RU2658436C2 - Способ получения ребаудиозида m с использованием ферментативного способа - Google Patents

Способ получения ребаудиозида m с использованием ферментативного способа Download PDF

Info

Publication number
RU2658436C2
RU2658436C2 RU2016108660A RU2016108660A RU2658436C2 RU 2658436 C2 RU2658436 C2 RU 2658436C2 RU 2016108660 A RU2016108660 A RU 2016108660A RU 2016108660 A RU2016108660 A RU 2016108660A RU 2658436 C2 RU2658436 C2 RU 2658436C2
Authority
RU
Russia
Prior art keywords
udp
rebaudioside
glucosyl
glucosyltransferase
recombinant cells
Prior art date
Application number
RU2016108660A
Other languages
English (en)
Other versions
RU2016108660A (ru
Inventor
Цзюньхуа ТАО
Гоцин Ли
Сяолян ЛЯН
Томас ЛИ
Грегори ИЕП
Эндрю ТАО
Original Assignee
Пепсико, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Пепсико, Инк. filed Critical Пепсико, Инк.
Publication of RU2016108660A publication Critical patent/RU2016108660A/ru
Application granted granted Critical
Publication of RU2658436C2 publication Critical patent/RU2658436C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/56Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical directly bound to a condensed ring system having three or more carbocyclic rings, e.g. daunomycin, adriamycin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • A23L27/36Terpene glycosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01017Glucuronosyltransferase (2.4.1.17)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Группа изобретений относится к биотехнологии. Предложен способ получения ребаудиозида М. Способ включает взаимодействие ребаудиозида D с донором глюкозила в присутствии UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих UDP-глюкозилтрансферазу, с получением ребаудиозида M. При этом донором глюкозила является UDP-глюкоза или система регенерации UDP-глюкозы, включающая сахарозу, сахарозасинтетазу и UDP, UDP-глюкозилтрансфераза имеет аминокислотную последовательность, имеющую по меньшей мере 90% идентичность SEQ ID NO:2. Рекомбинантные клетки представляют собой микробные клетки, выбранные из группы, состоящей из клеток Escherichia coli, Saccharomyces cerevisiae или Pichia pastoris. Предложен также способ получения ребаудиозида М, включающий взаимодействие ребаудиозида А с донором глюкозила в присутствии первой UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих первую UDP-глюкозилтрансферазу с образованием ребаудиозида D, и взаимодействие ребаудиозида D с донором глюкозила в присутствии второй UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих вторую UDP-глюкозилтрансферазу, с получением ребаудиозида M. При этом первая UDP-глюкозилтрансфераза имеет аминокислотную последовательность, имеющую по меньшей мере 90% идентичность с SEQ ID NO: 4, и вторая UDP-глюкозилтрансфераза имеет аминокислотную последовательность, имеющую по меньшей мере 90% идентичность SEQ ID NO: 2. Группа изобретений обеспечивает превращение по меньшей мере 40% ребаудиозида D в ребаудиозид М после взаимодействия в течение двух часов. 2 н. и 9 з.п. ф-лы, 1 ил., 10 пр.

Description

Область техники
Настоящее изобретение относится к способу получения ребаудиозида M и в частности к биологическому способу получения ребаудиозида M.
Предшествующий уровень техники
Подсластители представляют собой класс пищевых добавок, которые находят широкое применение в производстве пищевых продуктов, напитков и конфет. Их можно добавлять в способе получения пищевого продукта или альтернативно их можно использовать путем соответствующего разбавления в качестве заменителя сахарозы во время домашней выпечки. Подсластители включают натуральные подсластители, например сахарозу, кукурузный сироп с высоким содержанием фруктозы, мед и т.д., и искусственные подсластители, например аспартам, сахарин и т.д. Стевиозиды представляют собой класс натуральных подсластителей, экстрагируемых из растения Stevia rebaudkma и в настоящее время широко используются в пищевых продуктах и напитках. Экстракт Stevia rebaudkma содержит ряд стевиозидов, включая ребаудиозид. Экстрагируемые естественным образом стевиозиды характеризуются большим различием ингредиентов в различных партиях, и нуждаются в последующей очистке. Коммерчески производимый в настоящее время продукт ребаудиозид A содержит некоторые другие стевиозиды, например ребаудиозиды C, D и F, и т.д. Стевиозид, получаемый способ экстракции, как правило, дополнительно содержит некоторые примеси, смешанные с ним, которые оказывают определенное влияние на область его применения. Ребаудиозид M обладает преимуществами по сравнению с ребаудиозидом A, но его содержание в листьях Stevia rebaudkma является очень низким и его детектируют только в растении Stevia rebaudkma Morita (2010, J. Appl. Glycosci., 57, 199-209). В настоящее время не существует какого-либо промышленного производства ребаудиозида M.
Сущность изобретения
Техническая проблема, подлежащая решению в настоящем изобретении, заключается в предоставлении способа получения ребаудиозида M ферментативным способом для устранения недостатков известного уровня техники. Этим способом можно получать продукт ребаудиозида M высокой степени чистоты при более низких затратах за более короткий период времени.
Для решения указанной выше технической проблемы в настоящем изобретении применяют следующее техническое решение: способ получения ребаудиозида M ферментативным способом. В способе в качестве субстрата используют ребаудиозид A или ребаудиозид D; и в присутствии донора глюкозила ребаудиозид M получают путем взаимодействия субстрата при катализе UDP-глюкозилтрансферазы и/или рекомбинантных клеток, содержащих UDP-глюкозилтрансферазу.
По настоящему изобретению донор глюкозила может представлять собой UDP-глюкозу или систему регенерации UDP-глюкозы, состоящую из сахарозы, сахарозосинтетазы и UDP (2007, FEBS Letters, 581, 2562-2566), и предпочтительно систему регенерации UDP-глюкозы, состоящую из сахарозы, сахарозосинтетазы и UDP. UDP-глюкоза является более дорогостоящей, и применение системы регенерации UDP-глюкозы может значительно снижать затраты.
По настоящему изобретению UDP-глюкозилтрансфераза (т.е. уридиндифосфоглюкозилтрансфераза, сокращенно обозначаемая как UGT) является известной. Предпочтительно UDP-глюкозилтрансфераза, применяемая в настоящем изобретении, представляет собой UGT-A из Stevia rebaudkma и/или UGT-B из Oryza sativa.
Аминокислотная последовательность UGT-A может обладать по меньшей мере 60% идентичностью с последовательностью 2. Предпочтительно аминокислотная последовательность UGT-A обладает по меньшей мере 70% идентичностью с последовательностью 2. Кроме того, предпочтительно аминокислотная последовательность UGT-A обладает по меньшей мере 80% идентичностью с последовательностью 2. Наиболее предпочтительно аминокислотная последовательность UGT-A обладает по меньшей мере 90% идентичностью с последовательностью 2. По одному конкретному аспекту аминокислотная последовательность UGT-A является полностью идентичной последовательности 2.
Аминокислотная последовательность UGT-B может обладать по меньшей мере 60% идентичностью с последовательностью 4. Более предпочтительно аминокислотная последовательность UGT-B обладает по меньшей мере 70% идентичностью с последовательностью 4. Кроме того, предпочтительно аминокислотная последовательность UGT-B обладает по меньшей мере 80% идентичностью с последовательностью 4. Наиболее предпочтительно аминокислотная последовательность UGT-B обладает по меньшей мере 90% идентичностью с последовательностью 4. По одному конкретному аспекту аминокислотная последовательность UGT-B является полностью идентичной последовательности 4.
По настоящему изобретению реакцию можно проводить в водно-фазной системе при температуре от 4 до 50°C и значении pH от 5,0 до 9,0. Предпочтительно реакцию проводят в водно-фазной системе при температуре от 25 до 35°C и значении pH от 6,5 до 7,5.
Более предпочтительно реакцию проводят при температуре 30°C.
Более предпочтительно реакцию проводят при значении pH 7,0.
По одному конкретному предпочтительному аспекту реакцию проводят в фосфатном буфере при pH 7.
По настоящему изобретению, когда катализ проводят с применением рекомбинантных клеток, содержащих UDP-глюкозилтрансферазу, реакцию можно проводить в присутствии средств, способствующих проникновению в клетки. Предпочтительно средство, способствующее проникновению в клетки, представляет собой толуол в концентрации, которая может составлять от 1% до 3% по объемному отношению во всей реакционной смеси. Более предпочтительно концентрация толуола составляет 2% по объемному отношению.
По настоящему изобретению рекомбинантные клетки могут представлять собой и предпочтительно представляют собой клетки микроорганизмов, где микроорганизмы могут представлять собой и предпочтительно представляют собой Escherichia coli, Saccharomyces cerevisiae или Pichia pastoris и т.п.
По одному конкретному и предпочтительному аспекту способ получения проводят так, как указано ниже: все исходные вещества, применяемые в реакции, добавляют в реакционный котел, перемешивают до однородного состояния, затем помещают при указанной температуре и перемешивают для начала реакции. После завершения реакции можно получать продукт ребаудиозида Μ, соответствующий требованиям использования, путем обработки очисткой. В одном конкретном способе очистки можно получать продукт ребаудиозида Μ с чистотой до 95% в соответствии со способом очистки посредством дополнительной обработки, включающей разделение смолой.
По одному конкретному аспекту настоящего изобретения субстрат представляет собой ребаудиозид A, и UDP-глюкозилтрансфераза представляет собой смесь UGT-A из Stevia rebaudkma и UGT-B из Oryza sativa, где аминокислотная последовательность UGT-A из Stevia rebaudkma обладает по меньшей мере 80% идентичностью с последовательностью 2, и аминокислотная последовательность UGT-B из Oryza sativa обладает по меньшей мере 80% идентичностью с последовательностью 4. Предпочтительно массовое отношение в смеси UGT-A из Stevia rebaudkma и UGT-B из Oryza sativa составляет 1: от 0,8 до 1,2, например оно может составлять 1:1.
По одному другому конкретному аспекту настоящего изобретения субстрат представляет собой ребаудиозид D, и UDP-глюкозилтрансфераза представляет собой UGT-A из Stevia rebaudkma, где аминокислотная последовательность UGT-A из Stevia rebaudkma обладает по меньшей мере 80% идентичностью с последовательностью 2.
В результате реализация указанных выше технических решений настоящее изобретение обладает следующими ниже преимуществами по сравнению с известным уровнем техники.
Способ получения ребаудиозида M ферментативным способом, предоставленным в настоящем изобретении, имеет важное прикладное значение. Вследствие того, что скорость роста микроорганизмов является значительно выше чем скорость роста растений, способом получения по настоящему изобретению можно значительно снижать производственные затраты, можно сокращать цикл производства и можно значительно увеличивать конкурентоспособность продукта. Кроме того, стевиозид характеризуется низким содержанием в растениях и содержит относительно много стевиозидов с различными структурами таким образом, что экстракция более чистых продуктов является крайне затруднительной. В свою очередь применение способа синтеза с использованием ферментативного способа по настоящему изобретению способно обеспечивать продукты более высокой степени чистоты, что дополнительно расширит его область применения. По сравнению со способом экстракции ребаудиозида M из листьев Stevia rebaudkma способ по настоящему изобретению характеризуется значительно более коротким циклом производства, улучшенной производительностью, более низкими затратами и может обеспечивать продукты с более высокой степенью чистоты и таким образом его можно использовать с меньшими затратами в пищевой промышленности и промышленности напитков.
Краткое описание чертежей
Фиг. 1 представляет собой диаграмму протонного магнитного спектра продукта, получаемого в примере 5 по настоящему изобретению.
Подробное описание предпочтительных вариантов осуществления
Следующие ниже ребаудиозид A, ребаудиозид D и ребаудиозид M сокращенно обозначают соответственно как Reb A, Reb D и Reb M, где структурные формулы соответственно относятся к формулам I, II и III.
Figure 00000001
I;
Figure 00000002
II;
Figure 00000003
III.
Настоящее изобретение относится в основном к четырем путям синтеза Reb M:
Способ 1:
Figure 00000004
Способ 2:
Figure 00000005
Способ 3:
Figure 00000006
Способ 4:
Figure 00000007
.
По настоящему изобретению применяемые UGT-A или UGT-B могут находиться в форме порошка лиофилизированного фермента или содержаться в рекомбинантных клетках.
UGT-A или UGT-B получают способом так, как указано ниже:
Рекомбинантные штаммы Escherichia coli (или других бактериальных клеток), экспрессирующие UGT-A или UGT-B, получают с использованием техник молекулярного клонирования и техник генетической инженерии. Затем рекомбинантные Escherichia coli подвергают ферментации для получения рекомбинантных клеток, содержащих UGT-A или UGT-B, или для получения лиофилизированных порошков UGT-A или UGT-B.
Все указанные выше техники молекулярного клонирования и техники генетической инженерии хорошо известны. Техники молекулярного клонирования можно найти в Molecular Cloing A Laboratory Manual. 3rd Edition, J. Shambrook, 2005.
Этапы экспрессии для конструирования рекомбинантных штаммов по настоящему изобретению с применением способа генетической инженерии являются такими, как указано ниже:
(1) (в соответствии с последовательностью 1 и последовательностью 2 или в соответствии с последовательностью 3 и последовательностью 4) генетически синтезируют необходимые фрагменты гена, лигируют в них векторы pUC57 и на оба конца добавляют участки рестрикции ферментов NdeI и BamHI соответственно;
(2) путем двойного ферментативного расщепления и лигирования каждый из фрагментов гена вводят в соответствующие участки ферментов рестрикции экспрессирующего вектора pET30a, чтобы обеспечивать возможность того, что каждый из генов находится под контролем промотора T7, и
(3) рекомбинантыми плазмидами трансформируют Escherichia coli BL21 (DE3) и индуцируют экспрессию целевых белков с использованием IPTG так, чтобы получать рекомбинантные штаммы Escherichia coli, экспрессирующие UGT-A или UGT-B.
Рекомбинантные клетки, содержащие UGT-A или UGT-B, или лиофилизированные порошки of UGT-A или UGT-B получают с использованием рекомбинантных экспрессионных штаммов Escherichia coli, содержащих UGT-A или UGT-B, посредством следующих ниже этапов.
Рекомбинантные экспрессионные штаммы Escherichia coli, содержащие UGT-A или UGT-B, инокулируют в 4 мл жидкой среды LB в количественном соотношении 1% и встряхивают (200 об/мин) при 37°C при культивировании в течение ночи. Культуру, которую культивировали в течение ночи, переносят в 50 мл жидкой среды LB при размере инокулята 1%. Среду для культивирования встряхивают (200 об./мин) при 37°C при культивировании до значения OD600 0,6-0,8. Затем добавляют IPTG в конечной концентрации 0,4 мМ и встряхивают смесь при 20°C при культивировании в течение ночи. После завершения индукции клетки собирают центрифугированием (8000 об/мин, 10 мин). Клетки ресуспендируют с использованием 5 мл 2 ммоль/л фосфатного буфера (pH 7,0) с получением рекомбинантных клеток или дополнительно разрушают с использованием ультразвука на ледяной бане с получением лиофилизированного порошка центрифугированием жидкости, подвергаемой обработке ультразвуком (8000 об/мин, 10 мин), сбором супернатант и лиофилизацией в течение 24 часов.
Настоящее изобретение более подробно описано ниже в сочетании с конкретными примерами.
Пример 1: получение рекомбинантных клеток Escherichia coli , содержащих UGT-A
В соответствии с последовательностью 1 и последовательностью 2 фрагменты гена UGT-A получали генетическим синтезом, к обоим концам добавляли участки ферментов рестрикции NdeI и BamHI соответственно и лигировали в них векторы pUC57 (Suzhou Genewiz Biotech Co., Ltd.). Фрагменты гена UGT подвергали ферментативному расщеплению рестрикционными эндонуклеазами NdeI и BamHI. Выделяли очищенные фрагменты. Добавляли к ним лигазу T4 и лигировали фрагменты в соответствующие участки ферментов рестрикции pET30a для трансформации штаммов BL21 (DE3).
Штаммы UGT инокулировали в 4 мл жидкой среды LB в количественном отношении 1% и встряхивали (200 об/мин) при 37°C при культивировании в течение ночи. Культуру, которую культивировали в течение ночи, переносили в 50 мл жидкой среды LB при размере инокулята 1%. Среду для культивирования встряхивали (200 об/мин) при 37°C при культивировании до значения OD600 0,6-0,8. Добавляли в нее IPTG в конечной концентрации 0,4 мМ и встряхивали смесь при 20°C при культивировании в течение ночи. После завершения индукции клетки собирали центрифугированием (8000 об/мин, 10 мин). Клетки ресуспендировали с использованием 5 мл 2 ммоль/л фосфатного буфера (pH 7,0) с получением рекомбинантных клеток, содержащих UGT-A для применения в катализе.
Пример 2: получение лиофилизированного порошка UGT-A
Рекомбинантные клетки UGT-A, получаемые в примере 1, разрушали с использованием ультразвука на ледяной бане с получением лиофилизированного порошка UGT-A центрифугированием жидкости, подвергаемой обработке ультразвуком (8000 об/мин, 10 мин), сбором супернатанта и лиофилизацией в течение 24 часов.
Пример 3: получение рекомбинантных клеток Escherichia coli , содержащих UGT-B
В соответствии с последовательностью 3 и последовательностью 4 фрагменты ген UGT-B получали генетическим синтезом, к обоим концам добавляли участки ферментов рестрикции NdeI и BamHI соответственно и лигировали в них векторы pUC57 (Suzhou Genewiz Biotech Co., Ltd.). Фрагменты гена UGT подвергали ферментативному расщеплению рестрикционными эндонуклеазами NdeI и BamHI. Выделяли очищенные фрагменты. Добавляли к ним лигазу T4 и лигировали фрагменты в соответствующие участки ферментов рестрикции pET30a для трансформации штаммов BL21 (DE3).
Штаммы UGT инокулировали в 4 мл жидкой среды LB в количественном отношении 1% и встряхивали (200 об/мин) при 37°C при культивировании в течение ночи. Культуру, которую культивировали в течение ночи, переносили в 50 мл жидкой среды LB при размере иноулята 1%. Среду для культивирования встряхивали (200 об/мин) при 37°C при культивировании до значения OD600 0,6-0,8. Добавляли к ним IPTG в конечной концентрации 0,4 мМ и встряхивали смесь при 20°C при культивировании в течение ночи. После завершения индукции клетки собирали центрифугированием (8000 об/мин, 10 мин). Клетки ресуспендировали с использованием 5 мл 2 ммоль/л фосфатного буфера (pH 7,0) с получением рекомбинантных клеток, содержащих UGT-B, для применения в катализе.
Пример 4: получение лиофилизированного порошка UGT-B
Рекомбинантные клетки UGT-B, получаемые в примере 3, разрушали с использованием ультразвука на ледяной бане с получением лиофилизированного порошка UGT-B центрифугированием жидкости, подвергаемой обработке ультразвуком (8000 об/мин, 10 мин), сбором супернатанта и лиофилизацией в течение 24 часов.
Пример 5: синтез Reb M ферментативным способом с Reb D в качестве субстрата (способ 1)
В этом примере в каталитическом синтезе Reb M использовали лиофилизированный порошок UGT-A, получаемый способом в примере 2.
150 мл 0,05 моль/л фосфатного буфера (pH 7,0), 0,255 г UDP-глюкозы, 0,17 г Reb D и 1,5 г лиофилизированного порошка UGT-A последовательно добавляли в реакционную смесь, перемешивали до однородного состояния, затем помещали на водяную баню при 30°C и перемешивали при 160 об/мин с проведением реакции в течение 2 часов. После завершения реакции отбирали 500 мкл реакционного раствора и добавляли в равный объем безводного метанола и перемешивали до однородного состояния. Смесь центрифугировали в течение 10 мин при 8000 об/мин. Супернатант отбирали и пропускали через мембрану фильтра с последующей детекцией с использованием высокоэффективной жидкостной хроматографии (хроматографические условия: хроматографическая колонка: Agilent eclipse sb-C18 4,6×250 мм; длина волны детекции: 210 нм; подвижная фаза: 1% водный раствор муравьиной кислоты:метанол=20%:80%; скорость потока: 1,0 мл/мин; температура колонки: 25°C). Показатель преобразования Reb D составлял более 40% получали 0,054 г Reb M с чистотой более 95% после очистки последующими обработками, такими как разделение силикагелевой смолой, кристаллизация и т.д.
Пример 6: синтез Reb M ферментативным способом с Reb A в качестве субстрата (способ 2)
В этом примере в каталитическом синтезе Reb M использовали лиофилизированный порошок UGT-A, получаемый способом в примере 2, и лиофилизированный порошок UGT-B, получаемый способом в примере 4.
150 мл 0,05 моль/л фосфатного буфера (pH 7,0), 0,51 г UDP-глюкозы, 0,145 г Reb A и 1,5 г каждого из лиофилизированных порошков UGT-A и UGT-B последовательно добавляли в реакционную смесь, перемешивали до однородного состояния, затем помещали на водяную баню при 30°C и перемешивали при 160 об/мин для проведения реакции в течение 2 часов. После завершения реакции отбирали 500 мкл реакционного раствора и добавляли в равный объем безводного метанола и перемешивали до однородного состояния. Смесь центрифугировали в течение 10 мин при 8000 об/мин. Супернатант отбирали и пропускали через мембрану фильтра с последующей детекцией с использованием высокоэффективной жидкостной хроматографии (хроматографические условия: хроматографическая колонка: Agilent eclipse sb-C18 4,6×250 мм; длина волны детекции: 210 нм; подвижная фаза: 1% водный раствор муравьиной кислоты:метанол=20%:80%; скорость потока: 1,0 мл/мин; температура колонки: 25°C). Показатель преобразования Reb A составлял более 40%. 0,05 г Reb M с чистотой более 95% получали после очистки последующими обработками, такими как разделение силикагелевой смолой, кристаллизация и т.д.
Пример 7: синтез Reb M ферментативным способом с Reb D в качестве субстрата (способ 3)
В этом примере в качестве донора глюкозила использовали систему регенерации UDP-глюкозы, состоящую из сахарозы, сахарозосинтетазы (AtSUS1 для краткого обозначения в дальнейшем) из Arabidopsis thaliana и UDP.
150 мл 0,05 моль/л фосфатного буфера (pH 7,0), 0,182 г UDP, 51,3 г сахарозы, 0,17 г Reb D, 1,5 г лиофилизированного порошка UGT-A и 0,5 г лиофилизированного порошка AtSUS1 последовательно добавляли в реакционную смесь, перемешивали до однородного состояния, затем помещали на водяную баню при 30°C и перемешивали при 160 об/мин для проведения реакции в течение 2 часов. После завершения реакции отбирали 500 мкл реакционного раствора и добавляли в равный объем безводного метанола, и перемешивали до однородного состояния. Смесь центрифугировали в течение 10 мин при 8000 об/мин. Супернатант отбирали и пропускали через мембрану фильтра с последующей детекцией с использованием высокоэффективной жидкостной хроматографии (хроматографические условия: хроматографическая колонка: Agilent eclipse sb-C18 4,6×250 мм; длина волны детекции: 210 нм; подвижная фаза: 1% водный раствор муравьиной кислоты:метанол=20%:80%; скорость потока: 1,0 мл/мин; температура колонки: 25°C). Показатель преобразования Reb D составлял более 80%. Получали 0,11 г Reb M с чистотой более 95% после очистки последующими обработками, такими как разделение силикагелевой смолой, кристаллизация и т.д.
Пример 8: синтез Reb M ферментативным способом с Reb A в качестве субстрата (способ 4)
В этом примере в качестве донора глюкозила использовали систему регенерации UDP-глюкозы, состоящую из сахарозы, сахарозосинтетазы (в дальнейшем обозначаемую как AtSUS1) из Arabidopsis thaliana и UDP.
150 мл 0,05 моль/л фосфатного буфера (pH 7,0), 0,364 г UDP, 51,3 г сахарозы, 0,145 г Reb A, 1,5 г каждого из UGT-A и UGT-B и 0,5 г лиофилизированного порошка AtSUS1 последовательно добавляли в реакционную смесь, перемешивали до однородного состояния, затем помещали на водяную баню при 30°C и перемешивали при 160 об/мин для проведения реакции в течение 2 часов. После завершения реакции отбирали 500 мкл реакционного раствора и добавляли в равный объем безводного метанола и перемешивали до однородного состояния. Смесь центрифугировали в течение 10 мин при 8000 об/мин. Супернатант отбирали и пропускали через мембрану фильтра с последующей детекцией с использованием высокоэффективной жидкостной хроматографии (хроматографические условия: хроматографическая колонка: Agilent eclipse sb-C18 4,6×250 мм; длина волны детекции: 210 нм; подвижная фаза: 1% водный раствор муравьиной кислоты:метанол=20%: 80%; скорость потока: 1,0 мл/мин; температура колонки: 25°C). Показатель преобразования Reb A составлял более 80%. Получали 0,108 г Reb M с чистотой более 95% после очистки последующими обработками, такими как разделение силикагелевой смолой, кристаллизация и т.д.
Пример 9: синтез Reb M цельноклеточным каталитическим синтезом с Reb D в качестве субстрата
В этом примере в каталитическом синтезе использовали Reb M рекомбинантные клетки, содержащие UGT-A, получаемые способом в примере 1.
150 мл 0,05 моль/л фосфатного буфера (pH 7,0), 0,255 г UDP-глюкозы, 3 мл толуола, 0,17 г Reb D и 10 г рекомбинантных клеток, содержащих UGT-A, последовательно добавляли в реакционную смесь, перемешивали до однородного состояния, затем помещали на водяную баню при 30°C и перемешивали при 160 об/мин для проведения реакции в течение 2 часов. После завершения реакции отбирали 500 мкл реакционного раствора и добавляли в равный объем безводного метанола, и перемешивали до однородного состояния. Смесь центрифугировали в течение 10 мин при 8000 об/мин. Супернатант отбирали и пропускали через мембрану фильтра с последующей детекцией с использованием высокоэффективной жидкостной хроматографии (хроматографические условия: хроматографическая колонка: Agilent eclipse sb-C18 4,6×250 мм; длина волны детекции: 210 нм; подвижная фаза: 1% водный раствор муравьиной кислоты:метанол=20%:80%; скорость потока: 1,0 мл/мин; температура колонки: 25°C). Показатель преобразования Reb D составлял более 40%. Получали 0,052 г Reb M с чистотой более 95% после очистки последующими обработками, такими как, центрифугирование, разделение путем пропускания супернатанта через силикагелевую смолу, кристаллизация и т.д.
Пример 10: синтез Reb M цельноклеточным каталитическим синтезом с Reb A в качестве субстрата
150 мл 0,05 моль/л фосфатного буфера (pH 7,0), 0,51 г UDP-глюкозы, 3 мл толуола, 0,145 г Reb A и 10 г целых клеток, содержащих UGT-A и UGT-B, одновременно последовательно добавляли в реакционный раствор, перемешивали до однородного состояния, затем помещали на водяную баню при 30°C и перемешивали при 160 об/мин для проведения реакции в течение 2 часов. После завершения реакции отбирали 500 мкл реакционного раствора и добавляли в равный объем безводного метанола и перемешивали до однородного состояния. Смесь центрифугировали в течение 10 мин при 8000 об/мин. Супернатант отбирали и пропускали через мембрану фильтра с последующей детекцией с использованием высокоэффективной жидкостной хроматографии (хроматографические условия: хроматографическая колонка: Agilent eclipse sb-C18 4,6×250 мм; длина волны детекции: 210 нм; подвижная фаза: 1% водный раствор муравьиной кислоты:метанол=20%:80%; скорость потока: 1,0 мл/мин; температура колонки: 25°C). Показатель преобразования Reb A составлял более 40%. Получали 0,05 г Reb M с чистотой более 95% после очистки последующими обработками, такими как центрифугирование, разделение путем пропускания супернатанта через силикагелевую смолу, кристаллизация и т.д.
Указанные выше примеры используют только для описания технической концепции и признака настоящего изобретения, для обеспечения возможности понимания специалистом в данной области и таким образом осуществления содержания настоящего изобретения, а не ограничения объема патентной защиты настоящего изобретения. Любые эквивалентные изменения или модификации, проводимые в рамках объема и сущности настоящего изобретения, должны быть включены в объем патентной защиты настоящего изобретения.

Claims (21)

1. Способ получения ребаудиозида М, включающий взаимодействие ребаудиозида D с донором глюкозила в присутствии UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих UDP-глюкозилтрансферазу, с получением ребаудиозида M,
в котором донором глюкозила является UDP-глюкоза или система регенерации UDP-глюкозы, включающая сахарозу, сахарозасинтетазу и UDP,
где UDP-глюкозилтрансфераза имеет аминокислотную последовательность, имеющую по меньшей мере 90% идентичность SEQ ID NO:2, и
в котором рекомбинантные клетки представляют собой микробные клетки, выбранные из группы, состоящей из клеток Escherichia coli, Saccharomyces cerevisiae или Pichia pastoris, и
где по меньшей мере 40% ребаудиозида D превращается в ребаудиозид М после взаимодействия в течение двух часов.
2. Способ по п.1, в котором взаимодействие ребаудиозида D с донором глюкозила в присутствии UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих UDP-глюкозилтрансферазу, проводят в водно-фазовой системе при температуре от 25 до 35°С и рН от 6,5 до 7,5.
3. Способ по п.2, в котором водно-фазовая система содержит фосфатный буфер при рН 7,0.
4. Способ по п.2, в котором взаимодействие ребаудиозида D с донором глюкозила происходит в присутствии рекомбинантных клеток, содержащих UDP-глюкозилтрансферазу, и где водно-фазовая система дополнительно содержит толуол в концентрации от 1 до 3% по объемному соотношению.
5. Способ получения ребаудиозида М, включающий
a. взаимодействие ребаудиозида А с донором глюкозила в присутствии первой UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих первую UDP-глюкозилтрансферазу с образованием ребаудиозида D, и
b. взаимодействие ребаудиозида D с донором глюкозила в присутствии второй UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих вторую UDP-глюкозилтрансферазу, с получением ребаудиозида M,
в котором донором глюкозила является UDP-глюкоза или система регенерации UDP-глюкозы, включающая сахарозу, сахарозасинтетазу и UDP,
в котором рекомбинантные клетки представляют собой микробные клетки, выбранные из группы, состоящей из клеток Escherichia coli, Saccharomyces cerevisiae или Pichia pastoris, и
где первая UDP-глюкозилтрансфераза имеет аминокислотную последовательность, имеющую по меньшей мере 90% идентичность с SEQ ID NO: 4, и где вторая UDP-глюкозилтрансфераза имеет аминокислотную последовательность, имеющую по меньшей мере 90% идентичность SEQ ID NO: 2, а также
где по меньшей мере 40% ребаудиозида А превращается в ребаудиозид М после взаимодействия в течение двух часов.
6. Способ по п.5, в котором первая UDP-глюкозилтрансфераза и вторая UDP-глюкозилтрансфераза присутствуют в массовом соотношении от 1:0,8 до 1:1,2.
7. Способ по п.5, в котором взаимодействие ребаудиозида А с донором глюкозила в присутствии первой UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих первую UDP-глюкозилтрансферазу, проводят в водно-фазовой системе при температуре от 25 до 35ºC и pH от 6,5 до 7,5.
8. Способ по п.5, в котором взаимодействие ребаудиозида D с донором глюкозила в присутствии второй UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих вторую UDP-глюкозилтрансферазу, проводят в водно-фазовой системе при температуре от 25 до 35ºC и pH от 6,5 до 7,5.
9. Способ по п.8, в котором водно-фазовая система содержит фосфатный буфер при рН 7,0.
10. Способ по п.5, в котором взаимодействие ребаудиозида А с донором глюкозила происходит в присутствии рекомбинантных клеток, содержащих первую UDP-глюкозилтрансферазу, и где водно-фазовая система дополнительно содержит толуол в концентрации от 1 до 3 % по объемному соотношению.
11. Способ по п.10, в котором взаимодействие ребаудиозида D с донором глюкозила происходит в присутствии рекомбинантных клеток, включающих вторую UDP-глюкозилтрансферазу, и где водно-фазовая система дополнительно содержит толуол в концентрации от 1 до 3 % по объемному соотношению.
RU2016108660A 2013-08-14 2013-09-29 Способ получения ребаудиозида m с использованием ферментативного способа RU2658436C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201310353500.9A CN103397064B (zh) 2013-08-14 2013-08-14 一种酶法制备瑞鲍迪甙m的方法
CN201310353500.9 2013-08-14
PCT/CN2013/084644 WO2015021690A1 (zh) 2013-08-14 2013-09-29 一种酶法制备瑞鲍迪甙m的方法

Publications (2)

Publication Number Publication Date
RU2016108660A RU2016108660A (ru) 2017-09-18
RU2658436C2 true RU2658436C2 (ru) 2018-06-21

Family

ID=49560764

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016108660A RU2658436C2 (ru) 2013-08-14 2013-09-29 Способ получения ребаудиозида m с использованием ферментативного способа

Country Status (11)

Country Link
US (2) US10301662B2 (ru)
EP (1) EP3034614A4 (ru)
JP (1) JP6272485B2 (ru)
CN (1) CN103397064B (ru)
AU (1) AU2013398146B2 (ru)
BR (1) BR112016003035A2 (ru)
CA (1) CA2921247C (ru)
HK (1) HK1226103A1 (ru)
MX (1) MX2016001986A (ru)
RU (1) RU2658436C2 (ru)
WO (1) WO2015021690A1 (ru)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR122021005283B1 (pt) 2010-06-02 2022-02-22 Evolva, Inc Hospedeiro recombinante que compreende genes recombinantes para produção deesteviol ou glicosídeo de esteviol, método para produzir esteviol, glicosídeo de esteviol ou composição de glicosídeo de esteviol e método para sintetizar esteviol ou glicosídeo de esteviol
KR102114493B1 (ko) 2011-08-08 2020-05-26 에볼바 에스아 스테비올 글리코시드의 재조합 생산
JP6346174B2 (ja) 2012-05-22 2018-06-20 ピュアサークル スンディリアン ブルハド 高純度ステビオールグリコシド
US9752174B2 (en) 2013-05-28 2017-09-05 Purecircle Sdn Bhd High-purity steviol glycosides
SG11201505597SA (en) 2013-02-06 2015-08-28 Evolva Sa Methods for improved production of rebaudioside d and rebaudioside m
KR20150128705A (ko) 2013-02-11 2015-11-18 에볼바 에스아 재조합 숙주에서 스테비올 글리코시드의 효율적인 생성
CN103397064B (zh) 2013-08-14 2015-04-15 苏州汉酶生物技术有限公司 一种酶法制备瑞鲍迪甙m的方法
KR102115640B1 (ko) * 2014-01-28 2020-05-26 페푸시코인코포레이팃드 효소 방법을 사용하여 레바우디오사이드 m을 제조하기 위한 방법
US9522929B2 (en) 2014-05-05 2016-12-20 Conagen Inc. Non-caloric sweetener
CN105087739B (zh) * 2014-05-12 2019-11-05 中国科学院上海生命科学研究院 一种新的制备稀有人参皂苷的催化体系及其应用
CN104163839A (zh) * 2014-07-04 2014-11-26 苏州景泓生物技术有限公司 一种制备莱鲍迪苷m的工艺方法
JP2017528125A (ja) 2014-08-11 2017-09-28 エヴォルヴァ エスアー.Evolva Sa. 組み換え宿主におけるステビオールグリコシドの産生
CN104151378A (zh) * 2014-08-12 2014-11-19 济南汉定生物工程有限公司 一种甜菊糖甙rm的提纯方法
CA2960693A1 (en) 2014-09-09 2016-03-17 Evolva Sa Production of steviol glycosides in recombinant hosts
CN104232496B (zh) * 2014-09-18 2017-06-06 广州康琳奈生物科技有限公司 一种重组毕赤酵母工程菌及其在合成莱鲍迪苷a中的应用
MX2017004248A (es) * 2014-10-03 2017-05-19 Conagen Inc Edulcorantes no caloricos y metodos para sintetizar.
MY182396A (en) * 2014-11-05 2021-01-23 Manus Biosynthesis Inc Microbial production of steviol glycosides
CA2973674A1 (en) 2015-01-30 2016-08-04 Evolva Sa Production of steviol glycosides in recombinant hosts
EP3271457B1 (en) 2015-03-16 2021-01-20 DSM IP Assets B.V. Udp-glycosyltransferases
CN104726523B (zh) * 2015-03-28 2018-08-10 南京工业大学 一种酶法制备莱鲍迪苷m的方法
HUE051977T2 (hu) 2015-04-14 2021-04-28 Conagen Inc Kalóriamentes édesítõk elõállítása mesterséges egész sejtes katalizátorok használatával
CN105200098A (zh) * 2015-06-30 2015-12-30 苏州汉酶生物技术有限公司 一种利用酿酒酵母酶法制备瑞鲍迪甙m的方法
AU2016307066A1 (en) 2015-08-07 2018-02-08 Evolva Sa Production of steviol glycosides in recombinant hosts
WO2017093895A1 (en) * 2015-11-30 2017-06-08 Purecircle Sdn Bhd Process for producing high purity steviol glycosides
WO2017178632A1 (en) 2016-04-13 2017-10-19 Evolva Sa Production of steviol glycosides in recombinant hosts
US10815514B2 (en) 2016-05-16 2020-10-27 Evolva Sa Production of steviol glycosides in recombinant hosts
EA201990035A1 (ru) 2016-06-15 2019-06-28 Кодексис, Инк. Генно-инженерные бета-глюкозидазы и способы глюкозилирования
RU2019114181A (ru) 2016-10-14 2020-11-16 Конаджен Инк. Биосинтетическое получение стевиоловых гликозидов и связанные с этим способы
EP3530745A4 (en) * 2016-10-21 2020-07-22 Pepsico, Inc. PROCESS FOR PREPARING REBAUDIOSIDE N USING AN ENZYMATIC PROCESS
CN110177881B (zh) * 2016-10-21 2023-06-02 百事可乐公司 一种酶法制备瑞鲍迪甙j的方法
RU2736155C1 (ru) * 2016-10-21 2020-11-12 Пепсико, Инк. Способ получения ребаудиозида c с применением ферментативного способа
CN110100006A (zh) 2016-11-07 2019-08-06 埃沃尔瓦公司 重组宿主中甜菊糖苷的生产
IL268121B2 (en) 2017-02-03 2024-01-01 Codexis Inc Transgenic glycosyltransferases and steviol glycoside glucosylation methods
KR102554790B1 (ko) * 2017-03-06 2023-07-13 코나겐 인크. 레바우디오시드 e로부터 스테비올 글리코시드 레바우디오시드 d4의 생합성 제조
US11284577B2 (en) 2017-03-08 2022-03-29 Purecircle Usa Inc. High rebaudioside M stevia plant cultivars and methods of producing the same
CN106866757B (zh) 2017-03-16 2020-06-26 诸城市浩天药业有限公司 甜菊糖m苷晶型及制备方法和用途
CN111093390A (zh) * 2017-05-15 2020-05-01 谱赛科美国股份有限公司 高纯度甜菊醇糖苷
CA3068440A1 (en) 2017-06-30 2019-01-03 Conagen Inc. Hydrolysis of steviol glycosides by beta-glucosidase
CN107586809A (zh) * 2017-10-09 2018-01-16 中国科学院天津工业生物技术研究所 一种生物催化合成大豆低聚糖的方法
CN108998485A (zh) * 2018-06-28 2018-12-14 青岛润德生物科技有限公司 一种甜菊糖苷复合物及其制备方法
BR112021000876A2 (pt) * 2018-07-16 2021-04-13 Manus Bio, Inc. Produção de glicosídeos de esteviol através da biotransformação com células inteiras
CN109234341A (zh) * 2018-09-29 2019-01-18 四川盈嘉合生科技有限公司 全细胞催化合成甜味剂组合物的方法
CN109393426A (zh) * 2018-09-29 2019-03-01 四川盈嘉合生科技有限公司 一种复合甜味剂
CN111073923A (zh) * 2018-10-22 2020-04-28 山东三元生物科技股份有限公司 一种莱鲍迪苷m的酶法制备方法
CN109588686A (zh) * 2018-10-31 2019-04-09 郑书旺 一种复合甜味剂及其制备方法
CN115478060B (zh) * 2021-06-16 2023-11-28 弈柯莱生物科技(集团)股份有限公司 一种糖基转移酶及其应用
KR102628374B1 (ko) * 2021-10-19 2024-01-24 씨제이제일제당 주식회사 신규한 당전이효소 및 이의 용도
CN117660385A (zh) * 2021-11-17 2024-03-08 江南大学 一种利用糖基转移酶高效生物合成莱鲍迪苷d的方法
CN114921434B (zh) * 2022-05-27 2024-02-20 中化健康产业发展有限公司 催化Reb A生产Reb M的重组糖基转移酶

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011115775A (ru) * 2009-10-15 2012-11-10 ПЬЮСЁРКЛ ЭсДиЭн БиЭйчДи (MY) Ребаудиозид d высокой степени чистоты и его применение
WO2013022989A2 (en) * 2011-08-08 2013-02-14 Evolva Sa Recombinant production of steviol glycosides
WO2013096420A1 (en) * 2011-12-19 2013-06-27 The Coca-Cola Company Methods for purifying steviol glycosides and uses of the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2381892T3 (es) 2007-01-22 2012-06-01 Cargill, Incorporated Procedimiento para producir composiciones de rebaudiósido A purificado que utiliza la cristalización disolvente/antidisolvente
CN101225424B (zh) 2007-09-13 2013-05-29 天津药物研究院 环黄芪醇的单葡萄糖苷、其制备方法、药物组合物和应用
KR102061165B1 (ko) 2008-10-03 2019-12-31 모리타 가가쿠 고교 가부시키가이샤 신규 스테비올 배당체
BR122021005283B1 (pt) 2010-06-02 2022-02-22 Evolva, Inc Hospedeiro recombinante que compreende genes recombinantes para produção deesteviol ou glicosídeo de esteviol, método para produzir esteviol, glicosídeo de esteviol ou composição de glicosídeo de esteviol e método para sintetizar esteviol ou glicosídeo de esteviol
US8962698B2 (en) 2011-01-28 2015-02-24 Tate & Lyle Ingredients Americas Llc Rebaudioside-mogroside V blends
CN103031283B (zh) * 2011-10-08 2015-07-08 成都华高瑞甜科技有限公司 甜叶菊酶vi及莱鲍迪苷a转化为莱鲍迪苷d的方法
CN103159808B (zh) * 2011-12-09 2017-03-29 上海泓博智源医药股份有限公司 一种制备天然甜味剂的工艺方法
DK2806754T3 (en) 2012-01-23 2019-02-18 Dsm Ip Assets Bv Diterpene PREPARATION
CN102559528B (zh) * 2012-02-09 2013-08-21 南京工业大学 一种产甜叶菊糖基转移酶ugt76g1的基因工程菌及其应用
JP6346174B2 (ja) 2012-05-22 2018-06-20 ピュアサークル スンディリアン ブルハド 高純度ステビオールグリコシド
US9752174B2 (en) 2013-05-28 2017-09-05 Purecircle Sdn Bhd High-purity steviol glycosides
US20150342234A1 (en) 2012-12-05 2015-12-03 Evolva Sa Steviol Glycoside Compositions Sensory Properties
CN103088041B (zh) 2013-01-29 2015-01-07 江南大学 一种可用于高效生产角质酶的角质酶基因及其应用
SG11201505597SA (en) 2013-02-06 2015-08-28 Evolva Sa Methods for improved production of rebaudioside d and rebaudioside m
CN103397064B (zh) 2013-08-14 2015-04-15 苏州汉酶生物技术有限公司 一种酶法制备瑞鲍迪甙m的方法
KR102115640B1 (ko) 2014-01-28 2020-05-26 페푸시코인코포레이팃드 효소 방법을 사용하여 레바우디오사이드 m을 제조하기 위한 방법
JP2018516081A (ja) 2015-05-29 2018-06-21 カーギル・インコーポレイテッド 配糖体を産生するための熱処理

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011115775A (ru) * 2009-10-15 2012-11-10 ПЬЮСЁРКЛ ЭсДиЭн БиЭйчДи (MY) Ребаудиозид d высокой степени чистоты и его применение
WO2013022989A2 (en) * 2011-08-08 2013-02-14 Evolva Sa Recombinant production of steviol glycosides
WO2013096420A1 (en) * 2011-12-19 2013-06-27 The Coca-Cola Company Methods for purifying steviol glycosides and uses of the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Data base GenBank: *
Data base GenBank: AAR06912.1, 28.12.2004. *
Data base UniProtKB - Q0DPB7, 12.10.2009. *

Also Published As

Publication number Publication date
US10301662B2 (en) 2019-05-28
BR112016003035A2 (pt) 2018-02-06
JP2016527892A (ja) 2016-09-15
EP3034614A1 (en) 2016-06-22
JP6272485B2 (ja) 2018-01-31
HK1226103A1 (zh) 2017-09-22
CN103397064B (zh) 2015-04-15
AU2013398146B2 (en) 2017-07-13
CA2921247C (en) 2021-04-06
US20160298159A1 (en) 2016-10-13
WO2015021690A1 (zh) 2015-02-19
US10428364B2 (en) 2019-10-01
CN103397064A (zh) 2013-11-20
RU2016108660A (ru) 2017-09-18
CA2921247A1 (en) 2015-02-19
US20190233866A1 (en) 2019-08-01
AU2013398146A1 (en) 2016-04-07
MX2016001986A (es) 2016-10-26
EP3034614A4 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
RU2658436C2 (ru) Способ получения ребаудиозида m с использованием ферментативного способа
RU2737118C2 (ru) Способ получения ребаудиозида n с применением ферментативного способа
WO2017000366A1 (zh) 一种利用酿酒酵母酶法制备瑞鲍迪甙m的方法
JP2017504341A (ja) 酵素法を使用することによりレバウディオサイドmを調製する方法
US11976312B2 (en) Enzymatic method for preparing Rebaudioside C
RU2736352C1 (ru) Способ получения ребаудиозида j с применением ферментативного способа
JP2019532650A5 (ru)
JP7210626B2 (ja) 酵素的方法を使用してレバウディオサイドjを調製するための方法