RU2408112C1 - Активный материал катода для литиевых батарей, способ изготовления материала и литиевые батареи, включающие этот материал - Google Patents

Активный материал катода для литиевых батарей, способ изготовления материала и литиевые батареи, включающие этот материал Download PDF

Info

Publication number
RU2408112C1
RU2408112C1 RU2009130483/09A RU2009130483A RU2408112C1 RU 2408112 C1 RU2408112 C1 RU 2408112C1 RU 2009130483/09 A RU2009130483/09 A RU 2009130483/09A RU 2009130483 A RU2009130483 A RU 2009130483A RU 2408112 C1 RU2408112 C1 RU 2408112C1
Authority
RU
Russia
Prior art keywords
active material
cathode active
lithium
metal oxide
secondary batteries
Prior art date
Application number
RU2009130483/09A
Other languages
English (en)
Inventor
Сеонг-Баэ КИМ (KR)
Сеонг-Баэ КИМ
Ву-Сеонг КИМ (KR)
Ву-Сеонг КИМ
Джи-Джун ХОНГ (KR)
Джи-Джун ХОНГ
Сунг-Тае КО (KR)
Сунг-Тае КО
Йун-Джеонг ХЕО (KR)
Йун-Джеонг ХЕО
Original Assignee
ДАЭДЖУНГ ЭМ КО., Лтд.
КОКАМ КО., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ДАЭДЖУНГ ЭМ КО., Лтд., КОКАМ КО., Лтд. filed Critical ДАЭДЖУНГ ЭМ КО., Лтд.
Application granted granted Critical
Publication of RU2408112C1 publication Critical patent/RU2408112C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62821Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3268Manganates, manganites, rhenates or rhenites, e.g. lithium manganite, barium manganate, rhenium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Изобретение относится к катодному активному материалу для литиевых вторичных батарей с высокой безопасностью, к способу изготовления этого материала и к литиевой вторичной батарее, содержащей этот материал. Согласно изобретению, катодный активный материал для литиевых вторичных батарей включает ядро из вторичных частиц металлоксида лития, и оболочку, образованную путем покрытия вторичных частиц ядра титанатом бария и оксидом металла. Техническим результатом является улучшенная безопасность, термическая стабильность и улучшенные характеристики перезаряда. 4 н. и 11 з.п. ф-лы, 9 ил., 3 табл.

Description

Область техники
Настоящее изобретение относится к катодному активному материалу для литиевых вторичных батарей с высокой безопасностью, к способу изготовления этого материала и к литиевой вторичной батарее, содержащей этот материал. В особенности, настоящее изобретение связано с катодным активным материалом, способным улучшить безопасность литиевых вторичных батарей или литиевых ионполимерных батарей, в частности термическую стабильность и характеристики перезаряда, а также со способом изготовления этого материала.
Известный уровень техники
С быстрым развитием электроники, систем связи и компьютерной индустрии особенно заметно совершенствование средств видеозаписи, мобильных телефонов, ноутбуков и т.д. Поэтому требования к литиевым вторичным батареям как источникам энергии для питания этих портативных электронных коммуникационных устройств возрастают день ото дня. В частности, исследования и эксперименты в отношении литиевых вторичных батарей как источников энергии, дружественных по отношению к окружающей среде, которые можно применять в электрических транспортных средствах, источниках бесперебойного энергоснабжения, электроинструменте и спутниках, активно прогрессируют не только в Корее, но и в Японии, Европе и США.
В качестве катодного активного материала литиевых вторичных батарей часто использовался оксид лития-кобальта (LiCoO2), однако сегодня как альтернативные слоистые катодные активные материалы используются также оксиды лития-никеля (Li(Ni-Co-Al)O2) и оксиды лития и композиции металлов (Li(Ni-Co-Mn)O2. Кроме того, все чаще употребляются оксиды лития-марганца (LiMn2O4) шпинельного типа и фосфаты лития-железа (LiFePO4) оливинового типа, обладающие низкой стоимостью и высокой стабильностью.
Однако литиевые вторичные батареи, в которых используются оксиды лития-кобальта, оксиды лития-никеля или оксиды лития и композиции металлов, недостаточно безопасны, и в особенности это относится к их термической стабильности и характеристикам перезаряда, хотя эти батареи имеют хорошие основные технические характеристики. Для улучшения этих материалов вводились различные средства безопасности, такие как отключающие функции, добавки к электролитам и устройства безопасности, подобные РТС, однако эти средства безопасности предназначены для таких условий, когда катодный активный материал не заполняется до высокого уровня. Поэтому, если катодный активный материал заполнить до высокого уровня, так чтобы удовлетворялись требования по высокой емкости батарей, различные средства безопасности не работают надлежащим образом, а кроме того, может ухудшиться безопасность батарей.
Ранее для сотовых телефонов была применена также батарея на основе лития-марганца шпинельного типа. Однако на современном рынке сотовых телефонов, требующем, в первую очередь, отличной функциональности, такие достоинства, как низкая стоимость и высокая безопасность, не обеспечивают активного использования этих батарей из-за постепенного уменьшения плотности энергии в этих батареях.
Таким же образом не ожидается хороших технических характеристик от батарей на основе фосфата лития-железа оливинового типа, имеющего очень низкую электронную проводимость, хотя для них характерны такие достоинства, как низкая стоимость и высокая безопасность. Кроме того, средний оперативный потенциал фосфата лития-железа оливинового типа низок, что не отвечает требованиям высокой емкости.
Таким образом, для решения вышеуказанной проблемы проводились различные исследования, однако эффективного решения до сих пор не предложено.
Например, в японской выложенной патентной заявке №2001-143705 описывается катодный активный материал, в котором смешаны оксид лития-кобальта и оксид лития-марганца. Однако этот материал получен простым смешиванием с высокобезопасным оксидом лития-марганца, что не привело к достаточному улучшению характеристик.
Японская выложенная патентная заявка №2002-143708 также предлагает катодный активный материал, в котором композиционные соединения лития и никеля образуют два слоя различного состава. Однако применение катодного активного материала, имеющего два слоя композиционных соединений различного состава, не выявило принципиального достаточного уменьшения опасности, вызываемой перезарядом.
В японской выложенной патентной заявке №2007-012441 применен катод, имеющий два или более слоя катодного активного материала с целью улучшения характеристик перезаряда, где фосфат лития-железа или оксид лития-марганца шпинельного типа добавлены к слою, контактирующему с катодным коллектором тока. И хотя предполагается улучшение характеристик перезаряда, такие образующиеся оксидные слои имеют толщину не больше среднего диаметра частиц, то есть порядка нескольких микрон, и оксидный слой не содержит электропроводных материалов или электропроводных добавок, и поэтому его разрядные характеристики при больших величинах тока недостаточны.
Японская выложенная патентная заявка №2006-318815 описывает способ покрытия поверхности вторичных частиц солью лития или оксидом лития с целью повышения долговечности оксида лития-никеля. Однако покрытие всей поверхности отдельных вторичных частиц катодного активного материала является трудной задачей, поэтому достигнутое улучшение незначительно. Кроме того, поскольку в этом случае должны быть добавлены сухой и мокрый процессы покрытия, существенно снижается производительность.
Японская выложенная патентная заявка №2006-19229, предлагает покрытие поверхности вторичных частиц оксидом лития-кобальта-циркония с целью увеличения уровня безопасности материала на основе оксида лития-никеля. Но поскольку для того, чтобы покрыть поверхность оксида лития-никеля вторичных частиц оксидом лития-кобальта-циркония, должен быть применен также сухой процесс покрытия, производительность процесса падает, хотя эффект увеличения безопасности достигается.
Таким образом, насущно необходимо разработать катодный активный материал, который обладал бы высокой степенью безопасности при сохранении высоких технических характеристик, а способ приготовления катодного активного материала был высокопроизводительным.
РАСКРЫТИЕ СОДЕРЖАНИЯ ИЗОБРЕТЕНИЯ
ТЕХНИЧЕСКАЯ ПРОБЛЕМА
Настоящее изобретение предназначено для решения проблем, имеющихся в прототипах, и поэтому целью настоящего изобретения является разработка катодного активного материала со значительно улучшенной безопасностью, в особенности термической стабильностью и характеристиками перезаряда, без ухудшения основных технических характеристик самого катодного активного материала, и разработка способа приготовления такого катодного активного материала, обладающего отличной воспроизводимостью и производительностью.
ТЕХНИЧЕСКОЕ РЕШЕНИЕ
Чтобы достичь вышеуказанной цели, настоящее изобретение предлагает катодный активный материал для литиевых вторичных батарей, который содержит ядро из вторичных частиц металлоксида лития, полученных путем агломерации первичных частиц металлоксида лития, и оболочку, образованную путем покрытия вторичных частиц ядра титанатом бария и оксидом металла.
Что касается известного уровня техники, ранее делались попытки покрытия поверхности металлоксида лития в форме пленки с целью увеличения надежности его высокотемпературных характеристик, но все попытки в прототипах были направлены на модификацию поверхности с использованием электрически неактивного материала, так что изобретатели обнаруживали, что модификация поверхности может приводить к отрицательным эффектам, таким как снижение единичной емкости самого катодного активного материала или ухудшение высокоскоростных характеристик, когда катодный активный материал применяется для изготовления батареи.
Авторы настоящего изобретения обнаружили, что можно улучшить термическую стабильность катодного активного материала для литиевых вторичных батарей при сохранении отличных электрических свойств путем покрытия вторичных частиц металлоксида лития титанатом бария и оксидом металла. Титанат бария изменяет свою кристаллическую структуру при 125°С со значительным увеличением электрического сопротивления, как описано выше, что существенно увеличивает термическую стабильность катодного активного материала.
Кроме того, согласно настоящему изобретению оболочка из катодного активного материала может в дальнейшем выборочно включать фосфат лития-железа оливинового типа и/или оксида металла. Если происходит перезаряд (т.е. чрезмерная зарядка), фосфат лития-железа оливинового типа может ограничивать высвобождение лития из металлоксида лития ядра, улучшая безопасность катодного активного материала при перезаряде, а электропроводный материал может улучшить разрядные характеристики катодного активного материала.
Другой аспект настоящего изобретения заключается в том, что оно также предлагает способ приготовления катодного активного материала для литиевых вторичных батарей, который включает (S1) обжиг смеси гидроксида металла и литиевой соли с образованием вторичных частиц ядра из металлоксида лития, в которых агломерированы первичные частицы металлоксида лития; (S2) сухое покрытие ядра титанатом бария и металлоксидом с образованием оболочки на внешней поверхности ядра и (S3) термическую обработку полученного материала.
Способ приготовления катодного активного материала для литиевых вторичных батарей согласно настоящему изобретению использует сухой процесс покрытия, что позволяет эффективно покрывать поверхность катодного активного материала титанатом бария и металлоксидом, отвечающими оболочке, с превосходной воспроизводимостью и при сохранении пассивной электропроводной пленки на поверхности катодного активного материала, отвечающего ядру.
В способе приготовления катодного активного материала согласно настоящему изобретению нагревание на стадии S3 выполняется при температуре 300-600°С в течение от 4 до 12 часов.
Катодный активный материал для литиевых вторичных батарей может быть использован для изготовления катодов для литиевых вторичных батарей или литиевых вторичных батарей, содержащих такие катоды.
Описание чертежей
Фиг.1 - снимок, сделанный методом SEM (сканирующей электронной микроскопии), показывающий катодный активный материал, приготовленный согласно примеру сравнения 1(а), примеру 1(b), примеру сравнения 2(с) и примеру 5(d) настоящего изобретения.
Фиг.2 представляет собой выполненное методом SEM картирование частиц катодного активного материала, приготовленного по примеру 5 настоящего изобретения (а: имидж картирования, b: картирование титана, с: картирование железа, d: картирование фосфора и е: картирование углерода);
Фиг.3 демонстрирует кривые начальной зарядки и разрядки для катодного активного материала, приготовленного согласно примерам 1 и 4 настоящего изобретения.
Фиг.4 демонстрирует кривые начальной зарядки и разрядки катодного активного материала, приготовленного согласно примеру сравнения 2 и примеру 5 настоящего изобретения.
Фиг.5 - кривые, полученные при нагревании в термостате, отражающие характеристики термической стабильности пакетной батареи, в которой применен катодный активный материал, приготовленный согласно примеру сравнения 1.
Фиг.6 - кривые, полученные при нагревании в термостате, отражающие характеристики термической стабильности пакетной батареи, в которой применен катодный активный материал, приготовленный согласно примеру 4 настоящего изобретения;
Фиг.7 - кривые, демонстрирующие характеристики перезаряда пакетной батареи, в которой применен катодный активный материал, приготовленный согласно примеру 4 настоящего изобретения; и
Фиг.8 - кривые, полученные в эксперименте с пробиванием гвоздем, демонстрирующие поведение пакетной батареи, в которой применен катодный активный материал, приготовленный согласно примеру 4 настоящего изобретения.
ЛУЧШИЙ ВАРИАНТ ИСПОЛНЕНИЯ
Ниже будут подробно описаны предпочтительные варианты осуществления настоящего изобретения со ссылками на сопровождающие чертежи. Переходя к данному описанию, следует понимать, что термины, используемые в нем и в прилагаемой формуле изобретения, нельзя толковать, ограничиваясь их общими и словарными значениями, а следует интерпретировать их значения и понятия в соответствии с техническими аспектами настоящего изобретения на основе принципа, заключающегося в том, что изобретатель может подходящим образом определять термины с целью наилучшего объяснения. Поэтому предлагаемое здесь описание - только предпочтительный пример с целью иллюстрации, оно не предназначено для того, чтобы ограничить сферу действия изобретения, так что следует понимать, что можно предложить другие эквиваленты и модификации для этой цели, не выходя за рамки сущности и объема изобретения.
Первый этап - обжигают гидроксид металла и литиевую соль с образованием вторичных частиц ядра из металлоксида лития, в которых агломерированы первичные частицы металлоксида лития (S1).
В качестве металлоксида лития в настоящем изобретении может быть применен любой металлоксид лития, используемый как катодный активный материал для литиевых вторичных батарей в прототипах, за исключением фосфата лития-железа. Например, металлоксид лития может быть, по меньшей мере, одним соединением, выбранным из группы, состоящей из LiCoO2, Li(NiaCobAlc)O2, где (0<а<1, 0<b<1, 0<с<1, а+b+с=1), и LiMn2O4 или их смеси, без всяких ограничений.
Вторичные частицы металлоксида лития, используемые как ядро, в настоящем изобретении образуются путем агломерации первичных частиц металлоксида лития и формируется путем обжига гидроксида металла и соли лития, как это детально описано ниже.
В прототипах имеются различные способы приготовления гидроксидов металлов; в настоящем изобретении в качестве подходящего примера для объяснения выбран способ соосаждения. В качестве гидроксида металла используются различные исходные вещества в зависимости от желаемых свойств катодного активного материала. В качестве исходной соли металла можно использовать сульфат, нитрат, или ацетат и т.п. Раствор, содержащий такую соль металла, непрерывно поступает в условия соосаждения, откуда непрерывно извлекается суспензия, содержащая гидроксид металла в форме реагента, и затем из нее путем промывки, фильтрации и сушки получают гидроксид металла.
Если такой гидроксид металла используется для получения металлоксида лития, как было сказано выше, то возможно ограничить попадание примесей, содержащихся в каждой соли металла, чтобы контролировать состав на атомном уровне и максимизировать дополнительный эффект различных элементов, вводимых в небольших количествах, и легко получать металлоксид лития, имеющий однородную кристаллическую структуру, практически не содержащий примесей.
Металлоксид лития по настоящему изобретению может быть приготовлен термической обработкой гидроксида металла, полученного из исходных продуктов путем соосаждения при определенной температуре, смешивания с различными видами литиевых солей в желаемой пропорции и последующего обжига в обычных для этого условиях. Приготовленный таким образом металлоксид лития получается в форме вторичных частиц, в которых агломерированы первичные частицы металлоксида лития. Средний диаметр первичных частиц, которые составляют вторичные частицы, может варьироваться, в зависимости от условий соосаждения, в соответствии с соотношением гидроксидов металлов и не ограничен какими-нибудь специфическими пределами.
Кроме того, средний диаметр вторичных частиц может значительно изменяться в зависимости от условий использования или изготовления, и он может составлять, например, от 7 до 15 мкм, но не ограничен этими пределами. Когда средний диаметр вторичных частиц находится в указанных пределах, стабильность вторичных частиц увеличивается во время последующего сухого процесса покрытия титанатом бария и металлоксидом, и эффективность и воспроизводимость процесса покрытия возрастают.
Форма вторичных частиц никак специально не лимитируется, но эффективность процесса покрытия поверхности вторичных частиц фосфатом лития-железа может быть дополнительно улучшена, если вторичные частицы имеют сферическую форму.
Вторая стадия - ядро в сухом процессе покрывается титанатом бария и оксидом металла с образованием оболочки на внешней поверхности ядра (S2).
Используемый здесь термин «титанат бария» включает не только чистый титанат бария, но также и титанат бария, включающий небольшие количества (от 0,1 до 1,5% вес.) таких элементов, как La, Се, Nd, Pr, Sm, Gd, Nb, Bi, Sb и Та. Титанат бария является в значительной мере диэлектрическим материалом и РТС-термистором (РТС - положительный температурный коэффициент), сопротивление которого возрастает с увеличением температуры. Титанат бария изменяет свою кристаллическую структуру при 125°С со значительным увеличением электрического сопротивления, как отмечено выше, и он существенно увеличивает термическую стабильность катодного активного материала согласно настоящему изобретению.
Средний диаметр [частиц] титаната бария, примененных в настоящем изобретении, может изменяться в соответствии с условиями использования и получения, и для целей настоящего изобретения предпочтителен средний диаметр не больше 1 мкм. Когда средний диаметр значительно меньше 1 мкм, эффективность сухого процесса покрытия, осуществляемого в настоящем изобретении, можно максимизировать, так что у среднего диаметра нет нижнего предела. К примеру, средний диаметр может составлять 1 нм, но и это не предел. Если средний диаметр частиц превышает 1 мкм, эффективность и воспроизводимость процесса покрытия поверхности композиционного металлоксида ядра ухудшается. Иными словами, когда применяется сухой процесс покрытия, необходимо, чтобы покрываемый материал имел достаточную удельную поверхность, так чтобы покрытие поверхности катодного активного материала имело форму пленки. Поэтому если средний диаметр частиц превышает 1 мкм, доля материала, участвующего в процессе покрытия, уменьшается, и часть материала остается просто смесью, что нежелательно.
Подходящее содержание титаната бария, применяемое в настоящем изобретении, может быть выбрано в соответствии с видом батареи, в которой предполагается использовать этот катодный активный материал. Например, содержание титаната бария может быть от 0,05 до 1 весовой части на 100 весовых частей материала ядра, но не только таким. Если содержание титаната бария меньше 0,05 весовой части, его эффект недостаточен. Если содержание титаната бария превышает 1 весовую часть, с ростом содержания важнейшие высокоскоростные характеристики могут ухудшаться из-за ухудшения удельной емкости и снижения проводимости катодного активного материала.
Частицы оксида металла нанометрового размера, примененные в настоящем изобретении, играют роль связующего между титанатом бария и ядром, и это оказывает прямое влияние на дезинтеграцию и сферизацию ядра. Оксид металла также предотвращает прямой контакт электролита с ядром, тем самым дополнительно улучшая стабильность и циклические характеристики. Кроме того, за счет введения различных видов оксидов металлов возможны различные дополнительные улучшения.
Например, в случае, когда дальше смешивается оксид алюминия (Al2O3), то хотя емкость батареи немного уменьшается, характеристики порошка улучшаются, и увеличивается прочность связывания фосфата лития-железа оливинового типа, и, кроме того, ожидается улучшение высокотемпературных и других характеристик. Было обнаружено, что когда в оболочке есть электрически неактивные оксиды металлов, поверхность металлоксида лития, отвечающего ядру, относительно ограниченно контактирует с электролитом во время высокотемпературного хранения или высокотемпературного цикла, за счет чего улучшаются характеристики. Известно также, что такие оксиды металлов, как оксид титана (TiO2), оксид иттрия (Y2O3), оксид магния (MgO) или оксид цинка (ZnO), проявляют подобные свойства. Кроме того, в материал может быть дополнительно включен металлоксид лития, который, как предполагается, может улучшить скоростные характеристики зарядки/разрядки и циклические характеристики без снижения емкости батарей. Металлоксид лития может быть, например, слоистым композиционным металлоксидом лития, оксидом лития-кобальта или оксидом лития-марганца шпинельного типа и т.п.
Однако материал покрытия, применяемый для создания оболочки, не ограничивается приведенным перечислением, а могут быть использованы различные виды оксидов металлов наноразмеров в сочетании друг с другом в соответствии с желаемыми улучшениями в свойствах оболочки, таких как стабильность, высокотемпературные характеристики и проводимость.
Средний диаметр частиц оксидов металлов, применяемых в настоящем изобретении, может меняться в соответствии с условиями использования и изготовления и может составлять, например, 1-100 нм, но не ограничен этими пределами. В указанном интервале среднего диаметра можно регулировать снижение емкости батареи до минимума и таким образом максимизировать эффект образующейся оболочки. Более детально, когда средний диаметр частиц оксида металла меньше, удельная поверхность, участвующая в покрытии, максимальна, так что оболочка может быть сформирована малым количеством оксида, и, таким образом, ее эффект может быть максимальным. Если размер частиц оксида металла меньше 1 нм, то получать такой материал нелегко, так что стоимость производства катодного активного материала ядерно-оболочечного типа может увеличиться. Если же размеры частиц оксида металла превышают 100 нм, то уменьшается удельная площадь поверхности, поэтому количество оксида металла, необходимого для создания оболочки в форме пленки, увеличивается, что может снизить емкость батареи.
Подходящее содержание оксида металла, применяемое в настоящем изобретении, может быть выбрано в соответствии с видом батареи, для которой предполагается использовать этот катодный активный материал. Например, содержание оксида металла может составлять от 0,05 до 1 весовой части на 100 весовых частей материала ядра, но может быть и другим. Если содержание оксида металла меньше 0,05 весовой части, его эффект недостаточен. Если же его содержание превышает 1 весовую часть, то удельная емкость катодного активного материала ухудшается.
Один из катодных активных материалов, используемых в настоящем изобретении, фосфат лития-железа оливинового типа, характеризующийся наибольшей степенью повышения сопротивления при переразряде, может быть включен в материал, образующий оболочку, и может быть использован для создания ядра. Фосфат лития-железа оливинового типа ограничивает контакт между катодным активным материалом ядра и электролитом при переразряде. Соответственно количество лития, высвобождающегося из катодного активного материала ядра и, следовательно, осаждающегося на аноде, снижается, что уменьшает количество возникающего в реакции с электролитом тепла и, таким образом, улучшает безопасность, особенно при чрезмерном заряде.
Средний диаметр частиц фосфата лития-железа оливинового типа, применяемых в настоящем изобретении, может существенно изменяться в соответствии с условиями использования и получения, и для целей настоящего изобретения предпочтителен средний диаметр, не превышающий 1 мкм. Когда средний диаметр значительно меньше 1 мкм, эффективность сухого процесса покрытия, осуществляемого в настоящем изобретении, можно максимизировать, так что у среднего диаметра нет нижнего предела. К примеру, средний диаметр может составлять 1 им, но не только. Если средний диаметр частиц превышает 1 мкм, эффективность и воспроизводимость процесса покрытия поверхности композиционного оксида металлов ядра ухудшается. Иными словами, когда применяется сухой процесс покрытия, необходимо, чтобы покрываемый катодный активный наноматериал имел достаточную удельную поверхность для того, чтобы покрывающий катодный активный материал соответствующей удельной поверхности образовал покрытие в форме пленки. Таким образом, если средний диаметр частиц превышает 1 мкм, доля материала, участвующего в процессе покрытия, уменьшается, и часть материала остается просто смесью, что нежелательно.
Подходящее содержание фосфата лития-железа оливинового типа, применяемое в настоящем изобретении, может быть выбрано в соответствии с видом батареи, для которой предполагается использовать этот катодный активный материал. Например, содержание фосфата лития-железа оливинового типа может быть от 0,05 до 5 весовой части на 100 весовых частей материала ядра, но не только таким. Если это содержание меньше, чем 0,05 весовых частей, цель применения фосфата лития-железа оливинового типа, а именно цель улучшения характеристик при чрезмерном заряде, в достаточной мере не достигается. Если содержание фосфата лития-железа оливинового типа превышает 5 весовых частей, то его количество, не участвующее в процессе покрытия, а остающееся простой смесью, увеличивается и может отрицательно повлиять на свойства материала, например уменьшить среднее напряжение разрядки.
Согласно настоящему изобретению в катодный активный материал, формирующий оболочку, может быть включен электропроводный материал, и затем осуществлено покрытие ядра. Электропроводный материал снижает высокое сопротивление порошка, создаваемое за счет неэлектропроводного материала оболочки, тем самым позволяя катодному активному материалу сохранять высокие разрядные характеристики.
Электропроводный материал, применяемый в настоящем изобретении, может быть металлом, электропроводящим полимером или электропроводящим углеродом, например сажей Ketjen black, ацетиленовой сажей, Super-P, графитом, активированным углем и т.п., но настоящее изобретение не ограничено этим списком. Предпочтительный средний размер частиц электропроводного материала - 1 мкм или меньше. Когда средний размер частиц электропроводного материала меньше 1 мкм, его удельная поверхность увеличивается, и необходимое добавляемое количество его снижается, поэтому минимальный средний размер частиц не ограничен определенным значением. К примеру, средний размер электропроводных частиц может составлять 1 нм, и это не предел. Если средний размер частиц больше 1 мкм, то из-за больших размеров им трудно сформировать оболочку вместе с другими оболочечными материалами, что нежелательно.
Содержание электропроводного материала, применяемое согласно настоящему изобретению, может быть подходящим образом выбрано в соответствии с видом батареи, в которой предполагается использовать этот катодный активный материал. Например, материал оболочки может содержать 0,1 весовой части или больше в расчете на 100 весовых частей, но настоящее изобретение не ограничено этим содержанием. Если содержание электропроводного материала меньше 0,1 весовой части, его использование не дает достаточного эффекта. Кроме того, когда используется избыточное количество электропроводного материала, излишек его остается на поверхности катодного активного материала ядра, и это снимает необходимость добавлять электропроводный материал во время приготовления суспензии, таким образом уменьшая время, требуемое для ее приготовления. Однако с учетом того, что электрически неактивные материалы, из которых образуется оболочка, предназначены для улучшения проводимости, содержание электропроводного материала в оболочке предпочтительно не увеличивать более чем до 10 весовых частей, еще предпочтительнее ограничить ее до 5 весовых частей и совсем предпочтительно - до 3 весовых частей, хотя это тоже еще не предел.
Чтобы покрыть ядро катодным покрывающим материалом согласно настоящему изобретению так же, как и в прототипах, можно использовать сухой способ покрытия и мокрый способ. В большинстве случаев для получения однородных дисперсий покрывающего материала применялся мокрый способ. Обычно для процесса покрытия использовали жидкую дисперсию или суспензию, то есть раствор, в котором покрывающий материал был диспергирован, или водный, или органический раствор покрывающего материала; катодный активный материал обрызгивали или пропитывали таким раствором и сушили. Однако для получения слоя покрытия в виде пленки у мокрого способа есть ограничения. Кроме того, если в качестве растворителя покрывающего материала используется вода, электропроводная пассивная пленка литиевой соли, образующаяся на поверхности катодного активного материала, удаляется, и электропроводность самого катодного активного материала снижается. К тому же введение в процесс этапов пропитки и сушки является существенным недостатком для массового производства.
В противоположность этому сухой способ покрытия, используемый в настоящем изобретении, выполняется так, что покрывающий материал, отвечающий оболочке, накладывается на поверхность катодного активного материала, отвечающего ядру, механическим путем, под действием усилий сдвига и столкновения и сил давления, в зависимости от используемого оборудования. Этот способ позволяет получать либо смесь двух материалов, либо покрытие одного материала другим.
Вообще, катодный активный материал, полученный способом обжига при высокой температуре соли лития и гидроксида металла как исходных материалов, требует последующего измельчения и калибровки продукта из-за процесса спекания некоторых гидроксидов с образованием частиц с плохой сферичностью и избыточным количеством лития. Измельчение гидроксидов металлов как исходных веществ до какого-то среднего диаметра при сохранении сферической формы частиц оказалось невозможным.
Однако в способе покрытия по настоящему изобретению, использующему механический путь, металлоксиды лития, отвечающие оболочке, и/или углеродистые материалы ядра одновременно образуют сферические частицы и дезинтегрируются и благодаря наночастицам металлоксидов, отвечающих оболочке, и характеристики порошка могут быть улучшены.
Следующий этап - полученный продукт термически обрабатывают (S3).
Частицы материала, формирующего оболочку, можно освободить от внутренних напряжений, вызываемых обжигом и сухим механическим покрытием, с помощью процесса термической обработки после покрытия, и таким образом можно регулировать снижение удельной емкости или снижение проводимости порошка, которое вызвано пленкой электрически неактивного титаната бария и оксида металла. Условия термической обработки можно выбрать в соответствии с производственными условиями, такими как вид катодного активного материала ядра. Например, термическая обработка может проводиться при температурах от 300 до 600°С в течение 4-12 часов, но не только при этих условиях. При указанных температурах термообработки плотность оболочки превосходна, дефекты кристаллической структуры ядра могут быть существенно скомпенсированы, и можно устойчиво сохранять структуру ядра. Продолжительность термической обработки обеспечивает достаточные эффекты в указанном интервале. Если продолжительность термической обработки превышает 12 часов, дальнейшее ее увеличение не приводит к увеличению эффекта.
Катодный активный материал для литиевых вторичных батарей, приготовленный по настоящему изобретению, может быть нанесен, по меньшей мере, на одну поверхность катодного электрического коллектора с использованием связующей смолы, и образовать катод литиевой вторичной батареи. Связующая смола и катодный коллектор тока могут быть любыми, какие использовались в известном уровне техники без всяких ограничений.
А кроме того, катод для литиевой вторичной батареи согласно настоящему изобретению может быть использован в производстве литиевых вторичных батарей, которые содержат также анод, сепаратор, расположенный между анодом и катодом, и электролит. Анод, сепаратор и электролит могут быть любыми, какие использовались в прототипах, без всяких ограничений.
Ниже для лучшего понимания будут подробно описаны различные предпочтительные примеры реализации настоящего изобретения. Примеры настоящего изобретения могут быть различными способами модифицированы, и их не следует интерпретировать как ограничивающие объем изобретения. Примеры настоящего изобретения предназначены только для лучшего понимания изобретения людьми, владеющими обычной информацией в данной области техники.
Пример 1
<Приготовление композиционного металлоксида лития>
Чтобы приготовить водный раствор металлов, сульфат никеля (NiSO4·6H2O), сульфат марганца (MnSO4·H2O) и сульфат кобальта (CoSO4·7Н2О) растворяли в воде, очищенной методом ионного обмена, в молярном соотношении никеля, кобальта и марганца 0,5:0,2:0,3. Готовили водные растворы едкого натра и аммиака.
Соосаждение проводили при непрерывной подаче растворов в реактор мерным насосом, в инертной атмосфере азота, в условиях: рН 11,2, частота вращения 400 об/мин, скорость подачи раствора солей металлов 5 л/час, скорость подачи раствора аммиака 0,5 л/мин. Время от времени добавляли водный раствор едкого натра так, чтобы pH раствора в реакторе сохранялся постоянным на уровне 11,2.
Для получения суспензии частиц композиционного гидроксида металлов, однородных по размерам, реакцию вели в течение 48 часов. Суспензию промывали и фильтровали с использованием сепарационного фильтра на центрифуге до тех пор, пока рН фильтрата не снижался до 9,0 или ниже, затем полученный порошок композиционного гидроксида металлов сушили при 120°С в течение 24 часов.
После этого, чтобы установить стехиометрическое соотношение с солью лития, композиционный гидроксид металлов нагревали 12 часов при температуре 300°С и смешивали его с литиевой солью так, чтобы стехиометрическое соотношение с литиевой солью было 1:1,1. Смесь обжигали в высокотемпературной печи с регулируемой температурой в течение 24 часов при 950°С и 24 часов при 500°С. После этого композиционный металлоксид измельчали и калибровали с тем, чтобы контролировать средний диаметр частиц материала, и термически обрабатывали 4 часа при 500°С.
После этого исследовали характеристики полученного композитного металлоксида. Приготовленный таким образом композиционный металлоксид имел соотношение Ni:Co:Mn, составлявшее 0,50:0,20:0,30, и средний диаметр частиц D50 9,7 мкм. Полученные результаты кратко отражены в таблицах 1 и 2, представленных ниже.
<Приготовление катодного активного материала ядерно-оболочечного типа>
Для приготовления катодного активного материала ядерно-оболочечного типа полученный композиционный металлоксид использовали как ядро, а титанат бария со средним диаметром частиц D50, равным 220 нм, и оксид титана со средним диаметром частиц D50 20 нм использовали как материал покрытия. С использованием оборудования для сухого покрытия (NOB-130, производство Hosogawa Micron Co. Ltd., Япония) смешивали 6 г титаната бария и 0,6 г оксида титана соответственно с 600 г композиционного металлоксида так, чтобы весовое соотношение титаната бария и оксида титана оболочки и композиционного металлоксида ядра составляло 1:0,1:100. После этого обрабатывали смесь 3 минуты при скорости вращения 2700 об/мин и 4 часа нагревали ее при температуре 500°С, получая таким образом катодный активный материал ядерно-оболочечного типа.
Пример 2
Катодный активный материал готовили таким же образом, как в примере 1, за исключением того, что содержание титаната бария составляло 0,2 весовой части на 100 весовых частей ядра.
Пример 3
Катодный активный материал готовили таким же образом, как в примере 1, за исключением того, что к титанату бария и оксиду титана в смесь для формирования оболочки добавляли 1,5 весовых частей (в расчете на 100 весовых частей ядра) фосфата лития-железа оливинового типа со средним диаметром частиц D50, равным 150 нм.
Пример 4
Катодный активный материал готовили таким же образом, как в примере 3, за исключением того, что к титанату бария, оксиду титана и фосфату лития-железа оливинового типа в смесь для формирования оболочки добавляли 0,2 весовой части (в расчете на 100 весовых частей ядра) сажи Super-P со средним диаметром частиц D50, равным 500 нм.
Пример 5
Катодный активный материал готовили таким же образом, как в примере 4, за исключением того, что соотношение Ni:Co:Mn в приготовленном композиционном металлоксиде составляло 0,40:0,30:0,30.
Примеры сравнения 1 и 2
В примерах сравнения 1 и 2 в качестве катодного активного материала использовались композиционные металлоксиды ядра, полученные в примерах 1 и 5 соответственно.
Пример сравнения 3
Катодный активный материал с тем же содержанием всех компонентов: титаната бария, оксидов металлов, фосфата лития-железа оливинового типа и Super-P, что и использованные в примере 4 для создания ядра и оболочки, готовили простым смешиванием компонентов.
Исследование свойств
1. Характеристики порошка
Средний диаметр частиц и плотность порошка катодных активных материалов, приготовленных по примерам 1-5, измеряли до покрытия и после него. Результаты этих измерений приведены в таблице 1. Средний диаметр частиц измеряли с использованием измерителя распределения размеров частиц (Mastersizer 2000E, производства Malvern Instruments). Когда катодный активный материал диспергировали ультразвуковым методом, измерения D50 выполняли методом рассеяния лазерного излучения. Плотность порошка измеряли по изменению объема перед и после 500 ударов, используя 100-миллилитровый измерительный цилиндр.
Таблица 1
Перед покрытиема Материал покрытияb После покрытия
Средний диаметр частиц (D50), мкм Плотность порошка, г/см3 Средний диаметр частиц (D50), мкм Плотность порошка, г/см3
Пример 1 9.70 2.53 В, Т 9.45 2.63
Пример 2 9.70 2.53 В, Т 9.52 2.61
Пример 3 9.70 2.53 Р, В, Т 9.50 2.59
Пример 4 9.70 2.53 Р, В, Т, С 9.54 2.57
Пример 5 10.21 2.55 Р, В, Т, С 10.02 2.74
а. Пример сравнения 1: катодный активный материал по примеру 1 до покрытия
Пример сравнения 2: катодный активный материал по примеру 5 до покрытия
b. В: BaTiO3, Р: LiFePO4, Т: TiO2, С: Super-P
Как видно из таблицы 1, если катодный активный материал готовили согласно примерам 1-5, когда использовались частицы наноразмеров различных металлоксидов и фосфата лития-железа оливинового типа, то из-за эффектов частичной сферизации и дезинтеграции средний диаметр был меньше, а плотность порошка выше по сравнению с катодным активным материалом без покрывающего слоя, полученным согласно примерам сравнения 1 и 2. Кроме того, на примере сравнения 3 было найдено, что характеристики порошка ухудшаются при простом смешивании компонентов, хотя в таблице 1 это не показано.
2. Характеристики покрытия
Чтобы проверить форму и поверхностные характеристики катодных активных материалов ядерно-оболочечного типа, полученных в примерах и примерах сравнения, сделали электронно-микроскопические фотографии (микроскоп 8564Е, производства HP). На фиг.1 показаны электронно-микроскопические снимки катодных активных материалов, полученных в примере сравнения 1(а), примере 1(b), в примере сравнения 2(с) и в примере 5(d). Фиг.2 показывает поперечное сечение частицы катодного активного материала, приготовленного по примеру 5, и результаты картирования частицы по каждому из элементов (а: имидж картирования, b: картирование титана, с: картирование железа, d: картирование фосфора и е: картирование углерода).
Как показано на фиг.1 и 2, частицы катодного активного материала, приготовленные по настоящему изобретению, имеют превосходную форму поверхности. Было также установлено, что материал покрытия, сформировавший оболочку, тоже образовал равномерный слой.
3. Электрохимические характеристики
i) Оценка полуэлементов
Чтобы определить начальную удельную емкость и начальную эффективность катодных активных материалов, полученных в примерах 1 и 5, катодный активный материал смешивали с раствором NMP (n-метилпирролидона), полученным сплавлением тефлонизированной ацетиленовой сажи в качестве электропроводного материала и PVDF (поливинилиденфторида) в качестве связующего, с получением суспензии. Массовое соотношение катодного активного материала, электропроводного материала и связующего в суспензии составляло 90:3:7. Эту суспензию наносили на 30-микронный алюминиевый коллектор и сушили, а затем прессовали до определенной толщины и штамповали из этого материала катод диаметром 13 мм.
Полученный катод вместе с литиевой фольгой в качестве анода и сепаратором толщиной 20 мкм использовали для изготовления стандартной батареи 2032 в форме монеты. На этот раз в качестве электролита служил 1,2-молярный раствор LiPF6 в смеси растворителей этиленкарбоната и диэтилкарбоната (в объемном соотношении 1:3). Зарядную и разрядную емкость батареи измеряли при плотности тока 0,2 С при 25°С в интервале напряжений 2,5-4,2 В с использованием устройства зарядно-разрядного цикла, на котором зарядку осуществляли в условиях постоянства тока и напряжения (0,02 С на финальной стадии зарядки), а разрядку - в условиях постоянства тока. Результаты этих измерений приведены в таблице 2. Кроме того, на фиг.3 и 4 показаны кривые начальной зарядки и разрядки для материалов, полученных в примерах 4 и 5 и в примерах сравнения 1 и 2.
Таблица 2
Емкость 1-й зарядки 0,2 С (мАч/г) Емкость 1-й разрядки 0,2 С (мАч/г) 1-я эффективность 1-я необратимая емкость (мАч/г) Отношение зарядки постоянного напряжения (%)
Пример 1 171.7 151.6 88.3 20.1 1.4
Пример 2 171.6 152.4 88.8 19.2 1.2
Пример 3 172.0 151.5 88.1 20.5 1.2
Пример 4 172.1 153.3 89.1 18.8 0.9
Пример 5 166.4 149.3 89.7 17.1 0.9
Пример сравнения 1 171.5 152.8 89.1 18.7 1.1
Пример сравнения 2 166.9 149.7 89.7 17.2 0.8
Пример сравнения 3 166.4 145.6 87.5 20.8 1.6
Как видно из таблицы 2, у катодных активных материалов, полученных по примерам 1 и 2, которые были покрыты только электрохимически неактивными титанатом бария и оксидом титана как материалом покрытия, образующим оболочку, удельная емкость на единицу массы и начальная эффективность катодного активного материала были низкими. И в случае катодного активного материала, приготовленного по примеру 3, который дополнительно включал электрохимически активный фосфат лития-железа оливинового типа, удельная емкость на единицу массы катодного активного материала была до некоторой степени сниженной, но в этом случае были получены дополнительные эффекты от каждого компонента оболочки. Другими словами, фосфат лития-железа оливинового типа проявляет эффект улучшения стабильности при чрезмерном перезаряде, титанат бария вызывает улучшение термической стабильности при высокой температуре, а оксид титана демонстрирует улучшение характеристик порошка во время процесса покрытия и эффекта связующего для материала покрытия оболочки. Когда же материал, образующий оболочку, был просто смешан с металлоксидом ядра, как в случае сравнительного примера 3, он присутствует просто как примесь к материалу, отвечающему ядру, и поэтому начальная емкость и удельная емкость снижаются. Между тем, в случае примеров 4 и 5, в которых дополнительно был включен электропроводный материал Super-P, было обнаружено, что повышение сопротивления порошка катодного активного материала, полученного в соответствии с покрытием электрохимически неактивным оксидом металла, ограничено, что обеспечивает лучшие электрохимические характеристики.
ii) Оценка полных элементов.
Чтобы оценить характеристики высокого качества и безопасность катодных активных материалов, полученных в примерах и примерах сравнения, приготовленный катодный активный материал смешивали с раствором NMP (n-метилпирролидона), полученным растворением углерода как электропроводного материала и PVDF (поливинилиденфторида) как связующего, с получением суспензии. Массовое соотношение катодного активного материала, электропроводного материала и связующего в суспензии составляло 92:4:4. В качестве анода использовали графит; анод и катод расположили один против другого, разделив их сепаратором. Затем элемент вложили в алюминиевый конверт со стенкой толщиной 113 мкм, запечатали его в герметическом боксе в атмосфере аргона и термически скрепили, получив таким образом батарею пакетного типа. Батарея имела размеры: толщина - 3,7 мм, ширина - 64 мм и длина - 95 мм, расчетная емкость составляла 2000 мАч.
Батарея была подвергнута начальной зарядке/разрядке при плотности тока 0,2 С (400 мАч) при температуре 25°С и напряжении 3,0-4,2 В с использованием циклического зарядно-разрядного устройства, и затем были проведены эксперименты по зарядке-разрядке при разных плотностях тока. Характеристики высокого качества оценивали из отношения разрядной емкости при плотности тока 20 С, используя разрядную емкость при плотности тока 0,5 С как стандартную меру емкости. В таблице 3 показаны характеристики высокого качества катодного активного материала, полученного в примерах и примерах сравнения.
В дополнение, чтобы оценить термическую стабильность катодных активных материалов ядерно-оболочечного типа, полученных по примерам и примерам сравнения, изготовленные с их использованием по тем же стандартам батареи в полностью заряженном состоянии, с напряжением 4,2 В хранили в при 150°С и наблюдали за ними до изменения их состояния, например возгорания. Результаты этих измерений приведены в таблице 3. На фиг.5 и 6 показаны графики, характеризующие поведение батарей на основе катодных активных материалов, полученных по примеру 1 и примеру сравнения 1.
Для оценки безопасности катодного активного материала ядерно-оболочечного типа, полученного по примерам и примерам сравнения настоящего изобретения, были проведены дополнительные испытания. С этой целью для батарей, изготовленных по тому же стандарту с использованием катодных активных материалов, снимали характеристики при чрезмерном заряде при 24 В и плотности тока 1 C (2000 мАч). Результат экспериментов для катодного активного материала, полученного по примеру 4, показан на фиг.7. Результат других испытаний - теста на пробивание гвоздем и теста на саморазогрев - показаны на фиг.8 и 9 соответственно.
Таблица 3
Материал покрытия а Характеристики разрядки при 20 С (@0,5 С), % Часы хранения при высокой температуре
1 2 3
Пример 1 В, Т 75.1 O
Пример 2 В, Т 87.5 O
Пример 3 Р, В, Т 78.6 O
Пример 4 Р, В, Т, С 88.6 O
Пример 5 Р, В, Т, С 86.7 O
Пример сравнения 1 Х 88.5 Возгорание
Пример сравнения 2 Х 86.4 Возгорание
Пример сравнения 3 Простая смесь 78.5 Возгорание
Как видно из таблицы 3, при использовании титаната бария, оксида титана и фосфата лития-железа оливинового типа в качестве материалов для образования оболочки характеристики качества отчасти ухудшаются. Однако когда в материал, образующий оболочку, был дополнительно включен электропроводящий углерод, повышение сопротивления порошка самого катодного активного материала, вызванное электрохимически неактивным материалом, было ограниченным, и тогда разрядные характеристики катодного активного материала ядра сохранялись высокими.
В случае с катодным активным материалом, полученным по примеру сравнения 3, где образующий оболочку материал был просто смешан с металлоксидом лития ядра, электрохимические характеристики (или характеристики качества) были значительно худшими по сравнению с таковыми для катодного активного материала по примеру 4. Было также обнаружено, что безопасность каждого из образующих оболочку материалов, а именно термическая стабильность и характеристики при чрезмерном заряде, совсем не улучшились. Напротив, в случае катодного активного материала, на котором оболочка была образована путем покрытия, характеристики каждого из образующих оболочку материалов были превосходны.
Кроме того, как видно из таблицы 3 и фиг.5 и 6, термическая стабильность катодного активного материала, покрытого титанатом бария, очень высокая.
Из фиг.7 и 8 также следует, что в случае примера 4, где для образования оболочки был использован фосфат лития-железа оливинового типа, можно понять, что безопасность при чрезмерном заряде, а также при ошибочном или неправильном использовании, например при аварийном коротком замыкании, значительно повысилась.
Наконец, как видно из фиг.9, в случае примера 4 саморазогрев был в значительной мере контролируемым, что означает, что термические характеристики материала также стали отличными по сравнению с примером сравнения 1.
Промышленная применимость
Катодный активный материал для литиевых вторичных батарей согласно настоящему изобретению содержит ядро из металлоксида лития и оболочку, покрытую титанатом бария и оксидом титана, что улучшает безопасность литиевых вторичных батарей, в особенности их термическую стабильность и характеристики перезаряда. Кроме того, способ приготовления катодного активного материала для литиевых вторичных батарей согласно настоящему изобретению обеспечивает превосходную воспроизводимость и производительность в изготовлении катодного активного материала ядерно-оболочечного типа по настоящему изобретению.

Claims (15)

1. Катодный активный материал для литиевых вторичных батарей, содержащий:
а. ядро из вторичных частиц металлоксида, образованных агломерацией первичных частиц металлоксида лития; и
b. оболочку, образованную путем покрытия вторичных частиц ядра титанатом бария и оксидом металла.
2. Катодный активный материал для литиевых вторичных батарей по п.1, в котором металлоксид лития - любое соединение, выбранное из группы, состоящей из LiCoO2, Li(NiaCobAlc)O2, где (0<а<1, 0<b<1, 0<с<1, а+b+с=1), и LiMn2O4, или их смесь.
3. Катодный активный материал для литиевых вторичных батарей по п.1, в котором вторичные частицы имеют средний диаметр от 7 до 15 мкм.
4. Катодный активный материал для литиевых вторичных батарей по п.1, в котором частицы титаната бария имеют средний диаметр от 1 нм до 1 мкм, а частицы оксида металла имеют средний диаметр от 1 до 100 нм.
5. Катодный активный материал для литиевых вторичных батарей по п.1, в котором оксид металла - по меньшей мере, одно соединение, выбранное из группы, состоящей из оксида алюминия, оксида титана, оксида иттрия, оксида магния, оксида цинка и металлоксида лития, или их смеси.
6. Катодный активный материал для литиевых вторичных батарей по п.5, в котором металлоксид лития - по меньшей мере, одно соединение, выбранное из группы, состоящей из слоистого композиционного металлоксида лития, оксида лития-кобальта и оксида лития-марганца шпинельного типа, или их смеси.
7. Катодный активный материал для литиевых вторичных батарей по п.1, в котором оболочка дополнительно включает фосфат лития-железа оливинового типа.
8. Катодный активный материал для литиевых вторичных батарей по п.1, в котором оболочка дополнительно включает электропроводный материал.
9. Способ приготовления катодного активного материала для литиевых вторичных батарей, включающий:
(S1) обжиг гидроксида металла и соли лития с образованием вторичных частиц ядра из металлоксида лития, в которых агломерированы первичные частицы металлоксида лития;
(S2) сухое покрытие ядра титанатом бария и оксидом металла с образованием оболочки на внешней поверхности ядра; и
(S3) термическую обработку полученного продукта.
10. Способ приготовления катодного активного материала для литиевых вторичных батарей по п.9,
в котором на стадии (S1) гидроксид металла готовят методом соосаждения.
11. Способ приготовления катодного активного материала для литиевых вторичных батарей по п.9,
в котором на стадии (S2) ядро дополнительно покрывается фосфатом лития-железа оливинового типа с образованием оболочки.
12. Способ приготовления катодного активного материала для литиевых вторичных батарей по п.9,
в котором на стадии (S2) ядро дополнительно покрывают в сухом процессе электропроводным материалом для образования оболочки.
13. Способ приготовления катодного активного материала для литиевых вторичных батарей по п.9,
в котором на стадии (S3) термическая обработка выполняется при температуре от 300 до 600°С в течение от 4 до 12 ч.
14. Катод литиевой вторичной батареи, который включает катодный коллектор тока и слой катодного активного материала, образованного, по меньшей мере, на одной поверхности катодного коллектора тока, и содержащий катодный активный материал и связующую смолу, в котором катодный активный материал - это катодный активный материал, определяемый по любому из пп.1-8.
15. Литиевая вторичная батарея, включающая катод, анод и сепаратор, помещенный между катодом и анодом,
отличающаяся тем, что катод - это катод, определяемый в п.14.
RU2009130483/09A 2008-11-10 2008-11-11 Активный материал катода для литиевых батарей, способ изготовления материала и литиевые батареи, включающие этот материал RU2408112C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080111004A KR101050438B1 (ko) 2008-11-10 2008-11-10 안전성이 우수한 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
KR10-2008-0111004 2008-11-10

Publications (1)

Publication Number Publication Date
RU2408112C1 true RU2408112C1 (ru) 2010-12-27

Family

ID=42153024

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009130483/09A RU2408112C1 (ru) 2008-11-10 2008-11-11 Активный материал катода для литиевых батарей, способ изготовления материала и литиевые батареи, включающие этот материал

Country Status (12)

Country Link
US (1) US8367247B2 (ru)
EP (1) EP2362972B1 (ru)
JP (1) JP5231631B2 (ru)
KR (1) KR101050438B1 (ru)
CN (1) CN101884126B (ru)
AR (1) AR074079A1 (ru)
AU (1) AU2008349764B2 (ru)
BR (1) BRPI0808316A2 (ru)
CA (1) CA2674756A1 (ru)
RU (1) RU2408112C1 (ru)
TW (1) TWI398033B (ru)
WO (1) WO2010053222A1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2554940C2 (ru) * 2012-04-25 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ получения гибридного материала (варианты) для перезаряжаемых химических источников тока
RU2644590C1 (ru) * 2015-11-04 2018-02-13 Тойота Дзидося Кабусики Кайся Вспомогательный аккумулятор с неводным электролитом и способ изготовления вспомогательного аккумулятора с неводным электролитом
RU2737314C2 (ru) * 2016-09-09 2020-11-27 Раи Стретеджик Холдингс, Инк. Источник питания для устройства доставки аэрозоля
RU2749535C1 (ru) * 2018-06-11 2021-06-15 Микроваст Пауэр Системс Ко., Лтд. Способ получения частиц прекурсора и частица прекурсора, полученная этим способом
RU2749604C1 (ru) * 2018-05-21 2021-06-16 Микроваст Пауэр Системс Ко., Лтд. Способ получения частиц прекурсора, частица прекурсора, полученная этим способом, и способ получения активных катодных частиц

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668194B (zh) * 2009-12-04 2015-05-20 路透Jj股份有限公司 阴极活性材料前体和活性材料,及其制造方法
CN105140512B (zh) * 2010-06-02 2019-01-22 株式会社半导体能源研究所 电力储存装置
KR101256641B1 (ko) 2010-11-02 2013-04-18 삼성에스디아이 주식회사 리튬 이차전지용 양극 활물질 및 이의 제조방법
KR101350811B1 (ko) 2010-11-17 2014-01-14 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2012067449A2 (ko) * 2010-11-17 2012-05-24 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JP5556797B2 (ja) * 2010-12-17 2014-07-23 トヨタ自動車株式会社 二次電池
KR101308677B1 (ko) * 2011-05-31 2013-09-13 주식회사 코캄 리튬 이차전지
US10044035B2 (en) * 2011-06-17 2018-08-07 Umicore Lithium cobalt oxide based compounds with a cubic secondary phase
JP5825006B2 (ja) 2011-09-22 2015-12-02 藤倉化成株式会社 リチウムイオン二次電池用正極材、およびリチウムイオン二次電池
CN102394290A (zh) * 2011-11-18 2012-03-28 青岛华冠恒远锂电科技有限公司 一种锂离子电池正极材料及其制备方法
KR101465490B1 (ko) * 2011-11-30 2014-11-26 주식회사 코캄 안전성과 안정성이 향상된 리튬 이차 전지
US8604427B2 (en) * 2012-02-02 2013-12-10 Applied Materials Israel, Ltd. Three-dimensional mapping using scanning electron microscope images
KR20130109785A (ko) * 2012-03-28 2013-10-08 삼성에스디아이 주식회사 복합전극활물질, 이를 채용한 전극과 리튬전지 및 그 제조방법
CN104247101A (zh) * 2012-04-11 2014-12-24 旭硝子株式会社 锂离子二次电池用正极活性物质
KR101510179B1 (ko) * 2012-04-26 2015-04-08 주식회사 포스코이에스엠 리튬 망간 복합 산화물의 제조 방법, 그 제조 방법에 의하여 제조된 리튬 망간 복합 산화물, 및 이를 포함하는 리튬 이온 이차 전지
JP6008610B2 (ja) * 2012-06-27 2016-10-19 日揮触媒化成株式会社 二次電池用正極材および該正極材を用いた二次電池
KR101718058B1 (ko) 2012-08-01 2017-03-20 삼성에스디아이 주식회사 음극 활물질, 그 제조방법, 및 이를 채용한 리튬 전지
KR101439638B1 (ko) * 2012-11-06 2014-09-11 삼성정밀화학 주식회사 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP2014116296A (ja) * 2012-11-13 2014-06-26 Jgc Catalysts & Chemicals Ltd リチウム複合酸化物およびその製造方法、そのリチウム複合酸化物を含む二次電池用正極活物質、それを含む二次電池用正極、ならびにそれを正極として用いるリチウムイオン二次電池
KR101615413B1 (ko) * 2012-11-30 2016-04-25 주식회사 엘지화학 리튬 이차 전지용 양극, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지
EP2932546A4 (en) * 2012-12-14 2016-12-21 Umicore Nv LITHIUM METAL OXIDE PARTICLES COVERED WITH A MIXTURE OF THE ELEMENTS OF THE C UR MATERIAL AND ONE OR MORE METAL OXIDES
JP6328100B2 (ja) * 2013-03-15 2018-05-23 株式会社東芝 電池用電極材料およびそれを用いた電池用基板、蓄電池、色素増感太陽電池、キャパシタ、Liイオン二次電池
KR101658510B1 (ko) 2013-09-02 2016-09-21 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 이차전지
CN103441255B (zh) * 2013-09-16 2017-02-01 宁德新能源科技有限公司 锂离子电池正极材料及其制备方法
JP6371508B2 (ja) * 2013-09-25 2018-08-08 住友化学株式会社 リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極、およびリチウムイオン二次電池
WO2015094847A1 (en) * 2013-12-17 2015-06-25 Dow Global Technologies Llc Improved lithium metal oxide cathode materials and method to make them
CN103825021B (zh) * 2014-03-12 2016-02-17 石哲文 一种稀土元素掺杂的复合钴酸锂正极材料的制备方法
KR102273772B1 (ko) 2014-05-21 2021-07-06 삼성에스디아이 주식회사 복합 양극 활물질, 이를 포함하는 리튬 전지, 및 이의 제조방법
US10141566B2 (en) * 2014-08-15 2018-11-27 Samsung Electronics Co., Ltd. Lithium secondary battery including a coated cathode material and solid electrolyte, and method of preparing the same
CN104810507A (zh) * 2014-09-02 2015-07-29 万向A一二三系统有限公司 一种锂离子软包电池正极浆料、其制备方法及其应用
CN104218234B (zh) * 2014-09-11 2017-11-17 浙江美达瑞新材料科技有限公司 一种高循环性能的锂离子电池复合正极材料及其制备方法
JP6137217B2 (ja) * 2015-02-12 2017-05-31 トヨタ自動車株式会社 非水電解質二次電池用負極の製造方法
CN105006574A (zh) * 2015-06-13 2015-10-28 浙江美达瑞新材料科技有限公司 一种表面改性的锂离子电池正极材料及其制备方法
CN105098161A (zh) * 2015-09-08 2015-11-25 湖南杉杉新材料有限公司 一种锂离子电池镍基多元正极材料及其制备方法
KR101982790B1 (ko) 2015-10-20 2019-05-27 주식회사 엘지화학 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극
US20200028206A1 (en) * 2015-12-14 2020-01-23 Massachusets Institute Of Technology Solid oxygen-redox nanocomposite materials
TWI633692B (zh) * 2016-03-31 2018-08-21 烏明克公司 供汽車應用的鋰離子電池組
KR102006726B1 (ko) 2016-10-05 2019-08-02 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
US10665849B2 (en) 2017-03-20 2020-05-26 The Boeing Company Battery cell design for preventing internal short circuits from occurring and propagating
US10651514B2 (en) * 2017-03-20 2020-05-12 The Boeing Company Battery cell design for preventing internal short circuits from occurring and propagating using positive temperature coefficient (PTC) materials
WO2018220972A1 (ja) * 2017-05-29 2018-12-06 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合体及びこれを用いた二次電池、並びにリチウムイオン二次電池用正極活物質複合体の製造方法
JP7056659B2 (ja) * 2017-06-28 2022-04-19 住友金属鉱山株式会社 非水電解質二次電池用正極活物質、およびその製造方法、並びに、非水電解質二次電池
JP7031150B2 (ja) * 2017-07-05 2022-03-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質の製造方法、および該正極活物質を用いた非水系電解質二次電池
KR102174720B1 (ko) * 2017-11-23 2020-11-05 주식회사 에코프로비엠 리튬복합산화물 및 이의 제조 방법
JP6919994B2 (ja) * 2017-12-12 2021-08-18 トヨタ自動車株式会社 正極材料とこれを用いたリチウム二次電池
JP6791112B2 (ja) * 2017-12-25 2020-11-25 日亜化学工業株式会社 非水系二次電池用正極材料の製造方法
CN109192961B (zh) * 2018-09-20 2020-11-06 昶联金属材料应用制品(广州)有限公司 正极材料的制备方法
KR102629462B1 (ko) 2018-10-04 2024-01-26 삼성전자주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
JP7085135B2 (ja) 2018-10-12 2022-06-16 トヨタ自動車株式会社 正極活物質および該正極活物質を備える二次電池
JP7111638B2 (ja) * 2019-02-21 2022-08-02 トヨタ自動車株式会社 リチウム二次電池の正極材料
GB201913817D0 (en) * 2019-09-25 2019-11-06 Johnson Matthey Plc Process
US20220352505A1 (en) * 2019-11-15 2022-11-03 Vehicle Energy Japan Inc. Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR102633759B1 (ko) * 2020-06-01 2024-02-05 삼성에스디아이 주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
KR102633758B1 (ko) * 2020-06-01 2024-02-05 삼성에스디아이 주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
CN111653752B (zh) * 2020-06-24 2021-11-09 蜂巢能源科技有限公司 一种正极材料、其制备方法和锂离子电池
CN112583071B (zh) * 2020-11-27 2022-08-02 上海航天控制技术研究所 一种深空探测分离监视伴星的供电系统
DE102020132661A1 (de) 2020-12-08 2022-06-09 Bayerische Motoren Werke Aktiengesellschaft Kathodenaktivmaterial und Lithiumionen-Batterie mit dem Kathodenaktivmaterial
KR20230078382A (ko) * 2021-11-26 2023-06-02 삼성에스디아이 주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3677975B2 (ja) * 1996-12-26 2005-08-03 三菱電機株式会社 電極及びこれを用いた電池
JP3811353B2 (ja) * 1997-12-25 2006-08-16 三菱電機株式会社 リチウムイオン二次電池
KR100277796B1 (ko) 1998-02-10 2001-02-01 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법
KR100326455B1 (ko) 1999-03-30 2002-02-28 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법
JP4159212B2 (ja) 1999-11-12 2008-10-01 三洋電機株式会社 非水電解質二次電池
JP2001283861A (ja) * 2000-03-31 2001-10-12 Sony Corp 電池用電極及び非水電解質電池
JP2002060225A (ja) 2000-08-18 2002-02-26 Ishihara Sangyo Kaisha Ltd コバルト酸リチウム凝集体、コバルト酸化物凝集体及びそれらの製造方法並びに該コバルト酸リチウム凝集体を用いてなるリチウム電池
KR100696619B1 (ko) 2000-09-25 2007-03-19 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 그 제조 방법
JP2002158011A (ja) * 2000-09-25 2002-05-31 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法
KR100387079B1 (ko) 2000-11-04 2003-06-18 (주)풍림환경특장 목재파쇄기용 파쇄드럼
US7566479B2 (en) * 2003-06-23 2009-07-28 Lg Chem, Ltd. Method for the synthesis of surface-modified materials
TWI251359B (en) * 2003-10-10 2006-03-11 Lg Cable Ltd Lithium secondary battery having PTC powder and manufacturing method thereof
KR100666821B1 (ko) * 2004-02-07 2007-01-09 주식회사 엘지화학 유/무기 복합 다공성 코팅층이 형성된 전극 및 이를포함하는 전기 화학 소자
JP4625296B2 (ja) * 2004-03-31 2011-02-02 日立マクセル株式会社 非水二次電池およびこれを用いた電子機器
JP4954451B2 (ja) 2004-07-05 2012-06-13 株式会社クレハ リチウム二次電池用正極材およびその製造方法
JP4776918B2 (ja) * 2004-12-24 2011-09-21 日立マクセルエナジー株式会社 非水電解液二次電池
US8728666B2 (en) 2005-04-28 2014-05-20 Nissan Motor Co., Ltd. Positive electrode material for lithium ion battery with nonaqueous electrolyte, and battery using the same
JP5470669B2 (ja) 2005-05-13 2014-04-16 日産自動車株式会社 非水電解リチウムイオン電池用正極材料、これを用いた電池および非水電解リチウムイオン電池用正極材料の製造方法
JP5093997B2 (ja) 2005-06-30 2012-12-12 三洋電機株式会社 非水電解質二次電池及びその製造方法
TWI344235B (en) * 2005-12-06 2011-06-21 Lg Chemical Ltd Electrode with enhanced safety and electrochemical device having the same
KR100889451B1 (ko) * 2006-02-14 2009-03-24 주식회사 엘지화학 분산성이 향상된 나노입자 함유 전극활물질의 제조방법
JP5088727B2 (ja) * 2006-03-17 2012-12-05 日本合成化学工業株式会社 リチウム二次電池
KR100786850B1 (ko) * 2006-11-21 2007-12-20 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
KR101147604B1 (ko) * 2007-10-12 2012-05-23 주식회사 엘지화학 젤리-롤형 전극조립체의 변형을 억제하기 위한 제조방법
KR100947181B1 (ko) * 2007-11-19 2010-03-15 주식회사 엘지화학 다공성 코팅층이 형성된 세퍼레이터 및 이를 구비한전기화학소자
JP2009176597A (ja) * 2008-01-25 2009-08-06 Panasonic Corp 非水電解質二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2554940C2 (ru) * 2012-04-25 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ получения гибридного материала (варианты) для перезаряжаемых химических источников тока
RU2644590C1 (ru) * 2015-11-04 2018-02-13 Тойота Дзидося Кабусики Кайся Вспомогательный аккумулятор с неводным электролитом и способ изготовления вспомогательного аккумулятора с неводным электролитом
RU2737314C2 (ru) * 2016-09-09 2020-11-27 Раи Стретеджик Холдингс, Инк. Источник питания для устройства доставки аэрозоля
RU2749604C1 (ru) * 2018-05-21 2021-06-16 Микроваст Пауэр Системс Ко., Лтд. Способ получения частиц прекурсора, частица прекурсора, полученная этим способом, и способ получения активных катодных частиц
RU2749535C1 (ru) * 2018-06-11 2021-06-15 Микроваст Пауэр Системс Ко., Лтд. Способ получения частиц прекурсора и частица прекурсора, полученная этим способом

Also Published As

Publication number Publication date
TWI398033B (zh) 2013-06-01
EP2362972A4 (en) 2012-06-27
JP5231631B2 (ja) 2013-07-10
EP2362972B1 (en) 2014-03-19
WO2010053222A1 (en) 2010-05-14
JP2011519142A (ja) 2011-06-30
EP2362972A1 (en) 2011-09-07
US8367247B2 (en) 2013-02-05
CN101884126A (zh) 2010-11-10
BRPI0808316A2 (pt) 2015-07-28
CA2674756A1 (en) 2010-05-10
CN101884126B (zh) 2014-07-02
KR101050438B1 (ko) 2011-07-19
TW201019520A (en) 2010-05-16
KR20100052116A (ko) 2010-05-19
AR074079A1 (es) 2010-12-22
AU2008349764A1 (en) 2010-05-27
US20100310940A1 (en) 2010-12-09
AU2008349764B2 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
RU2408112C1 (ru) Активный материал катода для литиевых батарей, способ изготовления материала и литиевые батареи, включающие этот материал
KR101105879B1 (ko) 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
KR100889622B1 (ko) 안전성이 우수한 리튬 이차전지용 양극 활물질 및 그제조방법과 이를 포함하는 리튬 이차전지
CN107615531B (zh) 含过渡金属的复合氢氧化物及制造方法、非水电解质二次电池及其正极活性物质及制造方法
US8808916B2 (en) Cathode active material for lithium secondary batteries, method for preparing the same, and lithium secondary batteries comprising the same
US9172091B2 (en) Core-shell type anode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries comprising the same
TW201417380A (zh) 鋰離子二次電池用電極材料、此電極材料的製造方法及鋰離子二次電池
KR101823729B1 (ko) 리튬 금속 산화물 및 이를 포함하는 리튬 이차전지용 음극 활물질, 및 이의 제조방법
KR20180053411A (ko) 충전식 배터리용 리튬 전이금속 산화물 캐소드 재료를 위한 전구체
KR100938138B1 (ko) 도전성이 우수한 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20190403

MM4A The patent is invalid due to non-payment of fees

Effective date: 20191112