TW201732067A - 半導體元件用磊晶基板、半導體元件以及半導體元件用磊晶基板之製造方法 - Google Patents

半導體元件用磊晶基板、半導體元件以及半導體元件用磊晶基板之製造方法 Download PDF

Info

Publication number
TW201732067A
TW201732067A TW105135302A TW105135302A TW201732067A TW 201732067 A TW201732067 A TW 201732067A TW 105135302 A TW105135302 A TW 105135302A TW 105135302 A TW105135302 A TW 105135302A TW 201732067 A TW201732067 A TW 201732067A
Authority
TW
Taiwan
Prior art keywords
substrate
layer
buffer layer
semiconductor device
gan
Prior art date
Application number
TW105135302A
Other languages
English (en)
Other versions
TWI710657B (zh
Inventor
Mikiya Ichimura
Sota Maehara
Yoshitaka Kuraoka
Original Assignee
Ngk Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators Ltd filed Critical Ngk Insulators Ltd
Publication of TW201732067A publication Critical patent/TW201732067A/zh
Application granted granted Critical
Publication of TWI710657B publication Critical patent/TWI710657B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10344Aluminium gallium nitride [AlGaN]

Abstract

本發明係提供經抑制電流崩塌發生的半導體元件用磊晶基板。半導體元件用磊晶基板係包括:由經摻雜Zn的GaN所構成半絕緣性獨立式基板、鄰接上述獨立式基板的緩衝層、鄰接上述緩衝層的通道層、以及設置於上述緩衝層對向側呈夾置上述通道層狀態的障壁層;上述緩衝層係由AlpGa1-pN(0.7≦p≦1)構成,且抑制Zn從上述獨立式基板擴散於上述通道層的擴散阻障層。

Description

半導體元件用磊晶基板、半導體元件以及半導體元件用磊晶基板之製造方法
本發明係關於半導體元件,特別係關於使用由半絕緣性GaN所構成獨立式基板形成的半導體元件。
氮化物半導體係因為具有直接躍遷式寬能階,且具有高絕緣崩潰電場、高飽和電子速度,故而利用為LED、LD等發光裝置、高頻/高功率的電子裝置用半導體材料。
氮化物電子裝置的代表性構造係有如由以AlGaN為「障壁層」、以GaN為「通道層」進行積層形成的高電子遷移率電晶體(HEMT)構造。此係活用利用氮化物材料特有較大的極化效應(自發性極化效應與壓電極化效應),而在AlGaN/GaN積層界面處生成高濃度二維電子氣體的特徵。
氮化物電子裝置一般係使用藍寶石、SiC、Si之類商業上容易取得的異種材料底層基板製作而成。然而,在該等異種材料基板上進行異質磊晶成長的GaN膜中,會有因GaN與異種材料基板間之晶格常數、熱膨脹係數的差異,而造成產生多數缺陷的問題。
另一方面,在GaN基板上使GaN膜進行同質磊晶成長時,不會有上述因晶格常數、熱膨脹係數差異而造成的缺 陷發生,使GaN膜呈良好的結晶性。
故,當在GaN基板上製作氮化物HEMT構造時,會提升在AlGaN/GaN積層界面所存在二維電子氣體的遷移率,因而使用該構造所製作的HEMT元件(半導體元件)可期待獲特性提升。
但,商業上可取得依氫化物氣相磊晶法(HVPE法)製作的GaN基板,一般會因被取入於結晶內的氧雜質而呈現n型電導型。導電性GaN基板在HEMT元件進行高電壓驅動時,會成為源極-汲極間的漏電流路徑。所以,為製作HEMT元件,最好利用半絕緣性GaN基板。
為實現半絕緣性GaN基板,已知將過渡金屬元素(例如Fe)、第IIA族元素(例如Mg)之類形成深受體能階的元素,摻雜於GaN結晶中係屬有效。
第IIA族元素中,藉由選擇鋅元素(Zn),便可實現高品質的半絕緣性GaN單晶基板,此已屬公知事實(例如參照專利文獻1)。相關GaN結晶中的Zn元素擴散尚未有調查,在高溫環境下發生擴散,且擴散容易度係依存於GaN結晶的結晶性(例如參照非專利文獻4)。又,在基板上形成經摻雜過渡金屬元素之鐵(Fe)的高電阻層,更在該高電阻層與電子走行層之間形成Fe取入效果較高的中間層,藉此防止Fe進入於電子走行層的態樣亦屬公知(例如參照專利文獻2)。
已然有在半絕緣性GaN基板上、或具半絕緣性GaN膜之基板上製作HEMT構造,並針對諸項特性施行評價(例如參照非專利文獻1至非專利文獻3)。
在經摻雜過渡金屬元素或第IIA族元素而成的半絕緣性GaN單晶基板上,進行磊晶成長GaN膜而形成半導體元件用磊晶基板時,Fe、Mg、Zn等受體元素會擴散於GaN膜中,因為在膜中呈現電子陷阱(electron-trap)的作用,因而會有發生電流崩塌(current collapse)現象的問題(例如參照專利文獻3)。專利文獻3主旨在於揭示Fe、Mg等受體元素較容易擴散,此現象成為電流崩塌的肇因。
[先行技術文獻]
[專利文獻]
【專利文獻1]日本專利第5039813號公報
【專利文獻2]日本專利特開2013-74211號公報
【專利文獻3]日本專利特開2010-171416號公報
[非專利文獻]
[非專利文獻1]Yoshinori Oshimura, Takayuki Sugiyama, Kenichiro Takeda, Motoaki Iwaya, Tetsuya Takeuchi, Satoshi Kamiyama, Isamu Akasaki, and Hiroshi Amano, "AlGaN/GaN Heterostructure Field-Effect Transistors on Fe-Doped GaN Substrates with High Breakdown Voltage", Japanese Journal of Applied Physics, vol.50 (2011), p.084102-1-p.084102-5.
[非專利文獻2]V. Desmaris, M. Rudzinski, N. Rorsman, P.R. Hageman, P.K. Larsen, H. Zirath, T.C. Rodle, and H.F.F. Jos, "Comparison of the DC and Microwave Performance of AlGaN/GaN HEMTs Grown on SiC by MOCVD With Fe-Doped or Unintentionally Doped GaN Buffer Layers", IEEE Transactions on Electron Devices, Vol.53, No.9, pp.2413-2417, September 2006.
[非專利文獻3]M. Azize, Z. Bougrioua, and P. Gibart, "Inhibition of interface pollution in AlGaN/GaN HEMT structures regrown on semi-insulating GaN templates", Journal of Crystal Growth, vol.299 (2007), p.103-p.108.
[非專利文獻4]T. Suzuki, J. Jun, M. Leszczynski, H. Teisseyre, S. Strite, A. Rockett, A. Pelzmann, M. Camp, and K. J. Ebeling, "Optical actvation and diffusivity of ion-implanted Zn acceptors in GaN under high-pressure, high-temperature annealing", Journal of Applied Physics, Vol.84 (1998), No.2, pp.1155-1157.
本發明係有鑑於上述課題而完成,目的在於提供:經抑制電流崩塌發生的半導體元件用磊晶基板。
為解決上述課題,本發明第1態樣的半導體元件用磊晶基板,係包括:由經摻雜Zn的GaN所構成半絕緣性獨立式基板、鄰接上述獨立式基板的緩衝層、鄰接上述緩衝層的通道層、以及設置於上述緩衝層對向側呈夾置上述通道層狀態的障壁層;上述緩衝層係由AlpGa1-pN(0.7≦p≦1)構成,且抑制Zn從上述獨立式基板擴散於上述通道層的擴散阻障層。
本發明第2態樣係就第1態樣的半導體元件用磊 晶基板,其中,上述獨立式基板的差排密度係5.0×107cm-2以下,上述緩衝層的厚度係1nm以上且100nm以下。
本發明第3態樣係就第2態樣的半導體元件用磊晶基板,其中,上述通道層的Zn濃度係1×1016cm-3以下。
本發明第4態樣係就第1至第3態樣中任一態樣之半導體元件用磊晶基板,其中,上述緩衝層係由AlpGa1-pN(0.9≦p≦1)構成。
本發明第5態樣係就第1至第3態樣中任一態樣之半導體元件用磊晶基板,其中,上述緩衝層的厚度係2nm以上且20nm以下。
本發明第6態樣係就第1至第3態樣中任一態樣之半導體元件用磊晶基板,其中,上述通道層係由GaN構成,上述障壁層係由AlGaN構成。
本發明第7態樣的半導體元件,係包括:由經摻雜Zn的GaN所構成半絕緣性獨立式基板、鄰接上述獨立式基板的緩衝層、鄰接上述緩衝層的通道層、設置於上述緩衝層對向側呈夾置上述通道層狀態的障壁層、以及在上述障壁層上設置的閘極、源極及汲極;其中,上述緩衝層係由AlpGa1-pN(0.7≦p≦1)構成,且抑制Zn從上述獨立式基板擴散於上述通道層的擴散阻障層。
本發明第8態樣係就第7態樣的半導體元件,其中,上述獨立式基板的差排密度係5.0×107cm-2以下,上述緩衝層的厚度係1nm以上且100nm以下。
本發明第9態樣係就第8態樣的半導體元件,其中,上述通道層的Zn濃度係1×1016cm-3以下。
本發明第10態樣係就第7至第9態樣中任一態樣之半導體元件,其中,上述緩衝層係由AlpGa1-pN(0.9≦p≦1)構成。
本發明第11態樣係就第7至第9態樣中任一態樣之半導體元件,其中,上述緩衝層的厚度係2nm以上且20nm以下。
本發明第12態樣係就第7至第9態樣中任一態樣之半導體元件,其中,上述通道層係由GaN構成,上述障壁層係由AlGaN構成。
本發明第13態樣的製造半導體元件用磊晶基板之方法,係包括:a)準備由經摻雜Zn的GaN所構成半絕緣性獨立式基板的準備步驟;b)鄰接上述獨立式基板形成緩衝層的緩衝層形成步驟;c)鄰接上述緩衝層形成通道層的通道層步驟;以及d)在位於上述緩衝層對向側位置處呈夾置上述通道層狀態形成障壁層的障壁層形成步驟;其中,緩衝層形成步驟中,所形成的上述緩衝層係由AlpGa1-pN(0.7≦p≦1)構成,且抑制Zn從上述獨立式基板擴散於上述通道層的擴散阻障層。
本發明第14態樣係就第13態樣的半導體元件用磊晶基板之製造方法,其中,在上述準備步驟中準備差排密度5.0×107cm-2以下的上述獨立式基板;在上述緩衝層形成步驟中,上述緩衝層係形成1nm以上且100nm以下的厚度。
本發明第15態樣係就第14態樣的半導體元件用磊晶基板之製造方法,其中,上述緩衝層形成步驟中,依上述通道層的Zn濃度成為1×1016cm-3以下的方式形成上述緩衝層。
本發明第16態樣係就第13至第15態樣中任一態樣之半導體元件用磊晶基板之製造方法,其中,在上述緩衝層 形成步驟中,上述緩衝層係由AlpGa1-pN(0.9≦p≦1)形成。
本發明第17態樣係就第13至第15態樣中任一態樣之半導體元件用磊晶基板之製造方法,其中,在上述緩衝層形成步驟中,上述緩衝層係形成2nm以上且20nm以下的厚度。
本發明第18態樣係就第13至第15態樣中任一態樣之半導體元件用磊晶基板之製造方法,其中,上述通道層係由GaN形成,上述障壁層係由AlGaN形成。
本發明第19態樣係就第13至第15態樣中任一態樣之半導體元件用磊晶基板之製造方法,其中,上述獨立式基板係利用通量法製作。
本發明第20態樣係就第13至第15態樣中任一態樣之半導體元件用磊晶基板之製造方法,其中,上述緩衝層的形成溫度係700℃以上且1200℃以下。
本發明第21態樣係就第20態樣的半導體元件用磊晶基板之製造方法,其中,上述緩衝層的形成溫度係900℃以上且1200℃以下。
根據本發明第1至第21態樣,在使用半絕緣性GaN獨立式基板狀態下,實現經減輕電流崩塌地半導體元件。
1‧‧‧獨立式基板
2‧‧‧緩衝層
3‧‧‧通道層
4‧‧‧障壁層
5‧‧‧源極
6‧‧‧汲極
7‧‧‧閘極
10‧‧‧磊晶基板
20‧‧‧HEMT元件
圖1係HEMT元件20的截面構造示意圖。
圖2係樣品No.1-4的HEMT元件之STEM觀察影像。
圖3係構成樣品No.1-4之HEMT元件的磊晶基板中,Zn元素濃度分佈與Al元素二次離子訊號分佈的合圖。
圖4係構成樣品No.1-1的HEMT元件之磊晶基板中,Zn元素濃度分佈與Al元素二次離子訊號分佈的合圖。
本說明書中所示週期表的族編號係根據1989年國際理論與應用化學聯合會(International Union of Pure Applied Chemistry:IUPAC)的無機化學命名法修訂版之第IA~VIIIA族編號表示,第IIIA族係指鋁(Al)、鎵(Ga)、銦(In)等,第IVA族係指矽(Si)、鍺(Ge)、錫(Sn)、鉛(Pb)等,第VA族係指氮(N)、磷(P)、砷(As)、銻(Sb)等。
<磊晶基板及HEMT元件之概要>
圖1係含有本發明半導體元件用磊晶基板一實施形態之磊晶基板10所構成,本發明半導體元件一實施形態的HEMT元件20之截面構造示意圖。
磊晶基板10係包括:獨立式基板1、緩衝層2、通道層3及障壁層4。又,HEMT元件20係在磊晶基板10上(障壁層4上)設有源極5、汲極6及閘極7。另外,圖1中的各層厚度比率並非反映實際狀態。
獨立式基板1係經Zn摻雜1×1018cm-3以上的(0001)面方位GaN基板,在室溫下呈比電阻1×102Ωcm以上的半絕緣性。又,就從Zn擴散於通道層3的觀點,獨立式基板1的差排密度較佳係5×107cm2以下。獨立式基板1的尺寸並無特別的限制,若考慮處置(握持、移動等)的容易度等,較佳係具有數百μm~數mm程度的厚度。該獨立式基板1係例如可利用通量(Flux)法製作。
利用通量法進行的獨立式基板1之形成,概略係在耐壓容器內呈水平旋轉自如配置的育成容器(氧化鋁坩堝)內,將種子基板浸漬於含有金屬Ga、金屬Na、金屬Zn、及C(碳)的熔液中,在使育成容器進行水平旋轉狀態下,藉由一邊導入氮氣、一邊將育成容器內保持既定溫度與既定壓力,而將在種子基板上所形成的GaN單晶,從種子基板上分離便可獲得。種子基板最好使用利用MOCVD法在藍寶石基板上形成GaN薄膜之所謂模板基板等。
緩衝層2係在獨立式基板1其中一主面上(鄰接)形成之具有1nm~100nm厚度的層。本實施形態中,緩衝層2係不同於所謂依未滿800℃低溫形成之所謂低溫緩衝層,而是依照與通道層3、障壁層4之形成溫度相同程度的溫度形成。
本實施形態的磊晶基板10中,緩衝層2係設計成在製作於獨立式基板1中摻雜Zn形成的磊晶基板10時,抑制擴散於通道層3甚至其上方障壁層4的擴散阻障層。該緩衝層2較佳一例係由AlpGa1-pN(0.7≦p≦1)組成的AlGaN層構成。該情況,較佳抑制Zn從獨立式基板1擴散於通道層3,甚至在使用磊晶基板10製作的HEMT元件20中,電流崩塌會受最佳抑制。
緩衝層2較佳係設計為2nm~20nm厚度。又,較佳緩衝層2係形成具有AlpGa1-pN(0.9≦p≦1)組成狀態。該等情況,使用磊晶基板10製作的HEMT元件20中,電流崩塌會受更進一步抑制。
另外,緩衝層2的厚度亦可大於100nm,但該情況會有磊晶基板10的表面(障壁層4的表面)發生龜裂之可能性。
再者,緩衝層2的厚度小於1nm的情況、或緩衝層2的Al莫耳比p小於0.7的情況,無法充分獲得抑制Zn擴散的效果,結果無法充分抑制電流崩塌,故非屬較佳。
通道層3係在緩衝層2上(鄰接)形成的層。通道層3係形成50nm~5000nm程度的厚度。又,障壁層4係設置在緩衝層2的對向側設計成夾置通道層3狀態的層。障壁層4係形成2nm~40nm程度的厚度。
障壁層4係如圖1所示,亦可鄰接通道層3形成,此情況,二層的界面成為異質接面界面。或者,亦可在通道層3與障壁層4之間設置未圖示的間隔層,此情況,從通道層3與間隔層的界面起至障壁層4與間隔層的界面間之區域便成為異質接面界面區域。
任一情況的較佳一例均係通道層3由GaN形成,障壁層4由AlGaN(AlxGa1-xN、0<x<1)或InAlN(InyAl1-yN、0<y<1)形成。但,通道層3與障壁層4的組合並不僅侷限於此。
緩衝層2、通道層3、及障壁層4的形成係例如利用MOCVD法實現。利用MOCVD法進行的層形成係例如當緩衝層2由AlpGa1-pN形成、通道層3由GaN形成、障壁層4由AlGaN形成的情況,便使用構成可將相關Ga、Al的有機金屬(MO)原料氣體(TMG、TMA)、氨氣、氫氣、以及氮氣,供應給反應器內的公知MOCVD爐,於將反應器內所載置的獨立式基板1加熱至既定溫度狀態,藉由使各層所對應的有機金屬原料氣體、與氨氣進行氣相反應,便在獨立式基板1上依序沉積由該反應所生成的GaN結晶、AlGaN結晶而實施。
源極5與汲極6分別係具有十數nm~百數十nm程度厚度的金屬電極。源極5與汲極6最好係例如形成由Ti/Al/Ni/Au所構成的多層電極。源極5與汲極6係在與障壁層4之間具有歐姆性接觸。源極5與汲極6較佳一例係利用真空蒸鍍法與光學微影製程形成。另外,為提升二電極的歐姆性接觸,最好在電極形成後,於650℃~1000℃間的既定溫度氮氣環境中施行數十秒鐘的熱處理。
閘極7分別係具有十數nm~百數十nm程度厚度的金屬電極。閘極7最好係例如由Ni/Au所構成多層電極形成。閘極7係在與障壁層4之間具有肖特基性接觸。閘極7較佳一例係利用真空蒸鍍法與光學微影製程形成。
<磊晶基板及HEMT元件之製作方法>
(獨立式基板之製作)
首先,針對利用通量法進行的獨立式基板1之製作順序進行說明。
首先準備具有與所欲製作獨立式基板1的直徑為同程度直徑之c面藍寶石基板,在其表面上,依450℃~750℃溫度形成10nm~50nm程度厚度的GaN低溫緩衝層,然後,於1000℃~1200℃溫度下,利用MOCVD法形成厚度1μm~10μm程度的GaN薄膜,便獲得可利用為種子基板的MOCVD-GaN模板。
其次,以所獲得MOCVD-GaN模板為種子基板,利用Na通量法形成摻雜Zn之GaN單晶層。
具體而言,首先在氧化鋁坩堝內載置MOCVD-GaN模板,接著在該氧化鋁坩堝內分別填充入金屬Ga:10g~60g、 金屬Na:15g~90g、金屬Zn:0.1g~5g、C:10mg~500mg。
將該氧化鋁坩堝放入加熱爐中,將爐內溫度設為800℃~950℃,並將爐內壓力設為3MPa~5MPa,施行20小時~400小時左右的加熱,然後冷卻至室溫。經冷卻結束後,從爐內取出氧化鋁坩堝。依照以上順序,獲得表面上依300μm~3000μm厚度沉積褐色GaN單晶層的MOCVD-GaN模板。
依此所獲得GaN單晶層使用鑽石磨粒施行研磨,使表面平坦化。藉此獲得在MOCVD-GaN模板上形成GaN單晶層的Flux-GaN模板。其中,研磨係依Flux-GaN模板的氮化物層總厚度,保持充分大於最終所欲獲得獨立式基板1之目標厚度值的範圍實施。
其次,利用雷射剝離法,從種子基板側將雷射光依0.1mm/秒~100mm/秒的掃描速度進行掃描並照射,而從Flux-GaN模板分離出種子基板。雷射光最好使用例如波長355nm之Nd:YAG三次諧波。該情況,脈衝寬係只要1ns~1000ns、脈衝週期係1kHz~200kHz程度便可。照射時,最好將雷射光進行適當聚光,而調整光密度。又,雷射光的照射最好在針對Flux-GaN模板從種子基板的對向側依30℃~600℃程度的溫度施行加熱狀態下實施。
經分離出種子基板後,針對從所獲得積層構造體的種子基板剝離之一側的面施行研磨處理。藉此,獲有由經依1×1018cm-3以上濃度摻雜Zn的GaN所構成獨立式基板(摻雜Zn之GaN單晶獨立式基板)1。
另外,獨立式基板1的差排密度控制係利用使在 Flux-GaN模板上所形成摻雜Zn之GaN單晶層的厚度差異而實施。此係利用若摻雜Zn之GaN單晶層形成越厚,則在其上面便形成差排密度越低的區域。所以,藉由適當決定摻雜Zn之GaN單晶層的形成厚度、與經雷射剝離後的研磨量,亦可獲得如上述差排密度在5×107cm2以下的獨立式基板1。
(磊晶基板之製作)
接著,針對利用MOCVD法施行的磊晶基板10之製作進行說明。磊晶基板10係在將獨立式基板1載置於MOCVD爐的反應器內所設置承載器上的狀態下,依照下述條件依序積層形成緩衝層2、通道層3、及障壁層4而獲得。另外,形成溫度係指承載器加熱溫度。
另外,本實施形態中,所謂「第VA族/第1IIA族氣體比」係指第VA族(N)原料的氨供應量,相對於第IIIA族(Ga、Al、In)原料的TMG(三甲基鎵)、TMA(三甲基鋁)、及TMI(三甲基銦)總供應量之比(莫耳比)。又,障壁層4係由AlGaN形成時的Al原料氣體/第IIIA族原料氣體比,係Al原料供應量相對於第IIIA族(Ga、Al)原料全體供應量的比(莫耳比),當障壁層4係由InAlN形成時的Al原料氣體/第IIIA族原料氣體比,係In原料供應量相對於第IIIA族(In、Al)原料全體供應量的比(莫耳比)。且,配合所需障壁層4的組成(Al莫耳比x或In組成比y)而決定。
緩衝層2:形成溫度=700℃~1200℃(較佳900℃~1200℃);反應器內壓力=5kPa~30kPa; 載氣=氫;第VA族/第IIIA族氣體比=5000~20000;Al原料氣體/第IIIA族原料氣體比=0.7~1.0。
通道層3:形成溫度=1000℃~1200℃;反應器內壓力=15kPa~105kPa;載氣=氫;第VA族/第IIIA族氣體比=1000~10000。
障壁層4(由AlGaN形成的情況):形成溫度=1000℃~1200℃;反應器內壓力=1kPa~30kPa;第VA族/第IIIA族氣體比=5000~20000;載氣=氫;Al原料氣體/第IIIA族原料氣體比=0.1~0.4。
障壁層4(由InAlN形成的情況):形成溫度=700℃~900℃;反應器內壓力=1kPa~30kPa;第VA族/第IIIA族氣體比=2000~20000;載氣=氮;In原料氣體/第IIIA族原料氣體比=0.1~0.9。
(HEMT元件之製作)
使用磊晶基板10的HEMT元件20之製作,係藉由使用公知技術便可實現。
例如使用光學微影製程與RIE(Reactive Ion Etching,反應性離子蝕刻)法,施行將各個元件成為邊界的部位利用蝕刻除去至50nm~1000nm程度的元件分離處理後,在磊晶基板10的表面(障壁層4的表面)上形成厚度50nm~500nm的SiO2膜,接著使用光學微影將預定形成源極5與汲極6地方的SiO2膜予以蝕刻除去,而獲得SiO2圖案層。
接著,使用真空蒸鍍法與光學微影製程,在預定形成源極5與汲極6的地方,形成由Ti/Al/Ni/Au所構成金屬圖案,藉此形成源極5與汲極6。各個金屬層的厚度依序較佳係設為5nm~50nm、40nm~400nm、4nm~40nm、及20nm~200nm。
然後,為使源極5與汲極6的歐姆性呈良好,便在600℃~1000℃氮氣環境中施行10秒鐘~1000秒鐘的熱處理。
接著,使用光學微影製程,從SiO2圖案層中,除去閘極7預定形成地方的SiO2膜。
再者,使用真空蒸鍍法與光學微影製程,藉由在閘極7預定形成地方形成由Ni/Au所構成肖特基性金屬圖案,而形成閘極7。各金屬層的厚度較佳係設為4nm~40nm及20nm~200nm。
利用以上製程,獲得HEMT元件20。
(緩衝層之效果)
依如上述,本實施形態的HEMT元件20中,獨立式基板1係由Zn依1×1018cm-3以上濃度摻雜的GaN所構成,且緩衝層2係為在磊晶基板10製作時,發揮防止Zn從獨立式基板1擴散於通道層3的擴散阻障層功能而設置。更具體而言,緩衝層2係AlpGa1-pN(0.7≦p≦1)組成的AlGaN層。
假設緩衝層2的Al莫耳比p小於0.7的情況,Zn會從緩衝層2擴散於通道層3(甚至擴散於障壁層4)。此情況,具受體元素功能的Zn便會產生電子陷阱的作用,致使HEMT元件20發生電流崩塌現象。
然而,本實施形態的HEMT元件20,藉由利用Al莫耳比p達0.7以上的AlGaN層形成緩衝層2,而抑制Zn從獨立式基板1的擴散,結果適當地抑制發生電流崩塌。更具體而言,若通道層的Zn濃度在1×1016cm-3以下,便可適當地抑制HEMT元件20發生電流崩塌。
依上述所說明,根據本實施形態,使用半絕緣性GaN獨立式基板,可獲得經抑制發生電流崩塌的半導體元件。
[實施例]
(實驗例1)
在製作摻雜Zn之GaN單晶獨立式基板後,將該獨立式基板當作底層基板,除緩衝層厚度不同之外,其餘均依照相同條件製作7種磊晶基板。然後,使用各個磊晶基板製作HEMT元件。以後,針對7種磊晶基板、與分別使用其所製作的HEMT元件,使用共通的樣品No.1-1~No.1-7。
[利用通量法所進行摻雜Zn之GaN單晶基板的製作]
在直徑2吋、厚度0.43mm的c面藍寶石基板表面上,於550℃下形成30nm的GaN低溫緩衝層,然後於1050℃下利用MOCVD法形成厚度3μm的GaN薄膜,便獲得可利用為種子基板的MOCVD-GaN模板。
以所獲得MOCVD-GaN模板為種子基板,利用Na 通量法形成摻雜Zn之GaN單晶層。
具體而言,首先在氧化鋁坩堝內載置MOCVD-GaN模板,接著在該氧化鋁坩堝內分別填充入金屬Ga:30g、金屬Na:45g、金屬鋅:1g、以及碳:100mg。該氧化鋁坩堝放入加熱爐中,將爐內溫度設為850℃、爐內壓力設為4.5MPa,施行約100小時的加熱,然後冷卻至室溫。待冷卻結束後,從爐內取出氧化鋁坩堝,便在MOCVD-GaN模板的表面依約1000μm厚度沉積褐色GaN單晶層。
針對依此所獲得GaN單晶層,使用鑽石磨粒施行研磨而使表面平坦化,且使在底層基板上所形成氮化物層的總厚成為900μm狀態。藉此獲得在MOCVD-GaN模板上形成GaN單晶層的Flux-GaN模板。另外,經肉眼觀察該Flux-GaN模板,並無發現到龜裂。
其次,利用雷射剝離法,將雷射光從種子基板之一側依30mm/秒的掃描速度進行掃描且照射,藉此從Flux-GaN模板上分離出種子基板。雷射光係使用波長355nm的Nd:YAG三次諧波。脈衝寬設為約30ns、脈衝週期設為約50kHz。照射時,藉由將雷射光施行聚光而形成直徑約20μm的圓形狀光束,藉此使光密度成為1.0J/cm程度。又,雷射光的照射係在將Flux-GaN模板從種子基板對向側依50℃前後溫度施行加熱狀態下實施。
經分離種子基板後,藉由將所獲得積層構造體的種子基板從剝離之一側的面施行研磨處理,便獲得總厚430μm的摻雜Zn之GaN獨立式基板。
針對所獲得摻雜Zn之GaN基板的結晶性,使用X 射線搖擺曲線施行評價。(0002)面反射的半值寬係120秒,(10-12)面反射的半值寬係150秒,呈現良好結晶性。
[利用MOCVD法進行的磊晶基板之製作]
接著,利用MOCVD法製作磊晶基板。具體而言,依照以下條件在上述摻雜Zn之GaN基板上,依序積層形成:緩衝層之AlN層(即p=1)、通道層之GaN層、障壁層之AlGaN層。另外,以下所謂「第VA族/第IIIA族氣體比」係指第VA族(N)原料供應量,相對於第IIIA族(Ga、Al)原料供應量之比(莫耳比)。
摻雜Al之GaN緩衝層:形成溫度=1050℃;反應器內壓力=5kPa;第VA族/第IIIA族氣體比=15000;Al原料氣體/第IIIA族原料氣體比=1.0;厚度=0、1、2、10、20、100、或200nm。
GaN通道層:形成溫度=1050℃;反應器內壓力=100kPa;第VA族/第IIIA族氣體比=2000;厚度=1000nm。
AlGaN障壁層:形成溫度=1050℃;反應器內壓力=5kPa;第VA族/第IIIA族氣體比=12000;Al原料氣體/第IIIA族氣體比=0.25; 厚度=25nm。
另外,相關各層的厚度係指目標厚度。0nm厚度摻雜Al之GaN緩衝層的磊晶基板,即指在未形成摻雜Al之GaN緩衝層的摻雜Zn之GaN基板上,直接形成GaN通道層的磊晶基板。
依照上述條件依序形成各層後,將承載器溫度降溫至室溫附近,使反應器內回歸至大氣壓後,取出所製作的磊晶基板。
[HEMT元件之製作]
其次,使用各磊晶基板製作HEMT元件。另外,HEMT元件係設計成:閘極幅100μm、源極-閘極間隔1μm、閘極-汲極間隔4μm、閘極長1μm狀態。
首先,使用光學微影製程與RIE法,將成為各元件邊界的部位施行蝕刻除去至深度100nm左右。
其次,在磊晶基板上形成厚度100nm的SiO2膜,接著使用光學微影將預定形成源極、汲極地方的SiO2膜予以蝕刻除去,而獲得SiO2圖案層。
其次,使用真空蒸鍍法與光學微影製程,藉由在預定形成源極、汲極的地方,形成由Ti/Al/Ni/Au(膜厚分別係25/200/20/100nm)所構成的金屬圖案,而形成源極及汲極。接著,為使源極及汲極的歐姆性呈良好,便在825℃氮氣環境中施行30秒鐘的熱處理。
然後,使用光學微影製程,從SiO2圖案層除去預定形成閘極地方的SiO2膜。
再者,使用真空蒸鍍法與光學微影製程,藉由在 預定形成閘極的地方,形成由Ni/Au(膜厚分別係20/100nm)所構成的肖特基性金屬圖案,而形成閘極。
利用以上製程便獲得7種HEMT元件。該等經利用干涉相位差顯微鏡(Differential interference contrast microscope;DIC)觀察,結果僅樣品No.1-7的HEMT元件在磊晶基板的表面(即障壁層表面)有發現到龜裂。
[HEMT元件之STEM及EDS評價]
針對各樣品施行STEM(掃描穿透式電子顯微鏡)觀察,根據該觀察結果確認緩衝層的厚度、與GaN基板的貫通差排密度,結果任一樣品均係緩衝層2有形成目標厚度。又,GaN基板的貫通差排密度約2×106cm-2
另外,貫通差排密度係係根據依針對獨立式基板的複數視野,依較圖1所示影像的觀察倍率更低倍率觀察時,在各視野中所確認到的差排個數計算出。
圖2所示係樣品No.1-4的HEMT元件之STEM觀察影像。圖2中各點1~點3所示地方係被測定地方,針對GaN基板、緩衝層、通道層利用EDS(能量散佈式X射線分析)施行組成分析,結果如表1所示。
如表1所示,確認到緩衝層的組成確實係AlN。
[HEMT元件之SIMS評價]
針對所獲得各HEMT元件,利用SIMS(二次離子質量分析法)施行磊晶基板深度方向的元素分析,獲得Zn元素與Al元素的濃度分佈。
圖3所示係構成樣品No.1-4之HEMT元件的磊晶基板中,Zn元素的濃度分佈、與Al元素的二次離子訊號分佈之合圖。圖4所示係構成樣品No.1-1之HEMT元件的磊晶基板中,Zn元素的濃度分佈、與Al元素的二次離子訊號分佈之合圖。
由圖3的濃度分佈得知以下事項。
(1)在GaN基板中Zn元素呈高濃度(1×1019cm-3)摻雜。
(2)從緩衝層與GaN基板的界面起至基板側依高濃度存在的Zn元素濃度,在緩衝層內急遽減少,更在通道層內徐緩減少,SIMS(Secondary Ion Mass Spectrometry,二次離子質譜)測定,到達Zn檢測下限值(背景等級(background level))的5×1015cm-3
另外,該等(1)~(2)事項係除樣品No.1-2的HEMT元件中,通道層的Zn元素濃度值下限值為8×1015cm-3之外,其餘樣品No.1-2~No.1-6的HEMT元件均同樣。此現象意味著樣品No.1-2~No.1-6的HEMT元件中,摻雜於GaN基板中的Zn元素擴散於通道層情況已受抑制。
另一方面,從圖4的濃度分佈得知以下事項。
(3)在GaN基板中高濃度(1×1019cm-3)摻雜Zn元素。
(4)Zn元素雖在通道層內徐緩減少,但程度較樣品 No.1-4的HEMT元件趨緩,在障壁層附近所存在的Zn元素亦是較樣品No.1-4的HEMT元件高出1階以上的8×1016cm-3以上濃度。
該等(3)~(4)事項意味著樣品No.1-1的HEMT元件中,摻雜於GaN基板內的Zn元素已擴散於通道層。
以上的結果意味著藉由在摻雜Zn之GaN基板與通道層之間設置AlN緩衝層,便可抑制Zn從基板擴散於通道層,即AlN緩衝層具有擴散阻障層的機能。
[HEMT元件之電氣特性評價]
使用半導體參數分析儀,利用DC模式及脈衝模式(靜態汲極偏壓Vdq=30V、靜態閘極偏壓Vgq=-5V)評價樣品No1-1~6的HEMT元件之汲極電流-汲極電壓特性(Id-Vd特性)。夾止(pinch-off)臨限值電壓係Vg=-3V。
供評價電流崩塌用的指標係採用施加汲極電壓Vd=5V、閘極電壓Vg=2V施加時DC模式的汲極電流IdDC、與脈衝模式的汲極電流Idpulse之比R(=Idpulse/IdDC、0≦R≦1),針對各HEMT元件進行求取。另外,若該R值達0.7以上便可判定電流崩塌少。
表2所示係針對實驗例1的各樣品,從濃度分佈所求得通道層的Zn濃度與R值,以及緩衝層厚度、緩衝層之Al濃度p、磊晶基板表面上有無龜裂(表1中記載為「膜龜裂」,以下實驗例中亦同)的一覽表。另外,Zn濃度係對象層厚度方向中央部分的值(以下實驗例亦同)。又,表2亦合併標示各樣品係屬於本發明實施例與比較例中之何者。
[表2]
如表2所示,未具緩衝層的樣品No.1-1之HEMT元件,通道層的Zn濃度為8×1016cm-3,大於1×1016cm-3,R值滯留於0.25。
相對於此,緩衝層厚度1nm~100nm的樣品No.1-2~No.1-6之HEMT元件,通道層的Zn濃度在1×1016cm-3以下,R值達0.70以上。即,樣品No.1-2~No.1-6的HEMT元件可謂電流崩塌小。
特別係緩衝層厚度2nm~20nm的樣品No.1-3~No.1-5之HEMT元件,通道層Zn濃度降低至SIMS檢測下限的5×1015cm-3程度,R值達0.80以上。另外,表2中的「B.G.L」係指Zn濃度為背景等級(表2、表3亦同)。即,樣品No.1-3~No.1-5的HEMT元件可謂電流崩塌小。
(實驗例2)
依照與實驗例1同樣的製作條件及順序,製作摻雜Zn之GaN單晶獨立式基板後,將該獨立式基板當作底層基板,製作4種磊晶基板。此時的製作條件係除依緩衝層的Al莫耳比p不同方式,使AlGaN緩衝層形成時的Al原料氣體/第IIIA族原料氣體比不同之外,其餘均相同。更詳言之,該緩衝層形成時的Al原料氣體/第IIIA族原料氣體比係設為1.0、0.9、0.7、0.5等4種水準。又,緩衝層厚度設為10nm。
另外,因為摻雜Zn之GaN基板的製作條件係同實驗例1,因而預估差排密度亦係與樣品No.1-4相同程度。
再者,使用各個磊晶基板製作HEMT元件。以下針對4種磊晶基板、與分別使用其所製作的HEMT元件,使用共通樣品No.2-1~No.2-4。但,樣品No.2-1的磊晶基板及HEMT元件,分別係與實驗例1的樣品No.1-4之磊晶基板及HEMT元件相同。
以所獲得4種HEMT元件為對象,依照與實驗例1同樣地施行:利用干涉相位差顯微鏡進行的觀察、利用SIMS進行的深度方向元素分析、根據依此所獲得濃度分佈計算出緩衝層的通道層Zn濃度、以及根據使用半導體參數分析儀的Id-Vd特性評價結果計算出R值。
表3所示係針對實驗例2的各樣品,通道層之Zn濃度與R值,以及緩衝層厚度、緩衝層之Al濃度p、以及磊晶基板表面有無龜裂的一覽表。又,表3亦合併標示各樣品係屬於本發明實施例與比較例中之何者。
如表3所示,緩衝層的Al莫耳比p為0.5的樣品No.2-4之HEMT元件,通道層的Zn濃度為5×1016cm-3,大於1×1016cm-3,R值滯留於0.41。
相對於此,緩衝層的Al莫耳比p達0.7以上的樣品 No.2-1~No.2-3之HEMT元件,通道層的Zn濃度在1×1016cm-3以下,R值達0.70以上。即,緩衝層為AlpGa1-pN(0.7≦p≦1)組成之AlGaN層的樣品No.2-1~No.2-3,HEMT元件可謂電流崩塌小。
特別係緩衝層的Al莫耳比p達0.9以上之樣品No.2-1~No.2-2的HEMT元件,通道層Zn濃度降低至SIMS檢測下限的5×1015cm-3程度,R值達0.81以上。即,緩衝層為AlpGa1-pN(0.9≦p≦1)組成之AlGaN層的樣品No.2-1~No.2-2,HEMT元件可謂電流崩塌小。
(實驗例3)
依照與實驗例1同樣的順序製作摻雜Zn之GaN單晶獨立式基板後,將該獨立式基板使用為底層基板,製作3種磊晶基板,使用各磊晶基板製作HEMT元件。
但,當製作各摻雜Zn之GaN單晶獨立式基板時,為使在MOCVD-GaN模板表面上所形成GaN的單晶層厚度不同,便在通量法的GaN單晶層形成之際,設為不同的育成時間。此係企圖獲得不同差排密度的摻雜Zn之GaN單晶獨立式基板。更詳言之,藉由將850℃下的加熱保持時間設為100小時、70小時、40小時等不同的3種水準,便可使GaN單晶層的厚度成為1000μm、600μm、200μm等不同的3種水準。
磊晶基板及HEMT元件的製作條件係設為與製作樣品No.1-4的磊晶基板時相同。例如緩衝層係由AlN形成,該緩衝層的厚度設為10nm。
以下針對3種磊晶基板、以及使用其所製作的HEMT元件,使用共通的樣品No.3-1~No.3-3。但,樣品No.3-1 的磊晶基板及HEMT元件分別係與實驗例1的樣品No.1-4之磊晶基板及HEMT元件相同。
以所獲得3種HEMT元件為對象,依照與實驗例1同樣地施行:利用干涉相位差顯微鏡進行的觀察、根據STEM觀察結果評價摻雜Zn之GaN基板的貫通差排密度、利用SIMS進行的深度方向元素分析、根據依此所獲得濃度分佈計算出緩衝層的Al濃度及通道層的Zn濃度、以及根據使用半導體參數分析儀的Id-Vd特性評價結果計算出R值。
表4所示係針對實驗例3的各樣品,摻雜Zn之GaN單晶獨立式基板(表4中記為「GaN基板」)的差排密度、通道層的Zn濃度與R值,以及磊晶基板表面有無龜裂的一覽表。又,表4亦合併標示各樣品係屬於本發明實施例與比較例中之何者。
如表4所示,摻雜Zn之GaN單晶獨立式基板的差排密度1.0×108cm-2之樣品No.3-3的HEMT元件,通道層的Zn濃度為6×1016cm-3,大於1×1016cm-3,R值滯留於0.29。
相對於此,摻雜Zn之GaN單晶獨立式基板的差排密度在5.0×107cm-2以下的樣品No.3-1~No.3-2之HEMT元件,通道層的Zn濃度成為1×1016cm-3以下,R值成為0.70以上。即,樣品No.3-1~No.3-2的HEMT元件HEMT元件可謂電流崩塌小。
特別係摻雜Zn之GaN單晶獨立式基板的差排密度 2.0×106cm-2之樣品No.3-1的HEMT元件,通道層Zn濃度降低至SIMS檢測下限的5×1015cm-3程度,R值成為0.88。即,樣品No.3-1的HEMT元件可謂電流崩塌特小。
(實驗例1~3之整理)
由上述實驗例1~3的結果確認到以下事項。
藉由在Zn元素高濃度摻雜達1×1018cm-3以上的摻雜Zn之GaN單晶獨立式基板上,積層形成通道層與障壁層而製作HEMT元件時,除將獨立式基板的差排密度設在5.0×107cm-2以下,且在該獨立式基板上依1nm以上且100nm以下的厚度形成AlpGa1-pN(0.7≦p≦1)組成的緩衝層,而形成通道層,藉此便可適當抑制Zn從獨立式基板擴散於通道層。
具體而言,可將通道層的Zn濃度降低至1×1016cm-3以下。所以,依此經適當抑制Zn擴散的HEMT元件,能適當地抑制電流崩塌發生。
特別係緩衝層厚度為2nm以上且20nm以下的情況、或者緩衝層的Al莫耳比p達0.9以上的情況,可更加抑制電流崩塌發生。
(實驗例4)
依照與實驗例1同樣的製作條件及順序,製作摻雜Zn之GaN單晶獨立式基板後,將該獨立式基板使用為底層基板,製作4種磊晶基板。此時的製作條件係除緩衝層的形成溫度不同之外,其餘均相同。更詳言之,該緩衝層的形成溫度係設為1050℃、900℃、700℃、500℃等不同的4水準。又,緩衝層的厚度係10nm。
另外,摻雜Zn之GaN基板的製作條件係設為與實 驗例1相同,所以預估差排密度亦是與樣品No.1-4相同程度。
針對所獲得磊晶基板施行X射線搖擺曲線測定,求取(10-20)面的半值寬。又,利用凡得瓦法求取電子遷移率。
再者,使用各磊晶基板製作HEMT元件。以下針對4種磊晶基板、以及分別使用該等製作的HEMT元件,使用共通的樣品No.4-1~No.4-4。但,樣品No.4-1的磊晶基板及HEMT元件,分別係與實驗例2的樣品No.2-2之磊晶基板及HEMT元件相同。
以所獲得4種HEMT元件為對象,依照與實驗例1同樣地施行:利用干涉相位差顯微鏡進行的觀察、利用SIMS進行的深度方向元素分析、根據依此所獲得濃度分佈計算出緩衝層的通道層之Zn濃度、根據使用半導體參數分析儀的Id-Vd特性評價結果計算出R值、以及導通電阻的測定。
表5所示係針對實驗例4各樣品的(10-20)面之X射線搖擺曲線半值寬、電子遷移率、R值、以及導通電阻,與緩衝層形成溫度、從濃度分佈所求得通道層的Zn濃度、以及磊晶基板的表面有無龜裂的一覽表。又,表5亦合併標示各樣品係屬於本發明實施例與比較例中之何者。
如表5所示,本實驗例所製作樣品No.4-1~No.4-4之任一HEMT元件,均係通道層Zn濃度低至SIMS檢測下限的5×1015cm-3程度,R值達0.70以上。即,樣品No.4-1~No.4-4的HEMT元件均可謂電流崩塌小。
但,(10-20)面的X射線搖擺曲線半值寬數值變大為緩衝層形成溫度較低的樣品程度,此現象表示構成HEMT元件的磊晶基板之結晶性,變差至緩衝層形成溫度較低樣品的程度。具體而言,緩衝層形成溫度達700℃以上的No.4-1~No.4-3樣品,半值寬數值在300秒以下,相對的,緩衝層形成溫度500℃的No.4-4樣品之半值寬數值係800秒,屬於非常大數值。該結果表示為能獲得結晶品質優異的磊晶基板,最好將緩衝層的形成溫度設為700℃以上。
再者,電子遷移率值係減小至緩衝層形成溫度較低樣品的程度,導通電阻值變大至緩衝層形成溫度較低樣品的程度。該等係緩衝層形成溫度越低的樣品(即結晶品質較差的樣品),HEMT元件的電氣特性差。具體而言,緩衝層形成溫度達700℃以上的No.4-1~No.4-3樣品,電子遷移率值達1300cm2V-1s-1以上,相對於此,緩衝層形成溫度500℃的No.4-4樣品,電子遷移率值係900cm2V-1s-1,非常小。又,No.4-1~No.4-3樣品的導通電阻值在10Ωmm以下,相對於此,No.4-4樣品的導通電阻值係15.8Ωmm,非常大。該等結果表示就從能獲得不僅結晶品質、且電氣特性亦優異的磊晶基板觀點,緩衝層的形成溫度最好設為700℃以上。
特別係No.4-1~No.4-2的樣品,除能獲得優異結晶 品質及電氣特性之外,就連R值亦高達0.8以上。此現象意味著藉由將緩衝層的形成溫度設為900℃以上,便可實現具有優異結晶品質及電氣特性,且電流崩塌獲更進一步抑制的HEMT元件。
1‧‧‧獨立式基板
2‧‧‧緩衝層
3‧‧‧通道層
4‧‧‧障壁層
5‧‧‧源極
6‧‧‧汲極
7‧‧‧閘極
10‧‧‧磊晶基板
20‧‧‧HEMT元件

Claims (21)

  1. 一種半導體元件用磊晶基板,係包括:半絕緣性獨立式基板,其乃由經摻雜Zn的GaN所構成;緩衝層,其乃鄰接上述獨立式基板;通道層,其乃鄰接上述緩衝層;以及障壁層,其乃設置於上述緩衝層對向側,呈夾置上述通道層狀態;上述緩衝層係由AlpGa1-pN(0.7≦p≦1)構成,且抑制Zn從上述獨立式基板擴散於上述通道層的擴散阻障層。
  2. 如申請專利範圍第1項之半導體元件用磊晶基板,其中,上述獨立式基板的差排密度係5.0×107cm-2以下,上述緩衝層的厚度係1nm以上且100nm以下。
  3. 如申請專利範圍第2項之半導體元件用磊晶基板,其中,上述通道層的Zn濃度係1×1016cm-3以下。
  4. 如申請專利範圍第1至3項中任一項之半導體元件用磊晶基板,其中,上述緩衝層係由AlpGa1-pN(0.9≦p≦1)構成。
  5. 如申請專利範圍第1至3項中任一項之半導體元件用磊晶基板,其中,上述緩衝層的厚度係2nm以上且20nm以下。
  6. 如申請專利範圍第1至3項中任一項之半導體元件用磊晶基板,其中,其中,上述通道層係由GaN構成,上述障壁層係由AlGaN構成。
  7. 一種半導體元件,係包括:半絕緣性獨立式基板,其乃由經摻雜Zn的GaN所構成;緩衝層,其乃鄰接上述獨立式基板; 通道層鄰接上述緩衝層;障壁層,其乃設置於上述緩衝層對向側,呈夾置上述通道層狀態;以及閘極、源極及汲極,其乃設置於上述障壁層上;其中,上述緩衝層係由AlpGa1-pN(0.7≦p≦1)構成,且抑制Zn從上述獨立式基板擴散於上述通道層的擴散阻障層。
  8. 如申請專利範圍第7項之半導體元件,其中,上述獨立式基板的差排密度係5.0×107cm-2以下,上述緩衝層的厚度係1nm以上且100nm以下。
  9. 如申請專利範圍第8項之半導體元件,其中,上述通道層的Zn濃度係1×1016cm-3以下。
  10. 如申請專利範圍第7至9項中任一項之半導體元件,其中,上述緩衝層係由AlpGa1-pN(0.9≦p≦1)構成。
  11. 如申請專利範圍第7至9項中任一項之半導體元件,其中,上述緩衝層的厚度係2nm以上且20nm以下。
  12. 如申請專利範圍第7至9項中任一項之半導體元件,其中,上述通道層係由GaN構成,上述障壁層係由AlGaN構成。
  13. 一種半導體元件用磊晶基板之製造方法,係製造半導體元件用磊晶基板之方法,包括:a)準備步驟,其乃準備由經摻雜Zn的GaN所構成半絕緣性獨立式基板;b)緩衝層形成步驟,其乃鄰接上述獨立式基板形成緩衝層;c)通道層步驟,其乃鄰接上述緩衝層形成通道層;以及d)障壁層形成步驟,其乃在位於上述緩衝層對向側位置處, 呈夾置上述通道層狀態形成障壁層;其中,緩衝層形成步驟中,所形成的上述緩衝層係由AlpGa1-pN(0.7≦p≦1)構成,且抑制Zn從上述獨立式基板擴散於上述通道層的擴散阻障層。
  14. 如申請專利範圍第13項之半導體元件用磊晶基板之製造方法,其中,在上述準備步驟中準備差排密度5.0×107cm-2以下的上述獨立式基板;在上述緩衝層形成步驟中,上述緩衝層係形成1nm以上且100nm以下的厚度。
  15. 如申請專利範圍第14項之半導體元件用磊晶基板之製造方法,其中,上述緩衝層形成步驟中,依上述通道層的Zn濃度成為1×1016cm-3以下的方式形成上述緩衝層。
  16. 如申請專利範圍第13至15項中任一項之半導體元件用磊晶基板之製造方法,其中,在上述緩衝層形成步驟中,上述緩衝層係由AlpGa1-pN(0.9≦p≦1)形成。
  17. 如申請專利範圍第13至15項中任一項之半導體元件用磊晶基板之製造方法,其中,在上述緩衝層形成步驟中,上述緩衝層係形成2nm以上且20nm以下的厚度。
  18. 如申請專利範圍第13至15項中任一項之半導體元件用磊晶基板之製造方法,其中,上述通道層係由GaN形成,上述障壁層係由AlGaN形成。
  19. 如申請專利範圍第13至15項中任一項之半導體元件用磊晶基板之製造方法,其中,上述獨立式基板係利用通量法製作。
  20. 如申請專利範圍第13至15項中任一項之半導體元件用磊晶基板之製造方法,其中,上述緩衝層的形成溫度係700℃以上且1200℃以下。
  21. 如申請專利範圍第20項之半導體元件用磊晶基板之製造方法,其中,上述緩衝層的形成溫度係900℃以上且1200℃以下。
TW105135302A 2015-11-02 2016-11-01 半導體元件用磊晶基板、半導體元件以及半導體元件用磊晶基板之製造方法 TWI710657B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562249565P 2015-11-02 2015-11-02
US62/249,565 2015-11-02
JP2016-005164 2016-01-14
JP2016005164 2016-01-14

Publications (2)

Publication Number Publication Date
TW201732067A true TW201732067A (zh) 2017-09-16
TWI710657B TWI710657B (zh) 2020-11-21

Family

ID=58662399

Family Applications (3)

Application Number Title Priority Date Filing Date
TW105134697A TWI707975B (zh) 2015-11-02 2016-10-27 半導體元件用磊晶基板、半導體元件以及半導體元件用磊晶基板之製造方法
TW105135302A TWI710657B (zh) 2015-11-02 2016-11-01 半導體元件用磊晶基板、半導體元件以及半導體元件用磊晶基板之製造方法
TW105135303A TWI686498B (zh) 2015-11-02 2016-11-01 半導體元件用磊晶基板、半導體元件以及半導體元件用磊晶基板之製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW105134697A TWI707975B (zh) 2015-11-02 2016-10-27 半導體元件用磊晶基板、半導體元件以及半導體元件用磊晶基板之製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105135303A TWI686498B (zh) 2015-11-02 2016-11-01 半導體元件用磊晶基板、半導體元件以及半導體元件用磊晶基板之製造方法

Country Status (7)

Country Link
US (3) US10410859B2 (zh)
JP (3) JP6737800B2 (zh)
KR (3) KR102547562B1 (zh)
CN (3) CN108140561B (zh)
DE (3) DE112016005022T5 (zh)
TW (3) TWI707975B (zh)
WO (2) WO2017077806A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11335799B2 (en) * 2015-03-26 2022-05-17 Chih-Shu Huang Group-III nitride semiconductor device and method for fabricating the same
CN108140561B (zh) * 2015-11-02 2022-04-12 日本碍子株式会社 半导体元件用外延基板、半导体元件和半导体元件用外延基板的制造方法
EP3428166A4 (en) 2016-03-10 2019-11-13 Nissan Chemical Corporation CONDENSED HETEROCYCLIC COMPOUND AND PESTICIDES
CN108807291B (zh) * 2017-04-28 2020-06-26 环球晶圆股份有限公司 外延用基板及其制造方法
US11309455B2 (en) 2017-08-24 2022-04-19 Ngk Insulators, Ltd. Group 13 element nitride layer, free-standing substrate and functional element
WO2019039189A1 (ja) 2017-08-24 2019-02-28 日本碍子株式会社 13族元素窒化物層、自立基板および機能素子
JP6854903B2 (ja) 2017-08-24 2021-04-07 日本碍子株式会社 13族元素窒化物層、自立基板および機能素子
CN111033764B (zh) 2017-08-24 2021-05-11 日本碍子株式会社 13族元素氮化物层、自立基板以及功能元件
AU2018341458A1 (en) * 2017-09-27 2020-04-16 Securrency, Inc. Method, apparatus, and computer-readable medium for compliance aware tokenization and control of asset value
JP7433014B2 (ja) 2018-10-30 2024-02-19 ローム株式会社 半導体装置
JP7393138B2 (ja) * 2019-06-24 2023-12-06 住友化学株式会社 Iii族窒化物積層体
JP7348923B2 (ja) * 2020-03-25 2023-09-21 日本碍子株式会社 半導体素子用下地基板の製造方法、半導体素子の製造方法、半導体素子用下地基板、半導体素子用エピタキシャル基板、および半導体素子
US20220029007A1 (en) * 2020-07-24 2022-01-27 Vanguard International Semiconductor Corporation Semiconductor structure and semiconductor device
WO2023188742A1 (ja) * 2022-03-29 2023-10-05 日本碍子株式会社 13族元素窒化物単結晶基板
CN117637819A (zh) * 2024-01-26 2024-03-01 英诺赛科(珠海)科技有限公司 一种氮化镓器件

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039813B1 (zh) 1969-03-31 1975-12-19
JPS5341006B2 (zh) 1973-08-13 1978-10-31
JP3842842B2 (ja) * 1996-06-11 2006-11-08 松下電器産業株式会社 半導体レーザ装置の製造方法
JP2001036196A (ja) * 2000-01-01 2001-02-09 Nec Corp p型ドーパント材料拡散防止層付き窒化ガリウム系発光素子
JP3753068B2 (ja) * 2001-12-26 2006-03-08 日立電線株式会社 電界効果トランジスタ用エピタキシャルウェハの製造方法
JP4546051B2 (ja) * 2002-07-17 2010-09-15 パナソニック株式会社 半導体装置の製造方法
JP2004111865A (ja) * 2002-09-20 2004-04-08 Sumitomo Electric Ind Ltd 半導体基板及びその製造方法
JP2007504682A (ja) * 2003-05-09 2007-03-01 クリー インコーポレイテッド 高Al含量AlGaN拡散バリアを有するIII族窒化物電子素子構造
TWI344706B (en) * 2003-06-04 2011-07-01 Myung Cheol Yoo Method of fabricating vertical structure compound semiconductor devices
JP2005136136A (ja) * 2003-10-30 2005-05-26 Toshiba Corp 半導体装置の製造方法およびウエーハの製造方法
PL368483A1 (en) * 2004-06-11 2005-12-12 Ammono Sp.Z O.O. Monocrystals of nitride containing gallium and its application
JP4792814B2 (ja) * 2005-05-26 2011-10-12 住友電気工業株式会社 高電子移動度トランジスタ、電界効果トランジスタ、エピタキシャル基板、エピタキシャル基板を作製する方法およびiii族窒化物系トランジスタを作製する方法
JP4631884B2 (ja) * 2007-08-22 2011-02-16 日立電線株式会社 閃亜鉛鉱型窒化物半導体自立基板、閃亜鉛鉱型窒化物半導体自立基板の製造方法、及び閃亜鉛鉱型窒化物半導体自立基板を用いた発光装置
JP2009218290A (ja) * 2008-03-07 2009-09-24 Rohm Co Ltd 電界効果トランジスタ
JP2010068548A (ja) * 2008-09-08 2010-03-25 Hitachi Industrial Equipment Systems Co Ltd 電動機
JP2010171416A (ja) 2008-12-26 2010-08-05 Furukawa Electric Co Ltd:The 半導体装置、半導体装置の製造方法および半導体装置のリーク電流低減方法
TWI409859B (zh) * 2009-04-08 2013-09-21 Efficient Power Conversion Corp 氮化鎵緩衝層中之摻雜劑擴散調變技術
JP5039813B2 (ja) * 2009-08-31 2012-10-03 日本碍子株式会社 Znがドープされた3B族窒化物結晶、その製法及び電子デバイス
JP2011187643A (ja) * 2010-03-08 2011-09-22 Sharp Corp ヘテロ接合型電界効果トランジスタ
CN103003931B (zh) * 2010-07-29 2016-01-13 日本碍子株式会社 半导体元件用外延基板、半导体元件、pn接合二极管元件以及半导体元件用外延基板的制造方法
WO2012020565A1 (ja) * 2010-08-11 2012-02-16 住友化学株式会社 半導体基板、半導体デバイスおよび半導体基板の製造方法
JP5987288B2 (ja) 2011-09-28 2016-09-07 富士通株式会社 半導体装置
US20130105817A1 (en) 2011-10-26 2013-05-02 Triquint Semiconductor, Inc. High electron mobility transistor structure and method
JP2013229493A (ja) * 2012-04-26 2013-11-07 Sharp Corp Iii族窒化物半導体積層基板およびiii族窒化物半導体電界効果トランジスタ
JP5991018B2 (ja) * 2012-05-16 2016-09-14 ソニー株式会社 半導体装置
JP2014027187A (ja) * 2012-07-27 2014-02-06 Fujitsu Ltd 化合物半導体装置及びその製造方法
CN104919571B (zh) * 2012-11-30 2018-01-23 Lg伊诺特有限公司 外延晶元,以及使用其的开关元件和发光元件
US9006791B2 (en) * 2013-03-15 2015-04-14 The Government Of The United States Of America, As Represented By The Secretary Of The Navy III-nitride P-channel field effect transistor with hole carriers in the channel
CN104617201B (zh) * 2015-01-23 2017-12-01 合肥彩虹蓝光科技有限公司 一种适合高电流密度的GaN基LED外延结构及其生长方法
CN108140561B (zh) * 2015-11-02 2022-04-12 日本碍子株式会社 半导体元件用外延基板、半导体元件和半导体元件用外延基板的制造方法
KR102491830B1 (ko) * 2015-11-02 2023-01-25 엔지케이 인슐레이터 엘티디 반도체 소자용 에피택셜 기판, 반도체 소자, 및 반도체 소자용 에피택셜 기판의 제조 방법

Also Published As

Publication number Publication date
TW201730364A (zh) 2017-09-01
TWI686498B (zh) 2020-03-01
US10580646B2 (en) 2020-03-03
US20180247809A1 (en) 2018-08-30
WO2017077988A1 (ja) 2017-05-11
JP6730302B2 (ja) 2020-07-29
TW201732068A (zh) 2017-09-16
US10418239B2 (en) 2019-09-17
JPWO2017077806A1 (ja) 2018-08-16
WO2017077806A1 (ja) 2017-05-11
US20180247810A1 (en) 2018-08-30
CN108352306A (zh) 2018-07-31
KR20180075525A (ko) 2018-07-04
DE112016005028T5 (de) 2018-08-09
KR20180075526A (ko) 2018-07-04
CN108140563B (zh) 2022-04-05
CN108140563A (zh) 2018-06-08
JPWO2017077989A1 (ja) 2018-08-16
US20190027359A9 (en) 2019-01-24
JP6705831B2 (ja) 2020-06-03
TWI707975B (zh) 2020-10-21
JP6737800B2 (ja) 2020-08-12
US20180247817A1 (en) 2018-08-30
CN108140561B (zh) 2022-04-12
KR20180075527A (ko) 2018-07-04
US10410859B2 (en) 2019-09-10
DE112016005022T5 (de) 2018-08-02
JPWO2017077988A1 (ja) 2018-08-30
TWI710657B (zh) 2020-11-21
CN108352306B (zh) 2022-04-29
KR102519304B1 (ko) 2023-04-06
DE112016005017T5 (de) 2018-08-02
KR102547562B1 (ko) 2023-06-23
CN108140561A (zh) 2018-06-08
KR102519899B1 (ko) 2023-04-07

Similar Documents

Publication Publication Date Title
TWI710657B (zh) 半導體元件用磊晶基板、半導體元件以及半導體元件用磊晶基板之製造方法
WO2017077989A1 (ja) 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法
US20130015466A1 (en) Epitaxial substrate for semiconductor device and semiconductor device
US10770552B2 (en) Epitaxial substrate for semiconductor elements, semiconductor element, and manufacturing method for epitaxial substrates for semiconductor elements
JP6944569B2 (ja) 半導体素子用エピタキシャル基板および半導体素子