TWI398033B - 用於鋰二次電池之高安全陰極活性材料與製備該材料及包含該材料之鋰二次電池之方法 - Google Patents

用於鋰二次電池之高安全陰極活性材料與製備該材料及包含該材料之鋰二次電池之方法 Download PDF

Info

Publication number
TWI398033B
TWI398033B TW098127041A TW98127041A TWI398033B TW I398033 B TWI398033 B TW I398033B TW 098127041 A TW098127041 A TW 098127041A TW 98127041 A TW98127041 A TW 98127041A TW I398033 B TWI398033 B TW I398033B
Authority
TW
Taiwan
Prior art keywords
active material
cathode active
lithium
oxide
secondary battery
Prior art date
Application number
TW098127041A
Other languages
English (en)
Other versions
TW201019520A (en
Inventor
Seong Bae Kim
Woo Seong Kim
Yoon Jeong Heo
Sung Tae Ko
Ji Jun Hong
Original Assignee
Daejung Em Co Ltd
Kokam Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daejung Em Co Ltd, Kokam Co Ltd filed Critical Daejung Em Co Ltd
Publication of TW201019520A publication Critical patent/TW201019520A/zh
Application granted granted Critical
Publication of TWI398033B publication Critical patent/TWI398033B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62821Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3268Manganates, manganites, rhenates or rhenites, e.g. lithium manganite, barium manganate, rhenium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

用於鋰二次電池之高安全陰極活性材料與製備該材料及包含該材料之鋰二次電池之方法
本發明係關於用於鋰二次電池之高安全陰極活性材料、一種用於製備該材料及包含該材料之鋰二次電池之方法。更特定言之,本發明係關於能改良用於鋰離子二次電池或鋰離子聚合物電池之該陰極活性材料之安全性--尤其熱穩定性與過充電特性--之陰極活性材料,及一種製備該材料之方法。
隨著電子、通訊與計算機工業之快速發展,可攜式攝像機、手機、筆記型電腦等之進步極其顯著。因此,作為驅動此等可攜式電子通訊裝置之動力源,對鋰二次電池之需求日益增加。特別地,作為一種可用於電動車輛、不間斷電源、電動工具與衛星之環保型電源,對鋰二次電池之研究與開發不但在韓國,同時在日本、歐洲以及美國皆得到積極開展。
鋰鈷氧化物(LiCoO2)通常用作鋰二次電池之陰極活性材料,但目前鋰鎳氧化物(Li(Ni-Co-Al)O2)與鋰複合金屬氧化物(Li(Ni-Co-Mn)O2)亦用作其他層狀陰極活性材料。此外,低價格、高穩定性之尖晶石型鋰錳氧化物(LiMn2O4)與橄欖石型磷酸鐵鋰化合物(LiFePO4)之消耗亦日益增加。
然而,使用鋰鈷氧化物、鋰鎳氧化物或鋰金屬複合氧化物之鋰二次電池儘管具有基本的電池特性,但其表現出安全性不夠,尤其是熱穩定性與過充電特性不夠好。為對其予以改良,吾人已引入了各種安全手段,諸如關閉功能、附加如PTC之電解質與安全裝置,但設計此等安全手段之前提條件係該陰極活性材料未填充至一高水準。因此,若該陰極活性材料已填充至一高水準以便滿足高電容要求,則各種安全手段有不能正常運轉之趨勢,且安全性亦可能降低。
同樣,一基於尖晶石型鋰錳之電池一度曾用於手機。然而,近來之手機市場首先要求優良之功能,由於其能量密度逐漸降低,其諸如低價格、高安全性之類的優點未被利用。
同樣,一橄欖石型磷酸鐵鋰化合物儘管具有價格低、安全性高之優點,但其導電性非常差,因此不可能期望其具有優良之電池特性。同樣,該橄欖石型磷酸鐵鋰化合物之平均工作電勢低,不滿足高電容要求。
因此,為解決上述問題,已開展各種研究,但迄今為止仍未提出一種有效之解決方法。
舉例言之,日本專利特許公開申請案第2001-143705號揭示一種陰極活性材料,其中鋰鈷氧化物與鋰錳氧化物被混合在一起。然而,此材料僅係藉由簡單混合具有優良安全性之鋰錳氧化物而得到,故其未充分改良特性。
同樣,日本專利特許公開申請案第2002-143708號揭示一種陰極活性材料,其中在兩層中提供有具有不同成分之鋰鎳複合化合物。然而,由於應用了兩層具有不同成分之鋰鎳複合化合物,並不認為其從根本上充分改良了由於過充電而導致之安全問題。
日本專利特許公開申請案第2007-012441號揭示一種陰極,該陰極具有用以改良過充電特性之兩個或更多個陰極活性材料層,其中一橄欖石型磷酸鐵鋰氧化物或一尖晶石型鋰錳氧化物被添加至與一陰極集電器接觸之該層。然而,儘管預期能改良過充電特性,但此等氧化層形成之厚度不大於其平均顆粒尺寸,即為幾微米之水準,且不包括導電材料或輔助導電材料,因此不能認為其具有足夠之大電流放電特性。
日本專利特許公開申請案第2006-318815號揭示一種技術,該技術係用鋰鹽或鋰氧化物塗佈二次顆粒之表面,用以改良鋰鎳氧化物之耐用性。然而,難於塗佈單獨之陰極活性材料二次顆粒之整個表面,因此其改良並不顯著。同樣,由於要增 加一乾式塗佈製程與一濕式塗佈製程,故生產率顯著降低。
為實現改良安全性差之鋰鎳氧化物之安全性,日本專利特許公開申請案第2006-19229號提出用鋰鈷鋯氧化物塗佈二次顆粒之表面。然而,由於需施加乾式塗佈製程以用鋰鈷鋯氧化物塗佈鋰鎳氧化物二次顆粒之該表面,儘管其效能得以顯著改良,但生產率降低。
因此,迫切需要研發一種具有優良安全性同時保持優良電池特性之陰極活性材料,及一種具有高生產率製備如此一陰極活性材料之方法。
本發明係設計用於解決該先前技藝之該等問題,且因此本發明之一目標係提供一種能顯著改良安全性--尤其能顯著改良熱穩定性與過充電特性,而不降低該陰極活性材料自身基本特性--之陰極活性材料,及提供一種具有生產率高及重複性好製備如此一陰極活性材料之方法。
為實現該上述目標,本發明提供一種用於鋰二次電池之陰極活性材料,其包括:一藉由結塊鋰金屬氧化物原始顆粒而形成之鋰金屬氧化物二次顆粒核;與藉由用鈦酸鋇與金屬氧化物塗佈該二次顆粒核而形成之殼。
與該先前技術相關,為改良該鋰金屬氧化物之高溫特性之可靠性,曾嘗試將鋰金屬氧化物塗佈成薄膜形狀,該先前技術中所做之所有嘗試皆旨在將注意力集中在用電惰性(electrically inactive)材料重塑該表面,因此發明者發現當該陰極活性材料被用於製造電池時,該表面重塑可能引起不良效果,諸如該陰極活性材料自身之單位電容降低或高速率特性變壞。
然而,發明者同樣發現,藉由用鈦酸鋇與金屬氧化物塗佈 鋰金屬氧化物二次顆粒,根據本發明之用於鋰二次電池之該陰極活性材料可改良熱穩定性,同時保持優良之電特性。鈦酸鋇在大約125℃時改變其晶體結構,用以如上所述顯著增加電阻,藉此改良該陰極活性材料之熱穩定性。
同樣,由根據本發明之該陰極活性材料製成之殼可進一步選擇性地包括橄欖石型磷酸鐵鋰氧化物與/或傳導材料。若出現過充電,該橄欖石型磷酸鐵鋰氧化物可限制自相當於該核之鋰金屬氧化物釋放鋰,用以改良該陰極活性材料防止過充電之安全性,且該傳導材料可改良該陰極活性材料之放電特性。
在本發明之另一方面中,亦提供一種用於製備鋰二次電池之陰極活性材料之方法,其包括:(S1),焙燒金屬氫氧化物與鋰鹽,用以製備鋰金屬氧化物二次顆粒核,其中鋰金屬氧化物原始顆粒結塊;(S2),用鈦酸鋇與金屬氧化物乾式塗佈該核,用以在該核之外表面上形成一殼;及(S3),熱處理該合成之材料。
製備根據本發明用於鋰二次電池之陰極活性材料之方法採用乾式塗佈製程,因此其能以一有效之方式高效地用與該殼相當之鈦酸鋇與金屬氧化物塗佈陰極活性材料之該表面,同時在與該核相當之該陰極活性材料之該表面上保持一導電鈍化膜。
在用於製備根據本發明之陰極活性材料之方法中,步驟(S3)之該熱處理可在300至600℃之溫度下實施4至12小時。
用於鋰二次電池之陰極活性材料可用於製造鋰二次電池之陰極,或具有如此一陰極之鋰二次電池。
下文將參照該等附圖詳細描述本發明之較佳具體實施例。描述之前,吾人應瞭解此說明與所附申請專利範圍中所用之術語不應解釋為侷限於通常意義與詞典意義,而應根據本發明者允許以最佳解釋適當界定術語之原則,基於與本發明之技 術方面一致之該等意義與概念予以解釋。因此,本說明提議之該描述僅為較佳實例,其目的僅係便於說明,並無限定本發明範圍之企圖,因此吾人應瞭解在不偏離本發明之精神與範圍內,可對其進行更改或有其他等價物。
首先,焙燒金屬氫氧化物與鋰鹽,用以製造鋰金屬氧化物二次顆粒核,其中鋰金屬氧化物原始顆粒結塊(S1)。
除橄欖石型磷酸鐵鋰氧化物之外,本發明中可用到之該鋰金屬氧化物可無限制地採用該技藝中用作鋰二次電池之陰極活性材料之任何鋰金屬氧化物。舉例言之,該鋰金屬氧化物可至少係由下列各物組成之群中選出:LiCoO2、Li(NiaCobAlc)O2(0<a<1、0<b<1、0<c<1、a+b+c=1)、Li(Nia-Cob-Mnc)O2(0<a<1、0<b<1、0<c<1、a+b+c=1)與LiMn2O4、或其混合物,但對此並無限制。
在本發明中用作核之該鋰金屬氧化物二次顆粒如此構造,即鋰金屬氧化物原始顆粒在其中結塊,且其藉由焙燒金屬氫氧化物與鋰鹽而製成,如下文之詳細說明。
該技藝中有各種製造金屬氫氧化物之方法,且本發明係基於該作為示例之該共同沈澱法予以說明。根據一目標陰極活性材料,該等上述之金屬氫氧化物相應地採用各種原料。作為主要原料,金屬鹽可使用硫酸鹽、硝酸鹽、醋酸鹽等。包含如此金屬鹽之溶液依次放置在共同沉澱環境下,從而以反應物形式依次獲得包含金屬氫氧化物之漿,且然後藉由洗滌、過濾與乾燥製成該金屬氫氧化物。
若如上所述用如此金屬氫氧化物製作鋰金屬氧化物,則限制引入每一金屬鹽中包含之雜質,控制成分至原子水準,使引入之少量不同種類元素之添加效果達到最大程度,及易於用實質上無雜質之均勻晶體結構製作鋰金屬氧化物,是可能的。
可如此製作本發明之該鋰金屬氧化物:在一特定溫度下熱處理金屬氫氧化物,該氫氧化物係藉由共同沈澱法自原料前導 物製備,並將其與各種種類之鋰鹽混合成一期望之合成物,且然後在一共同焙燒條件下焙燒。如上所述製備之鋰金屬氧化物作為鋰金屬氧化物二次顆粒獲得,其中鋰金屬氧化物原始顆粒結塊。根據該金屬氫氧化物之成份比例,構造該二次顆粒之原始顆粒之平均直徑可依據共同沉澱環境而不同變化,且其不侷限於任何範圍。
同樣,該二次顆粒之平均直徑可依據使用或生產環境而變化,舉例言之,其可為7至15 μm,但對此並未予以限定。當該等二次顆粒之平均直徑在上述範圍內時,在隨後之鈦酸鋇與金屬氧化物之乾式塗佈製程中,該等二次顆粒之穩定性變得更為優異,且該塗佈製程之效率與重複性進一步得以改良。
不特別限定該二次顆粒之形狀,但當該二次顆粒為圓形時,用於施加橄欖石型磷酸鐵鋰氧化物至該二次顆粒之表面之該塗佈製程之效率可得到進一步改良。
其後,用鈦酸鋇與金屬氧化物乾式塗佈該核,用以在該核之外表面上形成一殼(S2)。
此處所用之術語“鈦酸鋇”不僅包括純鈦酸鋇,同時亦包括其中添加有少量(按重量計0.1~1.5%)諸如La、Ce、Nd、Pr、Sm、Gd、Nb、Bi、Sb與Ta之類元素之鈦酸鋇。鈦酸鋇係一種高介電材料,且其為一種PTC(Positive Temperature Coefficient,正溫度係數)熱敏電阻,其電阻隨溫度之升高而增加。如上提及,該鈦酸鋇在大約125℃時改變其晶體結構,用以顯著增加其電阻,因此其可改良根據本發明之該陰極活性材料之熱穩定性。
本發明中採用之該鈦酸鋇之平均直徑可根據使用與生產環境而不同變化,且為本發明之目的,該平均直徑較佳不大於1 μm。當該平均直徑遠小於1 μm時,本發明中執行之該乾式塗佈製程之效率可達到最大程度,因此該平均直徑無下限值。舉例言之,該平均直徑可為1nm,但對此並未予以限定。若該 平均直徑超過1 μm,與該核相當之金屬複合氧化物之該表面塗佈製程之效率與重複性不合要求地降低。換言之,若應用一乾式塗佈製程,則要求被塗佈之材料應具有足夠之比表面積,以便塗佈該陰極活性材料之該表面--即一比表面積--為一薄膜形狀。因此,若該平均直徑超過1 μm,則參與塗佈製程之材料之比例降低,且該材料部分地以簡單混合物之形式殘留,此非吾人所望。
本發明中採用之鈦酸鋇之含量可根據使用該陰極活性材料之該電池之類型而合理選擇。舉例言之,按重量計該核之重量為100份為基準,則按重量計該鈦酸鋇之含量可為0.05至1份,但對此並未予以限定。若該含量按重量計小於0.05份,則該鈦酸鋇之效果不足。若該含量按重量計超過1份,隨著含量增加,由於該陰極活性材料之比電容降低且電導率下降,則高速率特性可能變壞。
本發明中使用之該金屬氧化物之尺寸為奈米級,其在該鈦酸鋇與該核之間充當黏合劑之角色,且其直接影響該核之分解或篩分。同樣,該金屬氧化物防止電解質直接接觸該核,藉此進一步改良穩定性與循環特性。此外,根據金屬氧化物之種類可獲得多種額外之性能改良。
舉例言之,倘若混合鋁氧化物(Al2O3),儘管電池之電容稍微降低,但粉體特性得到改良,橄欖石型磷酸鐵鋰氧化物之黏合特性被加強,且另外預期高溫特性等可得到改良。已顯示當電惰性金屬氧化物共存於該殼內時,在高溫貯藏或高溫循環期間,與該核相當之鋰金屬氧化物之該表面與電解質之接觸相對受限,藉此改良該等特性。同樣,在該技藝中,已知該等金屬氧化物--諸如鈦氧化物(TiO2),釔氧化物(Y2O3),鎂氧化物(MgO),鋅氧化物(ZnO)--同樣表現出相似之特性。此外,可進一步包括鋰金屬氧化物,藉此預期能改良快速充電/放電特性及循環特性,而電池電容不降低。該鋰金屬氧化物可使用 一分層之鋰金屬複合氧化物、鋰鈷氧化物、尖晶石型鋰錳氧化物等。
然而,施用於該殼之該塗佈材料並不侷限於上述之材料,可根據對該殼之功能期望之改良,諸如穩定性、高溫特性與導電性,組合使用各類尺寸為奈米級之金屬氧化物材料。
本發明中採用之該金屬氧化物之平均直徑可根據使用與生產環境而不同變化,舉例言之,為1至100nm,但對此並未予以限定。在上述之平均直徑範圍內,控制電池電容之降幅最小且因此而最大化一形成之殼之效能是可能的。細言之,在該平均直徑更小時,則參與塗佈之該比表面積達到最大,因此可僅用少量之金屬氧化物形成該殼,從而其效能可最大化。若該金屬氧化物之尺寸小於1nm,則該材料本身難於製備,因此生產該核-殼型陰極活性材料之成本可能增加。若該金屬氧化物之尺寸超過100nm,則該比表面積降低,因此需增加金屬氧化物之量以塗佈該殼成薄膜形狀,其可能降低電池電容。
本發明中採用之金屬氧化物之含量可根據使用該陰極活性材料之電池之種類合理選擇。舉例言之,按重量計該核之重量為100份為基準,則按重量計該金屬氧化物之含量可為0.05至1份,但對此並未予以限定。若該含量按重量計小於0.05份,則金屬氧化物之效果不夠。若該含量按重量計超過1份,則陰極活性氧化物之比電容可能降低。
在本發明之該陰極活性材料中,橄欖石型磷酸鐵鋰氧化物根據過充電具有最大之電阻增加率,其可有選擇地包括在該殼成形材料中,且然後可將其施加至該核。過充電時,該橄欖石型磷酸鐵鋰氧化物限制該核之該陰極活性材料與該電解質間之接觸。因此,自該核之該陰極活性材料釋放之鋰之數量受到限制,且因此沉澱於該陽極上之鋰之數量減少,從而與電解質反應所產生之熱量值降低,藉此改良安全性,尤其防止過充電。
本發明中採用之該橄欖石型磷酸鐵鋰氧化物之平均直徑 可根據使用與生產環境而不同變化,且為本發明之目的,該平均直徑較佳不大於1 μm。在該平均直徑遠小於1 μm時,本發明中所執行之該乾式塗佈製程之效率達到最大程度,因此該平均直徑無下限值。舉例言之,該平均直徑可為1nm,但對此並未限定。若該平均直徑超過1 μm,則與該核相當之金屬複合氧化物之該表面塗佈製程之效率與重複性不合要求地降低。換言之,若應用一乾式塗佈製程,為實現塗佈該陰極活性材料之目的,則要求確保塗佈足夠比表面積之奈米陰極活性材料,即塗佈相應之比表面積為一薄膜形狀。因此,若該平均直徑超過1 μm,則參與塗佈製程之陰極活性材料之比例降低,且該材料部分地以簡單混合物之形式殘留,此非吾人所期望。
本發明中採用之橄欖石型磷酸鐵鋰氧化物之含量可根據使用該陰極活性材料之電池種類合理選擇。舉例言之,按該核之重量為100份為基準,則該橄欖石型磷酸鐵鋰氧化物之含量按重量計可為0.05至5份,但對此並未予以限定。若該含量按重量計小於0.05份,則施用該橄欖石型磷酸鐵鋰氧化物之目的--即改良過充電特性之目的--未充分實現。若該含量按重量計超過5份,不參與該塗佈製程但以簡單混合物之形式存在之橄欖石型磷酸鐵鋰氧化物之量增加,從而可能產生不良影響,諸如平均放電電壓降低,此非吾人所期望。
在根據本發明之該陰極活性材料中,一導電材料可有選擇地包括在該殼成形材料中,且然後可將其施加至該核。該導電材料控制因該殼成形材料所引起之粉末電阻增加,藉此使得該陰極活性材料保持優良之放電特性。
本發明中採用之該導電材料可包括導電金屬、導電聚合體與導電碳、Ketjen黑、乙炔黑、Super-P、石墨、活性碳等作為該等導電碳之實例,然而本發明並未受此限定。該導電材料之平均顆粒尺寸較佳為1 μm或更小。在該平均顆粒尺寸小於1 μm時,該傳導材料之比表面積增加,用以降低其添加數量,因 此該平均顆粒尺寸之最小值不限定為一特定值。舉例言之,導電材料之平均顆粒尺寸可為1nm,但對此並未予以限定。若該平均顆粒尺寸超過1 μm,由於其尺寸大,因此難於與其他殼成形材料一起形成殼,此非吾人所期望。
可根據使用該陰極活性材料之電池種類合理選擇包括於根據本發明之該殼中的該導電材料之含量。舉例言之,以該核按重量計為100份為基準,可包括按重量計0.1份或更多之該導電材料,但本發明並未受此限定。若該導電材料之含量按重量計不足0.1份,則該所用之導電材料產生的效果並不顯著。同樣,倘若使用過量之導電材料,則多餘之導電材料保留在該核之該陰極活性材料之表面上,且在製備漿時其消除了對額外導電材料之需求,藉此而減少製備該漿所需時間。然而,考慮到該電惰性殼成形材料之目的係旨在改良導電率,該殼中之該導電材料之含量按重量計較佳不大於10份,按重量計更佳不超過5份,按重量計最佳不超過3份,但對此並未予以限定。
為塗佈根據本發明之該陰極活性材料核,如該技藝中所知,可使用一乾式塗佈方法與一濕式塗佈方法。在絕大多數傳統情形下,施用該濕式塗佈方法之目的係均勻分散塗佈材料。即,在一般情形下,其中分散塗佈材料之分散溶液或懸浮溶液,或其中分解塗佈材料之有機溶液或水溶液被噴射或浸漬入陰極活性材料,且然後乾燥以供塗佈。然而,該濕式塗佈方法在形成一薄膜型塗佈層時具有侷限性。此外,倘若應用以水作為溶劑之塗佈溶液,則形成在該陰極活性材料之該表面上、為鋰鹽形式之導電鈍化膜被去除,因此該陰極活性材料本身之導電率降低。同樣,需要額外之乾燥與粉磨製程,其在大規模生產中成為一缺陷。
相反地,本發明中使用之該乾式塗佈方法以如此一方式執行,即以機械方式將與該殼一致之塗佈材料施加至與該核一致之陰極活性材料之表面,依所使用之設備而定,其可產生剪 力、碰撞力或壓力,因而像塗層一樣此方法允許簡單之混合。
通常而言,藉由在高溫下燒製作為原料前導物之鋰與金屬氫氧化物而獲得之陰極活性材料不可避免地需要粉碎與分類,此緣於一些具有不規則球形之氫氧化物前導物或過量之鋰導致出現燒結現象。然而,實質上不可能將作為原料前導物之該金屬氫氧化物粉碎成平均直徑之顆粒同時還能保持球形。
然而,在本發明之使用一機械方式之該塗佈方法中,與該殼與/或該核之該碳質材料一致之該鋰金屬氧化物被製成球形,且藉由與該殼一致之該奈米尺寸金屬氧化物同時分解,故該粉末特性可得到改良。
隨後,熱處理該合成材料(S3)。
藉由在塗佈之後實施該熱處理製程,與該殼一致之單獨的殼成形材料顆粒可消除因焙燒及機械乾式塗佈所產生之應力,因此控制比電容降低及粉末傳導性降低--其係由該電惰性鈦酸鋇及金屬氧化物之薄膜所致--是可能的。可根據生產環境,諸如該核之陰極活性材料之種類,合理選擇該等熱處理條件。舉例言之,可在300至600℃之溫度下實施該熱處理4至12小時,但對此並未予以限定。處於上述之熱處理溫度時,該殼表現出非常優良之密度,該核之該晶體結構缺陷得到充分補償,且該核之結構可保持穩定。在上述範圍內,該熱處理時間確保有充足之效果。若該熱溫度時間超過12小時,則即使該熱處理時間進一步增加,額外之效果亦不會出現。
利用黏合劑樹脂,用於根據本發明製備之鋰二次電池之該陰極活性材料可附著至陰極集電器之至少一表面,用以形成鋰二次電池之陰極。該黏合劑樹脂與該陰極集電器可採用該技藝中任何常用之黏合劑樹脂與集電器,而無任何限制。
此外,根據本發明之鋰二次電池之該陰極可用於與一陽極、一介於該陰極與陽極之間的隔板及電解質一起製造鋰二次電池。該陽極、該隔板與該電解質可採用該技藝中任何常用之 陽極、隔板與電解質,而無任何限制。
在下文中,為更好理解本發明,將詳細描述本發明之各種較佳實例。然而,可以各種方式更改本發明之該等實例,且其不應解釋為限定本發明之範圍。本發明之該等實例僅係為熟悉此項技藝之人士更好地理解本發明。
實例1 <鋰金屬複合氧化物之製備>
硫酸鎳(NiSO4.6H2O)、硫酸錳(MnSO4.H2O)與硫酸鈷(CoSO4.7H2O)被溶解於淨化離子交換水中,這樣鎳、鈷與錳之摩爾比為0.5:0.2:0.3,藉此製作一金屬溶液。同樣,製備氫氧化鈉與氨溶液。
以pH值為11.2及旋轉速度為400rpm(轉/分鐘)使用一共同沉澱反應器,用以在一惰性氮環境下藉由一定量泵以5L/h(升/小時)之速率供給該金屬溶液,及以0.5 L/h之速率供給該氨溶液。以間歇之方式提供該氫氧化鈉溶液,這樣該反應器中之該溶液之pH值穩定保持為11.2。
執行該反應48小時以上,用以獲得含有標準尺寸之金屬複合氧化物之漿。使用一離心式分離器型過濾器洗滌與過濾該漿,直至被過濾之溶液之pH值為9.0或小於9.0,且然後在120℃之溫度下乾燥獲得之金屬複合氫氧化物粉末24小時以上,用以製作金屬複合氫氧化物。
之後,為設置與鋰鹽之當量比值,在300℃之溫度下熱處理該金屬複合氫氧化物12小時以上,且然後將其與鋰鹽混合,使其與鋰鹽的當量比值為1:1.1。在一能控制溫度之高溫焙燒設備中於950℃之溫度下焙燒此混合物24小時,且於500℃之溫度下焙燒此混合物24小時。其後,實施粉碎與分類,用以製得平均直徑可控之金屬複合氧化物,且然後在500℃之溫度下對其熱處理4小時。
之後,評估所獲得之該金屬複合氧化物之特性。該製得之 金屬複合氧化物中Ni:Co:Mn之比率為0.50:0.20:0.30,且平均直徑D50為9.7 μm。該等上述結果簡要列於表1與2中,如下所示。
<核-殼型陰極活性材料之製備>
所獲得之該金屬複合氧化物被用作為核,且平均直徑D50為220nm之鈦酸鋇與平均直徑D50為20nm之鈦氧化物被用作用以製作核-殼型陰極活性材料之塗佈材料。利用一乾式塗佈設備(NOB-130,由日本Hosogawa Micron有限公司生產)分別混合6g之鈦酸鋇與0.6g之鈦氧化物至600g之金屬複合氧化物,這樣,與殼相當之鈦酸鋇及鈦氧化物與按重量計100份之該核之重量比分別為按重量計1份與按重量計0.1份。之後,在每分鐘2700轉之速度下處理該混合物3分鐘,且然後在500℃之溫度下熱處理4小時,藉此製得一核-殼型陰極活性材料。
實例2
以與該實例1相同之方式製得一陰極活性材料,不同之處係鈦酸鋇之含量設定為按重量計為0.2份,其中以按重量計該核為100份為基準。
實例3
以與該實例1相同之方式製得一陰極活性材料,不同之處係除組態該殼之該鈦酸鋇與該鈦氧化物之外,還進一步加入按重量計1.5份、平均直徑D50為150nm之橄欖石型磷酸鐵鋰氧化物,其中以按重量計該核為100份為基準。
實例4
以與該實例3相同之方式製得一陰極活性材料,不同之處係除組態該殼之該鈦酸鋇、該鈦氧化物與該橄欖石型磷酸鐵鋰氧化物之外,還進一步加入按重量計0.2份、平均直徑D50為500nm之Super-P,其中以按重量計該核為100份為基準。
實例5
以與該實例4相同之方式製得一陰極活性材料,不同之處係以Ni:Co:Mn之比率為0.40:0.30:0.30如此一組成製得該金屬複合氧化物。
比較用實例1與2
該等實例1與5中所獲得之該金屬複合氧化物核分別用作該等比較用實例1與2之陰極活性材料。
比較用實例3
用以形成該實例4之該核與該殼之陰極活性材料、鈦酸鋇、金屬氧化物、橄欖石型磷酸鐵鋰氧化物與Super-P以相同比率簡單混合,用以製得一陰極活性材料。
特性評估 1.粉末特性
於塗佈之前與塗佈之後測量根據實例1至5製備之該陰極活性材料之平均直徑與振實密度。該等測量結果列於下表1中。該平均直徑利用一粒徑分佈測量儀(Mastersizer 2000E,由Malvern公司生產)測量。在利用超聲波分散該陰極活性材料時,藉由雷射散射之方式獲得該平均直徑D50。使用100ml量筒於實施500次衝程之前與之後自體積變化測量該振實密度。
a.比較用實例1:塗佈前該實例1之陰極活性材料 比較用實例2:塗佈前該實例5之陰極活性材料
b. B:BaTiO3、P:LiFePO4、T:TiO2、C:Super-P
自表1可見,在根據實例1至5製備該陰極活性材料之情形下,其中應用了奈米尺寸之各種金屬氧化物與橄欖石型磷酸鐵鋰氧化物,吾人發現與無根據該等比較用實例1與2之一塗層之該陰極活性材料相比,由於部分篩分效應與分解效應之故,該平均直徑減小,且同時該振實密度增加。同樣,在該比較用實例3中,儘管未顯示在表1中,吾人發現由於簡單混合之故,該粉末特性惡化。
2.塗層特性
為檢查該等實例與比較用實例中獲得之該核-殼型陰極活性材料之形狀與表面特性,獲取SEM(8564E,由HP公司生產)照片。該比較用實例1(a)與該實例1(b)之SEM照片、該比較用實例2(c)與該實例5(d)之SEM照片分別顯示於圖1中。同樣,圖2顯示根據該實例5製備之該核-殼型陰極活性材料之截面形狀及每一組份之映射圖像(a:映射圖像;b:Ti映射;c:Fe映射;d:P映射;及e:C映射)。
如圖1與2所示,本發明之該陰極活性顆粒表現出優良之表面形狀。同樣,吾人發現構造該殼之該塗佈材料亦施加不均勻。
3.電化學特性 i)半電池評估
為評估該等實例1至5中獲得之該陰極活性材料之初始比電容量與初始效率,使該陰極活性材料與一NMP溶液混合用以製得漿,該NMP溶液係藉由熔化用作導電材料之Teflonized乙炔黑及用作黏合劑之PVDF而獲得。在該漿中,該陰極活性材料、該導電材料及該黏合劑之質量比設定為90:3:7。此漿被施加至一30 μm鋁集電器上,且然後乾燥,且隨後將其壓縮至一預定厚度,並將其沖切成直徑為13mm,藉此製作一陰極。
利用一厚度為20 μm之隔板,該獲得之陰極與用作一陽極之鋰箔一起使用,用以製作一2032標準硬幣型電池。此時,該電解質採用1.2mol之LiPF6溶液,該溶液係碳酸乙烯酯與碳酸二乙酯之混合溶劑(體積比為1:3)。使用一充電/放電循環裝置,在電壓範圍為2.5~4.2V,溫度為25℃時,用0.2C之電流密度測量該電池之充電容量/放電容量,其中充電在恒定電流-恒定電壓條件(在最後之充電階段為0.02C時)下測量,而放電係在一恒定電流條件下測量。該等測量結果顯示於下表2中。同樣,該等實例4與5及該等比較用實例1與2之初始充電/放電曲線分別顯示於圖3與4中。
自表2可見,在該等實例1與2之該等陰極活性材料之情形下,其僅用形成該殼之塗佈材料之電化學惰性鈦酸鋇與鈦氧化物塗佈,該陰極活性材料每單位質量之該比電容量與其初始效率由於該塗層之故而降低。同樣,在實例3之該陰極活性材 料之情形下,其進一步包括電化學活性橄欖石型磷酸鐵鋰氧化物,在某種程度上該陰極活性材料每單位質量之該比電容量有所降低,但獲得該殼之每一組份額外之效果。換言之,該橄欖石型磷酸鐵鋰氧化物在防止過充電方面表現出穩定之改良效果,該鈦酸鋇在抵抗暴露至高溫方面表現出熱穩定改良效果,且該鈦氧化物在一塗佈製程期間表現出粉末特性改良效果,及該殼之該等塗佈材料表現出黏合劑效果。此外,倘若如該比較用實例3中一樣,該殼成形材料僅簡單地與該核之鋰金屬氧化物混合,則該殼成形材料僅以作為與該核相當之該材料之雜質存在,故該初始電容與該比電容量降低。同時,在該等實例4與5之情形下,其中進一步包括該導電材料Super-P,吾人發現根據該電化學惰性金屬氧化物之該塗層之該陰極活性材料之粉末電阻增加受到限制,藉此確保更優良之電化學特性。
ii)完整電池評估
為評估該等實例與比較用實例中獲得之該陰極活性材料之高速率特性與安全性,該製備之陰極活性材料與一NMP溶液混合用以製作漿,其中該NMP溶液係藉由分解作為導電材料之碳與作為黏合劑之PVDF而獲得。在該漿中,該陰極活性材料、該導電材料與該黏合劑之質量比為92:4:4。石墨被用作陽極,且該陰極與該陽極彼此相對放置,在其間插入一隔板。然後,在其上施加一厚度為113 μm之鋁封套,且其在氬環境下被密封至一手套式工作箱內,並隨後熱黏結,用以製作一囊式電池。該電池厚3.7mm,寬64mm,長95mm,且設計容量設置為2000mAh。
使用一充電/放電循環裝置在3.0~4.2V之電壓範圍內,溫度為25℃時,用0.2C(400mAh)之電流密度初始充電/放電該電池,且然後以各種電流密度實施該充電/放電實驗。以0.5C電流密度時之放電容量作為標準容量,以20C電流密度時之放電容量比率評估該高速率特性。下表3顯示該等實例與比較用 實例中獲得之該陰極活性材料之高速率特性。
此外,為評估根據該等實例與比較用實例獲得之該核-殼型陰極活性材料之熱穩定性,採用該陰極活性材料之該相同標準之電池--其處於4.2V之全充滿狀態--儲存在150℃之隔熱匣內,且然後檢查該等電池之狀態變化,諸如焙燒。該等檢查結果列出於下表3中。同樣,圖5與6顯示該實例1與該比較用實例1之隔熱匣貯藏特性。
同樣,實施一另外之測試,用以評估該等實例與比較用實例中獲得之該核-殼型陰極活性材料之安全性。為進行此測試,在電壓為24V時,用1C(2000mAh)之電流密度評估採用該陰極活性材料之該等相同標準之電池之過充電特性。該實例4之該陰極活性材料之該評估結果顯示於圖7中。同樣,一釘穿刺測試之結果顯示於圖8中,且一自加熱測試之結果顯示於圖9中。
自表3所見,吾人發現當鈦酸鋇、鈦氧化物與橄欖石型磷 酸鐵鋰氧化物被用作構造殼之材料時,該高速率特性部分地降低。然而,倘若進一步包括導電碳作為該殼成形材料,則發現該陰極活性材料自身之粉末電阻之增加--其係藉由電化學惰性材料之該塗層引起--受限制,且因此該核之該陰極活性材料之該放電特性得以極好地保持。然而,在該比較用實例3中,其中該殼成形材料與該核之鋰金屬氧化物簡單混合,則發現與該實例4相比,電化學特性(或高速率特性)顯著降低。同樣,吾人發現每一殼成形材料之安全性,即熱穩定性與過充電特性根本未得到改良。相反地,在該陰極活性材料上藉由塗佈之方式形成該殼之情況下,吾人發現每一殼成形材料之特性表現優異。
此外,自表3與圖5與6可見,在該陰極活性材料用鈦酸鋇塗佈之情況下,吾人發現熱穩定性得到顯著改良。
同樣,自圖7與8可見,在該實例4中橄欖石型磷酸鐵鋰氧化物被用於形成該殼之情況下,應瞭解防止過充電以及誤用或諸如強制短路之類的違章操作之安全性得以極大改良。
此外,如圖9所見,與該比較用實例1相比,在該實例4之情況下,吾人發現自熱得到極大控制,故熱特性變得優良。
【工業適用範圍】
根據本發明之用於鋰二次電池之該陰極活性材料包括一鋰金屬氧化物核與用鈦酸鋇與金屬氧化物塗佈之殼,藉此改良該鋰二次電池之安全性,尤其改良熱穩定性與過充電特性。此外,用於製備根據本發明之鋰二次電池之陰極活性材料之該方法確保在製造本發明之核-殼型陰極活性材料時具有良好之重複性與高的生產率。
圖1係一SEM(Scanning Electronic Microscope,掃描電子顯微鏡)照片,其顯示根據比較用實例1(a)、本發明之實例1(b)、比較用實例2(c)、及本發明之實例5(d)製備之陰極活性 材料;圖2係一映射SEM照片,其顯示根據本發明之實例5製備之陰極活性材料(a:映射圖像;b:Ti映射;c:Fe映射;d:P映射;及e:C映射);圖3係一曲線圖,其顯示根據一比較用實例1與本發明之實例4製備之陰極活性材料之初始充電/放電曲線;圖4係一曲線圖,其顯示根據一比較用實例2與本發明之實例5製備之陰極活性材料之初始充電/放電曲線;圖5係一曲線圖,其顯示根據一囊式電池之隔熱匣貯藏之熱穩定性,其中根據該比較用實例1之該陰極活性材料應用至該囊式電池;圖6係一曲線圖,其顯示根據一囊式電池之隔熱匣貯藏之熱穩定性,其中根據本發明之該實例4製備之該陰極活性材料應用至該囊式電池;圖7係一曲線圖,其顯示一囊式電池之過充電特性,其中根據本發明之該實例4製備之該陰極活性材料應用至該囊式電池;及圖8係一曲線圖,其顯示一根據釘穿刺測試之囊式電池之性能,其中根據本發明之該實例4製備之該陰極活性材料應用至該囊式電池。
圖9係一曲線圖,其顯示一囊式電池之自加熱特性,其中根據本發明之該實例4及比較用實例1之該陰極活性材料應用至該囊式電池。

Claims (15)

  1. 一種用於鋰二次電池之陰極活性材料,其包括:一鋰金屬氧化物二次顆粒核,其藉由結塊鋰金屬氧化物原始顆粒而形成;及一殼,其藉由用鈦酸鋇與金屬氧化物塗佈該二次顆粒核而形成。
  2. 如申請專利範圍第1項所述之用於鋰二次電池之陰極活性材料,其中該鋰金屬氧化物可至少係由下列各物組成之群中選出:LiCoO2、Li(NiaCobAlc)O2(0<a<1、0<b<1、0<c<1、a+b+c=1)、Li(Nia-Cob-Mnc)O2(0<a<1、0<b<1、0<c<1、a+b+c=1)與LiMn2O4、或其混合物。
  3. 如申請專利範圍第1項所述之用於鋰二次電池之陰極活性材料,其中該二次顆粒之平均直徑為7至15 μm。
  4. 如申請專利範圍第1項所述之用於鋰二次電池之陰極活性材料,其中該鈦酸鋇之粒子平均直徑為1nm至1 μm,且該金屬氧化物之粒子平均直徑為1至100nm。
  5. 如申請專利範圍第1項所述之用於鋰二次電池之陰極活性材料,其中該金屬氧化物可至少係由下列各物組成之群中選出:鋁氧化物、鈦氧化物、釔氧化物、鎂氧化物、鋅氧化物與鋰金屬氧化物、或其混合物。
  6. 如申請專利範圍第5項所述之用於鋰二次電池之陰極活性材料,其中該鋰金屬氧化物可至少係由下列各物組成之群中選出:層狀鋰金屬複合氧化物、鋰鈷氧化物與尖晶石型鋰錳氧化物、或其混合物。
  7. 如申請專利範圍第1項所述之用於鋰二次電池之陰極活性材料,其中該殼進一步包括橄欖石型磷酸鐵鋰氧化物。
  8. 如申請專利範圍第1項所述之用於鋰二次電池之陰極活性材料,其中該殼進一步包括導電材料。
  9. 一種用於製備用於鋰二次電池之陰極活性材料之方法,其包括:(S1)焙燒金屬氫氧化物與鋰鹽,用以製備鋰金屬氧化物二次顆粒核,其中鋰金屬氧化物原始顆粒結塊;(S2)用鈦酸鋇與金屬氧化物乾式塗佈該核,用以在該核之外表面上形成一殼;及(S3)熱處理該合成之材料。
  10. 如申請專利範圍第9項所述之用於製備鋰二次電池之陰極活性材料之方法,其中,在該步驟(S1)中,該金屬氫氧化物係根據一共同沉澱方法製得。
  11. 如申請專利範圍第9項所述之用於製備鋰二次電池之陰極活性材料之方法,其中在該步驟(S2)中,該核用橄欖石型磷酸鐵鋰氧化物額外乾燥塗佈,用以形成該殼。
  12. 如申請專利範圍第9項所述之用於製備鋰二次電池之陰極活性材料之方法,其中,在步驟(S2)中,該核用導電材料額外乾燥塗佈,用以形成該殼。
  13. 如申請專利範圍第9項所述之用於製備鋰二次電池之陰極活性材料之方法,其中,在步驟(S3)中,在300至600℃之溫度下實施熱處理4至12小時。
  14. 一種鋰二次電池之陰極,其包括一陰極集電器與一陰極活性材料層,該陰極活性材料層在該陰極集電器之至少一表面上形成,且具有陰極活性材料與黏合劑樹脂,其中該陰極活性材料為申請專利範圍第1至第8項任一項界定之一陰極活性材料。
  15. 一種鋰二次電池,其包括一陰極、一陽極與一介於該陰極與該陽極之間的一隔板,其中該陰極係申請專利範圍第14項所界定之一陰極。
TW098127041A 2008-11-10 2009-08-12 用於鋰二次電池之高安全陰極活性材料與製備該材料及包含該材料之鋰二次電池之方法 TWI398033B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080111004A KR101050438B1 (ko) 2008-11-10 2008-11-10 안전성이 우수한 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지

Publications (2)

Publication Number Publication Date
TW201019520A TW201019520A (en) 2010-05-16
TWI398033B true TWI398033B (zh) 2013-06-01

Family

ID=42153024

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098127041A TWI398033B (zh) 2008-11-10 2009-08-12 用於鋰二次電池之高安全陰極活性材料與製備該材料及包含該材料之鋰二次電池之方法

Country Status (12)

Country Link
US (1) US8367247B2 (zh)
EP (1) EP2362972B1 (zh)
JP (1) JP5231631B2 (zh)
KR (1) KR101050438B1 (zh)
CN (1) CN101884126B (zh)
AR (1) AR074079A1 (zh)
AU (1) AU2008349764B2 (zh)
BR (1) BRPI0808316A2 (zh)
CA (1) CA2674756A1 (zh)
RU (1) RU2408112C1 (zh)
TW (1) TWI398033B (zh)
WO (1) WO2010053222A1 (zh)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101193077B1 (ko) * 2009-12-04 2012-10-22 주식회사 루트제이제이 나노 중공 섬유형 탄소를 포함하는 리튬 이차전지용 양극 활물질 전구체, 활물질 및 그 제조방법
CN105140512B (zh) * 2010-06-02 2019-01-22 株式会社半导体能源研究所 电力储存装置
KR101256641B1 (ko) 2010-11-02 2013-04-18 삼성에스디아이 주식회사 리튬 이차전지용 양극 활물질 및 이의 제조방법
WO2012067449A2 (ko) * 2010-11-17 2012-05-24 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101350811B1 (ko) 2010-11-17 2014-01-14 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JP5556797B2 (ja) * 2010-12-17 2014-07-23 トヨタ自動車株式会社 二次電池
KR101308677B1 (ko) * 2011-05-31 2013-09-13 주식회사 코캄 리튬 이차전지
CN103635431B (zh) * 2011-06-17 2016-06-01 尤米科尔公司 用核心材料的元素和一种或多种金属氧化物的混合物涂覆的锂金属氧化物粒子
US10044035B2 (en) * 2011-06-17 2018-08-07 Umicore Lithium cobalt oxide based compounds with a cubic secondary phase
JP5825006B2 (ja) * 2011-09-22 2015-12-02 藤倉化成株式会社 リチウムイオン二次電池用正極材、およびリチウムイオン二次電池
CN102394290A (zh) * 2011-11-18 2012-03-28 青岛华冠恒远锂电科技有限公司 一种锂离子电池正极材料及其制备方法
KR101465490B1 (ko) * 2011-11-30 2014-11-26 주식회사 코캄 안전성과 안정성이 향상된 리튬 이차 전지
US8604427B2 (en) * 2012-02-02 2013-12-10 Applied Materials Israel, Ltd. Three-dimensional mapping using scanning electron microscope images
KR20130109785A (ko) * 2012-03-28 2013-10-08 삼성에스디아이 주식회사 복합전극활물질, 이를 채용한 전극과 리튬전지 및 그 제조방법
JPWO2013154142A1 (ja) * 2012-04-11 2015-12-17 旭硝子株式会社 リチウムイオン二次電池用正極活物質
RU2554940C2 (ru) * 2012-04-25 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ получения гибридного материала (варианты) для перезаряжаемых химических источников тока
KR101510179B1 (ko) * 2012-04-26 2015-04-08 주식회사 포스코이에스엠 리튬 망간 복합 산화물의 제조 방법, 그 제조 방법에 의하여 제조된 리튬 망간 복합 산화물, 및 이를 포함하는 리튬 이온 이차 전지
JP6008610B2 (ja) * 2012-06-27 2016-10-19 日揮触媒化成株式会社 二次電池用正極材および該正極材を用いた二次電池
KR101718058B1 (ko) 2012-08-01 2017-03-20 삼성에스디아이 주식회사 음극 활물질, 그 제조방법, 및 이를 채용한 리튬 전지
KR101439638B1 (ko) * 2012-11-06 2014-09-11 삼성정밀화학 주식회사 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP2014116296A (ja) * 2012-11-13 2014-06-26 Jgc Catalysts & Chemicals Ltd リチウム複合酸化物およびその製造方法、そのリチウム複合酸化物を含む二次電池用正極活物質、それを含む二次電池用正極、ならびにそれを正極として用いるリチウムイオン二次電池
KR101615413B1 (ko) * 2012-11-30 2016-04-25 주식회사 엘지화학 리튬 이차 전지용 양극, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지
US9859550B2 (en) * 2012-12-14 2018-01-02 Umicore Lithium metal oxide particles coated with a mixture of the elements of the core material and one or more metal oxides
WO2014142066A1 (ja) * 2013-03-15 2014-09-18 株式会社東芝 電池用電極材料およびそれを用いた電池用基板、蓄電池、色素増感太陽電池、キャパシタ、Liイオン二次電池
WO2015030561A1 (ko) * 2013-09-02 2015-03-05 주식회사 엘지화학 이차전지용 양극 및이를 포함하는 이차전지
CN103441255B (zh) * 2013-09-16 2017-02-01 宁德新能源科技有限公司 锂离子电池正极材料及其制备方法
JP6371508B2 (ja) * 2013-09-25 2018-08-08 住友化学株式会社 リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極、およびリチウムイオン二次電池
WO2015094847A1 (en) * 2013-12-17 2015-06-25 Dow Global Technologies Llc Improved lithium metal oxide cathode materials and method to make them
CN103825021B (zh) * 2014-03-12 2016-02-17 石哲文 一种稀土元素掺杂的复合钴酸锂正极材料的制备方法
KR102273772B1 (ko) 2014-05-21 2021-07-06 삼성에스디아이 주식회사 복합 양극 활물질, 이를 포함하는 리튬 전지, 및 이의 제조방법
US10141566B2 (en) * 2014-08-15 2018-11-27 Samsung Electronics Co., Ltd. Lithium secondary battery including a coated cathode material and solid electrolyte, and method of preparing the same
CN104810507A (zh) * 2014-09-02 2015-07-29 万向A一二三系统有限公司 一种锂离子软包电池正极浆料、其制备方法及其应用
CN104218234B (zh) * 2014-09-11 2017-11-17 浙江美达瑞新材料科技有限公司 一种高循环性能的锂离子电池复合正极材料及其制备方法
JP6137217B2 (ja) * 2015-02-12 2017-05-31 トヨタ自動車株式会社 非水電解質二次電池用負極の製造方法
CN105006574A (zh) * 2015-06-13 2015-10-28 浙江美达瑞新材料科技有限公司 一种表面改性的锂离子电池正极材料及其制备方法
CN105098161A (zh) * 2015-09-08 2015-11-25 湖南杉杉新材料有限公司 一种锂离子电池镍基多元正极材料及其制备方法
KR101982790B1 (ko) * 2015-10-20 2019-05-27 주식회사 엘지화학 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극
JP6304198B2 (ja) * 2015-11-04 2018-04-04 トヨタ自動車株式会社 非水電解液二次電池および非水電解液二次電池の製造方法
US20200028206A1 (en) * 2015-12-14 2020-01-23 Massachusets Institute Of Technology Solid oxygen-redox nanocomposite materials
TWI633692B (zh) * 2016-03-31 2018-08-21 烏明克公司 供汽車應用的鋰離子電池組
US20180070633A1 (en) * 2016-09-09 2018-03-15 Rai Strategic Holdings, Inc. Power source for an aerosol delivery device
KR102006726B1 (ko) 2016-10-05 2019-08-02 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
US10651514B2 (en) * 2017-03-20 2020-05-12 The Boeing Company Battery cell design for preventing internal short circuits from occurring and propagating using positive temperature coefficient (PTC) materials
US10665849B2 (en) 2017-03-20 2020-05-26 The Boeing Company Battery cell design for preventing internal short circuits from occurring and propagating
WO2018220972A1 (ja) 2017-05-29 2018-12-06 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合体及びこれを用いた二次電池、並びにリチウムイオン二次電池用正極活物質複合体の製造方法
WO2019004148A1 (ja) * 2017-06-28 2019-01-03 住友金属鉱山株式会社 非水電解質二次電池用正極活物質、およびその製造方法、並びに、非水電解質二次電池
JP7031150B2 (ja) * 2017-07-05 2022-03-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質の製造方法、および該正極活物質を用いた非水系電解質二次電池
KR102174720B1 (ko) * 2017-11-23 2020-11-05 주식회사 에코프로비엠 리튬복합산화물 및 이의 제조 방법
JP6919994B2 (ja) * 2017-12-12 2021-08-18 トヨタ自動車株式会社 正極材料とこれを用いたリチウム二次電池
JP6791112B2 (ja) * 2017-12-25 2020-11-25 日亜化学工業株式会社 非水系二次電池用正極材料の製造方法
JP7483619B2 (ja) * 2018-02-28 2024-05-15 ビーエーエスエフ ソシエタス・ヨーロピア コーティングされた電極活物質の製造方法
CN112204775A (zh) * 2018-05-21 2021-01-08 微宏动力系统(湖州)有限公司 制备颗粒前体和阴极活性颗粒的方法及其制备的颗粒前体
CN112236885B (zh) 2018-06-11 2022-05-20 微宏动力系统(湖州)有限公司 制备颗粒前体的方法及其制备的颗粒前体
CN109192961B (zh) * 2018-09-20 2020-11-06 昶联金属材料应用制品(广州)有限公司 正极材料的制备方法
EP3861578A1 (en) * 2018-10-02 2021-08-11 Basf Se Process for making an at least partially coated electrode active material
KR102629462B1 (ko) * 2018-10-04 2024-01-26 삼성전자주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
JP7085135B2 (ja) 2018-10-12 2022-06-16 トヨタ自動車株式会社 正極活物質および該正極活物質を備える二次電池
JP7111638B2 (ja) * 2019-02-21 2022-08-02 トヨタ自動車株式会社 リチウム二次電池の正極材料
GB201913817D0 (en) * 2019-09-25 2019-11-06 Johnson Matthey Plc Process
CN114402459B (zh) * 2019-11-15 2024-07-12 日本汽车能源株式会社 锂离子二次电池用正极和锂离子二次电池
KR102633759B1 (ko) * 2020-06-01 2024-02-05 삼성에스디아이 주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
KR102633758B1 (ko) * 2020-06-01 2024-02-05 삼성에스디아이 주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
CN111653752B (zh) * 2020-06-24 2021-11-09 蜂巢能源科技有限公司 一种正极材料、其制备方法和锂离子电池
CN112583071B (zh) * 2020-11-27 2022-08-02 上海航天控制技术研究所 一种深空探测分离监视伴星的供电系统
DE102020132661A1 (de) 2020-12-08 2022-06-09 Bayerische Motoren Werke Aktiengesellschaft Kathodenaktivmaterial und Lithiumionen-Batterie mit dem Kathodenaktivmaterial
CN116848687A (zh) * 2021-11-17 2023-10-03 宁德时代新能源科技股份有限公司 电解液、二次电池、电池模块、电池包以及用电装置
KR20230078382A (ko) * 2021-11-26 2023-06-02 삼성에스디아이 주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727021B1 (en) * 1997-12-25 2004-04-27 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3677975B2 (ja) * 1996-12-26 2005-08-03 三菱電機株式会社 電極及びこれを用いた電池
KR100277796B1 (ko) 1998-02-10 2001-02-01 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법
KR100326455B1 (ko) 1999-03-30 2002-02-28 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법
JP4159212B2 (ja) 1999-11-12 2008-10-01 三洋電機株式会社 非水電解質二次電池
JP2001283861A (ja) * 2000-03-31 2001-10-12 Sony Corp 電池用電極及び非水電解質電池
JP2002060225A (ja) 2000-08-18 2002-02-26 Ishihara Sangyo Kaisha Ltd コバルト酸リチウム凝集体、コバルト酸化物凝集体及びそれらの製造方法並びに該コバルト酸リチウム凝集体を用いてなるリチウム電池
JP2002158011A (ja) * 2000-09-25 2002-05-31 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法
KR100696619B1 (ko) 2000-09-25 2007-03-19 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 그 제조 방법
KR100387079B1 (ko) 2000-11-04 2003-06-18 (주)풍림환경특장 목재파쇄기용 파쇄드럼
US7566479B2 (en) * 2003-06-23 2009-07-28 Lg Chem, Ltd. Method for the synthesis of surface-modified materials
TWI251359B (en) * 2003-10-10 2006-03-11 Lg Cable Ltd Lithium secondary battery having PTC powder and manufacturing method thereof
KR100666821B1 (ko) * 2004-02-07 2007-01-09 주식회사 엘지화학 유/무기 복합 다공성 코팅층이 형성된 전극 및 이를포함하는 전기 화학 소자
JP4625296B2 (ja) * 2004-03-31 2011-02-02 日立マクセル株式会社 非水二次電池およびこれを用いた電子機器
JP4954451B2 (ja) 2004-07-05 2012-06-13 株式会社クレハ リチウム二次電池用正極材およびその製造方法
JP4776918B2 (ja) * 2004-12-24 2011-09-21 日立マクセルエナジー株式会社 非水電解液二次電池
WO2006118279A1 (ja) 2005-04-28 2006-11-09 Nissan Motor Co., Ltd. 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
JP5470669B2 (ja) 2005-05-13 2014-04-16 日産自動車株式会社 非水電解リチウムイオン電池用正極材料、これを用いた電池および非水電解リチウムイオン電池用正極材料の製造方法
JP5093997B2 (ja) 2005-06-30 2012-12-12 三洋電機株式会社 非水電解質二次電池及びその製造方法
WO2007066966A1 (en) * 2005-12-06 2007-06-14 Lg Chem Ltd. Electrode with enhanced safety and electrochemical device having the same
KR100889451B1 (ko) * 2006-02-14 2009-03-24 주식회사 엘지화학 분산성이 향상된 나노입자 함유 전극활물질의 제조방법
JP5088727B2 (ja) * 2006-03-17 2012-12-05 日本合成化学工業株式会社 リチウム二次電池
KR100786850B1 (ko) * 2006-11-21 2007-12-20 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
KR101147604B1 (ko) * 2007-10-12 2012-05-23 주식회사 엘지화학 젤리-롤형 전극조립체의 변형을 억제하기 위한 제조방법
KR100947181B1 (ko) * 2007-11-19 2010-03-15 주식회사 엘지화학 다공성 코팅층이 형성된 세퍼레이터 및 이를 구비한전기화학소자
JP2009176597A (ja) 2008-01-25 2009-08-06 Panasonic Corp 非水電解質二次電池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727021B1 (en) * 1997-12-25 2004-04-27 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery

Also Published As

Publication number Publication date
CN101884126A (zh) 2010-11-10
BRPI0808316A2 (pt) 2015-07-28
CA2674756A1 (en) 2010-05-10
JP5231631B2 (ja) 2013-07-10
JP2011519142A (ja) 2011-06-30
EP2362972B1 (en) 2014-03-19
EP2362972A1 (en) 2011-09-07
AR074079A1 (es) 2010-12-22
WO2010053222A1 (en) 2010-05-14
US8367247B2 (en) 2013-02-05
KR101050438B1 (ko) 2011-07-19
EP2362972A4 (en) 2012-06-27
AU2008349764A1 (en) 2010-05-27
TW201019520A (en) 2010-05-16
RU2408112C1 (ru) 2010-12-27
AU2008349764B2 (en) 2011-06-16
CN101884126B (zh) 2014-07-02
US20100310940A1 (en) 2010-12-09
KR20100052116A (ko) 2010-05-19

Similar Documents

Publication Publication Date Title
TWI398033B (zh) 用於鋰二次電池之高安全陰極活性材料與製備該材料及包含該材料之鋰二次電池之方法
KR101105879B1 (ko) 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
US8927153B2 (en) Cathode active material for lithium secondary batteries with core of lithium metal oxide and shell of lithium iron phosphate oxide, method of preparing the same, and lithium secondary batteries comprising the same
JP5341116B2 (ja) リチウム二次電池用コア−シェル型負極活物質、その製造方法、これを含むリチウム二次電池用の負極及びリチウム二次電池
US8808916B2 (en) Cathode active material for lithium secondary batteries, method for preparing the same, and lithium secondary batteries comprising the same
KR101589294B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN108137346B (zh) 用于可充电蓄电池的锂过渡金属氧化物阴极材料的前体
JP2012099482A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池
KR100938138B1 (ko) 도전성이 우수한 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
CN102769129B (zh) 正极活性材料及其制备方法和包括其的锂离子二次电池

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees