RU2586329C2 - Катализаторы для получения акриловой кислоты или ее производных - Google Patents

Катализаторы для получения акриловой кислоты или ее производных Download PDF

Info

Publication number
RU2586329C2
RU2586329C2 RU2014138725/04A RU2014138725A RU2586329C2 RU 2586329 C2 RU2586329 C2 RU 2586329C2 RU 2014138725/04 A RU2014138725/04 A RU 2014138725/04A RU 2014138725 A RU2014138725 A RU 2014138725A RU 2586329 C2 RU2586329 C2 RU 2586329C2
Authority
RU
Russia
Prior art keywords
catalyst
mixtures
acid
derivatives
acrylic acid
Prior art date
Application number
RU2014138725/04A
Other languages
English (en)
Other versions
RU2014138725A (ru
Inventor
Хуан Эстебан ВЕЛАСКЕС
Джанетт Виллалобос ЛИНГОЕС
Димитрис Иоаннис КОЛЛИАС
Джейн Эллен ГОДЛЕВСКИ
Марк Эндрю МАМАК
Original Assignee
Дзе Проктер Энд Гэмбл Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дзе Проктер Энд Гэмбл Компани filed Critical Дзе Проктер Энд Гэмбл Компани
Publication of RU2014138725A publication Critical patent/RU2014138725A/ru
Application granted granted Critical
Publication of RU2586329C2 publication Critical patent/RU2586329C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1806Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with alkaline or alkaline earth metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1804Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1808Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1811Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1817Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with copper, silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/182Phosphorus; Compounds thereof with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1856Phosphorus; Compounds thereof with iron group metals or platinum group metals with platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/187Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/25Nitrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/48Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • A61F2013/530489Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials being randomly mixed in with other material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • A61F2013/530489Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials being randomly mixed in with other material
    • A61F2013/530496Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials being randomly mixed in with other material being fixed to fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/10Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
    • B01J2523/12Sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/10Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
    • B01J2523/13Potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/20Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
    • B01J2523/23Calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/20Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
    • B01J2523/25Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/50Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
    • B01J2523/51Phosphorus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Представлены катализаторы для дегидратации гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в акриловую кислоту, производные акриловой кислоты или их смеси с высоким выходом и селективностью, коротким временем пребывания, и без значительной конверсии в нежелательные побочные продукты, такие как, например, ацетальдегид, пропионовая кислота и уксусная кислота. Катализатор содержит монофосфатную соль, описываемую формулой (III):
Figure 00000072
и монофосфатную соль, описываемую формулой (IV):
Figure 00000073
где MI представляет собой одновалентный катион и MII представляет собой двухвалентный катион, при этом катализатор, по существу, нейтрально заряжен; и дополнительно при этом мольное соотношение указанного MIIHPO4 и указанного MIH2PO4 в указанном катализаторе составляет от 0,2 до 5. Способ получения указанного катализатора включает стадию, на которой смешивают соединения, содержащие фосфор, при этом указанные соединения включают соединение формулы (VI), где указанное а равно 1, и соединение формулы (VII), где указанное а равно 2:
Figure 00000075
Figure 00000076
где MI представляет собой одновалентный катион; где MII представляет собой двухвалентный катион. Другой способ получения катализатора включает стадию, на которой объединяют BaHPO4 и KH2PO4 в мольном соотношении от 3:2 до 2:3 с образованием твердой смеси и измельчают указанную твердую смесь с получением указанного катализатора. 3 н. и 9 з.п. ф-лы, 1 табл., 3 пр.

Description

Область техники, к которой относится изобретение
Настоящее изобретение, в целом, относится к катализаторам, полезным для конверсии гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в акриловую кислоту, производные акриловой кислоты или их смеси. Более конкретно, настоящее изобретение относится к катализаторам, полезным для дегидратации гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в акриловую кислоту, производные акриловой кислоты или их смеси, с высоким выходом и селективностью в акриловую кислоту, производные акриловой кислоты или их смеси, коротким временем пребывания, и без значительной конверсии гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в нежелательные побочные продукты, такие как, например, ацетальдегид, пропионовая кислота, уксусная кислота, 2,3-пентандион, диоксид углерода и монооксид углерода.
Уровень техники
Акриловая кислота, производные акриловой кислоты или их смеси имеют множество промышленных применений, как правило, потребляемых в виде полимеров. В свою очередь, эти полимеры широко используются в производстве, среди прочего, адгезивов, связующих веществ, покрытий, красок, полиролей, моющих средств, флокулянтов, диспергаторов, тиксотропных веществ, секвестрантов и суперабсорбирующих полимеров, которые используются в одноразовых абсорбирующих изделиях, в том числе подгузниках и гигиенических продуктах, например. Акриловую кислоту обычно получают из источников нефти. Например, акриловую кислоту уже давно получают путем каталитического окисления пропилена. Эти и другие способы получения акриловой кислоты из источников нефти, описаны в Kirk-Othmer Encyclopedia of Chemical Technology, Vol.1, pgs. 342-369 (5th Ed., John Wiley & Sons, Inc., 2004). Акриловая кислота, полученная из нефти, способствует парниковым выбросам благодаря своему высокому содержанию углерода на основе нефти. Дополнительно, нефть является не возобновляемым материалом, так как сотни тысяч лет необходимы для природного образования и только короткое время для потребления. Поскольку нефтехимические ресурсы становятся все более скудными, дорогими и подчиняются правилам для выбросов CO2, существует растущий спрос на полученную из биологического сырья акриловую кислоту, производные акриловой кислоты или их смеси, которые могут служить в качестве альтернативы акриловой кислоте, производным акриловой кислоты или их смесям, полученным из нефти.
В течение последних 40-50 лет были сделаны многие попытки, чтобы получить акриловую кислоту, производные акриловой кислоты или их смеси, полученные из биологического сырья, из источников, отличных от нефти, таких как молочная кислота (также известная как 2-гидроксипропионовая кислота), 3-гидроксипропионовая кислота, глицерин, монооксид углерода и этиленоксид, диоксид углерода и этилен, и кротоновая кислота. Из этих источников, отличных от нефти, только молочную кислоту получают сегодня с высоким выходом из сахара (≥90% теоретического выхода, или эквивалентно ≥0,9 г молочной кислоты на грамм сахара) и чистотой, и экономикой, которые могли бы поддерживать получение акриловой кислоты при стоимости, конкурентной для акриловой кислоты, полученной из нефти. Как таковая, молочная кислота или лактат представляет собой реальную возможность служить в качестве сырья для акриловой кислоты, производных акриловой кислоты или их смесей, полученных из биологического сырья. Кроме того, 3-гидроксипропионовая кислота, как ожидается, будет производиться в коммерческих масштабах в течение нескольких лет, и в этом качестве, 3-гидропропионовая кислота представит еще одну реальную возможность служить в качестве сырья для акриловой кислоты, производных акриловой кислоты или их смесей, полученных из биологического сырья. Сульфатные соли; фосфатные соли; смеси сульфатных и фосфатных солей; основания; цеолиты или модифицированные цеолиты; оксиды металлов или модифицированные оксиды металлов; и сверхкритическая вода являются основными катализаторами, которые были использованы для дегидратации молочной кислоты или лактата в акриловую кислоту, производные акриловой кислоты или их смеси, в прошлом, с различной степенью успеха.
Например, в патенте США №4,786,756 (выдан в 1988 году), описывается дегидратация в паровой фазе молочной кислоты или лактата аммония в акриловую кислоту с помощью фосфата алюминия (AlPO4), который обрабатывают водным неорганическим основанием в качестве катализатора. В качестве примера, ′756 патент раскрывает максимальный выход акриловой кислоты 43,3%, когда молочную кислоту подают в реактор приблизительно при атмосферном давлении, и соответствующий выход 61,1%, когда лактат аммония подают в реактор. В обоих примерах, ацетальдегид был получен с выходами 34,7% и 11,9%, соответственно, и другие побочные продукты также присутствовали в больших количествах, такие как, пропионовая кислота, CO и CO2. Отсутствие обработки основанием вызвало повышенное количество побочных продуктов. Другим примером является Hong et al. (2011) Appl. Catal. A: General 396: 194-200, который разработал и испытал композитные катализаторы, приготовленные с Ca3(PO4)2 и Ca2(P2O7) солями методом суспензионного смешивания. Катализатор с наиболее высоким выходом акриловой кислоты из метил лактата был 50%-50% (по массе) катализатор. Это дает выход 68% акриловой кислоты, приблизительно 5% метилакрилата и приблизительно 14% ацетальдегида при 390°C. Тот же катализатор приводит к 54% выходу акриловой кислоты, 14% выходу ацетальдегида и 14% выходу пропионовой кислоты из молочной кислоты.
Группа профессора Д. Миллера в Мичиганском государственном университете (MSU) опубликовала много работ по дегидратации молочной кислоты или сложных эфиров молочной кислоты в акриловую кислоту и 2,3-пентандион, такие как, Gunter et al. (1994) J. Catalysis 148: 252-260; и Tarn et al. (1999) Ind. Eng. Chem. Res. 38: 3873-3877. Лучшие выходы акриловой кислоты, представленные группой, составляли приблизительно 33%, когда молочную кислоту дегидратировали при 350°C на более низкой площади поверхности и объеме пор кремнезема, пропитанного NaOH. В том же самом эксперименте, выход ацетальдегида составлял 14,7% и выход пропионовой кислоты составлял 4,1%. Примеры других катализаторов, проверенных группой, были Na2SO4, NaCl, Na3PO4, NaNO3, Na2SiO3, Na4P2O7, NaH2PO4, Na2HPO4, Na2HAsO4, NaC3H5O3, NaOH, CsCl, Cs2SO4, KOH, CsOH и LiOH. Во всех случаях, на которые ссылаются выше, катализаторы были испытаны в качестве отдельных компонентов, а не в виде смесей. Наконец, группа предположила, что выход в акриловую кислоту улучшается, а выход в побочные продукты подавляется, когда площадь поверхности на носителе из кремнезема является низкой, температура реакции является высокой, давление реакции является низким, и время пребывания реагентов в слое катализатора короткое.
И, наконец, китайская заявка на патент 200910054519.7 раскрывает применение ZSM-5 молекулярных сит, модифицированных с помощью водного раствора щелочи (например, NH3, NaOH и Na2CO3) или соли фосфорной кислоты (например, NaH2PO4, Na2HPO4, LiH2PO4, LaPO4 и т.д.). Лучший выход акриловой кислоты, который достигается при дегидратации молочной кислоты, составлял 83,9%, однако, данный выход получен при очень длительных сроках пребывания.
Таким образом, производство акриловой кислоты, производных акриловой кислоты или их смесей из молочной кислоты или лактата способами, такими, как те, которые описаны в литературе, как отмечалось выше, показало: 1) выходы акриловой кислоты, производных акриловой кислоты или их смесей не превышают 70%; 2) низкие селективности в отношении акриловой кислоты, производных акриловой кислоты или их смесей, то есть, значительные количества нежелательных побочных продуктов, таких как, ацетальдегид, 2,3-пентандион, пропионовая кислота, CO и CO2; 3) длительное время пребывания в слоях катализатора; и 4) дезактивацию катализатора в короткое время в потоке (TOS). Побочные продукты могут осаждаться на катализатор, приводя в результате к загрязнению, и преждевременной и быстрой дезактивации катализатора. Кроме того, после осаждения, эти побочные продукты могут катализировать другие нежелательные реакции, такие как реакции полимеризации. Кроме осаждения на катализаторы, эти побочные продукты, даже если они присутствуют только в малых количествах, приводят к дополнительным затратам при обработке акриловой кислоты (если они присутствуют в выходящем потоке продукта реакции) в производстве суперабсорбирующих полимеров (SAP), например. Эти недостатки известных способов и катализаторов делают их коммерчески нежизнеспособными.
Таким образом, существует потребность в катализаторах и способах дегидратации гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в акриловую кислоту, производные акриловой кислоты или их смеси, с высоким выходом, селективностью и эффективностью (т.е. коротким временем пребывания) и высокой долговечностью катализаторов.
Сущность изобретения
Представлен катализатор для дегидратации гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в акриловую кислоту, производные акриловой кислоты или их смеси. В одном осуществлении настоящего изобретения, катализатор содержит: (a) анионы моногидромонофосфата, которые описываются формулой (I):
Figure 00000001
,
(b) анионы дигидромонофосфата, которые описываются формулой (II):
Figure 00000002
,
и (c) по меньшей мере, два различных катиона, при этом катализатор, по существу, нейтрально заряжен; и дополнительно, при этом мольное соотношение указанного аниона моногидромонофосфата и указанного аниона дигидромонофосфата в указанном катализаторе составляет от приблизительно 0,1 до приблизительно 10.
В другом осуществлении настоящего изобретения, катализатор содержит монофосфатные соли, описанные формулами (III) и (IV):
Figure 00000003
,
Figure 00000004
, и
где MI представляет собой одновалентный катион и MII представляет собой двухвалентный катион.
В еще одном осуществлении настоящего изобретения, катализатор содержит монофосфатную соль, описанную формулой (V):
Figure 00000005
,
где MI представляет собой одновалентный катион и MII представляет собой двухвалентный катион; и где x составляет более, чем приблизительно 0,2 и менее, чем приблизительно 1,8.
В другом осуществлении настоящего изобретения представлен способ получения катализатора. Способ включает стадию, на которой смешивают, по меньшей мере, два соединения, содержащие фосфор, при этом каждое указанное соединение описано одной из формул (VI)-(XXV), или любой из гидратированных форм указанных формул:
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
Figure 00000025
где MI представляет собой одновалентный катион; где MII представляет собой двухвалентный катион; где MIII представляет собой трехвалентный катион; где MIV представляет собой четырехвалентный катион; где a означает 0, 1, 2 или 3; где h означает 0, 1, 2, 3 или 4; где i означает 0, 1 или 2; где j означает 0 или любое положительное целое число; и где b, c, d, e, f, g, k, l, m, n, p и q означают любые положительные целые числа, таким образом, что удовлетворены уравнения: 2b=с+3d, 3e=f+3g, r=2k+1 и s=3q+p.
В еще одном осуществлении настоящего изобретения представлен способ получения катализатора. Способ включает стадии, на которых смешивают и нагревают: (а) по меньшей мере, одно соединение, содержащее фосфор, при этом каждое указанное соединение описано одной из формул (VI)-(XXV), или любой из гидратированных форм указанных формул:
Figure 00000026
Figure 00000027
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000028
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
Figure 00000025
где MI представляет собой одновалентный катион; где MII представляет собой двухвалентный катион; где MIII представляет собой трехвалентный катион; где MIV представляет собой четырехвалентный катион; где a означает 0, 1, 2 или 3; где h означает 0, 1, 2, 3 или 4; где i означает 0, 1 или 2; где j означает 0 или любое положительное целое число; и где b, c, d, e, f, g, k, l, m, n, p и q означают любые положительные целые числа, таким образом, что удовлетворены уравнения: 2b=с+3d, 3e=f+3g, r=2k+1 и s=3q+p; и (b) по меньшей мере, одно соединение, не содержащее фосфор, выбранное из группы, состоящей из нитратных солей, карбонатных солей, ацетатных солей, оксидов металлов, хлоридных солей, сульфатных солей и гидроксидов металлов, при этом каждое указанное соединение описано одной из формул (XXVI)-(L), или любой из гидратированных форм указанных формул:
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
Figure 00000034
Figure 00000035
Figure 00000036
Figure 00000037
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
Figure 00000042
Figure 00000043
Figure 00000044
Figure 00000045
Figure 00000046
Figure 00000047
Figure 00000048
Figure 00000049
Figure 00000050
Figure 00000051
Figure 00000052
Figure 00000053
В другом осуществлении настоящего изобретения представлен способ получения катализатора. Способ включает стадию, на которой вводят в контакт: (a) газообразную смесь, содержащую воду, с (b) смесью соединений, содержащих, по меньшей мере, один анион конденсированного фосфата, который выбирают из группы, состоящей из формул (LI)-(LIII)
Figure 00000054
Figure 00000055
Figure 00000056
где n составляет, по меньшей мере, 2; где m составляет, по меньшей мере, 1; при этом указанная смесь соединений, по существу, нейтрально заряжена, и дополнительно, при этом мольное соотношение фосфора и указанных, по меньшей мере, одного одновалентного катиона и, по меньшей мере, одного многовалентного катиона в указанном катализаторе составляет от приблизительно 0,7 до приблизительно 1,7.
В другом осуществлении настоящего изобретения, представлен способ получения катализатора, который включает стадии, на которых объединяют BaHPO4 и KH2PO4 в мольном соотношении от приблизительно 3:2 до приблизительно 2:3 с образованием твердой смеси, и измельчают указанную твердую смесь с получением указанного катализатора.
В другом осуществлении настоящего изобретения, представлен способ получения катализатора, который включает следующие стадии, на которых: (a) объединяют BaHPO4 и KH2PO4 в мольном соотношении от приблизительно 3:2 до приблизительно 2:3 с образованием твердой смеси; (b) измельчают указанную твердую смесь с получением смешанного порошка; (c) прокаливают указанный смешанный порошок при температуре приблизительно 550°C, с получением конденсированной фосфатной смеси; и (d) вводят в контакт указанную конденсированную фосфатную смесь с газообразной смесью, содержащей воду и молочную кислоту при температуре приблизительно 350°C и общем давлении приблизительно 25 бар, с получением указанного катализатора, и при этом парциальное давление воды в указанной газообразной смеси составляет приблизительно 12,5 бар.
В другом осуществлении настоящего изобретения, представлен способ получения катализатора, который включает следующие стадии, на которых: (a) объединяют K2HPO4, Ba(NO3)2, H3PO4 и воду, с образованием влажной смеси, при этом мольное соотношение Ba(NO3)2, K2HPO4 и H3PO4 составляет приблизительно 3:1:4; (b) нагревают указанную влажную смесь до приблизительно 80°C при перемешивании почти до полного высушивания с образованием влажного твердого вещества, (c) прокаливают указанное влажное твердое вещество постадийно при температуре приблизительно 50°C, приблизительно 80°C, приблизительно 120°C и от приблизительно 450°C до приблизительно 550°C с получением высушенного твердого вещества, и (d) вводят в контакт указанное высушенное твердое вещество с газообразной смесью, содержащей воду и молочную кислоту, при температуре приблизительно 350°C и общем давлении приблизительно 25 бар, с получением указанного катализатора, и при этом парциальное давление воды в указанной газообразной смеси составляет приблизительно 12,5 бар.
Дополнительные признаки настоящего изобретения станут очевидными специалистам в данной области техники после обзора приведенного ниже подробного описания, в сочетании с примерами.
Подробное описание изобретения
I Определения
Как используют в данной заявке, термин «монофосфат» или «ортофосфат» относится к любой соли, анионный фрагмент которой, [PO4]3-, состоит из четырех атомов кислорода, расположенных в почти правильной тетраэдрической матрице с приблизительно центральным атомом фосфора.
Как используют в данной заявке, термин «конденсированный фосфат» относится к любым солям, содержащим одну или несколько P-O-P связей, образованных углом, общим с PO4 тетраэдром.
Как используют в данной заявке, термин «полифосфат» относится к любым конденсированным фосфатам, содержащим линейные P-O-P связи, образованные углом, общим с PO4 тетраэдром, приводя к образованию конечных цепей.
Как используют в данной заявке, термин «олигофосфат» относится к любым полифосфатам, содержащим пять или менее PO4 звеньев.
Как используют в данной заявке, термин «циклофосфат» относится к любому циклическому конденсированному фосфату, состоящему из двух или более имеющих общий угол PO4 тетраэдров.
Как используют в данной заявке, термин «ультрафосфат» относится к любому конденсированному фосфату, где, по меньшей мере, два PO4 тетраэдра анионного фрагмента имеют три общих угла с прилегающими углами.
Как используют в данной заявке, термин «катион» относится к любому атому или группе ковалентно-связанных атомов, имеющих положительный заряд.
Как используют в данной заявке, термин «анион» относится к любому атому или группе ковалентно-связанных атомов, имеющих отрицательный заряд.
Как используют в данной заявке, термин «одновалентный катион» относится к любому катиону с положительным зарядом +1.
Как используют в данной заявке, термин «многовалентный катион» относится к любому катиону с положительным зарядом равным или более чем +2.
Как используют в данной заявке, термин «гетерополианион» относится к любому аниону с ковалентно связанными XOp и YOr полиэдром и включает X-O-Y и возможно Х-О-Х и Y-O-Y связи, где X и Y представляют собой любые атомы и где p и r представляют собой любые положительные целые числа.
Как используют в данной заявке, термин «гетерополифосфат» относится к любому гетерополианиону, где X представляет собой фосфор (P) и Y означает любой другой атом.
Как используют в данной заявке, термин «фосфатный аддукт» относится к любому соединению с одним или более фосфатными анионами, и одним или более нефосфатными анионами, не связанными ковалентно.
Как используют в данной заявке, термины «LA» относится к молочной кислоте, «AA» относится к акриловой кислоте, «AcH» относится к ацетальдегиду и «PA» относится к пропионовой кислоте.
Как используют в данной заявке, термин «разброс значений диаметра частиц» относится к статистическому представлению данной пробы частиц и равен (Dν,0,90-Dν,0,10)/Dν,0,50. Термин «медианный размер частиц» или Dν,0,50 относится к диаметру частицы, менее которого находятся 50% общего объема частиц. Дополнительно, Dν,0,10 относится к размеру частицы, отделяющему пробу частицы при 10% по объемной фракции и Dν,0,90, представляет собой размер частицы, отделяющий пробу частицы при 90% по объемной фракции.
Как используют в данной заявке, термин «конверсия» в % определяют как [скорость втекания гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей (моль/мин) - скорость вытекания гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей (моль/мин)]/[скорость втекания гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей (моль/мин)]∗100. Для целей настоящего изобретения, термин «конверсия» означает мольную конверсию, если не указано иное.
Как используют в данной заявке, термин «выход» в % определен как [скорость вытекания продукта (моль/мин)/скорость втекания гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей (моль/мин)]∗100. Для целей настоящего изобретения, термин «выход» означает мольный выход, если не указано иное.
Как используют в данной заявке, термин «селективность» в % определен как [Выход/Конверсия]∗100. Для целей настоящего изобретения, термин «селективность» означает мольную селективность, если не указано иное.
Как используют в данной заявке, термин «часовая объемная скорость газа» или «GHSV» в ч-1 определен как 60×[Общая скорость потока газа (мл/мин)/объем слоя катализатора (мл)]. Общая скорость потока газа рассчитывается в условиях стандартной температуры и давления (STP; 0°C и 1 атм).
Как используют в данной заявке, термин «часовая объемная скорость жидкости» или «LHSV» в ч-1 определен как 60×[Общая скорость потока жидкости (мл/мин)/объем слоя катализатора (мл)].
II Катализаторы
Неожиданно было обнаружено, что катализаторы, содержащие смешанные анионы монофосфатов, дегидратируют гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси в акриловую кислоту, производные акриловой кислоты или их смеси с высоким: 1) выходом и селективностью в отношении акриловой кислоты, производных акриловой кислоты или их смесей, то есть низким количеством побочных продуктов и немногими побочными продуктами; 2) эффективностью, т.е. производительностью за короткое время пребывания; и 3) долговечностью. Не желая быть связанными какой-либо теорией, заявители предполагают, что катализатор, который содержит, по меньшей мере, анионы моногидромонофосфата и дигидромонофосфата и два различных катиона, работает следующим образом: карбоксилатная группа гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей, связывается с одним или несколькими катионами, которые в одном осуществлении являются многовалентными, через один или оба атома кислорода, удерживая молекулу на поверхности катализатора, дезактивируя ее от декарбонилирования, и активизируя связь C-OH для устранения. Затем полученные протонированные анионы монофосфата дегидратируют гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси с согласованным протонированием гидроксильной группы, удалением протона из метальной группы, и устранением протонированной гидроксильной группы в качестве молекулы воды, образуя акриловую кислоту, производные акриловой кислоты или их смеси и повторно активизируя катализатор. Дополнительно, заявители считают, что особое состояние протонирования анионов монофосфата является важным для способствования дегидратации гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей.
В одном осуществлении катализатор содержит: (a) анионы моногидромонофосфата, которые описываются формулой (I):
Figure 00000057
(b) анионы дигидромонофосфата, которые описываются формулой (II):
Figure 00000058
, и
и (c) по меньшей мере, два различных катиона, при этом катализатор, по существу, нейтрально заряжен; и дополнительно, при этом мольное соотношение указанного аниона моногидромонофосфата и указанного аниона дигидромонофосфата в катализаторе составляет от приблизительно 0,1 до приблизительно 10. В другом осуществлении, мольное соотношение аниона моногидромонофосфата и аниона дигидромонофосфата составляет от приблизительно 0,2 до приблизительно 5. В еще одном осуществлении мольное соотношение аниона моногидромонофосфата и аниона дигидромонофосфата составляет приблизительно 1.
В одном осуществлении настоящего изобретения, катализатор содержит монофосфатные соли, описанные формулами (III) и (IV):
Figure 00000059
Figure 00000060
, и
где MI представляет собой одновалентный катион и MII представляет собой двухвалентный катион. В другом осуществлении, мольное соотношение MIIHPO4 и MIH2PO4 составляет от приблизительно 0,1 до приблизительно 10. В другом осуществлении, мольное соотношение MIIHPO4 и MIH2PO4 составляет от приблизительно 0,2 до приблизительно 5. В еще одном осуществлении, мольное соотношение MIIHPO4 и MIH2PO4 составляет приблизительно 1.
В одном осуществлении настоящего изобретения, катализатор содержит монофосфатную соль, описанную формулой (V):
Figure 00000061
где MI представляет собой одновалентный катион и MII представляет собой двухвалентный катион; и где x составляет более чем приблизительно 0,2 и менее чем приблизительно 1,8. В другом осуществлении настоящего изобретения x составляет приблизительно 1.
В другом осуществлении анион моногидромонофосфата, который описывается формулой (I), замещен одним или более анионами фосфата, которые описываются формулой [H(1-v)P(1+v)O(4+3v)]2(1+v)- где v является больше или равным нулю и меньше или равным 1.
В другом осуществлении анион дигидромонофосфата, который описывается формулой (II), замещен одним или более анионами фосфата, которые описываются формулой [H2(1-v)PO4-v]-, где v является больше или равным нулю и меньше или равным 1.
В одном осуществлении, по меньшей мере, два различных катиона содержат (a) по меньшей мере, один одновалентный катион и (b) по меньшей мере, один многовалентный катион. В другом осуществлении, мольное соотношение одновалентных катионов и многовалентных катионов составляет от приблизительно 0,1 до приблизительно 10. В еще одном осуществлении, мольное соотношение одновалентных катионов и многовалентных катионов составляет от приблизительно 0,5 до приблизительно 5. В дополнительном осуществлении настоящего изобретения, мольное соотношение одновалентных катионов и многовалентных катионов составляет приблизительно 1.
В одном осуществлении, многовалентный катион выбирают из группы, состоящей из двухвалентных катионов, трехвалентных катионов, четырехвалентных катионов, пятивалентных катионов и их смесей. Неограничивающие примеры одновалентных катионов представляют собой Li+, Na+, K+, Rb+, Cs+, Ag+, Rb+, Tl+ и их смеси. В одном осуществлении, одновалентный катион выбирают из группы, состоящей из Li+, Na+, K+, Rb+, Cs+ и их смесей. В другом осуществлении, одновалентный катион представляет собой Na+ или K+; и в еще одном осуществлении, одновалентный катион представляет собой K+. Неограничивающие примеры многовалентных катионов представляют собой катионы щелочноземельных металлов (т.е., Be, Mg, Ca, Sr, Ba и Ra), переходных металлов (например, Y, Ti, Zr, V, Nb, Cr, Mo, Mn, Re, Fe, Ru, Co, Rh, Ni, Pd, Pt, Cu, Ag и Au), легких металлов (например, Zn, Ga, Si, Ge, B, Al, In, Sb, Sn, Bi и Pb), лантанидов (например, La и Ce) и актинидов (например, Ac и Th). В одном осуществлении, многовалентный катион выбирают из группы, состоящей из Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Pb2+, Ti3+, Cr3+, Mn3+, Fe3+, Al3+, Ga3+, Y3+, In3+, Sb3+, Bi3+, Si4+, Ti4+, V4+, Ge4+, Mo4+, Pt4+, V5+, Nb5+, Sb5+ и их смесей. В одном осуществлении, многовалентный катион выбирают из группы, состоящей из Ca2+, Ba2+, Cu2+, Mn2+, Mn3+ и их смесей. В другом осуществлении, многовалентный катион выбирают из группы, состоящей из Ca2+, Ba2+, Mn3+ и их смесей; и в еще одном осуществлении, многовалентный катион представляет собой Ba2+.
Катализатор может включать катионы: (a) Li+, Na+, K+, Rb+, Cs+ или их смеси; и (b) Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Pb2+, Ti3+, Cr3+, Mn3+, Fe3+, Al3+, Ga3+, Y3+, In3+, Sb3+, Bi3+, Si4+, Ti4+, V4+, Ge4+, Mo4+, Pt4+, V5+, Nb5+, Sb5+ или их смеси. В одном осуществлении катализатор содержит Li+, Na+ или K+ в качестве одновалентного катиона, и Ca2+, Ba2+ или Mn3+ в качестве многовалентного катиона. В другом осуществлении, катализатор содержит K+ в качестве одновалентного катиона, и Ca2+, Ba2+ или Mn2+ в качестве многовалентного катиона. В еще одном осуществлении, катализатор содержит K+ в качестве одновалентного катиона и Ba2+ в качестве многовалентного катиона.
В одном осуществлении, катализатор может включать инертный носитель, который выполнен из материала, выбранного из группы, состоящей из силикатов, алюминатов, угля, оксидов металлов и их смесей. В качестве альтернативы, носитель является инертным по отношению к реакционной смеси, которая, как ожидают, вступит в контакт с катализатором. В контексте реакций, четко описанных в данной заявке, в одном осуществлении носитель представляет собой кремнезем или двуокись циркония с низкой площадью поверхности. Если присутствует, носитель представляет собой количество от приблизительно 5 мас. % до приблизительно 98 мас. %, исходя из общей массы катализатора. Как правило, катализатор, который содержит инертный носитель, может быть выполнен с помощью одного из двух иллюстративных способов: пропитки или совместного осаждения. В способе пропитки, суспензию твердого инертного носителя обрабатывают раствором пре-катализатора, и полученный материал затем активизируют в условиях, которые преобразуют пре-катализатор в более активное состояние. В способе совместного осаждения, однородный раствор ингредиентов катализатора осаждают добавлением дополнительных ингредиентов.
III Способы получения катализатора
В одном осуществлении настоящего изобретения, способ получения катализатора включает стадию, на которой смешивают, по меньшей мере, два соединения, содержащие фосфор, при этом каждое указанное соединение описано одной из формул (VI)-(XXV), или любой из гидратированных форм указанных формул:
Figure 00000026
Figure 00000027
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000028
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
Figure 00000025
где MI представляет собой одновалентный катион; где MII представляет собой двухвалентный катион; где MIII представляет собой трехвалентный катион; где MIV представляет собой четырехвалентный катион; где a означает 0, 1, 2 или 3; где h означает 0, 1, 2, 3 или 4; где i означает 0, 1 или 2; где j означает 0 или любое положительное целое число; и где b, c, d, e, f, g, k, l, m, n, p и q означают любые положительные целые числа, таким образом, что удовлетворены уравнения: 2b=с+3d, 3e=f+3g, r=2k+l и s=3q+p. В другом осуществлении, способ получения катализатора включает стадию, на которой вводят в контакт соединения, содержащие фосфор, после смешивания, с газообразной смесью, содержащей воду.
В одном осуществлении, катализатор получают смешиванием одного или более соединений, содержащих фосфор, формулы (VI), где указанное а равно 1, и одного или более соединений, содержащих фосфор, формулы (VII), где указанное а равно 2. В другом осуществлении, катализатор получают смешиванием KH2PO4 и BaHPO4 или CaHPO4.
В другом осуществлении, катализатор получают с помощью стадий, на которых: (а) смешивают одно или более соединений, содержащих фосфор, формулы (VI), где указанное a равно 1, и одно или более соединений, содержащих фосфор, формулы (XVI), где указанное i равно 2; и (b) вводят в контакт смесь соединений, содержащих фосфор, с газообразной смесью, содержащей воду. В другом осуществлении, соединения, содержащие фосфор, представляют собой KH2PO4 и Ba2P2O7 или Ca2P2O7.
В другом осуществлении, катализатор получают с помощью стадий, на которых: (a) смешивают одно или более соединений, содержащих фосфор, формулы (VII), где указанное а равно 2, и одно или более соединений, содержащих фосфор, формулы (XIX), где указанное j равно 0; и (b) вводят в контакт смесь соединений, содержащих фосфор, с газообразной смесью, содержащей воду. В другом осуществлении, соединения, содержащие фосфор, представляют собой (KPO3)w и BaHPO4 или CaHPO4; где w является целым числом, большим чем 2.
В еще одном осуществлении, катализатор получают с помощью стадий, на которых: (a) смешивают одно или более соединений, содержащих фосфор, формулы (XVI), где указанное i равно 2, и одно или более соединений, содержащих фосфор, формулы (XIX), где указанное j равно 0, и (b) вводят в контакт смесь соединений, содержащих фосфор, с газообразной смесью, содержащей воду. В другом осуществлении, соединения, содержащие фосфор, представляют собой (KPO3)w и Ba2P2O7 или Ca2P2O7; где w является целым числом, большим чем 2.
В одном осуществлении настоящего изобретения, способ получения катализатора включает стадии, на которых смешивают и нагревают: (a) по меньшей мере, одно соединение, содержащее фосфор, при этом каждое указанное соединение описано одной из формул (VI)-(XXV), или любой из гидратированных форм указанных формул:
Figure 00000026
Figure 00000027
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000028
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
Figure 00000062
где MI представляет собой одновалентный катион; где MII представляет собой двухвалентный катион; где MIII представляет собой трехвалентный катион; где MIV представляет собой четырехвалентный катион; где a означает 0, 1, 2 или 3; где h означает 0, 1, 2, 3 или 4; где i означает 0, 1 или 2; где j означает 0 или любое положительное целое число; и где b, c, d, e, f, g, k, l, m, n, p и q означают любые положительные целые числа, таким образом, что удовлетворены уравнения: 2b=с+3d, 3e=f+3g, r=2k+l и s=3q+p; и (b) по меньшей мере, одно соединение, не содержащее фосфор, выбранное из группы, состоящей из нитратных солей, карбонатных солей, ацетатных солей, оксидов металлов, хлоридных солей, сульфатных солей и гидроксидов металлов, при этом каждое указанное соединение описано одной из формул (XXVI)-(L), или любой из гидратированных форм указанных формул:
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
Figure 00000034
Figure 00000035
Figure 00000036
Figure 00000063
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
Figure 00000042
Figure 00000043
Figure 00000044
Figure 00000045
Figure 00000046
Figure 00000047
Figure 00000048
Figure 00000049
Figure 00000050
Figure 00000051
Figure 00000064
Figure 00000065
В другом осуществлении, соединения, не содержащие фосфор, могут быть выбраны из группы, состоящей из солей карбоновых кислот, галидных солей, ацетилацетонатов металлов и алкоксидов металлов.
В другом осуществлении, способ получения катализатора включает стадию, на которой вводят в контакт соединения, содержащие фосфор, и не содержащие фосфор, после смешивания, с газообразной смесью, содержащей воду.
В одном осуществлении, катализатор получают с помощью стадий, на которых смешивают и нагревают одно или более соединений, содержащих фосфор, формулы (VI), где указанное а равно 2, соединение, содержащее фосфор, формулы (VI), где указанное а равно 0 (т.е. фосфорная кислота), и одну или более нитратных солей формулы (XXVII). В другом осуществлении, катализатор получают смешиванием и нагреванием K2HPO4, H3PO4 и Ba(NO3)2. В еще одном осуществлении, катализатор получают смешиванием и нагреванием K2HPO4, H3PO4 и Ca(NO3)2. В еще одном осуществлении, катализатор получают смешиванием и нагреванием K2HPO4, H3PO4 и Mn(NO3)2·4H2O.
В одном осуществлении настоящего изобретения, способ получения катализатора включает стадию, на которой вводят в контакт: (a) газообразную смесь, содержащую воду, с (b) смесью соединений, содержащих, по меньшей мере, один анион конденсированного фосфата, который выбирают из группы, состоящей из формул (LI)-(LIII)
Figure 00000066
Figure 00000067
Figure 00000068
где n составляет, по меньшей мере, 2; где m составляет, по меньшей мере, 1; при этом указанная смесь соединений, по существу, нейтрально заряжена, и дополнительно, при этом мольное соотношение фосфора и одновалентных и многовалентных катионов в катализаторе составляет от приблизительно 0,7 до приблизительно 1,7. В другом осуществлении мольное соотношение фосфора и одновалентных и многовалентных катионов составляет приблизительно 1.
В еще одном осуществлении, катализатор получают с помощью стадий, на которых вводят в контакт: (a) газообразную смесь, содержащую воду, с (b) смесью соединений, содержащих соль конденсированного фосфата, которую выбирают из группы, состоящей из Ba2-y-zK2yH2zP2O7, Ca2-y-zK2yH2zP2O7, Mn1-y-zK1+3yH3zP2O7, Mn1-y-zK2yH2zP2O7 и их смесей; и (KPO3)w; где y и z больше или равны 0 и меньше чем приблизительно 0,5 и w является целым числом, большим чем 2.
В одном осуществлении, катализатор может включать инертный носитель, который выполнен из материала, выбранного из группы, состоящей из силикатов, алюминатов, атомов углеродов, оксидов металлов и их смесей. В качестве альтернативы, носитель является инертным по отношению к реакционной смеси, которая как ожидается, контактирует с катализатором. В другом осуществлении, способ получения катализатора может дополнительно включать стадию, на которой смешивают инертный носитель с катализатором до, во время или после смешивания соединений, содержащих фосфор, при этом инертный носитель включает силикаты, алюминаты, уголь, оксиды металлов и их смеси. В еще одном осуществлении, способ получения катализатора может дополнительно включать стадию, на которой смешивают инертный носитель с катализатором до, во время или после смешивания и нагревания соединений, содержащих фосфор, и соединений, не содержащих фосфор, при этом инертный носитель включает силикаты, алюминаты, уголь, оксиды металлов и их смеси.
Смешивание соединений, содержащих фосфор, или соединений, содержащих и не содержащих фосфор, катализатора может быть выполнено любым способом, известным специалистам в данной области техники, таким как, в качестве примера, а не ограничения: смешивание твердых веществ и совместное осаждение. В способе смешивания твердых веществ, различные компоненты физически смешивают вместе с необязательным измельчением с помощью любого способа, известного специалистам в данной области техники, такого как, в качестве примера, а не ограничения, сдвиг, растяжение, разминание, экструзия и другие. В способе совместного осаждения, водный раствор или суспензию из различных компонентов, включая одно или более фосфатных соединений, получают с последующей необязательной фильтрацией и нагреванием для удаления растворителей и летучих веществ (например, воды, азотной кислоты, диоксида углерода, аммиака или уксусной кислоты). Нагревание обычно осуществляется с помощью любого способа, известного специалистам в данной области техники, такого как, в качестве примера, а не ограничения, конвекция, теплопроводность, излучение, СВЧ-нагрев и другие.
После смешивания, катализатор, в одном осуществлении, измельчают и просеивают, чтобы обеспечить более однородный продукт. Распределение частиц катализатора по размерам включает разброс значений диаметра частиц, который, в одном осуществлении, составляет менее, чем приблизительно 3; в другом осуществлении, распределение частиц катализатора по размерам включает разброс значений диаметра частиц, который составляет менее, чем приблизительно 2; и в еще одном осуществлении, распределение частиц катализатора по размерам включает разброс значений диаметра частиц, который составляет менее, чем приблизительно 1,5. В другом осуществлении настоящего изобретения, катализатор просеивают, чтобы медианный размер частиц составлял от приблизительно 50 мкм до приблизительно 500 мкм. В другом осуществлении настоящего изобретения, катализатор просеивают до медианного размера частиц от приблизительно 100 мкм до приблизительно 200 мкм.
Катализатор может быть использован для катализа нескольких химических реакций. Неограничивающие примеры реакций представляют собой дегидратацию гидроксипропионовой кислоты в акриловую кислоту (как более подробно описано ниже), дегидратацию глицерина в акролеин, дегидратацию алифатических спиртов в алкены или олефины, дегидрогенизирование алифатических спиртов в эфиры, другие реакции дегидрогенизирования, гидролизы, алкилирования, деалкилирования, окисления, диспропорционирования, эстерификации, циклизации, изомеризации, конденсации, ароматизации, полимеризации, и другие реакции, которые могут быть очевидны специалистам в данной области техники.
В одном осуществлении настоящего изобретения, катализатор получают с помощью стадий, на которых объединяют BaHPO4 и KH2PO4 в мольном соотношении от приблизительно 3:2 до приблизительно 2:3 с образованием твердой смеси, и измельчают указанную твердую смесь с получением катализатора.
В другом осуществлении настоящего изобретения, катализатор получают с помощью стадий, на которых: (a) объединяют BaHPO4 и KH2PO4 в мольном соотношении от приблизительно 3:2 до приблизительно 2:3 с образованием твердой смеси; (b) измельчают указанную твердую смесь с получением смешанного порошка; (c) прокаливают указанный смешанный порошок при температуре приблизительно 550°C, с получением конденсированной фосфатной смеси; и (d) вводят в контакт указанную конденсированную фосфатную смесь с газообразной смесью, содержащей воду и молочную кислоту при температуре приблизительно 350°C и общем давлении приблизительно 25 бар, с получением указанного катализатора, и при этом парциальное давление воды в указанной газообразной смеси составляет приблизительно 12,5 бар.
В еще одном осуществлении настоящего изобретения, катализатор получают с помощью стадий, на которых: (a) объединяют K2HPO4, Ba(NO3)2, Н3РО4 и воду, с образованием влажной смеси, при этом мольное соотношение Ba(NO3)2, K2HPO4 и H3PO4 составляет приблизительно 3:1:4; (b) нагревают указанную влажную смесь до приблизительно 80°C при перемешивании почти до полного высушивания с образованием влажного твердого вещества, (c) прокаливают указанное влажное твердое вещество постадийно при температуре приблизительно 50°C, приблизительно 80°C, приблизительно 120°C и от приблизительно 450°C до приблизительно 550°C с получением высушенного твердого вещества, и (d) вводят в контакт указанное высушенное твердое вещество с газообразной смесью, содержащей воду и молочную кислоту, при температуре приблизительно 350°C и общем давлении приблизительно 25 бар, с получением указанного катализатора, и при этом парциальное давление воды в указанной газообразной смеси составляет приблизительно 12,5 бар.
IV. Способы получения акриловой кислоты, производных акриловой кислоты или их смесей
Представлен способ дегидратации гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в акриловую кислоту, производные акриловой кислоты или их смеси.
Альтернативные катализаторы, содержащие анионы, выбранные из группы, состоящей из анионов, не содержащих фосфор, гетерополианионов и фосфатных аддуктов, и, по меньшей мере, два различных катиона, при этом катализатор, по существу, нейтрально заряжен, могут быть использованы для дегидратации гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в акриловую кислоту, производные акриловой кислоты или их смеси. Неограничивающие примеры анионов, не содержащих фосфор, представляют собой арсенаты, конденсированные арсенаты, нитраты, сульфаты, бораты, карбонаты, хроматы, ванадаты, ниобаты, танталаты, селенаты и другие мономерные оксоанионы или полиоксоанионы, которые могут быть очевидны специалистам в данной области техники. Неограничивающие примеры гетерополианионов представляют собой гетерополифосфаты, такие как арсенатофосфаты, фосфоалюминаты, фосфобораты, фосфохроматы, фосфомолибдаты, фосфосиликаты, фосфосульфаты, фосфотангстаты и другие, которые могут быть очевидны специалистам в данной области техники. Неограничивающие примеры фосфатных аддуктов представляют собой аддукты фосфатных анионов с теллуровой кислотой, галиды, бораты, карбонаты, нитраты, сульфаты, хроматы, силикаты, оксалаты, их смеси, или другие, которые могут быть очевидными специалистам в данной области техники.
Гидроксипропионовая кислота может быть 3-гидроксипропионовой кислотой, 2-гидроксипропионовой кислотой (также называемой молочной кислотой) или их смесями. В одном осуществлении, гидроксипропионовая кислота представляет собой молочную кислоту. Производными гидроксипропионовой кислоты могут быть соли металлов или аммония гидроксипропионовой кислоты, алкильные сложные эфиры гидроксипропионовой кислоты, олигомеры гидроксипропионовой кислоты, циклические сложные диэфиры гидроксипропионовой кислоты, ангидрид гидроксипропионовой кислоты или их смесь. Неограничивающие примеры солей металлов гидроксипропионовой кислоты представляют собой натрий гидроксипропионат, калий гидроксипропионат и кальций гидроксипропионат. Неограничивающие примеры алкильных сложных эфиров гидроксипропионовой кислоты представляют собой метилгидроксипропионат, этилгидроксипропионат, бутилгидроксипропионат, 2-этилгексилгидроксипропионат или их смеси. Неограничивающим примером циклических сложных диэфиров гидроксипропионовой кислоты является дилактид.
Производные акриловой кислоты могут быть солями металла или аммония акриловой кислоты, алкильными сложными эфирами акриловой кислоты, олигомерами акриловой кислоты или их смесями. Неограничивающие примеры солей металла акриловой кислоты представляют собой акрилат натрия, акрилат калия и акрилат кальция. Неограничивающие примеры алкильных сложных эфиров акриловой кислоты представляют собой метилакрилат, этилакрилат, бутилакрилат, 2-этилгексилакрилат или их смеси.
Поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, может включать поток жидкости и инертный газ (т.е. газ в других случаях инертный к реакционной смеси в условиях способа), который может быть по отдельности или совместно подан в выпарной аппарат выше по потоку от реактора катализатора для того, чтобы поток стал газообразным. Поток жидкости может включать гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси и разбавитель. Неограничивающими примерами разбавителя являются вода, метанол, этанол, ацетон, C3-C8 линейные и разветвленные спирты, C5-C8 линейные и разветвленные алканы, этилацетат, нелетучие эфиры (в том числе дифениловый эфир) и их смеси. В одном осуществлении, разбавитель содержит воду. В другом осуществлении поток жидкости содержит водный раствор молочной кислоты или производных молочной кислоты, которые выбирают из группы, состоящей из лактида, олигомеров молочной кислоты, солей молочной кислоты и алкиллактатов. В одном осуществлении, поток жидкости содержит от приблизительно 2 мас. % до приблизительно 95 мас. % молочной кислоты или производных молочной кислоты, исходя из общей массы потока жидкости. В другом осуществлении, поток жидкости содержит от приблизительно 5 мас. % до приблизительно 50 мас. % молочной кислоты или производных молочной кислоты, исходя из общей массы потока жидкости. В другом осуществлении, поток жидкости содержит от приблизительно 10 мас. % до приблизительно 25 мас. % молочной кислоты или производных молочной кислоты, исходя из общей массы потока жидкости. В другом осуществлении, поток жидкости содержит приблизительно 20 мас. % молочной кислоты или производных молочной кислоты, исходя из общей массы потока жидкости. В другом осуществлении, поток жидкости содержит водный раствор молочной кислоты, а также производные молочной кислоты. В другом осуществлении, поток жидкости содержит менее, чем приблизительно 30 мас. % производных молочной кислоты, исходя из общей массы потока жидкости. В другом осуществлении, поток жидкости содержит менее, чем приблизительно 10 мас. % производных молочной кислоты, исходя из общей массы потока жидкости. В еще одном осуществлении, поток жидкости содержит менее, чем приблизительно 5 мас. % производных молочной кислоты, исходя из общей массы потока жидкости.
Инертный газ представляет собой газ, который в других случаях инертный по отношению к реакционной смеси в условиях способа. Неограничивающие примеры инертного газа представляют собой азот, воздух, гелий, аргон, диоксид углерода, монооксид углерода, пар и их смеси. В одном осуществлении, инертный газ представляет собой азот.
Поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, может находиться в виде газообразной смеси при контакте с катализатором. В одном осуществлении, концентрация гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей, исходя из общего количества молей указанного потока (рассчитывается при условиях STP) составляет от приблизительно 0,5 мол. % до приблизительно 50 мол. %. В другом осуществлении, концентрация гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей, исходя из общего количества молей указанного потока (рассчитывается при условиях STP) составляет от приблизительно 1 мол. % до приблизительно 10 мол. %. В другом осуществлении, концентрация гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей, исходя из общего количества молей указанного потока (рассчитывается при условиях STP) составляет от приблизительно 1,5 мол. % до приблизительно 3,5 мол. %. В еще одном осуществлении, концентрация гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей, исходя из общего количества молей указанного потока (рассчитывается при условиях STP) составляет приблизительно 2,5 мол. %.
В одном осуществлении, температура, при которой указанный поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, контактирует с катализатором, составляет от приблизительно 120°C до приблизительно 700°C. В другом осуществлении, температура, при которой указанный поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, контактирует с катализатором, составляет от приблизительно 150°C до приблизительно 500°C. В другом осуществлении, температура, при которой указанный поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, контактирует с катализатором, составляет от приблизительно 300°C до приблизительно 450°C. В еще одном осуществлении, температура, при которой указанный поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, контактирует с катализатором, составляет от приблизительно 325°C до приблизительно 400°C.
В одном осуществлении, поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, контактирует с катализатором при GHSV от приблизительно 720 ч-1 до приблизительно 36000 ч-1. В другом осуществлении, поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, контактирует с катализатором при GHSV от приблизительно 1800 ч-1 до приблизительно 7200 ч-1. В другом осуществлении, поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, контактирует с катализатором при GHSV приблизительно 3600 ч-1.
В одном осуществлении, поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, контактирует с катализатором при давлении от приблизительно 0 фунт./кв. дюйм изб. до приблизительно 550 фунт./кв. дюйм изб. В другом осуществлении, поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, контактирует с катализатором при давлении приблизительно 360 фунт./кв. дюйм изб.
В одном осуществлении, разбавители содержат воду и парциальное давление воды в газообразной смеси составляет от приблизительно 10 фунтов на квадратный дюйм до приблизительно 500 фунтов на квадратный дюйм. В другом осуществлении, парциальное давление воды в газообразной смеси составляет от приблизительно 15 фунтов на квадратный дюйм до приблизительно 320 фунтов на квадратный дюйм. В еще одном осуществлении, парциальное давление воды в газообразной смеси составляет приблизительно 190 фунтов на квадратный дюйм.
В одном осуществлении, поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, контактирует с катализатором в реакторе, имеющем внутреннюю поверхность, содержащую материал, который выбирают из группы, состоящей из кварца, боросиликатного стекла, кремния, сплава Hastelloy, инконеля, искусственного сапфира, нержавеющей стали и их смесей. В другом осуществлении, поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, контактирует с катализатором в реакторе, имеющем внутреннюю поверхность, содержащую материал, который выбирают из группы, состоящей из кварца или боросиликатного стекла. В другом осуществлении, поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, контактирует с катализатором в реакторе, имеющем внутреннюю поверхность, содержащую боросиликатное стекло.
В одном осуществлении, способ включает стадию, на которой вводят в контакт катализатор с газообразной смесью, содержащей гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, в условиях, достаточных для получения акриловой кислоты, производных акриловой кислоты или их смесей с выходом, по меньшей мере, 50%. В другом осуществлении, способ включает стадию, на которой вводят в контакт катализатор с газообразной смесью, содержащей гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, в условиях, достаточных для получения акриловой кислоты, производных акриловой кислоты или их смесей с выходом, по меньшей мере, приблизительно 70%. В другом осуществлении, способ включает стадию, на которой вводят в контакт катализатор с газообразной смесью, содержащей гидроксипропионовую кислоту, производные гидроксипропионовой кислоты, или их смеси, в условиях, достаточных для получения акриловой кислоты, производных акриловой кислоты или их смесей с выходом, по меньшей мере, приблизительно 80%. В другом осуществлении, условия способа достаточны для получения акриловой кислоты, производных акриловой кислоты или их смесей с селективностью, по меньшей мере, приблизительно 50%. В другом осуществлении, условия способа достаточны для получения акриловой кислоты, производных акриловой кислоты или их смесей с селективностью, по меньшей мере, приблизительно 70%. В другом осуществлении, условия способа достаточны для получения акриловой кислоты, производных акриловой кислоты или их смесей с селективностью, по меньшей мере, приблизительно 80%. В другом осуществлении, условия способа достаточны для получения акриловой кислоты, производных акриловой кислоты или их смесей с пропановой кислотой в качестве примеси, где селективность в отношении пропановой кислоты составляет менее, чем приблизительно 5%. В другом осуществлении, условия способа достаточны для получения акриловой кислоты, производных акриловой кислоты или их смесей с пропановой кислотой в качестве примеси, где селективность в отношении пропановой кислоты составляет менее, чем приблизительно 1%. В другом осуществлении, условия способа достаточны для получения акриловой кислоты, производных акриловой кислоты или их смесей с конверсией указанной гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей более, чем приблизительно 50%. В другом осуществлении, условия способа достаточны для получения акриловой кислоты, производных акриловой кислоты или их смесей с конверсией указанной гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей более, чем приблизительно 80%.
Среди преимуществ, присущих приведенным в данной заявке осуществлениям, является низкий выход побочных продуктов. В одном осуществлении, условия достаточны для получения пропановой кислоты с выходом менее, чем приблизительно 6% от молочной кислоты, присутствующей в газообразной смеси. В другом осуществлении, условия достаточны для получения пропановой кислоты с выходом менее, чем приблизительно 1% от молочной кислоты, присутствующей в газообразной смеси. В одном осуществлении, условия достаточны для получения каждого из уксусной кислоты, виноградной кислоты, 1,2-пропандиола и 2,3-пентандиола с выходом менее, чем приблизительно 2% от молочной кислоты, присутствующей в газообразном потоке. В другом осуществлении, условия достаточны для получения каждого из уксусной кислоты, виноградной кислоты, 1,2-пропандиола и 2,3-пентандиола с выходом менее, чем приблизительно 0,5% от молочной кислоты, присутствующей в газообразном потоке. В одном осуществлении, условия достаточны для получения ацетальдегида с выходом менее чем приблизительно 8% от молочной кислоты, присутствующей в газообразной смеси. В другом осуществлении, условия достаточны для получения ацетальдегида с выходом менее, чем приблизительно 4% от молочной кислоты, присутствующей в газообразной смеси. В другом осуществлении, условия достаточны для получения ацетальдегида с выходом менее чем приблизительно 3% от молочной кислоты, присутствующей в газообразной смеси. Эти выходы, как полагают, недостижимо низкие. Действительно, эти преимущества достижимы, как дополнительно свидетельствуют приведенные ниже Примеры.
Представлен способ дегидратации глицерина в акролеин. Способ включает стадию, на которой вводят в контакт поток, содержащий глицерин, с катализатором, содержащим: (a) анионы моногидромонофосфата и дигидромонофосфата, которые описываются формулами (I) и (II):
Figure 00000069
Figure 00000070
, и
(b) по меньшей мере, два различных катиона, при этом катализатор, по существу, нейтрально заряжен; и дополнительно, при этом мольное соотношение указанного аниона моногидромонофосфата и указанного аниона дигидромонофосфата в катализаторе составляет от приблизительно 0,1 до приблизительно 10, таким образом, акролеин получают в результате контактирования указанного глицерина с катализатором. Акролеин является промежуточным соединением, которое может быть преобразовано в акриловую кислоту с использованием условий, аналогичных используемым сегодня на второй стадии окисления в способе пропилена в акриловую кислоту.
V Примеры
Следующие примеры приведены для иллюстрации настоящего изобретения, но не предназначены для ограничения его объема. Примеры 1-3 описывают получение различных смешанных конденсированных фосфатных катализаторов в соответствии с различными осуществлениями, описанными выше.
ПРИМЕР 1
Получение катализатора:
Моногидрофосфат бария, BaHPO4 (20 г, 85,7 ммоль, Sigma - Aldrich Co., St. Louis, МО; каталог №31139), объединяли с дигидрофосфатом калия, KH2PO4 (7,8 г, 57,1 ммоль, Sigma - Aldrich Co., St. Louis, MO; каталог №60216). Смесь измельчали при помощи ступки и пестика до тех пор, пока не был получен тонкодисперсный порошок. Материал сушили при 105°C в течение 2 ч с использованием термостата с гравитационной конвекцией с получением катализатора. Наконец, материал анализировали при помощи рентгеновской дифракции (XRD), позволяя идентификацию BaHPO4 и KH2PO4, как ожидалось.
Тестирование катализатора:
Катализатор вводили в контакт с газообразной смесью, содержащей L-молочную кислоту (2,4 мол. %), воду (49,6 мол. %) и азот (48,0 мол. %), с использованием системы ректора, описанной в Разделе VI. Реакцию проводили при 350°C и 360 фунт./кв. дюйм изб., получая парциальное давление воды 186 фунтов на квадратный дюйм. Результаты приведены в Таблице 1 в Разделе VII.
ПРИМЕР 2
Получение катализатора:
Моногидрофосфат бария, BaHPO4 (20 г, 85,7 ммоль, Sigma - Aldrich Co., St. Louis, MO; каталог №31139), объединяли с дигидрофосфатом калия, KH2PO4 (7,8 г, 57,1 ммоль, Sigma - Aldrich Co., St. Louis, MO; каталог №60216). Смесь измельчали при помощи ступки и пестика до тех пор, пока не был получен тонкодисперсный порошок. Материал прокаливали при 550°C в течение 27 ч с использованием термостата с гравитационной конвекцией. После прокаливания, материал оставляли внутри печи до самоохлаждения. Наконец, катализатор измельчали и просеивали до от приблизительно 100 мкм до приблизительно 200 мкм. Материал анализировали при помощи XRD, позволяя идентификацию α-Ba2P2O7 и KPO3.
Тестирование катализатора:
Катализатор вводили в контакт с газообразной смесью, содержащей L-молочную кислоту (2,4 мол. %), воду (49,6 мол. %) и азот (48,0 мол. %), с использованием системы ректора, описанной в Разделе VI. Реакцию проводили при 350°C и 360 фунт./кв. дюйм изб., получая парциальное давление воды 186 фунтов на квадратный дюйм. Результаты приведены в Таблице 1 в Разделе VII.
ПРИМЕР 3
Получение катализатора:
Водный раствор нитрата бария, Ba(NO3)2 (3414 мл 0,08 г/мл маточного раствора, 1,04 моль, 99,999%; Sigma - Aldrich Co., St. Louis, MO; каталог №202754), добавляли к твердому двухосновному фосфату калия, K2HPO4 (60,7 г, 0,35 моль, ≥98%; Sigma - Aldrich Co., St. Louis, MO; каталог №P3786), при комнатной температуре. Фосфорную кислоту, H3PO4 (98 мл 85 мас. %, плотность = 1,684 г/мл, 1,44 моль; Acros Organics, Geel, Belgium; каталог №295700010), добавляли в суспензию, получая раствор, содержащий катионы калия (K+, MI) и бария (Ba2+, MII). Окончательное pH суспензии составляло 1,6. Суспензию, содержащую кислоту, затем медленно высушивали в стеклянном стакане при 80°C, используя нагревательную плиту при перемешивании суспензии магнитным способом до испарения жидкости и почти полного высушивания материала. После выпаривания, материал переносили на разрушаемую керамику. Нагревание продолжали в печи с циркуляцией воздуха (N30/80 НА; Nabertherm GmbH, Lilienthal, Germany) при 50°C в течение 2 ч, затем при 80°C в течение 10 ч (0,5°C/мин линейное возрастание), 120°C в течение 2 часов (0,5°C/мин линейное возрастание) для удаления остаточной воды с последующим прокаливанием при 450°C в течение 4 часов (2°C/мин линейное возрастание). После прокаливания, материал оставляли внутри печи до самоохлаждения при температуре ниже 100°C перед тем, как вынуть его из печи. Наконец, катализатор измельчали и просеивали до от приблизительно 100 мкм до приблизительно 200 мкм. Материал анализировали при помощи XRD и энергодисперсионной спектроскопии в сочетании со сканирующей электронной микроскопией (EDS/SEM), позволяя идентификацию σ-Ba2P2O7, α-Ba3P4O13, Ba(NO3)2, (KPO3)w и дополнительной фазы, которая предположительно состоит из конденсированного фосфата с незначительными количествами калия и бария. Некоторое включение K во все Ba-содержащие фазы было также обнаружено. Мольное соотношение фосфора (P) и катионов (MI и MII) в идентифицированных при помощи XRD солях конденсированного фосфата составляло от приблизительно 1 до приблизительно 1,3.
Тестирование катализатора:
Катализатор вводили в контакт с газообразной смесью, содержащей L-молочную кислоту (2,3 мол. %), воду (49,9 мол. %) и азот (47,8 мол. %), с использованием системы ректора, описанной в Разделе VI. Реакцию проводили при 350°C и 360 фунт./кв. дюйм изб., получая парциальное давление воды 187 фунтов на квадратный дюйм. Результаты приведены в Таблице 1 в Разделе VII.
После завершения реакции катализатор охлаждали до 236°C при сохранении общего давления 360 фунт./кв. дюйм изб. и пропуская газообразную смесь, содержащую воду (50,6 мол. %) и азот (49,4 мол. %). Затем температуру уменьшали до 213°C при общем давлении 200 фунт./кв. дюйм изб. при пропускании той же газообразной смеси, с последующими дополнительными стадиями охлаждения до 180°C при общем давлении 100 фунт./кв. дюйм изб. и 125°C при общем давлении 10 фунт./кв. дюйм изб. После охлаждения, катализатор анализировали при помощи XRD и EDS/SEM, позволяя идентификацию BaHPO4, смешанной фазы с предполагаемой химической композицией Ba2-xKxHx(HPO4)2 и небольших количеств Ba(H2PO4)2 и (KPO3)w, где x равен приблизительно 1 и w является целым числом, большим, чем 2.
VI Тестовые процедуры
XRD: Широкоугольные данные (WAXS) получали в дифрактометре STADI-P в режиме пропускания (Stoe & Cie GmbH, Darmstadt, Germany). Генератор эксплуатировался при 40 кВ/40 мА, питая с Cu рентгеновскую трубкус длинной тонкой фокусировкой с медным анодом. Дифрактометр включает изогнутый монохроматор на кристалле германия для падающего пучка, стандартную щелевую систему для падающего пучка и чувствительный к положению сигнальной пластины детектор с угловым диапазоном приблизительно 124° 2θ. Данные получали в режиме пропускания. Пробы осторожно измельчали вручную с использованием ступки и пестика до тонко дисперсной консистенции, если возможно, перед загрузкой в стандартный держатель для проб для устройства. Кристаллические фазы идентифицировали с использованием наиболее современной базы данных порошковой дифракции (от ICDD) с использованием рутинных процедур Search/Match в Jade (Materials Data, Inc. v9.4.2).
SEM/EDS: Сухие порошки диспергировали на двухстороннюю медную или угольную ленту, смонтированную на металлическую подложку электронного сканирующего микроскопа (SEM). Каждый образец покрывали Au/Pd в течение приблизительно 65-80 с, используя Gatan Alto 2500 Cryo камеру подготовки. SEM картирование формирования изображения и энергодисперсионной спектроскопии (EDS) производили с использованием либо Hitachi S-4700 FE-SEM или Hitachi S-5200 в линзах FE-SEM (Hitachi Ltd., Tokyo, Japan), оба оснащены EDS с Bruker XFlash 30 мм2 SDD детекторами (Quantax 2000 система с 5030 детектором; Bruker Corp., Billerica, MA). EDS картирование выполняли с использованием ускоряющего напряжения при 10 кВ в Методе аназиза зондового тока. Все карты генерировали при помощи программного обеспечения Bruker Esprit V1.9 в Hypermap модуле.
Реактор: Трубку длиной 13 дюймов (330 мм) из нержавеющей стали и оклеенную стеклом (SGE Analytical Science Pty Ltd., Ringwood, Australia) с 4,0 мм внутренним диаметром (ID) набивали стекловолокном (3 дюйма/76 мм длина слоя), с катализатором наверху (1,6 см3 объем слоя, 5 дюймов/127 мм длина слоя) с получением 2,55 см3 уплотненного слоя (8 дюймов/203 мм) и 1,6 см3 (5 дюймов/127 мм) свободного пространства в верхней части реактора. Трубку помещали внутрь алюминиевого блока и помещали в печь из глинистого железняка серия 3210 (Applied Test Systems, Butler, PA) таким образом, что верх уплотненного слоя выравнивали по верхней части алюминиевого блока. Реактор устанавливали в режим нисходящего потока и оснащали Knauer Smartline 100 насосом подачи (Berlin, Germany), Brooks 0254 регулятором газового потока (Hatfield, PA), Brooks регулятором давления всасывания и улавливающим резервуаром. Печь из глинистого железняка нагревали таким образом, что температуру стенок реактора поддерживали постоянной при приблизительно 350°C во время течения реакции. Реактор поставлялся отдельными системами подачи жидкости и газа, которые смешивались вместе перед достижением слоя катализатора. Система подачи газа состояла из молекулярного азота (N2) при приблизительно 360 фунт./кв. дюйм изб. при потоке 45 мл/мин. Система подачи жидкости представляла собой водный раствор молочной кислоты (20 мас. % L-молочной кислоты) и подана при 0,045 мл/мин. После протекания через реактор, газообразный поток охлаждали и жидкости собирали в улавливающий резервуар для анализа при помощи офлайн ВЭЖХ, используя систему Agilent 1100 (Santa Clara, CA), оснащенную диодно-матричным детектором (DAD) и колонкой Waters Atlantis Т3 (Каталог №186003748; Milford, MA) с использованием способов, известных специалистам в данной области техники. Газообразную смесь анализировали онлайн при помощи GC, используя систему Agilent 7890 (Santa Clara, CA), оснащенную детектором FID и колонкой Varian CP-Para Bond Q (Каталог №CP7351; Santa Clara, CA).
Система подачи реактора: раствор (113,6 г) полученной из биомассы молочной кислоты (88 мас. %, Purac Corp., Lincolnshire, IL) растворяли в дистиллированной воде (386,4 г) с получением раствора с ожидаемой концентрацией молочной кислоты 20 мас. %. Данный раствор нагревали при от 95°C до 100°C в течение 12-30 часов. Полученную в результате смесь охлаждали и анализировали при помощи ВЭЖХ (описана выше) по сравнению с известными весовыми стандартами.
VII Результаты
В Таблице 1 приведены каталитические параметры, полученные с помощью различных катализаторов, описанных в Разделе V.
Figure 00000071
Приведенное выше описание дано только для ясности понимания, и никаких ненужных ограничений не должно быть истолковано из него, так как модификации в объеме настоящего изобретения могут быть очевидными специалистам в данной области техники.
Размеры и значения, описанные в данной заявке, не следует понимать как строго ограниченные в точности приведенными численными значениями. Вместо этого, если не указано иное, каждый такой размер должен обозначать как приведенное значение, так и функционально эквивалентный диапазон, окружающий это значение. Например, размер, раскрытый как «40 мм» означает «приблизительно 40 мм».
Каждый документ, цитируемый в данной заявке, включая любые перекрестные ссылки или родственные патенты или заявки, настоящим включен в данную заявку путем ссылки во всей своей полноте, если специально не исключен или иным образом не ограничен. Цитирование любого документа не является признанием, что он является уровнем техники по отношению к любому изобретению, раскрытому или заявленному в данной заявке, или что только он, или в любой комбинации с любой другой ссылкой или ссылками, учит, предполагает или раскрывает любое такое изобретение. Кроме того, в той степени, в которой любое значение или определение термина в данной заявке противоречит любому значению или определению этого же термина в документе, включенном путем ссылки, значение или определение для этого термина в данной заявке превалирует.
В то время как конкретные осуществления настоящего изобретения были проиллюстрированы и описаны, специалистам в данной области техники будет очевидно, что различные другие изменения и модификации могут быть выполнены без отступления от сущности и объема настоящего изобретения. Поэтому прилагаемая формула изобретения предназначена для охвата всех таких изменений и модификаций, которые находятся в пределах объема настоящего изобретения.

Claims (12)

1. Катализатор для получения акриловой кислоты и ее производных, содержащий
монофосфатную соль, описываемую формулой (III):
Figure 00000072

и монофосфатную соль, описываемую формулой (IV):
Figure 00000073

где MI представляет собой одновалентный катион и MII представляет собой двухвалентный катион,
при этом катализатор, по существу, нейтрально заряжен;
и дополнительно при этом мольное соотношение указанного MIIHPO4 и указанного MIH2PO4 в указанном катализаторе составляет от 0,2 до 5.
2. Катализатор по п. 1, отличающийся тем, что указанное мольное соотношение указанного MIIHPO4 и указанного MIH2PO4 в указанном катализаторе составляет 1.
3. Катализатор по п. 1, отличающийся тем, что указанный одновалентный катион выбран из группы, состоящей из Li+, Na+, K+, Rb+, Cs+ и их смесей; и что указанный двухвалентный катион выбран из группы, состоящей из Ве2+, Mg2+, Са2+, Sr2+, Ва2+, Mn2+, Fe2+, Со2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Pb2+ и их смесей.
4. Катализатор по п. 3, отличающийся тем, что указанный одновалентный катион представляет собой K+; а указанный двухвалентный катион выбран из группы, состоящей из Са2+, Ва2+, Mn2+ и их смесей.
5. Катализатор по п. 1, отличающийся тем, что указанный катализатор содержит монофосфатную соль, описываемую формулой (V):
Figure 00000074

где x составляет более чем 0,2 и менее чем 1,8.
6. Катализатор по п. 5, отличающийся тем, что указанный x составляет 1.
7. Катализатор по п. 6, отличающийся тем, что указанный одновалентный катион представляет собой K+; а указанный двухвалентный катион выбран из группы, состоящей из Са2+, Ва2+, Mn2+ и их смесей.
8. Катализатор по п. 1, отличающийся тем, что указанный катализатор включает инертный носитель, который выполнен из материала, выбранного из группы, состоящей из силикатов, алюминатов, угля, оксидов металлов и их смесей.
9. Способ получения катализатора по п. 1, включающий стадию, на которой смешивают, по меньшей мере, два соединения, содержащие фосфор, при этом указанные соединения включают соединение формулы (VI), где указанное а равно 1, и соединение формулы (VII), где указанное а равно 2:
Figure 00000075

Figure 00000076

где MI представляет собой одновалентный катион; где MII представляет собой двухвалентный катион.
10. Способ по п. 9, отличающийся тем, что указанные соединения, содержащие фосфор, включают KH2PO4 и BaHPO4 или CaHPO4.
11. Способ по п. 9, отличающийся тем, что дополнительно включает стадию, на которой смешивают инертный носитель с указанными, по меньшей мере, двумя соединениями, содержащими фосфор, до, во время или после указанного смешивания соединений, содержащих фосфор, при этом указанный инертный носитель выбирают из группы, состоящей из силикатов, алюминатов, угля, оксидов металлов и их смесей.
12. Способ получения катализатора, включающий стадию, на которой объединяют BaHPO4 и KH2PO4 в мольном соотношении от приблизительно 3:2 до приблизительно 2:3 с образованием твердой смеси и измельчают указанную твердую смесь с получением указанного катализатора.
RU2014138725/04A 2012-04-11 2013-04-11 Катализаторы для получения акриловой кислоты или ее производных RU2586329C2 (ru)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201261623054P 2012-04-11 2012-04-11
US61/623,054 2012-04-11
US13/760,444 2013-02-06
US13/760,444 US10106484B2 (en) 2012-04-11 2013-02-06 Catalysts for the conversion of hydroxypropionic acid or its derivatives to acrylic acid or its derivatives
US13/840,192 2013-03-15
US13/835,187 2013-03-15
US13/835,187 US9926256B2 (en) 2012-04-11 2013-03-15 Catalytic conversion of lactic acid to acrylic acid
US13/840,192 US10294186B2 (en) 2012-04-11 2013-03-15 Catalysts for the production of acrylic acid or its derivatives
PCT/US2013/036163 WO2013155297A2 (en) 2012-04-11 2013-04-11 Catalysts for the production of acrylic acid or its derivatives

Publications (2)

Publication Number Publication Date
RU2014138725A RU2014138725A (ru) 2016-04-10
RU2586329C2 true RU2586329C2 (ru) 2016-06-10

Family

ID=49325607

Family Applications (5)

Application Number Title Priority Date Filing Date
RU2014139167/04A RU2587494C2 (ru) 2012-04-11 2013-04-11 Способ получения акриловой кислоты или ее производных
RU2014138178/04A RU2598380C2 (ru) 2012-04-11 2013-04-11 Каталитическая конверсия молочной кислоты в акриловую кислоту
RU2014138725/04A RU2586329C2 (ru) 2012-04-11 2013-04-11 Катализаторы для получения акриловой кислоты или ее производных
RU2014136558/04A RU2591192C2 (ru) 2012-04-11 2013-04-11 Катализаторы для конверсии гидроксипропионовой кислоты или ее производных в акриловую кислоту или ее производные
RU2014135176/04A RU2586327C2 (ru) 2012-04-11 2013-04-11 Каталитическая конверсия гидроксипропионовой кислоты или ее производных в акриловую кислоту и ее производные

Family Applications Before (2)

Application Number Title Priority Date Filing Date
RU2014139167/04A RU2587494C2 (ru) 2012-04-11 2013-04-11 Способ получения акриловой кислоты или ее производных
RU2014138178/04A RU2598380C2 (ru) 2012-04-11 2013-04-11 Каталитическая конверсия молочной кислоты в акриловую кислоту

Family Applications After (2)

Application Number Title Priority Date Filing Date
RU2014136558/04A RU2591192C2 (ru) 2012-04-11 2013-04-11 Катализаторы для конверсии гидроксипропионовой кислоты или ее производных в акриловую кислоту или ее производные
RU2014135176/04A RU2586327C2 (ru) 2012-04-11 2013-04-11 Каталитическая конверсия гидроксипропионовой кислоты или ее производных в акриловую кислоту и ее производные

Country Status (14)

Country Link
US (13) US10106484B2 (ru)
EP (5) EP2836476B1 (ru)
JP (5) JP5688187B2 (ru)
CN (6) CN104220411B (ru)
AU (5) AU2013245900B2 (ru)
BR (5) BR112014025348B1 (ru)
CA (5) CA2869403C (ru)
ES (5) ES2750448T3 (ru)
IN (5) IN2014DN07416A (ru)
MX (5) MX366550B (ru)
MY (5) MY165576A (ru)
RU (5) RU2587494C2 (ru)
SG (5) SG11201406512WA (ru)
WO (5) WO2013155295A1 (ru)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3838403A1 (en) 2011-05-13 2021-06-23 Novomer, Inc. Carbonylation catalysts and method
US20130273384A1 (en) 2012-04-11 2013-10-17 The Procter & Gamble Company Poly(Acrylic Acid) From Bio-Based Acrylic Acid And Its Derivatives
US10106484B2 (en) * 2012-04-11 2018-10-23 The Procter & Gamble Company Catalysts for the conversion of hydroxypropionic acid or its derivatives to acrylic acid or its derivatives
US20130274520A1 (en) * 2012-04-11 2013-10-17 The Procter & Gamble Company Purification Of Bio Based Acrylic Acid To Crude And Glacial Acrylic Acid
DE102013000602A1 (de) 2013-01-16 2014-07-17 Evonik Industries Ag Verfahren zur Herstellung von Acrylsäure
JP2016169162A (ja) * 2013-07-25 2016-09-23 株式会社日本触媒 アクリル酸および/またはアクリル酸エステルの製造方法
US9481589B2 (en) 2013-08-30 2016-11-01 Verliant Energy, Inc. System and method for improved anaerobic digestion
CA3002289C (en) * 2013-10-16 2021-11-30 The Procter & Gamble Company Method for producing bio-based acrylic acid and its derivatives from lactic acid and derivatives therefore using mixed phosphate catalyst and the process thereof
CN103611544B (zh) * 2013-12-05 2015-04-22 湖北双雄催化剂有限公司 一种提高低压钴钼耐硫变换催化剂低温活性的制备方法
US10163537B2 (en) 2014-05-02 2018-12-25 Ian Christopher Hamilton Device for converting radiation energy to electrical energy
WO2015171372A1 (en) 2014-05-05 2015-11-12 Novomer, Inc. Catalyst recycle methods
SG11201610058QA (en) 2014-05-30 2016-12-29 Novomer Inc Integrated methods for chemical synthesis
EP3171976B1 (en) 2014-07-25 2023-09-06 Novomer, Inc. Synthesis of metal complexes and uses thereof
WO2016026763A1 (en) 2014-08-18 2016-02-25 Basf Se Process for preparing acrylic acid using a heterogeneous alumina catalyst
FR3029805B1 (fr) 2014-12-10 2017-01-13 Centre Nat Rech Scient Production d'acides ou d'esters d'acides carboxyliques insatures avec un catalyseur a base d'halogeno-apatite
KR101774543B1 (ko) 2014-12-19 2017-09-04 주식회사 엘지화학 글리세린 탈수 반응용 촉매, 이의 제조 방법 및 상기 촉매를 이용한 아크롤레인의 제조 방법
WO2016099066A1 (ko) * 2014-12-19 2016-06-23 주식회사 엘지화학 글리세린 탈수 반응용 촉매, 이의 제조 방법 및 상기 촉매를 이용한 아크롤레인의 제조 방법
MA41510A (fr) 2015-02-13 2017-12-19 Novomer Inc Procédé de production d'acide acrylique
MA41513A (fr) 2015-02-13 2017-12-19 Novomer Inc Procédé de distillation pour la production d'acide acrylique
EP3696161A1 (en) 2015-02-13 2020-08-19 Novomer, Inc. Continuous carbonylation processes
MA41514A (fr) 2015-02-13 2017-12-19 Novomer Inc Procédés intégrés de synthèse chimique
EP3268343A1 (en) * 2015-03-13 2018-01-17 The Procter and Gamble Company Method for the dehydration of lactate salt to acrylic acid or acrylate salt
EP3341121A1 (en) * 2015-08-28 2018-07-04 The Procter and Gamble Company Catalysts for the dehydration of hydroxypropionic acid and its derivatives
US20170056253A1 (en) 2015-08-28 2017-03-02 Fitesa Nonwoven, Inc. Absorbent Article Having A High Content Of Bio-Based Materials
CN108025288A (zh) * 2015-08-28 2018-05-11 宝洁公司 用于使羟基丙酸及其衍生物脱水的催化剂
BR112018004046B1 (pt) 2015-08-28 2021-09-21 The Procter & Gamble Company Desidratação catalítica de ácido hidroxipropiônico e seus derivados
EP3341125B1 (en) * 2015-08-28 2024-10-09 The Procter & Gamble Company Catalytic dehydration of hydroxypropionic acid and its derivatives
CN108368022B (zh) * 2015-12-21 2021-11-23 普拉克生化公司 用于制造丙烯酸的方法
KR20180127429A (ko) * 2016-03-21 2018-11-28 노보머, 인코포레이티드 초흡수성 중합체의 제조를 위한 시스템 및 방법
US10723687B2 (en) 2016-07-29 2020-07-28 The Procter & Gamble Company Methods of making acrylic acid from lactic acid or its derivatives in liquid phase
CN109415290B (zh) 2016-07-29 2022-03-08 宝洁公司 由乳酸或其衍生物在液相中制备丙烯酸的方法
JP6733036B2 (ja) * 2016-07-29 2020-07-29 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company 乳酸又はその誘導体からアクリル酸を製造するための液相の触媒
CN106431890B (zh) * 2016-09-08 2019-09-13 中国科学院青岛生物能源与过程研究所 一种羧酸的制备方法
US9890102B1 (en) 2016-11-03 2018-02-13 The Procter & Gamble Company Method of making acrylic acid from hydroxypropionic acid
CN110099889B (zh) 2016-12-22 2023-04-04 伊士曼化工公司 经由分隔壁塔的丙烯酸提纯
US10968160B2 (en) 2016-12-22 2021-04-06 Eastman Chemical Company Separation of propionic acid from acrylic acid via azeotropic distillation
WO2018165283A1 (en) 2017-03-07 2018-09-13 The Procter & Gamble Company Method of making acrylic acid from lactic acid or lactide using molten salt catalysts
WO2018200253A1 (en) 2017-04-26 2018-11-01 The Procter & Gamble Company Methods of making acrylic acid from lactic acid or its derivatives in liquid phase
CN109304164B (zh) * 2017-07-28 2021-08-03 中国石油化工股份有限公司 甘油一步法合成丙烯酸催化剂
CN111148491B (zh) * 2017-09-21 2023-04-07 宝洁公司 吸收制品
US11273434B2 (en) 2017-10-06 2022-03-15 The Procter & Gamble Company Regeneration method of solid catalyst
KR20200072543A (ko) 2017-10-26 2020-06-22 노루 아이씨 코포레이션 엘티디 3-히드록시프로피온산의 생산 및 분리
KR20190062781A (ko) 2017-11-29 2019-06-07 롯데케미칼 주식회사 이온 교환수지를 이용한 락타이드로부터 아크릴산의 제조방법
KR20190062702A (ko) 2017-11-29 2019-06-07 롯데케미칼 주식회사 이온 교환수지를 이용한 락타이드로부터 아크릴산의 제조방법
JP7126234B2 (ja) * 2017-11-29 2022-08-26 国立研究開発法人産業技術総合研究所 カリウム化合物及びそれを含有するカリウムイオン二次電池用正極活物質
US11433158B2 (en) 2017-12-12 2022-09-06 The Procter & Gamble Company Recycle friendly and sustainable absorbent articles
WO2020007808A1 (en) 2018-07-02 2020-01-09 Shell Internationale Research Maatschappij B.V. Production of alkyl esters of acrylic acid
CN108993479B (zh) * 2018-08-07 2020-11-24 重庆理工大学 钼基催化剂、制备方法及其应用
EP3840709B1 (en) 2018-08-22 2023-11-15 The Procter & Gamble Company Disposable absorbent article
JP2022500222A (ja) 2018-09-27 2022-01-04 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company 衣類様の吸収性物品
US11707548B2 (en) 2018-10-09 2023-07-25 The Procter & Gamble Company Absorbent article comprising a lotion resistant polymeric filler composition
WO2020099430A1 (en) 2018-11-14 2020-05-22 Shell Internationale Research Maatschappij B.V. Regeneration of catalyst for lactic acid dehydration
WO2020242715A1 (en) 2019-05-31 2020-12-03 The Procter & Gamble Company Absorbent article having a waist gasketing element
CN115397379A (zh) 2020-04-22 2022-11-25 宝洁公司 具有含天然纤维的非织造材料的吸收制品
WO2021226034A1 (en) 2020-05-05 2021-11-11 The Procter & Gamble Company Absorbent articles including improved elastic panels
FR3110570B1 (fr) 2020-05-19 2022-05-20 Commissariat Energie Atomique PROCEDE DE PREPARATION D’ACIDE ACRYLIQUE A PARTIR DE β-PROPIOLACTONE
EP4153113A1 (en) 2020-05-22 2023-03-29 The Procter & Gamble Company Absorbent articles with waistbands and waistband covers
EP3915533A1 (en) 2020-05-28 2021-12-01 The Procter & Gamble Company Absorbent article having a waist gasketing element
EP4216894A1 (en) 2020-09-22 2023-08-02 The Procter & Gamble Company Absorbent articles with patterned front ears
CN116348078A (zh) 2020-10-16 2023-06-27 宝洁公司 包含部分衍生自回收资源的超吸收聚合物的吸收性卫生产品和生产所述产品的方法
EP4212506A4 (en) * 2020-11-11 2024-04-03 Lg Chem, Ltd. PROCESS FOR PREPARING ACRYLIC ACID
CN112479262B (zh) * 2020-11-27 2023-09-26 重庆理工大学 氧化铁制备及催化乳酸制备丙酮酸的方法
WO2022114519A1 (ko) * 2020-11-27 2022-06-02 주식회사 엘지화학 3-하이드록시프로피온산의 탈수 반응용 촉매의 제조방법, 3-하이드록시프로피온산의 탈수 반응용 촉매 및 이를 이용한 아크릴산의 제조방법
KR102690125B1 (ko) * 2020-12-03 2024-07-30 주식회사 엘지화학 아크릴산의 제조 공정
CN112717956B (zh) * 2021-01-20 2023-07-18 贵研铂业股份有限公司 纳米MoS2/MoO3/C催化剂的制备及其催化乳酸制备丙酸的方法
JP6967168B1 (ja) 2021-03-02 2021-11-17 大日精化工業株式会社 水性顔料分散液、水性インクジェットインク、及び乾燥皮膜
CN117222387A (zh) 2021-04-30 2023-12-12 宝洁公司 包装的吸收制品
EP4088704A1 (en) 2021-05-10 2022-11-16 The Procter & Gamble Company Absorbent core with nonwoven web(s) comprising superabsorbent fibers
EP4351492A1 (en) 2021-06-08 2024-04-17 The Procter & Gamble Company Absorbent articles including a waist panel with a frangible bond
EP4129259A1 (en) 2021-08-04 2023-02-08 The Procter & Gamble Company Absorbent article with urease inhibitor and use of the article
EP4140978A1 (fr) 2021-08-26 2023-03-01 Futerro S.A. Procédé de préparation d'acide acrylique ou d'ester d'acide acrylique par déshydratation catalytique à partir d'un flux de recyclage d'un procédé de production d'acide polylactique
CN218165494U (zh) 2021-09-22 2022-12-30 宝洁公司 吸收制品
CN118251196A (zh) 2021-11-19 2024-06-25 宝洁公司 带有具有高拉伸区域和低拉伸区域的前腰区和/或后腰区的吸收制品及其制备方法
FR3129301A1 (fr) 2021-11-22 2023-05-26 IFP Energies Nouvelles Materiau comprenant une silice mise en forme par extrusion avec un liant phosphopotassique ou phosphate de cesium presentant des proprietes mecaniques ameliorees et son procede de preparation
FR3129300B1 (fr) 2021-11-22 2023-11-10 Ifp Energies Now Procede de preparation d’une silice mise en forme par extrusion avec un liant phosphopotassique ou phosphate de cesium presentant des proprietes mecaniques ameliorees comprenant une etape de pre-melange
US20230310229A1 (en) 2022-04-04 2023-10-05 The Procter & Gamble Company Absorbent articles including a waist panel
EP4279050A1 (en) 2022-05-16 2023-11-22 The Procter & Gamble Company Absorbent article
EP4279049A1 (en) 2022-05-16 2023-11-22 The Procter & Gamble Company Method for making an absorbent article and absorbent article
WO2023250479A1 (en) 2022-06-24 2023-12-28 The Procter & Gamble Company Absorbent articles containing wetness indicating compositions and methods for manufacture
WO2024006722A1 (en) 2022-06-30 2024-01-04 The Procter & Gamble Company Absorbent articles with frangible pathways adapted for tear propagation between regions of laminates having different numbers of layers of substrates
WO2024026286A1 (en) 2022-07-28 2024-02-01 The Procter & Gamble Company Absorbent articles with disposal fasteners having integral hook fasteners
FR3139733A1 (fr) * 2022-09-15 2024-03-22 IFP Energies Nouvelles Procede de preparation d’un catalyseur a base de carbure de silicium pour la deshydration d’acide hydroxypropanoïque et ses derives
WO2024097529A1 (en) 2022-11-01 2024-05-10 The Procter & Gamble Company Array of absorbent articles with ultrasonically bonded stretch laminates
US20240148562A1 (en) 2022-11-04 2024-05-09 The Procter & Gamble Company Method and apparatus for bonding elastic parts under tension to an advancing carrier
EP4364708A1 (en) 2022-11-07 2024-05-08 The Procter & Gamble Company Array of absorbent articles having waist gasketing elements
US20240253016A1 (en) 2023-01-27 2024-08-01 The Procter & Gamble Company Absorbent articles with bonded stretch laminates
WO2024159065A1 (en) 2023-01-27 2024-08-02 The Procter & Gamble Company Absorbent articles with bonded stretch laminates
US20240269012A1 (en) 2023-02-10 2024-08-15 The Procter & Gamble Company Absorbent articles with barrier leg cuffs having a backfolded inner cuff
EP4442232A1 (en) 2023-04-04 2024-10-09 The Procter & Gamble Company Absorbent article and method for making an absorbent article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859240A (en) * 1956-01-12 1958-11-04 Minnesota Mining & Mfg Production of acrylates by catalytic dehydration of lactic acid and alkyl lactates
US4729978A (en) * 1987-05-04 1988-03-08 Texaco Inc. Catalyst for dehydration of lactic acid to acrylic acid
CN101176847A (zh) * 2007-11-27 2008-05-14 浙江大学 复合硫酸盐脱水催化剂和用其制备丙烯酸及其甲酯的方法
CN101537362A (zh) * 2009-04-22 2009-09-23 中国科学院上海有机化学研究所 活性炭催化剂、制备方法和在乳酸脱水制备丙烯酸中的应用

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2444538A (en) 1943-08-19 1948-07-06 Celanese Corp Process for the production of butadiene and catalyst therefor
DE1062696B (de) 1952-11-06 1959-08-06 Minnesota Mining & Mfg Verfahren zur Herstellung von Acrylsaeure oder ihren Alkylestern aus Milchsaeure oder Milchsaeurealkylestern
US3005456A (en) * 1956-07-03 1961-10-24 Personal Products Corp Catamenial device
FR2087011A5 (ru) 1970-04-16 1971-12-31 Raffinage Cie Francaise
FR2262005B1 (ru) 1974-02-22 1978-01-06 Raffinage Cie Francaise
US4028424A (en) * 1974-11-15 1977-06-07 Japan Synthetic Rubber Co., Ltd. Process for preparing unsaturated alcohols
CA1058214A (en) * 1975-10-30 1979-07-10 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Process for preparing sorbic acid
JPS5767534A (en) * 1980-10-16 1982-04-24 Mitsui Toatsu Chem Inc Preparation of alpha,beta-unsaturated carboxylic ester and alpha,beta-unsaturated carboxylic acid
US4521600A (en) * 1982-05-24 1985-06-04 Air Products And Chemicals, Inc. Triethylenediamine preparation via phosphate catalysts
JPS6018690B2 (ja) * 1981-12-30 1985-05-11 住友精化株式会社 吸水性樹脂の吸水性改良方法
CA1249576A (en) * 1984-06-25 1989-01-31 Gary P. Hagen Coformed catalyst
US4786756A (en) 1984-11-05 1988-11-22 The Standard Oil Company Catalytic conversion of lactic acid and ammonium lactate to acrylic acid
DE3510568A1 (de) 1985-03-23 1986-09-25 Hüls AG, 4370 Marl Katalysatorsystem und verfahren zur herstellung von (alpha),(omega)-c(pfeil abwaerts)4(pfeil abwaerts)- bis c(pfeil abwaerts)2(pfeil abwaerts)(pfeil abwaerts)0(pfeil abwaerts)-alkenolen
JPH02160809A (ja) * 1988-12-14 1990-06-20 Toagosei Chem Ind Co Ltd ジアルキルアミノアルキル(メタ)アクリレート用重合防止剤
US5071754A (en) * 1990-01-23 1991-12-10 Battelle Memorial Institute Production of esters of lactic acid, esters of acrylic acid, lactic acid, and acrylic acid
DE69323652T2 (de) 1992-06-10 1999-09-09 Nippon Shokubai Co. Ltd. Verfahren zur Herstellung eines hydrophilen Harzes
DE4442124A1 (de) * 1994-11-26 1996-05-30 Basf Ag Verfahren zur Herstellung von Propandiol-1,2
WO1997018892A1 (en) * 1995-11-17 1997-05-29 Hydrocarbon Technologies, Inc. Supported solid superacid catalysts and method for making them
JPH10310557A (ja) * 1997-05-09 1998-11-24 Mitsui Chem Inc ナフタレンジカルボン酸のエチレングリコールエステル混合物の製造方法およびポリエチレンナフタレートの製造方法
DE19829477A1 (de) 1998-07-01 2000-01-05 Basf Ag Verfahren zur Reinigung von Acrylsäure oder Methacrylsäure durch Kristallisation und Destillation
US20050221457A1 (en) * 2002-03-25 2005-10-06 Paraskevas Tsobanakis Methods of manufacturing derivatives of beta-hydroxycarboxylic acids
DE10221176A1 (de) * 2002-05-13 2003-11-27 Basf Ag Verfahren zur Herstellung geruchsarmer Hydrogelbildender Polymerisate
US6900283B2 (en) * 2002-11-04 2005-05-31 General Electric Company Method for making stable, homogeneous melt solutions
JPWO2005012369A1 (ja) 2003-08-04 2006-09-14 住友精化株式会社 吸水性樹脂の製造方法
US20060173432A1 (en) * 2005-02-01 2006-08-03 Laumer Jason M Absorbent articles comprising polyamine-coated superabsorbent polymers
US8481664B2 (en) * 2005-04-12 2013-07-09 Nippon Shokubai Co., Ltd. Particulate water absorbing agent including polyacrylic acid (polyacrylate) based water absorbing resin as a principal component, method for production thereof, water-absorbent core and absorbing article in which the particulate water absorbing agent is used
US7683220B2 (en) 2006-03-30 2010-03-23 Nippon Shokubai Co., Ltd. Process for production of acrolein
DE102006039203B4 (de) 2006-08-22 2014-06-18 Evonik Degussa Gmbh Verfahren zur Herstellung von durch Kristallisation gereinigter Acrylsäure aus Hydroxypropionsäure sowie Vorrichtung dazu
SA08290402B1 (ar) 2007-07-04 2014-05-22 نيبون شوكوباي كو. ، ليمتد عامل دقائقي ماص للماء وطريقة لتصنيعه
JP4822559B2 (ja) * 2007-09-19 2011-11-24 ローム アンド ハース カンパニー (メタ)アクリル酸生成物流からのプロピオン酸の選択的減少のための改良された方法
EP2371801A4 (en) 2008-12-26 2012-10-17 Nippon Catalytic Chem Ind PROCESS FOR THE PRODUCTION OF ACRYLIC ACID
CN101474572B (zh) * 2009-01-15 2010-12-29 中国石油化工股份有限公司 一种用于制备生物基丙烯酸的高寿命催化剂
US8648161B2 (en) 2009-02-06 2014-02-11 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) -based water-absorbent resin and a method for producing it
JP5600670B2 (ja) 2009-02-17 2014-10-01 株式会社日本触媒 ポリアクリル酸系吸水性樹脂粉末およびその製造方法
JP5458369B2 (ja) * 2009-02-20 2014-04-02 オリンパステルモバイオマテリアル株式会社 ナトリウム含有リン酸カルシウム組成物の製造方法
KR101109690B1 (ko) * 2009-07-01 2012-02-20 한국과학기술원 하향식 선형 증발원 및 이를 이용한 박막 형성 장치
CN101602010B (zh) 2009-07-08 2012-01-25 中国科学院上海有机化学研究所 分子筛催化剂、制备方法及其在乳酸脱水制备丙烯酸中的应用
KR101033660B1 (ko) * 2009-08-27 2011-05-12 한국화학연구원 젖산 에스테르의 탈수 반응용 인산칼슘-실리카 촉매 및 그의 제조방법 및 이를 이용하여 젖산 에스테르로부터 아크릴계 화합물을 제조하는 방법
KR101907699B1 (ko) * 2009-11-02 2018-10-12 맨카인드 코포레이션 침전 프로세스에서 약제학적 입자를 제조하기 위한 반응기
EP2371869A1 (en) * 2010-03-30 2011-10-05 Evonik Stockhausen GmbH A process for the production of a superabsorbent polymer
KR101187804B1 (ko) * 2010-09-08 2012-10-09 한국화학연구원 젖산 에스테르로부터 아크릴산과 아크릴산 에스테르를 제조하는 방법
WO2012156921A1 (en) * 2011-05-16 2012-11-22 Council Of Scientific & Industrial Research An improved process for catalytic dehydration of lactic acid to acrylic acid
US20110319849A1 (en) * 2011-07-01 2011-12-29 Dimitris Ioannis Collias Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article
CN102516038A (zh) * 2011-11-18 2012-06-27 浙江师范大学 一种多聚甘油的生产方法
US10106484B2 (en) * 2012-04-11 2018-10-23 The Procter & Gamble Company Catalysts for the conversion of hydroxypropionic acid or its derivatives to acrylic acid or its derivatives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859240A (en) * 1956-01-12 1958-11-04 Minnesota Mining & Mfg Production of acrylates by catalytic dehydration of lactic acid and alkyl lactates
US4729978A (en) * 1987-05-04 1988-03-08 Texaco Inc. Catalyst for dehydration of lactic acid to acrylic acid
CN101176847A (zh) * 2007-11-27 2008-05-14 浙江大学 复合硫酸盐脱水催化剂和用其制备丙烯酸及其甲酯的方法
CN101537362A (zh) * 2009-04-22 2009-09-23 中国科学院上海有机化学研究所 活性炭催化剂、制备方法和在乳酸脱水制备丙烯酸中的应用

Also Published As

Publication number Publication date
US20130274516A1 (en) 2013-10-17
CA2869229C (en) 2016-11-29
JP2014530095A (ja) 2014-11-17
SG11201405711YA (en) 2014-10-30
JP2014528941A (ja) 2014-10-30
JP6046802B2 (ja) 2016-12-21
US10294186B2 (en) 2019-05-21
WO2013155270A3 (en) 2013-12-05
CA2869677C (en) 2019-11-12
JP2014518874A (ja) 2014-08-07
BR112014025354B1 (pt) 2020-02-04
EP2688927B1 (en) 2015-12-09
US20180127348A1 (en) 2018-05-10
EP2836300B1 (en) 2016-11-09
IN2014DN07416A (ru) 2015-04-24
ES2613273T3 (es) 2017-05-23
CN103764698A (zh) 2014-04-30
CN104220411B (zh) 2016-05-18
MX366550B (es) 2019-07-12
RU2014135176A (ru) 2016-03-20
US20130274697A1 (en) 2013-10-17
EP2836522A1 (en) 2015-02-18
US9505697B2 (en) 2016-11-29
EP2688927A1 (en) 2014-01-29
US20150031913A1 (en) 2015-01-29
MY165081A (en) 2018-02-28
JP2015517905A (ja) 2015-06-25
CN104220411A (zh) 2014-12-17
US9926256B2 (en) 2018-03-27
MX2014011400A (es) 2014-11-25
EP2836477A2 (en) 2015-02-18
CA2869403C (en) 2019-12-17
WO2013155245A4 (en) 2014-01-23
MY164869A (en) 2018-01-30
SG11201405315QA (en) 2014-09-26
JP5993084B2 (ja) 2016-09-14
US20160031793A1 (en) 2016-02-04
CN104220412A (zh) 2014-12-17
US10106484B2 (en) 2018-10-23
MY164542A (en) 2018-01-15
SG11201406510SA (en) 2014-11-27
RU2014136558A (ru) 2016-03-27
MX2014011524A (es) 2015-01-16
CA2869403A1 (en) 2013-10-17
CA2869319A1 (en) 2013-10-17
WO2013155270A2 (en) 2013-10-17
CN106928048A (zh) 2017-07-07
RU2591192C2 (ru) 2016-07-10
AU2013245858A1 (en) 2014-10-30
AU2013245900A1 (en) 2014-10-30
BR112014025348B1 (pt) 2020-12-29
RU2014138725A (ru) 2016-04-10
RU2014138178A (ru) 2016-04-10
US9809527B2 (en) 2017-11-07
WO2013155245A2 (en) 2013-10-17
IN2014DN08405A (ru) 2015-05-08
US20130274514A1 (en) 2013-10-17
MY165576A (en) 2018-04-05
AU2013245925A1 (en) 2014-10-30
MX369927B (es) 2019-11-26
CA2869457C (en) 2020-10-27
US8884050B2 (en) 2014-11-11
EP2836300A2 (en) 2015-02-18
US9714208B2 (en) 2017-07-25
MX2014011396A (es) 2014-11-25
JP5770942B2 (ja) 2015-08-26
AU2013245859B2 (en) 2015-12-03
CN103764281A (zh) 2014-04-30
BR112014025359B1 (pt) 2020-11-24
US9422222B2 (en) 2016-08-23
EP2836477B1 (en) 2019-08-07
MX2014011406A (es) 2014-11-25
IN2014DN08423A (ru) 2015-05-08
EP2836476A2 (en) 2015-02-18
US20130274512A1 (en) 2013-10-17
ES2909406T3 (es) 2022-05-06
US20130274513A1 (en) 2013-10-17
CN106928048B (zh) 2020-06-09
RU2586327C2 (ru) 2016-06-10
SG11201406511VA (en) 2014-11-27
WO2013155297A2 (en) 2013-10-17
CN104220412B (zh) 2018-04-24
WO2013155298A1 (en) 2013-10-17
CA2869677A1 (en) 2013-10-17
CN103764698B (zh) 2016-01-06
ES2611360T3 (es) 2017-05-08
WO2013155297A3 (en) 2013-11-28
WO2013155270A9 (en) 2014-01-30
US20150031912A1 (en) 2015-01-29
CA2869229A1 (en) 2013-10-17
AU2013245858B2 (en) 2016-07-07
AU2013245856A1 (en) 2014-10-30
AU2013245859A1 (en) 2014-10-30
WO2013155298A9 (en) 2013-12-27
AU2013245856B2 (en) 2015-12-03
MY164935A (en) 2018-02-15
CN103781809A (zh) 2014-05-07
IN2014DN08015A (ru) 2015-05-01
RU2014139167A (ru) 2016-04-20
WO2013155295A1 (en) 2013-10-17
US20190176135A9 (en) 2019-06-13
JP5688187B2 (ja) 2015-03-25
AU2013245925B2 (en) 2016-07-07
MX2014011545A (es) 2015-03-19
US20130274095A1 (en) 2013-10-17
ES2750448T3 (es) 2020-03-25
BR112014025347B1 (pt) 2020-12-01
CA2869319C (en) 2017-03-28
SG11201406512WA (en) 2014-11-27
IN2014DN08292A (ru) 2015-05-15
US20170362158A1 (en) 2017-12-21
US20130274518A1 (en) 2013-10-17
JP2015516292A (ja) 2015-06-11
ES2563858T3 (es) 2016-03-16
BR112014025364B1 (pt) 2021-01-05
WO2013155245A3 (en) 2013-11-28
CA2869457A1 (en) 2013-10-17
US9630901B2 (en) 2017-04-25
EP2836476B1 (en) 2022-02-23
RU2587494C2 (ru) 2016-06-20
AU2013245900B2 (en) 2016-07-07
MX366549B (es) 2019-07-12
JP5746441B2 (ja) 2015-07-08
US20130274094A1 (en) 2013-10-17
EP2836522B1 (en) 2016-11-16
RU2598380C2 (ru) 2016-09-27

Similar Documents

Publication Publication Date Title
RU2586329C2 (ru) Катализаторы для получения акриловой кислоты или ее производных