WO2015030561A1 - 이차전지용 양극 및이를 포함하는 이차전지 - Google Patents

이차전지용 양극 및이를 포함하는 이차전지 Download PDF

Info

Publication number
WO2015030561A1
WO2015030561A1 PCT/KR2014/008182 KR2014008182W WO2015030561A1 WO 2015030561 A1 WO2015030561 A1 WO 2015030561A1 KR 2014008182 W KR2014008182 W KR 2014008182W WO 2015030561 A1 WO2015030561 A1 WO 2015030561A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
anode
lithium
secondary battery
manganese
Prior art date
Application number
PCT/KR2014/008182
Other languages
English (en)
French (fr)
Inventor
정원희
이재헌
황선정
정근창
김신규
김수환
이경구
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480046155.7A priority Critical patent/CN105474440B/zh
Priority to JP2016534543A priority patent/JP6352421B2/ja
Priority to US14/913,047 priority patent/US10062902B2/en
Priority to EP14839735.9A priority patent/EP3018740B1/en
Publication of WO2015030561A1 publication Critical patent/WO2015030561A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery positive electrode and a secondary battery comprising the same.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • a lithium secondary battery has a structure in which an lithium electrolyte is impregnated into an electrode assembly comprising an anode including a cathode active material, an anode including a cathode active material, and a porous separator.
  • the anode is a cathode mixture containing an anode active material. Is manufactured by coating on aluminum foil, and the cathode is manufactured by coating a cathode mixture containing a cathode active material on copper foil.
  • Carbon materials are mainly used as negative electrode active materials of lithium secondary batteries, and lithium metals, sulfur compounds, silicon compounds, and tin compounds are also considered.
  • the positive electrode active material roneun mainly lithium-containing cobalt oxide (LiCo0 2), and is for moving the lithium-containing manganese oxide, lithium-containing nickel oxides such as LiMn 2 0 4 of the layered crystal structure of LiMn0 2, spinel crystal structure Other (LiNi0 The use of 2 ) is also considered.
  • LiCo0 2 is widely used due to its excellent cycle characteristics and excellent physical properties.
  • LiCo0 2 is low in safety, expensive due to the limited resources of cobalt as a raw material, and limited in mass use as a power source in fields such as electric vehicles.
  • LiNi0 2 is difficult to apply to the actual mass production process at a reasonable cost due to its manufacturing method, and lithium manganese oxides such as LiMn0 2) LiMn 2 0 4 have the disadvantage of poor cycle characteristics.
  • lithium transition metal phosphate materials have been used as anode active materials.
  • Lithium transition metal phosphate materials are classified into LixM 2 (P0 4 ) 3 , which is a Nasicon structure, and LiMP0 4 , which has an oliviin structure, and have higher temperature stability than conventional LiCoO 2.
  • Li 3 P 2 (P 0 4 ) 3 is known as a nanoconductor and LiFePO 4 and Li (Mn, Fe) PO are known among the oligovinic compounds. 4 is the most widely studied.
  • LiFeP0 4 has a -3.5V voltage and a high bulk density of 3.6g / cm 3 compared to lithium, and has a high temperature stability compared to cobalt (Co) as a material having a theoretical capacity of 170 mAh / g. Since Fe is an inexpensive raw material, it is highly applicable to a lithium secondary battery positive electrode active material in the future.
  • LiFeP0 4 has a low electron conductivity, which causes a problem of increased battery internal resistance when LiFeP0 4 is used as a positive electrode active material. Let's do it.
  • LiFePO 4 has a lower density than conventional cathode active materials, so there is a limit that the energy density of the battery cannot be increased.
  • binders In manufacturing, a large amount of binders are used, and the mixing time of the slurry is increased, which leads to a decrease in process efficiency.
  • a secondary particle type in which nanoscale primary particles are physically aggregated is used. The fairness increases, but lithium is slower than the primary particle form at the diffusion rate, and the capacity and output characteristics of the battery may be reduced.
  • the present invention aims to solve the above-mentioned problems of the prior art and technical problems that have been requested from the past.
  • the inventors of the present application after in-depth research and various experiments, include lithium iron phosphate particles and / or lithium nickel-manganese-cobalt composite oxide particles having a predetermined particle shape.
  • the positive electrode for secondary batteries manufactured using the positive electrode slurry it was confirmed that the desired effect could be achieved and the present invention was completed.
  • the present invention provides a slurry for anode mixtures containing particles of anode active material.
  • a positive electrode for secondary batteries manufactured by applying and rolling on a current collector the positive electrode active material
  • the granular stone comprises at least one selected from the group consisting of lithium iron phosphate particles having an olivine crystal structure and lithium nickel-manganese-cobalt composite oxide particles represented by Chemical Formula 1 below, and the lithium nickel-manganese-cobalt composite oxide Particle Stone ⁇ , Lithium
  • the nickel-manganese-cobalt composite oxide is present in the form of secondary particles in which primary particles are condensed at a content of more than 50% and less than 90%, and the lithium iron phosphate particles are based on the total lithium iron phosphate volume.
  • the present invention provides a secondary battery anode characterized by being present in the form of primary particles at a content of more than 50% and less than 100%.
  • lithium iron phosphate particles having a small particle size of a few nanometers in the form of primary particles are used as the anode active material, which reduces the process efficiency.
  • the lithium ion diffusion distance is extended to the inner center of the secondary particles, and carbon coating cannot be performed to the inside of the secondary particles, and thus there is a problem that the overall characteristics of the battery, such as the conductivity, may be deteriorated.
  • the inventors of the present invention can return to the primary particle form by partially disintegrating the secondary particle form during the rolling process, even if the anode is made of lithium iron phosphate particles of the olivine crystal structure in the secondary particle form. It was confirmed that the ion diffusion ability was improved.
  • the lithium iron phosphate particles of the olivine crystal structure according to the present invention have a form of secondary particles in which primary particles are condensed during the mixing of the positive electrode slurry and the coating process on the current collector, while improving process efficiency and rolling. As the secondary particles collapse in the form of primary particles in the process, ultimately, the energy density can be maximized, and the capacity characteristics and output characteristics of the battery can also be improved.
  • Lithium iron phosphate particles of this crystal structure can be used alone.
  • the lithium iron phosphate particles and lithium nickel-manganese-cobalt composite oxide particles may be 10:90 to 90:10 based on the total weight of the positive electrode active material, more specifically 20: 80 to 80: 20 More specifically, it could be 30: 70 to 70: 30 days.
  • the excessively small content of lithium iron phosphate particles may deteriorate high temperature safety, which is undesirable, and in view of various aspects such as economics, the lithium iron phosphate particles and lithium nickel-manganese-cobalt composite oxides Particles can be used.
  • the lithium nickel-manganese-cobalt composite oxide particles are used to determine the total volume of the lithium nickel-manganese-cobalt composite oxide.
  • primary particles may exist in the form of secondary particles formed by condensation, and the lithium iron phosphate particles are 70% or more and less than 100% based on the total volume of lithium iron phosphate. In its content, it can exist in the form of primary particles.
  • the degree of deformation of lithium nickel-manganese-cobalt composite oxide particles from secondary particles to primary particles can be relatively low, thereby improving the overall characteristics of the battery. This is because the shape of the phosphate particles has a greater effect on the overall characteristics of the battery.
  • the volumetric particle strain to be converted may be 70% or more of the lithium iron phosphate particles, more specifically 80% or more, and 20% or less of the particles of the lithium nickel-manganese-cobalt composite oxide. It can be less than 10%.
  • These secondary particles may, for example, be entwined by bonds, and the primary particles are entwined by physical bonds such as van der Waals forces, not chemical bonds such as covalent or ionic bonds. Borrowers can be formed.
  • the average particle diameter (D50) of the primary particles is preferably in the range of 50 nm to 550 nm, more preferably 100 nm. To 300 nm.
  • the secondary particles may have a specific surface area (BET) of 5 to 15 m 2 / g.
  • the shape of the secondary particles is not particularly limited.
  • the lithium iron phosphate particles may be coated with a conductive material to increase electron conductivity, and the conductive material may be at least one selected from carbon-based materials, precious metals, metals, and conductive polymers.
  • the coating can effectively improve the conductivity without significantly increasing the manufacturing cost and weight.
  • the carbonaceous material may be 1 to 4% by weight based on the total weight of the positive electrode active material, and in detail, may be 2 to 4% by weight. [37] When the amount of carbonaceous material is excessively large, the amount of lithium iron phosphate particles decreases relatively, and the overall battery characteristics are reduced. When the amount is too small, the effect of improving the electrical conductivity is not preferable.
  • the conductive material may have a coating thickness of 1 nanometer or more and 10 nanometers.
  • the coating thickness of the conductive material is too thick, the internal resistance may increase, and if it is too thin, it is not preferable because the effect of improving the electrical conductivity is not exerted.
  • the lithium iron phosphate particles may have a composition of Formula 2 below.
  • M is at least one selected from Al, Mg and Ti
  • X is at least one selected from F, S and N, -0.5 ⁇ a ⁇ + 0.5, 0 ⁇ x ⁇ 0.5, 0 ⁇ b ' ⁇ 0.1.
  • the conductivity may be reduced, the lithium iron phosphate particles may not maintain the oligo structure, deteriorate the rate characteristics, or may have a decrease in capacity. It is not desirable.
  • the lithium iron phosphate particles may include LiFeP0 4 , Li (Fe, Mn) P0 4) Li (Fe, Co) P0 4 , Li (Fe, Ni) P0 4 , and the like.
  • the lithium nickel-manganese-cobalt composite oxide of Chemical Formula 1 is a lithium oxide simultaneously containing nickel, manganese, and cobalt elements, and in detail, lithium nickel-manganese-cobalt having a layered structure of Formula la It may be an oxide.
  • the content (b) of nickel may be 0.3 ⁇ b ⁇ 0.65.
  • the lithium nickel cobalt manganese composite oxide of Formula la is manganese and cobalt
  • the positive electrode mixture may include a binder in an amount of 3 to 6% by weight based on the total amount.
  • the secondary battery according to the present invention includes a cathode manufactured by applying a cathode and a mixture of a cathode active material, a conductive material, and a binder on a cathode current collector, followed by drying and pressing. A further layering agent is also added to the mixture.
  • the anode current collector is generally made to a thickness of 3 to 500 micrometers.
  • Such a positive electrode current collector is not particularly limited so long as it has a high conductivity without causing chemical changes in the battery.
  • a positive electrode current collector is not particularly limited so long as it has a high conductivity without causing chemical changes in the battery.
  • stainless steel, aluminum, nickel, titanium, sintered carbon, or aluminum or stainless steel Surfaces of carbon, nickel, titanium, silver, etc. may be used on the surface of the surface.
  • the current collector forms fine irregularities on its surface to increase the adhesion of the positive electrode active material. It may be in various forms, such as film, sheet, foil, net, porous body, foam, and nonwoven fabric.
  • the positive electrode active material may use the material defined above.
  • the conductive material is generally added in an amount of 1 to 50% by weight based on the total weight of the mixture including the positive electrode active material.
  • Such conductive material is not particularly limited as long as it is conductive without causing chemical changes to the battery.
  • graphite such as natural or artificial graphite
  • carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black
  • conductive fibers such as carbon fiber or metal fiber
  • Metal powders such as carbon fluoride, aluminum and nickel powder
  • Conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives can be used.
  • the binder is a component that assists in bonding the active material and the conductive material to the current collector.
  • the binder include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl salose (CMC), and starch. , Loose hydroxypropylcell , Loose regenerated cell , Polyvinylpyridone , Tetrafluoroethylene , Polyethylene , Polypropylene , Ethylene-propylene-diene polymer (EPDM), Sulfonated EPDM, Styrenevtyrene rubber Rubber, and various copolymers.
  • the layer deterrent is selectively used as a component for inhibiting the expansion of the anode, and is not particularly limited as long as it is a fibrous material without inducing chemical changes in the battery.
  • lipin such as polyethylene, polypropylene, etc. System polymers;
  • Fibrous materials such as glass fiber and carbon fiber are used.
  • the negative electrode current collector is generally made to a thickness of 3 to 500 micrometers.
  • These cathode current collectors are not particularly limited as long as they are electrically conductive without inducing chemical changes to the cell.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, plastic carbon, copper or stainless steel. Surface treated with carbon, nickel, titanium, silver, etc., and aluminum-cadmium alloys can be used.
  • it can form fine irregularities on the surface to enhance the bonding strength of the cathode active material, and can be used in various forms such as film, sheet, foil, net, porous body, foam, and nonwoven fabric.
  • the negative electrode active material may be, for example, carbon such as non-graphitized carbon or graphite-based carbon; Li x Fe 2 0 3 (0 ⁇ x ⁇ l), Li x WO 2 (0 ⁇ x ⁇ l), Sn x Me ,.
  • the secondary battery may have a structure in which a lithium salt-containing electrolyte is impregnated into an electrode assembly having a separator interposed between an anode and a cathode.
  • the separator is interposed between the anode and the cathode and has high ion permeability and mechanical properties.
  • An insulating thin film having strength is used.
  • the pore diameter of the separator is
  • thickness typically 5 to 300
  • a separator for example, chemically resistant and hydrophobic polyolefin-based olefin polymers; sheets made of glass fibers or polyethylene, or nonwoven fabrics are used. Solid electrolytes such as polymers are used as the electrolyte. If so, the solid electrolyte may serve as a separator.
  • the lithium salt-containing electrolyte is composed of an electrolyte and a lithium salt.
  • Non-aqueous organic solvents, organic solid electrolytes, and inorganic solid electrolytes are used as electrolytes, but they are not limited to these.
  • the non-aqueous organic solvent may be, for example, N-methyl-2-pyrrolidinone or propylene.
  • 2-imidazolidinone propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, methyl pyropionate and ethyl propionat
  • organic solid electrolyte for example, polyethylene derivatives, polyethylene
  • Oxide derivatives polypropylene oxide derivatives, phosphate ester polymers, poly agitation lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, and thickeners containing ionic dissociates may be used.
  • Li 3 N, Lil, Li 5 NI 2 Li 3 N-LiI-LiOH, LiSi0 4 , LiSi0 4- LiI-LiOH, Li 2 SiS 3 , Li 4 Nitrides, halides, sulfates, etc. of Li, such as Si0 4 , Li 4 Si0 4 .LiI-LiOH, Li 3 P0 4- Li 2 S-SiS 2, and the like can be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, Lil, LiC10 4 , LiBF 4 , LiB 10 Cl j0 , LiPF 6) LiCF 3 S0 3 , LiCF 3 C0 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 S0 3 Li, (CF 3 S0 2) 2 NLi, chloroborane Lyrium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate, may be already in use such as de
  • the electrolyte has a charge / discharge characteristic, a flame retardancy, and the like for the purpose of improvement.
  • lithium salts such as LiPF 6 , LiC10 4 , L1BF 4 , LiN (S0 2 CF 3 ) 2 , a cyclic carbonate of EC or PC as a highly dielectric solvent and DEC, DMC or a low viscosity solvent
  • Lithium salt-containing non-aqueous electrolyte can be prepared by adding a mixed solvent of EMC linear carbonate.
  • the secondary battery may be a lithium secondary battery.
  • the present invention also provides battery modules including the secondary battery as a unit cell, and provides a battery pack including the battery modules.
  • the battery pack has high temperature stability, long cycle characteristics, high rate characteristics, and the like.
  • Preferred examples of such an enlarged device include a power tool driven by an electric motor; an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • plug-in hybrid a plug-in hybrid
  • Electric vehicles including electric vehicles (Plug-in hybrid electric vehicles, PHEVs); electric two-wheeled vehicles including electric bicycles (E-bikes), electric scooters (electric golf carts); power storage Application systems, but are not limited to these.
  • FIG. 1 is a SEM photograph of the positive electrode mixture slurry according to Example 1 according to the present invention before coating and rolling on a current collector;
  • FIG. 2 is a SEM photograph after rolling the positive electrode mixture slurry according to Example 1 according to the present invention onto a current collector and rolling;
  • FIG. 3 is a SEM photograph after coating and rolling the positive electrode mixture slurry according to Comparative Example 1 according to the present invention on a current collector;
  • Average particle size was 10 using Clariant's LiFeP0 4 (product name: EXM2274).
  • the secondary particle volume ratio was measured.
  • the secondary particle shape of LiNi J / 3 Mn 1/3 Co 1/3 0 2 is LiNi 1/3 Mni / 3 Co 1/3 0 2.
  • Example 1 a cross-sectional SEM photograph of the anode before rolling is shown in FIG. 1, and a cross-sectional SEM photograph of the anode after rolling is shown in FIG. 2, and a cross-sectional SEM photograph of the anode after rolling of Comparative Example 1 is shown in FIG. 3 is shown.
  • the anode for secondary battery according to the present invention is pressure 1/2 olivine
  • Lithium iron phosphate of crystal structure disintegrates in the form of primary particles, lithium
  • nickel-manganese-cobalt composite oxide particles are mostly in shape. Industrial availability
  • the secondary battery positive electrode according to the present invention is rolled.
  • Lithium iron phosphate secondary particles of the lignin crystal structure may preferentially disintegrate into primary particles in the process, so lithium iron phosphate particles exist in the form of primary particles at a content of more than 50% based on the total volume of lithium iron phosphate.
  • the lithium nickel-manganese-cobalt composite oxide particles may be present in the form of formed secondary particles in which primary particles are condensed at a content of over 50% based on the total volume of the lithium nickel-manganese-cobalt composite oxide.
  • the lithium iron phosphate particles of the olivine crystal structure have the form of secondary particles in which primary particles are condensed during the positive electrode slurry slicing and the coating process on the current collector. Because of the decay into primary particles, the ultimate energy density can be maximized and the capacity and output characteristics of the battery can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 양극 활물질 입자들을 포함하는 양극 합제용 슬러리를 집전체상에 도포 및 압연하여 제조된 이차전지용 양극으로서,상기양극 활물질 입자들은 올리빈 결정구조의 리튬 철인산화물 입자들과 화학식 1의 리튬 니켈-망간-코발트 복합 산화물 입자들로 이루어진 군에서 선택되는 하나 이상을 포함하고, 상기 리튬 니켈-망간-코발트 복합 산화물 입자들은,리튬 니켈-망간-코발트 복합 산화물 전체 체적을 기준으로 50%초과의 90%미만의 함량에서, 1차 입자들이 웅집된 형성된 2차 입자들의 형태로 존재하며,상기 리튬 철 인산화물입자들은,리튬 철 인산화물 전체 체적을 기준으로 50% 초과 100% 미만의 함량에서, 1차 입자들의 형태로 존재하는 것을 특징으로 하는 이차 전지용 양극을 제공한다 (화학식 1은 제 1항에서 정의한 바와 같다.)

Description

명세서
발명의명칭:이차전지용양극및이를포함하는이차전지 기술분야
[1] 본발명은,이차전지용양극및이를포함하는이차전지에관한것이다.
배경기술
[2] 화석연료의고갈에의한에너지원의가격상승,환경오염의관심이증폭되며, 친환경대체에너지원에대한요구가미래생활을위한필수불가결한요인이 되고있다.이에원자력,태양광,풍력,조력등다양한전력생산기술들에대한 연구가지속되고있으며,이렇게생산된에너지를더욱효율적으로사용하기 위한전력저장장치또한지대한관심이이어지고있다.
[3] 특히,리튬이차전지의경우,모바일기기에대한기술개발과수요가증가함에 따라에너지원으로서의수요가급격히증가하고있고,최근에는
전기자동차 (EV),하이브리드전기자동차 (HEV)의동력원으로서의사용이 실현화되고있으며,그리드 (Grid)화를통한전력보조전원등의용도로도 사용영역이확대되고있다.
[4] 일반적으로리튬이차전지는양극활물질을포함하는양극과음극활물질을 포함하는음극및다공성분리막으로이루어진전극조립체에리튬전해질이 함침되어있는구조로이루어져있다.양극은양극활물질을포함하는양극 합제를알루미늄호일에코팅하여제조되며,음극은음극활물질을포함하는 음극합제를구리호일에코팅하여제조된다.
[5] 이러한리튬이차전지의음극활물질로는탄소재료가주로사용되고있고, 리튬금속,황화합물,규소화합물,주석화합물등의사용도고려되고있다. 또한,양극활물질로는주로리튬함유코발트산화물 (LiCo02)이사용되고있고, 그외에층상결정구조의 LiMn02,스피넬결정구조의 LiMn204등의리튬함유 망간산화물과,리튬함유니켈산화물 (LiNi02)의사용도고려되고있다.
[6] LiCo02은우수한사이클특성등제반물성이우수하여현재많이사용되고 있지만,안전성이낮으며,원료로서코발트의자원적한계로인해고가이고 전기자동차등과같은분야의동력원으로대량사용함에는한계가있다. LiNi02 은그것의제조방법에따른특성상,합리적인비용으로실제양산공정에 적용하기에어려움이있고, LiMn02) LiMn204등의리튬망간산화물은사이클 특성둥이나쁘다는단점을가지고있다.
[7] 이에,최근리튬전이금속포스페이트물질을양극활물질로서이용하는
방법이연구되고있다.리튬전이금속포스페이트물질은크게나시콘 (Nasicon) 구조인 LixM2(P04)3와올리빈 (Olivine)구조의 LiMP04로구분되고,기존의 LiCoO 2에비해서고온안정성이우수한물질로연구되고있다.현재나시콘구조의 Li3 V2(P04)3가알려져있고올리빈구조의화합물중에서는 LiFeP04와 Li(Mn, Fe)PO 4이가장널리연구되고있다.
[8] 상기올리빈구조중특히 LiFeP04는리튬대비 -3.5V전압과 3.6g/cm3의높은 용적밀도를갖고,이론용량 170 mAh/g의물질로서코발트 (Co)에비해서고온 안정성이우수하고저가의 Fe를원료로하기때문에향후리튬이차전지용양극 활물질로의적용가능성이높다.
[9] 그러나,이러한 LiFeP04는하기와같은문제를가지고있어실용,화에한계가 있다.
[10] 첫째, LiFeP04는전자전도율이낮기때문에, LiFeP04를양극활물질로서 사용하는경우전지의내부쩌항이증가되는문제가있다.이로인해전지회로 폐쇄시에분극전위가증가됨으로써전지용량을감소시킨다.
[11] 둘째 , LiFeP04는밀도가통상의양극활물질보다낮으므로,전지의에너지 밀도를층분히증가시킬수없다는한계가있다.
[12] 셋째로,리튬이탈리된상태의을리빈결정구조는매우불안정하므로,결정 표면의리튬이이탈한부분의이동경로가폐색되어리튬의흡장 /탈리속도가 지연되는문제가있다.
[13] 이에,올리빈의결정크기를나노수준으로줄임으로써리튬이온의이동 거리를단축시켜방전용량을증가시키는기술이제안되었다.
[14] 그러나,이와같이미세한입경을갖는올리빈입자를사용하여전극을
제조하는경우다량의바인더를사용해야하고,슬러리의믹싱시간이길어져 공정효율이저하되는문제가발생한다.이러한문제를해결하기위하여나노 수준의일차입자들이물리적으로응집되어있는이차입자형태를사용하는 경우공정성은증가하나,일차입자형태보다느린리튬양이은확산속도로, 전지의용량특성및출력특성이저하될수있다.
[15] 따라서,우수한전지성능을제공하면서도높은공정효율성을제공할수있는 기술에대한필요성이높은실정이다.
발명의상세한설명
기술적과제
[16] 본발명은상기와같은종래기술의문제점과과거로부터요청되어온기술적 과제를해결하는것을목적으로한다.
[17] 본출원의발명자들은심도있는연구와다양한실험을거듭한끝에,소정의 입자형태를가지는올리빈결정구조의리튬철인산화물입자들및 /또는리튬 니켈-망간-코발트복합산화물입자들을포함하는양극합제용슬러리를 이용하여제조된이차전지용양극을사용하는경우,소망하는효과를달성할수 있는것을확인하고,본발명을완성하기에이르렀다.
과제해결수단
[18] 따라서,본발명은양극활물질입자들을포함하는양극합제용슬러리를
집전체상에도포및압연하여제조된이차전지용양극으로서,상기양극활물질 입자돌은올리빈결정구조의리튬철인산화물입자들과하기화학식 1의리튬 니켈-망간-코발트복합산화물입자들로이루어진군에서선택되는하나이상을 포함하고있고,상기리튬니켈-망간-코발트복합산화물입자돌^,리튬
니켈-망간-코발트복합산화물전체체적을기준으로 50%초과 90%미만의 함량에서, 1차입자들이웅집된형성된 2차입자들의형태로존재하며,상기 리튬철인산화물입자들은,리튬철인산화물전체체적을기준으로 50%초과 100%미만의함량에서, 1차입자들의형태로존재하는것을특징으로하는 이차전지용양극을제공한다.
Figure imgf000005_0001
[20] 상기식에서, -0.5≤z≤0.5, 0.1<b<0.8, 0.1<c<0.8, 0<d<0.2, 0<e<0.2, b+c+d<l임, M = Al, Mg, Cr, Ti, Si또는 Y이고, A = F, P또는 CI이다.
[21] 일반적으로 1차입자형태의수나노미터수준의작은입경을가지는올리빈 결정구조의리튬철인산화물입자들을양극활물질로사용하는경우공정 효율이저하되는문제점이있다.이러한문제를해결하기위하여, 1차입자들이 웅집하여이루어진 2차입자를사용하는경우, 2차입자내부중앙까지리튬 이온 diffusion거리가길어지고, 2차입자내부까지카본코팅을할수없으므로, 전도성등전지의제반특성이저하될수있는문제점이있다.
[22] 이에,본발명자들은 2차입자형태의올리빈결정구조의리튬철인산화물 입자를포함하여양극을제조하더라도압연과정에서 2차입자형태가 부분적으로붕괴되면서 1차입자형태로복귀할수있어,그에따라리튬이온 diffusion능력이향상되는것을확인하였다.
[23] 즉,본발명에따른올리빈결정구조의리튬철인산화물입자는양극합제 슬러리믹싱및집전체에대한코팅과정까지는 1차입자가웅집된 2차입자의 형태를가지므로공정효율성을향상시키면서도,압연과정에서 2차입자가 1차 입자형태로붕괴되므로,궁극적으로에너지밀도가극대화될수있고,전지의 용량특성및출력특성또한향상될수있다.
[24] 이러한올리빈결정구조의리튬철인산화물입자는단독으로사용될수
있으나,상세하게는,상기화학식 1의리튬니켈-망간-코발트복합산화물과 흔합하여사용할수있다.
[25] 이경우,상기리튬철인산화물입자와리튬니켈-망간-코발트복합산화물 입자들은양극활물질전체중량을기준으로 10: 90내지 90: 10일수있고,좀더 상세하게는 20: 80내지 80: 20,더욱상세하게는 30: 70내지 70: 30일수있다.
[26] 리톱철인산화물입자의함량이지나치게작을경우고온안전성이떨어질수 있어바람직하지않으며,경제성등다양한측면을고려하였을때상기정의된 범위하에서상기리튬철인산화물입자와리튬니켈-망간-코발트복합산화물 입자들이사용될수있다.
[27] 상세하게는,본발명에따른이차전지용양극에서,상기리튬니켈-망간-코발트 복합산화물입자들은,리튬니켈-망간-코발트복합산화물전체체적을 기준으로 80%이상 90%미만의함량에서, 1차입자들이웅집되어형성된 2차 입자들의형태로존재할수있고,상기리튬철인산화물입자들은,리튬철 인산화물전체체적을기준으로 70%이상 100%미만의함량에서, 1차입자들의 형태로존재할수있다.
[28] 양극의압연과정에서을리빈결정구조의리튬철인산화물 2차입자들이
우선적으로 1차입자로붕괴되므로,리튬니켈-망간-코발트복합산화물 입자들이 2차입자로부터 1차입자로변형되는정도가상대적으로낮아질수 있어전지의제반특성이향상될수있다.이것은올리빈결정구조의리튬철 인산화물입자형태가상대적으로전지의제반특성에더많은영향을미치기 때문이다.
[29] 즉,상기압연에의해양극활물질입자들이 2차입자로부터 1차입자로
변환되는체적기준의입자변형률은,상기리튬철인산화물입자가 70%이상일 수있고,좀더상세하게는 80%이상일수있으며,상기리튬니켈-망간-코발트 복합산화물의입자가 20%이하일수있고,상세하게는 10%이하일수있다.
[30] 이러한 2차입자들은예를돌어, 1차입자들이결합에의해웅집되어있을수 있고,상기 1차입자들은공유결합이나이온결합등의화학적결합이아닌 반데르발스인력등의물리적결합에의해웅집되어 2차입자를형성할수있다.
[31] 상기 1차입자의평균입경이지나치게크면소망하는이온전도도향상을
발휘할수없는한편,지나치게작은입경을갖는입자는제조가용이하지 않다는점을고려할때,상기 1차입자의평균입경 (D50)은 50 nm내지 550 nm의 범위인것이바람직하고,더욱바람직하게는 lOO nm내지 300 nm일수있다.
[32] 또한,상기 2차입자의평균입경이지나치게크면 2차입자간공극률이커져 오히려랩밀도가저하되며,반대로입경이지나치게작으면공정효율성이 발휘될수없으므로, 5마이크로미터내지 100마이크로미터의평균입경 (D50)을 갖는것이바람직하고,특히슬러리믹싱및전극표면의평활성을고려할때, 5 마이크로미터내지 40마이크로미터의평균입경을갖는것이바람직하며 , 지나치게평균입경이클경우슬러리믹싱시침강현상이서서히발생하게 되므로바람직하지않다.
[33] 상기 2차입자는비표면적 (BET)이 5 ~ 15 m2/g일수있다.
[34] 또한,상기 2차입자의형상은특별히제한되는것은아니지만,랩밀도를
고려할때구형인것이바람직하다.
[35] 상기리튬철인산화물입자는전자전도성을높이기위하여도전성물질로 코팅될수있고,상기도전성물질은탄소계물질,귀금속,금속및도전성 고분자로선택되는 1종이상일수있다.특히,탄소계물질로피복하는경우, 제조비용및중량을크게높이지않으면서도효과적으로도전성을향상시킬수 있다.
[36] 상기탄소계물질은양극활물질전체중량을기준으로 1내지 4중량%일수 있고,상세하게는 2내지 4증량 %일수있다. [37] 탄소계물질의양이지나치게많을경우,상대적으로리륨철인산화물입자의 양이감소하여전지제반특성이감소하며,지나치게적을경우,전자전도성 향상효과를발휘할수없으므로바람직하지않다.
[38] 상기도전성물질은 1나노미터이상 10나노미터의코팅두께를가질수있다.
[39] 도전성물질의코팅두께가지나치게두꺼을경우오히려내부저항이증가할 수있고,지나치게얇을경우,전자전도성향상효과를발휘할수없으므로 바람직하지않다.
[40] 본발명에서상기리튬철인산화물입자는하기화학식 2의조성을갖을수 있다.
[41] Li1+aFe1.xMx(P04.b.)Xb (2)
[42] 상기식에서, M은 Al, Mg및 Ti중에서선택된 1종이상이고, X는 F, S및 N 중에서선택된 1종이상이며, -0.5≤a≤+0.5, 0≤x≤0.5, 0≤b'≤0.1이다.
[43] 상기 , a, b'및 X의값이상기범위를벗어나는경우에는,도전성이저하되거나, 상기리튬철인산화물입자가올리빈구조를유지할수없게되고,레이트 특성이악화되거나용량이저하될우려가있어바람직하지않다.
[44] 더욱상세하게는상기리튬철인산화물입자는 LiFeP04, Li(Fe, Mn)P04) Li(Fe, Co)P04, Li(Fe, Ni)P04등을들수있고,좀더상세하게는 LiFeP04일수있다.
[45] 본발명에서상기화학식 1의리튬니켈-망간-코발트복합산화물은니켈,망간 및코발트원소를동시에포함하고있는리튬산화물로서,상세하게는하기 화학식 la의층상구조의리튬니켈-망간-코발트산화물일수있다.
Figure imgf000007_0001
[47] 상기식에서, b, c,및 z은상기에서정의한바와같으나,상세하게는상기
니켈의함량 (b)는 0.3≤b≤0.65일수있다.
[48] 상기화학식 la의리튬니켈코발트망간복합산화물은망간과코발트를
포함하는조건하에서니켈을적어도 0.3몰이상포함하고있으며,하나의 예로서 LiNil/3Col/3Mnl/302와 1 .41^0.4 )0.202를들수있지만,이들만으로 한정되는것은아니다.
[49] 상기양극합제에는전체증량을기준으로 3내지 6증량 %의바인더를포함할 수있다.
[50] 이러한본발명에따른이차전지는양극과,음극집전체상에음극활물질, 도전재및바인더의흔합물을도포한후건조및프레싱하여제조되는음극을 포함하며,이경우,필요에따라서는상기흔합물에층진제를더첨가기도한다.
[51] 상기양극집전체는일반적으로 3 - 500마이크로미터의두께로만든다.
이러한양극집전체는,당해전지에화학적변화를유발하지않으면서높은 도전성을가지는것이라면특별히제한되는것은아니며,예를들어,스테인레스 스틸,알루미늄,니켈,티탄,소성탄소,또는알루미늄이나스테리인레스스틸의 표면에카본,니켈,티탄,은등으로표면처리한것등이사용될수있다.
집전체는그것의표면에미세한요철을형성하여양극활물질의접착력을높일 수도있으며,필름,시트,호일,네트,다공질체,발포체,부직포체등다양한 형태가가능하다.
[52] 상기양극활물질은앞서정의한물질을사용할수있다.
[53] 상기도전재는통상적으로양극활물질을포함한혼합물전체증량을기준으로 1내지 50중량 %로첨가된다.이러한도전재는당해전지에화학적변화를 유발하지않으면서도전성을가진것이라면특별히제한되는것은아니며,예를 들어,천연혹연이나인조흑연등의흑연;카본블랙,아세틸렌블랙,케첸불랙, 채널블랙,퍼네이스블랙,램프블랙,서머블랙등의카본블랙;탄소섬유나 금속섬유등의도전성섬유;불화카본,알루미늄,니켈분말등의금속분말; 산화아연,티탄산칼륨둥의도전성위스키;산화티탄등의도전성금속산화물; 폴리페닐렌유도체등의도전성소재둥이사용될수있다.
[54] 상기바인더는활물질과도전재등의결합과집전체에대한결합에조력하는 성분이다.이러한바인더의예로는,폴리불화비닐리덴,폴리비닐알코올, 카르복시메틸샐를로우즈 (CMC),전분,히드록시프로필셀를로우즈,재생 셀를로우즈,폴리비닐피를리돈,테트라플루오로에틸렌,폴리에틸렌, 폴리프로필렌,에틸렌-프로필렌 -디엔테르폴리머 (EPDM),술폰화 EPDM, 스티렌브티렌고무,불소고무,다양한공중합제둥을들수있다.
[55] 상기층진제는양극의팽창을억제하는성분으로서선택적으로사용되며,당해 전지에화학적변화를유발하지않으면서섬유상재료라면특별히제한되는 것은아니며,예를들어,폴리에틸렌,폴리프로필렌등의을리핀계중합체;
유리섬유,탄소섬유등의섬유상물질이사용된다.
[56] 상기음극집전체는일반적으로 3 - 500마이크로미터의두께로만들어진다. 이러한음극집전체는,당해전지에화학적변화를유발하지않으면서도전성을 가진것이라면특별히제한되는것은아니며,예를들어,구리,스테인레스스틸, 알루미늄,니켈,티탄,소성탄소,구리나스테인레스스틸의표면에카본,니켈, 티탄,은등으로표면처리한것,알루미늄-카드뮴합금등이사용될수있다. 또한,양극집전체와마찬가지로,표면에미세한요철을형성하여음극활물질의 결합력을강화시킬수도있으며,필름,시트,호일,네트,다공질체,발포체, 부직포체등다양한형태로사용될수있다.
[57] 상기음극활물질은,예를들어,난흑연화탄소,흑연계탄소등의탄소; LixFe20 3(0≤x≤l), LixWO2(0<x<l), SnxMe,.xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족원소,할로겐; 0<x<l; l<y<3; 1<ζ<8)등의금속복합 산화물;리튬금속;리튬합금;규소계합금;주석계합금; SnO, Sn02, PbO, Pb02, Pb203, Pb304, Sb203, Sb204, Sb205, GeO, Ge02, Bi203) Bi204, and Bi205등의금속 산화물;폴리아세틸렌등의도전성고분자; Li-Co-Ni계재료를사용할수있다.
[58] 이러한이차전지는양극과음극사이에분리막이개재된구조의전극조립체에 리튬염함유전해액이함침되어있는구조로이루어질수있다.
[59] 상기분리막은양극과음극사이에개재되며,높은이온투과도와기계적 강도를가지는절연성의얇은박막이사용된다.분리막의기공직경은
일반적으로 0.01 ~ 10마이크로미터고,두께는일반적으로 5 ~ 300
마이크로미터다.이러한분리막으로는,예를돌어,내화학성및소수성의 폴리프로필렌둥의올레핀계폴리머;유리섬유또는폴리에틸렌등으로 만들어진시트나부직포등이사용된다.전해질로서폴리머등의고체전해질이 사용되는경우에는고체전해질이분리막을겸할수도있다.
[60] 상기리튬염함유전해액은전해액과리튬염으로이루어져있으며,상기
전해액으로는비수계유기용매,유기고체전해질,무기고체전해질등이 사용되지만이들만으로한정되는것은아니다.
[61] 상기비수계유기용매로는,예를들어, N-메틸 -2-피롤리디논,프로필렌
카르보네이트,에틸렌카르보네이트,부틸렌카르보네이트,디메틸
카르보네이트,디에틸카르보네이트,감마-부틸로락톤, 1,2-디메톡시에탄, 테트라히드록시프랑 (franc), 2-메틸테트라하이드로푸란,디메틸술폭시드, 1,3-디옥소런,포름아미드,디메틸포름아미드,디옥소런,아세토니트릴, 니트로메탄,포름산메틸,초산메틸,인산트리에스테르,트리메톡시메탄, 디옥소런유도체,설포란,메틸설포란, 1,3-디메틸 -2-이미다졸리디논,프로필렌 카르보네이트유도체,테트라하이드로푸란유도체,에테르,피로피온산메틸, 프로피은산에틸등의비양자성유기용매가사용될수있다.
[62] 상기유기고체전해질로는,예를들어,폴리에틸렌유도체,폴리에틸렌
옥사이드유도체,폴리프로필렌옥사이드유도체,인산에스테르폴리머,폴리 에지테이션리신 (agitation lysine),폴리에스테르술파이드,폴리비닐알코올, 폴리불화비닐리덴,이온성해리기를포함하는증합제등이사용될수있다.
[63] 상기무기고체전해질로는,예를들어 , Li3N, Lil, Li5NI2) Li3N-LiI-LiOH, LiSi04, LiSi04-LiI-LiOH, Li2SiS3, Li4Si04, Li4Si04.LiI-LiOH, Li3P04-Li2S-SiS2등의 Li의 질화물,할로겐화물,황산염등이사용될수있다.
[64] 상기리튬염은상기비수계전해질에용해되기좋은물질로서,예를들어, LiCl, LiBr, Lil, LiC104, LiBF4, LiB10Clj0, LiPF6) LiCF3S03, LiCF3C02, LiAsF6, LiSbF6, LiAlCl4, CH3S03Li, (CF3S02)2NLi,클로로보란리륨,저급지방족카르본산리튬, 4페닐붕산리튬,이미드등이사용될수있다
[65] 또한,전해액에는충방전특성,난연성등와개선을목적으로,예를들어,
피리딘,트리에틸포스파이트,트리에탄올아민,환상에테르,에틸렌디아민, n-글라임 (glyme),핵사인산트리아미드,니트로벤젠유도체,유황,퀴논이민 염료, N-치환옥사졸리디논, Ν,Ν-치환이미다졸리딘,에틸렌글리콜디알킬 에테르,암모늄염,피를, 2-메특시에탄올,삼염화알루미늄등이첨가될수도 있다.경우에따라서는,불연성을부여하기위하여 ,사염화탄소,삼불화에틸렌 등의할로겐함유용매를더포함시킬수도있고,고온보존특성을향상시키기 위하여이산화탄산가스를더포함시킬수도있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone)등을더포함시킬수있다. [66] 하나의바람직한예에서, LiPF6, LiC104, L1BF4, LiN(S02CF3)2등의리튬염을, 고유전성용매인 EC또는 PC의환형카보네이트와저점도용매인 DEC, DMC 또는 EMC의선형카보네이트의혼합용매에첨가하여리튬염함유비수계 전해질을제조할수있다.
[67] 상기이차전지는리튬이차전지일수있다.
[68] 본발명은또한,상기이차전지를단위전지로포함하는전지모들을제공하고, 상기전지모들을포함하는전지팩을제공한다.
[69] 상기전지팩은고온안정성및긴사이클특성과높은레이트특성등이
요구되는중대형디바이스의전원으로사용될수있다.
[70] 상기증대형디바이스의바람직한예로는전지적모터에의해동력을받아 움직이는파워를 (power tool);전기자동차 (Electric Vehicle, EV),하이브리드 전기자동차 (Hybrid Electric Vehicle, HEV),플러그-인하이브리드
전기자동차 (Plug-in Hybrid Electric Vehicle, PHEV)등을포함하는전기차;전기 자전거 (E-bike),전기스쿠터 (E-scooter)를포함하는전기이륜차;전기골프 카트 (electric golf cart);전력저장용시스템등을들수있으나,이에한정되는 것은아니다.
도면의간단한설명
[71] 도 1은본발명에따른실시예 1에따른양극합제용슬러리를집전체상에 도포한후,압연하기전의 SEM사진이다;
[72] 도 2는본발명에따른실시예 1에따른양극합제용슬러리를집전체상에 도포한후,압연한후의 SEM사진이다;및
[73] 도 3는본발명에따른비교예 1에따른양극합제용슬러리를집전체상에 도포한후,압연한후의 SEM사진이다;
발명의실시를위한형태
[74] <실시예 1>
[75] Clariant사의 LiFeP04 (제품명: EXM2274)를이용하여평균입경이 10
마이크로미터인 2차입자형태가 LiFeP04전체체적을기준으로 95%가되도록 준비하고,평균입경이 30마이크로미터인 LiNi1/3Mn1/3Co1/302의 2차입자형태는 LiNi1/3Mn1/3Co1/302전체체적을기준으로 95%가되도록준바한후,이러한 Clariant사의 LiFeP04 (제품명 : EXM2274): LiNi1/3Mnl/3Co1/302를양극활물질 전체중량을기준으로 3: 7로혼합하였다.
[76] 양극활물질 92중량 %, Super-P (도전제) 3증량 %및 PVdF (바인더) 5증량%를 NMP에첨가하여양극합제용슬러리를제조한후알루미늄호일의일면에코팅 건조및압연하여양극을제조하였다.
[77]
[78] <비교예 1>
[79] 양극활물질로서 BASF사의 LiFeP04(제품명: BASF400)를이용하여의 2차 입자형태가 LiFeP04전체체적을기준으로 95%가되도록준비를사용한것을 제외하고는실시예 1과동일한방법을사용하여양극을제조하였다.
[80]
[81] <실험예 1>
[82] 상기실시예 1,비교예 1에서압연후, LiFeP04와 LiNi1/3Mn1/3Co1/302
이차입자체적비를측정하였다.
[83] 실시예 1에서 LiNi1/3Mn1/3Co1/302의 2차입자형태는 LiNi1/3Mn1/3Co1/302전체
체적을기준으로 85%이고, LiFeP04의 1차입자형태는 LiFeP04의전체체적을 기준으로 90%이었다.
[84] 비교예 1에서 LiNiJ/3Mn1/3Co1/302의 2차입자형태는 LiNi1/3Mni/3Co1/302전체
체적을기준으로 90%이고, IiFeP04의 1차입자형태는 LiFeP04의전체체적을 기준으로 45%이었다.
[85]
[86] <실험예 2>
[87] 실시예 1에서압연하기전의양극의단면 SEM사진은하기도 1에나타내었고, 압연한후양극의단면 SEM사진은하기도 2에나타내었으며,비교예 1의 압연한후양극의단면 SEM사진은도 3에나타내었다.
[88] 하기도 2를참고하면,본원발명에따른이차전지용양극은압½시올리빈
결정구조의리튬철인산화물이 1차입자형태로붕괴되고,리튬
니켈-망간-코발트복합산화물입자들은대부분형태를유지함을알수있다. 산업상이용가능성
[89] 상기에서설명하는바와같이,본발명에따른이차전지용양극은압연
과정에서을리빈결정구조의리튬철인산화물 2차입자들이우선적으로 1차 입자로붕괴될수있으므로,리튬철인산화물입자들은,리튬철인산화물전체 체적을기준으로 50%초과의함량에서, 1차입자들의형태로존재하고,리튬 니켈-망간-코발트복합산화물입자들은,리튬니켈-망간-코발트복합산화물 전체체적을기준으로 50%초과의함량에서, 1차입자들이웅집된형성된 2차 입자들의형태로존재할수있다.
[90] 따라서,올리빈결정구조의리튬철인산화물입자는양극합제슬러리믹싱및 집전체에대한코팅과정까지는 1차입자가웅집된 2차입자의형태를가지므로 공정효율성을향상시키면서도,압연과정에서 2차입자가 1차입자형태로 붕괴되므로,궁극적으로에너지밀도가극대화될수있고,전지의용량특성및 출력특성또한향상될수있다.

Claims

청구범위
[청구항 1] 양극활물질입자들을포함하는양극합제용슬러리를집전체 상에도포및압연하여제조된이차전지용양극으로서, 상기양극활물질입자들은올리빈결정구조의리튬철인산화물 입자들과하기화학식 1의리륨니켈-망간-코발트복합산화물 입자들로이루어진군에서선택되는하나이상을포함하고있고, 상기리튬니켈-망간-코발트복합산화물입자들은,리튬 니켈-망간-코발트복합산화물전체체적을기준으로 50%초과
90%미만의함량에서, 1차입자들이웅집된형성된 2차입자들의 형태로존재하며,
상기리튬철인산화물입자들은,리튬철인산화물전체체적을 기준으로 50%초과 100%미만의함량에서, 1차입자돌의형태로 존재하는것을특징으로하는이차전지용양극:
Li1+zNibMncCo1-(b+c+d)MdO(2 )Ae ( 1 )
상기식에서, -0.5<z<0.5, 0.1<b<0.8, 0.1<c<0.8, 0<d<0.2, 0<e<0.2, b+c+d<l임 , M = Al, Mg, Cr, Ti, Si또는 Y이고, A = F, P또는 CI 이다.
[청구항 2] 제 1항에있어서,상기리튬철인산화물입자와리튬
니켈-망간-코발트복합산화물입자들은양극활물질전체증량을 기준으로 10: 90내지 90: 10인것을특징으로하는이차전지용 양극.
[청구항 3] 제 1항에있어서,상기리튬니켈-망간-코발트복합산화물
입자들은,리튬니켈-망간-코발트복합산화물전체체적을 기준으로 80%이상 90%미만의함량에서, 1차입자들이웅집된 형성된 2차입자들의형태로존재하는것을특징으로하는 이차전지용양극.
[청구항 4] 제 1항에있어서,상기리튬철인산화물입자들은,리튬철
인산화물전체체적을기준으로 70%이상 100%미만의함량에서,
1차입자들의형태로존재하는것을특징으로하는이차전지용 양극.
[청구항 5] 제 1항에있어서,상기압연에의해양극활물질입자들이 2차 입자로부터 1차입자로변환되는체적기준의입자변형률은,상기 리튬철인산화물입자가 70%이상이고,상기리튬
니켈-망간-코발트복합산화물의입자가 20«¾이하인것을 특징으로하는이차전지용양극.
[청구항 6] 제 5항에있어서,상기리튬철인산화물입자의입자변형률은
80%이상인것을특징으로하는이차전지용양극.
[청구항 7] 제 5항에있어서,상기리틈니켈-망간-코발트복합산화물의입자 변형률은 10%이하인것을특징으로하는이차전지용양극.
[청구항 8] 제 5항에있어서,상기 2차입자는 1차입자들이물리적결합에 의해웅집되어있는것을특징으로하는이차전지용양극.
[청구항 9] 제 5항에있어서,상기 1차입자의평균입경은 50나노미터내지
550나노미터고,상기 2차입자의평균입경은 5마이크로미터 내지 100마이크로미터인것을특징으로하는이차전지용양극.
[청구항 10] 제 5항에있어서,상기 2차입자의형상이구형인것을특징으로 하는이차전지용양극.
[청구항 11] 제 1항에있어서,상기리튬철인산화물입자는도전성물질로 코팅되어있는것을특징으로하는이차전지용양극.
[청구항 12] 제 11항에있어서,상기도전성물질은코팅두께는 1나노미터 이상 10나노미터이하인것을특징으로하는이차전지용양극.
[청구항 13] 제 11항에있어서,상기도전성물질의함량은리튬철인산화물 전체중량대비 1내지 4중량 %인것을특징으로하는이차전지용 양극.
[청구항 14] 제 1항에있어서,상기리튬철인산화물입자는하기화학식 2의 조성을갖는것을특징으로하는이차전지용양극:
Li1+aFe1.xMx(P04-b.)Xb (2)
상기식에서,
M은 Al, Mg및 Ti중에서선택된 1종이상이고,
X는 F, S및 N중에서선택된 1종이상이며,
-0.5<a<+0.5, 0<x<0.5, 0<b*<0.1이다.
[청구항 15] 제 1항에있어서상기화학식 1의리튬니켈-망간-코발트복합 산화물은하기화학식 la의층상구조의리튬니켈-망간-코발트 산화물로이루어지는것을특징으로하는이차전지용양극:
Figure imgf000013_0001
상기식에서, b, c,및 z은제 1항에서정의한바와같다.
[청구항 16] 제 15항에있어서,상기니켈의함량 (b)는 0.3≤b≤().65인것을
특징으로하는이차전지용양극.
[청구항 17] 제 1항에따른이차전지용양극을포함하는것을특징으로하는 이차전지.
[청구항 18] 제 17항에따른이차전지를하나이상포함하는것을특징으로 하는전지팩.
[청구항 19] 제 18항에따른전지팩을포함하는것을특징으로하는디바이스. [청구항 20] 제 19항에있어서,상기디바이스는전기자동차,하이브리드
전기자동차,플러그-인하이브리드전기자동차,또는전력저장용 시스템인것을특징으로하는디바이스.
PCT/KR2014/008182 2013-09-02 2014-09-02 이차전지용 양극 및이를 포함하는 이차전지 WO2015030561A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480046155.7A CN105474440B (zh) 2013-09-02 2014-09-02 二次电池用正极和包含其的二次电池
JP2016534543A JP6352421B2 (ja) 2013-09-02 2014-09-02 二次電池用正極及びそれを含む二次電池
US14/913,047 US10062902B2 (en) 2013-09-02 2014-09-02 Positive electrode for secondary batteries and secondary battery including the same
EP14839735.9A EP3018740B1 (en) 2013-09-02 2014-09-02 Anode for secondary battery and secondary battery including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130104657 2013-09-02
KR10-2013-0104657 2013-09-02

Publications (1)

Publication Number Publication Date
WO2015030561A1 true WO2015030561A1 (ko) 2015-03-05

Family

ID=52587005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008182 WO2015030561A1 (ko) 2013-09-02 2014-09-02 이차전지용 양극 및이를 포함하는 이차전지

Country Status (6)

Country Link
US (1) US10062902B2 (ko)
EP (1) EP3018740B1 (ko)
JP (1) JP6352421B2 (ko)
KR (1) KR101658510B1 (ko)
CN (1) CN105474440B (ko)
WO (1) WO2015030561A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037821A (ja) * 2015-08-14 2017-02-16 アルプス電気株式会社 二次電池および二次電池の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018148833A1 (en) * 2017-02-15 2018-08-23 HYDRO-QUéBEC Electrode materials and processes for their preparation
KR102263467B1 (ko) * 2017-07-19 2021-06-11 주식회사 엘지에너지솔루션 집전체가 없는 전극 및 이를 포함하는 이차전지
KR20210064360A (ko) * 2018-09-28 2021-06-02 닝보 질량 뉴 에너지 컴퍼니 리미티드 양극 첨가제 및 그 제조방법, 양극 및 그 제조방법과 리튬이온전지
CN114614106B (zh) * 2020-12-17 2024-03-12 宁德新能源科技有限公司 电化学装置和电子装置
CN112885996B (zh) * 2021-04-13 2022-07-12 江苏力泰锂能科技有限公司 正极活性材料及其制备方法、正极和锂离子电池
CN113451560B (zh) * 2021-07-01 2022-08-26 清华大学深圳国际研究生院 正极活性材料及其制备方法、正极、三元锂离子电池
CN114311958A (zh) * 2021-12-29 2022-04-12 无锡宏瑞机器制造有限公司 一种锂电池电极生产用高速双面凹版印刷涂布机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070105266A (ko) * 2006-04-25 2007-10-30 어콰이어 에너지 컴퍼니 리미티드 2차 전지 제조용 양극 재료
KR20100044713A (ko) * 2008-10-22 2010-04-30 주식회사 엘지화학 올리빈 구조의 리튬 철인산화물 및 이의 제조방법
KR20100052116A (ko) * 2008-11-10 2010-05-19 대정이엠(주) 안전성이 우수한 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
KR20120026822A (ko) * 2010-09-10 2012-03-20 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20120104484A (ko) * 2011-03-09 2012-09-21 삼성에스디아이 주식회사 양극 활물질, 및 이를 채용한 전극과 리튬 전지

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4859373B2 (ja) * 2004-11-30 2012-01-25 パナソニック株式会社 非水電解液二次電池
CN101647139A (zh) * 2007-03-29 2010-02-10 松下电器产业株式会社 非水电解质二次电池用正极以及非水电解质二次电池
BRPI0919658B1 (pt) 2008-10-22 2020-10-06 Lg Chem, Ltd Material ativo de cátodo, mistura de cátodo, cátodo para baterias secundárias e bateria secundária de lítio
CN102265433B (zh) 2009-01-06 2015-05-20 株式会社Lg化学 锂二次电池用正极活性材料
JP2011105594A (ja) 2010-12-13 2011-06-02 Mitsubishi Chemicals Corp ニッケルマンガンコバルト系複合酸化物、層状リチウムニッケルマンガンコバルト系複合酸化物及びリチウム二次電池正極材料とそれを用いたリチウム二次電池用正極、並びにリチウム二次電池
JP5851707B2 (ja) 2011-04-01 2016-02-03 三井造船株式会社 リン酸鉄リチウム正極材料およびその製造方法
JP5824723B2 (ja) 2011-12-28 2015-11-25 東洋インキScホールディングス株式会社 リチウム二次電池用正極活物質材料の製造方法、及びそれを用いたリチウム二次電池
JP5786255B2 (ja) 2012-04-24 2015-09-30 エルジー・ケム・リミテッド 出力向上のためのリチウム二次電池の複合電極用活物質およびこれを含むリチウム二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070105266A (ko) * 2006-04-25 2007-10-30 어콰이어 에너지 컴퍼니 리미티드 2차 전지 제조용 양극 재료
KR20100044713A (ko) * 2008-10-22 2010-04-30 주식회사 엘지화학 올리빈 구조의 리튬 철인산화물 및 이의 제조방법
KR20100052116A (ko) * 2008-11-10 2010-05-19 대정이엠(주) 안전성이 우수한 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
KR20120026822A (ko) * 2010-09-10 2012-03-20 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20120104484A (ko) * 2011-03-09 2012-09-21 삼성에스디아이 주식회사 양극 활물질, 및 이를 채용한 전극과 리튬 전지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037821A (ja) * 2015-08-14 2017-02-16 アルプス電気株式会社 二次電池および二次電池の製造方法

Also Published As

Publication number Publication date
KR101658510B1 (ko) 2016-09-21
JP2016530684A (ja) 2016-09-29
US20160204423A1 (en) 2016-07-14
EP3018740A1 (en) 2016-05-11
JP6352421B2 (ja) 2018-07-04
EP3018740B1 (en) 2017-11-01
KR20150027003A (ko) 2015-03-11
CN105474440A (zh) 2016-04-06
US10062902B2 (en) 2018-08-28
EP3018740A4 (en) 2016-12-28
CN105474440B (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
KR101154876B1 (ko) 리튬 이차전지용 양극 활물질
KR101169947B1 (ko) 리튬 이차전지용 양극 활물질
KR101138637B1 (ko) 리튬 이차전지용 양극 활물질
KR101123057B1 (ko) 리튬 이차전지용 양극 활물질
KR101666402B1 (ko) 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지
WO2015030561A1 (ko) 이차전지용 양극 및이를 포함하는 이차전지
KR101623724B1 (ko) 구조적 안정성이 향상된 이차전지용 음극 합제 및 이를 포함하는 이차전지
JP6749692B2 (ja) リチウム二次電池、電池モジュール、電池パック、及び電池パックを含むデバイス
KR20150015086A (ko) 젖음성이 향상된 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
US10026952B2 (en) Method of manufacturing electrode for lithium secondary battery and electrode manufactured using the same
KR102590425B1 (ko) 입경이 상이한 흑연 및 실리콘계 소재를 포함하는 음극 및 이를 포함하는 리튬 이차전지
KR20200047287A (ko) 입경이 상이한 흑연 및 실리콘계 소재를 포함하는 음극 및 이를 포함하는 리튬 이차전지
WO2018097451A1 (ko) 리튬 코발트 산화물을 포함하는 코어 및 리튬 코발트 인산화물을 포함하는 쉘을 포함하는 양극 활물질 입자 및 이의 제조 방법
KR101772420B1 (ko) 비표면적이 큰 음극 활물질층을 포함하는 음극 및 이의 제조방법
KR101852762B1 (ko) 다공성 실리콘을 포함하는 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
KR20210013963A (ko) 집전체의 양면에 서로 다른 조성의 활물질을 포함하는 음극 합제들이 형성되어 있는 음극을 포함하는 젤리-롤형 전극조립체, 이를 포함하는 이차전지, 및 이차전지를 포함하는 디바이스
KR101580486B1 (ko) 젖음성이 향상된 이차전지용 음극 및 이를 포함하는 리튬 이차전지
KR102328430B1 (ko) 셀룰로오스 기공체를 포함한 음극 및 이를 포함하는 이차전지
KR101471417B1 (ko) 이차전지용 양극 활물질의 제조방법 및 그로부터 제조되는 양극 활물질
KR20200100962A (ko) 황-몬모릴로나이트 복합체를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
KR20170092122A (ko) 그래핀 및 cnt를 포함하는 프라이머 층이 코팅된 음극 및 이의 제조방법
KR20150014329A (ko) 젖음성이 향상된 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
KR20150014622A (ko) 전압특성이 향상된 이차전지용 음극 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046155.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839735

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014839735

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014839735

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016534543

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14913047

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE