TW201026758A - Composite compositions and composites - Google Patents

Composite compositions and composites Download PDF

Info

Publication number
TW201026758A
TW201026758A TW098138234A TW98138234A TW201026758A TW 201026758 A TW201026758 A TW 201026758A TW 098138234 A TW098138234 A TW 098138234A TW 98138234 A TW98138234 A TW 98138234A TW 201026758 A TW201026758 A TW 201026758A
Authority
TW
Taiwan
Prior art keywords
cellulose
resin
composite composition
composite
fiber
Prior art date
Application number
TW098138234A
Other languages
English (en)
Inventor
Wataru Oka
Takehiko Maetani
Takahito Ishikawa
Original Assignee
Sumitomo Bakelite Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008290456A external-priority patent/JP2010116477A/ja
Priority claimed from JP2009078079A external-priority patent/JP2010229586A/ja
Priority claimed from JP2009141957A external-priority patent/JP2010285573A/ja
Application filed by Sumitomo Bakelite Co filed Critical Sumitomo Bakelite Co
Publication of TW201026758A publication Critical patent/TW201026758A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

201026758 六、發明說明: 【發明所屬之技術領域】 本發明係關於複合體組成物及複合體,該複合體組成 物包含\纖維狀填充劑;與樹脂、金屬氧化物及薄片狀無 機材料之至少一種。 【先前技術】 為了減低樹脂之熱線膨脹係數、或提高彈性率、抗彎 _ 強度等之機械強度,廣泛地實施球狀填充劑或纖維狀填充 劑之摻雜。近年來,在取代習知巨填充劑(macr〇filler)的材 料方面,關於二氧化矽微粒子或金屬微粒子等之球狀微粒 子j或棒狀的晶鬚(whisker)型之奈米尺寸填充劑的研究極為 盛行。但是對於該等填充劑,關於纖維狀奈米材料之研究 則少有報告發表。 近年來,有極多利用到纖維素的塑膠代替品之報告被 發表。可例舉例如:使用一種裝置,其可供予被稱為高壓 • ^化器的極高壓力,使纖維素的原纖維狀(fibril)物質高度微 且利用所彳于的纖維素之微纖維(microfibril)作為填充 材料的複合體,其他藉由超高壓微射流奈米分散均質機 (microfluidizer)法、研磨機法來結乾燥法、強剪彈力捏合 求磨機柘碎法而予以小型化(d〇wnsizing)的纖維素之微 j維利⑽為填充材料的複合體。有報告指出,當使用該 填充材料時,則可獲得強度比較高的成形體(參照例如專 • 利文獻1)。 处=是,在習知的微纖維化方法中,小型化處理需要很 b畺成本上極為不利,同時所得微細化纖維之纖維徑 3/54 201026758 亦存在比較廣泛的分布’微細化之程度亦不完全。視情況, 由於l//m以上的粗齡亦有若干殘留,故在微纖維纖維徑 或密度中會存在特泛的分布,且在成形品之強度中產 生絕對值的降低或不勻。 又,如專利文獻2所記載,公知係使用菌產生的細菌 纖維素而可獲得透明且具有低線膨脹率之纖維強化複合材 料。但是’與前述的機械方式獲得_素微纖維之情況同 樣地,由於生產速度緩慢,故從上觀點來考量則未必 是有利的。 ^又,由於纖維素在纖維表面有著多數羥基故親水性 尚’在吸水時尺寸或物性A罐化。因此,在吸水時複合 材料之尺寸或物性亦有大幅變化,存在著複合材料之用^ 被限定的問題。 【先前技術文獻】 【專利文獻1】曰本特開2003-201695號公報 【專利文獻2】日本特開2005-60680號公報 【發明内容】 本發明之目的係提供-種生產效率良好的複合體組成 物及屬其成雜的複合體’該複合體域物具有低熱膨服 係數、高酿、高透雜、域度舰錄(高耐水性)。 為達成上述目的,本發明係一種複合體組成物,其包 含:纖維狀填充劑;以及 樹脂、金屬氧化物及薄片狀無機材料之至少一種, 該纖維狀填充劑之平均纖維徑為4至1〇〇〇奈米。 又,本發明之複合體組成物中,該纖維狀填充劑宜為 201026758 纖維素纖維。 又’本發明之複合體組成物中,該纖維素纖維宜為使 纖維素原料藉由化學處理及機械處理之至少一種而微細化 所得之纖維。 又,本發明之複合體組成物中,宜為該纖維素纖維係 所含的纖維素分子中的羥基之一部分,被醛基及羧基之至 少一種所氧化。
又’本發明之複合體組成物中,宜為該纖維素纖維是 使用天然纖維素作為原料’使用N-烴氧基化合物作為氧化 觸媒’同時’在水中使共氧化劑作用於該原料,而使 料氧化所得之物。 又,本發明之複合體組成物中,該樹脂宜為可塑性樹 脂及硬化性樹脂之至少一種。 又,本發明之複合體組成物中,該樹脂宜為含有環 樹脂之物。 又,本發明之複合體組成物中,該樹脂宜為含有酚 脂之物。 該樹脂宜為含有偶合 該偶合劑宜為烷氧石夕 該金屬氧化物之平均 該金屬氧化物宜為二 δ亥薄片狀無機材料.宜 又’本發明之複合體組成物中, 劑及該偶合劑之水解物之至少一種。 又’本發明之複合體組成物中, 烷或烷氧鈦。 又’本發明之複合體組成物中, 粒徑宜為1至1000奈米。 又,本發明之複合體組成物中, 氧化矽。 又’本發明之複合體組成物中, 5/54 201026758 為選自雲母、蛭石(verminculite)、蒙脫石、鐵蒙脫石、鋁蒙 脫石(beidellite)、皂石(saponite)、裡蒙脫石(hect〇rite)、矽鎂 石(stevensite)、囊脫石(nontronite)、天然矽酸鈉(magadiite)、 伊利石(llerite)、水矽鈉石(kanemite)、膨潤石(smectite)及層 狀鈦酸中的一種以上。 又,本發明之複合體組成物中,宜為該複合體組成物 中的戎纖維狀填充劑之含有率為〇 1至99.9重量百分率。
又,本發明之複合體組成物,宜為厚度3〇#m時的全 透光率為80百分率以上。 又’本發明之複合體組成物,宜為自3〇°c至180°C的 熱膨服係數為5 0ppm./°C以下。 為了達成上述目的,本發明係一種複合體,其特徵為 使該複合體組成物成形而成,且厚度為 又’本發明之複合體,宜為自30°C至150。(:中的熱膨 脹係數為0.4至50ppm/°C。 又’在本發明之複合體,宜為濕度膨脹係數為1〇〇ppm/ 濕度百分率以下。
【實施方式】 兹根據本發明之複合體組成物及複合體之適當實施形 態詳細說明如下。 本發明之複合體組成物包含:纖維狀填充劑;及樹脂、 金屬氧化物及薄片狀無機材料之至少一種。而且,本發明 之複合體係藉由使該複合體組成物成形為預定之形狀而製 造。 <複合體組成物> 6/54 201026758 (纖維狀填充劑) 首先,根據纖維狀填充劑加以說明。 本制所使狀纖維狀填充狀平均_徑為4至 _奈^,宜為4至細奈米,更宜為4至奈米。此 纖雜超出該上限㈣透日雜惡化,同時未見 強度之提㊉。-方面’關平均纖維徑低於該下限值 ’、,,、、妨,不過要獲得此種纖維狀填充劑則有困難。 6關於本發明所使用纖維狀填充劑之長度,並無特別限 疋’只要是纖維狀填充劑的平均長度為卿奈米以上則易 於獲得補賊果,可謀求強度之提高。 ^在此,纖維狀填充劑之平均纖維徑的測定可如以下進 行。
百先’調製固形物含有率(solid content percentage)為 ’05 ^ 〇·1重量百分率之纖維狀填充劑之分散體,將該分散 :在:厌職覆栅格上_作成穿透式電子顯微鏡(τ腿〕觀 菸用试料。又,在含有大纖維徑之纖維狀填充劑時,亦可 在玻璃上;堯鑄作成掃描式電子顯微鏡(SEM)觀察用試料。 在以顯微鏡觀察時,因應構成之纖維狀填充劑的大小 (^維徑)’以5〇〇〇倍、1〇〇〇〇倍或5〇〇〇〇倍之任一倍率取 =电子顯微鏡晝面。此時,若在所得的晝面内假定縱橫任 =的晝面寬之軸’則設定試料條件及觀察條件(倍率等)以至 >相對於軸’使二十支以上的纖維狀填充劑與轴交差。 ,#接著’對滿足該條件的觀察晝面,對每一枚晝面繪出 縱板各兩條的隨機軸,以目視制讀取在各軸交錯的纖維 狀填充劑之纖維徑。此外,針對試料表面,挪動觀察位置 使其互不重複’同時取得最低三牧的觀察晝面,根據各晝 7/54 201026758 面各自按照上述方式讀取纖維 X刚支之纖維狀填充劑可獲得:== = 基於所得的纖維徑之數據,來計算平均^如此一來 本發明所使用之纖維狀填充劑雖可為任 較佳為以纖維素纖維構成之物。 、不k 纖維素纖維方面’可例舉天鈥 素纖維等。-方面’在纖維素纖;•以外生= 舉例=丁質(ch_纖維、聚葡萄胺糖(chit〇san)纖維等。歹 八中,在天賊維素纖維方面,可轉 (C1 d h于、…、截維、由榭斗(Valonia)或樹枝藻
Cd—所得纖維素纖維、_生產的纖維賴維等一 =面,再生纖維素纖維方面,可例舉先溶解了天然纖維素 纖維後’在保持纖維素組成之原樣下再生成纖維狀之物。 又’本發明所使用之纖維素纖維宜為使用高結晶性之 物。此種纖維素纖維尤其線膨脹率小,機械強度高,故可 適當使用作為纖維狀填充劑。此外,由這 發明所使用之纖維素纖維方面,天然纖維素纖維:再生: 維素纖維更好。 又’本發明所使用之纖維素纖維方面,亦可為周知之 任何方法所得之物,其製法並無特別限定,例如可使用藉 由介質撥拌磨機處理裝置、振動磨機處理裝置、高壓均化 器處理裝置、超高壓均化器處置裝置等之各種微細化裝 置,將纖維素原料(天然纖維素或再生纖維素)予以機械式微 細化之物。又,其他方法方面,亦可使料由電子旋轉 8/54 201026758 (dwpinning)法、水蒸汽喷注法、ΑρΕχ(註 (P〇lymerG,Inc)法等所得之纖維素纖維。但是 量效率等時,在纖維素原料方面,最佳是藉由 不化學式處理的方法所得之纖維素纖維。 下述所說明之纖維素纖維之製作方法係 實施化學處理後,藉由提供機械處理,使之分散 質中’並製作纖維素纖維(奈米纖維素纖維)的方法、。
具體言之’該方法包含:⑴氧化反應步驟,其 然纖維素作為料,在水巾料使N__基㈣圳化人物 使天然纖維素紐轉得反祕齡;[珊製 雜質且獲得浸潰水麟[3]分散步驟,將浸潰= 的反應物纖維分散於分散介f。練據各㈣詳細說明如 下0 [1]氧化反應步驟 首先’在氧化反應步驟中,調製分散液,該分散液係 使纖維素·分散於水巾。在此剌的纖維素原料, 使用預先貫把打漿等之提高表面積的處理。藉此即可提高 反應效率,並提高生產性。又,纖維素原料方面,宜為在 單離、精製後,使用以未乾燥歷程(never_dry)保存著之物。 藉此,由於構成纖維素補的微纖維之維束體細此心吻) 成為易於_陳態,還是可提高反應料,減小微細化 處理後的數量平均纖維徑。 此外,使用水作為本步驟中的纖維素原料之分散介質 時,分散液(反應水溶液)中的纖維素濃度,只芦 散試藥之濃度’雜意均可,通常相對於分散液之重量為= 9/54 201026758 重量百分率以下。 又,可使用作為纖維素之氧化觸媒的N-烴氧基化合物 有為數極多之報告被發表。例如,在「Cenul〇se(纖維素)」 Vol.10、2003 年、第 335 至 341 頁中的 LShibata 及 A.Is〇gai 等人以「使用到TEMPO衍生物的纖維素之觸媒氧化:氧化 生成物之HPSEC及NMR分析」為題目的報導所記载的, TEMP〇(2,2,6,6-四曱基小哌啶_N_烴氧基)、4_乙醯胺 •TEMPO 、4-羧基-TEMPO 、及4-膦醯氧
(ph〇Sph〇nooxy)-TEMPO之各種义烴氧基系化合物觸媒宜 在水中於常溫的反應速度中使用。此外,該等沁烴氧基化 合物之添加以觸媒量即為充分,較佳為在〇1至4毫莫耳/ 升’更佳為在0.2至2毫莫耳/升之範圍添加於反應水溶液。
又,共氧化劑方面,可例舉例如次鹵酸或其鹽、亞鹵 素酸或其鹽、㈣酸或其鹽、過氧化氫、及過有機酸等, 不過特佳為驗金屬次!|酸鹽、具體言之可適當使用次氯酸 納或次__。在細:欠驗_,宜為械化驗金屬 ^如,演化鈉之存在下進行反應,這在反應速度方面為適 ®。该漠化驗金屬之添加量相對於N_烴氧基化合物較佳為 約1至40倍莫耳量,更佳為約10至20倍莫耳量。 又,反應水溶液之pH宜為維持於約8至u之範圍。 —:液之恤度可任意在約4至4叱之範圍,不過反應可在 至&進行,溫度之控制並非特別必要。 可在纖維素分子藉由共氧化劑而導入竣基,以取I 二昭不過在獲彳禮用於本發明的微細纖維素纖維時, :::維素原料之種類而視為必要的羧基量並不相同 17 Μ此來s又定共氧化劑之添加量或共氧化劑作用, 10/54 201026758 間。具體言之,叛基量越多’則最終所得纖維素纖維之最 大纖維徑及數量平均纖維徑越小,故宜考慮該量並設定。 齡使用木材紙漿及、纟帛系紙漿作為纖維素原料時,被 視為必要的羧基量相對於纖維素原料為〇.2至2.2毫莫耳/ 克,而纖維素原料係使用細菌纖維素(BC)或來自海鞘之萃 取纖維素時,則被視為必要的羧基量為〇1至〇 8毫莫耳/ 克。如此-來因應纖維素原料之種類,藉由控制共氧化劑 之添加量與反應時間,即可導入最適的魏基量於各纖維素 ❹ 原料。 此外根據如上述的羧基之導入量,則可導入共氧化劑 之添加量,試舉-例,相對於纖維素原料i克宜為添加約 0.5至8毫莫耳之共氧化劑’反應時間約5至12〇分鐘,至 長也是在240分鐘以内。 又,藉由通過本氧化反應步驟,雖在纖維素分子導入 絲,不過根據氧化處理之進行程度,亦有導入酸暴之情 况。因此,本氧化反應步驟完成後之纖維素分子的羥基, 藝則成為以酸基及叛基之至少一種所取代。 [2]精製步驟 在精製步驟中目的係在於,將含於反應裝液中的反應 物纖維與水以外之化合物,具體言之,係將如未反應之次 氣酸或各種副產物等的化合物除去至系統外。反應物纖維 通#由於在此階段並非散亂地分散至奈米纖維單位,故藉 岐常之精製法’亦㈣複進行水洗與魏,即可謀求高 純度(99重量百分率以上)化。 本精製步驟中的精製方法係如利用離心脫水的方法, 只要能達成上述目的的裝置(例如連續式傾析器 11/54 201026758 (d_㈣)’卿祕何似亦無妨。如 在,狀態之固形物(纖維素)濃度方面,係大致=物= 此外,在考量到其後之步驟中使奈米 t H 若設定於較5G重量百分率更高的固形物 濃度,因於为散上需要極高的能量故不適宜。 [3]分散步驟 製步驟中,雖可獲得業已浸潰水的反應物纖 、准不過精由使其分散於溶射,並實施分散處理, 以为散體讀態獲得本發明所制的微細纖維素纖維。 、在此,作為分散介質之溶劑通常宜為水,不過除了水 以外亦可因應目的為可溶於水的醇類(甲醇、乙醇、異丙醇、 ,丁醇、二級丁醇、三級丁醇、甲基溶纖劑、乙基溶纖劑、 匕酉二、甘油等)、_(乙二醇二曱喊、M_)惡烧、 2 7 '甲乙酮卜N,N_二甲基甲酿胺、取_ 、曰人二乙酿胺、一甲基亞石風等。又’亦可適當使用該等之 此合物。 _ 又,在藉由上述反應物纖維溶劑而予以稀釋、分散之 際,藉由進行階段性分散,該階段性分散係所謂的一點點 劑逐步分散,即可有效率地獲得奈米纖維等級之纖 =二散體。此外由操作上之問題觀之,在分散步驟後, =擇为散條件,以使分散體成為有黏性之狀態或成為凝 在此,於分散步驟中使用之分散機方面,可使用各種 物質。試例舉具體例’雖亦仰賴於反應物纖維中的反應之 進订度(觸基餘基之變換#),*過在適#地進行反應的 條件下,以螺旋型混合器、浸置式(puddle)混合器、^;散 12/54 201026758 (dlsper)型混合器、渦輪(turbine)型混合器等廣泛用作工業生 產機械的分散機,即可獲得充分微細纖維素纖維之分散體。 . 又,藉由使用如均質混合器、高壓均化器、超高壓均 • 化器、超音波分散處理、打漿機(beater)、碟型精製機
Miner)、錐形(conicai)型精製機、雙碟形(d〇uWe此_精 製機、研磨機(grinder)般在高速旋轉下具有強力打漿能力的 裝置,則可更有效率且高度的小型化。進而,藉由使用該 等裝置,而即使在醒基或羧基之導入量比較小的情形(例 Ο 如’相對於醛基或羧基之纖維素的總和量係αι至0.5毫莫 耳/克)’亦可提供高度微細化的微細纖維素纖維之分散體。 接著,針對從已使微細纖維素纖維分散於分散介質中 的分散體,回收微細纖維素纖維的方法加以說明。 具體言之,藉由使上述微細纖維素纖維之分散體乾燥 即可回收微細纖維素纖維。 在此之乾燥,例如分散介質為水時,使用珠結乾燥法, 錄介質為水與有機溶劑之混合液時,可適#使用滾筒乾 ❹ _職賴或視情㈣使时縣職所輯霧乾燥。 又,j上述微細纖維素纖維之分散體中,黏合劑可添 加水公性阿分子(聚環氧乙炫、聚乙烯醇、聚丙稀醯胺、魏 甲纖、准素A乙纖維素、經丙纖維素、曱基纖維素、殿粉、 橡賴等)、糖類⑽萄糖、果糖、甘露糖、半乳糖、海 澡糖(trehalose)等)。該等黏合劑成分,彿點極高而且相對於 _素具有親和性’故藉由添加料成分於分散體中,即 • 使^ ^如’衰筒乾燥機或噴麗乾燥機的廣泛使用之乾燥法予 H日ί,即可防止再度分散於分散介質中時的凝聚,且 可確實得到作為奈米纖維而業已分散的微細纖維素纖維之 13/54 201026758 刀政體錢情形,添加於分散體中的黏合劑之量,相對 於:織,為在1〇至8〇重量百分率之範圍。 w t ’藉由使業已回㈣微細纖維素齡再次混入至 刀、(水或有機溶劑或者該等之混合液)中,且施加適當 的刀散力(例如’進行制财上述分散步驟所使用的各種 分散機的分散),即可成為微細纖維錢維之分散體。 使用於本發明的微細纖維素纖維,宜為纖維素之經基 的。P刀被繞基或酸基所氧化且具有纖維素t型結晶構 造。此外’微細纖維素纖維具有I型結晶構造,係指將來自 天然的纖維素g]體原料予以表面氧化且微細化的纖維。
又’微細纖維素纖維具有I型結晶構造,係在藉由該廣 角X線繞射像測定所得繞射輪廓(piOfile)中,可根據在2Θ -14至17附近與2 0=22至23。附近的二個位置具有典型的 峰值來鑑疋。進而,在微細纖維素纖維之纖維素導入醛基 或缓基’錄據完全除去水分的樣本之全反料紅外分光 光譜(ATR)中’可藉由起因於幾基的吸收(16〇8cm-]附近)之 存在來確認。尤其是’在酸型的羧基(_c〇〇H)導入於纖維素 時’在上述測定中於l730cm-]存在吸收值。 微細纖維素纖維係藉由上述理由,而存在於纖維素的 羧基與醛基之1T的總和越多,則可以更微小的纖維徑而穩 定地存在。例如在木材紙漿或綿紙漿之情況,相對於纖維 素纖維之重量,存在於微細的纖維素纖維的羧基與醛基之 里的總和(以下簡稱為「總和量」),為〇·2至2.2毫莫耳/克, 較佳為0.5至2.2耄莫耳/克,再者只要是較佳為〇 8至2 2 毫莫耳/克,則可獲得作為奈米纖維之穩定性優異的纖維素 纖維。又,例如來自BC或海鞘之萃取纖維素般的微纖維之 14/54 201026758 纖維控為味粗的雜素之情況(平均纖賴錢太 要是總和量為心⑽毫莫耳/克,較佳為^ 至以耳/克,則可獲得作為奈米纖維之穩定性優里沾 纖維素纖維。此外’在總和量小於該下限值時,則與習知 所公知的業已微細化的纖維素纖維之物性上的差々、° 分散體中的分散穩定化效果)亦變小,同時,在 小的纖維徑之纖維,故不佳。 、^獲侍微 再者’相對於屬非離子性之取代基的絲, 之導入’而產生電性排斥力。藉此,由於微纖維:二 之:㈣’故作為奈米纖維之工散= U生更料大。例如在木材紙聚或綿紙漿之情況 二纖口維::?2=『」存在於微細纖維素纖維的幾基之 定性極優異的纖維素纖維。又,在例如來自BC 卒取纖維素的微纖維之纖維徑為比較粗的纖維素之产況, 當破基之量為G.1至〇.8毫莫耳/克,較佳為Q 2至月毫 耳/克奈米纖維之穩定_異的纖維素二 某之纖維素纖維之重量的纖維素之·及羧 基之里(毛莫耳/克)係藉由以下方法來評價。 产地Γ乾燥重量的纖維素試料來調雜 度0.5至i重爾率之漿液6〇毫 ^^2.5後,滴下_之氯氧化二 ίίΐίίΪΖ測定。該測定係持續至PH至約11為止。 _&中和階段^,自所消耗的 虱乳化鈉里(V),使用下式計算官能基量。在此使業已計算 15/54 201026758 的官能基量作為「官能基量1」。該官能基量1表示羧基之 量0 g能基量(毫莫耳/克)=V(毫升)χ〇.05/纖維素之質量(克) 接著’在藉由乙酸而調製至PH4至5的2百分率亞氯 酸鈉水溶液中,進一步在48小時常溫下氧化纖維素試料, 藉由上述方法再度計算官能基量。在此將所計算的官能基 里作為「官能基量2」。接著,計算藉由該氧化所追加的官 能基置(=官能基量2_官能基量丨)。該官能基量表示醛基之 量。
(樹脂) 在本發明所使用之樹脂方面,可使用周知之物,雖無 特別蚊,但是可例舉含有各種硬化性韻、各種可塑^ 樹脂、各種水溶性樹脂等之物。
水溶性樹脂方面,只要是可溶解於水之物則並無特 限疋,可例舉熱塑性樹脂、硬化性樹脂、天然高分子等, 不過較佳為如聚乙烯醇、聚環氧乙烧、聚丙烯醯胺、聚乙 稀吼洛销般的合“分子;如祕類、褐級類般的 糖類;屬木材之構成成分的半纖維素、以明膠、膠咖e)、 酪蛋白(casein)為首的蛋白質般的天然高分子等。 、 又,熱塑性樹脂方面,並無特別限定,可例舉例如 乙烯樹脂、乙酸乙烯酯樹脂、聚聚苯乙烯、ABS樹脂、丙 烯酸樹脂、聚乙稀、聚對峨乙二g旨、聚萘二曱酸乙歸賴、 聚丙烯、氟樹脂、聚g篮胺樹脂、熱塑性聚醯亞胺樹脂 縮醛樹脂、聚碳酸醋、聚乳酸、聚羥乙酸、聚_3_羥丁醆& 聚戊酸触、聚己二酸乙烯g旨、聚己㈣、聚丙内自旨等 聚醋、聚乙二醇等n聚谷紐、聚離胺酸等之聚驢 16 / 54 201026758 胺等。 匕方面,在硬化性樹脂方面,可例舉例如酚樹脂、尿 二’丨知、二聚氰胺樹脂、不飽和聚酯樹脂、環氧樹脂、丙 、MsM日氧雜_丁燒樹脂、鄰苯二酸二烯丙酯樹脂、聚 女甲、⑪樹脂、順了歸二醯亞胺樹脂、熱硬化性 聚醯亞胺樹脂等。 X其中,丙烯酸樹脂方面,可例舉丙烯酸、甲基丙烯酸、 7稀1^甲§日、曱基丙烯酸甲g旨般之丙烯酸如旨或曱基丙烯 ® 成自曰’除此之外還有包含環狀之丙稀酸或曱基丙烯酸 酯、丙烯酸羥乙酯等一種以上的樹脂。 人又,酚树脂係分子内具有酚性羥基一個以上的有機化 t物。可例舉例如酚醛清漆或雙酚類、分子内具有萘酚或 二酉分的树月曰、對亞一甲苯改性@分樹脂、二亞甲醚型可溶盼 γ基型盼荨的可溶盼酸樹脂。又,可例舉進— 步使該等樹酿甲基化的化合物、含有陳祕一個以上 的木質素(lignin)或木質素衍生物、木質素分解物、進一步 〇 使木質素或木質素衍生物、木質素分解物改性之物、或者 種树知,其含有使該等與自石油資源所製造的酚樹脂混 合之物。 又,環氧樹脂係具有至少一個環氧基的有機化合物。 可例舉例如雙酚A型環氧樹脂、雙酚F型環氧樹脂、雙酚 S型環氧樹脂等之雙酚型環氧樹脂;該等的雙酚型環氧樹脂 之氫化物;具有二環戊二烯骨架的環氧樹脂;具有異三聚 =酸三環氧㈣骨架的環氧樹脂;具有軸節(e牆)骨架的 環氧樹脂;具有聚矽氧烷構造的環氧樹脂;脂環式多官能 環氧樹脂;具有氫化聯苯基骨架的脂環式環氧樹脂;具有 17/54 201026758 虱化雙盼A骨架的脂環式環氧樹脂等。 又,本發明所使用的樹脂亦可為各種偶合劑。 偶合劑方面’可使用周知之物,不過可例舉石夕境系偶 合劑、鈦系偶合劑、錯系偶合劑、紹系偶合劑等,該等巾. 宜為使用石夕烧系偶合劑或鈦系偶合劑。該等由於取得比較. 容易,在無機材料與有機材料之界面中的接著性高,故適 宜作為複合體組成物所含有的偶合劑。 又,上述偶合劑中,矽烷系偶合劑宜為至少含有矽原 子一個以上、官能基含有烷氧基一個以上。又,其以外之 官能基方面可例舉環氧基、或環氧環己基、胺基、羥基、 丙烯酸基、曱基丙烯酸基、乙烯基、苯基、苯乙烯基、異 氰酸酯基等。此外,在本發明中,由於可得與偶合劑同等 之效果’故含有四個烷氧基的四烷氧基矽烷亦可含於矽烷 偶合劑中。 石夕烧系偶合劑之具體例方面,可例示四烷氧矽烷化合 物、曱基三烧氧矽烷、二曱基二烷氧矽烷般的含烷基烷氧 石夕烧化合物;3-環氧丙氧(glyCid〇Xy)丙三烷氧矽烷、3-環氧❹ 丙氧丙基曱二烷氧矽烷、2-(3,4-環氧二環己基)乙三烷氧矽 烷等的環氧矽烷化合物;3-胺丙基三烷氧矽烷、N-苯基-3-胺丙基三烷氡矽炫般的胺烷氧矽烷化合物;3-丙烯醯氧丙基 二烧軋石夕烧、曱基丙稀醯氧丙基三烧氧石夕烧、3-甲基丙烯醯 乳丙基甲一烧氧秒烧、3-甲基丙稀酸氧丙三烧氧石夕院般的 (曱基)丙烯酸烷氧矽烷化合物;乙烯三烷氧矽烷般的乙烯烷 氧矽烷化合物;笨三烷氧矽烷、二苯二烷氧矽烷、4-羥苯基 三烷氧矽烷般的含苯基之三烷氧矽烷化合物;3-異氰酸酯丙 基三烷氧矽烷般的含苯乙烯基烷氧矽烷化合物等。在該等 18/54 201026758 中,以四烷氧矽烷化合物、含烷基烷氧矽烷化合物、含笨 基烧氧石夕烧化合物提高耐水性的效果高故較宜。 一方面,鈦系偶合劑之具體例方面,可例舉具有與烷 氧石夕烧化合物同樣的取代基之烧氧鈦化合物。可例舉例如 異丙基二異硬脂醯基鈦酸鹽、異丙基三_十二基苯續醯鈦酸 鹽、異丙基參(二辛焦鱗酸酯)鈦酸鹽、四異丙基雙(二辛碟 酉欠酉曰)鈦酸鹽、四辛基雙(二_十三统基填酸酯)鈦酸鹽、異丙 基三辛醯基鈦酸鹽、異丙基二曱基丙烯酸異硬脂醯基鈦酸 〇 鹽、異丙基異硬脂醯基二丙烯酸鈦酸鹽、異丙基參(二辛磷 酸酯)鈦酸鹽、異丙基三異丙苯基苯鈦酸鹽、異丙基三(N_ 胺乙基-胺乙基)鈦酸鹽、二異丙苯笨基氧乙酸酯鈦酸鹽、二 異硬脂醯基乙烯鈦酸鹽、雙(二辛基焦磷酸酯)乙烯鈦酸鹽、 雙(二辛基焦磷酸酯)氧乙酸酯鈦酸鹽、四(2,2_二烯丙氧曱基 -1-丁基)雙(二-十三基)磷酸酯鈦酸鹽等。 又,如前述使用偶合劑之水解物以替代偶合劑亦無 妨。偶合劑或該水解物之選擇,可考慮與分散介質等之2 〇 溶(comPatible)性、水解物之穩定性等適當進行。此外,偶 合劑之水解物’可藉由將乙酸水溶液等的酸性水溶液盥偶 合劑祕混合,即可容易地製成。又,偶合劑之水解物方 面,就算不是使水解性基(烷氧化物基)水解之物,只要分子 構造與偶合劑之水解物相同,則亦可以任何方法來製作。 此外,上述的水溶性樹脂、熱塑性樹脂、硬化性樹脂 • 及偶合劑,可各自個別地使用,或組合二個以上使用。 (金屬氧化物) 本發明所使用的金屬氧化物,其種類並無特別限定, 可例舉Si02(二氧化石夕)、Al2〇3(氧化銘)、Ti〇2(二氧化欽)、 19/54 201026758
Zr02(氧化錯)等之從單一金屬之氧化物,到Si〇2-Al2〇3(富銘 紅柱石(mullite)等)、Si(VTi〇2、Si〇2_Zr〇2、尖晶石等之複 合氧化物、二氧化鈦内包(induding)三氧切、氧化結内包 二氧化矽等。
此種金屬氧化物可成為任何形態’較佳為粒子狀。此 時’並不是使金屬氧化物之粒子僅以—種氧化物微粒子構 成,而是亦可作驗二種以上氧化物絲子混合的混合物 而構成。例如此種氧化物微粒子可由溶膠凝膠法、濕式法、 氣相法、乾式法等之方法而得。 上述金屬氧化物之中特宜為使用Si〇2、Al2〇3或該等之 複合氧化物。該等除了·比較低廉之外,可謀求複合體 之機械強度、耐熱性、耐磨損性之提高。 尤其是為了提高複合體之耐磨損性,金屬氧化物宜為 使用Al2〇3之微粒子。該微粒子因最廉價,且對酸及驗所致 腐蝕抗性強,故可提高複合體之化學穩定性。
進而,在複合體供作電子零件等之用途時,作為金屬 •化物且為使用sl02之微粒子(二氧化石夕微粒子)。該微粒 子因係低介電率,故可使複合體之介電率降低,可抑制在 電子零件^的傳輸延遲(t聰mission delay)等。 一—在一氧化石夕微粒子方面,可例舉業已乾燥的粉末狀之 二氧,频粒子,分散於溶_職二氧财(二氧化石夕溶 散性之觀點觀之’宜為使时散於水或有機溶劑、 ’者遠等之混合溶綱膠態二氧化々(二氧化魏 :面:例舉例如水、甲醇、乙醇、異丙醇、丁醇'正丙: 之%類、_、酯類、乙二賴類’不過可由纖維 充劑之分散容易性選擇適宜溶劑。 20/54 201026758 明金屬氧化物之平均粒徑宜為1至麵奈米,由透
At:太,的觀點觀之’更佳為1至50奈米,特 至%奈米,最佳為5至⑽奈米。此外,未達該下 ^,邮有業已製作的複合體組成物之黏度極端地增大 ^惡==過該上限值時,恐有複合體之透明性 降假^金屬·物係使用二氧切微粒子之情況,為了
粒子,其可使—欠粒;’宜為使用二氧化石夕微 的献奈米以上之二氧切微粒子 制於5百分率以下,更宜為使其比率為0百分率。 ί不ί^ —氧切微粒子之填充4,亦可混合使用乎均粒 乳化石夕微粒子。又,二氧化石夕微粒子方面,亦 石日本特開平7·48117號公報所揭示的多孔質二氧化 谷膠m辞等射之複合金屬氧化物。 (薄片狀無機材料) 本發明所使用的薄片狀無機材料方面,可例舉例如由 +物或5成物所構成的黏土礦物。具體言之可例舉選自 雲母 '經石、蒙脫石、鐵蒙脫石、铭蒙脫石(beiddlite)、'皂 石(sapomte)、鐘蒙脫石(hect〇rite)、石夕鎂石咖彻也〇)、囊 脫石(nontronite)、天然石夕酸納(magadiite)、伊利石(如他)、 水石夕納石(kanemite)、層狀鈦酸、膨潤石(露础 群組的至少-種。 薄片狀無機材料為形狀鱗片狀之物,代表性 個粒子的厚度^至⑺奈米,長寬比較佳為2() 更佳為20至數百的鱗片狀之粒子。藉由使此種鱗片狀之黏 土粒子在複合體中重4幾層,料使氣體之通過路徑變 21/54 201026758 長’結果是提高複合體之氣體屏障性。 又,在複合體組成物中的薄片 可因應需要使之含有財疏雜的陽層間,亦
親水性之交換性陽離子與疏水性之陽離;^材2層間的 :以:機化。疏水性之陽離子物質方:丁;換甲 ;二硬脂醯銨鹽、三甲基硬脂酿銨鹽等之四級::用;: (有ζ基或:氧:稀基的銨鹽,或者使用鱗鹽二上 交換性^叫機化。 之離子 此外,本發明之複合體組成物亦可在錢的樹脂、金 屬乳化物及薄片狀無機材料中含有任何—種,亦可含有二 ίΓ上^如’本發明之複合體組成物亦可含有纖維狀填 充4、樹脂、金屬氧化物與薄片狀無機材料。
本發明之複合體組成物中,纖維狀填充劑之含有率宜 為0.1至99.9重量百分率,更宜為〇1至75重量百分率。 此外’纖雜填充劑之含有率並無特職定,可因應使複 合體組成物成形時被視為必要的特性作適宜調整。在複合 體組成物中欲更加反映纖維狀填充劑之特性時,則係使纖 維狀填充劑之含有率增加,在欲更加反映樹脂之特性時亦 可使樹脂之含有率增加。 又,使用本發明之複合體組成物在製造光學用途所使 用之複合體時’宜為使複合體組成物在3〇至180°C之平均 熱膨脹係數(平均線膨脹係數)為50ppm/rc以下,更佳為 30ppm/°C以下’特佳為20ppm/°C以下。 22/54 201026758 又’本發明之複合體組成物宜為在厚度30//m時的全 透光率為80百分率以上,更宜為90百分率以上。藉此可 獲得最終透明性高,適合光學用途的複合體。 <複合體〉 藉由使本發明之複合體組成物成形成為預定之形狀, 即可得本發明之複合體。 本發明之複合體,例如可使用作為太陽電池用基板、 有機EL用基板、電子紙張用基板、液晶顯示元件用塑膠基 ❹ 板,不過在此情況等,宜為全透光率70百分率以上,更佳 為80百分率以上、特佳為88百分率以上。 又,將本發明之複合體例如用作光學用途,亦即透明 板、光學透鏡、液晶顯示元件用塑膠基板、濾光片用基板、 有機EL顯示元件用塑膠基板、太陽電池基板、觸控面板、 光學元件、光波導(optical waveguide)、LED密封材料等之 情況等,30至150°C之平均熱膨脹係數(平均線膨脹係數) 宜為50ppm/C以下,更宜為30ppm/°C以下。尤其是使用於 φ 薄片狀之主動式矩陣顯示元件基板時,該平均熱膨脹係數 宜為30ppm/°C以下,更宜為20ppm/〇C以下。是因為當超過 該上限值時’在製造步驟中恐有產生翹曲或配線之斷線等 的問題。此外,下限值雖無特別設定,不過一例是〇 4ppm/ 〇C。 又’將本發明之複合體用作例如液晶顯示元件用塑膠 基板、濾光片用基板、有機EL顯示元件用塑膠基板、太陽 電池基板、觸控面板等之情況等,濕度膨脹係數較佳為 lOOppm/濕度百分率以下,更佳為50ppm/濕度百分率以下、 特佳為30ppm/濕度百分率以下。再者’本發明之複合體之 23/54 201026758 吸水時中的膨潤率(degree of swelHng ;膨脹倍率),較 50倍以下,更佳為30倍以下,特佳為1〇倍以下。‘、、、 又,使本發明之複合體成形為板狀時,其厚度宜為ι〇 至2000/zm,更宜為10至5〇〇"m,特宜為%至=〇〇^^。 基板之厚度在該範圍内時,本發明之複合體就兼具有作為 透明基板為必要且充分的機械強度與光透過性。又,藉由 使基板之厚度在該範圍内,則平坦性優異,且相較於破璃 基板可谋求基板的輕量化。 ❹ 在使本發明之複合體組成物用作光學薄片之情況,為 ,高平滑性,亦可在兩㈣置樹脂之塗佈層。在塗佈之樹 脂方面’宜為具有優異透明性、耐熱性、耐藥品性, 言之’可例舉多官能丙烯酸s旨或環氧樹脂等。塗佈層之 均厚度宜為0.1至50轉,更宜為〇 5至3〇㈣之物曰。 又將由本發明之複合體組成物所得到的光學薄片特 元件用塑膠基板時’可因應需要相對於水蒸氣 或氧δ又置氣體屏蔽層或透明電極層。 之複合城物含有硬嫌樹脂時,硬化性樹 ::匕:法並無特別限定,可使用酸酐或月旨肪族胺等之 或陽離子系硬化觸媒、或者陰離子系硬化觸媒等 之硬化促進劑。 埶而it在陽離子系硬化觸媒方面,可例舉例如藉由加 離陽離子聚合開始的物質之物,例如鏘鹽系陽 晋賴Φ t、、或料合㈣離子硬化卿或藉由活性能 系離子聚,始的物質之物(例如鏘鹽系陽離子 茱寻)。具體言之,在芳香族鏽鹽方面,可例舉二 新化學工業製之81舰、81舰、81_職、旭電=^; 24/54 201026758 之SP-66或SP-77等之六氟銻酸聰 可例舉乙基乙醯乙酸醋銘二異‘失 = 螯合f方面’ 銘等,在三氟化錯合物方面,^ =乙基乙醯乙㈣) 錯合物、三_辦销合物、1 +二祕硼早乙胺 一方面,在陰離衫硬化促錯合物等。 ^ίΙ(5Λ0)^^^7 . 甲咪唑或1-苄基_2_苯咪唑等之啐“—女類、2_乙基_4-苯硼酸醆笨t等之+唑類、三苯膦、四苯鱗四
參 、四級銨鹽、有機金屬鹽類、及該 或K基-2_苯十铸之料類。宜為鱗化合物 使用或個二種以上。 料硬化促㈣亦可單獨 組成物中,可因應需要,併用熱塑性 聚合物。",在本發明之複合體組 中可因應而要’在不損及特性的範圍内,含有少量 :=丨:紫外線吸收劑、染顏料、其他無機填充劑等之 本發明之複合體組成物,可藉由任意之方法混合各成 分來製造。有例如保持纖維狀填域、與樹脂、金屬氧化 物及薄片狀無機材料之至少—種之原樣予m合的方法。 又,可因應需要使其一面加熱一面混合。 又’使用溶劑(分散介質)調製纖維狀填充劑之均一分散 液,其後使用進行脫溶劑的方法時,可獲得纖維狀填充劑 之分散性、及金屬氧化物或薄片狀無機材料之分散性優 異,均一的複合體組成物。 在使用之浴劑方面,適當的有例如可維持纖維狀填充 劑之分散性,且可使樹脂、金屬氧化物及薄片狀無機材料 25/54 201026758 予以溶解或分散的溶劑。此種溶劑方面,有例如水、甲醇、 乙醇、異丙醇、乙二醇、丙二醇、二乙二醇、二噁烷、丙 酮、甲乙酮、曱基溶纖劑、四氫呋喃、新戊四醇、二曱亞 石風 '二曱基曱醯胺、曱基吼洛咬酮等,可單獨使用該 等或者混合二種以上使用。又,亦可使原來的分散介質之 極化度緩缓地變化成目的之分散介質的極性,使纖維狀填 充劑分散於相異極性之分散介質。 ' 再者,使用本發明之複合體組成物,獲得太陽電池用 基板、有機E L用基板、電子紙張用基板、液晶顯示元件用 塑膠基板等之具有預定厚度之薄片的方法,只要是一般的 薄片形成方法就可以,並無特限定。例如保持包含纖維狀 填充劑、樹脂、金屬氧化物及薄片狀無機材料的複合體組 成物巧樣予以薄片化的方法;或使纖維狀填充劑之分散介 質堯鑄,除去溶劑,且獲得纖維狀填充劑之薄片,其後使 樹脂浸潰的方法;或將包含纖維狀填充劑;樹脂、㈣氧 化物及薄片狀無機材料;及溶劑的溶液予以洗鱗後,除去 溶劑獲得薄片的方法等。 在此裝程Ή父佳態様之-種,係將纖維狀填充劑、與 樹脂、金屬氧化物及薄片狀無機材料之至少一種,預先分 ㈣分散液後’將所得之分散液在遽紙、膜 器或I,、、氏師(papermaking screen)等上澆鑄使溶劑等之苴 =分^及/或㈣,麟由複合馳祕賴成薄片的 批1 ’在a濾'出㈣步驟中’為了提高作業效率, 下、加塵下進行亦無妨。又,在連續地形成時, 3使用製紙界所使用的製紙機,使薄層薄片連續地 形成的方法。 26/54 201026758 在洗鑄並製作薄片時,宜為在濾出及/或乾燥後所形成 之薄片可容易地剝離的基材上製作。此種基材方面,則有 金屬製或樹脂製之物。金屬製基材方面,可例舉不錄鋼製 基材、黃銅(brass)製基材、鋅製基材、銅製基材、鐵製基材 等;樹脂製基材方面,則有丙烯酸性基材、氟系基材、聚 對酞酸乙二酯製基材、氯乙烯製基材、聚苯乙烯性基材、 聚氣化亞乙烯製基材等。 接著說明關於本發明具體的實施例。 φ [微細纖維素纖維之製作A] (製作例A) 首先將主要由超過10 〇 〇奈米的纖維徑之纖維素纖維所 構成’乾燥重量為2克等值(equivalent amount)的未乾燥紙 聚、0.025克的TEMPO(2,2,6,6-四甲基-1-口底咬烴氧基)、 與0.25克溴化鈉分散於水150毫升,調製分散液。 接著對該分散液,添加13重量百分率次氯酸鈉水溶 液,以使次氯酸鈉之量對1克紙漿成為2.5毫莫耳,並開始 φ 反應。反應中使0.5M氫氧化鈉水溶液滴下於分散液中而^ PH保持於10.5。其後,於不再觀察到pH的變化之時間點, 反應完成,將反應物在玻璃濾器過濾,使過濾物以充 分量之水予以水洗,同時重複過濾五次。藉此獲得含有固 形物》農度25重量百分率之水的反應物纖維。 接著,將水添加於所得的反應物纖維,並調製2重量 f分率漿液。接著相對於該漿液,以旋轉刃式混合器進行 約5分鐘之處理。由於漿液之黏度伴隨著處理顯著上升, 故一點點逐步添加水,持續進行混合器所致分散處理至固 形物遭度呈G.2重量百分率為止。藉此獲得纖維素奈米纖維 27/54 201026758 分散液。 將該纖維素奈米纖維分散 被覆栅格上經澆鑄後,以2丄在儿成親水處理的碳膜 接著以TEM觀察業已淹鑄氧轴予以負染色。 大纖維徑為ίο奈米、數素奈米纖維分散液,則最 丁卞数置千均纖維徑為6奈米。 獲得:明==纖:素奈米纖維分散液乾燥,則可 線繞射像,則顯然:膜狀纖維素係由具有纖维素‘丄廣曰^ 的纖維素奈米纖維所構成。 、’ ’、1、、、口日日構化
又’㈣__纖維素,進行全反射式紅外分光分 =’獲得ATR光譜。由ATR光譜之圖型可確雜基之存在, 價的纖維素⑽之量及羧基之量 各為0.31毫莫耳/克及0.97毫莫耳/克。 [複合體之製作A] (實施例1A)
將製作例A所得之固形物濃度〇 2重量百分率之纖 素奈米纖維分餘(_物1G重量份)予以減壓過濾,除去 水,以甲醇置換五次。接著,將纖維素奈米纖維甲醇分散 液予以減壓碱,除去甲醇,進—步重覆五次以含有熱陽 離子觸媒(SI-lOOL)l重量份的脂環式環氧單體9〇重量份置 換的作業。接著’騎得的纖維素奈米齡分舰氧樹脂(纖 維素固形物量10重量百分率)予以澆鑄,在丨⑼它加熱二小 %後,進一步在150 c加熱二小時並使之硬化。藉此獲得厚 度一毫米之複合體。將所得的複合體切斷成寬1〇毫米,來 製作抗彎強度測疋用測試片(test piece)。針對此測試片測定 的抗彎強度為48N。 28/54 201026758 (實施例2A)
將製作例A所得之固形物濃度0.2重量百分率之纖維 素奈米纖維分散液(固形物15重量份)予以減壓過濾,並除 去水,進而藉由凍結乾燥,即可獲得纖維素奈米纖維。接 著,在酚型酚醛清漆樹脂85重量份、六亞曱四胺15重量 份,添加纖維素奈米纖維15重量份,將所得的混合物以混 合器混合3分鐘。進而’藉由觸。C之二支加熱輥而捏合混 合物’獲得熱硬化性樹脂成形材料。藉由壓縮成形將所得 的成形材料在125。(:加熱二小時後’進而在15(Π:加熱二小 時使之硬化。藉此獲得厚度_毫米之複合體。將所得的複 合體切斷成寬10毫米,來製作抗f強度败帛測試片。針 對此測試片測定抗彎強度為6〇N。 (實施例3A) 在製作例A所得的固形物濃度〇2重量百分率之 素奈米纖維分散液⑽形物⑽重量份),添 太乎
=物同重量的四乙氧…室〇:= 斤侍的此合溶液注入業已脫模處理的培養皿,以溫产 ^箱進而在12此之真空供箱中使之又乾燥。 =二膨脹係數為—濕度膨脹係數為= (貫施例4A) 在製作例A所得的固形物濃度〇.2重量 29/54 201026758 鐘。將所得的混合溶液注入業已脫模處理的培養皿 ,以溫 度50C之烘箱使水分蒸發,進一步在之真空烘箱中 使之乾燥。藉此獲得厚度3〇# m之透明薄膜。針對該薄膜, 測定全透光率、熱線膨脹係數、濕度膨脹係數,則全透光 率為89 W分率、熱線膨脹係數為1〇ppmrc、濕度膨脹係數 為23ppm/濕度百分率。 (實施例5A) 在製作例A所得的固形物濃度〇2重量百分率之纖維 素奈米纖維分散液(固形物1〇〇重量份),添加與纖維素奈米 纖維固形物同重量的3_環氧丙氧丙基三乙氧石夕烧,在室溫 ® 搜拌30分鐘。使所得的混合溶液注入業已脫模處理的培養 皿’在溫度50C之烘箱使水分蒸發,進而在12〇。匸之真空 供,中使之乾燥。藉此獲得厚度如⑽之透明薄膜。針對 該薄膜’測定全透光率、熱線膨脹紐、濕麟脹係數, 則全透光率為88百分率、熱線膨脹係數為Uppmrc、濕度 膨脹係數為25ppm/濕度百分率。 (實施例6A) 在製作例A所得的固形物濃度〇·2重量百分率之纖維❹ 素奈米纖維分驗⑽彡物⑽重量份)添加餓維素太米 纖維固形物同重量氧鈦,在室溫娜3G分鐘。將 的混合浴液注入業已脫模處理的培養皿,在溫度5〇亡之烘 相使水分蒸發’進而在120<χ^真空烘箱中使之乾燥 此,獲得厚度30"m之透明薄膜。針對該薄膜,測定全^ 光率、熱線膨脹係數、濕度膨脹係數,則全歧率為8
分率、熱線雜健為12ppm/t、濕麟脹絲為 濕度百分率。 PP 30/54 201026758 (實施例7Α) 將在製作例Α所得的固形物濃度0·2重量百分 維素奈米纖維分散液(固形物〗00重量份)、環氧 (Denacol EX-214L、Nagase ChemteX 公司製)8〇 重量十、树知 四甲乙二胺5重量份混合,在室溫麟3G分鐘。使戶^ ^ 混合溶液注入業已脫模處理的培養皿,在溫度5〇它I、 使水分蒸發’進-步在聰之烘箱中使之乾燥。藉此^f 厚度50/zm之透明薄膜。針對該薄膜,測定全透光率二二 線膨脹係數、濕度膨脹係數及膨潤率,則全透光率為8〇…、 分率、熱線膨脹紐為咖心、濕度雜係數為 : 濕度百分率、膨潤率為16倍。 p (實施例8A) 將製作例A所得的固形物濃度〇2重量百分率之 素奈米纖維分散液(固形物10〇重量份> ·… FY 里⑺)蜋巩树脂(Denacol 1^-141(^、:^叫&沉〇1611^乂公司製)110重量份混合,
2攪拌3G分鐘。使所得的混合溶液注人業已脫^理的= 養二,在溫度50°C之烘箱使水分蒸發,進一步在12〇。^ 烘箱中使之乾燥。藉此獲得厚度5〇/m之透明薄膜。針對 該薄膜,败全透絲、鱗膨脹餘、謎 膨潤率,齡透光率⑽百鲜、熱__數為i4ppm/ c、濕度膨脹係數為61ppm/濕度百分率、膨潤率為μ倍。 (實施例9Α) 將製作例Α所得的固形物濃度G 2重量百分率之纖維 素奈米纖維分散液(固形物觸重量份)、環氧樹脂⑽刪i EX-M10L、Nagase Chemte X公司製)11〇重量份、與四曱乙 二胺5重量份抑混合,在室溫勝3()分鐘。使所得的混 31/54 201026758 合溶液注入業已脫模處理的培養皿,在溫度之洪箱使 水分蒸發,進一步在120°C之烘箱中使之乾燥。藉此了二得 厚度50/zm之透明薄膜。針對該薄膜,測定全透光率广熱 線膨脹係數、濕度膨脹係數及膨潤率,則全透光率為8〇百 分率、熱線膨脹係數為12PPm/t:、濕度膨脹係數為9〇ppm/ 濕度百分率、膨潤率為3」倍。 (實施例10A) 將製作例A所得的固形物濃度0.2重量百分率之纖維 素奈米纖維分散液(固形物1〇〇重量份)、環氧樹脂(1)如狀〇1 EX-1610L、Nagase Chemte X公司製)11〇重量份、與四曱乙 二胺5重量份予以混合,在室溫攪拌3〇分鐘。使所得的混 合溶液注入業已脫模處理的培養皿,在溫度5〇。〇之烘箱使 水分蒸發,進一步在12(TC之烘箱中使之乾燥。藉此','獲得 厚度50/zm之透明薄膜。針對該薄膜,測定全透光率、熱 線膨脹係數、濕度膨脹係數及膨潤率,則全透光率為8〇百 分率、熱線膨脹係數為13Ppm/t:、濕度膨脹係數為76ppm/ 濕度百分率、膨潤率為2.4倍。 (實施例11A) 將製作例A所得的固形物濃度〇2重量百分率之纖維 素奈米纖維分散液(固形物100重量份)、與可溶酚醛樹脂型 酚樹脂(PR-967、住友Bakelite公司製)1〇〇重量份混合在 室溫攪拌30分鐘。使所得的混合溶液注入業已脫模處理的 培養皿,在溫度50。(:之烘箱使水分蒸發,進而在丨如它之 烘箱中使之乾燥。藉此,獲得厚度25//m之薄膜。針對該 溥膜,測疋全透光率、濕度膨脹係數及膨潤率,則全透光 率為50百分率、濕度膨脹係數為5〇ppm/濕度百分率、膨潤 201026758 率為1.2倍。此外由於本樣本易碎,故無 測定用的樣本。 k付,、、、〇服你数 (實施例12A) ,製作例A所得的固形物濃度G2重量百分率之纖維 t t 散液(固形物_重量份)、與可溶祕樹脂型 m 鲁 室、=Γ-967、住友Bakelite公司製胸重量份混合,在 拉:η分鐘。使所得的混合溶液注人業已脫模處理的 扭 4 5GC之烘箱使水分蒸發,進^在120¾之 薄:til。藉此,獲得厚度58舞之薄膜。針對該 ㈣,’ ^ 率、熱線膨脹係數、濕度膨脹係數及膨 ;、、爲二透光率為40百分率、熱線膨脹係數為2〇PPm/ 、>…度祕係數為45PPm/濕度百分率、膨潤率為12倍。 (比較例1A) ⑽酸漂白針葉樹紙裝在水中膨脹後,以混合器予 所得的短纖維紙浆分散液予以減壓過渡,並 :減壓:二二置換五次。接著,使短纖維紙漿甲醇分散 減坠k濾而除去甲醇,重複五 (SI-IOOL)I重量份的^有熱〶離子觸媒 紮拉-#㈣式早體%重量份置換的作 物得的短纖維紙漿分散環氧酬纖維素固形 Γ分率)洗鑄,在_加熱二小時後,進-步 人小時使之硬化。藉此,獲得厚度1毫米之複 :二絲1〇毫米’來製作抗彎強度 4疋用測⑼。針對該測試片測定抗f強度為28Ν。 _ 2外’以贿觀察短纖維紙梁甲醇分散液,最大纖維 二為70//m、數量平均纖維徑為40/zm。 (比較例2A) 33 / 54 201026758 將亞硫酸漂白針葉樹紙漿在水中膨潤後,以混人器予 以微細分散。使所得的短纖維紙聚分散液予 ς滅, 結乾科可獲得微細纖維素纖; 接者’麵獅岭漆85重量份、六亞曱哺15重量份, 維=維15重量份’將所得的混合物以混合器 i二2 之二支加她使混合物捏合, ^熱硬化性㈣成形材料。藉由壓縮成形使所得之成形 1Γ=ί7時後’進而於15。。。加熱二小時使之 斷為寬10毫米,且製作抗彎強度測定 % 試片測定抗彎強度為娜。 乃針對糾 7 職觀察短纖維紙漿甲醇分散液,最大纖維 仫為70//m、數$平均纖維徑為4〇#爪。 (比較例3A) A所得的纖維素奈米纖維分散液(固形物量 0.15重董百刀率)注人業已脫模處理的 ❹ 進一步在1—二】 二=30_之透明薄膜。針對該薄膜,測定 ίίίί 91 ^ , ^ 熱線膨脹係數為1〇_/°C、濕度膨脹 糸數為125Ppm/濕度百分率、膨潤率為14〇倍。 [微細纖維素纖維之製作B] (製作例B) 所構:先由超過_奈米的纖維徑之纖維素纖維 量2克等值之未乾燥的紙漿、_克之 TEMPO(2,2,6,6_四甲基如辰雜烴氧基)、與〇 25克之演 34/54 201026758 化鈉分散於水150毫升,來調製分散液。
接著’對該分散液添加13重量百分率次氣酸鈉水溶 液,以使相對於1克之紙漿次氣酸鈉之量成為2.5毫莫耳, 並開始反應。反應中係使用自動滴定裝置,滴下〇.5M之氫 氧化鈉水溶液,使pH保持於10.5。其後,在未能觀察到 pH變化的時間點,視為反應完成,以〇5]^之鹽酸水溶液 中和至pH7。接著,過濾反應物,將過濾、物以充分量的水 予以水洗,同時重複過濾六次。藉此獲得含有固形物濃度2 重量百分率之水的反應物纖維。 接著,添加水於所得的反應物纖維,來調製〇 2重量百 分率之反應物纖維分散液。 使用高壓均化器(APVGAULIN實驗室製,15MR_8ta 型)將该反應物纖維分散液以壓力200 e(2〇Mpa)處理二十 次。藉此獲得透明的纖維素奈米纖維分散液。 在完成親水處理的碳膜被覆栅格上洗鑄該纖維素奈米 纖維分散液後’以2百分率乙酸祕予以㈣色。接著, 以TEM觀察業已洗鑄的纖維素奈米纖維分散液,則最大纖 維徑為10奈米、數量平均纖維徑為8奈米。 ❿曰又’使業已料的纖維素奈麵維分魏乾燥,則可 =透明的膜狀纖維素。針對該膜狀纖維素,獲得廣角χ 則顯然膜狀纖維素係由具有纖維素χ型結罐 的纖維素奈米纖維所構成。 :,針對相同膜狀纖維素,進行全 光譜。由舰光譜之關,可確認錄之存 =上34方法所評價的纖維料的㈣之量及絲 之! ’各為0.31毫莫耳/克、及17亳莫耳/克。 35/54 201026758 [複合體之製作B] (實施例1B) 將製作例β所得的固形物濃度〇.2重量百分率之纖维 素奈米纖維分散液100重量份(固形物量〇2克)、轉離二 氧化石夕(snowtex 20、粒徑10至20奈米魏針含量^
21 1量百:率?產化學工業公司製}1重量份(固形物量為 0.2克)混合’在至溫攪拌30分鐘。使所得的混合溶液注入 業已脫减_料皿’在溫度机之烘紐水分基發, 進-步在]20 C之烘箱中使之乾燥。藉此,可獲得厚度\ 評之透_膜。針對所得的_,測定全透光率、孰線 膨脹係數、紐膨脹係數、及_率,縣透光率為π'百 分率、贼至靴之範圍中的熱線膨脹係㈣、 濕度膨脹係數為7GPpm/濕度百分率、_率為2 ^。 (實施例2B) "
將製作例B所得的固形物濃度〇2重量百分率之纖維 素奈米纖維分餘1GG重量份㈤形物量Q 2克)、轉能二 氧化石夕(Snowtex N、粒徑10至2〇奈米、石夕酸奸含量^至 21重量百分率、日產化學4公謂)1重量細形物量為 0.2克)予以混合,在室溫攪拌3G分i使所得的混合溶液 注入業已脫減理的培養皿,在溫度机之烘紐水分蒸 發’進-步在me之供箱中使之乾燥。藉此,可獲得厚度 30//m之透㈣膜。針對所得的薄膜,測定熱線膨服係數、 濕度膨脹絲及_率,们叱至18叱之範财的埶線 膨脹係數為_m/t、财_舰為61ppm/濕度百分 率、膨潤率為1.6倍。 (實施例3B) 36/54 201026758 將製作例Β所得的固形物漠 素奈米纖維分散液刚重量份(固;二百分率之纖維 氧化石夕(S_tex 〇、_ 1Q 克)、與膠態二 Μ重量百分率、日產化學工業公酸酐含量歸 (U娜合,在室溫養3G分鐘4) 5讀(_物量為 業已脫模處理的騎I,在溫度=⑽混合溶液注入 進-步在12GI之烘射使之辦GC使水分蒸發, τκ礼辟。褚此 /zm之透明薄膜。針對所得之薄膜 "又仔;予度30 Φ ❿ 膨脹係數、難膨脹健及膨潤率、n全透光率、熱線 -玄i〇n°〇 a 午則全透光率為90百分 率、30C至18GC之關中的熱線膨 濕、度膨脹錄為65_/濕度百分率H=/c: (實施例4B) w手马1八。 將製作例B所得的固形物濃度Μ重量百分率之纖維 素奈米纖維分散液_重量份(_物量Q 2克)、鱗離二 氧化石夕伽〇: XS、粒徑4至6奈米、魏針含量心 21重量百二曰產化學工業公司製) 固形物 0.2克)混合,在室溫攪拌3〇分鐘。使所得的混合溶液注入 業已脫減朗培養里,在溫度听之供财使水絲 發,進-步在12(TC之烘箱中使之乾燥。藉此,可獲得厚产 3〇,之透明薄膜。針對所得的_,測定全透光率、ς 線膨脹係數、濕度膨脹係數、及膨潤率, ^ 百分率、3CTC至(:之範圍中的熱線膨脹;數/i()ppm/ 。(:、濕度膨脹係數為68PPm/濕度百分率、膨潤率為i 9倍。 (實施例5B) ' 將製作例B所得的固形物濃度〇2重量百分率之纖維 素奈米纖維分散液100重量份(固形物量〇·2克)、與膠態二 37/54 201026758 氧化矽(Snowtex CM、粒徑20至30奈米、矽酸酐含量3〇 至3!重量百分率、日產化學工業公司製)〇 7重量份(固形物 量為0.2克)混合’在室溫勝30分鐘。使所得的混合溶液 注入業已脫模處理的培養皿,在溫度邓亡之烘箱中使水分 蒸發’進一步在12〇°C之烘箱中使之乾燥。藉此,獲得厚度 30#m之透明薄膜。針對所得的薄膜,測定全透光率、熱 線膨脹係數、濕度膨脹係數及膨潤率,則全透光率為88百 分率、30°C至之範圍中的熱線膨脹係數為llppm/£>c、 濕度膨脹係數為70ppm/濕度百分率、膨潤率為19倍。 (比較例IB) ' ® 將製作例B所彳牙的固形物濃度0.2重量百分率之纖維 素奈米纖維分散液注入業已脫模處理的培養皿。在溫度5〇 °c之烘箱中使水分蒸發,進一步在12(rc之真空烘箱中使之 乾燥。藉此獲得厚度30//m之透明薄膜。針對所得的薄膜, 測定全透光率、熱線膨脹係數、濕度膨脹係數及膨潤率, 則全透光率為91百分率、邓^至18(rc之範圍中的熱線膨 脹係數為10ppm/°C、濕度膨脹係數為u5ppm/濕度百分率、 膨潤率為100倍。 〇 [微細纖維素纖維之製作C] (製作例C) 首先,將主要由超過1000奈米的纖維徑之纖維所構 成’且乾燥重量2克等值之未乾燥的紙椠、與0.025克之 TEMP〇(2,2,6,6-ng曱基哌啶_N_烴氧基)、及〇 25克之演 化鈉分,於水丨5〇毫升,並調製分散液。 、 接著,對該分散液,添加13重量百分率次氣酸鈉水溶 液’以使相對於1克之紙漿,次氯酸鈉之量成為2.5毫莫耳, 38/54 201026758 並開始反應。反應中係使用自動滴定裝置,滴下0.5M之氫 氧化鈉水溶液,使pH保持於10.5。其後,在無法觀察到 pH的變化之時間點,則視為反應完成,以〇.5M之鹽酸水 溶液中和至pH7。接著,過濾反應物’使過濾物以充分量 之水予以水洗,同時重複過濾六次。藉此,可獲得含有固 形物量2重量百分率之水的反應物纖維。 接著,添加水於所得的反應物纖維,來調製〇·2重量百 分率之反應物纖維分散液。
使用高壓均化器(APVGAULIN實驗室製、15MR-8TA 型)在壓力20Mpa中處理反應物纖維分散液十次。藉此可獲 得透明的纖維素奈米纖維分散液。 將》亥纖維素奈米纖維分散液在完成親水處理的碳膜被 覆栅格上澆鑄後,以2百分率乙酸氧鈾予以負染色。接著, 以ΤΈΜ觀察業已淺鑄的纖維素奈米纖維分散液,則最大纖 維徑為10奈米、數量平均纖維徑為6奈米。 又,使業已洗鑄的纖維素奈米纖維分散液乾燥,則除 了可獲得透明的膜狀纖維素之外,針對該膜狀纖維素,可 得廣角X線繞射像,__狀纖維素係由具有纖維 型結晶構造的纖維素奈米纖維所構成。 又’針對相同的膜狀纖維素,進行全反射式紅外 为析,獲付ATR光譜。由ATR光叙圖型可確顧 藉由上述方法所評價的纖維素中_基之量及ς: 置’各為G.31毫莫耳/克、及丨7毫莫耳 土之 (實施例1C) [複合體之製作C] 將製作例C所得的固形物濃度0.2重量百分率之纖維 39/54 201026758 f奈米纖維分散液、及合成膨潤石(smectite)(iucentite swf) 予以混合’使纖維素奈米纖維與合成膨潤石之重量比成為 25對、75 ’且在室溫攪拌3〇分鐘。使所得的混合溶液注入 業已脫減理的鱗皿’在溫度机之烘箱使水分落發, 獲得厚度50_之透明薄膜。評價所得薄膜之全透光率、 熱線膨脹係數及糊率。全透光率為91百分率、紙至⑽ °C之範圍中的線膨脹係數為切m/〇C、膨潤率為15倍。 (實施例2C) 參 將製作例C所得的固形物濃度0.2重量百分率之纖唯 素奈米纖維分散液、與合成膨潤石(lueemite 予= 蛾合糊石重量比成為55對45, 二所得的混合溶液注入業已脫模處理 的培養皿,在溫度5G°d财使水分蒸發,獲得厚度20 之透明薄膜。評價所得的薄膜的全透光^ ^ 係數、及膨潤率。全透光率為91百分率 至則^ 範圍中的線膨脹係數為5ppm/t、膨 。之 (實施例3C)
Q 將製作例C所得的固形物濃度〇 =r=液、與合成〜-二= “口,讀纖維素奈米纖維與合成皂土 對乃’在室溫攪拌3〇分鐘。 罝成為25 的培養皿’在溫度呢之:箱;業= 薄膜之全透光率、熱 。。之範圍中的線膨脹係率為:百分率 (實施例4Q 為3.2PPm/C、膨潤率為12倍。 40/54 201026758 各太2作例C所得的111形物濃度G·2重量百分率之纖維 素奈米纖維分散液、與合成皂土(sumeetGn SA)予以 奈米,與合成息土之重量比成為5〇對5〇,在 H d"7 &。使所得的混合溶液注人業已脫模處理的 坨 < 在舰度50 c之烘箱中使水分蒸發,獲得厚度41 評價所得的薄膜之全透光率、熱線膨服 网 。全透光率為90百分率、30〇C至18(TC之範 圍中的線膨脹係數為5.8ppm、膨潤率為32倍。 ❹ (實施例5C) 將製侧c所得的固形物濃度G 2重量百分率之纖維 ,示米纖維分散液(固形物⑽重量份)、薄片狀 Π :—化學公_卿重量份、與環氧樹脂 enaco _214L、Nagase ChemteX 公司製)6〇〇 重量份混 ί理攪拌,。使所得的混合溶液注入業已脫模 ^理的培養皿’在溫度机之烘财使水分蒸發,進一步 1 n〇c之縣中使之乾燥。藉此,獲得厚度出 =針對所得之㈣,败全枝率、熱線親係數、ί 度職係數及射轉,則全透絲為91百分率、熱線膨服 係數為Mppm/C、濕度膨脹係數為鄉pw濕度 潤率為2.1倍。 咏 (實施例6C) 將製作例c所得的固形物漢度〇2重量百分 素奈米纖維分散液(固形物⑽重量份)、薄片狀㈣㈣ (—SWF、Coop化學公司製)1〇〇重量份環 (IW01 EX-2HL、Nagase chemtex 公司製)細重 以混合,在室溫攪拌3G分鐘。使所得的混合溶液注入業: 41/54 201026758 麵處理的培養皿,在溫度耽之烘財使水分蒸發 - ^在me之㈣巾使之乾燥。藉此,獲得厚度 之薄膜。針對所得的薄膜,測定全透光率、熱雜^ m 濕度膨脹絲轉潤率,則全透光率為%百、分教 脹係數為13ppm/〇C、涊声膨脹怂奴达…線% 膨潤率為1二。 _㈣57ppm/濕度百分率、 (實施例7C) 將製作例C所得的固形物濃度〇2重量百分 素奈米纖維分散液(固形物·重量份)、薄片狀遍 (sumecton SA、Kunimine 工業公司製)1〇〇 重‘’、、;:: 樹脂(〇纖〇1 EX_214L、Nagase ChemteX 公司 二 份予以混合,在室溫攪拌3G分鐘。 = 業已雌纽的鱗皿,於溫度耽之烘缺入 進Γ步在_之_中使之乾燥。藉此,獲得 之薄膜。針騎得的細,測定全透光率、 ς m 濕度膨脹係數及膨潤率,則全透光率為91百分率、教t ❹ ,係數為15Ppm/t;、濕度膨脹係數為^百二率膨 膨潤率為3.4倍。 杰、度冶刀率、 (實施例8C) :製作例C所得的固形物濃度〇2重量 素奈米纖維分散液(固形物1〇〇重量羊纖、准 (_— SA、Kunimine 工業公二 樹脂(Denacol EX_214L、Nagase ❿喻 χ 公。〇、二 份予以混合,在室溫攪拌3〇分鐘。使所 八々重里 1已脫模處理的培養皿,在溫度5(rc之供 發’進-步在12叱之焕箱中使之乾燥。藉此,獲== 42/54 201026758 的薄膜’測定全透光率、熱線膨 脹係數/,,、、度膨脹係數及知潤率,則全透光 μ八 熱線膨脹雜為13Ppm/t:、濕度膨_ 分率、膨潤率為2.4倍。 PP ㈣ (比較例1C) ❹
將製作例c所得的固形物濃度〇2重量百分率 素奈米_分散液在室溫_3G分鐘,注人#已脫模處理 的培養皿’在溫度5(TC之烘箱巾使水分蒸發,獲得厚度18 ,之透明薄膜。評價所得的_之全透光率、熱線膨服 係數、濕度膨脹係數及膨调率,全透光率為9〇百分率、3〇 X:至⑽t:之範圍中的熱線膨脹係數為12ppm、濕度舰係 數為200ppm/濕度百分率、膨潤率為185奸。 [複合體之評價] 特性評價方法係如下述。 ⑷抗彎強度 抗’弓強度測定用測試片之抗彎強度係準照JIS κ 爪卜在伸展間距離36毫米、十字頭(__)速度i毫 米/刀23 C、相對濕度60百分率下,使用抗彎強度測定裝 置(Orientec 公司製、UCT_3〇T 型 Tensil〇n)來測定。 (b)熱線膨脹係數 使用熱應力翹曲測定裝置(精工電子公司製、 TMA/SS120C型)’在氤氛圍下,以!分鐘5。〇之比率下使 溫度自30〇C上升至丨5(rc為止後,暫時先冷卻至,再次 以1分鐘5C之比率下使溫度上升,測定兕^至15〇°c時之 值來求得。負荷為5克,在拉伸模式下進行測定。 此外’針對實施例1B至5B及比較例1B,以1分鐘5 43/54 201026758 :=率:!溫度自,上升至輯後’暫時先冷卻 二再;:=:c之比率下使溫度上升 j今、部至0 ’測定30 。進一步針對實施例1C至8C及比較例lc, C之比率使溫度自3crc上升至2GGt:為止後, 至·50°(:,再疳 w 1 公搞 〇 a _____ ^
’以1分鐘5 ’暫時先冷卻 卜’測定30°C ",再度以1分鐘5它之比率使溫度上升, 至180°C時之值來求得。 (c)全透光率 以分光光度計(島津製作崎、而⑻则 此外,針對實施例1C至扣及比較例1C,J:計❹ (日本電色公司製、NDH-2000)測定全透光率。 (d) 濕度膨脹係數 —在所得之薄膜中描繪出作為尺寸測定基準的兩點,在 室溫2fC、濕度60百分率之氛圍下放置24小時,其後裝 入100°C之乾燥機經3小時乾燥。 乾燥後馬上以三次元測長機(three length me贿ing machine)測定業已預先描_兩點間之距離,將 該距離作為兩點間距離之基準。其後’將乾燥後的薄膜再❹ 度在室溫23°C、濕度6G百分率之氛圍下放置24小時後, 以二次元測長機測定預先描繪的兩點間之距離,計算自基 ί距離,ί寸變化率。進—步使乾燥後表觀之濕度為0 ί 刀率’ s十算自濕度〇百分率至6〇百分率之範圍中的濕度每 1百分率的濕度膨脹係數。 (e) 膨潤率 +使所得的薄膜浸潰於23°C純水一小時,測定浸潰前後 薄膜厚度變化率。接將浸潰㈣_度相對於浸潰前之 44/54 201026758 薄膜厚度作為倍率來計算膨潤率。 上述測定之結果如表一至三所示
45/54 201026758 表一 mm m 例1A m 夸丨J2A 合'βΑ m 仲A 繼 魏 姊A 1ΨΑ 伤'J8A m 妙A 仰0A m 例11A im 例12A tbft 例1A tm 伤[2A 味 環乳 臟 腺哀 mm 90 90 DenaoolE X-214L 80 DemoolE X-1410 110 110 DenaaoiE X-1610 110 鹏 δ^!δΜ 赫 85 85 可 m 100 300 齡 劑 四乙氧6夕 炫 100 苯基二乙 氧雜 100 3·環祕氧 丙基三乙 氧雜 100 炫氧 100 薄片 故無 LuoenliteS WF 谢才 料 sumectanS A 金屬 Snawtex20 氧化 SnDwtexN 物 SnowteO SnowtexXS SmwtEDiC M 10 15 100 100 100 100 100 100 100 100 100 1⑴ 1⑴ 10 15 觸 SI-100L 1 1 四甲基乙 5 5 5 交聯 材料 六亞甲四 胺 15 鲁 15 厚度 毫米 1 J 0.03 0.03 0.03 0Ό3 0ϋ5 005 0.05 0.05 025 0.058 1 1 003 m 5級 N 48 60 — 一 一 — — — 一 _ — — 28 40 一 域 辭 % 90 89 88 88 90 80 80 80 50 40 一 一 91 m. 係數 ppn/C 11 10 11 12 15 14 12 13 20 10 m. 磨Μ 係數 ppnV潘度 百分率 26 23 25 27 110 61 90 76 50 45 125 粞 率 倍 — 一 一 — 16 3.1 24 12 12 140 由表一可明瞭,吾人可確認實施例ΙΑ、2A所得的測 46/54 201026758 試片(使用本發明之複合體組成物所得的複合體),相較於比 較例1A所得的包含習知纖維狀填充劑的測試片,則機械強 度及尺寸穩定性均高,各種特性均優異。 又,實施例3A至12A所得的薄膜(使用本發明之複合 體組成物所得的複合體)’雖是自含有纖維狀填充劑、與樹 脂或偶合劑(或偶合劑之水解物)的複合體組成物所形成之 薄膜,不過可確認該等為濕度膨脹係數(吸水尺寸變化率) 及熱線膨脹係數比較小,且透明性優異者。
47/54 201026758 表二 1¾¾¾¾---T 實施例 1B 實施例 2B 實施例 3B 歹施例 4Β 實施例 5Β 比較例 1B 環氧樹脂 脂環式環氧 Denacol EX-214L Denacol EX-1410 Denacol EX-1610 酚型樹脂 酚型酚醛清漆 可溶酚醛樹脂 偶合劑 四乙氧矽烷 笨基三乙氧矽烷 3-環氧丙氧丙基 三乙氧矽烷 烷氧化鈦 薄片狀無機材 料 Lucentite SWF sumecton SA 金屬氧化物 Snowtex 20 100 SnowtexN 100 SnowtexO 100 SnowtexXS 100 SnowtexCM 100 纖維素奈米纖維 100 100 100 — 100 100 100 微細化紙漿 觸媒 SI-100L 四甲基乙二胺 交聯材料 六亞甲四胺 厚度 毫米 0.03 0.03 0.03 0.03 0.03 0.03 抗彎強度 N — — — — *-----〜 — 全透光率 % 87 — 90 89 88" 91 熱線膨脹係數 ppm/°C 9 10 11 10 —— U — 10 溫度膨脹係數 ppm/濕度% 70 61 65 68 ~ 70 115 膨脹率 倍 2 1.6 1.7 1.9 — --—— J------ 100
由表二可明暸,吾人可確認實施例1B至5B所得的薄 膜(使用本發明之複合體組成物所得的複合體),相較於比較 48/54 201026758 例1B所得的薄膜,膨潤率均小,耐水性均優異。 .表三 製造條件及特性 實施 實施 實施 實施 實施 實施 實施 實施 比較 脂 例1C 例2C 例3C 例4C 例5C 例6C 例7C 例8C 例1C 脂環式環氧樹 脂 Denacol EX-214L 600 200 600 200 Denacol EX-1410 Denacol EX-1610 酚型樹 酚型酚醛清漆 脂 可溶酚醛樹脂 德合劑 四乙氧矽烧 笨基三乙氧石夕 烷 3-環氧丙氧丙 基三乙氧矽烷 烷氧化鈦 薄片狀 Lucentite SWF 75 45 100 100 無機材 料 sumecton SA 75 50 100 100 金屬氧 Snowtex 20 化物 SnowtexN SnowtexO SnowtexXS SnowtexCM 纖維素奈米纖維 25 55 25 50 100 100 100 100 100 微細化紙漿 觸媒 SI-100L 四甲基乙二胺 交聯材 料 六亞甲四胺 厚度 毫米 0.05 0.02 0.047 0.041 0.024 0.05 0.03 0.058 0.018 抗彎強 度 N -— — — — — — — 全透光 率 % 91 91 90 90 91 92 91 91 90 熱線膨 脹係數 ppm/°C 4 5 3.2 5.8 14 13 15 13 12 溫度膨 脹係數 ppm/濕度% — 一 — 60 57 92 71 200 膨脹率 倍 15 48 12 32 2.1 1.7 3.4 2.4 185
由表三可明暸,吾人可確認實施例1C至8C所得的薄 膜(使用本發明之複合體組成物所得的複合體),相較於比較 49/54 201026758 例1C所得的薄膜,膨潤率均小、耐水性均優異。又’實施 例1C至8C所得的薄膜,由於熱線膨脹係數比較小’故熱 所致尺寸穩定性亦優異,且透明性亦高。 此外在各實施例及各比較例中使用的主要原料係如下 述。 環氧樹脂 :Celloside 2021 Daicel 化學公司製 :Denacol EX-214L Nagase ChemteX 公司製 :Denacol EX-14] 0L Nagase ChemteX 公司製 :Denacol EX-1610L Nagase ChemteX 公司製 酚型樹脂 :可溶酚醛樹脂型酚樹脂PR_%7住友Bakelite公司製 熱陽離子觸媒 :SI-100L三新化學公司製 酚型酚醛清漆樹脂 :PR-HF-6 住友 Bakelite 公司製 偶合劑 :四乙氧矽烷和光純藥公司製 :笨基三乙氧石夕烧Azmax公司製 :3-環氧丙氧丙基三乙氧石夕烧信越化學公司製 .院氧化鈦KR-ET味之素Finetechno公司製 交聯材(六亞甲四胺) :六曱樓四胺(ur〇tr〇pine)住友精化公司製 金屬氧化物 :膠態二氧化石夕Sn〇wtex20日產化學工業公司製 :膠態二氧化石夕SnowtexN日產化學工業公司製 50/54 201026758 .膠態一氧化石夕SnowtexO曰產化學工業公司製 •膠態一氧化石夕SnowtexXS曰產化學工業公司製 .膝態一氧化石夕SnowtexCM曰產化學工業公司製 薄片狀無機材剩· .sumecton SA Kunimine 工業製 :Lucentite SWF Coop 化學公司 本發明之複合體組成物係含有^纖維狀填充劑;與樹 月曰、金屬氧化物及薄片狀無機材料之至少一種,該纖維狀 〇 填充劑之平均纖維徑為4至1000奈米。因此,在使該複合 體組成物成形而成的複合體令,纖維狀填充劑與樹脂、金 屬氧化物及薄片狀無機材料之至少一種可獲致機械性及化 學性作用。結果可獲得具有低熱膨脹係數、高強度、高透 明性、低濕度膨脹係數(高耐水性、高尺寸穩定性)的複合 體。因而,本發明之複合體,可使用於汽車外部裝潢及儀 表板等的汽車零件、鐵道、航空機、船舶等的輸送用機器 之零件、住宅或辦公室中的窗框、壁板及地板等的建材、 ❻ 樑柱或者鋼筋混凝土中的鋼筋這類結構構件、電子電路、 顯示體之基板等的電子零件、個人電腦及行動電話等的家 電製品之外殼(housing)、文具等的事務用機器、家具、可拋 式谷器等的生活用品、運動用品、玩具等的家庭内所使用 的小物件、看板、標誌等的野外設置物、防彈盾牌、防彈 背心等的衝擊吸收構件、頭盔等的護身用具、人工骨、醫 療用品、研磨劑、防音壁、防護壁、振動吸收構件、工具 平板彈簧(plate spring)等的機械零件、樂器、包裝材料等。 因此本發明之複合體組成物及複合體具有產業上之可利用 51/54 201026758 【圖式簡單說明】 無 【主要元件符號說明】 益
52/54

Claims (1)

  1. 201026758 七、申請專利範圍: 1、一種複合體組成物,其包含: 纖維狀填充劑;以及 樹脂、金屬氧化物及薄片狀無機材料之至少一種, 其中’該纖維狀填充劑之平均纖維徑為4至1000奈米。 2、 如申請專利範圍第1項所述之複合體組成物,其 中該纖維狀填充劑為纖維素纖維。
    3、 如申請專利範圍第2項所述之複合體組成物,其 中§亥纖維素纖維係藉由化學處理及機械處理之至少一種處 理,而使纖維素原料微細化所得之纖維。 4、 如申請專利範圍第2項所述之複合體組成物,其 中該纖維素纖維係所含的纖維素分子中的羥基之一部分被 醛基及羧基之至少一種所氧化。
    二5、如申請專利範圍第2項所述之複合體組成物,其 :該纖維素纖維是使用天賴維素作為原料,N·烴氧基化 合物作為氧化觸媒,同時在水巾使共氧化劑作用於該原 料,而使該原料氧化所得之物。 ’、 6、如申睛專利範圍第1項所述之複合體組成物, 中該樹脂係可紐樹脂及硬錄細旨中之至少一種。 1如申睛專利範圍第1項所述之複合體組成物, 中該樹脂係含有環氧樹脂。 8、如申請專利範圍第丄項所述之複合體組成物, 中該樹脂係含有酚樹脂。 f t如申睛專利範圍第1項所述之複合體組成物,: 該樹脂係包含偶合劑及該偶合劑之水解物的至少: 、°申請專利範圍第9項所述之複合體組成物, 其 其 装 其 53/54 201026758 其中該偶合劑魏氧魏魏氧鈦。 11如巾請專利範圍第^ 其中該金屬氧化物之平均粒徑為1至_^體組成物’ 1 2、如中請專利範圍第 = 其中該金屬氧化物為二氧切。4之複口體組成物’ 1二專利範圍第1項所述之複合體組成物, ,、中該溥片狀無機材料係選自雲母、蛭石 脫石、織石、息石、链蒙脫石、石夕鎮石豕二鐵: 然矽酸鈉、伊利石、水矽鈉石έ 、 天
    一種以上。 私潤石及層狀鈦酸之中的 1二4二Π專利範圍第1項所述之複合體組成物, /、中成物巾賴纖維狀填充劑 至99.9重量百分率。 3 +句U’i 15 士申明專利範圍第1項所述之複合體組成物, 其於厚度30//m時的全透光率為8〇百分率以上。
    16、 如申請專利範圍第i項所述之複合體組成物, 其於30C至180。(:中的熱膨脹係數為5〇ppmrc以下。 17、 一種複合體,其是使如申請專利範圍第丄項至 第16項中任一項所述之複合體組成物成形而成的,且厚 度為10至2000 a m。 18、如申請專利範圍第17項所述之複合體,其於 30°C至150°C中的熱膨脹係數為0 4至5〇ppm/〇C。 1 9、如申請專利範圍第1 7項所述之複合體,其濕 度膨脹係數為lOOppm/濕度百分率以下。 54/54 201026758 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: 無 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 無
    2/54
TW098138234A 2008-11-13 2009-11-11 Composite compositions and composites TW201026758A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008290456A JP2010116477A (ja) 2008-11-13 2008-11-13 複合体組成物
JP2009078079A JP2010229586A (ja) 2009-03-27 2009-03-27 複合体組成物
JP2009141957A JP2010285573A (ja) 2009-06-15 2009-06-15 複合体組成物

Publications (1)

Publication Number Publication Date
TW201026758A true TW201026758A (en) 2010-07-16

Family

ID=42169973

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098138234A TW201026758A (en) 2008-11-13 2009-11-11 Composite compositions and composites

Country Status (4)

Country Link
KR (1) KR101335758B1 (zh)
CN (1) CN102216393B (zh)
TW (1) TW201026758A (zh)
WO (1) WO2010055839A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2501753A4 (en) * 2009-11-16 2014-01-22 Kth Holding Ab NANOPAPIER RESISTANT
EP2511346B1 (en) 2009-12-11 2016-09-07 Kao Corporation Composite material
JP5489788B2 (ja) * 2010-03-05 2014-05-14 オリンパス株式会社 鏡枠用樹脂構造体
WO2011118360A1 (ja) * 2010-03-26 2011-09-29 凸版印刷株式会社 膜形成用組成物およびシート
JP5700283B2 (ja) * 2010-08-16 2015-04-15 国立大学法人鳥取大学 ナノファイバー補強透明複合材
JP5786862B2 (ja) * 2010-09-06 2015-09-30 凸版印刷株式会社 透明基材およびその製造方法
FI127301B (fi) * 2011-02-10 2018-03-15 Upm Kymmene Corp Menetelmä nanoselluloosan käsittelemiseksi ja menetelmällä saatu tuote
CN102408691B (zh) * 2011-11-09 2013-06-05 浙江大学宁波理工学院 高阻隔纳米纤维素复合材料
CN102877369B (zh) * 2012-09-20 2014-11-05 蚌埠凤凰滤清器有限责任公司 一种竹炭负载壳聚糖汽车工业滤纸及其制备方法
CN102877371B (zh) * 2012-09-25 2014-11-05 蚌埠凤凰滤清器有限责任公司 一种含有纳米蒙脱石粉的滤清器用滤纸
JP2014156677A (ja) * 2013-02-18 2014-08-28 Olympus Corp 変性セルロースナノファイバー、樹脂組成物および成形体
JP5704198B2 (ja) * 2013-08-06 2015-04-22 Dic株式会社 セルロースナノファイバー含有エポキシ樹脂組成物の製造方法、強化マトリクス樹脂及び繊維強化樹脂複合体
JP6609898B2 (ja) * 2013-10-01 2019-11-27 セイコーエプソン株式会社 シート製造装置、シート製造方法、及びこれらにより製造されるシート、並びに、これらに用いる複合体、その収容容器、及び複合体の製造方法
TW201525237A (zh) * 2013-11-08 2015-07-01 Dainippon Ink & Chemicals 纖維素奈米纖維之製造方法、纖維素奈米纖維製造用紙漿、纖維素奈米纖維、樹脂組合物及成形體
JP6373175B2 (ja) * 2013-11-20 2018-08-15 大王製紙株式会社 ガスバリア性シートの製造方法
JP2016020446A (ja) * 2014-07-15 2016-02-04 Dic株式会社 樹脂組成物、繊維強化複合材料及び成形品
JP6432983B2 (ja) * 2015-03-31 2018-12-05 株式会社松風 医科歯科用硬化性組成物
WO2016158682A1 (ja) * 2015-04-02 2016-10-06 富士フイルム株式会社 セルロースフィルム、配線基板およびセルロースフィルムの製造方法
CN105035493B (zh) * 2015-05-29 2018-01-30 铜陵方正塑业科技有限公司 抗拉伸纸塑复合袋及其制备方法
WO2017047631A1 (ja) * 2015-09-17 2017-03-23 王子ホールディングス株式会社 組成物、微細繊維状セルロース含有物及び微細繊維状セルロース含有物の製造方法
JP5996082B1 (ja) * 2015-12-25 2016-09-21 第一工業製薬株式会社 セルロースナノファイバーおよび樹脂組成物
CN105504686B (zh) * 2015-12-30 2018-01-05 广东生益科技股份有限公司 一种热固性树脂组合物以及含有它的预浸料、层压板和电路载体
JP6822420B2 (ja) 2016-02-03 2021-01-27 王子ホールディングス株式会社 樹脂複合体及び樹脂複合体の製造方法
CN108699420B (zh) * 2016-02-04 2021-09-17 马里兰大学学院市分校 透明木材复合物、系统及制造方法
JP6699014B2 (ja) * 2016-02-16 2020-05-27 モリマシナリー株式会社 樹脂材料強化材の製造方法、繊維強化樹脂材料の製造方法、及び樹脂材料強化材
CN105641734A (zh) * 2016-02-23 2016-06-08 南京荣之盛生物科技有限公司 一种缓释型细菌纤维素基抗菌剂的制备方法
CN105672014B (zh) * 2016-03-01 2017-06-13 山东农业大学 超疏水磁性纳米纤维素纸的制备方法
KR20180062074A (ko) * 2016-11-30 2018-06-08 (주)차라도 건축 복합 판넬 나노 실리카가 혼합된 페놀폼 코어 패널 및 그 제조 방법
CN110050039B (zh) * 2016-12-27 2022-04-29 花王株式会社 树脂组合物
KR102511759B1 (ko) * 2017-03-31 2023-03-20 다이요 홀딩스 가부시키가이샤 경화성 수지 조성물, 드라이 필름, 경화물 및 전자 부품
JP6483333B1 (ja) * 2017-11-14 2019-03-13 利昌工業株式会社 ミクロフィブリル化セルロース含有組成物、プリプレグ、成形体、およびプリプレグの製造方法
CN108340459A (zh) * 2018-03-29 2018-07-31 青岛元汇丰企业管理咨询服务有限公司 一种阻燃消音木门生产工艺
JP6644828B2 (ja) * 2018-05-01 2020-02-12 太陽ホールディングス株式会社 組成物およびそれを用いた硬化物
JP7232041B2 (ja) * 2018-12-27 2023-03-02 太陽ホールディングス株式会社 硬化性樹脂組成物、ドライフィルム、硬化物、配線基板及び電子部品
CN110003919B (zh) * 2019-03-25 2020-11-17 武汉大学 一种无溶剂纳米纤维素流体及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240597B2 (ja) * 2005-10-26 2013-07-17 国立大学法人京都大学 封止剤
US20090298976A1 (en) * 2005-10-26 2009-12-03 Hiroyuki Yano Fiber-Reinforced Composition Resin Composition, Adhesive and Sealant
JP5322470B2 (ja) * 2007-03-26 2013-10-23 国立大学法人京都大学 表面改質ミクロフィブリル化セルロース及びこれを含有してなる複合化樹脂
JP5055000B2 (ja) * 2007-03-29 2012-10-24 株式会社日立製作所 繊維強化複合樹脂組成物及びその製造方法
JP5207500B2 (ja) * 2007-03-30 2013-06-12 スターライト工業株式会社 フェノール樹脂組成物の製造方法
JPWO2009069641A1 (ja) * 2007-11-26 2011-04-14 国立大学法人 東京大学 セルロースナノファイバーとその製造方法、セルロースナノファイバー分散液
JP5531403B2 (ja) * 2007-12-21 2014-06-25 三菱化学株式会社 繊維複合体
JP5211704B2 (ja) * 2008-01-11 2013-06-12 三菱化学株式会社 セルロース繊維樹脂組成物およびその製造方法
JP5586833B2 (ja) * 2008-02-21 2014-09-10 花王株式会社 樹脂組成物

Also Published As

Publication number Publication date
KR101335758B1 (ko) 2013-12-02
CN102216393B (zh) 2014-10-29
KR20110091744A (ko) 2011-08-12
CN102216393A (zh) 2011-10-12
WO2010055839A1 (ja) 2010-05-20

Similar Documents

Publication Publication Date Title
TW201026758A (en) Composite compositions and composites
JP2010116477A (ja) 複合体組成物
JP5617289B2 (ja) セルロース膜およびそれを用いた積層材料
Karger‐Kocsis et al. Polymer/boehmite nanocomposites: A review
Yang et al. Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization
Zeng et al. Chitin whiskers: An overview
CN103429622B (zh) 纤维素纤维及其制造方法、纤维素纤维聚集体以及纤维素纤维复合材料
Gan et al. Focus on gradientwise control of the surface acetylation of cellulose nanocrystals to optimize mechanical reinforcement for hydrophobic polyester-based nanocomposites
JP2011047084A (ja) 有機化繊維、樹脂組成物及びその製造方法
JP2010229586A (ja) 複合体組成物
Tao et al. Double-network formation and mechanical enhancement of reducing end-modified cellulose nanocrystals to the thermoplastic elastomer based on click reaction and bulk cross-linking
JP5240597B2 (ja) 封止剤
Le Hoang et al. Preparation and physical characteristics of epoxy resin/bacterial cellulose biocomposites
WO2011065371A1 (ja) 膜状体及びその製造方法並びに該膜状体の形成用水性分散液
JP2010270315A (ja) 複合体組成物
JP6104139B2 (ja) セルロース多孔質体及びその製造方法
Li et al. Facile in situ fabrication of ZnO-embedded cellulose nanocomposite films with antibacterial properties and enhanced mechanical strength via hydrogen bonding interactions
JP5392054B2 (ja) 組成物および複合体
Guo et al. Contribution of residual proteins to the thermomechanical performance of cellulosic nanofibrils isolated from green macroalgae
JP2010285573A (ja) 複合体組成物
JP2015196693A (ja) 微細セルロース繊維分散液、及びその製造方法、セルロース積層体
Aziz et al. Enhancement in adhesive and thermal properties of bio‐based epoxy resin by using eugenol grafted cellulose nanocrystals
JP5665487B2 (ja) 膜状体及びその製造方法
Muzata et al. An overview of recent advances in polymer composites with improved UV‐shielding properties
Li et al. POSS-functionalized polyphosphazene nanotube: preparation and effective reinforcement on UV-curable epoxy acrylate nanocomposite coatings