665558B2 (en) | 2000-12-15 | 2003-12-16 | Cardiac Pacemakers, Inc. | System and method for correlation of patient health information and implant device data |
US6638231B2 (en) | 2000-12-18 | 2003-10-28 | Biosense, Inc. | Implantable telemetric medical sensor and method |
US6658300B2 (en) | 2000-12-18 | 2003-12-02 | Biosense, Inc. | Telemetric reader/charger device for medical sensor |
US6636769B2 (en) | 2000-12-18 | 2003-10-21 | Biosense, Inc. | Telemetric medical system and method |
US6609025B2 (en) | 2001-01-02 | 2003-08-19 | Cyberonics, Inc. | Treatment of obesity by bilateral sub-diaphragmatic nerve stimulation |
US6666845B2 (en) | 2001-01-04 | 2003-12-23 | Advanced Neuromodulation Systems, Inc. | Implantable infusion pump |
EP1357971B1 (fr) | 2001-01-05 | 2015-05-20 | Metacure Limited | Regulation d'habitudes alimentaires |
US6572627B2 (en) | 2001-01-08 | 2003-06-03 | Shlomo Gabbay | System to inhibit and/or control expansion of anatomical features |
US6666821B2 (en) | 2001-01-08 | 2003-12-23 | Medtronic, Inc. | Sensor system |
US20020098097A1 (en) | 2001-01-22 | 2002-07-25 | Angad Singh | Magnetically-actuated micropump |
US6802807B2 (en) | 2001-01-23 | 2004-10-12 | American Medical Systems, Inc. | Surgical instrument and method |
EP1357844B1 (fr) | 2001-01-24 | 2008-06-25 | Tyco Healthcare Group Lp | Instrument et methode pour anastomose |
US20020103430A1 (en) | 2001-01-29 | 2002-08-01 | Hastings Roger N. | Catheter navigation within an MR imaging device |
US7776029B2 (en) | 2001-01-30 | 2010-08-17 | The Alfred E. Mann Foundation For Scientific Research | Microminiature infusion pump |
US6474584B2 (en) | 2001-02-20 | 2002-11-05 | Faruk Ekich | Fly tying method and apparatus |
EP1234554A1 (fr) | 2001-02-21 | 2002-08-28 | EndoArt SA | Prothèse vasculaire munie de déflecteur intérieur |
US7119062B1 (en) | 2001-02-23 | 2006-10-10 | Neucoll, Inc. | Methods and compositions for improved articular surgery using collagen |
US7044933B2 (en) | 2001-03-01 | 2006-05-16 | Scimed Life Systems, Inc. | Fluid injection system for coronary intervention |
EP1373084A4 (fr) | 2001-03-07 | 2006-11-29 | Telezygology Inc | Bouchons ameliores |
ATE293919T1 (de) | 2001-03-09 | 2005-05-15 | Alvarez Jose Rafael Garza | Intragastrische ballonanordnung |
US6723053B2 (en) | 2001-03-14 | 2004-04-20 | Coopersurgical, Inc. | Esophageal balloon catheter device |
US6997914B2 (en) | 2001-04-02 | 2006-02-14 | Horizon Medical Products, Inc. | Implantable access port |
US6513403B2 (en) | 2001-04-03 | 2003-02-04 | Cray Inc. | Flexible drive rod for access to enclosed locations |
US6889086B2 (en) | 2001-04-06 | 2005-05-03 | Cardiac Pacemakers, Inc. | Passive telemetry system for implantable medical device |
US7330753B2 (en) | 2001-04-18 | 2008-02-12 | Metacure N.V. | Analysis of eating habits |
FR2823663B1 (fr) | 2001-04-18 | 2004-01-02 | Cousin Biotech | Dispositif de traitement de l'obesite morbide |
KR100429773B1 (ko) | 2001-04-20 | 2004-05-03 | 김철원 | 압력게이지 및 센서프로텍터의 압력 전달액 충진장치와이를 이용한 충진방법 및 니플이 구비된 다이아프램 하우징 |
US7020531B1 (en) | 2001-05-01 | 2006-03-28 | Intrapace, Inc. | Gastric device and suction assisted method for implanting a device on a stomach wall |
FR2825264B1 (fr) | 2001-06-01 | 2004-04-02 | Surgical Diffusion | Anneau pour gastroplastie |
US6647298B2 (en) | 2001-06-04 | 2003-11-11 | St. Jude Medical Ab | Implantable medical device with variable incoming communication signal discrimination, and method for operating same |
WO2003000314A2 (fr) | 2001-06-20 | 2003-01-03 | The Regents Of The University Of California | Systeme et procede d'hemodialyse |
US6511490B2 (en) | 2001-06-22 | 2003-01-28 | Antoine Jean Henri Robert | Gastric banding device and method |
US6635020B2 (en) | 2001-06-26 | 2003-10-21 | Thermometrics | Reusable fluid pressure transducer monitoring apparatus |
US6648849B2 (en) | 2001-06-27 | 2003-11-18 | Ethicon, Inc. | Medicinal implant and device and method for loading and delivering implants containing drugs and cells |
US6457801B1 (en) | 2001-06-27 | 2002-10-01 | Lexmark International, Inc. | Method and apparatus for measuring ink dry time |
WO2003007782A2 (fr) | 2001-06-29 | 2003-01-30 | Medgraft Microtech, Inc. | Implants injectables biodegradables et procedes de fabrication et d'utilisation associes |
US6572576B2 (en) | 2001-07-07 | 2003-06-03 | Nxstage Medical, Inc. | Method and apparatus for leak detection in a fluid line |
US6675049B2 (en) | 2001-07-17 | 2004-01-06 | Medtronic, Inc. | Method and apparatus for automatic implantable medical lead recognition and configuration |
US6648823B2 (en) | 2001-07-31 | 2003-11-18 | Medtronic, Inc. | Method and system of follow-up support for a medical device |
DE10161888A1 (de) | 2001-08-14 | 2003-02-27 | Continental Teves Ag & Co Ohg | Piezoelektrisch betätigtes Fluidventil |
DE10139857B4 (de) | 2001-08-14 | 2009-09-10 | Robert Bosch Gmbh | Ventil zum Steuern von Flüssigkeiten |
US6629988B2 (en) | 2001-08-28 | 2003-10-07 | Ethicon, Inc. | Composite staple for completing an anastomosis |
ES2393101T3 (es) | 2001-08-29 | 2012-12-18 | Ricardo A. P. De Carvalho | Sistema implantable y sellable para la administración unidireccional de agentes terapéuticos a tejidos diana |
SE0102920D0 (sv) | 2001-08-31 | 2001-08-31 | St Jude Medical | Medical device |
SE0102919D0 (sv) | 2001-08-31 | 2001-08-31 | St Jude Medical | Medical device |
US6662047B2 (en) | 2001-09-05 | 2003-12-09 | Pacesetter, Inc. | Pacing mode to reduce effects of orthostatic hypotension and syncope |
US6754527B2 (en) | 2001-09-06 | 2004-06-22 | Medtronic, Inc. | System and method for reducing noise in an implantable medical device |
US6770067B2 (en) | 2001-09-07 | 2004-08-03 | Medtronic Minimed, Inc. | Infusion device and driving mechanism for same |
US6796004B2 (en) | 2001-09-14 | 2004-09-28 | Donaldson Company, Inc. | Exhaust system clamp |
US7195610B1 (en) | 2001-09-17 | 2007-03-27 | Cardinal Health 303, Inc. | Pneumatic syringe driver |
US20030060873A1 (en) | 2001-09-19 | 2003-03-27 | Nanomedical Technologies, Inc. | Metallic structures incorporating bioactive materials and methods for creating the same |
US6647299B2 (en) | 2001-09-21 | 2003-11-11 | Medtronic, Inc. | Patient programmer for implantable medical device with audio locator signal |
US6632239B2 (en) | 2001-10-02 | 2003-10-14 | Spiration, Inc. | Constriction device including reinforced suture holes |
US6689100B2 (en) | 2001-10-05 | 2004-02-10 | Becton, Dickinson And Company | Microdevice and method of delivering or withdrawing a substance through the skin of an animal |
US6659937B2 (en) | 2001-10-11 | 2003-12-09 | M. Sheldon Polsky | Continent bladder access device |
US7563249B2 (en) | 2002-12-20 | 2009-07-21 | Medrad, Inc. | Syringe having an alignment flange, an extending lip and a radial expansion section of reduced wall thickness |
WO2003035142A2 (fr) | 2001-10-25 | 2003-05-01 | Emory University | Catheter pour perfusion modifiee |
US20030106761A1 (en) | 2001-12-07 | 2003-06-12 | Taylor William Morris | Shape memory alloy wrap spring clutch |
FR2834202B1 (fr) | 2001-12-28 | 2004-03-19 | Cie Euro Etude Rech Paroscopie | Ballon intra-gastrique a poches multiples, dispositif chirurgical d'expansion dudit ballon et procede de fabrication correspondant |
FR2834198B1 (fr) | 2001-12-28 | 2004-10-15 | Cie Euro Etude Rech Paroscopie | Dispositif medical d'explantation |
US6892095B2 (en) | 2001-12-31 | 2005-05-10 | Cardiac Pacemakers, Inc. | Method and apparatus for monitoring left ventricular work or power |
FR2834444B1 (fr) | 2002-01-09 | 2004-10-29 | Sofradim Production | Anneau gastrique de traitement de l'obesite |
FR2834443B1 (fr) | 2002-01-09 | 2004-04-02 | Sofradim Production | Anneau gastrique de traitement de l'obesite |
KR100463897B1 (ko) | 2002-01-09 | 2004-12-30 | 충북대학교 산학협력단 | 정압차이를 이용한 호흡유량계측장치의 계측특성 보정인자산출시스템 및 상기 시스템을 이용한 계측특성 보정인자산출방법 |
DE60319801T2 (de) | 2002-01-10 | 2009-04-16 | Interacoustics A/S | Piezoelektrische pumpe und gerät mit einer solchen pumpe |
FR2834631B1 (fr) | 2002-01-15 | 2004-10-22 | Cie Euro Etude Rech Paroscopie | Anneau de gastroplastie en materiau elastomere a durete variable |
US6953444B2 (en) | 2002-01-24 | 2005-10-11 | Codman & Shurtleff, Inc. | Inherent anti-siphon device |
US7544177B2 (en) | 2002-01-24 | 2009-06-09 | The Regents Of The University Of California | Aerosol device to deliver bioactive agent |
US6733512B2 (en) | 2002-03-07 | 2004-05-11 | Mcghan Jim J. | Self-deflating intragastric balloon |
EP1343112A1 (fr) | 2002-03-08 | 2003-09-10 | EndoArt S.A. | Dispositif implantable |
US20030181890A1 (en) | 2002-03-22 | 2003-09-25 | Schulze Dale R. | Medical device that removably attaches to a bodily organ |
US7040349B2 (en) | 2002-03-27 | 2006-05-09 | Viking Technologies, L.C. | Piezo-electric actuated multi-valve manifold |
DE60213555T2 (de) | 2002-03-28 | 2007-08-09 | Fluid Automation Systems S.A. | Elektromagnetisches Ventil |
CA2386639A1 (fr) | 2002-05-16 | 2003-11-16 | Dynamic Mt Gmbh | Spirometre electronique portatif |
US6691556B2 (en) | 2002-05-20 | 2004-02-17 | General Electric Company | Automatic data logging kit and method |
US8425493B2 (en) | 2002-05-22 | 2013-04-23 | The Alfred E. Mann Foundation For Scientific Research | Implantable medication delivery device |
DK1367307T3 (da) | 2002-05-31 | 2004-08-30 | Festo Ag & Co | Piezoventil |
FR2840193B1 (fr) | 2002-05-31 | 2005-02-11 | Textile Hi Tec | Anneau gastrique |
FR2840804B1 (fr) | 2002-06-13 | 2004-09-17 | Richard Cancel | Systeme pour le traitement de l'obesite et implant pour un tel systeme |
KR100414889B1 (ko) | 2002-07-06 | 2004-01-14 | 주식회사 바이크밸리 | 무체인 동력전달용 기어부재 |
US20040133219A1 (en) | 2002-07-29 | 2004-07-08 | Peter Forsell | Multi-material constriction device for forming stoma opening |
US7027935B2 (en) | 2002-08-07 | 2006-04-11 | Hitachi High Technologies Corp. | Sample dispensing apparatus and automatic analyzer using the same |
US6746460B2 (en) | 2002-08-07 | 2004-06-08 | Satiety, Inc. | Intra-gastric fastening devices |
US7338433B2 (en) | 2002-08-13 | 2008-03-04 | Allergan, Inc. | Remotely adjustable gastric banding method |
ATE551971T1 (de) | 2002-08-13 | 2012-04-15 | Allergan Inc | Fernverstellbare magenbandvorrichtung |
EP1389453B1 (fr) | 2002-08-16 | 2007-03-07 | AMI Agency for Medical Innovations GmbH | Anneau pour produire une constriction artificielle du tract gastro-intestinal |
US6667725B1 (en) | 2002-08-20 | 2003-12-23 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Radio frequency telemetry system for sensors and actuators |
EP2181655B1 (fr) | 2002-08-28 | 2016-12-07 | Apollo Endosurgery, Inc. | Dispositif de cerclage gastrique résistant à l'usure |
US7214233B2 (en) | 2002-08-30 | 2007-05-08 | Satiety, Inc. | Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach |
EP1396243B1 (fr) | 2002-09-04 | 2007-08-15 | Endoart S.A. | Anneau chirurgical pourvu d'un système de commande à distance et réversible de la variation de son diamètre |
EP1396242B1 (fr) | 2002-09-04 | 2007-11-14 | Endoart S.A. | Système de fermeture pour anneau chirurgical |
US7901419B2 (en) | 2002-09-04 | 2011-03-08 | Allergan, Inc. | Telemetrically controlled band for regulating functioning of a body organ or duct, and methods of making, implantation and use |
US7216648B2 (en) | 2002-09-06 | 2007-05-15 | Apneon, Inc. | Systems and methods for moving and/or restraining tissue in the upper respiratory system |
US7149587B2 (en) | 2002-09-26 | 2006-12-12 | Pacesetter, Inc. | Cardiovascular anchoring device and method of deploying same |
EP1403519A1 (fr) | 2002-09-27 | 2004-03-31 | Novo Nordisk A/S | Pompe à membrane avec membrane extensible |
US20040064030A1 (en) | 2002-10-01 | 2004-04-01 | Peter Forsell | Detection of implanted injection port |
US20040064110A1 (en) | 2002-10-01 | 2004-04-01 | Peter Forsell | Injection port |
US20040068233A1 (en) | 2002-10-04 | 2004-04-08 | Dimatteo Kristian | Venous access device with detachable suture wings |
DE10246340A1 (de) | 2002-10-04 | 2004-04-29 | Wohlrab, David, Dr. | Kombinationspräparat aus Hyaluronsäure und mindestens einem Lokalanästhetikum und dessen Verwendung |
US6905594B2 (en) | 2002-10-11 | 2005-06-14 | G6 Science Corp. | Filter apparatus and methods to capture a desired amount of material from a sample suspension for monolayer deposition, analysis or other uses |
US7131945B2 (en) | 2002-10-16 | 2006-11-07 | California Institute Of Technology | Optically powered and optically data-transmitting wireless intraocular pressure sensor device |
FR2846245B1 (fr) | 2002-10-25 | 2005-03-25 | Braun Medical | Dispositif medical implantable par voie sous-cutanee |
US7037344B2 (en) | 2002-11-01 | 2006-05-02 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US6921267B2 (en) | 2002-12-06 | 2005-07-26 | University Of Florida Research Foundation, Inc. | Lung simulator for an integrated human patient simulator |
GB2396484A (en) | 2002-12-19 | 2004-06-23 | Nokia Corp | Reducing coupling between different antennas |
US6940467B2 (en) | 2003-01-10 | 2005-09-06 | Atmel Germany Gmbh | Circuit arrangement and method for deriving electrical power from an electromagnetic field |
US8721515B2 (en) | 2003-01-31 | 2014-05-13 | L-Vad Technology, Inc. | Rigid body aortic blood pump implant |
US7844338B2 (en) | 2003-02-03 | 2010-11-30 | Enteromedics Inc. | High frequency obesity treatment |
US7613515B2 (en) | 2003-02-03 | 2009-11-03 | Enteromedics Inc. | High frequency vagal blockage therapy |
FR2851168B1 (fr) | 2003-02-13 | 2006-12-22 | Jean Francois Chantriaux | Site d'injection |
JP4102863B2 (ja) | 2003-02-14 | 2008-06-18 | 株式会社スタックシステム | 分注機及び分注装置 |
JP4392474B2 (ja) | 2003-02-21 | 2010-01-06 | 兵神装備株式会社 | 材料供給システム |
AU2004226322A1 (en) | 2003-03-27 | 2004-10-14 | William A. Blair | Apparatus and method for detecting objects using tags and wideband detection device |
US7682818B2 (en) | 2003-03-28 | 2010-03-23 | Fujifilm Corporation | Apparatus for separating and purifying nucleic acid and method for separating and purifying nucleic acid |
FR2852821B1 (fr) | 2003-03-31 | 2007-06-01 | Cie Euro Etude Rech Paroscopie | Ballon intra-gastrique enduit de parylene, procede de fabrication d'un tel ballon et utilisation de parylene pour revetir un ballon intra-gastrique |
US7191011B2 (en) | 2003-04-07 | 2007-03-13 | Advanced Neuromodulation Systems, Inc. | Access port indicator for implantable medical device |
FR2861734B1 (fr) | 2003-04-10 | 2006-04-14 | Corneal Ind | Reticulation de polysaccharides de faible et forte masse moleculaire; preparation d'hydrogels monophasiques injectables; polysaccharides et hydrogels obtenus |
US20040204692A1 (en) | 2003-04-11 | 2004-10-14 | Kenneth Eliasen | Implantable vascular access device |
US7048519B2 (en) | 2003-04-14 | 2006-05-23 | Agilent Technologies, Inc. | Closed-loop piezoelectric pump |
US20050038498A1 (en) | 2003-04-17 | 2005-02-17 | Nanosys, Inc. | Medical device applications of nanostructured surfaces |
US6813964B1 (en) | 2003-05-21 | 2004-11-09 | Hospira, Inc. | Fluid flow measurement device |
AT413477B (de) | 2003-06-04 | 2006-03-15 | Ami Gmbh | Einrichtung zur erzeugung einer künstlichen verengung im gastro-intestinal-trakt |
FR2855744B1 (fr) | 2003-06-04 | 2006-04-14 | Cie Euro Etude Rech Paroscopie | Anneau chirurgical a systeme de fermeture ameliore |
AT413475B (de) | 2003-06-04 | 2006-03-15 | Ami Gmbh | Einrichtung zur erzeugung einer künstlichen verengung im gastro-intestinal-trakt |
AT413476B (de) | 2003-06-04 | 2006-03-15 | Ami Gmbh | Einrichtung zur erzeugung einer künstlichen verengung im gastro-intestinal-trakt |
US8715243B2 (en) | 2003-06-16 | 2014-05-06 | Ethicon Endo-Surgery, Inc. | Injection port applier with downward force actuation |
US7561916B2 (en) | 2005-06-24 | 2009-07-14 | Ethicon Endo-Surgery, Inc. | Implantable medical device with indicator |
US7850660B2 (en) | 2003-12-19 | 2010-12-14 | Ethicon Endo-Surgery, Inc. | Implantable medical device with simultaneous attachment mechanism and method |
US7374557B2 (en) | 2003-06-16 | 2008-05-20 | Ethicon Endo-Surgery, Inc. | Subcutaneous self attaching injection port with integral fasteners |
US20050131352A1 (en) | 2003-06-16 | 2005-06-16 | Conlon Sean P. | Subcutaneous injection port for applied fasteners |
US7862546B2 (en) | 2003-06-16 | 2011-01-04 | Ethicon Endo-Surgery, Inc. | Subcutaneous self attaching injection port with integral moveable retention members |
ES2328567T3 (es) | 2003-06-20 | 2009-11-16 | Allergan, Inc. | Valvula de dos vias. |
US7502649B2 (en) | 2003-06-20 | 2009-03-10 | Metacure Ltd. | Gastrointestinal methods and apparatus for use in treating disorders |
US8353857B2 (en) | 2003-06-23 | 2013-01-15 | Codman & Shurtleff, Inc. | Implantable medical device having pressure sensors for diagnosing the performance of an implanted medical device |
US20040267292A1 (en) | 2003-06-27 | 2004-12-30 | Byrum Randal T. | Implantable band with transverse attachment mechanism |
US20040267291A1 (en) | 2003-06-27 | 2004-12-30 | Byrum Randal T. | Implantable band with non-mechanical attachment mechanism |
US7500944B2 (en) | 2003-06-27 | 2009-03-10 | Ethicon Endo-Surgery, Inc. | Implantable band with attachment mechanism |
US20050002984A1 (en) | 2003-06-27 | 2005-01-06 | Byrum Randal T. | Implantable band with attachment mechanism having dissimilar material properties |
ATE447384T1 (de) | 2003-06-27 | 2009-11-15 | Ethicon Endo Surgery Inc | Implantierbares band mit einer verbindungsvorrichtung bestehend aus materialien mit unterschiedlichen materialeigenschaften |
US7951067B2 (en) | 2003-06-27 | 2011-05-31 | Ethicon Endo-Surgery, Inc. | Implantable band having improved attachment mechanism |
US6855138B2 (en) | 2003-07-08 | 2005-02-15 | Hsi-Chin Tsai | Injection joint for an intravenous (IV) device tube |
EP1646423A4 (fr) | 2003-07-21 | 2010-09-15 | Metacure Nv | Methodes et appareil de traitement des troubles gastrointestinaux et de regulation de la glycemie |
ES2310731T3 (es) | 2003-07-25 | 2009-01-16 | Wolfgang Lechner | Banda gastrica controlable. |
US7317951B2 (en) | 2003-07-25 | 2008-01-08 | Integrated Sensing Systems, Inc. | Anchor for medical implant placement and method of manufacture |
US6994095B2 (en) | 2003-07-28 | 2006-02-07 | Medventure Associates Iv | Pyloric valve corking device and method |
US9498366B2 (en) | 2003-07-28 | 2016-11-22 | Baronova, Inc. | Devices and methods for pyloric anchoring |
US20090259236A2 (en) | 2003-07-28 | 2009-10-15 | Baronova, Inc. | Gastric retaining devices and methods |
US20060246137A1 (en) | 2003-07-30 | 2006-11-02 | Laurence Hermitte | Complex matrix for biomedical use |
US7263405B2 (en) | 2003-08-27 | 2007-08-28 | Neuro And Cardiac Technologies Llc | System and method for providing electrical pulses to the vagus nerve(s) to provide therapy for obesity, eating disorders, neurological and neuropsychiatric disorders with a stimulator, comprising bi-directional communication and network capabilities |
EP2311520B1 (fr) | 2003-09-15 | 2014-12-03 | Apollo Endosurgery, Inc. | Système de fixation de dispositifs implantables |
JP4259251B2 (ja) | 2003-09-25 | 2009-04-30 | オムロンヘルスケア株式会社 | 脈波計測装置 |
US7144400B2 (en) | 2003-10-01 | 2006-12-05 | Ethicon Endo-Surgery, Inc. | Gastric band introduction device |
US7896865B2 (en) | 2003-09-30 | 2011-03-01 | Codman & Shurtleff, Inc. | Two-compartment reduced volume infusion pump |
US7608086B2 (en) | 2003-09-30 | 2009-10-27 | Ethicon Endo-Surgery, Inc. | Anastomosis wire ring device |
US20050070937A1 (en) | 2003-09-30 | 2005-03-31 | Jambor Kristin L. | Segmented gastric band |
US7284966B2 (en) | 2003-10-01 | 2007-10-23 | Agency For Science, Technology & Research | Micro-pump |
US7351233B2 (en) | 2003-10-14 | 2008-04-01 | Parks Robert A | Subcutaneous vascular access port, needle and kit, and methods of using same |
KR100529496B1 (ko) | 2003-10-17 | 2005-11-21 | 현대모비스 주식회사 | 차량의 조수석 에어백 장치 |
US7054690B2 (en) | 2003-10-22 | 2006-05-30 | Intrapace, Inc. | Gastrointestinal stimulation device |
EP2246013A1 (fr) | 2003-10-23 | 2010-11-03 | Proxy Biomedical Limited | Dispositif de constriction gastrique |
US7299082B2 (en) | 2003-10-31 | 2007-11-20 | Abbott Diabetes Care, Inc. | Method of calibrating an analyte-measurement device, and associated methods, devices and systems |
US6928880B2 (en) | 2003-11-03 | 2005-08-16 | Motorola, Inc. | High pressure sensor |
US20050100779A1 (en) | 2003-11-07 | 2005-05-12 | Gertner Michael E. | Three dimensional polymeric fuel cell components |
US7056286B2 (en) | 2003-11-12 | 2006-06-06 | Adrian Ravenscroft | Medical device anchor and delivery system |
EP1692457A4 (fr) | 2003-12-11 | 2007-09-26 | Proteus Biomedical Inc | Capteurs de pression implantables |
US20050131383A1 (en) | 2003-12-16 | 2005-06-16 | How-Lun Chen | Method for implanting flexible injection port |
US20050131325A1 (en) | 2003-12-16 | 2005-06-16 | How-Lun Chen | Flexible injection port |
AU2004235622A1 (en) | 2003-12-17 | 2005-07-07 | Ethicon Endo-Surgery, Inc. | Mechanically adjustable gastric band |
US8162897B2 (en) | 2003-12-19 | 2012-04-24 | Ethicon Endo-Surgery, Inc. | Audible and tactile feedback |
US8124120B2 (en) | 2003-12-22 | 2012-02-28 | Anika Therapeutics, Inc. | Crosslinked hyaluronic acid compositions for tissue augmentation |
US7869881B2 (en) | 2003-12-24 | 2011-01-11 | Cardiac Pacemakers, Inc. | Baroreflex stimulator with integrated pressure sensor |
CN100537606C (zh) | 2003-12-30 | 2009-09-09 | 建新公司 | 源自交联的透明质酸和/或hylan的粘性凝胶、其制备和用途 |
US7177693B2 (en) | 2004-01-07 | 2007-02-13 | Medtronic, Inc. | Gastric stimulation for altered perception to treat obesity |
ATE489897T1 (de) | 2004-01-23 | 2010-12-15 | Allergan Inc | Befestigungssystem für eine implantierbare vorrichtung und anwendungsverfahren |
ES2399951T3 (es) | 2004-01-23 | 2013-04-04 | Allergan, Inc. | Banda gástrica ajustable de una pieza que puede fijarse de forma liberable |
US20050171568A1 (en) | 2004-01-30 | 2005-08-04 | Niall Duffy | Catheter and guidewire exchange system with improved catheter design |
US20050177111A1 (en) | 2004-02-06 | 2005-08-11 | Shaul Ozeri | Miniature infusion pump |
US8086315B2 (en) | 2004-02-12 | 2011-12-27 | Asap Medical, Inc. | Cardiac stimulation apparatus and method for the control of hypertension |
US7311716B2 (en) | 2004-02-20 | 2007-12-25 | Ethicon Endo-Surgery, Inc. | Surgically implantable adjustable band having a flat profile when implanted |
US7594885B2 (en) | 2004-02-20 | 2009-09-29 | Ethicon Endo-Surgery, Inc. | Method for implanting an adjustable band |
CA2557722C (fr) | 2004-02-27 | 2013-02-12 | Satiety, Inc. | Procedes et dispositifs pour reduire le volume d'organes creux |
EP2145610A1 (fr) | 2004-03-08 | 2010-01-20 | Allergan Medical S.A. | Système de fermeture pour organes tubulaires |
ES2368149T3 (es) | 2004-03-18 | 2011-11-14 | Allergan, Inc. | Aparato para el ajuste del volumen de globos intragástricos. |
US20070233170A1 (en) | 2004-03-23 | 2007-10-04 | Michael Gertner | Extragastric Balloon |
US20050228415A1 (en) | 2004-03-23 | 2005-10-13 | Michael Gertner | Methods and devices for percutaneous, non-laparoscopic treatment of obesity |
US7946976B2 (en) | 2004-03-23 | 2011-05-24 | Michael Gertner | Methods and devices for the surgical creation of satiety and biofeedback pathways |
US7841978B2 (en) | 2004-03-23 | 2010-11-30 | Michael Gertner | Methods and devices for to treatment of obesity |
US20060195139A1 (en) | 2004-03-23 | 2006-08-31 | Michael Gertner | Extragastric devices and methods for gastroplasty |
US8001976B2 (en) | 2004-03-23 | 2011-08-23 | Michael Gertner | Management systems for the surgically treated obese patient |
US20080300618A1 (en) | 2004-03-23 | 2008-12-04 | Michael Eric Gertner | Obesity treatment systems |
US20060142790A1 (en) | 2004-03-23 | 2006-06-29 | Michael Gertner | Methods and devices to facilitate connections between body lumens |
US20080147002A1 (en) | 2004-03-23 | 2008-06-19 | Michael Eric Gertner | Obesity treatment systems |
US20080071306A1 (en) | 2004-03-23 | 2008-03-20 | Michael Gertner | Extragastric Balloon With Attachment Tabs |
US20060264699A1 (en) | 2004-10-27 | 2006-11-23 | Michael Gertner | Extragastric minimally invasive methods and devices to treat obesity |
US8343031B2 (en) | 2004-03-23 | 2013-01-01 | Michael Gertner | Obesity treatment systems |
WO2006049725A2 (fr) | 2004-03-23 | 2006-05-11 | Minimus Surgical Systems | Systemes chirurgicaux et dispositifs destines a ameliorer les therapies de restriction gastrique |
US7255675B2 (en) | 2004-03-23 | 2007-08-14 | Michael Gertner | Devices and methods to treat a patient |
CA2561193A1 (fr) | 2004-03-26 | 2005-10-20 | Satiety, Inc. | Systemes et methodes de traitement de l'obesite |
US20060009697A1 (en) | 2004-04-07 | 2006-01-12 | Triage Wireless, Inc. | Wireless, internet-based system for measuring vital signs from a plurality of patients in a hospital or medical clinic |
US20050226936A1 (en) | 2004-04-08 | 2005-10-13 | Q-Med Ab | Method of soft tissue augmentation |
US20050240156A1 (en) | 2004-04-27 | 2005-10-27 | Conlon Sean P | Method of implanting a fluid injection port |
US20050240155A1 (en) | 2004-04-27 | 2005-10-27 | Conlon Sean P | Surgically implantable injection port having a centered catheter connection tube |
US7484940B2 (en) | 2004-04-28 | 2009-02-03 | Kinetic Ceramics, Inc. | Piezoelectric fluid pump |
JP4934024B2 (ja) | 2004-05-03 | 2012-05-16 | フルフィリウム, インコーポレイテッド | 胃の容量を制御するための方法およびシステム |
US20050281880A1 (en) | 2004-05-20 | 2005-12-22 | Wei Wang | Methods for making injectable polymer hydrogels |
US7651702B2 (en) | 2004-05-20 | 2010-01-26 | Mentor Corporation | Crosslinking hyaluronan and chitosanic polymers |
US20050261711A1 (en) | 2004-05-24 | 2005-11-24 | Olympus Corporation | Treatment method and endoscope apparatus |
US7390294B2 (en) | 2004-05-28 | 2008-06-24 | Ethicon Endo-Surgery, Inc. | Piezo electrically driven bellows infuser for hydraulically controlling an adjustable gastric band |
US7351240B2 (en) | 2004-05-28 | 2008-04-01 | Ethicon Endo—Srugery, Inc. | Thermodynamically driven reversible infuser pump for use as a remotely controlled gastric band |
US7374565B2 (en) | 2004-05-28 | 2008-05-20 | Ethicon Endo-Surgery, Inc. | Bi-directional infuser pump with volume braking for hydraulically controlling an adjustable gastric band |
US7481763B2 (en) | 2004-05-28 | 2009-01-27 | Ethicon Endo-Surgery, Inc. | Metal bellows position feedback for hydraulic control of an adjustable gastric band |
US20050277899A1 (en) | 2004-06-01 | 2005-12-15 | Conlon Sean P | Method of implanting a fluid injection port |
US20050148956A1 (en) | 2004-06-01 | 2005-07-07 | Conlon Sean P. | Surgically implantable injection port having an improved fastener |
US7351198B2 (en) | 2004-06-02 | 2008-04-01 | Ethicon Endo-Surgery, Inc. | Implantable adjustable sphincter system |
US20050288740A1 (en) | 2004-06-24 | 2005-12-29 | Ethicon Endo-Surgery, Inc. | Low frequency transcutaneous telemetry to implanted medical device |
US7599744B2 (en) | 2004-06-24 | 2009-10-06 | Ethicon Endo-Surgery, Inc. | Transcutaneous energy transfer primary coil with a high aspect ferrite core |
US7191007B2 (en) | 2004-06-24 | 2007-03-13 | Ethicon Endo-Surgery, Inc | Spatially decoupled twin secondary coils for optimizing transcutaneous energy transfer (TET) power transfer characteristics |
US7599743B2 (en) | 2004-06-24 | 2009-10-06 | Ethicon Endo-Surgery, Inc. | Low frequency transcutaneous energy transfer to implanted medical device |
WO2006055052A2 (fr) | 2004-07-19 | 2006-05-26 | Michael Gertner | Procedes et dispositifs de protection embolique chronique |
US20060020298A1 (en) | 2004-07-20 | 2006-01-26 | Camilleri Michael L | Systems and methods for curbing appetite |
US20060025799A1 (en) | 2004-07-27 | 2006-02-02 | Patrick Basu | Endoscopically placed gastric balloon (EPGB) device and method for treating obesity involving the same |
WO2006027425A1 (fr) | 2004-08-19 | 2006-03-16 | Compagnie Europeenne D'etude Et De Recherche De Dispositifs Pour L'implantation Par Laparoscopie | Site medical implantable |
US20060041183A1 (en) | 2004-08-20 | 2006-02-23 | Massen Richard J | Electromechanical machine-based artificial muscles, bio-valves and related devices |
KR100592468B1 (ko) | 2004-09-03 | 2006-06-28 | 김종욱 | 휴대용 수액 주입장치 |
CA2581320C (fr) | 2004-09-21 | 2021-04-27 | Shalon Ventures Inc. | Dispositifs d'expansion tissulaire |
US7776061B2 (en) | 2004-09-28 | 2010-08-17 | Garner Dean L | Fluid adjustable band |
CA2582929A1 (fr) | 2004-09-30 | 2006-04-06 | Duocure, Inc. | Dispositif et methode de traitement de troubles ponderaux |
US20070078476A1 (en) | 2004-10-12 | 2007-04-05 | Hull Wendell C Sr | Overweight control apparatuses for insertion into the stomach |
US7507221B2 (en) | 2004-10-13 | 2009-03-24 | Mallinckrodt Inc. | Powerhead of a power injection system |
US7593777B2 (en) | 2004-10-26 | 2009-09-22 | Medtronic, Inc. | Fixation of a medical implant to the exterior of a body organ |
FR2877582B1 (fr) | 2004-11-05 | 2009-10-30 | Cie Euro Etude Rech Paroscopie | Site medical implantable a zone de ponction multi-couches |
US7413547B1 (en) | 2004-11-08 | 2008-08-19 | Transoma Medical, Inc. | Reference sensor correction for implantable sensors |
US7351226B1 (en) | 2004-12-07 | 2008-04-01 | Glenn Herskowitz | Medical infusion pump |
US7366571B2 (en) | 2004-12-10 | 2008-04-29 | Cyberonics, Inc. | Neurostimulator with activation based on changes in body temperature |
WO2006063593A2 (fr) | 2004-12-14 | 2006-06-22 | Rune Wessel Weltlesen | Systeme et procede pour le traitement de l'obesite a l'aide d'un ballonnet intragastrique |
WO2006066023A2 (fr) | 2004-12-14 | 2006-06-22 | C. R. Bard, Inc. | Port a degagement rapide |
US7585280B2 (en) | 2004-12-29 | 2009-09-08 | Codman & Shurtleff, Inc. | System and method for measuring the pressure of a fluid system within a patient |
US7775966B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | Non-invasive pressure measurement in a fluid adjustable restrictive device |
US7879068B2 (en) | 2005-01-14 | 2011-02-01 | Ethicon Endo-Surgery, Inc. | Feedback sensing for a mechanical restrictive device |
US7601162B2 (en) | 2005-01-14 | 2009-10-13 | Ethicon Endo-Surgery, Inc. | Actuator for an implantable band |
US8109981B2 (en) | 2005-01-25 | 2012-02-07 | Valam Corporation | Optical therapies and devices |
US20060173238A1 (en) | 2005-01-31 | 2006-08-03 | Starkebaum Warren L | Dynamically controlled gastric occlusion device |
US20060173423A1 (en) | 2005-02-01 | 2006-08-03 | Conlon Sean P | Method for surgically implanting a fluid injection port |
US20060173424A1 (en) | 2005-02-01 | 2006-08-03 | Conlon Sean P | Surgically implantable injection port having an absorbable fastener |
US7771439B2 (en) | 2005-02-04 | 2010-08-10 | Symmetry Medical New Bedford Inc | Gastric band insertion instrument |
US7909804B2 (en) | 2005-02-07 | 2011-03-22 | C. R. Bard, Inc. | Vascular access port with integral attachment mechanism |
ITRE20050009A1 (it) | 2005-02-10 | 2006-08-11 | Mauro Bortolotti | Dispositivo medico antireflusso basato sull'azione di magneti |
WO2006086627A2 (fr) | 2005-02-11 | 2006-08-17 | Micardia Corporation | Implants gastriques ajustables de maniere dynamique et methodes de traitement de l'obesite a l'aide desdits implants gastriques ajustables de maniere dynamique |
US7699770B2 (en) | 2005-02-24 | 2010-04-20 | Ethicon Endo-Surgery, Inc. | Device for non-invasive measurement of fluid pressure in an adjustable restriction device |
US7775215B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device positioning and obtaining pressure data |
US8016744B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | External pressure-based gastric band adjustment system and method |
WO2006090018A1 (fr) | 2005-02-24 | 2006-08-31 | Compagnie Europeene D'etude Et De Recherche De Dispositifs Pour L'implantation Par Laparoscopie | Ballon intra-gastrique avec renfort d’extraction |
US20080009680A1 (en) | 2005-06-24 | 2008-01-10 | Hassler William L Jr | Remote monitoring and adjustment of a food intake restriction device |
US7658196B2 (en) | 2005-02-24 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device orientation |
US7909754B2 (en) | 2005-02-24 | 2011-03-22 | Ethicon Endo-Surgery, Inc. | Non-invasive measurement of fluid pressure in an adjustable gastric band |
US7927270B2 (en) | 2005-02-24 | 2011-04-19 | Ethicon Endo-Surgery, Inc. | External mechanical pressure sensor for gastric band pressure measurements |
US8066629B2 (en) | 2005-02-24 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Apparatus for adjustment and sensing of gastric band pressure |
US7699863B2 (en) | 2005-03-01 | 2010-04-20 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
EP1858565B1 (fr) | 2005-03-04 | 2021-08-11 | C.R. Bard, Inc. | Systemes et procedes d'identification d'orifice d'acces |
US7712470B2 (en) | 2005-03-19 | 2010-05-11 | Michael Gertner | Devices with integral magnets and uses thereof |
US20060217668A1 (en) | 2005-03-22 | 2006-09-28 | Schulze Dale R | Method of implanting a subcutaneous injection port having stabilizing elements |
US20060217673A1 (en) | 2005-03-22 | 2006-09-28 | Schulze Dale R | Subcutaneous injection port with stabilizing elements |
DE602006011721D1 (de) | 2005-03-24 | 2010-03-04 | Cook Inc | Austauschbares abgabesystem mit distalem schutz |
US20060264762A1 (en) | 2005-03-28 | 2006-11-23 | Ric Investments, Llc. | PC-based physiologic monitor and system for resolving apnea episodes during sedation |
US20060276812A1 (en) | 2005-04-04 | 2006-12-07 | Hill James W | Dynamic reinforcement of the lower esophageal sphincter |
AT501281B8 (de) | 2005-04-11 | 2007-02-15 | Wolfgang Dr Lechner | Steuerbares magenband |
US8251888B2 (en) | 2005-04-13 | 2012-08-28 | Mitchell Steven Roslin | Artificial gastric valve |
US8118748B2 (en) | 2005-04-28 | 2012-02-21 | Medtronic, Inc. | Implantable capacitive pressure sensor system and method |
US7899540B2 (en) | 2005-04-29 | 2011-03-01 | Cyberonics, Inc. | Noninvasively adjustable gastric band |
US7310557B2 (en) | 2005-04-29 | 2007-12-18 | Maschino Steven E | Identification of electrodes for nerve stimulation in the treatment of eating disorders |
US9345604B2 (en) | 2005-05-02 | 2016-05-24 | Almuhannad Alfrhan | Percutaneous intragastric balloon device and method |
US7727141B2 (en) | 2005-05-04 | 2010-06-01 | Ethicon Endo-Surgery, Inc. | Magnetic resonance imaging (MRI) safe remotely adjustable artifical sphincter |
US20080161717A1 (en) | 2005-05-10 | 2008-07-03 | Michael Eric Gertner | Obesity Treatment Systems |
WO2006122183A2 (fr) | 2005-05-10 | 2006-11-16 | Cytophil, Inc. | Hydrogels injectables et leurs procedes de fabrication et d'utilisation |
US7373825B2 (en) | 2005-05-20 | 2008-05-20 | Fennington Jr George J | Gauge tee device |
DE102005027809A1 (de) | 2005-06-15 | 2006-12-28 | Q Medial International Ag | Verschließeinrichtung für Hohlorgane |
US8216266B2 (en) | 2005-06-16 | 2012-07-10 | Hively Robert L | Gastric bariatric apparatus with selective inflation and safety features |
US7226419B2 (en) | 2005-06-22 | 2007-06-05 | Welch Allyn, Inc. | Mode detection and safety monitoring in blood pressure measurement |
US7651483B2 (en) | 2005-06-24 | 2010-01-26 | Ethicon Endo-Surgery, Inc. | Injection port |
US7918844B2 (en) | 2005-06-24 | 2011-04-05 | Ethicon Endo-Surgery, Inc. | Applier for implantable medical device |
US20070073250A1 (en) | 2005-07-08 | 2007-03-29 | Schneiter James A | Implantable port |
US7021147B1 (en) | 2005-07-11 | 2006-04-04 | General Electric Company | Sensor package and method |
US20070016262A1 (en) | 2005-07-13 | 2007-01-18 | Betastim, Ltd. | Gi and pancreatic device for treating obesity and diabetes |
US7615001B2 (en) | 2005-07-15 | 2009-11-10 | Ethicon Endo-Surgery, Inc. | Precurved gastric band |
US7367937B2 (en) | 2005-07-15 | 2008-05-06 | Ethicon Endo-Surgey, Inc. | Gastric band |
US7364542B2 (en) | 2005-07-15 | 2008-04-29 | Ethicon Endo-Surgery, Inc. | Gastric band suture tab extender |
US8298133B2 (en) | 2005-07-15 | 2012-10-30 | Ethicon Endo-Surgery, Inc. | Gastric band composed of different hardness materials |
US20070015955A1 (en) | 2005-07-15 | 2007-01-18 | Mark Tsonton | Accordion-like gastric band |
US7618365B2 (en) | 2005-07-15 | 2009-11-17 | Ethicon Endo-Surgery, Inc. | Method of implating a medical device using a suture tab extender |
US7416528B2 (en) | 2005-07-15 | 2008-08-26 | Ethicon Endo-Surgery, Inc. | Latching device for gastric band |
US8182411B2 (en) | 2005-07-15 | 2012-05-22 | Ethicon Endo-Surgery, Inc. | Gastric band with mating end profiles |
WO2007011086A1 (fr) | 2005-07-19 | 2007-01-25 | Hyvix Co., Ltd. | Procede et dispositif destines a convertir des donnees de gradation dans un afficheur a cristaux liquides |
US7766815B2 (en) | 2005-07-28 | 2010-08-03 | Ethicon Endo-Surgery, Inc. | Electroactive polymer actuated gastric band |
US7353747B2 (en) | 2005-07-28 | 2008-04-08 | Ethicon Endo-Surgery, Inc. | Electroactive polymer-based pump |
WO2007017880A2 (fr) | 2005-08-11 | 2007-02-15 | Stimplant Ltd. | Dispositif implantable pour la prevention de l'obesite |
US7240607B2 (en) | 2005-08-23 | 2007-07-10 | Polygon Company | Removable end plug |
US7742815B2 (en) | 2005-09-09 | 2010-06-22 | Cardiac Pacemakers, Inc. | Using implanted sensors for feedback control of implanted medical devices |
WO2007041471A2 (fr) | 2005-09-30 | 2007-04-12 | Angiodynamics, Inc. | Dispositif medical implantable |
WO2007041627A1 (fr) | 2005-10-03 | 2007-04-12 | Pinsky Mark A | Préparations et méthodes pour soin de la peau amélioré |
US20070158769A1 (en) | 2005-10-14 | 2007-07-12 | Cardiomems, Inc. | Integrated CMOS-MEMS technology for wired implantable sensors |
US20070088336A1 (en) | 2005-10-17 | 2007-04-19 | Dalton Michael J | Implantable drug delivery depot for subcutaneous delivery of fluids |
WO2007047743A2 (fr) | 2005-10-18 | 2007-04-26 | Cook Biotech Incorporated | Dispositif medical comprenant des dispositifs de fixation |
EP1779821A1 (fr) | 2005-10-26 | 2007-05-02 | Etervind AB | Bande gastrique réglable |
US8936590B2 (en) | 2005-11-09 | 2015-01-20 | The Invention Science Fund I, Llc | Acoustically controlled reaction device |
FR2893255B1 (fr) | 2005-11-16 | 2008-10-17 | Cie Euro Etude Rech Paroscopie | Site medical implantable atraumatique de construction simplifiee |
US7246734B2 (en) | 2005-12-05 | 2007-07-24 | Ethicon Endo-Surgery, Inc. | Rotary hydraulic pump actuated multi-stroke surgical instrument |
US7580746B2 (en) | 2005-12-07 | 2009-08-25 | Cardiac Pacemakers, Inc. | Implantable medical device for generating cardiac pressure-volume loop and optimizing therapy |
US7468038B2 (en) | 2005-12-20 | 2008-12-23 | Shenzhen Mindray Bio-Medical Electronics Co., Ltd. | Non-invasive electronic method and apparatus for measuring blood pressure |
AT502985B1 (de) | 2005-12-22 | 2009-05-15 | Lechner Wolfgang Dr | System zur kontrolle eines steuerbaren magenbandes |
US7261003B2 (en) | 2006-01-03 | 2007-08-28 | Freescale Semiconductor, Inc. | Flowmeter and method for the making thereof |
ES2421585T3 (es) | 2006-01-04 | 2013-09-04 | Allergan Inc | Banda gástrica autorregulable |
US8043206B2 (en) | 2006-01-04 | 2011-10-25 | Allergan, Inc. | Self-regulating gastric band with pressure data processing |
US7798954B2 (en) | 2006-01-04 | 2010-09-21 | Allergan, Inc. | Hydraulic gastric band with collapsible reservoir |
US7708722B2 (en) | 2006-01-10 | 2010-05-04 | Stealth Therapeutics, Inc. | Stabilized implantable vascular access port |
JP5097558B2 (ja) | 2006-01-13 | 2012-12-12 | オリンパスメディカルシステムズ株式会社 | 医療システム |
US20070265646A1 (en) | 2006-01-17 | 2007-11-15 | Ellipse Technologies, Inc. | Dynamically adjustable gastric implants |
US7762999B2 (en) | 2006-02-01 | 2010-07-27 | Ethicon Endo-Surgery, Inc. | Injection port |
US20070185373A1 (en) | 2006-02-03 | 2007-08-09 | Ethicon Endo-Surgery, Inc. | Gastric band introduction device |
US20070191717A1 (en) | 2006-02-13 | 2007-08-16 | Drexel University | Catheter based implanted wireless pressure sensor |
US20070205384A1 (en) | 2006-03-02 | 2007-09-06 | Smc Kabushiki Kaisha | Flow Rate Control Apparatus |
WO2007104356A1 (fr) | 2006-03-13 | 2007-09-20 | Rudolf Steffen | Dispositif et procédé adaptatifs pour adapter l'ouverture de l'estomac d'un patient |
US7794386B2 (en) | 2006-03-15 | 2010-09-14 | Allergan, Inc. | Methods for facilitating weight loss |
MX2008012047A (es) | 2006-03-20 | 2009-02-11 | Medical Components Inc | Ensamble del puerto de acceso venenoso de ensamble y uso. |
US20080027269A1 (en) | 2006-04-04 | 2008-01-31 | Michael Gertner | Methods of using pericardial inserts |
US20080250341A1 (en) | 2006-04-06 | 2008-10-09 | Ethicon Endo-Surgery, Inc. | Gui With Trend Analysis for an Implantable Restriction Device and a Data Logger |
US8870742B2 (en) | 2006-04-06 | 2014-10-28 | Ethicon Endo-Surgery, Inc. | GUI for an implantable restriction device and a data logger |
US20080249806A1 (en) | 2006-04-06 | 2008-10-09 | Ethicon Endo-Surgery, Inc | Data Analysis for an Implantable Restriction Device and a Data Logger |
US8152710B2 (en) | 2006-04-06 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Physiological parameter analysis for an implantable restriction device and a data logger |
US20070243227A1 (en) | 2006-04-14 | 2007-10-18 | Michael Gertner | Coatings for surgical staplers |
US7748275B2 (en) | 2006-04-19 | 2010-07-06 | Asahi Kasei Kuraray Medical Co., Ltd. | Pressure sensor for extracorporeal circulating circuit |
US20070265666A1 (en) | 2006-04-27 | 2007-11-15 | Roberts Jonathan P | Implantable sensors having high impedance couplings providing current pathways for improved fault tolerance |
US8348909B2 (en) | 2006-04-28 | 2013-01-08 | Medtronic, Inc. | Implantable therapeutic substance delivery device with septum guide and method of use |
US20070255336A1 (en) | 2006-04-28 | 2007-11-01 | Medtronic, Inc. | Gastric constriction device with selectable electrode combinations |
US20070255335A1 (en) | 2006-04-28 | 2007-11-01 | Medtronic, Inc. | Controller for gastric constriction device with selectable electrode configurations |
US7727143B2 (en) | 2006-05-31 | 2010-06-01 | Allergan, Inc. | Locator system for implanted access port with RFID tag |
US7780590B2 (en) | 2006-05-31 | 2010-08-24 | Allergan, Inc. | Method for locating an implanted fluid access port |
US20070288033A1 (en) | 2006-06-09 | 2007-12-13 | Allergan, Inc. | Intragastric balloon retrieval mechanisms |
US7763039B2 (en) | 2006-06-09 | 2010-07-27 | Ethicon Endo-Surgery, Inc. | Articulating blunt dissector/gastric band application device |
WO2007146243A2 (fr) | 2006-06-12 | 2007-12-21 | Beth Israel Deaconess Medical Center, Inc. | Procédés et appareil pour déterminer l'emplacement d'orifices implantés |
WO2007145638A1 (fr) | 2006-06-14 | 2007-12-21 | Michael Gertner | dispositifs mÉdicaux À aimants intégrés et leurs utilisations |
US20070298005A1 (en) | 2006-06-22 | 2007-12-27 | Marie-Josee Thibault | Injectable composition for treatment of skin defects or deformations |
AT504158B1 (de) | 2006-08-21 | 2008-09-15 | Ami Gmbh | Einrichtung zur behandlung von fettleibigkeit |
JP5307008B2 (ja) | 2006-08-29 | 2013-10-02 | カリフォルニア インスティテュート オブ テクノロジー | 生物医学的応用に用いられる微細加工された移植可能な無線圧力センサーおよび圧力測定ならびにセンサー移植方法 |
US9326877B2 (en) | 2006-09-29 | 2016-05-03 | Apollo Endosurgery, Inc. | Apparatus and method for intragastric balloon with in situ adjustment means |
US20080319435A1 (en) | 2006-10-12 | 2008-12-25 | Boston Scientific Scimed, Inc. | Shape-changing tissue constrictor and methods of use |
US8246533B2 (en) | 2006-10-20 | 2012-08-21 | Ellipse Technologies, Inc. | Implant system with resonant-driven actuator |
US7862502B2 (en) | 2006-10-20 | 2011-01-04 | Ellipse Technologies, Inc. | Method and apparatus for adjusting a gastrointestinal restriction device |
EP2081638A4 (fr) | 2006-11-03 | 2013-06-12 | Gep Technology Inc | Appareil et procédés pour le traitement à peine invasif de l'obésité |
US20080114308A1 (en) | 2006-11-13 | 2008-05-15 | Di Palma Giorgio | Vascular Access Port with Catheter Connector |
US20080161875A1 (en) | 2006-11-21 | 2008-07-03 | Stone Robert T | Gastric restriction method and system for treatment of eating disorders |
US20080234354A1 (en) | 2006-11-21 | 2008-09-25 | Lippa Arnold S | Methods And Compositions For Controlling Body Weight And Appetite |
US20080166028A1 (en) | 2007-01-10 | 2008-07-10 | Turek Joseph J | Pressure actuated biometric sensor |
US20080172072A1 (en) | 2007-01-11 | 2008-07-17 | Ellipse Technologies, Inc. | Internal sensors for use with gastric restriction devices |
US8083665B2 (en) | 2007-03-06 | 2011-12-27 | Ethicon Endo-Surgery, Inc. | Pressure sensors for gastric band and adjacent tissue |
US8920307B2 (en) | 2007-03-06 | 2014-12-30 | Ethicon Endo-Surgery, Inc. | Gastric band system with esophageal sensor |
US7942863B2 (en) | 2007-03-29 | 2011-05-17 | Medtronic, Inc. | Detecting needle entry into a port of an infusion device |
US8226602B2 (en) | 2007-03-30 | 2012-07-24 | Reshape Medical, Inc. | Intragastric balloon system and therapeutic processes and products |
EP2135630B1 (fr) | 2007-04-09 | 2014-05-07 | Obshchestvo S Ogranichennoy Otvetstvennostiu "Nauchno Proizvodstvennaya Firma 'Pozitom-Pro'" | Systeme de perfusion strontium-rubidium automatise |
US8062215B2 (en) | 2007-04-13 | 2011-11-22 | Ethicon Endo-Surgery, Inc. | Fluorescent nanoparticle scope |
US20080255601A1 (en) | 2007-04-13 | 2008-10-16 | Allergan, Inc. | Apparatus and method for remote deflation of intragastric balloon |
US20080275294A1 (en) | 2007-05-01 | 2008-11-06 | Michael Gertner | Pericardial inserts |
US20070208313A1 (en) | 2007-05-07 | 2007-09-06 | Ethicon Endo-Surgery, Inc. | Method of implanting a fluid injection port |
US20080287976A1 (en) | 2007-05-14 | 2008-11-20 | Weaner Lauren S | Gastric band with engagement member |
US8317676B2 (en) | 2007-05-14 | 2012-11-27 | Ethicon Endo-Surgery, Inc. | Gastric band with contrasting supply tube |
US8485964B2 (en) | 2007-05-15 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Gastric band with supply tube check valve |
US20080287776A1 (en) | 2007-05-16 | 2008-11-20 | Yaron Ephrath | Gastric band with position sensing |
DE102007025312A1 (de) | 2007-05-25 | 2008-11-27 | Q Medical International Ag | Intragastraler Mageneinsatz zur Behandlung von Fettsucht |
US20080306443A1 (en) | 2007-06-06 | 2008-12-11 | Mallinckrodt Inc. | Medical Fluid Injector Having Wireless Pressure Monitoring Feature |
FR2916980A1 (fr) | 2007-06-07 | 2008-12-12 | Cie Euro Etude Rech Paroscopie | Site implantable avec ecran a redistribution d'acces |
EP2155051A1 (fr) | 2007-06-14 | 2010-02-24 | Cardiac Pacemakers, Inc. | Procédés et dispositifs de mesure de pression intracorporelle |
AU2008287317A1 (en) | 2007-08-16 | 2009-02-19 | East Carolina University | Smart injection syringe systems providing real-time user feedback of correct needle position |
DE102007038801A1 (de) | 2007-08-17 | 2009-02-19 | Biotronik Crm Patent Ag | Implantierbare Druckmesseinrichtung und Anordnung zur Innendruckmessung in einem Blutgefäß |
AU2008299945A1 (en) | 2007-09-07 | 2009-03-19 | Angiodynamics, Inc. | Implantable access port |
US20090076466A1 (en) | 2007-09-17 | 2009-03-19 | Quebbemann Brian B | Sutureless venous access port |
US8535280B2 (en) | 2007-09-26 | 2013-09-17 | Medtronic, In | Pressure based refill status monitor for implantable pumps |
FR2921822A1 (fr) | 2007-10-05 | 2009-04-10 | Dominique Branche | Anneau gastrique anti glissement |
AU2008313292A1 (en) | 2007-10-15 | 2009-04-23 | Lorentz Fleischer (Lior) | Apparatus and methods for corrective guidance of eating behavior after weight loss surgery |
RU2010119662A (ru) | 2007-10-23 | 2011-11-27 | Аллерган, Инк. (Us) | Внутрижелудочный баллон с датчиком давления |
US8480612B2 (en) | 2007-10-31 | 2013-07-09 | DePuy Synthes Products, LLC | Wireless shunts with storage |
US8187163B2 (en) | 2007-12-10 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Methods for implanting a gastric restriction device |
US8100870B2 (en) | 2007-12-14 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Adjustable height gastric restriction devices and methods |
US20090157113A1 (en) | 2007-12-18 | 2009-06-18 | Ethicon Endo-Surgery, Inc. | Wearable elements for implantable restriction systems |
US8142452B2 (en) | 2007-12-27 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8377079B2 (en) | 2007-12-27 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Constant force mechanisms for regulating restriction devices |
US20090171379A1 (en) | 2007-12-27 | 2009-07-02 | Ethicon Endo-Surgery, Inc. | Fluid logic for regulating restriction devices |
US20090187202A1 (en) | 2008-01-17 | 2009-07-23 | Ortiz Mark S | Optimizing the operation of a restriction system |
JP5602360B2 (ja) | 2008-01-25 | 2014-10-08 | キヤノン株式会社 | 薬剤吐出装置及び該装置の吐出性能の把握方法 |
US20090192541A1 (en) | 2008-01-28 | 2009-07-30 | Ethicon Endo-Surgery, Inc. | Methods and devices for predicting performance of a gastric restriction system |
US8192350B2 (en) | 2008-01-28 | 2012-06-05 | Ethicon Endo-Surgery, Inc. | Methods and devices for measuring impedance in a gastric restriction system |
US8337389B2 (en) | 2008-01-28 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Methods and devices for diagnosing performance of a gastric restriction system |
US8591395B2 (en) | 2008-01-28 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Gastric restriction device data handling devices and methods |
US9060771B2 (en) | 2008-01-29 | 2015-06-23 | Peter Forsell | Method and instrument for treating obesity |
US20090192534A1 (en) | 2008-01-29 | 2009-07-30 | Ethicon Endo-Surgery, Inc. | Sensor trigger |
CA2713814C (fr) | 2008-01-30 | 2014-09-02 | Medical Components, Inc. | Anneau gastrique gonflable equipe d'une sonde de perfusion integree |
US8221439B2 (en) | 2008-02-07 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using kinetic motion |
US7844342B2 (en) | 2008-02-07 | 2010-11-30 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using light |
US20090204179A1 (en) | 2008-02-07 | 2009-08-13 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using temperature |
US8114345B2 (en) | 2008-02-08 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | System and method of sterilizing an implantable medical device |
US8057492B2 (en) | 2008-02-12 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Automatically adjusting band system with MEMS pump |
US8591532B2 (en) | 2008-02-12 | 2013-11-26 | Ethicon Endo-Sugery, Inc. | Automatically adjusting band system |
US20090209995A1 (en) | 2008-02-14 | 2009-08-20 | Byrum Randal T | Implantable adjustable sphincter system |
US20090220176A1 (en) | 2008-02-15 | 2009-09-03 | Fusco Michael T | Self-sealing container |
US8034065B2 (en) | 2008-02-26 | 2011-10-11 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US20090222028A1 (en) | 2008-02-29 | 2009-09-03 | Ethicon Endo-Surgery, Inc. | Methods and devices for fixing antenna orientation in a restriction system |
US8233995B2 (en) | 2008-03-06 | 2012-07-31 | Ethicon Endo-Surgery, Inc. | System and method of aligning an implantable antenna |
US8187162B2 (en) | 2008-03-06 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Reorientation port |
US20090228063A1 (en) | 2008-03-06 | 2009-09-10 | Ethicon Endo-Surgery, Inc. | System and method of communicating with an implantable antenna |
US20090248125A1 (en) | 2008-03-25 | 2009-10-01 | Medtronic, Inc. | Integrated conductive pressure sensor capsule with custom molded unitary overlay |
US8849424B2 (en) | 2008-03-25 | 2014-09-30 | Medtronic, Inc. | Integrated conductive sensor package having conductor bypass, distal electrode, distal adapter and custom molded overlay |
US7856887B2 (en) | 2008-03-27 | 2010-12-28 | Endress + Hauser Gmbh + Co. Kg | Pressure management arrangement |
US20090259246A1 (en) | 2008-04-14 | 2009-10-15 | Sherif Eskaros | Intragastric Volume-Occupying Device |
FR2929842B1 (fr) | 2008-04-14 | 2011-09-30 | Cie Euro Etude Rech Paroscopie | Anneau gastrique avec poches basculantes |
MX2010011367A (es) | 2008-04-17 | 2010-11-12 | Allergan Inc | Dispositivo con puerto de acceso implantable y sistema de sujecion. |
US9023063B2 (en) | 2008-04-17 | 2015-05-05 | Apollo Endosurgery, Inc. | Implantable access port device having a safety cap |
US7591185B1 (en) | 2008-04-23 | 2009-09-22 | Medtronic, Inc. | Pressure sensor configurations for implantable medical electrical leads |
JP2011518617A (ja) | 2008-04-23 | 2011-06-30 | アラーガン、インコーポレイテッド | 遠隔操作で調節可能な胃バンディングシステム |
US7752002B2 (en) | 2008-05-30 | 2010-07-06 | Pacesetter, Inc. | Methods and apparatus for non-invasive implantable pressure sensor calibration |
US8926524B2 (en) | 2008-06-02 | 2015-01-06 | California Institute Of Technology | System, apparatus and method for biomedical wireless pressure sensing |
WO2009152122A1 (fr) | 2008-06-11 | 2009-12-17 | Allergan, Inc. | Système de pompe implantable |
AU2009271133B2 (en) | 2008-07-14 | 2015-01-22 | Apollo Endosurgery, Inc. | Implantable pump system with calibration |
US20100305397A1 (en) | 2008-10-06 | 2010-12-02 | Allergan Medical Sarl | Hydraulic-mechanical gastric band |
WO2010042493A1 (fr) | 2008-10-06 | 2010-04-15 | Allergan, Inc. | Bande gastrique mécanique avec coussins |
US9364362B2 (en) * | 2008-10-21 | 2016-06-14 | General Electric Company | Implantable device system |
US20100185049A1 (en) | 2008-10-22 | 2010-07-22 | Allergan, Inc. | Dome and screw valves for remotely adjustable gastric banding systems |
WO2010048280A1 (fr) | 2008-10-22 | 2010-04-29 | Allergan, Inc. | Valve activée électriquement pour système de manipulation de fluide implantable |
US20100114149A1 (en) | 2008-10-30 | 2010-05-06 | Albrecht Thomas E | Automatically adjusting intra-gastric satiation and satiety creation device |
US20100191271A1 (en) | 2009-01-29 | 2010-07-29 | Lilip Lau | Assembly and method for automatically controlling pressure for a gastric band |
US20100191265A1 (en) | 2009-01-29 | 2010-07-29 | Cavu Medical, Inc. | Assembly and method for automatically controlling pressure for a gastric band |
FR2941617B1 (fr) | 2009-02-04 | 2012-06-29 | Endalis | Ballon intra-gastrique. |
WO2010127248A2 (fr) | 2009-05-01 | 2010-11-04 | Allergan, Inc. | Bande gastrique laparoscopique avec agents actifs |
US20110201874A1 (en) | 2010-02-12 | 2011-08-18 | Allergan, Inc. | Remotely adjustable gastric banding system |
-
2011
- 2011-03-30 US US13/076,139 patent/US20110270025A1/en not_active Abandoned
- 2011-04-28 WO PCT/IB2011/000911 patent/WO2011135443A2/fr active Application Filing
- 2011-04-28 ES ES13151145.3T patent/ES2523967T3/es active Active
- 2011-04-28 EP EP13151145.3A patent/EP2604234B1/fr not_active Not-in-force
- 2011-04-28 EP EP11724752A patent/EP2563298A2/fr not_active Withdrawn
- 2011-04-28 CA CA2797894A patent/CA2797894A1/fr active Pending
- 2011-04-28 AU AU2011246960A patent/AU2011246960B2/en not_active Ceased
-
2013
- 2013-11-08 US US14/075,964 patent/US9192501B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050143766A1 (en) * | 2002-09-04 | 2005-06-30 | Endoart Sa | Telemetrically controlled band for regulating functioning of a body organ or duct, and methods of making, implantation and use |
US20050288739A1 (en) * | 2004-06-24 | 2005-12-29 | Ethicon, Inc. | Medical implant having closed loop transcutaneous energy transfer (TET) power transfer regulation circuitry |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130046197A1 (en) * | 2011-08-16 | 2013-02-21 | Daniel F. Dlugos, Jr. | Docking station for patient bedside monitoring units |
US20150270875A1 (en) * | 2011-08-30 | 2015-09-24 | L & P Property Management Company | Docking station for inductively charged portable electronic device |
US9680532B2 (en) * | 2011-08-30 | 2017-06-13 | L&P Property Management Company | Docking station for inductively charged portable electronic device |
WO2013090822A1 (fr) * | 2011-12-15 | 2013-06-20 | Autodesk, Inc. | Dispositifs implantés et interfaces utilisateur associées |
US20130176207A1 (en) * | 2011-12-15 | 2013-07-11 | Autodesk, Inc. | Implanted devices and related user interfaces |
CN104023671A (zh) * | 2011-12-15 | 2014-09-03 | 欧特克公司 | 植入设备和相关的用户接口 |
US10088894B2 (en) * | 2011-12-15 | 2018-10-02 | Autodesk, Inc. | Implanted devices and related user interfaces |
US9098610B2 (en) * | 2011-12-22 | 2015-08-04 | Greatbatch Ltd. | Communication for implantable medical devices |
US20130166642A1 (en) * | 2011-12-22 | 2013-06-27 | Richard J. Polefko | Communication for implantable medical devices |
US9154219B2 (en) * | 2011-12-22 | 2015-10-06 | Greatbach Ltd. | Communication for implantable medical devices |
US20130198463A1 (en) * | 2012-01-27 | 2013-08-01 | Medtronic, Inc. | Retrieval of information from an implantable medical device |
US9636509B2 (en) * | 2012-01-27 | 2017-05-02 | Medtronic, Inc. | Retrieval of information from an implantable medical device |
US9011365B2 (en) | 2013-03-12 | 2015-04-21 | Medibotics Llc | Adjustable gastrointestinal bifurcation (AGB) for reduced absorption of unhealthy food |
US9456916B2 (en) | 2013-03-12 | 2016-10-04 | Medibotics Llc | Device for selectively reducing absorption of unhealthy food |
US9067070B2 (en) | 2013-03-12 | 2015-06-30 | Medibotics Llc | Dysgeusia-inducing neurostimulation for modifying consumption of a selected nutrient type |
US9159224B2 (en) | 2013-09-12 | 2015-10-13 | Nxp B.V. | Wireless power and data apparatus, system and method |
US20150098528A1 (en) * | 2013-10-07 | 2015-04-09 | Nxp B.V. | Base station for rf communication |
EP2858258A1 (fr) * | 2013-10-07 | 2015-04-08 | Nxp B.V. | Station de base pour communication RF |
EP2889721A1 (fr) * | 2013-12-27 | 2015-07-01 | Brother Kogyo Kabushiki Kaisha | Appareil de communication |
US20150189112A1 (en) * | 2013-12-27 | 2015-07-02 | Brother Kogyo Kabushiki Kaisha | Communication apparatus |
JP2015125732A (ja) * | 2013-12-27 | 2015-07-06 | ブラザー工業株式会社 | 通信装置 |
US9661167B2 (en) * | 2013-12-27 | 2017-05-23 | Brother Kogyo Kabushiki Kaisha | Communication apparatus configured to perform non-contact communication with external device |
CN104753572A (zh) * | 2013-12-27 | 2015-07-01 | 兄弟工业株式会社 | 通信装置 |
US20160020637A1 (en) * | 2014-07-15 | 2016-01-21 | Rf Micro Devices, Inc. | Wireless charging circuit |
US10566843B2 (en) * | 2014-07-15 | 2020-02-18 | Qorvo Us, Inc. | Wireless charging circuit |
US10559970B2 (en) | 2014-09-16 | 2020-02-11 | Qorvo Us, Inc. | Method for wireless charging power control |
US10603195B1 (en) | 2015-05-20 | 2020-03-31 | Paul Sherburne | Radial expansion and contraction features of medical devices |
US11998465B2 (en) | 2015-05-20 | 2024-06-04 | Elemental Portfolio, Llc | Radial expansion and contraction features of medical devices |
EP3849444A4 (fr) * | 2018-09-10 | 2022-06-22 | AMB Orthopedics, Inc. | Systèmes et procédés de réglage une tige pouvant s'agrandir |
CN110346745A (zh) * | 2019-07-30 | 2019-10-18 | 福建星云电子股份有限公司 | 一种电池模组检测工具用校验工装 |
Also Published As
Publication number | Publication date |
---|---|
ES2523967T3 (es) | 2014-12-03 |
EP2604234B1 (fr) | 2014-06-25 |
US9192501B2 (en) | 2015-11-24 |
AU2011246960B2 (en) | 2015-04-23 |
US20140073848A1 (en) | 2014-03-13 |
WO2011135443A2 (fr) | 2011-11-03 |
EP2604234A3 (fr) | 2013-07-31 |
WO2011135443A3 (fr) | 2012-03-22 |
EP2563298A2 (fr) | 2013-03-06 |
AU2011246960A1 (en) | 2012-12-06 |
CA2797894A1 (fr) | 2011-11-03 |
EP2604234A2 (fr) | 2013-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9192501B2 (en) | Remotely powered remotely adjustable gastric band system | |
US20210353949A1 (en) | Neural stimulation devices and systems for treatment of chronic inflammation | |
US20240215900A1 (en) | Closed-loop vagus nerve stimulation | |
US20240041399A1 (en) | Method and apparatus for versatile minimally invasive neuromodulators | |
EP3180069B1 (fr) | Système de neurostimulateur implantable miniature pour le nerf sciatique et ses ramifications | |
US8764624B2 (en) | Inductively powered remotely adjustable gastric banding system | |
AU2013387134B2 (en) | ECG monitor with an implantable part |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALLERGAN MEDICAL SARL, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRIDEZ, PIERRE;JORDAN, ALAIN;MONTAVON, JEAN-CHARLES;AND OTHERS;SIGNING DATES FROM 20110324 TO 20110328;REEL/FRAME:026060/0861 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: APOLLO ENDOSURGERY, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALLERGAN MEDICAL SARL;REEL/FRAME:031861/0645 Effective date: 20121220 |
|
AS | Assignment |
Owner name: OXFORD FINANCE LLC, AS AGENT, VIRGINIA Free format text: SECURITY AGREEMENT;ASSIGNOR:APOLLO ENDOSURGERY, INC.;REEL/FRAME:031910/0460 Effective date: 20131202 |
|
AS | Assignment |
Owner name: APOLLO ENDOSURGERY, INC., TEXAS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE PREVIOUSLY RECORDED ON REEL 031861 FRAME 0645. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALLERGAN MEDICAL SARL;REEL/FRAME:031925/0103 Effective date: 20131220 |
|
AS | Assignment |
Owner name: APOLLO ENDOSURGERY, INC., TEXAS Free format text: TERMINATION OF PATENT SECURITY INTEREST (RECORDED ON 12/3/13 AT REEL/FRAME 031756/0729 AND ON 1/2/14 AT REEL/FRAME 031910/0460);ASSIGNOR:OXFORD FINANCE LLC, AS AGENT;REEL/FRAME:035120/0740 Effective date: 20150227 |