JP6705831B2 - 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法 - Google Patents

半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法 Download PDF

Info

Publication number
JP6705831B2
JP6705831B2 JP2017548758A JP2017548758A JP6705831B2 JP 6705831 B2 JP6705831 B2 JP 6705831B2 JP 2017548758 A JP2017548758 A JP 2017548758A JP 2017548758 A JP2017548758 A JP 2017548758A JP 6705831 B2 JP6705831 B2 JP 6705831B2
Authority
JP
Japan
Prior art keywords
layer
substrate
gan
buffer layer
channel layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017548758A
Other languages
English (en)
Other versions
JPWO2017077989A1 (ja
Inventor
幹也 市村
幹也 市村
宗太 前原
宗太 前原
倉岡 義孝
義孝 倉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority claimed from PCT/JP2016/082370 external-priority patent/WO2017077989A1/ja
Publication of JPWO2017077989A1 publication Critical patent/JPWO2017077989A1/ja
Application granted granted Critical
Publication of JP6705831B2 publication Critical patent/JP6705831B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10344Aluminium gallium nitride [AlGaN]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

本発明は、半導体素子に関し、特に、半絶縁性のGaNからなる自立基板を用いて構成される半導体素子に関する。
窒化物半導体は、直接遷移型の広いバンドギャップを有し、高い絶縁破壊電界、高い飽和電子速度を有することから、LEDやLDなどの発光デバイスや、高周波/ハイパワーの電子デバイス用半導体材料として利用されている。
窒化物電子デバイスの代表的な構造として、AlGaNを「障壁層」、GaNを「チャネル層」として積層形成した高電子移動度トランジスタ(HEMT)構造がある。これは、窒化物材料特有の大きな分極効果(自発分極効果とピエゾ分極効果)によりAlGaN/GaN積層界面に高濃度の2次元電子ガスが生成するという特徴を活かしたものである。
窒化物電子デバイスは、一般的に、サファイア、SiC、Siといった、商業的に入手の容易な異種材料下地基板を用いて作製されている。しかしながら、これら異種材料基板上にヘテロエピタキシャル成長させたGaN膜中には、GaNと異種材料基板との間の格子定数や熱膨張係数の差異に起因して、多数の欠陥が発生してしまうという問題がある。
一方、GaN基板上にGaN膜をホモエピタキシャル成長させた場合、上述の格子定数や熱膨張係数の差異に起因する欠陥は発生せず、GaN膜は良好な結晶性を示す。
それゆえ、GaN基板上に窒化物HEMT構造を作製した場合、AlGaN/GaN積層界面に存在する2次元電子ガスの移動度が向上するので、当該構造を用いて作製するHEMT素子(半導体素子)の特性向上が期待できる。
ただし、商業的に入手が可能である、ハイドライド気相成長法(HVPE法)にて作製されたGaN基板は、一般的には、結晶内に取り込んだ酸素不純物のためn型の伝導型を呈する。導電性のGaN基板は、HEMT素子を高電圧駆動した際に、ソース−ドレイン電極間のリーク電流経路となる。そのため、HEMT素子を作製するには、半絶縁性のGaN基板の利用が望ましい。
半絶縁性GaN基板を実現するためには、遷移金属元素(例えばFe)や2族元素(例えばMg)のような深いアクセプター準位を形成する元素をGaN結晶中にドーピングすることが有効と知られている。
2族元素のうち、亜鉛元素(Zn)を選択することで、高品質な半絶縁性GaN単結晶基板を実現できることが、すでに公知である(例えば、特許文献1参照)。GaN結晶中のZn元素の拡散についてはすでに調査がなされており、高温雰囲気にて拡散は生じ、かつ、拡散のしやすさはGaN結晶の結晶性に依存する(例えば、非特許文献4参照)。また、基板上に遷移金属元素である鉄(Fe)がドープされた高抵抗層を形成し、さらに、該高抵抗層と電子走行層との間にFeの取り込み効果の高い中間層を形成することにより、電子走行層へのFeの入り込みを防ぐ態様もすでに公知である(例えば、特許文献2参照)。
半絶縁性GaN基板上に、または、半絶縁性GaN膜付き基板上に、HEMT構造を作製し、諸特性を評価することはすでになされている(例えば、非特許文献1ないし非特許文献3参照)。
遷移金属元素や2族元素をドーピングしてなる半絶縁性GaN単結晶基板の上にGaN膜をエピタキシャル成長させて半導体素子用のエピタキシャル基板を形成する場合、Fe、Mg、Znなどのアクセプター元素がGaN膜中に拡散し、膜中において電子トラップ(electron-trap)として作用するために、電流コラプス(current collapse)現象が発生してしまうという問題がある(例えば、特許文献3参照)。特許文献3には、Fe、Mg等のアクセプター元素は拡散しやすく、それが、電流コラプスの原因になる、との旨の開示がある。
特許第5039813号公報 特開2013−74211号公報 特開2010−171416号公報
Yoshinori Oshimura, Takayuki Sugiyama, Kenichiro Takeda, Motoaki Iwaya, Tetsuya Takeuchi, Satoshi Kamiyama, Isamu Akasaki, and Hiroshi Amano, "AlGaN/GaN Heterostructure Field-Effect Transistors on Fe-Doped GaN Substrates with High Breakdown Voltage", Japanese Journal of Applied Physics, vol.50 (2011), p.084102-1-p.084102-5. V. Desmaris, M. Rudzinski, N. Rorsman, P.R. Hageman, P.K. Larsen, H. Zirath, T.C. Rodle, and H.F.F. Jos, "Comparison of the DC and Microwave Performance of AlGaN/GaN HEMTs Grown on SiC by MOCVD With Fe-Doped or Unintentionally Doped GaN Buffer Layers", IEEE Transactions on Electron Devices, Vol.53, No.9, pp.2413-2417, September 2006. M. Azize, Z. Bougrioua, and P. Gibart, "Inhibition of interface pollution in AlGaN/GaN HEMT structures regrown on semi-insulating GaN templates", Journal of Crystal Growth, vol.299 (2007), p.103-p.108. T. Suzuki, J. Jun, M. Leszczynski, H. Teisseyre, S. Strite, A. Rockett, A. Pelzmann, M. Camp, and K. J. Ebeling, "Optical activation and diffusivity of ion-implanted Zn acceptors in GaN under high-pressure, high-temperature annealing", Journal of Applied Physics, Vol.84 (1998), No.2, pp.1155-1157.
本発明は上記課題に鑑みてなされたものであり、電流コラプスの発生が抑制されてなる半導体素子用のエピタキシャル基板を提供することを目的とする。
上記課題を解決するため、本発明の第1の態様は、半導体素子用エピタキシャル基板が、ZnがドープされたGaNからなり、転位密度が5.0×10 cm −2 以下である半絶縁性の自立基板と、前記自立基板に隣接してなるバッファ層と、前記バッファ層に隣接してなるチャネル層と、前記チャネル層を挟んで前記バッファ層とは反対側に設けられてなる障壁層と、を備え、前記バッファ層が、Al濃度が5×10 18 cm −3 以上1×10 21 cm −3 以下であるAlドープGaNからなり、かつ、20nm以上200nm以下の厚みを有する、前記自立基板から前記チャネル層へのZnの拡散を抑制する拡散抑制層であり、前記チャネル層におけるZnの濃度が1×10 16 cm −3 以下である、ようにした。
本発明の第の態様は、第1の様に係る半導体素子用エピタキシャル基板において、前記チャネル層はGaNからなり、前記障壁層はAlGaNからなる、ようにした。
本発明の第の態様は、半導体素子が、ZnがドープされたGaNからなり、転位密度が5.0×10 cm −2 以下である半絶縁性の自立基板と、前記自立基板に隣接してなるバッファ層と、前記バッファ層に隣接してなるチャネル層と、前記チャネル層を挟んで前記バッファ層とは反対側に設けられてなる障壁層と、前記障壁層の上に設けられてなるゲート電極、ソース電極、およびドレイン電極と、を備え、前記バッファ層が、Al濃度が5×10 18 cm −3 以上1×10 21 cm −3 以下であるAlドープGaNからなり、かつ、20nm以上200nm以下の厚みを有する、前記自立基板から前記チャネル層へのZnの拡散を抑制する拡散抑制層であり、前記チャネル層におけるZnの濃度が1×10 16 cm −3 以下である、ようにした。
本発明の第の態様は、第の態様に係る半導体素子において、前記チャネル層はGaNからなり、前記障壁層はAlGaNからなる、ようにした。
本発明の第の態様は、半導体素子用のエピタキシャル基板を製造する方法が、a)ZnがドープされたGaNからなり、転位密度が5.0×10 cm −2 以下である半絶縁性の自立基板を用意する準備工程と、b)前記自立基板に隣接させてバッファ層を形成するバッファ層形成工程と、c)前記バッファ層に隣接させてチャネル層を形成するチャネル層形成工程と、d)前記チャネル層を挟んで前記バッファ層とは反対側の位置に障壁層を形成する障壁層形成工程と、を備え、バッファ層形成工程においては、前記バッファ層を、5×10 18 cm −3 以上1×10 21 cm −3 以下のAl濃度を有するAlドープGaNからなり、かつ、20nm以上200nm以下の厚みを有するように形成することで、前記バッファ層を、前記自立基板から前記チャネル層へのZnの拡散を抑制する拡散抑制層とし、これによって、前記チャネル層形成工程において形成される前記チャネル層におけるZnの濃度を1×10 16 cm −3 以下とする、ようにした。
本発明の第の態様は、第の態様に係る半導体素子用エピタキシャル基板の製造方法において、前記チャネル層はGaNにて形成され、前記障壁層はAlGaNにて形成される、ようにした。
本発明の第の態様は、第5またはの態様に係る半導体素子用エピタキシャル基板の製造方法において、前記自立基板はフラックス法で作製される、ようにした。
本発明の第1ないし第の態様によれば、半絶縁性のGaN自立基板を用いつつ、電流コラプスが低減された半導体素子が実現できる。
HEMT素子20の断面構造を、模式的に示す図である。 サンプルNo.1−4のHEMT素子を構成するエピタキシャル基板におけるZn元素、Al元素の濃度プロファイルを示す図である。 サンプルNo.1−1のHEMT素子を構成するエピタキシャル基板におけるZn元素、Al元素の濃度プロファイルを示す図である。
本明細書中に示す周期表の族番号は、1989年国際純正応用化学連合会(International Union of Pure Applied Chemistry:IUPAC)による無機化学命名法改訂版による1〜18の族番号表示によるものであり、13族とはアルミニウム(Al)・ガリウム(Ga)・インジウム(In)等を指し、14族とは、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)等を指し、15族とは窒素(N)・リン(P)・ヒ素(As)・アンチモン(Sb)等を指す。
<エピタキシャル基板およびHEMT素子の概要>
図1は、本発明に係る半導体素子用エピタキシャル基板の一実施形態としてのエピタキシャル基板10を含んで構成される、本発明に係る半導体素子の一実施形態としてのHEMT素子20の断面構造を、模式的に示す図である。
エピタキシャル基板10は、自立基板1と、バッファ層2と、チャネル層3と、障壁層4とを備える。また、HEMT素子20は、エピタキシャル基板10の上に(障壁層4の上に)ソース電極5とドレイン電極6とゲート電極7とを設けたものである。なお、図1における各層の厚みの比率は、実際のものを反映したものではない。
自立基板1は、Znが1×1018cm−3以上ドープされた(0001)面方位のGaN基板であり、室温における比抵抗が1×10Ωcm以上であって半絶縁性を呈する。また、チャネル層3へのZnの拡散を抑制するという観点からは、自立基板1の転位密度は5×10cm −2 以下であるのが好ましい。自立基板1のサイズに特に制限はないが、ハンドリング(把持、移動など)の容易さなどを考慮すると、数百μm〜数mm程度の厚みを有するのが好適である。係る自立基板1は、例えば、フラックス(Flux)法によって作製することができる。
フラックス法による自立基板1の形成は、概略、耐圧容器内に水平回転自在に配置した育成容器(アルミナるつぼ)内で金属Ga、金属Na、金属Zn、C(炭素)を含む融液に種基板を浸漬し、育成容器を水平回転させた状態で、窒素ガスを導入しながら育成容器内を所定温度および所定圧力を保つことによって種基板に形成されるGaN単結晶を、種基板から分離することによって得られる。種基板としては、サファイア基板上にMOCVD法によってGaN薄膜を形成してなるいわゆるテンプレート基板などを好適に用いることができる。
バッファ層2は、自立基板1の一方主面上に(隣接)形成されてなる、10nm〜1000nmの厚みを有する層である。本実施の形態において、バッファ層2は、いわゆる800℃未満の低温で形成されるいわゆる低温バッファ層とは異なり、チャネル層3や障壁層4の形成温度と同程度の温度で形成されるものである。
本実施の形態に係るエピタキシャル基板10において、バッファ層2は、自立基板1にドープされてなるZnがエピタキシャル基板10の作製時にチャネル層3さらにはその上方の障壁層4へと拡散することを抑制する、拡散抑制層として設けられてなる。係るバッファ層2は、1×1018cm−3以上5×1021cm−3以下の濃度でAlがドープされたGaNからなる層にて構成するのが好適な一例である。係る場合、自立基板1からチャネル層3へのZnの拡散が好適に抑制され、ひいては、エピタキシャル基板10を用いて作製したHEMT素子20において、電流コラプスが好適に抑制される。
好ましくは、バッファ層2は、20nm〜200nmの厚みに設けられる。また、好ましくは、バッファ層2は、5×1018cm−3以上1×1021cm−3以下の濃度でAlがドープされたGaNにて形成される。これらの場合、エピタキシャル基板10を用いて作製したHEMT素子20における、電流コラプスがさらに抑制される。
なお、バッファ層2の厚みを1000nmよりも大きくすることや、バッファ層2のAl濃度を5×1021cm−3よりも大きくすることも可能ではあるが、これらの場合、エピタキシャル基板10の表面(障壁層4の表面)にクラックが発生する可能性がある。
また、バッファ層2の厚みを10nmよりも小さくした場合やバッファ層2のAl濃度を5×1017cm−3よりも小さくした場合、Znの拡散を抑制する効果が十分に得られず、結果として電流コラプスが十分に抑制されないため、好ましくない。
チャネル層3は、バッファ層2の上に(隣接)形成されてなる層である。チャネル層3は、50nm〜5000nm程度の厚みに形成される。また、障壁層4は、チャネル層3を挟んでバッファ層2とは反対側に設けられてなる層である。障壁層4は、2nm〜40nm程度の厚みに形成される。
障壁層4は図1に示すようにチャネル層3に隣接して形成されてもよく、この場合、両層の界面はヘテロ接合界面となる。あるいは、チャネル層3と障壁層4の間に図示しないスペーサ層が設けられてもよく、この場合、チャネル層3とスペーサ層との界面から障壁層4とスペーサ層との界面にいたる領域がヘテロ接合界面領域となる。
いずれの場合も、チャネル層3がGaNにて形成され、障壁層4がAlGaN(AlGa1−xN、0<x<1)ないしInAlN(InAl1−yN、0<y<1)にて形成されるのが好適な一例である。ただし、チャネル層3と障壁層4の組み合わせはこれに限られるものではない。
バッファ層2、チャネル層3、および、障壁層4の形成は、例えばMOCVD法によって実現される。MOCVD法による層形成は、例えばバッファ層2がAlドープGaNにて形成され、チャネル層3がGaNにて形成され、障壁層4がAlGaNにて形成される場合であれば、Ga、Alについての有機金属(MO)原料ガス(TMG、TMA)と、アンモニアガスと、水素ガスと、窒素ガスとをリアクタ内に供給可能に構成されてなる公知のMOCVD炉を用い、リアクタ内に載置した自立基板1を所定温度に加熱しつつ、各層に対応した有機金属原料ガスとアンモニアガスとの気相反応によって生成するGaN結晶やAlGaN結晶を自立基板1上に順次に堆積させることによって行える。
ソース電極5とドレイン電極6とは、それぞれに十数nm〜百数十nm程度の厚みを有する金属電極である。ソース電極5とドレイン電極6とは、例えば、Ti/Al/Ni/Auからなる多層電極として形成されるのが好適である。ソース電極5およびドレイン電極6は、障壁層4との間にオーミック性接触を有してなる。ソース電極5およびドレイン電極6は、真空蒸着法とフォトリソグラフィプロセスとにより形成されるのが好適な一例である。なお、両電極のオーミック性接触を向上させるために、電極形成後、650℃〜1000℃の間の所定温度の窒素ガス雰囲気中において数十秒間の熱処理を施すのが好ましい。
ゲート電極7は、十数nm〜百数十nm程度の厚みを有する金属電極である。ゲート電極7は、例えば、Ni/Auからなる多層電極として構成されるのが好適である。ゲート電極7は、障壁層4との間にショットキー性接触を有してなる。ゲート電極7は、真空蒸着法とフォトリソグラフィプロセスとにより形成されるのが好適な一例である。
<エピタキシャル基板およびHEMT素子の作製方法>
(自立基板の作製)
まず、フラックス法による自立基板1の作製手順について説明する。
初めに、作製したい自立基板1の直径と同程度の直径を有するc面サファイア基板を用意し、その表面に、450℃〜750℃の温度にてGaN低温バッファ層を10nm〜50nm程度の厚みに成膜し、その後、厚さ1μm〜10μm程度のGaN薄膜を1000℃〜1200℃の温度にてMOCVD法により成膜し、種基板として利用可能なMOCVD−GaNテンプレートを得る。
次に、得られたMOCVD−GaNテンプレートを種基板として、Naフラックス法を用いてZnドープGaN単結晶層を形成する。
具体的には、まず、アルミナるつぼ内にMOCVD−GaNテンプレートを載置し、続いて、該アルミナるつぼ内に、金属Gaを10g〜60g、金属Naを15g〜90g、金属Znを0.1g〜5g、Cを10mg〜500mg、それぞれ充填する。
係るアルミナるつぼを加熱炉に入れ、炉内温度を800℃〜950℃とし、炉内圧力を3MPa〜5MPaとして、20時間〜400時間程度加熱し、その後、室温まで冷却する。冷却終了後、アルミナるつぼを炉内から取り出す。以上の手順により、MOCVD−GaNテンプレートの表面に、褐色のGaNの単結晶層が300μm〜3000μmの厚さで堆積する。
このようにして得られたGaN単結晶層を、ダイヤモンド砥粒を用いて研磨し、その表面を平坦化させる。これにより、MOCVD−GaNテンプレートの上にGaN単結晶層が形成されたFlux−GaNテンプレートが得られる。ただし、研磨は、Flux−GaNテンプレートにおける窒化物層の総厚が最終的に得たい自立基板1の狙いの厚みよりも十分に大きい値に保たれる範囲で行う。
次いで、レーザーリフトオフ法により、種基板の側からレーザー光を0.1mm/秒〜100mm/秒の走査速度で走査しつつ照射することによって、Flux−GaNテンプレートから種基板を分離する。レーザー光としては、例えば、波長355nmのNd:YAGの3次高調波を用いるのが好適である。係る場合、パルス幅は1ns〜1000ns、パルス周期は1kHz〜200kHz程度であればよい。照射に際しては、レーザー光を適宜に集光して、光密度を調整するのが好ましい。また、レーザー光の照射は、Flux−GaNテンプレートを種基板と反対側から30℃〜600℃程度の温度で加熱しつつ行うのが好ましい。
種基板を分離した後、得られた積層構造体の種基板から剥離された側の面を研磨処理する。これにより、Znが1×1018cm−3以上の濃度でドープされたGaNからなる自立基板(ZnドープGaN単結晶自立基板)1が得られる。
なお、自立基板1の転位密度の制御は、Flux−GaNテンプレートにおいて形成するZnドープGaN単結晶層の厚みを違えることによって行える。これは、ZnドープGaN単結晶層を厚く形成するほど、その上部に転位密度の低い領域が形成されることを利用している。従って、ZnドープGaN単結晶層の形成厚みとレーザーリフトオフ後の研磨量とを適宜に定めることで、上述したような、転位密度が5×10cm −2 以下の自立基板1を得ることも可能となっている。
(エピタキシャル基板の作製)
続いて、MOCVD法によるエピタキシャル基板10の作製について説明する。エピタキシャル基板10は、自立基板1をMOCVD炉のリアクタ内に設けられたサセプタ上に載置した状態で、下記の条件にてバッファ層2、チャネル層3、および障壁層4をこの順にて積層形成することで得られる。なお、形成温度とはサセプタ加熱温度を意味する。
なお、本実施の形態において、15族/13族ガス比とは、13族(Ga、Al、In)原料であるTMG(トリメチルガリウム)、TMA(トリメチルアルミニウム)、およびTMI(トリメチルインジウム)の総供給量に対する15族(N)原料であるアンモニアの供給量の比(モル比)である。また、障壁層4をAlGaNにて形成する場合のAl原料ガス/13族原料ガス比とは、Al原料の供給量13族(Ga、Al)原料全体の供給量に対する比(モル比)であり、障壁層4をInAlNにて形成する場合のIn原料ガス/13族原料ガス比とは、In原料の供給量13族(In、Al)原料全体の供給量に対する比(モル比)である。ともに、所望する障壁層4の組成(Alモル比xもしくはIn組成比y)に応じて定められる。
バッファ層2:
形成温度=900℃〜1200℃;
リアクタ内圧力=5kPa〜30kPa;
キャリアガス=水素;
15族/13族ガス比=5000〜20000;
Al原料ガス/13族原料ガス比=0.00002〜0.1。
チャネル層3:
形成温度=1000℃〜1200℃;
リアクタ内圧力=15kPa〜105kPa;
キャリアガス=水素;
15族/13族ガス比=1000〜10000。
障壁層4(AlGaNにて形成する場合):
形成温度=1000℃〜1200℃;
リアクタ内圧力=1kPa〜30kPa;
15族/13族ガス比=5000〜20000;
キャリアガス=水素;
Al原料ガス/13族原料ガス比=0.1〜0.4。
障壁層4(InAlNにて形成する場合):
形成温度=700℃〜900℃;
リアクタ内圧力=1kPa〜30kPa;
15族/13族ガス比=2000〜20000;
キャリアガス=窒素;
In原料ガス/13族原料ガス比=0.1〜0.9。
(HEMT素子の作製)
エピタキシャル基板10を用いたHEMT素子20の作製は、公知の技術を適用することで実現可能である。
例えば、フォトリソグラフィプロセスとRIE(Reactive Ion Etching)法を用いて個々の素子の境界となる部位を50nm〜1000nm程度までエッチングで除去する素子分離処理を行った後、エピタキシャル基板10の表面(障壁層4の表面)に厚さ50nm〜500nmのSiO膜を形成し、続いてフォトリソグラフィを用いてソース電極5およびドレイン電極6の形成予定箇所のSiO膜をエッチング除去することで、SiOパターン層を得る。
次いで、真空蒸着法とフォトリソグラフィプロセスとを用い、ソース電極5およびドレイン電極6の形成予定箇所にTi/Al/Ni/Auからなる金属パターンを形成することで、ソース電極5およびドレイン電極6を形成する。それぞれの金属層の厚みは、順に5nm〜50nm、40nm〜400nm、4nm〜40nm、および、20nm〜200nmとするのが好適である。
その後、ソース電極5およびドレイン電極6のオーミック性を良好なものにするために、600℃〜1000℃の窒素ガス雰囲気中にて10秒間〜1000秒間の熱処理を施す。
続いて、フォトリソグラフィプロセスを用いて、SiOパターン層から、ゲート電極7の形成予定箇所のSiO膜を除去する。
さらに真空蒸着法とフォトリソグラフィプロセスとを用いて、ゲート電極7の形成予定箇所に、Ni/Auからなるショットキー性金属パターンを形成することで、ゲート電極7を形成する。それぞれの金属層の厚みは、4nm〜40nm、および、20nm〜200nmとするのが好適である。
以上のプロセスにより、HEMT素子20が得られる。
(バッファ層の効果)
上述のように、本実施の形態に係るHEMT素子20においては、自立基板1が、1×1018cm−3以上の濃度でZnがドープされたGaNからなるとともに、バッファ層2が、エピタキシャル基板10の作製時にZnが自立基板1からチャネル層3へと拡散することを防止する拡散抑制層として機能するべく設けられてなる。より具体的には、バッファ層2は、1×1018cm−3以上5×1021cm−3以下の濃度でAlがドープされたGaN層である。
仮に、上述のような濃度条件でAlがバッファ層2にドープされていない場合、Znがバッファ層2からチャネル層3さらには障壁層4に拡散する。この場合、アクセプター元素として機能するZnが電子トラップとして働くために、HEMT素子20において電流コラプス現象が生じる。
しかしながら、本実施の形態に係るHEMT素子20においては、上述の濃度条件をみたしてAlがドープされたGaN層にてバッファ層2が形成されてなることによって、自立基板1からのZnの拡散が好適に抑制された結果として、電流コラプスの発生が好適に抑制されてなる。より具体的には、チャネル層におけるZnの濃度が1×1016cm−3以下であれば、HEMT素子20における電流コラプスの発生は好適に抑制される。
以上、説明したように、本実施の形態によれば、絶縁性のGaN自立基板を用いつつ、電流コラプスの発生が抑制されてなる半導体素子を、得ることができる。
(実験例1)
ZnドープGaN単結晶自立基板を作製した後、係る自立基板を下地基板として、バッファ層の厚みを違えたほかは同一の条件にて7種類のエピタキシャル基板を作製した。さらに、それぞれのエピタキシャル基板を用いてHEMT素子を作製した。以降においては、7種類のエピタキシャル基板とそれぞれを用いて作製したHEMT素子とに対し、共通のサンプルNo.1−1〜No.1−7を用いる。
[フラックス法によるZnドープGaN単結晶基板の作製]
直径2インチ、厚さ0.43mmのc面サファイア基板の表面に、550℃にてGaN低温バッファ層を30nm成膜し、その後、厚さ3μmのGaN薄膜を1050℃にてMOCVD法により成膜し、種基板として利用可能なMOCVD−GaNテンプレートを得た。
得られたMOCVD−GaNテンプレートを種基板として、Naフラックス法を用いてZnドープGaN単結晶層を形成した。
具体的には、まず、アルミナるつぼ内にMOCVD−GaNテンプレートを載置し、続いて、該アルミナるつぼ内に、金属Gaを30g、金属Naを45g、金属亜鉛を1g、炭素を100mg、それぞれ充填した。係るアルミナるつぼを加熱炉に入れ、炉内温度を850℃とし、炉内圧力を4.5MPaとして、約100時間加熱し、その後、室温まで冷却した。冷却終了後、アルミナるつぼを炉内から取り出すと、MOCVD−GaNテンプレートの表面には、褐色のGaNの単結晶層が約1000μmの厚さで堆積していた。
このようにして得られたGaN単結晶層を、ダイヤモンド砥粒を用いて研磨し、その表面を平坦化させるとともに、下地基板の上に形成された窒化物層の総厚が900μmとなるようにした。これにより、MOCVD−GaNテンプレートの上にGaN単結晶層が形成されたFlux−GaNテンプレートが得られた。なお、係るFlux−GaNテンプレートを肉眼視したところ、クラックは確認されなかった。
次いで、レーザーリフトオフ法により、種基板の側からレーザー光を30mm/秒の走査速度で走査しつつ照射することによって、Flux−GaNテンプレートから種基板を分離した。レーザー光としては、波長355nmのNd:YAGの3次高調波を用いた。パルス幅は約30ns、パルス周期は約50kHzとした。照射に際しては、レーザー光を集光して約20μm径の円形状ビームとすることにより、光密度が1.0J/cm程度となるようにした。また、レーザー光の照射は、Flux−GaNテンプレートを種基板と反対側から50℃前後の温度で加熱しつつ行った。
種基板を分離した後、得られた積層構造体の種基板から剥離された側の面を研磨処理することで、総厚430μmのZnドープGaN自立基板を得た。
得られたZnドープGaN基板の結晶性を、X線ロッキングカーブを用いて評価した。(0002)面反射の半値幅は120秒、(10−12)面反射の半値幅は150秒と良好な結晶性を示した。
[MOCVD法によるエピタキシャル基板の作製]
続いて、MOCVD法によって、エピタキシャル基板を作製した。具体的には、以下の条件に従って、バッファ層としてのAlドープGaN層、チャネル層としてのGaN層、障壁層としてのAlGaN層を、それぞれのZnドープGaN基板上にこの順に積層形成した。なお、以下において、15族/13族ガス比とは、13族(Ga、Al)原料の供給量に対する15族(N)原料の供給量の比(モル比)である。
AlドープGaNバッファ層:
形成温度=1050℃;
リアクタ内圧力=5kPa;
15族/13族ガス比=15000;
Al原料ガス/13族原料ガス比=0.001;
厚み=0、10、20、100、200、1000、または2000nm。
GaNチャネル層:
形成温度=1050℃;
リアクタ内圧力=100kPa;
15族/13族ガス比=2000;
厚み=1000nm。
AlGaN障壁層:
形成温度=1050℃;
リアクタ内圧力=5kPa;
15族/13族ガス比=12000;
Al原料ガス/13族ガス比=0.25;
厚み=25nm。
なお、厚みが0nmのAlドープGaNバッファ層のエピタキシャル基板とはつまり、AlドープGaNバッファ層を形成することなくZnドープGaN基板上に直ちにGaNチャネル層を形成したエピタキシャル基板である。また、AlドープGaNバッファ層の形成条件は、バッファ層中のAl濃度が5×1019cm−3となることを想定したものである。
上述の条件によって各層が順次に形成された後、サセプタ温度を室温付近まで降温し、リアクタ内を大気圧に復帰させた後、作製されたエピタキシャル基板を取り出した。
[HEMT素子の作製]
次に、それぞれのエピタキシャル基板を用いてHEMT素子を作製した。なお、HEMT素子は、ゲート幅が100μm、ソース−ゲート間隔が1μm、ゲート−ドレイン間隔が4μm、ゲート長が1μmとなるように設計した。
まず、フォトリソグラフィプロセスとRIE法を用いて各素子の境界となる部位を深さ100nm程度までエッチング除去した。
次に、エピタキシャル基板上に厚さ100nmのSiO膜を形成し、続いてフォトリソグラフィを用いてソース電極、ドレイン電極の形成予定箇所のSiO膜をエッチング除去することで、SiOパターン層を得た。
次いで、真空蒸着法とフォトリソグラフィプロセスとを用い、ソース電極、ドレイン電極の形成予定箇所にTi/Al/Ni/Au(それぞれの膜厚は25/200/20/100nm)からなる金属パターンを形成することで、ソース電極およびドレイン電極を形成した。次いで、ソース電極およびドレイン電極のオーミック性を良好なものにするために、825℃の窒素ガス雰囲気中にて30秒間の熱処理を施した。
その後、フォトリソグラフィプロセスを用いて、SiOパターン層から、ゲート電極の形成予定箇所のSiO膜を除去した。
さらに真空蒸着法とフォトリソグラフィプロセスとを用いて、ゲート電極の形成予定箇所に、Ni/Au(それぞれの膜厚は20/100nm)からなるショットキー性金属パターンを形成することで、ゲート電極を形成した。
以上のプロセスにより、7種類のHEMT素子が得られた。これらを微分干渉顕微鏡で観察したところ、サンプルNo.1−7のHEMT素子についてのみ、エピタキシャル基板の表面(つまりは障壁層の表面)にクラックが生じていることが確認された。
[HEMT素子のSTEM評価]
サンプルNo.1−4のHEMT素子について、STEM(走査型透過電子顕微鏡)観察し、係る観察結果に基づいてZnドープGaN基板の貫通転位密度を求めたところ、2×10cm−2であった。同条件で作製した、他のサンプルのZnドープGaN基板の転位密度についても、サンプルNo.1−4と同程度と見積もられる。
なお、貫通転位密度は、自立基板を複数視野において観察したときの、それぞれの視野において確認される転位の個数に基づいて、算出した。
[HEMT素子のSIMS評価]
それぞれのHEMT素子について、SIMS(二次イオン質量分析法)によりエピタキシャル基板における深さ方向の元素分析を行い、Zn元素とAl元素の濃度プロファイルを得た。
図2は、サンプルNo.1−4のHEMT素子を構成するエピタキシャル基板におけるZn元素、Al元素の濃度プロファイルを示す図である。図3は、サンプルNo.1−1のHEMT素子を構成するエピタキシャル基板におけるZn元素、Al元素の濃度プロファイルを示す図である。
図2の濃度プロファイルからは、以下のことがわかる。
(1)GaN基板にはZn元素が高濃度(1×1019cm−3)にドープされている。
(2)AlドープGaNバッファ層のAl濃度は5×1019cm−3である。
(3)バッファ層とGaN基板の界面から基板側では高濃度に存在しているZn元素の濃度が、バッファ層内で急速に減少し、さらにはチャネル層内においても徐々に減少し、SIMS測定におけるZnの検出下限である(バックグラウンドレベルである)5×1015cm−3にまで達している。
なお、これら(1)〜(3)の事項は、サンプルNo.1−2のHEMT素子におけるチャネル層でのZn元素の濃度値の下限値が8×1015cm−3であったことを除き、サンプルNo.1−2〜No.1−6のHEMT素子において同様であった。このことは、サンプルNo.1−2〜No.1−6のHEMT素子においては、GaN基板にドープされていたZn元素がチャネル層に拡散することが、抑制されているということを意味する。
一方、図3の濃度プロファイルからは、以下のことがわかる。
(4)GaN基板にはZn元素が高濃度(1×1019cm−3)にドープされている。
(5)Zn元素は、チャネル層内で徐々に減少しているものの、その度合いはサンプルNo.1−4のHEMT素子に比して緩やかであり、障壁層近傍においても、サンプルNo.1−4のHEMT素子より1オーダー以上も大きい8×1016cm−3以上の濃度でZn元素が存在する。
これら(4)〜(5)の事項は、サンプルNo.1−1のHEMT素子においてはGaN基板にドープされていたZn元素がチャネル層に拡散しているということを意味する。
以上の結果は、ZnドープGaN基板とチャネル層との間にAlドープGaNバッファ層を設けることで、基板からチャネル層へのZnの拡散が抑制されること、すなわち、AlドープGaNバッファ層が拡散抑制層として機能することを意味している。
[HEMT素子の電気特性評価]
半導体パラメーターアナライザーを用いて、サンプルNo.1−1〜No.1−6のHEMT素子のドレイン電流ドレイン電圧特性(Id−Vd特性)をDCモードおよびパルスモード(静止ドレインバイアスVdq=30V、静止ゲートバイアスVgq=−5V)にて評価した。ピンチオフ(pinch-off)の閾値電圧はVg=−3Vであった。
電流コラプスを評価するための指標として、ドレイン電圧Vd=5V、ゲート電圧Vg=2V印加時のDCモードに於けるドレイン電流IdDCと、パルスモードに於けるドレイン電流Idpulseの比R(=Idpulse/IdDC、0≦R≦1)を採用することとし、各HEMT素子についてこれを求めた。なお、係るR値が0.7以上であれば、当該HEMT素子は電流コラプスが小さいと判定できる。
表1に、実験例1のそれぞれのサンプルについての、濃度プロファイルから求めたバッファ層のAl濃度およびチャネル層のZn濃度と、R値とを、バッファ層の厚みと、エピタキシャル基板の表面におけるクラック(表1においては「膜クラック」と記載、以下の実験例においても同様)の有無とともに、一覧にして示す。なお、Al濃度およびZn濃度は、対象となる層の厚み方向中央部分での値とした(以降の実験例においても同様)。また、表1には、各サンプルが本発明の実施例と比較例のいずれに該当するかについても併せて示している。
Figure 0006705831
表1に示すように、バッファ層を有していないサンプルNo.1−1のHEMT素子においては、チャネル層のZn濃度が8×1016cm−3と1×1016cm−3よりも大きく、R値は0.25に留まっていた。
これに対して、バッファ層の厚みが10nm〜1000nmであるサンプルNo.1−2〜No.1−6のHEMT素子においては、チャネル層のZn濃度が1×1016cm−3以下となり、R値が0.70以上となった。すなわち、サンプルNo.1−2〜No.1−6のHEMT素子は電流コラプスが小さいといえる。
特に、バッファ層の厚みが20nm〜200nmであるサンプルNo.1−3〜No.1−5のHEMT素子においては、チャネル層のZn濃度がSIMSにおける検出下限である5×1015cm−3程度にまで小さくなり、R値が0.80以上となった。なお、表1においてB.G.Lとは、Zn濃度がバックグラウンドレベルであることを意味する(表2、表3においても同様)。すなわち、サンプルNo.1−3〜No.1−5のHEMT素子は電流コラプスが特に小さいといえる。
(実験例2)
実験例1と同様の作製条件および手順でZnドープGaN単結晶自立基板を作製した後、係る自立基板を下地基板として、7種類のエピタキシャル基板を作製した。その際の作製条件は、Al濃度が相異なるように、AlドープGaNバッファ層を形成する際のAl原料ガス/13族原料ガス比を違えたほかは、同一とした。より詳細には、当該バッファ層を形成する際のAl原料ガス/13族原料ガス比は、0.00001、0.00002、0.0001、0.001、0.02、0.1、0.2の7水準に違えた。また、バッファ層の厚みは100nmとした。
なお、ZnドープGaN基板の作製条件は実験例1と同じであることから、その転位密度は、サンプルNo.1−4と同程度と見積もられる。
さらに、それぞれのエピタキシャル基板を用いてHEMT素子を作製した。以降においては、7種類のエピタキシャル基板とそれぞれを用いて作製したHEMT素子とに対し、共通のサンプルNo.2−1〜No.2−7を用いる。ただし、サンプルNo.2−4のエピタキシャル基板およびHEMT素子は、実験例1におけるサンプルNo.1−4のエピタキシャル基板およびHEMT素子とそれぞれ同じものである。
得られた7種類のHEMT素子を対象に、実験例1と同様に、微分干渉顕微鏡による観察と、SIMSによる深さ方向の元素分析と、これによって得られる濃度プロファイルに基づくバッファ層のAl濃度およびチャネル層のZn濃度の算出と、半導体パラメーターアナライザーを用いたId−Vd特性の評価結果に基づくR値の算出とを行った。ただし、微分干渉顕微鏡による観察の結果、エピタキシャル基板の表面(つまりは障壁層の表面)にクラックが生じていることが確認されたサンプルNo.2−7のHEMT素子については、Zn濃度の算出と、Id−Vd特性の評価およびR値の算出は行わなかった。
表2に、実験例2のそれぞれのサンプルについての、バッファ層のAl濃度およびチャネル層のZn濃度と、R値とを、バッファ層の厚みと、エピタキシャル基板の表面におけるクラックの有無とともに、一覧にして示す。また、表2には、各サンプルが本発明の実施例と比較例のいずれに該当するかについても併せて示している。
Figure 0006705831
表2に示すように、バッファ層におけるAl濃度が5.0×1017cm−3であるサンプルNo.2−1のHEMT素子においては、チャネル層のZn濃度が7×1016cm−3と1×1016cm−3よりも大きく、R値は0.40に留まっていた。
これに対して、バッファ層におけるAl濃度が1.0×1018cm−3〜5.0×1021cm−3であるサンプルNo.2−2〜No.2−6のHEMT素子においては、チャネル層のZn濃度が1×1016cm−3以下となり、R値が0.70以上となった。すなわち、サンプルNo.2−2〜No.2−6のHEMT素子は電流コラプスが小さいといえる。
特に、バッファ層におけるAl濃度が5.0×1018cm−3〜1.0×1021cm−3であるサンプルNo.2−3〜No.2−5のHEMT素子においては、チャネル層のZn濃度がSIMSにおける検出下限である5×1015cm−3程度にまで小さくなり、R値が0.85以上となった。すなわち、サンプルNo.2−3〜No.2−5のHEMT素子は電流コラプスが特に小さいといえる。
(実験例3)
実験例1と同様の手順でZnドープGaN単結晶自立基板を作製した後、係る自立基板を下地基板として、3種類のエピタキシャル基板を作製し、それぞれのエピタキシャル基板を用いてHEMT素子を作製した。
ただし、それぞれのZnドープGaN単結晶自立基板の作製に際しては、MOCVD−GaNテンプレートの表面に形成されるGaNの単結晶層の厚みが異なるものとなるよう、フラックス法によるGaNの単結晶層の形成に際して、育成時間を違えた。これは、転位密度の異なるZnドープGaN単結晶自立基板を得ることを意図している。より詳細には、850℃での加熱保持時間を、100時間、70時間、40時間の3水準に違えることにより、GaN単結晶層の厚みを1000μm、600μm、200μmの3水準に違えた。
エピタキシャル基板およびHEMT素子の作製条件は、サンプルNo.1−4に係るエピタキシャル基板を作製する場合と同じとした。例えば、AlドープGaNバッファ層を形成する際には、Al濃度が5.0×1019cm−3となるようAl原料ガス/13族原料ガス比は0.001とし、当該バッファ層の厚みは100nmとした。
以降においては、3種類のエピタキシャル基板とそれぞれを用いて作製したHEMT素子とに対し、共通のサンプルNo.3−1〜No.3−3を用いる。ただし、サンプルNo.3−1のエピタキシャル基板およびHEMT素子は、実験例1におけるサンプルNo.1−4のエピタキシャル基板およびHEMT素子とそれぞれ同じものである。
得られた3種類のHEMT素子を対象に、実験例1と同様に、微分干渉顕微鏡による観察と、STEM観察結果に基づくZnドープGaN基板の貫通転位密度の評価と、SIMSによる深さ方向の元素分析と、これによって得られる濃度プロファイルに基づくバッファ層のAl濃度およびチャネル層のZn濃度の算出と、半導体パラメーターアナライザーを用いたId−Vd特性の評価結果に基づくR値の算出とを行った。
表3に、実験例3のそれぞれのサンプルについての、ZnドープGaN単結晶自立基板(表3においては「GaN基板」と記載)の転位密度と、チャネル層のZn濃度と、R値とを、エピタキシャル基板の表面におけるクラックの有無とともに、一覧にして示す。また、表3には、各サンプルが本発明の実施例と比較例のいずれに該当するかについても併せて示している。
Figure 0006705831
表3に示すように、ZnドープGaN単結晶自立基板における転位密度が1.0×10cm−2であるサンプルNo.3−3のHEMT素子においては、チャネル層のZn濃度が9×1016cm−3と1×1016cm−3よりも大きく、R値は0.22に留まっていた。
これに対して、ZnドープGaN単結晶自立基板における転位密度が5.0×10cm−2以下であるサンプルNo.3−1〜No.3−2のHEMT素子においては、チャネル層のZn濃度が1×1016cm−3以下となり、R値が0.70以上となった。すなわち、サンプルNo.3−1〜No.3−2のHEMT素子は電流コラプスが小さいといえる。
特に、ZnドープGaN単結晶自立基板における転位密度が2.0×10cm−2であるサンプルNo.3−1のHEMT素子においては、チャネル層のZn濃度がSIMSにおける検出下限である5×1015cm−3程度にまで小さくなり、R値が0.90となった。すなわち、サンプルNo.3−1のHEMT素子は、電流コラプスが特に小さいといえる。
(実験例1〜3のまとめ)
上述した実験例1〜3の結果からは、以下のことが確認される。
Zn元素が1×1018cm−3以上という高濃度にドープされたZnドープGaN単結晶自立基板の上に、チャネル層および障壁層を積層形成することによってHEMT素子を作製する場合において、自立基板の転位密度を5.0×10cm−2以下とし、かつ、当該自立基板の上に、Al濃度が1×1018cm−3以上5×1021cm−3以下であるAlドープGaNバッファ層を10nm以上1000nm以下の厚みで形成したうえで、チャネル層を形成することで、自立基板からチャネル層へのZnの拡散を好適に抑制することができる。
具体的には、チャネル層におけるZn濃度を1×1016cm―3以下に低減することができる。そして、このようにZnの拡散が好適に抑制されたHEMT素子においては、電流コラプスの発生が好適に抑制される。
特に、バッファ層の厚みが20nm以上200nm以下である場合、あるいは、バッファ層のAl濃度が5×1018cm−3以上1×1021cm−3以下の場合、電流コラプスの発生がさらに抑制される。

Claims (7)

  1. ZnがドープされたGaNからなり、転位密度が5.0×10 cm −2 以下である半絶縁性の自立基板と、
    前記自立基板に隣接してなるバッファ層と、
    前記バッファ層に隣接してなるチャネル層と、
    前記チャネル層を挟んで前記バッファ層とは反対側に設けられてなる障壁層と、
    を備え、
    前記バッファ層が、Al濃度が5×10 18 cm −3 以上1×10 21 cm −3 以下であるAlドープGaNからなり、かつ、20nm以上200nm以下の厚みを有する、前記自立基板から前記チャネル層へのZnの拡散を抑制する拡散抑制層であり、
    前記チャネル層におけるZnの濃度が1×10 16 cm −3 以下である、
    ことを特徴とする、半導体素子用エピタキシャル基板。
  2. 請求項1に記載の半導体素子用エピタキシャル基板であって、
    前記チャネル層はGaNからなり、前記障壁層はAlGaNからなる、
    ことを特徴とする半導体素子用エピタキシャル基板。
  3. ZnがドープされたGaNからなり、転位密度が5.0×10 cm −2 以下である半絶縁性の自立基板と、
    前記自立基板に隣接してなるバッファ層と、
    前記バッファ層に隣接してなるチャネル層と、
    前記チャネル層を挟んで前記バッファ層とは反対側に設けられてなる障壁層と、
    前記障壁層の上に設けられてなるゲート電極、ソース電極、およびドレイン電極と、
    を備え、
    前記バッファ層が、Al濃度が5×10 18 cm −3 以上1×10 21 cm −3 以下であるAlドープGaNからなり、かつ、20nm以上200nm以下の厚みを有する、前記自立基板から前記チャネル層へのZnの拡散を抑制する拡散抑制層であり、
    前記チャネル層におけるZnの濃度が1×10 16 cm −3 以下である、
    ことを特徴とする、半導体素子。
  4. 請求項に記載の半導体素子であって、
    前記チャネル層はGaNからなり、前記障壁層はAlGaNからなる、
    ことを特徴とする半導体素子。
  5. 半導体素子用のエピタキシャル基板を製造する方法であって、
    a)ZnがドープされたGaNからなり、転位密度が5.0×10 cm −2 以下である半絶縁性の自立基板を用意する準備工程と、
    b)前記自立基板に隣接させてバッファ層を形成するバッファ層形成工程と、
    c)前記バッファ層に隣接させてチャネル層を形成するチャネル層形成工程と、
    d)前記チャネル層を挟んで前記バッファ層とは反対側の位置に障壁層を形成する障壁層形成工程と、
    を備え、
    バッファ層形成工程においては、前記バッファ層を、5×10 18 cm −3 以上1×10 21 cm −3 以下のAl濃度を有するAlドープGaNからなり、かつ、20nm以上200nm以下の厚みを有するように形成することで、前記バッファ層を、前記自立基板から前記チャネル層へのZnの拡散を抑制する拡散抑制層とし、これによって、前記チャネル層形成工程において形成される前記チャネル層におけるZnの濃度を1×10 16 cm −3 以下とする、
    ことを特徴とする半導体素子用エピタキシャル基板の製造方法。
  6. 請求項に記載の半導体素子用エピタキシャル基板の製造方法であって、
    前記チャネル層はGaNにて形成され、前記障壁層はAlGaNにて形成される、
    ことを特徴とする半導体素子用エピタキシャル基板の製造方法。
  7. 請求項5または請求項に記載の半導体素子用エピタキシャル基板の製造方法であって、
    前記自立基板はフラックス法で作製される、
    ことを特徴とする半導体素子用エピタキシャル基板の製造方法。
JP2017548758A 2015-11-02 2016-11-01 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法 Active JP6705831B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201562249565P 2015-11-02 2015-11-02
US62/249,565 2015-11-02
JP2016005164 2016-01-14
JP2016005164 2016-01-14
JPPCT/JP2016/079619 2016-10-05
PCT/JP2016/079619 WO2017077806A1 (ja) 2015-11-02 2016-10-05 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法
PCT/JP2016/082370 WO2017077989A1 (ja) 2015-11-02 2016-11-01 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法

Publications (2)

Publication Number Publication Date
JPWO2017077989A1 JPWO2017077989A1 (ja) 2018-08-16
JP6705831B2 true JP6705831B2 (ja) 2020-06-03

Family

ID=58662399

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017548679A Active JP6737800B2 (ja) 2015-11-02 2016-10-05 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法
JP2017548758A Active JP6705831B2 (ja) 2015-11-02 2016-11-01 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法
JP2017548757A Active JP6730302B2 (ja) 2015-11-02 2016-11-01 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017548679A Active JP6737800B2 (ja) 2015-11-02 2016-10-05 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017548757A Active JP6730302B2 (ja) 2015-11-02 2016-11-01 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法

Country Status (7)

Country Link
US (3) US10580646B2 (ja)
JP (3) JP6737800B2 (ja)
KR (3) KR102547562B1 (ja)
CN (3) CN108140561B (ja)
DE (3) DE112016005022T5 (ja)
TW (3) TWI707975B (ja)
WO (2) WO2017077806A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11335799B2 (en) * 2015-03-26 2022-05-17 Chih-Shu Huang Group-III nitride semiconductor device and method for fabricating the same
JP6737800B2 (ja) * 2015-11-02 2020-08-12 日本碍子株式会社 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法
CN108884091B (zh) 2016-03-10 2021-04-13 日产化学株式会社 稠合杂环化合物和有害生物防除剂
CN108807291B (zh) * 2017-04-28 2020-06-26 环球晶圆股份有限公司 外延用基板及其制造方法
US11309455B2 (en) 2017-08-24 2022-04-19 Ngk Insulators, Ltd. Group 13 element nitride layer, free-standing substrate and functional element
CN111052415B (zh) 2017-08-24 2023-02-28 日本碍子株式会社 13族元素氮化物层、自立基板以及功能元件
CN111052414B (zh) 2017-08-24 2023-07-21 日本碍子株式会社 13族元素氮化物层、自立基板以及功能元件
WO2019038892A1 (ja) 2017-08-24 2019-02-28 日本碍子株式会社 13族元素窒化物層、自立基板および機能素子
CN111164629A (zh) * 2017-09-27 2020-05-15 赛可润思公司 用于资产价值的合规性感知代币化和控制的方法、装置和计算机可读介质
JP7433014B2 (ja) 2018-10-30 2024-02-19 ローム株式会社 半導体装置
JP7393138B2 (ja) * 2019-06-24 2023-12-06 住友化学株式会社 Iii族窒化物積層体
JP7348923B2 (ja) * 2020-03-25 2023-09-21 日本碍子株式会社 半導体素子用下地基板の製造方法、半導体素子の製造方法、半導体素子用下地基板、半導体素子用エピタキシャル基板、および半導体素子
US20220029007A1 (en) * 2020-07-24 2022-01-27 Vanguard International Semiconductor Corporation Semiconductor structure and semiconductor device
WO2023188742A1 (ja) * 2022-03-29 2023-10-05 日本碍子株式会社 13族元素窒化物単結晶基板
CN117637819B (zh) * 2024-01-26 2024-05-10 英诺赛科(珠海)科技有限公司 一种氮化镓器件

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039813B1 (ja) 1969-03-31 1975-12-19
JPS5341006B2 (ja) 1973-08-13 1978-10-31
JP3842842B2 (ja) * 1996-06-11 2006-11-08 松下電器産業株式会社 半導体レーザ装置の製造方法
JP2001036196A (ja) * 2000-01-01 2001-02-09 Nec Corp p型ドーパント材料拡散防止層付き窒化ガリウム系発光素子
JP3753068B2 (ja) 2001-12-26 2006-03-08 日立電線株式会社 電界効果トランジスタ用エピタキシャルウェハの製造方法
JP4546051B2 (ja) * 2002-07-17 2010-09-15 パナソニック株式会社 半導体装置の製造方法
JP2004111865A (ja) * 2002-09-20 2004-04-08 Sumitomo Electric Ind Ltd 半導体基板及びその製造方法
JP2007504682A (ja) * 2003-05-09 2007-03-01 クリー インコーポレイテッド 高Al含量AlGaN拡散バリアを有するIII族窒化物電子素子構造
WO2004109764A2 (en) * 2003-06-04 2004-12-16 Myung Cheol Yoo Method of fabricating vertical structure compound semiconductor devices
JP2005136136A (ja) * 2003-10-30 2005-05-26 Toshiba Corp 半導体装置の製造方法およびウエーハの製造方法
PL368483A1 (en) * 2004-06-11 2005-12-12 Ammono Sp.Z O.O. Monocrystals of nitride containing gallium and its application
JP4792814B2 (ja) 2005-05-26 2011-10-12 住友電気工業株式会社 高電子移動度トランジスタ、電界効果トランジスタ、エピタキシャル基板、エピタキシャル基板を作製する方法およびiii族窒化物系トランジスタを作製する方法
JP4631884B2 (ja) * 2007-08-22 2011-02-16 日立電線株式会社 閃亜鉛鉱型窒化物半導体自立基板、閃亜鉛鉱型窒化物半導体自立基板の製造方法、及び閃亜鉛鉱型窒化物半導体自立基板を用いた発光装置
JP2009218290A (ja) * 2008-03-07 2009-09-24 Rohm Co Ltd 電界効果トランジスタ
JP2010068548A (ja) * 2008-09-08 2010-03-25 Hitachi Industrial Equipment Systems Co Ltd 電動機
JP2010171416A (ja) 2008-12-26 2010-08-05 Furukawa Electric Co Ltd:The 半導体装置、半導体装置の製造方法および半導体装置のリーク電流低減方法
TWI409859B (zh) * 2009-04-08 2013-09-21 Efficient Power Conversion Corp 氮化鎵緩衝層中之摻雜劑擴散調變技術
JP5039813B2 (ja) * 2009-08-31 2012-10-03 日本碍子株式会社 Znがドープされた3B族窒化物結晶、その製法及び電子デバイス
JP2011187643A (ja) * 2010-03-08 2011-09-22 Sharp Corp ヘテロ接合型電界効果トランジスタ
WO2012014883A1 (ja) * 2010-07-29 2012-02-02 日本碍子株式会社 半導体素子用エピタキシャル基板、半導体素子、pn接合ダイオード素子、および半導体素子用エピタキシャル基板の製造方法
WO2012020565A1 (ja) * 2010-08-11 2012-02-16 住友化学株式会社 半導体基板、半導体デバイスおよび半導体基板の製造方法
JP5987288B2 (ja) 2011-09-28 2016-09-07 富士通株式会社 半導体装置
US20130105817A1 (en) * 2011-10-26 2013-05-02 Triquint Semiconductor, Inc. High electron mobility transistor structure and method
JP2013229493A (ja) * 2012-04-26 2013-11-07 Sharp Corp Iii族窒化物半導体積層基板およびiii族窒化物半導体電界効果トランジスタ
JP5991018B2 (ja) * 2012-05-16 2016-09-14 ソニー株式会社 半導体装置
JP2014027187A (ja) * 2012-07-27 2014-02-06 Fujitsu Ltd 化合物半導体装置及びその製造方法
CN104919571B (zh) 2012-11-30 2018-01-23 Lg伊诺特有限公司 外延晶元,以及使用其的开关元件和发光元件
US9018056B2 (en) * 2013-03-15 2015-04-28 The United States Of America, As Represented By The Secretary Of The Navy Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material
CN104617201B (zh) * 2015-01-23 2017-12-01 合肥彩虹蓝光科技有限公司 一种适合高电流密度的GaN基LED外延结构及其生长方法
KR102491830B1 (ko) * 2015-11-02 2023-01-25 엔지케이 인슐레이터 엘티디 반도체 소자용 에피택셜 기판, 반도체 소자, 및 반도체 소자용 에피택셜 기판의 제조 방법
JP6737800B2 (ja) * 2015-11-02 2020-08-12 日本碍子株式会社 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法

Also Published As

Publication number Publication date
KR102519304B1 (ko) 2023-04-06
TW201732067A (zh) 2017-09-16
TW201730364A (zh) 2017-09-01
JPWO2017077806A1 (ja) 2018-08-16
KR20180075526A (ko) 2018-07-04
KR102547562B1 (ko) 2023-06-23
US20180247809A1 (en) 2018-08-30
DE112016005017T5 (de) 2018-08-02
CN108140561A (zh) 2018-06-08
TWI707975B (zh) 2020-10-21
CN108140563B (zh) 2022-04-05
TWI710657B (zh) 2020-11-21
US20190027359A9 (en) 2019-01-24
DE112016005028T5 (de) 2018-08-09
KR102519899B1 (ko) 2023-04-07
US20180247810A1 (en) 2018-08-30
JPWO2017077989A1 (ja) 2018-08-16
US10418239B2 (en) 2019-09-17
US10580646B2 (en) 2020-03-03
US10410859B2 (en) 2019-09-10
WO2017077806A1 (ja) 2017-05-11
TWI686498B (zh) 2020-03-01
TW201732068A (zh) 2017-09-16
KR20180075525A (ko) 2018-07-04
JP6730302B2 (ja) 2020-07-29
DE112016005022T5 (de) 2018-08-02
CN108352306A (zh) 2018-07-31
WO2017077988A1 (ja) 2017-05-11
CN108140561B (zh) 2022-04-12
CN108140563A (zh) 2018-06-08
KR20180075527A (ko) 2018-07-04
JP6737800B2 (ja) 2020-08-12
CN108352306B (zh) 2022-04-29
JPWO2017077988A1 (ja) 2018-08-30
US20180247817A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6705831B2 (ja) 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法
WO2017077989A1 (ja) 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法
US10770552B2 (en) Epitaxial substrate for semiconductor elements, semiconductor element, and manufacturing method for epitaxial substrates for semiconductor elements
JP6944569B2 (ja) 半導体素子用エピタキシャル基板および半導体素子

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200514

R150 Certificate of patent or registration of utility model

Ref document number: 6705831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150