US20080160129A1 - Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template - Google Patents
Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template Download PDFInfo
- Publication number
- US20080160129A1 US20080160129A1 US11/744,698 US74469807A US2008160129A1 US 20080160129 A1 US20080160129 A1 US 20080160129A1 US 74469807 A US74469807 A US 74469807A US 2008160129 A1 US2008160129 A1 US 2008160129A1
- Authority
- US
- United States
- Prior art keywords
- region
- template
- distance
- recited
- superimposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67126—Apparatus for sealing, encapsulating, glassing, decapsulating or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
- B29C59/022—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/6715—Apparatus for applying a liquid, a resin, an ink or the like
Definitions
- Nano-fabrication involves the fabrication of very small structures, e.g., having features on the order of nanometers or smaller.
- One area in which nano-fabrication has had a sizeable impact is in the processing of integrated circuits.
- nano-fabrication becomes increasingly important. Nano-fabrication provides greater process control while allowing increased reduction of the minimum feature dimension of the structures formed.
- Other areas of development in which nano-fabrication has been employed include biotechnology, optical technology, mechanical systems and the like.
- An exemplary nano-fabrication technique is commonly referred to as imprint lithography.
- Exemplary imprint lithography processes are described in detail in numerous publications, such as United States patent application publication 2004/0065976 filed as U.S. patent application Ser. No. 10/264,960, entitled “Method and a Mold to Arrange Features on a Substrate to Replicate Features having Minimal Dimensional Variability”; United States patent application publication 2004/0065252 filed as U.S. patent application Ser. No. 10/264,926, entitled “Method of Forming a Layer on a Substrate to Facilitate Fabrication of Metrology Standards”; and U.S. Pat. No. 6,936,194, entitled “Functional Patterning Material for Imprint Lithography Processes,” all of which are assigned to the assignee of the present invention.
- the imprint lithography technique disclosed in each of the aforementioned United States patent application publications and United States patent includes formation of a relief pattern in a polymerizable layer and transferring a pattern corresponding to the relief pattern into an underlying substrate.
- the substrate may be positioned upon a stage to obtain a desired position to facilitate patterning thereof
- a mold is employed spaced-apart from the substrate with a formable liquid present between the mold and the substrate.
- the liquid is solidified to form a patterned layer that has a pattern recorded therein that is conforming to a shape of the surface of the mold in contact with the liquid.
- the mold is then separated from the patterned layer such that the mold and the substrate are spaced-apart.
- the substrate and the patterned layer are then subjected to processes to transfer, into the substrate, a relief image that corresponds to the pattern in the patterned layer.
- FIG. 1 is a cross-sectional view of a lithographic system having a patterning device spaced-apart from a substrate;
- FIG. 2 is a cross-sectional view of the patterning device shown in FIG. 1 ;
- FIG. 3 is a top down view of the patterning device shown in FIG. 2 ;
- FIG. 4 is a top down view of the patterning device shown in FIG. 2 , in a second embodiment
- FIG. 5 is a top down view of the patterning device shown in FIG. 2 , in a third embodiment
- FIG. 6 is a top down view of the patterning device shown in FIG. 2 , in a fourth embodiment
- FIG. 7 is a cross-sectional view of the patterning device and the template chuck, both shown in FIG. 1 ;
- FIG. 8 is a bottom-up plan view of the template chuck shown in FIG. 7 ;
- FIG. 9 is a top down view showing an array of droplets of imprinting material positioned upon a region of the substrate shown in FIG. 1 ;
- FIG. 10 is a cross-sectional view of the substrate shown in FIG. 1 , having a patterned layer thereon;
- FIG. 11 is a top down view of the patterning device shown in FIG. 1 , having an actuation system coupled thereto, in a first embodiment
- FIG. 12 is a top down view of the patterning device shown in FIG. 1 , having an actuation system coupled thereto, in a second embodiment;
- FIG. 13 is a cross-sectional view of the patterning device and actuation system, both shown in FIG. 12 ;
- FIG. 14 a flow diagram showing a method of patterning a region of the substrate shown in FIG. 1 , in a first embodiment
- FIG. 15 is a cross-sectional view of the patterning device shown in FIG. 1 , with a shape of the patterning device being altered;
- FIG. 16 is a cross-sectional view of the patterning device shown in FIG. 15 , in contact with a portion of the droplets of imprinting material shown in FIG. 9 ;
- FIGS. 17-20 are top down views showing the compression of the droplets shown in FIG. 9 , employing the altered shape of the patterning device shown in FIG. 16 ;
- FIG. 21 is a side view of first and second bodies spaced-apart, with the first body having an adhesive composition positioned thereon;
- FIG. 22 is a side view of the first and second bodies shown in FIG. 21 , coupled together forming the patterning device, shown in FIG. 2 ;
- FIG. 23 is a top down view of the patterning device shown in FIG. 2 , in a fifth embodiment.
- FIG. 24 is a top down view of the patterning device shown in FIG. 2 , in a sixth embodiment.
- Substrate 12 may be coupled to a substrate chuck 14 .
- Substrate 12 and substrate chuck 14 may be supported upon a stage 16 . Further, stage 16 , substrate 12 , and substrate chuck 14 may be positioned on a base (not shown).
- Stage 16 may provide motion about the x and y axes.
- Substrate chuck 12 may be any chuck including, but not limited to, vacuum, pin-type, groove-type, or electromagnetic, as described in U.S. Pat. No. 6,873,087 entitled “High-Precision Orientation Alignment and Gap Control Stages for Imprint Lithography Processes,” which is incorporated herein by reference.
- Patterning device 18 comprises a template 20 having first and second sides 22 and 24 .
- First side may have a first surface 25 positioned thereon and extending therefrom towards substrate 12 with a patterning surface 28 thereon.
- First side 22 of template 20 may be substantially planar.
- Second side 24 of template 20 may have a second surface 30 and a recess 32 disposed therein.
- Recess 32 may comprise a nadir surface 34 and a boundary surface 36 , with boundary surface 36 extending transversely between nadir surface 34 and second surface 30 .
- Recess 32 may have a circular shape associated therewith, however, recess may have any geometric shape associated therewith. More specifically, recess 32 may have a square shape, as shown in FIG. 4 ; a rectangular shape, as shown in FIG. 5 ; or an elliptical shape as shown in FIG. 6 .
- Template 20 may further comprises a first region 38 and a second region 40 , with second region 40 surrounding first region 38 and second region 40 having a perimeter 41 .
- First region 38 may be in superimposition with recess 32 .
- template 20 may have a varying thickness with respect to first and second regions 38 and 40 . More specifically, a portion of first surface 25 in superimposition with first region 38 may be spaced-apart from second side 24 a first distance d 1 defining a first thickness t 1 and a portion of first surface 25 in superimposition with second region 40 may be spaced-apart from second side 24 a second distance d 2 , defining a second thickness t 2 .
- Distance d 2 may be greater than distance d 1 and thickness t 2 may be greater than thickness t 1 .
- distance d 2 may have a magnitude of approximately 0.25 inches and distance d 1 may have a magnitude of approximately 700 microns.
- distance d 1 may have a magnitude in a range of 1 micron to 0.25 inches.
- Mesa 26 may be referred to as a mold 26 .
- Mesa 26 may also be referred to as a nanoimprint mold 26 .
- template 20 may be substantially absent of mold 26 .
- Template 20 and/or mold 26 may be formed from such materials including, but not limited to, fused-silica, quartz, silicon, organic polymers, siloxane polymers, borosilicate glass, fluorocarbon polymers, metal, and hardened sapphire.
- patterning surface 28 comprises features defined by a plurality of spaced-apart recesses 42 and protrusions 44 .
- patterning surface 28 may be substantially smooth and/or planar.
- Patterning surface 28 may define an original pattern that forms the basis of a pattern to be formed on substrate 12 . Further, mold 26 may be in superimposition with a portion of first region 38 , however, in a further embodiment, mold 26 may be in superimposition with an entirety of first region 38 .
- template 20 may be coupled to a template chuck 46 , template chuck 46 being any chuck including, but not limited to, vacuum, pin-type, groove-type, or electromagnetic, as described in U.S. Pat. No. 6,873,087 entitled “High-Precision Orientation Alignment and Gap Control Stages for Imprint Lithography Processes”.
- Template chuck 46 includes first 11 and second 13 opposed sides. A side, or edge, surface 15 extends between first side 11 and second side 13 .
- First side 11 includes a first recess 17 and a second recess 19 , spaced-apart from first recess 17 , defining first 21 and second 23 spaced-apart support regions.
- First support region 21 cinctures second support region 23 and first 17 and second 19 recesses.
- Second support region 23 cinctures second recess 19 .
- first and second support regions 21 and 23 may be formed from a compliant material.
- First support region 21 may have a square shape and second support region 23 may have a circular shape; however, in a further embodiment, first and second support regions 21 and 23 may comprise any geometric shape desired.
- a portion 27 of template chuck 46 in superimposition with second recess 19 may be transparent to radiation having a predetermined wavelength.
- portion 27 may be made from a thin layer of transparent material, such as glass. However, the material from which portion 27 is made may depend upon the wavelength of radiation, described further below.
- Portion 27 extends between second side 13 and terminates proximate to second recess 19 and should define an area at least as large as an area of mold 26 so that mold 26 is in superimposition therewith.
- template chuck 46 may comprise any number of throughways.
- Throughway 27 places first recess 17 in fluid communication with side surface 15 , however, in a further embodiment, it should be understood that throughway 27 may place first recess 17 in fluid communication with any surface of template chuck 46 .
- Throughway 29 places second recess 19 in fluid communication with second side 13 , however, in a further embodiment, it should be understood that throughway 29 may place second recess 19 in fluid communication with any surface of template chuck 46 .
- throughways 27 and 29 facilitate placing first and second recess 17 and 19 , respectively, in fluid communication with a pressure control system, such as a pump system 31 .
- Pump system 31 may include one or more pumps to control the pressure proximate to first and second recess 17 and 19 .
- template 20 when template 20 is coupled to template chuck 46 , template 20 rests against first 21 and second 23 support regions, covering first 17 and second 19 recesses.
- First region 38 of template 20 may be in superimposition with second recess 19 , defining a first chamber 33 and second region 40 template 20 may be in superimposition with first recess 17 , defining a second chamber 35 .
- Pump system 31 operates to control a pressure in first and second chambers 33 and 35 .
- template chuck 46 may be coupled to an imprint head 48 to facilitate movement of patterning device 18 .
- system 10 further comprises a fluid dispense system 50 .
- Fluid dispense system 50 may be in fluid communication with substrate 12 so as to deposit polymeric material 52 thereon.
- System 10 may comprise any number of fluid dispensers, and fluid dispense system 50 may comprise a plurality of dispensing units therein.
- Polymeric material 52 may be positioned upon substrate 12 using any known technique, e.g., drop dispense, spin-coating, dip coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), thin film deposition, thick film deposition, and the like.
- CVD chemical vapor deposition
- PVD physical vapor deposition
- thin film deposition thick film deposition
- thick film deposition and the like.
- polymeric material 52 is disposed upon substrate 12 before the desired volume is defined between mold 26 and substrate 12 .
- polymeric material 52 may fill the volume after the desired volume has been obtained. As shown in FIG. 9 , polymeric material 52 may be deposited upon substrate 12 as a plurality of spaced-apart droplets 54 , defining a matrix array 56 . In an example, each droplet of droplets 54 may have a unit volume of approximately 1-10 pico-liters. Droplets 54 of matrix array 56 may be arranged in five columns c 1 -c 5 and five rows r 1 -r 5 . However, droplets 54 may be arranged in any two-dimensional arrangement on substrate 12 .
- system 10 further comprises a source 58 of energy 60 coupled to direct energy 60 along a path 62 .
- Imprint head 48 and stage 16 are configured to arrange mold 26 and substrate 12 , respectively, to be in superimposition and disposed in path 62 .
- Either imprint head 48 , stage 16 , or both vary a distance between mold 26 and substrate 12 to define a desired volume therebetween that is filled by polymeric material 52 .
- source 58 produces energy 60 , e.g., broadband ultraviolet radiation that causes polymeric material 52 to solidify and/or cross-link conforming to the shape of a surface 64 of substrate 12 and patterning surface 28 , defining a patterned layer 66 on substrate 12 .
- Patterned layer 66 may comprise a residual layer 68 and a plurality of features shown as protrusions 70 and recessions 72 .
- System 10 may be regulated by a processor 74 that is in data communication with stage 16 , pump system 31 , imprint head 48 , fluid dispense system 50 , and source 58 , operating on a computer readable program stored in memory 76 .
- patterned layer 66 may be formed employing any known technique, e.g., photolithography (various wavelengths including G line, I line, 248 nm, 193 nm, 157 nm, and 13.2-13.4 nm), contact lithography, e-beam lithography, x-ray lithography, ion-beam lithography and atomic beam lithography.
- photolithography variant wavelengths including G line, I line, 248 nm, 193 nm, 157 nm, and 13.2-13.4 nm
- contact lithography e.g., e-beam lithography, x-ray lithography, ion-beam lithography and atomic beam lithography.
- system 10 further comprises an actuator system 78 surrounding patterning device 18 .
- Actuation system 78 includes a plurality of actuators 80 coupled to patterned device 18 .
- Each of actuators 80 are arranged to facilitate generation of a force upon second region 40 of patterning device 18 .
- Actuators 80 may be any force or displacement actuator known in the art including, inter alia, pneumatic, piezoelectric, magnetostrictive, and voice coils.
- actuation system 78 comprises sixteen actuators 80 coupled to a perimeter 41 of patterning device 18 , with each side of patterning device 18 having four actuators 80 coupled thereto.
- patterning device 18 may have any number of actuators 80 coupled thereto and may have differing number of actuators 80 coupled to each side of patterning device 18 .
- Patterning device 18 may have any configuration and number of actuators 80 positioned thereon.
- actuators 80 may be coupled to boundary surface 36 of recess 32 , as shown in FIGS. 12 and 13 .
- Actuation system 78 may be in data communication with processor 74 , operating on a computer readable program stored in memory 76 , to control an operation thereof, and more specifically, generate control signals that are transmitted to actuators 80 of actuation system 78 .
- a distance between mold 26 and substrate 12 is varied such that a desired volume is defined therebetween that is filled by polymeric material 52 . Furthermore, after solidification, polymeric material 52 conforms to the shape of surface 64 of substrate 12 and patterning surface 28 , defining patterned layer 66 on substrate 12 . To that end, in a volume 82 defined between droplets 54 of matrix array 56 , there are gases present, and droplets 54 in matrix array 56 are spread over substrate 12 so as to avoid, if not prevent, trapping of gases and/or gas pockets between substrate 12 and mold 26 and within patterned layer 66 .
- the gases and/or gas pockets may be such gases including, but not limited to air, nitrogen, carbon dioxide, and helium.
- Gas and/or gas pockets between substrate 12 and mold 26 and within patterned layer 66 may result in, inter alia, pattern distortion of features formed in patterned layer 66 , low fidelity of features formed in patterned layer 66 , and a non-uniform thickness of residual layer 48 across patterned layer 68 , all of which are undesirable.
- a method and a system of minimizing, if not preventing, trapping of gas and/or gas pockets between substrate 12 and mold 26 and within patterned layer 66 are described below.
- polymeric material 52 may be positioned on substrate 12 by drop dispense, spin-coating, dip coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), thin film deposition, thick film deposition, and the like.
- polymeric material 52 may be positioned on mold 26 .
- a shape of patterning device 18 may be altered such that a distance h 1 defined between mold 26 and substrate 12 at a center sub-portion of mold 26 is less than a distance defined between mold 26 and substrate 12 at remaining portions of mold 26 .
- distance h 1 is less than a distance h 2 , distance h 2 being defined at an edge of mold 26 .
- the distance h 1 may be defined at any desired location of mold 26 .
- the shape of patterning device 18 may be altered by applying a plurality of forces by actuators 80 upon patterning device 18 .
- first region 38 of template 20 having a first thickness ti
- a shape of first region 38 of template 20 may be altered such that first region 38 of template 20 bows toward substrate 12 and away from template chuck 46 .
- each of actuators 80 may exert a differing force upon patterning device 18 .
- the bowing of first region 38 of template 20 may be on the order of 0-200 nm over 41 nm diameter employing actuators 80 .
- the shape of patterning device 18 may be altered by controlling a pressure within first and second chambers 33 and 35 .
- pump system 31 operates to control a pressure within first and second chambers 33 and 35 .
- pump system 31 may increase a magnitude of a pressure created within first chamber 33 via throughway 29 such that first region 38 of template 20 may bow away from template chuck 46 and towards substrate 12 .
- pump system 31 may create a vacuum within second chamber 35 via throughway 27 such that second region 40 of template 20 may bow away from substrate 12 and bow towards template chuck 46 .
- first region 38 of template 20 may bow towards substrate 12 and away from template chuck 36 , as described in U.S. patent application Ser. No. 11/565,393 entitled “Method for Expelling Gas Positioned Between a Substrate and a Mold” which is incorporated herein by reference.
- the bowing of first region 38 of template 20 may be on the order of 0-35 ⁇ m nm over 41 nm diameter employing pump system 31 .
- any combination of the methods mentioned above for altering the shape of patterning device 38 may be employed.
- either imprint head 48 shown in FIG. 1 , stage 14 , or both, may vary distance h 1 , shown in FIG. 15 , such that a sub-portion of mold 26 contacts a sub-portion of droplets 54 .
- a center sub-portion of mold 26 contacts a sub-portion of droplets 54 prior to the remaining portions of mold 26 contacting the remaining droplets of droplets 54 .
- any portion of mold 26 may contact droplets 54 prior to remaining portions of mold 26 . To that end, this causes droplets 54 to spread and to produce a contiguous liquid sheet 84 of polymeric material 52 .
- Edge 86 of liquid sheet 84 defines a liquid-gas interface 88 that functions to push gases in volume 82 toward edges 90 a, 90 b, 90 c, and 90 d of substrate 12 .
- Volume 82 between droplets 54 in columns c 1 -c 5 define gas passages through which gas may be pushed to edges 90 a, 90 b, 90 c, and 90 d.
- liquid-gas interface 88 in conjunction with the gas passages reduces, if not prevents, trapping of gases in liquid sheet 84 .
- the shape of patterning device 18 may be altered such that the desired volume defined between mold 26 and substrate 12 may be filled by polymeric material 52 , as described above with respect to FIG. 1 . More specifically, the shape of patterning device 18 may be altered such that polymeric material 52 associated with subsequent subsets of droplets 54 , shown in FIG. 18 , spread to become included in contiguous fluid sheet 84 . The shape of patterning device 18 continues to be altered such that mold 26 subsequently comes into contact with the remaining droplets 54 so that polymeric material 52 associated therewith spreads to become included in contiguous sheet 84 , as shown in FIGS. 19 and 20 .
- interface 88 has moved towards edges 90 a, 90 b, 90 c, and 90 d so that there is an unimpeded path for the gases in the remaining volume 82 , shown in FIG. 17 , to travel thereto.
- This allows gases in volume 82 , shown in FIG. 17 , to egress from between mold 26 and substrate 12 vis-à-vis edges 90 a, 90 b, 90 c and 90 d.
- the trapping of gas and/or gas pockets between substrate 12 and mold 26 and within patterned layer 68 , shown in FIG. 10 is minimized, if not prevented.
- the shape of patterning device 18 may be altered concurrently with decreasing the distance h 1 , as mentioned above with respect to FIG. 15 .
- the shape of patterning device 18 may be altered such that polymeric material 52 fills the desired volume between mold 26 and substrate 12 at a speed of 800 mm 2 mm in a few seconds.
- actuation system 78 may selectively deform patterning device 18 . This facilitates correcting various parameters of the pattern shape, i.e., magnification characteristics, skew/orthogonality characteristics, and trapezoidal characteristics.
- Magnification characteristics may be magnification error, such as where the overall pattern changes from a square shape to a rectangular shape.
- Skew/orthogonality characteristics may be skew/orthogonality error where adjacent edges form an oblique or obtuse angle with respect to one another instead of an orthogonal angle.
- Trapezoidal characteristics may be trapezoidal error where as in where a square/rectangular assumes the shape of a trapezium, with trapezium including a trapezoid.
- patterning device 18 may be selectively deformed by actuators 80 to minimize, if not cancel, the distortions present, thereby reducing overlay errors.
- polymeric material 52 may be then be solidified and/or cross-linked, defining patterned layer 68 , shown in FIG. 10 .
- mold 26 may be separated from patterned layer 68 , shown in FIG. 10 .
- a shape of patterning device 18 may altered analogous to that mentioned above with respect to FIG. 15 and step 102 .
- patterning device 18 may be formed by coupling a first body 96 and second bodies 98 a and 98 b. More specifically, second bodies 98 a and 98 b may be coupled to a periphery of first body 96 such that second bodies 98 a and 98 b define second region 40 of template 20 , shown in FIG. 2 . Second bodies 98 a and 98 b may be coupled to first body 96 employing an adhesive material 99 , with adhesive material 99 being any coupling composition commonly employed in the art, with adhesive material 99 that is stiff enough to transmit sheer loads between first body 96 and second bodies 98 a and 98 b.
- Patterning devices 118 and 120 further comprise portions 94 a, 94 b, 94 c, and 94 d positioned within second region 40 of template 20 , shown in FIG. 2 , with portions 94 a, 94 b, 94 c, and 94 d having a thickness substantially the same as thickness t 1 of first region 38 , shown in FIG. 2 .
- Patterning device 118 may be employed were the shape of the same to be altered by application of a plurality of forces by actuators 80 .
- Patterning device 218 may be employed were the shape of the same to be altered by a combination of application of a plurality of forces by actuators 80 and creating a pressure within first chamber 33 , shown in FIG. 8 . Furthermore, were either patterning device 118 or 120 employed in the above-mentioned process, a vacuum between template chuck 46 and patterning device 118 or 120 may be initially a partial vacuum to facilitate altering a shape of patterning device 118 or 120 and upon completion of altering the shape of patterning device 118 or 120 , a full vacuum between template chuck 46 may be employed.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/744,698 US20080160129A1 (en) | 2006-05-11 | 2007-05-04 | Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template |
US12/838,852 US20100291257A1 (en) | 2006-05-11 | 2010-07-19 | Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template |
US13/073,533 US8556616B2 (en) | 2002-07-08 | 2011-03-28 | Template having a varying thickness to facilitate expelling a gas positioned between a substrate and the template |
US14/882,971 USRE47483E1 (en) | 2006-05-11 | 2015-10-14 | Template having a varying thickness to facilitate expelling a gas positioned between a substrate and the template |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US79949606P | 2006-05-11 | 2006-05-11 | |
US11/744,698 US20080160129A1 (en) | 2006-05-11 | 2007-05-04 | Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/717,664 Continuation-In-Part US8123514B2 (en) | 2002-07-08 | 2010-03-04 | Conforming template for patterning liquids disposed on substrates |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/838,852 Continuation US20100291257A1 (en) | 2002-07-08 | 2010-07-19 | Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080160129A1 true US20080160129A1 (en) | 2008-07-03 |
Family
ID=38694274
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/744,698 Abandoned US20080160129A1 (en) | 2002-07-08 | 2007-05-04 | Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template |
US12/838,852 Abandoned US20100291257A1 (en) | 2002-07-08 | 2010-07-19 | Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template |
US13/073,533 Ceased US8556616B2 (en) | 2002-07-08 | 2011-03-28 | Template having a varying thickness to facilitate expelling a gas positioned between a substrate and the template |
US14/882,971 Active 2027-05-07 USRE47483E1 (en) | 2006-05-11 | 2015-10-14 | Template having a varying thickness to facilitate expelling a gas positioned between a substrate and the template |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/838,852 Abandoned US20100291257A1 (en) | 2002-07-08 | 2010-07-19 | Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template |
US13/073,533 Ceased US8556616B2 (en) | 2002-07-08 | 2011-03-28 | Template having a varying thickness to facilitate expelling a gas positioned between a substrate and the template |
US14/882,971 Active 2027-05-07 USRE47483E1 (en) | 2006-05-11 | 2015-10-14 | Template having a varying thickness to facilitate expelling a gas positioned between a substrate and the template |
Country Status (6)
Country | Link |
---|---|
US (4) | US20080160129A1 (ko) |
EP (1) | EP2016613B1 (ko) |
JP (1) | JP5139421B2 (ko) |
KR (1) | KR101494282B1 (ko) |
TW (1) | TWI388934B (ko) |
WO (1) | WO2007132320A2 (ko) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090140458A1 (en) * | 2007-11-21 | 2009-06-04 | Molecular Imprints, Inc. | Porous template and imprinting stack for nano-imprint lithography |
US20100015270A1 (en) * | 2008-07-15 | 2010-01-21 | Molecular Imprints, Inc. | Inner cavity system for nano-imprint lithography |
US20100072671A1 (en) * | 2008-09-25 | 2010-03-25 | Molecular Imprints, Inc. | Nano-imprint lithography template fabrication and treatment |
US20100084376A1 (en) * | 2008-10-02 | 2010-04-08 | Molecular Imprints, Inc. | Nano-imprint lithography templates |
US20100104852A1 (en) * | 2008-10-23 | 2010-04-29 | Molecular Imprints, Inc. | Fabrication of High-Throughput Nano-Imprint Lithography Templates |
US20100102469A1 (en) * | 2008-10-24 | 2010-04-29 | Molecular Imprints, Inc. | Strain and Kinetics Control During Separation Phase of Imprint Process |
EP2221163A1 (en) * | 2009-02-20 | 2010-08-25 | API Group PLC | Machine head for production of a surface relief |
WO2011043820A1 (en) | 2009-10-08 | 2011-04-14 | Molecular Imprints, Inc. | Large area linear array nanoimprinting |
US20110171340A1 (en) * | 2002-07-08 | 2011-07-14 | Molecular Imprints, Inc. | Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template |
US20110183027A1 (en) * | 2010-01-26 | 2011-07-28 | Molecular Imprints, Inc. | Micro-Conformal Templates for Nanoimprint Lithography |
US20110189329A1 (en) * | 2010-01-29 | 2011-08-04 | Molecular Imprints, Inc. | Ultra-Compliant Nanoimprint Lithography Template |
US20110272838A1 (en) * | 2010-05-06 | 2011-11-10 | Matt Malloy | Apparatus, System, and Method for Nanoimprint Template with a Backside Recess Having Tapered Sidewalls |
US20120061875A1 (en) * | 2010-09-13 | 2012-03-15 | Takuya Kono | Template chuck, imprint apparatus, and pattern forming method |
WO2012083578A1 (zh) * | 2010-12-22 | 2012-06-28 | 青岛理工大学 | 整片晶圆纳米压印的装置和方法. |
EP2587312A1 (en) * | 2011-10-24 | 2013-05-01 | Shin-Etsu Chemical Co., Ltd. | Electronic grade glass substrate and making method |
US20130196122A1 (en) * | 2012-01-31 | 2013-08-01 | Seagate Technology, Llc | Method of surface tension control to reduce trapped gas bubbles |
US20130221571A1 (en) * | 2012-02-29 | 2013-08-29 | Kabushiki Kaisha Toshiba | Pattern forming device and semiconductor device manufacturing method |
CN104094380A (zh) * | 2012-02-07 | 2014-10-08 | 佳能株式会社 | 压印装置和制造物品的方法 |
CN104094379A (zh) * | 2012-02-07 | 2014-10-08 | 佳能株式会社 | 压印装置和制造物品的方法 |
US8889332B2 (en) | 2004-10-18 | 2014-11-18 | Canon Nanotechnologies, Inc. | Low-K dielectric functional imprinting materials |
US20150183151A1 (en) * | 2013-12-31 | 2015-07-02 | Canon Nanotechnologies, Inc. | Asymmetric Template Shape Modulation for Partial Field Imprinting |
JP2015198215A (ja) * | 2014-04-03 | 2015-11-09 | 大日本印刷株式会社 | インプリントモールド用基板及びその製造方法、並びにインプリントモールド |
US9323143B2 (en) | 2008-02-05 | 2016-04-26 | Canon Nanotechnologies, Inc. | Controlling template surface composition in nano-imprint lithography |
CN105892230A (zh) * | 2015-02-13 | 2016-08-24 | 佳能株式会社 | 模具、压印设备和制造物品的方法 |
JP2017028322A (ja) * | 2016-10-24 | 2017-02-02 | 大日本印刷株式会社 | ナノインプリント用テンプレート |
US9793120B2 (en) | 2015-06-16 | 2017-10-17 | Toshiba Memory Corporation | Device substrate, method of manufacturing device substrate, and method of manufacturing semiconductor device |
KR20190078520A (ko) * | 2017-12-26 | 2019-07-04 | 캐논 가부시끼가이샤 | 6 자유도의 임프린트 헤드 모듈을 갖는 나노임프린트 리소그래피 |
US10414087B2 (en) * | 2012-09-06 | 2019-09-17 | Ev Group E. Thallner Gmbh | Structure stamp, device and method of embossing |
US11199773B2 (en) * | 2019-03-05 | 2021-12-14 | Canon Kabushiki Kaisha | Imprint apparatus, imprint method, and article manufacturing method |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090212012A1 (en) * | 2008-02-27 | 2009-08-27 | Molecular Imprints, Inc. | Critical dimension control during template formation |
US8043085B2 (en) | 2008-08-19 | 2011-10-25 | Asml Netherlands B.V. | Imprint lithography |
NL2004266A (en) | 2009-04-27 | 2010-10-28 | Asml Netherlands Bv | An actuator. |
JP5534311B2 (ja) * | 2010-01-22 | 2014-06-25 | Hoya株式会社 | マスクブランク用基板とその製造方法、インプリントモールド用マスクブランクとその製造方法、及びインプリントモールドとその製造方法 |
JP2011258605A (ja) * | 2010-06-04 | 2011-12-22 | Toshiba Corp | パターン形成方法および半導体デバイスの製造方法 |
JP5664470B2 (ja) | 2010-06-28 | 2015-02-04 | 信越化学工業株式会社 | ナノインプリント用合成石英ガラス基板の製造方法 |
JP5822597B2 (ja) * | 2010-10-01 | 2015-11-24 | キヤノン株式会社 | インプリント装置、及びそれを用いた物品の製造方法 |
EP2635419B1 (en) * | 2010-11-05 | 2020-06-17 | Molecular Imprints, Inc. | Patterning of non-convex shaped nanostructures |
JP5858623B2 (ja) * | 2011-02-10 | 2016-02-10 | 信越化学工業株式会社 | 金型用基板 |
JPWO2012133840A1 (ja) * | 2011-03-30 | 2014-07-28 | 日本電気株式会社 | インプリント装置、インプリント方法、電子回路基板、及び電子機器 |
JP6061524B2 (ja) * | 2011-08-11 | 2017-01-18 | キヤノン株式会社 | インプリント装置および物品の製造方法 |
JP5893303B2 (ja) * | 2011-09-07 | 2016-03-23 | キヤノン株式会社 | インプリント装置、それを用いた物品の製造方法 |
JP2014528177A (ja) * | 2011-09-23 | 2014-10-23 | 1366 テクノロジーズ インク. | 基板移送、ツール押下、ツール伸張、ツール撤退など、熱流動性材料コーティングにおいてツールによってパターンが形成される基板を取り扱い、加熱し、冷却する方法および装置 |
KR20130085759A (ko) | 2012-01-20 | 2013-07-30 | 삼성전자주식회사 | 스탬프 및 그 제조 방법 및 이를 이용한 임프린트 방법 |
JP5935385B2 (ja) * | 2012-02-27 | 2016-06-15 | 大日本印刷株式会社 | ナノインプリント用レプリカテンプレートの製造方法及びレプリカテンプレート |
JP6119102B2 (ja) * | 2012-03-02 | 2017-04-26 | 大日本印刷株式会社 | ナノインプリント方法 |
JP6019685B2 (ja) * | 2012-04-10 | 2016-11-02 | 大日本印刷株式会社 | ナノインプリント方法及びナノインプリント装置 |
KR20130123760A (ko) | 2012-05-03 | 2013-11-13 | 삼성전자주식회사 | 탬플릿 시스템 및 그 나노 임프린트 방법 |
JP6028413B2 (ja) * | 2012-06-27 | 2016-11-16 | 大日本印刷株式会社 | ナノインプリント用テンプレートの製造方法及びテンプレート |
JP6069689B2 (ja) * | 2012-07-26 | 2017-02-01 | 大日本印刷株式会社 | ナノインプリント用テンプレート |
JP5983218B2 (ja) * | 2012-09-11 | 2016-08-31 | 大日本印刷株式会社 | ナノインプリントリソグラフィ用テンプレートの製造方法 |
US9956720B2 (en) | 2012-09-27 | 2018-05-01 | North Carolina State University | Methods and systems for fast imprinting of nanometer scale features in a workpiece |
JP6206632B2 (ja) * | 2012-10-02 | 2017-10-04 | 大日本印刷株式会社 | ナノインプリント用ブランクスおよびナノインプリント用テンプレートの製造方法 |
JP5881590B2 (ja) * | 2012-12-12 | 2016-03-09 | 株式会社東芝 | マスククリーナー及びクリーニング方法 |
JP6123304B2 (ja) * | 2013-01-18 | 2017-05-10 | 大日本印刷株式会社 | テンプレート用積層基板、テンプレートブランク、ナノインプリント用テンプレート、および、テンプレート基板の再生方法、並びに、テンプレート用積層基板の製造方法 |
JP6089918B2 (ja) * | 2013-04-19 | 2017-03-08 | 大日本印刷株式会社 | インプリントモールドの製造方法および基材 |
JP6412317B2 (ja) | 2013-04-24 | 2018-10-24 | キヤノン株式会社 | インプリント方法、インプリント装置および物品の製造方法 |
JP6300466B2 (ja) * | 2013-08-12 | 2018-03-28 | Hoya株式会社 | マスクブランク用基板、マスクブランク、インプリントモールド、およびそれらの製造方法 |
JP6282069B2 (ja) * | 2013-09-13 | 2018-02-21 | キヤノン株式会社 | インプリント装置、インプリント方法、検出方法及びデバイス製造方法 |
JP6248505B2 (ja) * | 2013-09-25 | 2017-12-20 | 大日本印刷株式会社 | インプリントモールド用基板、インプリントモールド及びそれらの製造方法、並びにインプリントモールドの再生方法 |
JP6398284B2 (ja) * | 2014-04-21 | 2018-10-03 | 大日本印刷株式会社 | インプリントモールド、インプリントモールド用ブランクス、並びにインプリントモールド用基板の製造方法及びインプリントモールドの製造方法 |
JP6318840B2 (ja) * | 2014-05-19 | 2018-05-09 | 大日本印刷株式会社 | インプリントモールド用基板の製造方法 |
JP6415120B2 (ja) | 2014-06-09 | 2018-10-31 | キヤノン株式会社 | インプリント装置及び物品の製造方法 |
JP6361303B2 (ja) * | 2014-06-13 | 2018-07-25 | 大日本印刷株式会社 | インプリント用モールドおよびインプリント装置 |
JP6318907B2 (ja) * | 2014-06-24 | 2018-05-09 | 大日本印刷株式会社 | 研磨方法及び研磨装置 |
JP2016021544A (ja) * | 2014-07-11 | 2016-02-04 | 株式会社東芝 | インプリント装置およびインプリント方法 |
JP6398902B2 (ja) | 2014-08-19 | 2018-10-03 | 信越化学工業株式会社 | インプリント・リソグラフィ用角形基板及びその製造方法 |
JP6361970B2 (ja) * | 2014-09-19 | 2018-07-25 | 大日本印刷株式会社 | ナノインプリント用構造体の検査方法およびその製造方法 |
PL3256906T3 (pl) * | 2015-02-13 | 2019-10-31 | Morphotonics Holding B V | Sposób teksturowania dyskretnych podłoży i elastyczny stempel |
JP6403627B2 (ja) | 2015-04-14 | 2018-10-10 | キヤノン株式会社 | インプリント装置、インプリント方法及び物品の製造方法 |
JP2017059717A (ja) * | 2015-09-17 | 2017-03-23 | 株式会社東芝 | テンプレート、インプリント装置および制御方法 |
JP6748461B2 (ja) | 2016-03-22 | 2020-09-02 | キヤノン株式会社 | インプリント装置、インプリント装置の動作方法および物品製造方法 |
US10654216B2 (en) | 2016-03-30 | 2020-05-19 | Canon Kabushiki Kaisha | System and methods for nanoimprint lithography |
JP6220918B2 (ja) * | 2016-04-22 | 2017-10-25 | 株式会社写真化学 | 電子デバイス用の転写装置および電子デバイス用の転写方法 |
JP6700936B2 (ja) | 2016-04-25 | 2020-05-27 | キヤノン株式会社 | インプリント装置、インプリント方法、および物品の製造方法 |
JP2016149578A (ja) * | 2016-05-11 | 2016-08-18 | 大日本印刷株式会社 | ナノインプリント用レプリカテンプレートの製造方法 |
US11340526B2 (en) | 2016-05-25 | 2022-05-24 | Dai Nippon Printing Co., Ltd. | Production method of template, template blank, and template substrate for imprinting, production method of template for imprinting, and template |
JP6226031B2 (ja) * | 2016-06-13 | 2017-11-08 | 大日本印刷株式会社 | ナノインプリントリソグラフィ用テンプレートの製造方法 |
JP6821408B2 (ja) * | 2016-11-28 | 2021-01-27 | キヤノン株式会社 | インプリント装置、インプリント方法、および物品の製造方法 |
US10991582B2 (en) | 2016-12-21 | 2021-04-27 | Canon Kabushiki Kaisha | Template for imprint lithography including a recession, an apparatus of using the template, and a method of fabricating an article |
JP6319474B2 (ja) * | 2017-02-07 | 2018-05-09 | 大日本印刷株式会社 | インプリントモールド |
US20190139789A1 (en) | 2017-11-06 | 2019-05-09 | Canon Kabushiki Kaisha | Apparatus for imprint lithography comprising a logic element configured to generate a fluid droplet pattern and a method of using such apparatus |
JP7060961B2 (ja) * | 2018-01-05 | 2022-04-27 | キヤノン株式会社 | インプリント装置、インプリント方法および物品製造方法 |
JP6528994B2 (ja) * | 2018-07-02 | 2019-06-12 | 大日本印刷株式会社 | ナノインプリント用構造体の検査方法およびその製造方法 |
JP6593504B2 (ja) * | 2018-09-05 | 2019-10-23 | 大日本印刷株式会社 | インプリントモールド、インプリントモールド用ブランクス、並びにインプリントモールド用基板の製造方法及びインプリントモールドの製造方法 |
JP7361538B2 (ja) * | 2018-09-10 | 2023-10-16 | キヤノン株式会社 | インプリント方法および物品製造方法 |
EP3620856A1 (en) | 2018-09-10 | 2020-03-11 | Canon Kabushiki Kaisha | Imprint method and article manufacturing method |
US11243466B2 (en) | 2019-01-31 | 2022-02-08 | Canon Kabushiki Kaisha | Template with mass velocity variation features, nanoimprint lithography apparatus that uses the template, and methods that use the template |
JP2019176167A (ja) * | 2019-05-17 | 2019-10-10 | 大日本印刷株式会社 | ナノインプリント用構造体 |
JP2021044339A (ja) * | 2019-09-10 | 2021-03-18 | キヤノン株式会社 | モールド、インプリント装置、物品の製造方法、インプリント方法 |
US20210305082A1 (en) * | 2020-03-30 | 2021-09-30 | Canon Kabushiki Kaisha | Superstrate and method of making it |
JP2021190596A (ja) | 2020-06-01 | 2021-12-13 | キヤノン株式会社 | 制御方法、プログラム、インプリント方法、および物品製造方法 |
JP7507641B2 (ja) | 2020-09-08 | 2024-06-28 | キヤノン株式会社 | 成形装置及び物品の製造方法 |
Citations (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3577593A (en) * | 1968-10-29 | 1971-05-04 | Bird & Son | Apparatus for heat and vacuum-pressure machine molding |
US3677178A (en) * | 1965-10-11 | 1972-07-18 | Scott Paper Co | Dry planographic plates and methods, production and use |
US4722878A (en) * | 1984-11-09 | 1988-02-02 | Mitsubishi Denki Kabushiki Kaisha | Photomask material |
US4959252A (en) * | 1986-09-29 | 1990-09-25 | Rhone-Poulenc Chimie | Highly oriented thermotropic optical disc member |
US5016691A (en) * | 1990-06-19 | 1991-05-21 | Lucien Bernier | Apparatus for centering template guide on router |
US5206983A (en) * | 1991-06-24 | 1993-05-04 | Wisconsin Alumni Research Foundation | Method of manufacturing micromechanical devices |
US5348616A (en) * | 1993-05-03 | 1994-09-20 | Motorola, Inc. | Method for patterning a mold |
US5464711A (en) * | 1994-08-01 | 1995-11-07 | Motorola Inc. | Process for fabricating an X-ray absorbing mask |
US5477058A (en) * | 1994-11-09 | 1995-12-19 | Kabushiki Kaisha Toshiba | Attenuated phase-shifting mask with opaque reticle alignment marks |
US5509041A (en) * | 1994-06-30 | 1996-04-16 | Motorola, Inc. | X-ray lithography method for irradiating an object to form a pattern thereon |
US5621594A (en) * | 1995-02-17 | 1997-04-15 | Aiwa Research And Development, Inc. | Electroplated thin film conductor coil assembly |
US5684660A (en) * | 1995-02-17 | 1997-11-04 | Aiwa Research And Development, Inc. | Thin film coil head assembly with protective planarizing cocoon structure |
US5772905A (en) * | 1995-11-15 | 1998-06-30 | Regents Of The University Of Minnesota | Nanoimprint lithography |
US5804017A (en) * | 1995-07-27 | 1998-09-08 | Imation Corp. | Method and apparatus for making an optical information record |
US5817376A (en) * | 1996-03-26 | 1998-10-06 | Minnesota Mining And Manufacturing Company | Free-radically polymerizable compositions capable of being coated by electrostatic assistance |
US5885514A (en) * | 1996-12-09 | 1999-03-23 | Dana Corporation | Ambient UVL-curable elastomer mold apparatus |
US5937758A (en) * | 1997-11-26 | 1999-08-17 | Motorola, Inc. | Micro-contact printing stamp |
US6117708A (en) * | 1998-02-05 | 2000-09-12 | Micron Technology, Inc. | Use of residual organic compounds to facilitate gate break on a carrier substrate for a semiconductor device |
US6165911A (en) * | 1999-12-29 | 2000-12-26 | Calveley; Peter Braden | Method of patterning a metal layer |
US6190929B1 (en) * | 1999-07-23 | 2001-02-20 | Micron Technology, Inc. | Methods of forming semiconductor devices and methods of forming field emission displays |
US6261469B1 (en) * | 1998-10-13 | 2001-07-17 | Honeywell International Inc. | Three dimensionally periodic structural assemblies on nanometer and longer scales |
US6305925B1 (en) * | 1997-08-01 | 2001-10-23 | Sacmi- Cooperative Meccanici Imola - Soc. Coop. A.R.L. | Apparatus for pressing ceramic powders |
US6309580B1 (en) * | 1995-11-15 | 2001-10-30 | Regents Of The University Of Minnesota | Release surfaces, particularly for use in nanoimprint lithography |
US6334960B1 (en) * | 1999-03-11 | 2002-01-01 | Board Of Regents, The University Of Texas System | Step and flash imprint lithography |
US6368752B1 (en) * | 1996-10-29 | 2002-04-09 | Motorola, Inc. | Low stress hard mask formation method during refractory radiation mask fabrication |
US6387787B1 (en) * | 2001-03-02 | 2002-05-14 | Motorola, Inc. | Lithographic template and method of formation and use |
US6399406B2 (en) * | 2000-06-19 | 2002-06-04 | International Business Machines Corporation | Encapsulated MEMS band-pass filter for integrated circuits and method of fabrication thereof |
US20020122993A1 (en) * | 2001-03-04 | 2002-09-05 | Nikon Corporation | Stencil reticles for charged-particle-beam microlithography, and fabrication methods for making same |
US6446933B1 (en) * | 1998-09-03 | 2002-09-10 | Micron Technology, Inc. | Film on a surface of a mold used during semiconductor device fabrication |
US20020135099A1 (en) * | 2001-01-19 | 2002-09-26 | Robinson Timothy R. | Mold with metal oxide surface compatible with ionic release agents |
US6465365B1 (en) * | 2000-04-07 | 2002-10-15 | Koninklijke Philips Electronics N.V. | Method of improving adhesion of cap oxide to nanoporous silica for integrated circuit fabrication |
US20020159918A1 (en) * | 2000-06-25 | 2002-10-31 | Fan-Gang Tseng | Micro-fabricated stamp array for depositing biologic diagnostic testing samples on bio-bindable surface |
US20020175298A1 (en) * | 2001-05-23 | 2002-11-28 | Akemi Moniwa | Method of manufacturing semiconductor device |
US20030026896A1 (en) * | 2000-08-03 | 2003-02-06 | Ichiro Shinkoda | Method and apparatus for fabrication of color filters |
US6517977B2 (en) * | 2001-03-28 | 2003-02-11 | Motorola, Inc. | Lithographic template and method of formation and use |
US6605849B1 (en) * | 2002-02-14 | 2003-08-12 | Symmetricom, Inc. | MEMS analog frequency divider |
US20030180631A1 (en) * | 2002-02-22 | 2003-09-25 | Hoya Corporation | Halftone phase shift mask blank, halftone phase shift mask, and method of producing the same |
US20030224262A1 (en) * | 2002-03-01 | 2003-12-04 | Asml Netherlands, B.V. | Calibration methods, calibration substrates, lithographic apparatus and device manufacturing methods |
US6664026B2 (en) * | 2001-03-22 | 2003-12-16 | International Business Machines Corporation | Method of manufacturing high aspect ratio photolithographic features |
US6696220B2 (en) * | 2000-10-12 | 2004-02-24 | Board Of Regents, The University Of Texas System | Template for room temperature, low pressure micro-and nano-imprint lithography |
US6716754B2 (en) * | 2002-03-12 | 2004-04-06 | Micron Technology, Inc. | Methods of forming patterns and molds for semiconductor constructions |
US6743368B2 (en) * | 2002-01-31 | 2004-06-01 | Hewlett-Packard Development Company, L.P. | Nano-size imprinting stamp using spacer technique |
US6753131B1 (en) * | 1996-07-22 | 2004-06-22 | President And Fellows Of Harvard College | Transparent elastomeric, contact-mode photolithography mask, sensor, and wavefront engineering element |
US6780001B2 (en) * | 1999-07-30 | 2004-08-24 | Formfactor, Inc. | Forming tool for forming a contoured microelectronic spring mold |
US20040163563A1 (en) * | 2000-07-16 | 2004-08-26 | The Board Of Regents, The University Of Texas System | Imprint lithography template having a mold to compensate for material changes of an underlying liquid |
US20040197712A1 (en) * | 2002-12-02 | 2004-10-07 | Jacobson Joseph M. | System for contact printing |
US20040202865A1 (en) * | 2003-04-08 | 2004-10-14 | Andrew Homola | Release coating for stamper |
US6808646B1 (en) * | 2003-04-29 | 2004-10-26 | Hewlett-Packard Development Company, L.P. | Method of replicating a high resolution three-dimensional imprint pattern on a compliant media of arbitrary size |
US20040219246A1 (en) * | 2003-04-29 | 2004-11-04 | Jeans Albert H. | Apparatus for embossing a flexible substrate with a pattern carried by an optically transparent compliant media |
US20050006343A1 (en) * | 2003-07-09 | 2005-01-13 | Molecular Imprints, Inc. | Systems for magnification and distortion correction for imprint lithography processes |
US6852454B2 (en) * | 2002-06-18 | 2005-02-08 | Freescale Semiconductor, Inc. | Multi-tiered lithographic template and method of formation and use |
US20050051698A1 (en) * | 2002-07-08 | 2005-03-10 | Molecular Imprints, Inc. | Conforming template for patterning liquids disposed on substrates |
US20050064344A1 (en) * | 2003-09-18 | 2005-03-24 | University Of Texas System Board Of Regents | Imprint lithography templates having alignment marks |
US20050084804A1 (en) * | 2003-10-16 | 2005-04-21 | Molecular Imprints, Inc. | Low surface energy templates |
US6890688B2 (en) * | 2001-12-18 | 2005-05-10 | Freescale Semiconductor, Inc. | Lithographic template and method of formation and use |
US20050098534A1 (en) * | 2003-11-12 | 2005-05-12 | Molecular Imprints, Inc. | Formation of conductive templates employing indium tin oxide |
US20050133954A1 (en) * | 2003-12-19 | 2005-06-23 | Homola Andrew M. | Composite stamper for imprint lithography |
US6916584B2 (en) * | 2002-08-01 | 2005-07-12 | Molecular Imprints, Inc. | Alignment methods for imprint lithography |
US20050158637A1 (en) * | 2004-01-15 | 2005-07-21 | Samsung Electronics Co., Ltd. | Template, method of forming the template and method of forming a pattern on a semiconductor device using the template |
US20050185169A1 (en) * | 2004-02-19 | 2005-08-25 | Molecular Imprints, Inc. | Method and system to measure characteristics of a film disposed on a substrate |
US20050184436A1 (en) * | 2004-02-24 | 2005-08-25 | Korea Institute Of Machinery & Materials | UV nanoimprint lithography process and apparatus |
US20050208171A1 (en) * | 2004-02-20 | 2005-09-22 | Canon Kabushiki Kaisha | Mold and molding apparatus using the same |
US6957608B1 (en) * | 2002-08-02 | 2005-10-25 | Kovio, Inc. | Contact print methods |
US20050266587A1 (en) * | 2004-05-28 | 2005-12-01 | Board Of Regents, The University Of Texas System | Substrate support method |
US6982783B2 (en) * | 2002-11-13 | 2006-01-03 | Molecular Imprints, Inc. | Chucking system for modulating shapes of substrates |
US20060019183A1 (en) * | 2004-07-20 | 2006-01-26 | Molecular Imprints, Inc. | Imprint alignment method, system, and template |
US7029944B1 (en) * | 2004-09-30 | 2006-04-18 | Sharp Laboratories Of America, Inc. | Methods of forming a microlens array over a substrate employing a CMP stop |
US7037639B2 (en) * | 2002-05-01 | 2006-05-02 | Molecular Imprints, Inc. | Methods of manufacturing a lithography template |
US7041604B2 (en) * | 2004-09-21 | 2006-05-09 | Molecular Imprints, Inc. | Method of patterning surfaces while providing greater control of recess anisotropy |
US20060172553A1 (en) * | 2005-01-31 | 2006-08-03 | Molecular Imprints, Inc. | Method of retaining a substrate to a wafer chuck |
US20060172549A1 (en) * | 2005-01-31 | 2006-08-03 | Molecular Imprints, Inc. | Method of separating a mold from a solidified layer disposed on a substrate |
US20060177535A1 (en) * | 2005-02-04 | 2006-08-10 | Molecular Imprints, Inc. | Imprint lithography template to facilitate control of liquid movement |
US7090716B2 (en) * | 2003-10-02 | 2006-08-15 | Molecular Imprints, Inc. | Single phase fluid imprint lithography method |
US7136150B2 (en) * | 2003-09-25 | 2006-11-14 | Molecular Imprints, Inc. | Imprint lithography template having opaque alignment marks |
US7140861B2 (en) * | 2004-04-27 | 2006-11-28 | Molecular Imprints, Inc. | Compliant hard template for UV imprinting |
US20060266916A1 (en) * | 2005-05-25 | 2006-11-30 | Molecular Imprints, Inc. | Imprint lithography template having a coating to reflect and/or absorb actinic energy |
US20070228589A1 (en) * | 2002-11-13 | 2007-10-04 | Molecular Imprints, Inc. | Method for expelling gas positioned between a substrate and a mold |
US20070231422A1 (en) * | 2006-04-03 | 2007-10-04 | Molecular Imprints, Inc. | System to vary dimensions of a thin template |
US7281919B2 (en) * | 2004-12-07 | 2007-10-16 | Molecular Imprints, Inc. | System for controlling a volume of material on a mold |
US20070243655A1 (en) * | 2006-04-18 | 2007-10-18 | Molecular Imprints, Inc. | Self-Aligned Process for Fabricating Imprint Templates Containing Variously Etched Features |
US20070287081A1 (en) * | 2004-06-03 | 2007-12-13 | Molecular Imprints, Inc. | Method for obtaining force combinations for template deformation using nullspace and methods optimization techniques |
US7309225B2 (en) * | 2004-08-13 | 2007-12-18 | Molecular Imprints, Inc. | Moat system for an imprint lithography template |
US7316554B2 (en) * | 2005-09-21 | 2008-01-08 | Molecular Imprints, Inc. | System to control an atmosphere between a body and a substrate |
Family Cites Families (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB494877A (en) | 1938-03-01 | 1938-11-02 | Johnson Bros Hanley Ltd | Improvements in or relating to pottery ware and the manufacture thereof |
US2975476A (en) * | 1959-03-02 | 1961-03-21 | John E Burke | Press |
US3130412A (en) * | 1959-07-31 | 1964-04-21 | Scott Paper Co | Process of and apparatus for treating sheet materials and product |
GB1139808A (en) | 1965-05-11 | 1969-01-15 | Hayes Engineers Leeds Ltd | Improvements in or relating to tracer valve control units |
FR2209967B1 (ko) * | 1972-12-08 | 1979-03-30 | Thomson Csf | |
US3946367A (en) * | 1972-12-20 | 1976-03-23 | Videonics Of Hawaii, Inc. | Three dimensional electro-optical retrieval system |
FR2339741A1 (fr) * | 1976-01-30 | 1977-08-26 | Snecma | Joint statorique abradable pour turbomachine axiale et son procede d'execution |
NL177721B (nl) * | 1977-03-14 | 1985-06-03 | Philips Nv | Werkwijze voor het vervaardigen van een kunststofinformatiedrager met gelaagde structuur alsmede een inrichting voor het uitvoeren van de werkwijze. |
NL7710555A (nl) | 1977-09-28 | 1979-03-30 | Philips Nv | Werkwijze en inrichting voor het vervaardigen van informatie bevattende platen. |
US4223261A (en) * | 1978-08-23 | 1980-09-16 | Exxon Research & Engineering Co. | Multi-phase synchronous machine system |
NL7906117A (nl) * | 1979-08-10 | 1981-02-12 | Philips Nv | Werkwijze en inrichting voor het vervaardigen van een kunststofinformatiedrager. |
US4601861A (en) * | 1982-09-30 | 1986-07-22 | Amerace Corporation | Methods and apparatus for embossing a precision optical pattern in a resinous sheet or laminate |
JPS613339A (ja) * | 1984-06-18 | 1986-01-09 | Hitachi Ltd | 高密度情報記録円板複製用スタンパおよびその製造方法 |
US4514249A (en) * | 1984-07-19 | 1985-04-30 | Brown & Williamson Tobacco Corporation | Device for making grooves in cigarette filters |
JPS6140845A (ja) | 1984-07-31 | 1986-02-27 | Asahi Glass Co Ltd | 低反射率ガラス |
DE3719200A1 (de) * | 1987-06-09 | 1988-12-29 | Ibm Deutschland | Optische speicherplatte und verfahren zu ihrer herstellung |
JPH01206007A (ja) | 1988-02-12 | 1989-08-18 | Canon Inc | 情報記録媒体用基板の製造方法 |
JPH0822526B2 (ja) | 1988-08-31 | 1996-03-06 | 三菱電機株式会社 | 中空セラミックス殻の製造方法 |
JPH0781024B2 (ja) | 1989-03-22 | 1995-08-30 | 旭硝子株式会社 | 撥水性.防汚性を有する透明基材およびそれを装着した構造物 |
JP2906472B2 (ja) | 1989-09-01 | 1999-06-21 | 旭硝子株式会社 | 透明成形体 |
US5876454A (en) * | 1993-05-10 | 1999-03-02 | Universite De Montreal | Modified implant with bioactive conjugates on its surface for improved integration |
KR960025390A (ko) * | 1994-12-03 | 1996-07-20 | 안시환 | 광 디스크 스템퍼의 제조방법 |
US5708652A (en) * | 1995-02-28 | 1998-01-13 | Sony Corporation | Multi-layer recording medium and method for producing same |
JP3298607B2 (ja) * | 1995-09-29 | 2002-07-02 | ソニー株式会社 | 液晶素子及びその製造方法 |
US6482742B1 (en) * | 2000-07-18 | 2002-11-19 | Stephen Y. Chou | Fluid pressure imprint lithography |
US5669303A (en) * | 1996-03-04 | 1997-09-23 | Motorola | Apparatus and method for stamping a surface |
JPH09278490A (ja) | 1996-04-11 | 1997-10-28 | Matsushita Electric Ind Co Ltd | 撥水性ガラスコート及びその製造方法 |
DE19832414C2 (de) | 1998-07-18 | 2000-07-20 | Rob Borgmann | Siebdruckverfahren zum Bedrucken von ebenflächigen Gegenständen, insbesondere Glasscheiben, mit einem Dekor und Vorrichtung zur Durchführung des Verfahrens |
US6873087B1 (en) * | 1999-10-29 | 2005-03-29 | Board Of Regents, The University Of Texas System | High precision orientation alignment and gap control stages for imprint lithography processes |
SE515607C2 (sv) * | 1999-12-10 | 2001-09-10 | Obducat Ab | Anordning och metod vid tillverkning av strukturer |
US7018572B2 (en) * | 2001-06-11 | 2006-03-28 | General Electric Company | Method for producing data storage media |
DE10130392C2 (de) * | 2001-06-23 | 2003-06-26 | Bernd Spaeth | Gleitelemente, beispielsweise Schneegleitelemente, mit verbesserten Eigenschaften |
JP3580280B2 (ja) * | 2001-10-25 | 2004-10-20 | 株式会社日立製作所 | 記録媒体とその製造方法 |
CA2380114C (en) * | 2002-04-04 | 2010-01-19 | Obducat Aktiebolag | Imprint method and device |
US6803541B2 (en) | 2002-05-15 | 2004-10-12 | Illinois Tool Works Inc. | Apparatus for a welding machine having a cooling assembly mounted to a mid-plane baffle for improved cooling within the welding machine |
US20080160129A1 (en) * | 2006-05-11 | 2008-07-03 | Molecular Imprints, Inc. | Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template |
US7077992B2 (en) * | 2002-07-11 | 2006-07-18 | Molecular Imprints, Inc. | Step and repeat imprint lithography processes |
US6900881B2 (en) * | 2002-07-11 | 2005-05-31 | Molecular Imprints, Inc. | Step and repeat imprint lithography systems |
US7027156B2 (en) * | 2002-08-01 | 2006-04-11 | Molecular Imprints, Inc. | Scatterometry alignment for imprint lithography |
US7070405B2 (en) * | 2002-08-01 | 2006-07-04 | Molecular Imprints, Inc. | Alignment systems for imprint lithography |
US6936194B2 (en) * | 2002-09-05 | 2005-08-30 | Molecular Imprints, Inc. | Functional patterning material for imprint lithography processes |
US20040132301A1 (en) * | 2002-09-12 | 2004-07-08 | Harper Bruce M. | Indirect fluid pressure imprinting |
US20040065252A1 (en) * | 2002-10-04 | 2004-04-08 | Sreenivasan Sidlgata V. | Method of forming a layer on a substrate to facilitate fabrication of metrology standards |
US8349241B2 (en) * | 2002-10-04 | 2013-01-08 | Molecular Imprints, Inc. | Method to arrange features on a substrate to replicate features having minimal dimensional variability |
US6871558B2 (en) * | 2002-12-12 | 2005-03-29 | Molecular Imprints, Inc. | Method for determining characteristics of substrate employing fluid geometries |
JP4340086B2 (ja) * | 2003-03-20 | 2009-10-07 | 株式会社日立製作所 | ナノプリント用スタンパ、及び微細構造転写方法 |
EP1460738A3 (en) | 2003-03-21 | 2004-09-29 | Avalon Photonics AG | Wafer-scale replication-technique for opto-mechanical structures on opto-electronic devices |
TW570290U (en) * | 2003-05-02 | 2004-01-01 | Ind Tech Res Inst | Uniform pressing device for nanometer transfer-print |
JP4183245B2 (ja) * | 2003-05-12 | 2008-11-19 | キヤノン株式会社 | アライメント方法、該アライメント方法を用いた露光方法 |
JP4194514B2 (ja) * | 2003-06-26 | 2008-12-10 | キヤノン株式会社 | 露光用マスクの設計方法及び製造方法 |
JP2005085922A (ja) * | 2003-09-08 | 2005-03-31 | Canon Inc | マスク作製方法及び微小開口を有するマスク |
US20050189676A1 (en) * | 2004-02-27 | 2005-09-01 | Molecular Imprints, Inc. | Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography |
JP2005267738A (ja) | 2004-03-18 | 2005-09-29 | Meiki Co Ltd | 光ディスク基板成形用金型装置 |
JP4393244B2 (ja) * | 2004-03-29 | 2010-01-06 | キヤノン株式会社 | インプリント装置 |
US20050230882A1 (en) * | 2004-04-19 | 2005-10-20 | Molecular Imprints, Inc. | Method of forming a deep-featured template employed in imprint lithography |
US20050276919A1 (en) * | 2004-06-01 | 2005-12-15 | Molecular Imprints, Inc. | Method for dispensing a fluid on a substrate |
US20050270516A1 (en) * | 2004-06-03 | 2005-12-08 | Molecular Imprints, Inc. | System for magnification and distortion correction during nano-scale manufacturing |
WO2006060757A2 (en) * | 2004-12-01 | 2006-06-08 | Molecular Imprints, Inc. | Eliminating printability of sub-resolution defects in imprint lithography |
DE602004014002D1 (de) * | 2004-12-10 | 2008-07-03 | Essilor Int | Stempel zum Auftragen eines Motivs, Verfahren zur Stempelherstellung und Verfahren zur Herstellung eines Objekts anhand von diesem Stempel |
US7922474B2 (en) | 2005-02-17 | 2011-04-12 | Asml Netherlands B.V. | Imprint lithography |
JP2006315207A (ja) | 2005-05-10 | 2006-11-24 | Pital Internatl Machinery Co Ltd | 内部充填発泡体を有する中空異型板の共用押出し製造方法及びその製品 |
US8001924B2 (en) * | 2006-03-31 | 2011-08-23 | Asml Netherlands B.V. | Imprint lithography |
JP4819577B2 (ja) * | 2006-05-31 | 2011-11-24 | キヤノン株式会社 | パターン転写方法およびパターン転写装置 |
CN101868760B (zh) * | 2007-11-21 | 2013-01-16 | 分子制模股份有限公司 | 用于纳米刻印光刻的多孔模板及方法、以及刻印层叠物 |
US7906274B2 (en) * | 2007-11-21 | 2011-03-15 | Molecular Imprints, Inc. | Method of creating a template employing a lift-off process |
US8012394B2 (en) * | 2007-12-28 | 2011-09-06 | Molecular Imprints, Inc. | Template pattern density doubling |
US9323143B2 (en) * | 2008-02-05 | 2016-04-26 | Canon Nanotechnologies, Inc. | Controlling template surface composition in nano-imprint lithography |
US20090212012A1 (en) * | 2008-02-27 | 2009-08-27 | Molecular Imprints, Inc. | Critical dimension control during template formation |
JP4815464B2 (ja) * | 2008-03-31 | 2011-11-16 | 株式会社日立製作所 | 微細構造転写スタンパ及び微細構造転写装置 |
US8187515B2 (en) * | 2008-04-01 | 2012-05-29 | Molecular Imprints, Inc. | Large area roll-to-roll imprint lithography |
US20100015270A1 (en) * | 2008-07-15 | 2010-01-21 | Molecular Imprints, Inc. | Inner cavity system for nano-imprint lithography |
JP5411557B2 (ja) * | 2009-04-03 | 2014-02-12 | 株式会社日立ハイテクノロジーズ | 微細構造転写装置 |
US20110084417A1 (en) * | 2009-10-08 | 2011-04-14 | Molecular Imprints, Inc. | Large area linear array nanoimprinting |
US20110140304A1 (en) * | 2009-12-10 | 2011-06-16 | Molecular Imprints, Inc. | Imprint lithography template |
US20110272838A1 (en) * | 2010-05-06 | 2011-11-10 | Matt Malloy | Apparatus, System, and Method for Nanoimprint Template with a Backside Recess Having Tapered Sidewalls |
-
2007
- 2007-05-04 US US11/744,698 patent/US20080160129A1/en not_active Abandoned
- 2007-05-09 EP EP07734513.0A patent/EP2016613B1/en active Active
- 2007-05-09 JP JP2009508538A patent/JP5139421B2/ja active Active
- 2007-05-09 WO PCT/IB2007/001202 patent/WO2007132320A2/en active Application Filing
- 2007-05-09 KR KR1020087013900A patent/KR101494282B1/ko active IP Right Grant
- 2007-05-10 TW TW096116593A patent/TWI388934B/zh active
-
2010
- 2010-07-19 US US12/838,852 patent/US20100291257A1/en not_active Abandoned
-
2011
- 2011-03-28 US US13/073,533 patent/US8556616B2/en not_active Ceased
-
2015
- 2015-10-14 US US14/882,971 patent/USRE47483E1/en active Active
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3677178A (en) * | 1965-10-11 | 1972-07-18 | Scott Paper Co | Dry planographic plates and methods, production and use |
US3577593A (en) * | 1968-10-29 | 1971-05-04 | Bird & Son | Apparatus for heat and vacuum-pressure machine molding |
US4722878A (en) * | 1984-11-09 | 1988-02-02 | Mitsubishi Denki Kabushiki Kaisha | Photomask material |
US4959252A (en) * | 1986-09-29 | 1990-09-25 | Rhone-Poulenc Chimie | Highly oriented thermotropic optical disc member |
US5016691A (en) * | 1990-06-19 | 1991-05-21 | Lucien Bernier | Apparatus for centering template guide on router |
US5206983A (en) * | 1991-06-24 | 1993-05-04 | Wisconsin Alumni Research Foundation | Method of manufacturing micromechanical devices |
US5348616A (en) * | 1993-05-03 | 1994-09-20 | Motorola, Inc. | Method for patterning a mold |
US5509041A (en) * | 1994-06-30 | 1996-04-16 | Motorola, Inc. | X-ray lithography method for irradiating an object to form a pattern thereon |
US5464711A (en) * | 1994-08-01 | 1995-11-07 | Motorola Inc. | Process for fabricating an X-ray absorbing mask |
US5477058A (en) * | 1994-11-09 | 1995-12-19 | Kabushiki Kaisha Toshiba | Attenuated phase-shifting mask with opaque reticle alignment marks |
US5621594A (en) * | 1995-02-17 | 1997-04-15 | Aiwa Research And Development, Inc. | Electroplated thin film conductor coil assembly |
US5684660A (en) * | 1995-02-17 | 1997-11-04 | Aiwa Research And Development, Inc. | Thin film coil head assembly with protective planarizing cocoon structure |
US5804017A (en) * | 1995-07-27 | 1998-09-08 | Imation Corp. | Method and apparatus for making an optical information record |
US5772905A (en) * | 1995-11-15 | 1998-06-30 | Regents Of The University Of Minnesota | Nanoimprint lithography |
US6309580B1 (en) * | 1995-11-15 | 2001-10-30 | Regents Of The University Of Minnesota | Release surfaces, particularly for use in nanoimprint lithography |
US5817376A (en) * | 1996-03-26 | 1998-10-06 | Minnesota Mining And Manufacturing Company | Free-radically polymerizable compositions capable of being coated by electrostatic assistance |
US6753131B1 (en) * | 1996-07-22 | 2004-06-22 | President And Fellows Of Harvard College | Transparent elastomeric, contact-mode photolithography mask, sensor, and wavefront engineering element |
US6368752B1 (en) * | 1996-10-29 | 2002-04-09 | Motorola, Inc. | Low stress hard mask formation method during refractory radiation mask fabrication |
US5885514A (en) * | 1996-12-09 | 1999-03-23 | Dana Corporation | Ambient UVL-curable elastomer mold apparatus |
US6305925B1 (en) * | 1997-08-01 | 2001-10-23 | Sacmi- Cooperative Meccanici Imola - Soc. Coop. A.R.L. | Apparatus for pressing ceramic powders |
US5937758A (en) * | 1997-11-26 | 1999-08-17 | Motorola, Inc. | Micro-contact printing stamp |
US6117708A (en) * | 1998-02-05 | 2000-09-12 | Micron Technology, Inc. | Use of residual organic compounds to facilitate gate break on a carrier substrate for a semiconductor device |
US6316290B1 (en) * | 1998-02-05 | 2001-11-13 | Micron Technology, Inc. | Method of fabricating a semiconductor device utilizing a residual organic compound to facilitate gate break on a carrier substrate |
US6446933B1 (en) * | 1998-09-03 | 2002-09-10 | Micron Technology, Inc. | Film on a surface of a mold used during semiconductor device fabrication |
US6607173B2 (en) * | 1998-09-03 | 2003-08-19 | Micron Technology, Inc. | Film on a surface of a mold used during semiconductor device fabrication |
US6261469B1 (en) * | 1998-10-13 | 2001-07-17 | Honeywell International Inc. | Three dimensionally periodic structural assemblies on nanometer and longer scales |
US6334960B1 (en) * | 1999-03-11 | 2002-01-01 | Board Of Regents, The University Of Texas System | Step and flash imprint lithography |
US6190929B1 (en) * | 1999-07-23 | 2001-02-20 | Micron Technology, Inc. | Methods of forming semiconductor devices and methods of forming field emission displays |
US6780001B2 (en) * | 1999-07-30 | 2004-08-24 | Formfactor, Inc. | Forming tool for forming a contoured microelectronic spring mold |
US6165911A (en) * | 1999-12-29 | 2000-12-26 | Calveley; Peter Braden | Method of patterning a metal layer |
US6465365B1 (en) * | 2000-04-07 | 2002-10-15 | Koninklijke Philips Electronics N.V. | Method of improving adhesion of cap oxide to nanoporous silica for integrated circuit fabrication |
US6399406B2 (en) * | 2000-06-19 | 2002-06-04 | International Business Machines Corporation | Encapsulated MEMS band-pass filter for integrated circuits and method of fabrication thereof |
US20020159918A1 (en) * | 2000-06-25 | 2002-10-31 | Fan-Gang Tseng | Micro-fabricated stamp array for depositing biologic diagnostic testing samples on bio-bindable surface |
US20040141163A1 (en) * | 2000-07-16 | 2004-07-22 | The University Of Texas System, Board Of Regents, Ut System | Device for holding a template for use in imprint lithography |
US20040163563A1 (en) * | 2000-07-16 | 2004-08-26 | The Board Of Regents, The University Of Texas System | Imprint lithography template having a mold to compensate for material changes of an underlying liquid |
US20030026896A1 (en) * | 2000-08-03 | 2003-02-06 | Ichiro Shinkoda | Method and apparatus for fabrication of color filters |
US6696220B2 (en) * | 2000-10-12 | 2004-02-24 | Board Of Regents, The University Of Texas System | Template for room temperature, low pressure micro-and nano-imprint lithography |
US7229273B2 (en) * | 2000-10-12 | 2007-06-12 | Board Of Regents, The University Of Texas System | Imprint lithography template having a feature size under 250 nm |
US20020135099A1 (en) * | 2001-01-19 | 2002-09-26 | Robinson Timothy R. | Mold with metal oxide surface compatible with ionic release agents |
US6387787B1 (en) * | 2001-03-02 | 2002-05-14 | Motorola, Inc. | Lithographic template and method of formation and use |
US20020122993A1 (en) * | 2001-03-04 | 2002-09-05 | Nikon Corporation | Stencil reticles for charged-particle-beam microlithography, and fabrication methods for making same |
US6664026B2 (en) * | 2001-03-22 | 2003-12-16 | International Business Machines Corporation | Method of manufacturing high aspect ratio photolithographic features |
US6517977B2 (en) * | 2001-03-28 | 2003-02-11 | Motorola, Inc. | Lithographic template and method of formation and use |
US20020175298A1 (en) * | 2001-05-23 | 2002-11-28 | Akemi Moniwa | Method of manufacturing semiconductor device |
US6890688B2 (en) * | 2001-12-18 | 2005-05-10 | Freescale Semiconductor, Inc. | Lithographic template and method of formation and use |
US6743368B2 (en) * | 2002-01-31 | 2004-06-01 | Hewlett-Packard Development Company, L.P. | Nano-size imprinting stamp using spacer technique |
US6605849B1 (en) * | 2002-02-14 | 2003-08-12 | Symmetricom, Inc. | MEMS analog frequency divider |
US20030180631A1 (en) * | 2002-02-22 | 2003-09-25 | Hoya Corporation | Halftone phase shift mask blank, halftone phase shift mask, and method of producing the same |
US20030224262A1 (en) * | 2002-03-01 | 2003-12-04 | Asml Netherlands, B.V. | Calibration methods, calibration substrates, lithographic apparatus and device manufacturing methods |
US6716754B2 (en) * | 2002-03-12 | 2004-04-06 | Micron Technology, Inc. | Methods of forming patterns and molds for semiconductor constructions |
US7037639B2 (en) * | 2002-05-01 | 2006-05-02 | Molecular Imprints, Inc. | Methods of manufacturing a lithography template |
US6852454B2 (en) * | 2002-06-18 | 2005-02-08 | Freescale Semiconductor, Inc. | Multi-tiered lithographic template and method of formation and use |
US20050051698A1 (en) * | 2002-07-08 | 2005-03-10 | Molecular Imprints, Inc. | Conforming template for patterning liquids disposed on substrates |
US20070122942A1 (en) * | 2002-07-08 | 2007-05-31 | Molecular Imprints, Inc. | Conforming Template for Patterning Liquids Disposed on Substrates |
US7179079B2 (en) * | 2002-07-08 | 2007-02-20 | Molecular Imprints, Inc. | Conforming template for patterning liquids disposed on substrates |
US6916584B2 (en) * | 2002-08-01 | 2005-07-12 | Molecular Imprints, Inc. | Alignment methods for imprint lithography |
US6957608B1 (en) * | 2002-08-02 | 2005-10-25 | Kovio, Inc. | Contact print methods |
US7224443B2 (en) * | 2002-11-13 | 2007-05-29 | Molecular Imprints, Inc. | Imprint lithography substrate processing tool for modulating shapes of substrates |
US20070114686A1 (en) * | 2002-11-13 | 2007-05-24 | Molecular Imprints, Inc. | Method for expelling gas positioned between a substrate and a mold |
US20070228589A1 (en) * | 2002-11-13 | 2007-10-04 | Molecular Imprints, Inc. | Method for expelling gas positioned between a substrate and a mold |
US20060176466A1 (en) * | 2002-11-13 | 2006-08-10 | Molecular Imprints, Inc. | Chucking system for modulating shapes of substrates |
US6982783B2 (en) * | 2002-11-13 | 2006-01-03 | Molecular Imprints, Inc. | Chucking system for modulating shapes of substrates |
US20040197712A1 (en) * | 2002-12-02 | 2004-10-07 | Jacobson Joseph M. | System for contact printing |
US20040202865A1 (en) * | 2003-04-08 | 2004-10-14 | Andrew Homola | Release coating for stamper |
US20040219246A1 (en) * | 2003-04-29 | 2004-11-04 | Jeans Albert H. | Apparatus for embossing a flexible substrate with a pattern carried by an optically transparent compliant media |
US6808646B1 (en) * | 2003-04-29 | 2004-10-26 | Hewlett-Packard Development Company, L.P. | Method of replicating a high resolution three-dimensional imprint pattern on a compliant media of arbitrary size |
US7150622B2 (en) * | 2003-07-09 | 2006-12-19 | Molecular Imprints, Inc. | Systems for magnification and distortion correction for imprint lithography processes |
US20050006343A1 (en) * | 2003-07-09 | 2005-01-13 | Molecular Imprints, Inc. | Systems for magnification and distortion correction for imprint lithography processes |
US20050064344A1 (en) * | 2003-09-18 | 2005-03-24 | University Of Texas System Board Of Regents | Imprint lithography templates having alignment marks |
US7136150B2 (en) * | 2003-09-25 | 2006-11-14 | Molecular Imprints, Inc. | Imprint lithography template having opaque alignment marks |
US7270533B2 (en) * | 2003-10-02 | 2007-09-18 | University Of Texas System, Board Of Regents | System for creating a turbulent flow of fluid between a mold and a substrate |
US7090716B2 (en) * | 2003-10-02 | 2006-08-15 | Molecular Imprints, Inc. | Single phase fluid imprint lithography method |
US20050084804A1 (en) * | 2003-10-16 | 2005-04-21 | Molecular Imprints, Inc. | Low surface energy templates |
US20050098534A1 (en) * | 2003-11-12 | 2005-05-12 | Molecular Imprints, Inc. | Formation of conductive templates employing indium tin oxide |
US20050133954A1 (en) * | 2003-12-19 | 2005-06-23 | Homola Andrew M. | Composite stamper for imprint lithography |
US20050158637A1 (en) * | 2004-01-15 | 2005-07-21 | Samsung Electronics Co., Ltd. | Template, method of forming the template and method of forming a pattern on a semiconductor device using the template |
US20050185169A1 (en) * | 2004-02-19 | 2005-08-25 | Molecular Imprints, Inc. | Method and system to measure characteristics of a film disposed on a substrate |
US20050208171A1 (en) * | 2004-02-20 | 2005-09-22 | Canon Kabushiki Kaisha | Mold and molding apparatus using the same |
US20050184436A1 (en) * | 2004-02-24 | 2005-08-25 | Korea Institute Of Machinery & Materials | UV nanoimprint lithography process and apparatus |
US7140861B2 (en) * | 2004-04-27 | 2006-11-28 | Molecular Imprints, Inc. | Compliant hard template for UV imprinting |
US7279113B2 (en) * | 2004-04-27 | 2007-10-09 | Molecular Imprints, Inc. | Method of forming a compliant template for UV imprinting |
US7259833B2 (en) * | 2004-05-28 | 2007-08-21 | Board Of Regents, The Universtiy Of Texas System | Substrate support method |
US20050266587A1 (en) * | 2004-05-28 | 2005-12-01 | Board Of Regents, The University Of Texas System | Substrate support method |
US7245358B2 (en) * | 2004-05-28 | 2007-07-17 | Board Of Regents, The University Of Texas System | Substrate support system |
US20070287081A1 (en) * | 2004-06-03 | 2007-12-13 | Molecular Imprints, Inc. | Method for obtaining force combinations for template deformation using nullspace and methods optimization techniques |
US20060019183A1 (en) * | 2004-07-20 | 2006-01-26 | Molecular Imprints, Inc. | Imprint alignment method, system, and template |
US7309225B2 (en) * | 2004-08-13 | 2007-12-18 | Molecular Imprints, Inc. | Moat system for an imprint lithography template |
US7041604B2 (en) * | 2004-09-21 | 2006-05-09 | Molecular Imprints, Inc. | Method of patterning surfaces while providing greater control of recess anisotropy |
US7029944B1 (en) * | 2004-09-30 | 2006-04-18 | Sharp Laboratories Of America, Inc. | Methods of forming a microlens array over a substrate employing a CMP stop |
US7281919B2 (en) * | 2004-12-07 | 2007-10-16 | Molecular Imprints, Inc. | System for controlling a volume of material on a mold |
US20060172549A1 (en) * | 2005-01-31 | 2006-08-03 | Molecular Imprints, Inc. | Method of separating a mold from a solidified layer disposed on a substrate |
US20060172031A1 (en) * | 2005-01-31 | 2006-08-03 | Molecular Imprints, Inc. | Chucking system for nano-manufacturing |
US20060172553A1 (en) * | 2005-01-31 | 2006-08-03 | Molecular Imprints, Inc. | Method of retaining a substrate to a wafer chuck |
US20070243279A1 (en) * | 2005-01-31 | 2007-10-18 | Molecular Imprints, Inc. | Imprint Lithography Template to Facilitate Control of Liquid Movement |
US20060177535A1 (en) * | 2005-02-04 | 2006-08-10 | Molecular Imprints, Inc. | Imprint lithography template to facilitate control of liquid movement |
US20060266916A1 (en) * | 2005-05-25 | 2006-11-30 | Molecular Imprints, Inc. | Imprint lithography template having a coating to reflect and/or absorb actinic energy |
US7316554B2 (en) * | 2005-09-21 | 2008-01-08 | Molecular Imprints, Inc. | System to control an atmosphere between a body and a substrate |
US20070231422A1 (en) * | 2006-04-03 | 2007-10-04 | Molecular Imprints, Inc. | System to vary dimensions of a thin template |
US20070243655A1 (en) * | 2006-04-18 | 2007-10-18 | Molecular Imprints, Inc. | Self-Aligned Process for Fabricating Imprint Templates Containing Variously Etched Features |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110171340A1 (en) * | 2002-07-08 | 2011-07-14 | Molecular Imprints, Inc. | Template Having a Varying Thickness to Facilitate Expelling a Gas Positioned Between a Substrate and the Template |
US8556616B2 (en) | 2002-07-08 | 2013-10-15 | Molecular Imprints, Inc. | Template having a varying thickness to facilitate expelling a gas positioned between a substrate and the template |
US8889332B2 (en) | 2004-10-18 | 2014-11-18 | Canon Nanotechnologies, Inc. | Low-K dielectric functional imprinting materials |
USRE47483E1 (en) | 2006-05-11 | 2019-07-02 | Molecular Imprints, Inc. | Template having a varying thickness to facilitate expelling a gas positioned between a substrate and the template |
US9778562B2 (en) | 2007-11-21 | 2017-10-03 | Canon Nanotechnologies, Inc. | Porous template and imprinting stack for nano-imprint lithography |
US20090140458A1 (en) * | 2007-11-21 | 2009-06-04 | Molecular Imprints, Inc. | Porous template and imprinting stack for nano-imprint lithography |
US9323143B2 (en) | 2008-02-05 | 2016-04-26 | Canon Nanotechnologies, Inc. | Controlling template surface composition in nano-imprint lithography |
US20100015270A1 (en) * | 2008-07-15 | 2010-01-21 | Molecular Imprints, Inc. | Inner cavity system for nano-imprint lithography |
WO2010008508A1 (en) * | 2008-07-15 | 2010-01-21 | Molecular Imprints, Inc. | Inner cavity system for nano-imprint lithography |
US20100072671A1 (en) * | 2008-09-25 | 2010-03-25 | Molecular Imprints, Inc. | Nano-imprint lithography template fabrication and treatment |
US20100084376A1 (en) * | 2008-10-02 | 2010-04-08 | Molecular Imprints, Inc. | Nano-imprint lithography templates |
US8470188B2 (en) | 2008-10-02 | 2013-06-25 | Molecular Imprints, Inc. | Nano-imprint lithography templates |
US20100104852A1 (en) * | 2008-10-23 | 2010-04-29 | Molecular Imprints, Inc. | Fabrication of High-Throughput Nano-Imprint Lithography Templates |
US20140117574A1 (en) * | 2008-10-24 | 2014-05-01 | Molecular Imprints, Inc. | Strain and Kinetics Control During Separation Phase of Imprint Process |
US8652393B2 (en) | 2008-10-24 | 2014-02-18 | Molecular Imprints, Inc. | Strain and kinetics control during separation phase of imprint process |
US20100102469A1 (en) * | 2008-10-24 | 2010-04-29 | Molecular Imprints, Inc. | Strain and Kinetics Control During Separation Phase of Imprint Process |
US11161280B2 (en) | 2008-10-24 | 2021-11-02 | Molecular Imprints, Inc. | Strain and kinetics control during separation phase of imprint process |
EP2221163A1 (en) * | 2009-02-20 | 2010-08-25 | API Group PLC | Machine head for production of a surface relief |
US8163222B2 (en) | 2009-02-20 | 2012-04-24 | Api Group Plc | Machine head for production of a surface relief |
US20100213637A1 (en) * | 2009-02-20 | 2010-08-26 | Api Group Plc | Machine head for production of a surface relief |
US20110084417A1 (en) * | 2009-10-08 | 2011-04-14 | Molecular Imprints, Inc. | Large area linear array nanoimprinting |
WO2011043820A1 (en) | 2009-10-08 | 2011-04-14 | Molecular Imprints, Inc. | Large area linear array nanoimprinting |
US8616873B2 (en) | 2010-01-26 | 2013-12-31 | Molecular Imprints, Inc. | Micro-conformal templates for nanoimprint lithography |
US20110183027A1 (en) * | 2010-01-26 | 2011-07-28 | Molecular Imprints, Inc. | Micro-Conformal Templates for Nanoimprint Lithography |
US20110189329A1 (en) * | 2010-01-29 | 2011-08-04 | Molecular Imprints, Inc. | Ultra-Compliant Nanoimprint Lithography Template |
US20110272838A1 (en) * | 2010-05-06 | 2011-11-10 | Matt Malloy | Apparatus, System, and Method for Nanoimprint Template with a Backside Recess Having Tapered Sidewalls |
US20120061875A1 (en) * | 2010-09-13 | 2012-03-15 | Takuya Kono | Template chuck, imprint apparatus, and pattern forming method |
WO2012083578A1 (zh) * | 2010-12-22 | 2012-06-28 | 青岛理工大学 | 整片晶圆纳米压印的装置和方法. |
US8741199B2 (en) | 2010-12-22 | 2014-06-03 | Qingdao Technological University | Method and device for full wafer nanoimprint lithography |
EP2587312A1 (en) * | 2011-10-24 | 2013-05-01 | Shin-Etsu Chemical Co., Ltd. | Electronic grade glass substrate and making method |
US9902037B2 (en) | 2011-10-24 | 2018-02-27 | Shin-Etsu Chemical Co., Ltd. | Electronic grade glass substrate and making method |
US9205528B2 (en) | 2011-10-24 | 2015-12-08 | Shin-Etsu Chemical Co., Ltd. | Electronic grade glass substrate and making method |
US10828666B2 (en) | 2012-01-31 | 2020-11-10 | Seagate Technology Llc | Method of surface tension control to reduce trapped gas bubbles |
US9278857B2 (en) * | 2012-01-31 | 2016-03-08 | Seagate Technology Inc. | Method of surface tension control to reduce trapped gas bubbles |
US20130196122A1 (en) * | 2012-01-31 | 2013-08-01 | Seagate Technology, Llc | Method of surface tension control to reduce trapped gas bubbles |
US20160158972A1 (en) * | 2012-01-31 | 2016-06-09 | Seagate Technology Llc | Method of surface tension control to reduce trapped gas bubbles |
US9610712B2 (en) * | 2012-01-31 | 2017-04-04 | Seagate Technology Llc | Method of surface tension control to reduce trapped gas bubbles |
US9798231B2 (en) | 2012-02-07 | 2017-10-24 | Canon Kabushiki Kaisha | Imprint apparatus and method of manufacturing article |
CN104094380A (zh) * | 2012-02-07 | 2014-10-08 | 佳能株式会社 | 压印装置和制造物品的方法 |
CN104094379A (zh) * | 2012-02-07 | 2014-10-08 | 佳能株式会社 | 压印装置和制造物品的方法 |
US10018909B2 (en) | 2012-02-07 | 2018-07-10 | Canon Kabushiki Kaisha | Imprint apparatus and method of manufacturing article |
US10705422B2 (en) | 2012-02-07 | 2020-07-07 | Canon Kabushiki Kaisha | Imprint method |
US9437414B2 (en) * | 2012-02-29 | 2016-09-06 | Kabushiki Kaisha Toshiba | Pattern forming device and semiconductor device manufacturing method |
US20130221571A1 (en) * | 2012-02-29 | 2013-08-29 | Kabushiki Kaisha Toshiba | Pattern forming device and semiconductor device manufacturing method |
US10994470B2 (en) | 2012-09-06 | 2021-05-04 | Ev Group E. Thallner Gmbh | Structure stamp, device and method for embossing |
US10414087B2 (en) * | 2012-09-06 | 2019-09-17 | Ev Group E. Thallner Gmbh | Structure stamp, device and method of embossing |
CN106030756A (zh) * | 2013-12-31 | 2016-10-12 | 佳能纳米技术公司 | 用于局部区域压印的非对称模板形状调节 |
US20150183151A1 (en) * | 2013-12-31 | 2015-07-02 | Canon Nanotechnologies, Inc. | Asymmetric Template Shape Modulation for Partial Field Imprinting |
TWI690482B (zh) * | 2013-12-31 | 2020-04-11 | 佳能奈米科技股份有限公司 | 用於局部區域壓印之非對稱模板形狀調節 |
JP2017502510A (ja) * | 2013-12-31 | 2017-01-19 | キャノン・ナノテクノロジーズ・インコーポレーテッド | パーシャルフィールドインプリントのための非対称的なテンプレート形状の調節 |
US10578964B2 (en) * | 2013-12-31 | 2020-03-03 | Canon Nanotechnologies, Inc. | Asymmetric template shape modulation for partial field imprinting |
JP2015198215A (ja) * | 2014-04-03 | 2015-11-09 | 大日本印刷株式会社 | インプリントモールド用基板及びその製造方法、並びにインプリントモールド |
US10409156B2 (en) | 2015-02-13 | 2019-09-10 | Canon Kabushiki Kaisha | Mold, imprint apparatus, and method of manufacturing article |
TWI623411B (zh) * | 2015-02-13 | 2018-05-11 | 佳能股份有限公司 | 模具、壓印設備、以及製造物品的方法 |
CN105892230A (zh) * | 2015-02-13 | 2016-08-24 | 佳能株式会社 | 模具、压印设备和制造物品的方法 |
US10192741B2 (en) | 2015-06-16 | 2019-01-29 | Toshiba Memory Corporation | Device substrate, method of manufacturing device substrate, and method of manufacturing semiconductor device |
US9793120B2 (en) | 2015-06-16 | 2017-10-17 | Toshiba Memory Corporation | Device substrate, method of manufacturing device substrate, and method of manufacturing semiconductor device |
JP2017028322A (ja) * | 2016-10-24 | 2017-02-02 | 大日本印刷株式会社 | ナノインプリント用テンプレート |
KR20190078520A (ko) * | 2017-12-26 | 2019-07-04 | 캐논 가부시끼가이샤 | 6 자유도의 임프린트 헤드 모듈을 갖는 나노임프린트 리소그래피 |
US10996561B2 (en) * | 2017-12-26 | 2021-05-04 | Canon Kabushiki Kaisha | Nanoimprint lithography with a six degrees-of-freedom imprint head module |
KR102355144B1 (ko) | 2017-12-26 | 2022-01-26 | 캐논 가부시끼가이샤 | 6 자유도의 임프린트 헤드 모듈을 갖는 나노임프린트 리소그래피 |
US11199773B2 (en) * | 2019-03-05 | 2021-12-14 | Canon Kabushiki Kaisha | Imprint apparatus, imprint method, and article manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
EP2016613A4 (en) | 2009-12-02 |
US20110171340A1 (en) | 2011-07-14 |
KR101494282B1 (ko) | 2015-02-17 |
TW200801819A (en) | 2008-01-01 |
US20100291257A1 (en) | 2010-11-18 |
TWI388934B (zh) | 2013-03-11 |
USRE47483E1 (en) | 2019-07-02 |
EP2016613B1 (en) | 2013-04-10 |
US8556616B2 (en) | 2013-10-15 |
JP2009536591A (ja) | 2009-10-15 |
WO2007132320A2 (en) | 2007-11-22 |
WO2007132320A3 (en) | 2009-04-23 |
JP5139421B2 (ja) | 2013-02-06 |
EP2016613A2 (en) | 2009-01-21 |
KR20090017469A (ko) | 2009-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE47483E1 (en) | Template having a varying thickness to facilitate expelling a gas positioned between a substrate and the template | |
US7641840B2 (en) | Method for expelling gas positioned between a substrate and a mold | |
EP1958025B1 (en) | Method for expelling gas positioned between a substrate and a mold | |
US7635263B2 (en) | Chucking system comprising an array of fluid chambers | |
US8282383B2 (en) | Method for expelling gas positioned between a substrate and a mold | |
US8215946B2 (en) | Imprint lithography system and method | |
US7670530B2 (en) | Patterning substrates employing multiple chucks | |
US8913230B2 (en) | Chucking system with recessed support feature | |
US20070231422A1 (en) | System to vary dimensions of a thin template | |
US20100015270A1 (en) | Inner cavity system for nano-imprint lithography | |
WO2015103370A1 (en) | Asymmetric template shape modulation for partial field imprinting | |
US9164375B2 (en) | Dual zone template chuck | |
WO2007136832A2 (en) | Method for expelling gas positioned between a substrate and a mold | |
US20100096470A1 (en) | Drop volume reduction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MOLECULAR IMPRINTS, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RESNICK, DOUGLAS J., DR.;MEISSL, MARIO J.;CHOI, BYUNG-JIN, DR.;AND OTHERS;REEL/FRAME:020693/0116;SIGNING DATES FROM 20070612 TO 20070613 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |