RU2586327C2 - Каталитическая конверсия гидроксипропионовой кислоты или ее производных в акриловую кислоту и ее производные - Google Patents

Каталитическая конверсия гидроксипропионовой кислоты или ее производных в акриловую кислоту и ее производные Download PDF

Info

Publication number
RU2586327C2
RU2586327C2 RU2014135176/04A RU2014135176A RU2586327C2 RU 2586327 C2 RU2586327 C2 RU 2586327C2 RU 2014135176/04 A RU2014135176/04 A RU 2014135176/04A RU 2014135176 A RU2014135176 A RU 2014135176A RU 2586327 C2 RU2586327 C2 RU 2586327C2
Authority
RU
Russia
Prior art keywords
catalyst
phosphorus
acid
mixtures
acrylic acid
Prior art date
Application number
RU2014135176/04A
Other languages
English (en)
Other versions
RU2014135176A (ru
Inventor
Джанетт Виллалобос ЛИНГОЕС
Хуан Эстебан ВЕЛАСКЕС
Джейн Эллен ГОДЛЕВСКИ
Димитрис Иоаннис КОЛЛИАС
Original Assignee
Дзе Проктер Энд Гэмбл Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дзе Проктер Энд Гэмбл Компани filed Critical Дзе Проктер Энд Гэмбл Компани
Publication of RU2014135176A publication Critical patent/RU2014135176A/ru
Application granted granted Critical
Publication of RU2586327C2 publication Critical patent/RU2586327C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1806Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with alkaline or alkaline earth metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1804Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1808Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1811Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1817Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with copper, silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/182Phosphorus; Compounds thereof with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1856Phosphorus; Compounds thereof with iron group metals or platinum group metals with platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/187Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/25Nitrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/48Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • A61F2013/530489Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials being randomly mixed in with other material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • A61F2013/530489Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials being randomly mixed in with other material
    • A61F2013/530496Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials being randomly mixed in with other material being fixed to fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/10Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
    • B01J2523/12Sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/10Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
    • B01J2523/13Potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/20Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
    • B01J2523/23Calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/20Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
    • B01J2523/25Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/50Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
    • B01J2523/51Phosphorus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к способам получения акриловой кислоты, производных акриловой кислоты или их смесей, где, в частности, способ включает стадию, на которой вводят в контакт поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, с катализатором, содержащим (a) по меньшей мере один анион конденсированного фосфата, который выбирают из группы, состоящей из формул (I), (II) и (III), где n составляет по меньшей мере 2 и m составляет по меньшей мере 1; и (b) по меньшей мере два различных катиона, причем указанные катионы включают: (i) по меньшей мере, один одновалентный катион и (ii) по меньшей мере один многовалентный катион; при этом катализатор, по существу, нейтрально заряжен; и дополнительно при этом мольное соотношение фосфора и указанных по меньшей мере двух различных катионов составляет от 0,7 до 1,7, с получением таким образом акриловой кислоты, производных акриловой кислоты или их смесей в результате приведения в контакт указанного потока с указанным катализатором. Способы каталитической дегидратации гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в акриловую кислоту, производные акриловой кислоты или их смеси осуществляются с высоким выходом и селективностью и без значительной конверсии в нежелательные побочные продукты, такие как ацетальдегид, пропионовая кислота и уксусная кислота. 5 н. и 30 з.п. ф-лы, 4 табл., 15 пр.
Figure 00000092
Figure 00000093

Description

Область техники, к которой относится изобретение
Настоящее изобретение, в целом, относится к способам каталитической конверсии гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в акриловую кислоту, производные акриловой кислоты или их смеси. Более конкретно, настоящее изобретение относится к способам применения катализаторов, полезным для дегидратации гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в акриловую кислоту, производные акриловой кислоты или их смеси, с высоким выходом и селективностью в акриловую кислоту, производные акриловой кислоты или их смеси, коротким временем пребывания, и без значительной конверсии гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в нежелательные побочные продукты, такие как, например, ацетальдегид, пропионовая кислота, уксусная кислота, 2,3-пентандион, диоксид углерода и монооксид углерода.
Уровень техники
Акриловая кислота, производные акриловой кислоты или их смеси имеют множество промышленных применений, как правило, потребляемых в виде полимеров. В свою очередь, эти полимеры широко используются в производстве, среди прочего, адгезивов, связующих веществ, покрытий, красок, полиролей, моющих средств, флокулянтов, диспергаторов, тиксотропных веществ, секвестрантов и суперабсорбирующих полимеров, которые используются в одноразовых абсорбирующих изделиях, в том числе подгузниках и гигиенических продуктах, например. Акриловую кислоту обычно получают из источников нефти. Например, акриловую кислоту уже давно получают путем каталитического окисления пропилена. Эти и другие способы получения акриловой кислоты из источников нефти, описаны в Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 1, pgs. 342-369 (5th Ed., John Wiley & Sons, Inc., 2004). Акриловая кислота, полученная из нефти, способствует парниковым выбросам благодаря своему высокому содержанию углерода на основе нефти. Дополнительно, нефть является не возобновляемым материалом, так как сотни тысяч лет необходимы для природного образования и только короткое время для потребления. Поскольку нефтехимические ресурсы становятся все более скудными, дорогими и подчиняются правилам для выбросов CO2, существует растущий спрос на полученную из биологического сырья акриловую кислоту, производные акриловой кислоты или их смеси, которые могут служить в качестве альтернативы акриловой кислоте, производным акриловой кислоты или их смесям, полученным из нефти.
В течение последних 40-50 лет были сделаны многие попытки, чтобы получить акриловую кислоту, производные акриловой кислоты или их смеси, полученные из биологического сырья, из источников, отличных от нефти, таких как молочная кислота (также известная как 2-гидроксипропионовая кислота), 3-гидроксипропионовая кислота, глицерин, монооксид углерода и этиленоксид, диоксид углерода и этилен, и кротоновая кислота. Из этих источников, отличных от нефти, только молочную кислоту получают сегодня с высоким выходом из сахара (≥90% теоретического выхода, или эквивалентно ≥0,9 г молочной кислоты на грамм сахара) и чистотой, и экономикой, которые могли бы поддерживать получение акриловой кислоты при стоимости, конкурентной для акриловой кислоты, полученной из нефти. Как таковая, молочная кислота или лактат представляет собой реальную возможность служить в качестве сырья для акриловой кислоты, производных акриловой кислоты или их смесей, полученных из биологического сырья. Кроме того, 3-гидроксипропионовая кислота, как ожидается, будет производиться в коммерческих масштабах в течение нескольких лет, и в этом качестве, 3-гидропропионовая кислота представит еще одну реальную возможность служить в качестве сырья для акриловой кислоты, производных акриловой кислоты или их смесей, полученных из биологического сырья. Сульфатные соли; фосфатные соли; смеси сульфатных и фосфатных солей; основания; цеолиты или модифицированные цеолиты; оксиды металлов или модифицированные оксиды металлов; и сверхкритическая вода являются основными катализаторами, которые были использованы для дегидратации молочной кислоты или лактата в акриловую кислоту, производные акриловой кислоты или их смеси, в прошлом, с различной степенью успеха.
Например, в патенте США №4,786,756 (выдан в 1988 году), описывается дегидратация в паровой фазе молочной кислоты или лактата аммония в акриловую кислоту с помощью фосфата алюминия (AlPO4), который обрабатывают водным неорганическим основанием в качестве катализатора. В качестве примера, ′756 патент раскрывает максимальный выход акриловой кислоты 43,3%, когда молочную кислоту подают в реактор приблизительно при атмосферном давлении, и соответствующий выход 61,1%, когда лактат аммония подают в реактор. В обоих примерах, ацетальдегид был получен с выходами 34,7% и 11,9%, соответственно, и другие побочные продукты также присутствовали в больших количествах, такие как, пропионовая кислота, CO и CO2. Отсутствие обработки основанием вызвало повышенное количество побочных продуктов. Другим примером является Hong et al. (2011) Appl. Catal. A: General 396:194-200, который разработал и испытал композитные катализаторы, приготовленные с Са3(PO4)2 и Ca2(P2O7) солями методом суспензионного смешивания. Катализатор с наиболее высоким выходом акриловой кислоты из метиллактата был 50%-50% (по массе) катализатор. Это дает выход 68% акриловой кислоты, приблизительно 5% метилакрилата и приблизительно 14% ацетальдегида при 390°C. Тот же катализатор приводит к 54% выходу акриловой кислоты, 14% выходу ацетальдегида и 14% выходу пропионовой кислоты из молочной кислоты.
Группа профессора Д. Миллера в Мичиганском государственном университете (MSU) опубликовала много работ по дегидратации молочной кислоты или сложных эфиров молочной кислоты в акриловую кислоту и 2,3-пентандион, такие как, Gunter et al. (1994) J. Catalysis 148: 252-260; и Tam et al (1999) Ind. Eng. Chem. Res. 38: 3873-3877. Лучшие выходы акриловой кислоты, представленные группой, составляли приблизительно 33%, когда молочную кислоту дегидратировали при 350°C на более низкой площади поверхности и объеме пор кремнезема, пропитанного NaOH. В том же самом эксперименте, выход ацетальдегида составлял 14,7% и выход пропионовой кислоты составлял 4,1%. Примеры других катализаторов, проверенных группой, были Na2SO4, NaCl, Na3PO4, NaNO3, Na2SiO3, Na4P2O7, NaH2PO4, Na2HPO4, Na2HAsO4, NaC3H5O3, NaOH, CsCl, Cs2SO4, KOH, CsOH и LiOH. Во всех случаях, на которые ссылаются выше, катализаторы были испытаны в качестве отдельных компонентов, а не в виде смесей. Наконец, группа предположила, что выход в акриловую кислоту улучшается, а выход в побочные продукты подавляется, когда площадь поверхности на носителе из кремнезема является низкой, температура реакции является высокой, давление реакции является низким, и время пребывания реагентов в слое катализатора короткое.
И, наконец, китайская заявка на патент 200910054519.7 раскрывает применение ZSM-5 молекулярных сит, модифицированных с помощью водного раствора щелочи (например, NH3, NaOH и Na2CO3) или соли фосфорной кислоты (например, NaH2PO4, Na2HPO4, LiH2PO4, LaPO4 и т.д.). Лучший выход акриловой кислоты, который достигается при дегидратации молочной кислоты, составлял 83,9%, однако, данный выход получен при очень длительных сроках пребывания.
Таким образом, производство акриловой кислоты, производных акриловой кислоты или их смесей из молочной кислоты или лактата способами, такими, как те, которые описаны в литературе, как отмечалось выше, показало: 1) выходы акриловой кислоты, производных акриловой кислоты или их смесей не превышают 70%; 2) низкие селективности получения акриловой кислоты, производных акриловой кислоты или их смесей, то есть, значительные количества нежелательных побочных продуктов, таких как, ацетальдегид, 2,3-пентандион, пропионовая кислота, CO и CO2; 3) длительное время пребывания в слоях катализатора; и 4) дезактивацию катализатора в короткое время в потоке (TOS). Побочные продукты могут осаждаться на катализатор, приводя в результате к загрязнению, и преждевременной и быстрой дезактивации катализатора. Кроме того, после осаждения, эти побочные продукты могут катализировать другие нежелательные реакции, такие как реакции полимеризации. Кроме осаждения на катализаторы, эти побочные продукты, даже если они присутствуют только в малых количествах, приводят к дополнительным затратам при обработке акриловой кислоты (если они присутствуют в сточных водах продукта реакции) в производстве суперабсорбирующих полимеров (SAP), например. Эти недостатки известных способов и катализаторов делают их коммерчески нежизнеспособными.
Таким образом, существует потребность в катализаторах и способах дегидратации гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в акриловую кислоту, производные акриловой кислоты или их смеси, с высоким выходом, селективностью и эффективностью (т.е. коротким временем пребывания) и высокой долговечностью катализаторов.
Сущность изобретения
Представлен способ получения акриловой кислоты, производных акриловой кислоты или их смесей. В одном осуществлении, способ включает стадию, на которой вводят в контакт поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, с катализатором, содержащим: (a) по меньшей мере один анион конденсированного фосфата, который выбирают из группы, состоящей из формул (I), (II) и (III)
Figure 00000001
Figure 00000002
Figure 00000003
где n составляет по меньшей мере 2 и m составляет по меньшей мере 1, и (b) по меньшей мере два различных катиона, при этом катализатор, по существу, нейтрально заряжен, и дополнительно, при этом мольное соотношение фосфора и по меньшей мере двух различных катионов составляет от приблизительно 0,7 до приблизительно 1,7, таким образом получая акриловую кислоту, производные акриловой кислоты или их смеси в результате приведения в контакт указанного потока с указанным катализатором. Анионы, определенные формулами (I), (II) и (III), также называют полифосфатами (или олигофосфатами), циклофосфатами, и ультрафосфатами, соответственно.
В одном осуществлении настоящего изобретения, способ получения акриловой кислоты включает стадию, на которой вводят в контакт: (a) газообразный поток, содержащий: (i) молочную кислоту, (ii) воду и (iii) азот, при этом указанная молочная кислота присутствует в количестве приблизительно 2,5 мол.%, и причем указанная вода присутствует в количестве приблизительно 50 мол.%, исходя из общего количества молей указанного газообразного потока, с (b) катализатором, содержащим (i) Ва2-x-sK2xH2sP2O7 и (ii) (KPO3)n, где x и s превышают или равны 0 и менее, чем приблизительно 0,5 и n представляет собой положительное целое число, при этом указанную стадию приведения в контакт указанного газообразного потока с указанным катализатором выполняют при температуре от приблизительно 300°C до приблизительно 450°C, при часовой объемной скорости газа (GHSV) приблизительно 3600 ч-1 и при давлении приблизительно 360 фунт/кв. дюйм изб., в реакторе, имеющем внутреннюю поверхность, содержащую материал, который выбирают из группы, состоящей из кварца и боросиликатного стекла, таким образом с получением акриловой кислоты в результате приведения в контакт указанной молочной кислоты с указанным катализатором.
В другом осуществлении настоящего изобретения, способ получения акриловой кислоты включает стадию, на которой вводят в контакт: (a) газообразный поток, содержащий: (i) молочную кислоту, (ii) воду и (iii) азот, при этом указанная молочная кислота присутствует в количестве приблизительно 2,5 мол.%, и причем указанная вода присутствует в количестве 50 мол.%, исходя из общего количества молей указанного газообразного потока, с (b) катализатором, полученным способом, включающим следующие стадии, на которых: (i) объединяют соединение, содержащее фосфор, нитратную соль, фосфорную кислоту и воду с образованием влажной смеси, при этом мольное соотношение фосфора и катионов, как в указанном соединении, содержащем фосфор, так и в указанной нитратной соли, составляет приблизительно 1; (ii) прокаливают указанную влажную смесь постадийно при приблизительно 50°C, приблизительно 80°C, приблизительно 120°C и при приблизительно от 450°C до приблизительно 550°C с получением высушенного твердого вещества; и (iii) измельчают и просеивают указанное высушенное твердое вещество до размера от приблизительно 100 мкм до приблизительно 200 мкм, с получением указанного катализатора, и причем указанную стадию приведения в контакт указанного газообразного потока с указанным катализатором выполняют при температуре от приблизительно 300°C до приблизительно 450°C, при GHSV приблизительно 3600 ч-1 и при давлении приблизительно 360 фунт/кв. дюйм изб., в реакторе, имеющем внутреннюю поверхность, содержащую материал, который выбирают из группы, состоящей из кварца и боросиликатного стекла, таким образом с получением акриловой кислоты в результате приведения в контакт указанной молочной кислоты с указанным катализатором.
В еще одном осуществлении настоящего изобретения, способ получения акриловой кислоты включает стадию, на которой вводят в контакт: (а) газообразный поток, содержащий: (i) молочную кислоту, (ii) воду и (iii) азот, при этом указанная молочная кислота присутствует в количестве приблизительно 2,5 мол.%, и причем указанная вода присутствует в количестве приблизительно 50 мол.%, исходя из общего количества молей указанного газообразного потока, с (b) катализатором, полученным способом, включающим следующие стадии, на которых: (i) объединяют Ca2P2O7 и KH2PO4 в мольном соотношении приблизительно 3:1 с образованием твердой смеси; и (ii) прокаливают указанную твердую смесь постадийно при приблизительно 50°C, приблизительно 80°C, приблизительно 120°C и при приблизительно от 450°C до приблизительно 550°C, с получением указанного катализатора; и при этом указанную стадию приведения в контакт указанного газообразного потока с указанным катализатором выполняют при температуре от приблизительно 300°C до приблизительно 450°C, при GHSV приблизительно 3600 ч-1 и при давлении приблизительно 360 фунт/кв. дюйм изб., в реакторе, имеющем внутреннюю поверхность, содержащую материал, который выбирают из группы, состоящей из кварца и боросиликатного стекла, таким образом с получением акриловой кислоты в результате приведения в контакт указанной молочной кислоты с указанным катализатором.
Дополнительные признаки настоящего изобретения станут очевидными специалистам в данной области техники после рассмотрения приведенного ниже подробного описания настоящего изобретения в сочетании с примерами.
Подробное описание изобретения
I Определения
Как используют в данной заявке, термин «монофосфат» или «ортофосфат» относится к любой соли, анионный фрагмент которой, [PO4]3-, состоит из четырех атомов кислорода, расположенных в почти правильной тетраэдрической матрице с приблизительно центральным атомом фосфора.
Как используют в данной заявке, термин «конденсированный фосфат» относится к любым солям, содержащим одну или несколько P-O-P связей, образованных углом, общим с PO4 тетраэдром.
Как используют в данной заявке, термин «полифосфат» относится к любым конденсированным фосфатам, содержащим линейные P-O-P связи, образованные углом, общим с PO4 тетраэдром, приводя к образованию конечных цепей.
Как используют в данной заявке, термин «олигофосфат» относится к любым полифосфатам, содержащим пять или менее PO4 звеньев.
Как используют в данной заявке, термин «циклофосфат» относится к любому циклическому конденсированному фосфату, состоящему из двух или более имеющих общий угол PO4 тетраэдров.
Как используют в данной заявке, термин «ультрафосфат» относится к любому конденсированному фосфату, где по меньшей мере два PO4 тетраэдра анионного фрагмента имеют три общих угла с прилегающими углами.
Как используют в данной заявке, термин «катион» относится к любому атому или группе ковалентно-связанных атомов, имеющих положительный заряд.
Как используют в данной заявке, термин «анион» относится к любому атому или группе ковалентно-связанных атомов, имеющих отрицательный заряд.
Как используют в данной заявке, термин «одновалентный катион» относится к любому катиону с положительным зарядом +1.
Как используют в данной заявке, термин «многовалентный катион» относится к любому катиону с положительным зарядом равным или более, чем +2.
Как используют в данной заявке, термин «гетерополианион» относится к любому аниону с ковалентно связанным XOp и YOr полиэдром и включает X-O-Y и возможно Х-О-Х и Y-O-Y связи, где X и Y представляют собой любые атомы и где p и r представляют собой любые положительные целые числа.
Как используют в данной заявке, термин «гетерополифосфат» относится к любому гетерополианиону, где X представляет собой фосфор (P) и Y означает любой другой атом.
Как используют в данной заявке, термин «фосфатный аддукт» относится к любому соединению с одним или более фосфатными анионами, и одним или более нефосфатными анионами, не связанными ковалентно.
Как используют в данной заявке, термины «LA» относится к молочной кислоте, «AA» относится к акриловой кислоте, «AcH» относится к ацетальдегиду и «PA» относится к пропионовой кислоте.
Как используют в данной заявке, термин «разброс значений диаметра частиц» относится к статистическому представлению данной пробы частиц и равен (Dν,0,90-Dν,0,10)/Dν,0,50. Термин «медианный размер частиц» или Dν,0,50 относится к диаметру частицы, менее которого находятся 50% общего объема частиц. Дополнительно, Dν,0,10 относится к размеру частицы, отделяющему пробу частицы при 10% по объемной фракции и Dν,0,90, представляет собой размер частицы, отделяющий пробу частицы при 90% по объемной фракции.
Как используют в данной заявке, термин «конверсия» в % определяют как [скорость втекания гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей (моль/мин)-скорость вытекания гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей (моль/мин)]/[скорость втекания гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей (моль/мин)]∗100. Для целей настоящего изобретения, термин «конверсия» означает мольную конверсию, если не указано иное.
Как используют в данной заявке, термин «выход» в % определен как [скорость вытекания продукта (моль/мин)/скорость втекания гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей (моль/мин)]∗100. Для целей настоящего изобретения, термин «выход» означает мольный выход, если не указано иное.
Как используют в данной заявке, термин «селективность» в % определен как [Выход/Конверсия]∗100. Для целей настоящего изобретения, термин «ь» означает мольную селективность, если не указано иное.
Как используют в данной заявке, термин «общая скорость вытекания» в моль/мин и для гидроксипропионовой кислоты определен как: (2/3)∗[скорость вытекания C2 (моль/мин)] + [скорость вытекания C3 (моль/мин)] + (2/3)∗[скорость вытекания ацетальдегида (моль/мин)] + (4/3)∗[скорость вытекания C4 (моль/мин)] + [скорость вытекания гидроксипропионовой кислоты (моль/мин)] + [скорость вытекания виноградной кислоты (моль/мин)] + (2/3)∗[скорость вытекания уксусной кислоты (моль/мин)] + [скорость вытекания 1,2-пропандиола (моль/мин)] + [скорость вытекания пропионовой кислоты (моль/мин)] + [скорость вытекания акриловой кислоты (моль/мин)] + (5/3)∗[скорость вытекания 2,3-пентандиона (моль/мин)] + (1/3)∗[скорость вытекания монооксида углерода (моль/мин)] + (1/3)∗[скорость вытекания диоксида углерода (моль/мин)]. Если используют производное гидроксипропионовой кислоты вместо гидроксипропионовой кислоты, указанная выше формула должна быть скорректирована на количество атомов углерода в производном гидроксипропионовой кислоты.
Как используют в данной заявке, термин «C2» означает этан и этилен.
Как используют в данной заявке, термин «C3» означает пропан и пропилен.
Как используют в данной заявке, термин «C4» означает бутан и бутены.
Как используют в данной заявке, термин «общий мольный баланс» или «ТМВ» в % определен как [общая скорость вытекания (моль/мин)/скорость втекания гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей (моль/мин)]∗100.
Как используют в данной заявке, термин «выход акриловой кислоты скорректирован на ТМВ» определен как [выход акриловой кислоты/общий мольный баланс]∗100, для учета слегка более высоких потоков в реакторе.
Как используют в данной заявке, термин «часовая объемная скорость газа» или «GHSV» в ч-1 определен как [Общая скорость потока газа (мл/мин)/объем слоя катализатора (мл)]/60. Общая скорость потока газа рассчитывается в условиях стандартной температуры и давления (STP; 0°C и 1 атм).
Как используют в данной заявке, термин «часовая объемная скорость жидкости» или «LHSV» в ч-1 определен как [Общая скорость потока жидкости (мл/мин)/объем слоя катализатора (мл)]/60.
II Катализаторы
Неожиданно было обнаружено, что смешанные конденсированные фосфатные катализаторы дегидратируют гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси в акриловую кислоту, производные акриловой кислоты или их смеси с высоким: 1) выходом и селективностью получения акриловой кислоты, производных акриловой кислоты или их смесей, то есть низким количеством побочных продуктов и немногими побочными продуктами; 2) эффективностью, т.е. производительностью за короткое время пребывания; и 3) долговечностью. Не желая быть связанными какой-либо теорией, заявители предполагают, что катализатор, который содержит по меньшей мере один анион конденсированного фосфата и два различных катиона, работает следующим образом: карбоксилатная группа гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей, связывается с одним или несколькими катионами, которые в одном осуществлении являются многовалентными, через один или оба атома кислорода, удерживая молекулу на поверхности катализатора, дезактивируя ее от декарбонилирования, и активизируя связь C-OH для устранения. Затем полученный протонированный анион конденсированного фосфата дегидратирует гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси с согласованным протонированием гидроксильной группы, удалением протона из метальной группы, и устранением протонированной гидроксильной группы в качестве молекулы воды, образуя акриловую кислоту, производные акриловой кислоты или их смеси и повторно активизируя катализатор. Дополнительно, заявители считают, что когда гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси разбавляют водой, то некоторые конденсированные фосфатные соли в катализаторе можно гидролизировать до неконденсированных монофосфатов или коротких конденсированных фосфатов, которые могут быть преобразованы в жидком состоянии в надлежащих условиях температуры и давления, что способствует дегидратации гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей.
В одном осуществлении, катализатор содержит: (a) по меньшей мере один анион конденсированного фосфата, который выбирают из группы, состоящей из формул (I), (II) и (III)
Figure 00000004
Figure 00000005
Figure 00000003
где n составляет по меньшей мере 2 и m составляет по меньшей мере 1, и (b) по меньшей мере два различных катиона, при этом катализатор, по существу, нейтрально заряжен, и дополнительно, при этом мольное соотношение фосфора и по меньшей мере двух различных катионов составляет от приблизительно 0,7 до приблизительно 1,7.
Анионы, определенные формулами (I), (II) и (III) также называют полифосфатами (или олигофосфатами), циклофосфатами и ультрафосфатами, соответственно.
В другом осуществлении, катализатор содержит: (а) по меньшей мере один анион конденсированного фосфата, который выбирают из группы, состоящей из формул (I) и (II)
Figure 00000006
Figure 00000007
где n составляет по меньшей мере 2, и (b) по меньшей мере два различных катиона, при этом катализатор, по существу, нейтрально заряжен, и дополнительно, при этом мольное соотношение фосфора и по меньшей мере двух различных катионов составляет от приблизительно 0,7 до приблизительно 1,7.
Катионы могут быть одновалентными или многовалентными. В одном осуществлении, один катион является одновалентным и другой катион является многовалентным. В другом осуществлении, многовалентный катион выбирают из группы, состоящей из двухвалентных катионов, трехвалентных катионов, четырехвалентных катионов, пятивалентных катионов и их смесей. Неограничивающие примеры одновалентных катионов представляют собой H+, Li+, Na+, K+, Rb+, Cs+, Ag+, Rb+, Tl+ и их смеси. В одном осуществлении, одновалентный катион выбирают из группы, состоящей из Li+, Na+, K+, Rb+, Cs+ и их смесей; в другом осуществлении, одновалентный катион представляет собой Na+ или K+; и в еще одном осуществлении, одновалентный катион представляет собой K+. Неограничивающие примеры многовалентных катионов представляют собой катионы щелочноземельных металлов (т.е., Be, Mg, Ca, Sr, Ba и Ra), переходных металлов (например, Y, Ti, Zr, V, Nb, Cr, Mo, Mn, Re, Fe, Ru, Co, Rh, Ni, Pd, Pt, Cu, Ag и Au), легких металлов (например, Zn, Ga, Si, Ge, B, Al, In, Sb, Sn, Bi и Pb), лантанидов (например, La и Ce) и актинидов (например, Ac и Th). В одном осуществлении, многовалентный катион выбирают из группы, состоящей из Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Pb2+, Ti3+, Cr3+, Mn3+, Fe3+, Al3+, Ga3+, Y3+, In3+, Sb3+, Bi3+, Si4+, Ti4+, V4+, Ge4+, Mo4+, Pt4+, V5+, Nb5+, Sb5+ и их смесей. В одном осуществлении, многовалентный катион выбирают из группы, состоящей из Ca2+, Ba2+, Cu2+, Mn2+, Mn3+ и их смесей; в другом осуществлении, многовалентный катион выбирают из группы, состоящей из Ca2+, Ba2+, Mn3+ и их смесей; и в еще одном осуществлении, многовалентный катион представляет собой Ba2+.
Катализатор может включать катионы: (a) H+, Li+, Na+, K+, Rb+, Cs+ или их смеси; и (b) Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Pb2+, Ti3+, Cr3+, Mn3+, Fe3+, Al3+, Ga3+, Y3+, In3+, Sb3+, Bi3+, Si4+, Ti4+, V4+, Ge4+, Mo4+, Pt4+, V5+, Nb5+, Sb5+ или их смеси. В одном осуществлении катализатор содержит Li+, Na+ или K+ в качестве одновалентного катиона, и Ca2+, Ba2+ или Mn3+ в качестве многовалентного катиона; в другом осуществлении, катализатор содержит Na+ или K+ в качестве одновалентного катиона, и Ca2+ или Ba2+ в качестве многовалентного катиона; и в еще одном осуществлении, катализатор содержит K+ в качестве одновалентного катиона и Ba2+ в качестве многовалентного катиона.
В одном осуществлении, катализатор содержит Ba2-x-sK2xH2sP2O7 и (KPO3)n, где x и s превышают или равны 0 и менее, чем приблизительно 0,5 и n представляет собой положительное целое число. В другом осуществлении, катализатор содержит Ca2-x-sK2xH2sP2O7 и (KPO3)n, где x и s превышают или равны 0 и менее, чем приблизительно 0,5 и n представляет собой положительное целое число. В еще одном осуществлении, катализатор содержит Mn1-x-sK1+3xH3sP2O7 или Mn1-x-sK2+2xH2sP2O7 и (KPO3)n, где x и s превышают или равны 0 и менее, чем приблизительно 0,5 и n представляет собой положительное целое число. В другом осуществлении, катализатор содержит любую смесь Ba2-x-sK2xH2sP2O7, Са2-x-sK2xH2sP2O7, Mn1-x-sK1+3xH3sP2O7 или Mn1-х-sK2+2xH2sP2O7; и (KPO3)n, где x и s превышают или равны 0 и менее, чем приблизительно 0,5 и n представляет собой положительное целое число.
В одном осуществлении, мольное соотношение фосфора и катионов в катализаторе составляет от приблизительно 0,7 до приблизительно 1,7; в другом осуществлении, мольное соотношение фосфора и катионов в катализаторе составляет от приблизительно 0,8 до приблизительно 1,3; и в еще одном осуществлении, мольное соотношение фосфора и катионов в катализаторе составляет приблизительно 1.
В одном осуществлении, катализатор содержит: (a) по меньшей мере два различных аниона конденсированного фосфата, которые выбирают из группы, состоящей из формул (I), (II) и (III)
Figure 00000008
Figure 00000009
Figure 00000010
где n составляет по меньшей мере 2 и m составляет по меньшей мере 1, и (b) один катион, при этом катализатор, по существу, нейтрально заряжен, и дополнительно, при этом мольное соотношение фосфора и катиона составляет от приблизительно 0,5 до приблизительно 4,0. В другом осуществлении, мольное соотношение фосфора и катиона составляет от приблизительно t/2 до приблизительно t, где t является зарядом катиона.
Катализатор может включать инертный носитель, который выполнен из материала, содержащего силикаты, алюминаты, уголь, оксиды металлов и их смеси. В качестве альтернативы, носитель является инертным по отношению к реакционной смеси, которая, как ожидают, вступит в контакт с катализатором. В контексте реакций, четко описанных в данной заявке, в одном осуществлении носитель представляет собой кремнезем или двуокись циркония с низкой площадью поверхности. Если присутствует, носитель представляет собой количество от приблизительно 5 мас. % до приблизительно 98 мас. %, исходя из общей массы катализатора. Как правило, катализатор, который содержит инертный носитель, может быть выполнен с помощью одного из двух иллюстративных способов: пропитки или совместного осаждения. В способе пропитки, суспензию твердого инертного носителя обрабатывают раствором пре-катализатора, и полученный материал затем активизируют в условиях, которые преобразуют пре-катализатор в более активное состояние. В способе совместного осаждения, однородный раствор ингредиентов катализатора осаждают добавлением дополнительных ингредиентов.
III Способы получения катализатора
В одном осуществлении, способ получения катализатора включает стадии, на которых смешивают и нагревают по меньшей мере два различных соединения, содержащие фосфор, при этом каждое указанное соединение описано одной из формул (IV)-(XXV), или любой из гидратированных форм указанных формул:
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
I
Figure 00000025
Figure 00000026
Figure 00000027
Figure 00000028
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
где MI представляет собой одновалентный катион; где MII представляет собой двухвалентный катион; где MIII представляет собой трехвалентный катион; где MIV представляет собой четырехвалентный катион; где y означает 0, 1, 2 или 3; где z означает 0, 1, 2, 3 или 4; где v означает 0, 1 или 2; где w означает 0 или любое положительное целое число; и где a, b, c, d, e, f, g, h, i, j, k и l означают любые положительные целые числа, таким образом, что удовлетворены уравнения: 2а=b+3c, 3d=е+3f, i=2g+h, и l=3j+k.
В одном осуществлении, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, формулы (IV), где у равен 1, и одного или более соединений, содержащих фосфор, формулы (V), где y равен 2. В другом осуществлении, катализатор получают смешиванием и нагреванием MIH2PO4 и MIIHPO4. В одном осуществлении, MI представляет собой K+ и MII представляет собой Ca2+, т.е., катализатор получают смешиванием и нагреванием KH2PO4 и CaHPO4; или MI представляет собой K и MII представляет собой Ba2+, т.е., катализатор получают смешиванием и нагреванием KH2PO4 и BaHPO4.
В одном осуществлении, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, формулы (IV), где y равен 1, одного или более соединений, содержащих фосфор, формулы (XV), где v равен 2. В другом осуществлении, катализатор получают смешиванием и нагреванием MIH2PO4 и M 2 I I P 2 O 7
Figure 00000033
. В одном осуществлении, MI представляет собой K+ и MII представляет собой Ca2+, т.е. катализатор получают смешиванием и нагреванием KH2PO4 и Ca2P2O7; или MI представляет собой K+ и MII представляет собой Ba2+, т.е. катализатор получают смешиванием и нагреванием KH2PO4 и Ba2P2O7.
В другом осуществлении, мольное соотношение фосфора и катионов в катализаторе составляет от приблизительно 0,7 до приблизительно 1,7; в еще одном осуществлении, мольное соотношение фосфора и катионов в катализаторе составляет от приблизительно 0,8 до приблизительно 1,3; и в другом осуществлении, мольное соотношение фосфора и катионов в катализаторе составляет приблизительно 1.
В другом осуществлении, способ получения катализатора включает стадии, на которых смешивают и нагревают (a) по меньшей мере одно соединение, содержащее фосфор, при этом каждое указанное соединение описано одной из формул (IV)-(XXV), или любой из гидратированных форм указанных формул:
Figure 00000034
Figure 00000035
Figure 00000036
Figure 00000037
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
Figure 00000042
Figure 00000043
Figure 00000044
Figure 00000045
Figure 00000046
Figure 00000047
Figure 00000048
Figure 00000049
Figure 00000050
Figure 00000051
Figure 00000052
Figure 00000053
Figure 00000054
Figure 00000055
где y означает 0, 1, 2 или 3; где z означает 0, 1, 2, 3 или 4; где v означает 0, 1 или 2; где w означает 0 или любое положительное целое число; и где a, b, c, d, e, f, g, h, i, j, k и l означают любые положительные целые числа, таким образом, что уравнения: 2а=b+3c, 3d=е+3f, i=2g+h и l=3j+k удовлетворены, и (b) по меньшей мере одно соединение, не содержащее фосфор, выбранное из группы, состоящей из нитратных солей, карбонатных солей, ацетатных солей, оксидов металлов, хлоридных солей, сульфатных солей и гидроксидов металлов, при этом каждое указанное соединение описано одной из формул (XXVI)-(XL), или любой из гидратированных форм указанных формул:
Figure 00000056
Figure 00000057
Figure 00000058
Figure 00000059
Figure 00000060
Figure 00000061
Figure 00000062
Figure 00000063
Figure 00000064
Figure 00000065
Figure 00000066
Figure 00000067
Figure 00000068
Figure 00000069
Figure 00000070
Figure 00000071
Figure 00000072
Figure 00000073
Figure 00000074
Figure 00000075
Figure 00000076
Figure 00000077
Figure 00000078
Figure 00000079
Figure 00000080
В другом осуществлении, соединения, не содержащие фосфор, могут быть выбраны из группы, состоящей из солей карбоновых кислот, галидных солей, ацетилацетонатов металлов и алкоксидов металлов.
В одном осуществлении настоящего изобретения, мольное соотношение фосфора и катионов в катализаторе составляет от приблизительно 0,7 до приблизительно 1,7; в другом осуществлении, мольное соотношение фосфора и катионов в катализаторе составляет от приблизительно 0,8 до приблизительно 1,3; и в еще одном осуществлении, мольное соотношение фосфора и катионов в катализаторе составляет приблизительно 1.
В другом осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, формул (IV)-(XXV) или их гидратированных форм, и одной или более нитратных солей формул (XXVI)-(XXVIII) или их гидратированных форм. В другом осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, формулы (IV) и одной или более нитратных солей формулы (XXVII). В дополнительном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием соединения, содержащего фосфор, формулы (IV), где y равен 2, соединения, содержащего фосфор, формулы (IV), где y равен 0 (т.е. фосфорной кислоты), и нитратной соли формулы (XXVII). В еще одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием K2HPO4, H3PO4 и Ba(NO3)2. В еще одном осуществлении, катализатор получают смешиванием и нагреванием K2HPO4, H3PO4 и Ca(NO3)2.
В одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, формулы (IV) и одной или более нитратных солей формулы (XXVIII). В дополнительном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием соединения, содержащего фосфор, формулы (IV), где y равен 2, соединения, содержащего фосфор, формулы (IV), где y равен 0 (т.е. фосфорной кислоты) и нитратной соли формулы (XXVIII). В еще одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием K2HPO4, H3PO4 и Mn(NO3)2·4H2O.
В одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, формулы (V) и одной или более нитратных солей формулы (XXVI). В другом осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием соединения, содержащего фосфор, формулы (V), где y равен 2, соединения, содержащего фосфор, формулы (V), где y равен 0 (т.е. фосфорной кислоты) и нитратной соли формулы (XXVI). В еще одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием BaHPO4, H3PO4 и KNO3. В другом осуществлении, катализатор получают смешиванием и нагреванием CaHPO4, H3PO4 и KNO3.
В одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, формулы (V), одного или более соединений, содержащих фосфор, формулы (XV), и одной или более нитратных солей формулы (XXVI). В дополнительном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием соединения, содержащего фосфор, формулы (V), где y равен 0 (т.е. фосфорной кислоты); соединения, содержащего фосфор, формулы (XV), где v равен 2; и нитратной соли формулы (XXVI). В другом осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием H3PO4 Ca2P2O7 и KNO3. В еще одном осуществлении, катализатор получают смешиванием и нагреванием H3PO4, Ba2P2O7 и KNO3.
В другом осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, формулы (VI) и одной или более нитратных солей формулы (XXVI). В другом осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием соединения, содержащего фосфор, формулы (VI), где y равен 3; соединения, содержащего фосфор, формулы (VI), где y равен 0 (т.е. фосфорной кислоты); и нитратной соли формулы (XXVI). В еще одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием MnPO4·qH2O, H3PO4 и KNO3.
В одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, формулы (IV), одного или более соединений, содержащих фосфор, формулы (IX) и одной или более нитратных солей формулы (XXVII). В другом осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием соединения, содержащего фосфор, формулы (IV), где y равен 2; соединения, содержащего фосфор, формулы (IV), где y равен 0 (т.е. фосфорной кислоты); соединения, содержащего фосфор, формулы (IX), где a равен 2, b равен 1, и c равен 1; и нитратной соли формулы (XXVII). В еще одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием K2HPO4, H3PO4, Cu2(OH)PO4 и Ba(NO3)2.
В одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, формулы (V), одного или более соединений, содержащих фосфор, формулы (IX) и одной или более нитратных солей формулы (XXVI). В другом осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием соединения, содержащего фосфор, формулы (V), где y равен 3; соединения, содержащего фосфор, формулы (V), где y равен 0 (т.е. фосфорной кислоты); соединения, содержащего фосфор, формулы (IX), где a равен 2, b равен 1, и c равен 1; и нитратной соли формулы (XXVI). В еще одном осуществлении, катализатор получают смешиванием и нагреванием Ba3(PO4)2, H3PO4, Cu2(OH)PO4 и KNO3.
В одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, описанных одной из формул (IV)-(XXV) или любой гидратированной формы, и одной или более карбонатных солей, описанных одной из формул (XXIX)-(XXXI) или любой гидратированной формы.
В одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, описанных одной из формул (IV)-(XXV) или любой гидратированной формы, и одной или более ацетатных солей, описанных одной из формул (XXXII)-(XXXV), любых других солей органической кислоты, или любой гидратированной формы.
В одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, описанных одной из формул (IV)-(XXV) или любой гидратированной формы, и одного или более оксидов металлов, описанных одной из формул (XXXVI)-(XXXIX) или любой гидратированной формы.
В одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, описанных одной из формул (IV)-(XXV) или любой гидратированной формы, и одной или более хлоридных солей, описанных одной из формул (ХХХХ)-(XXXXIII), любых других галидных солей, или любой гидратированной формы.
В одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, описанных одной из формул (IV)-(XXV) или любой гидратированной формы, и одной или более сульфатных солей, описанных одной из формул (XXXXIV)-(XXXXVII) или любой гидратированной формы.
В одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, описанных одной из формул (IV)-(XXV) или любой гидратированной формы, и одного или более гидроксидов, описанных одной из формул (XXXXVIII)-(XL) или любой гидратированной формы.
В одном осуществлении настоящего изобретения, катализатор получают смешиванием и нагреванием одного или более соединений, содержащих фосфор, формул (IV)-(XXV), и двух или более соединений, не содержащих фосфор, формул (XXVI)-(XL) или их гидратированных форм.
В одном осуществлении, мольное соотношение фосфора и катионов (т.е. MI+MII+MIII+…) составляет от приблизительно 0,7 до приблизительно 1,7; в другом осуществлении, мольное соотношение фосфора и катионов (т.е. MI+MII+MIII+…) составляет от приблизительно 0,8 до приблизительно 1,3, и в еще одном осуществлении, мольное соотношение фосфора и катионов (т.е. MI+MII+MIII+…) составляет приблизительно 1. Например, в осуществлении, если катализатор содержит калий (K+) и барий (Ba+), мольное соотношение фосфора и металлов (K+Ba) составляет от приблизительно 0,7 до приблизительно 1,7; и в другом осуществлении, мольное соотношение фосфора и металлов (K+Ba) составляет приблизительно 1.
Если катализатор содержит только два различных катиона, мольное соотношение между катионами, в одном осуществлении, составляет от приблизительно 1:50 до приблизительно 50:1; и в другом осуществлении, мольное соотношение между катионами составляет от приблизительно 1:4 до приблизительно 4:1. Например, если катализатор содержит калий (K+) и барий (Ba2+), мольное соотношение между ними (K:Ba), в одном осуществлении, составляет от приблизительно 1:4 до приблизительно 4:1. Также, если катализатор получают смешиванием и нагреванием K2HPO4, Ba(NO3)2 и H3PO4, калий и барий присутствуют, в другом осуществлении, в мольном соотношении, K:Ba, от приблизительно 2:3 до приблизительно 1:1.
В одном осуществлении, катализатор может включать инертный носитель, который выполнен из материала, содержащего силикаты, алюминаты, уголь, оксиды металлов и их смеси. В качестве альтернативы, носитель является инертным по отношению к реакционной смеси, которая как ожидается, приводится в контакт с катализатором. В другом осуществлении, способ получения катализатора может дополнительно включать стадию, на которой смешивают инертный носитель с катализатором до, во время или после смешивания и нагревания соединений, содержащих фосфор, при этом инертный носитель включает силикаты, алюминаты, уголь, оксиды металлов и их смеси. В еще одном осуществлении, способ получения катализатора может дополнительно включать стадию, на которой смешивают инертный носитель с катализатором до, во время или после смешивания и нагревания соединений, содержащих фосфор, и соединений, не содержащих фосфор, при этом инертный носитель включает силикаты, алюминаты, уголь, оксиды металлов и их смеси.
Смешивание соединений, содержащих фосфор, или соединений, содержащих и не содержащих фосфор, катализатора может быть выполнено любым способом, известным специалистам в данной области техники, таким как, в качестве примера, а не ограничения: смешивание твердых веществ и совместное осаждение. В способе смешивания твердых веществ, различные компоненты физически смешивают вместе с необязательным измельчением с помощью любого способа, известного специалистам в данной области техники, такого как, в качестве примера, а не ограничения, сдвиг, растяжение, разминание, экструзия и другие. В способе совместного осаждения, водный раствор или суспензию из различных компонентов, включая одно или более фосфатных соединений, получают с последующей необязательной фильтрацией и нагреванием для удаления растворителей и летучих веществ (например, воды, азотной кислоты, диоксида углерода, аммиака или уксусной кислоты). Нагревание обычно осуществляется с помощью любого способа, известного специалистам в данной области техники, такого как, в качестве примера, а не ограничения, конвекция, теплопроводность, излучение, СВЧ-нагрев и другие.
В одном осуществлении настоящего изобретения, катализатор прокаливают. Прокаливание представляет собой процесс, который позволяет химическую реакцию и/или термическое разложение и/или фазовый переход и/или удаление летучих веществ. Процесс прокаливания осуществляется при помощи любого оборудования, известного специалистам в данной области техники, такого как, в качестве примера, а не ограничения, печи или реакторы различных конструкций, в том числе шахтные печи, вращающиеся печи, печи с обогреваемым подом и реакторы с псевдоожиженным слоем. Температура прокаливания, в одном осуществлении, составляет от приблизительно 200°C до приблизительно 1200°C; в другом осуществлении, температура прокаливания составляет от приблизительно 250°C до приблизительно 900°C; и в еще одном осуществлении, температура прокаливания составляет от приблизительно 300°C до 600°C. Время прокаливания, в одном осуществлении, составляет от приблизительно одного часа до приблизительно семидесяти двух часов.
В то время как многие способы и устройства известны специалистам в данной области техники для фракционирования частиц на дискретные размеры и определения распределения частиц по размерам, просеивание является одним из самых простых и наименее дорогих и распространенных способов. Альтернативный способ определения распределения частиц по размерам представляет собой рассеяние света. После прокаливания катализатор, в одном осуществлении, измельчают и просеивают, чтобы обеспечить более однородный продукт. Распределение частиц катализатора по размерам включает разброс значений диаметра частиц, который, в одном осуществлении, составляет менее, чем приблизительно 3; в другом осуществлении, распределение частиц катализатора по размерам включает разброс значений диаметра частиц, который составляет менее, чем приблизительно 2; и в еще одном осуществлении, распределение частиц катализатора по размерам включает разброс значений диаметра частиц, который составляет менее, чем приблизительно 1,5. В другом осуществлении настоящего изобретения, катализатор просеивают, чтобы медианный размер частиц составлял от приблизительно 50 мкм до приблизительно 500 мкм. В другом осуществлении настоящего изобретения, катализатор просеивают до медианного размера частиц от приблизительно 100 мкм до приблизительно 200 мкм.
В другом осуществлении, катализатор получают с помощью следующих стадий, на которых: (a) объединяют соединение, содержащее фосфор, нитратную соль, фосфорную кислоту и воду с образованием влажной смеси, при этом мольное соотношение фосфора и катионов, как в указанном соединении, содержащем фосфор, так и в указанной нитратной соли, составляет приблизительно 1, (b) прокаливают указанную влажную смесь постадийно при приблизительно 50°C, приблизительно 80°C, приблизительно 120°C и при приблизительно от 450°C до приблизительно 550°C с получением высушенного твердого вещества, и (c) измельчают и просеивают указанное высушенное твердое вещество до размера от приблизительно 100 мкм до приблизительно 200 мкм, с получением указанного катализатора.
В другом осуществлении, катализатор получают с помощью следующих стадий, на которых: (a) объединяют MnPO4·qH2O, KNO3 и H3PO4, в мольном соотношении приблизительно 0,3:1:1, на безводной основе, и воду с получением влажной смеси, (b) прокаливают указанную влажную смесь постадийно при приблизительно 50°C, приблизительно 80°C, приблизительно 120°C и при приблизительно от 450°C до приблизительно 550°C с получением высушенного твердого вещества, и (c) измельчают и просеивают указанное высушенное твердое вещество до размера от приблизительно 100 мкм до приблизительно 200 мкм, с получением указанного катализатора.
В другом осуществлении, катализатор получают с помощью следующих стадий, на которых: (a) объединяют Ca2P2O7, KNO3 и H3PO4, в мольном соотношении приблизительно 1,6:1:1 и воду с получением влажной смеси, (b) прокаливают указанную влажную смесь постадийно при приблизительно 50°C, приблизительно 80°C, приблизительно 120°C и при приблизительно от 450°C до приблизительно 550°C с получением высушенного твердого вещества, и (c) измельчают и просеивают указанное высушенное твердое вещество до размера от приблизительно 100 мкм до приблизительно 200 мкм, с получением указанного катализатора.
В другом осуществлении, катализатор получают с помощью следующих стадий, на которых: (a) объединяют соединение, содержащее фосфор, нитратную соль, фосфорную кислоту и воду с получением влажной смеси, где мольное соотношение фосфора и катионов, как в соединении, содержащем фосфор, так и в нитратной соли, составляет приблизительно 1, (b) нагревают указанную влажную смесь до приблизительно 80°C при перемешивании почти до полного высушивания с образованием влажного твердого вещества, (c) прокаливают указанное влажное твердое вещество постадийно при приблизительно 50°C, приблизительно 80°C, приблизительно 120°C и при приблизительно от 450°C до приблизительно 550°C с получением высушенного твердого вещества, и (d) измельчают и просеивают указанное высушенное твердое вещество до размера от приблизительно 100 мкм до приблизительно 200 мкм, с получением указанного катализатора.
В другом осуществлении, катализатор получают с помощью следующих стадий, на которых: (a) объединяют Ba(NO3)2, K2HPO4 и H3PO4, в мольном соотношении приблизительно 3:1:4 и воду с получением влажной смеси, (b) нагревают указанную влажную смесь до приблизительно 80°C при перемешивании почти до полного высушивания с образованием влажного твердого вещества, (c) прокаливают указанное влажное твердое вещество постадийно при приблизительно 50°C, приблизительно 80°C, приблизительно 120°C и при приблизительно от 450°C до приблизительно 550°C с получением высушенного твердого вещества, и (d) измельчают и просеивают указанное высушенное твердое вещество до размера от приблизительно 100 мкм до приблизительно 200 мкм, с получением указанного катализатора.
В другом осуществлении, катализатор получают с помощью следующих стадий, на которых: (a) объединяют Mn(NO3)2·4H2O, K2HPO4 и H3PO4, в мольном соотношении приблизительно 1:1,5:2 и воду с получением влажной смеси, (b) нагревают указанную влажную смесь до приблизительно 80°C при перемешивании почти до полного высушивания с образованием влажного твердого вещества, (c) прокаливают указанное влажное твердое вещество постадийно при приблизительно 50°C, приблизительно 80°C, приблизительно 120°C и при приблизительно от 450°C до приблизительно 550°C с получением высушенного твердого вещества, и (d) измельчают и просеивают указанное высушенное твердое вещество до размера от приблизительно 100 мкм до приблизительно 200 мкм, с получением указанного катализатора.
В другом осуществлении, катализатор получают с помощью следующих стадий, на которых: (a) объединяют Ca2P2O7 и KH2PO4 в мольном соотношении приблизительно 3:1 с получением твердой смеси, и (b) прокаливают указанную твердую смесь постадийно при приблизительно 50°C, приблизительно 80°C, приблизительно 120°C и при приблизительно от 450°C до приблизительно 550°C, с получением указанного катализатора.
После прокаливания и необязательного измельчения и просеивания, катализатор может быть использован для катализирования нескольких химических реакций. Неограничивающие примеры реакций представляют собой дегидратацию гидроксипропионовой кислоты в акриловую кислоту (как более подробно описано ниже), дегидратацию глицерина в акролеин, дегидратацию алифатических спиртов в алкены или олефины, дегидрогенизирование алифатических спиртов в эфиры, другие реакции дегидрогенизирования, гидролизы, алкилирования, деалкилирования, окисления, диспропорционирования, эстерификации, циклизации, изомеризации, конденсации, ароматизации, полимеризации, и другие реакции, которые могут быть очевидны специалистам в данной области техники.
IV. Способы получения акриловой кислоты, производных акриловой кислоты или их смесей
Представлен способ дегидратации гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в акриловую кислоту, производные акриловой кислоты или их смеси. Способ включает стадию, на которой вводят в контакт поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, с катализатором, содержащим: (a) по меньшей мере один анион конденсированного фосфата, который выбирают из группы, состоящей из формул (I), (II) и (III)
Figure 00000081
Figure 00000082
Figure 00000083
где n составляет по меньшей мере 2 и m составляет по меньшей мере 1, и (b) по меньшей мере два различных катиона, при этом катализатор, по существу, нейтрально заряжен, и дополнительно, при этом мольное соотношение фосфора и по меньшей мере двух различных катионов составляет от приблизительно 0,7 до приблизительно 1,7, таким образом получая акриловую кислоту, производные акриловой кислоты или их смеси в результате приведения в контакт указанного потока с катализатором.
Альтернативные катализаторы, содержащие анионы, выбранные из группы, состоящей из анионов, не содержащих фосфор, гетерополианионов и фосфатных аддуктов, и по меньшей мере два различных катиона, при этом катализатор, по существу, нейтрально заряжен, могут быть использованы для дегидратации гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей в акриловую кислоту, производные акриловой кислоты или их смеси. Неограничивающие примеры анионов, не содержащих фосфор, представляют собой арсенаты, конденсированные арсенаты, нитраты, сульфаты, ванадаты, ниобаты, танталаты, селенаты и другие, которые могут быть очевидны специалистам в данной области техники. Неограничивающие примеры гетерополианионов представляют собой гетерополифосфаты, такие как арсенатофосфаты, фосфоалюминаты, фосфобораты, фосфохроматы, фосфомолибдаты, фосфосиликаты, фосфосульфаты, фосфотангстаты и другие, которые могут быть очевидны специалистам в данной области техники. Неограничивающие примеры фосфатных аддуктов представляют собой аддукты фосфатных анионов с теллуровой кислотой, галиды, бораты, карбонаты, нитраты, сульфаты, хроматы, силикаты, оксалаты, их смеси, или другие, которые могут быть очевидными специалистам в данной области техники.
Гидроксипропионовая кислота может быть 3-гидроксипропионовой кислотой, 2-гидроксипропионовой кислотой (также называемой молочной кислотой), 2-метилгидроксипропионовой кислотой, или их смесями. Производными гидроксипропионовой кислоты могут быть соли металлов или аммония гидроксипропионовой кислоты, алкильные сложные эфиры гидроксипропионовой кислоты, алкильные сложные эфиры 2-метилгидроксипропионовой кислоты, циклические сложные диэфиры гидроксипропионовой кислоты, ангидрид гидроксипропионовой кислоты или их смесь. Неограничивающие примеры солей металлов гидроксипропионовой кислоты представляют собой натрий гидроксипропионат, калий гидроксипропионат и кальций гидроксипропионат. Неограничивающие примеры алкильных сложных эфиров гидроксипропионовой кислоты представляют собой метилгидроксипропионат, этилгидроксипропионат, бутилгидроксипропионат, 2-этилгексилгидроксипропионат или их смеси. Неограничивающим примером циклических сложных диэфиров гидроксипропионовой кислоты является дилактид.
В одном осуществлении, гидроксипропионовая кислота представляет собой молочную кислоту или 2-метилмолочную кислоту. В другом осуществлении, гидроксипропионовая кислота представляет собой молочную кислоту. Молочная кислота может быть L-молочной кислотой, D-молочной кислотой или их смесями.
Производные акриловой кислоты могут быть олигомерами акриловой кислоты, солями металла или аммония мономерной акриловой кислоты, солями металла или аммония олигомеров акриловой кислоты или их смесями. Неограничивающие примеры солей металла акриловой кислоты представляют собой акрилат натрия, акрилат калия и акрилат кальция. Неограничивающие примеры алкильных сложных эфиров акриловой кислоты представляют собой метиллактат, этиллактат или их смеси.
Поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, может включать поток жидкости и инертный газ (т.е. газ в других случаях инертный к реакционной смеси в условиях способа), который может быть по отдельности или совместно подан в выпарной аппарат выше по потоку от реактора катализатора для того, чтобы поток стал газообразным.
Поток жидкости может включать гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси и разбавитель. Неограничивающими примерами разбавителя являются вода, метанол, этанол, ацетон, C3-C8 линейные и разветвленные спирты, C5-C8 линейные и разветвленные алканы, этилацетат, нелетучие эфиры (в том числе дифениловый эфир) и их смеси. В одном осуществлении, разбавителем является вода.
В определенных осуществлениях поток жидкости содержит водный раствор молочной кислоты или производных молочной кислоты, которые выбирают из группы, состоящей из лактида, олигомеров молочной кислоты, солей молочной кислоты и алкиллактатов. В одном осуществлении, поток жидкости содержит от приблизительно 2 мас. % до приблизительно 95 мас. % молочной кислоты или производных молочной кислоты, исходя из общей массы потока жидкости. В другом осуществлении, поток жидкости содержит от приблизительно 5 мас. % до приблизительно 50 мас. % молочной кислоты или производных молочной кислоты, исходя из общей массы потока жидкости. В другом осуществлении, поток жидкости содержит от приблизительно 10 мас. % до приблизительно 25 мас. % молочной кислоты или производных молочной кислоты, исходя из общей массы потока жидкости. В другом осуществлении, поток жидкости содержит приблизительно 20 мас. % молочной кислоты или производных молочной кислоты, исходя из общей массы потока жидкости. В другом осуществлении, поток жидкости содержит водный раствор молочной кислоты, а также производные молочной кислоты. В другом осуществлении, поток жидкости содержит менее, чем приблизительно 30 мас. % производных молочной кислоты, исходя из общей массы потока жидкости. В другом осуществлении, поток жидкости содержит менее, чем приблизительно 10 мас. % производных молочной кислоты, исходя из общей массы потока жидкости. В еще одном осуществлении, поток жидкости содержит менее, чем приблизительно 5 мас. % производных молочной кислоты, исходя из общей массы потока жидкости.
Инертный газ представляет собой газ, который в других случаях инертный по отношению к реакционной смеси в условиях способа. Неограничивающие примеры инертного газа представляют собой воздух, азот, гелий, аргон, диоксид углерода, монооксид углерода, пар и их смеси. В одном осуществлении, инертный газ представляет собой азот.
Поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, может находиться в виде газообразной смеси при контакте с катализатором. В одном осуществлении, концентрация гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей, исходя из общего количества молей указанного потока (рассчитывается при условиях STP) составляет от приблизительно 0,5 мол.% до приблизительно 50 мол.%. В другом осуществлении, концентрация гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей, исходя из общего количества молей указанного потока (рассчитывается при условиях STP) составляет от приблизительно 1 мол.% до приблизительно 10 мол.%. В другом осуществлении, концентрация гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей, исходя из общего количества молей указанного потока (рассчитывается при условиях STP) составляет от приблизительно 1,5 мол.% до приблизительно 3,5 мол.%. В еще одном осуществлении, концентрация гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей, исходя из общего количества молей указанного потока (рассчитывается при условиях STP) составляет приблизительно 2,5 мол.%.
В одном осуществлении, температура, при которой указанный поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, приводится в контакт с катализатором, составляет от приблизительно 120°C до приблизительно 700°C. В другом осуществлении, температура, при которой указанный поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, приводится в контакт с катализатором, составляет от приблизительно 150°C до приблизительно 500°C. В другом осуществлении, температура, при которой указанный поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, приводится в контакт с катализатором, составляет от приблизительно 300°C до приблизительно 450°C. В еще одном осуществлении, температура, при которой указанный поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, приводится в контакт с катализатором, составляет от приблизительно 325°C до приблизительно 400°C.
В одном осуществлении, поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, приводится в контакт с катализатором при GHSV от приблизительно 720 ч-1 до приблизительно 36000 ч-1. В другом осуществлении, поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, приводится в контакт с катализатором при GHSV от приблизительно 1800 ч-1 до приблизительно 7200 ч-1. В другом осуществлении, поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, приводится в контакт с катализатором при GHSV приблизительно 3600 ч-1.
В одном осуществлении, поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, приводится в контакт с катализатором при давлении от приблизительно 0 фунт/кв. дюйм изб. до приблизительно 550 фунт/кв. дюйм изб. В другом осуществлении, поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, приводится в контакт с катализатором при давлении приблизительно 360 фунт/кв. дюйм изб.
В одном осуществлении, поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, приводится в контакт с катализатором в реакторе, имеющем внутреннюю поверхность, содержащую материал, который выбирают из группы, состоящей из кварца, боросиликатного стекла, кремния, сплава Hastelloy, инконеля, искусственного сапфира, нержавеющей стали и их смесей. В другом осуществлении, поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, приводится в контакт с катализатором в реакторе, имеющем внутреннюю поверхность, содержащую материал, который выбирают из группы, состоящей из кварца или боросиликатного стекла. В другом осуществлении, поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, приводится в контакт с катализатором в реакторе, имеющем внутреннюю поверхность, содержащую боросиликатное стекло.
В одном осуществлении, способ включает стадию, на которой вводят в контакт катализатор с газообразной смесью, содержащей гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, в условиях, достаточных для получения акриловой кислоты, производных акриловой кислоты или их смесей с выходом по меньшей мере 50%. В другом осуществлении, способ включает стадию, на которой вводят в контакт катализатор с газообразной смесью, содержащей гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, в условиях, достаточных для получения акриловой кислоты, производных акриловой кислоты или их смесей с выходом по меньшей мере приблизительно 70%. В другом осуществлении, способ включает стадию, на которой вводят в контакт катализатор с газообразной смесью, содержащей гидроксипропионовую кислоту, производные гидроксипропионовой кислоты, или их смеси, в условиях, достаточных для получения акриловой кислоты, производных акриловой кислоты или их смесей с выходом по меньшей мере приблизительно 80%.
В другом осуществлении, условия способа достаточны для получения акриловой кислоты, производных акриловой кислоты или их смесей с селективностью по меньшей мере приблизительно 50%. В другом осуществлении, условия способа достаточны для получения акриловой кислоты, производных акриловой кислоты или их смесей с селективностью по меньшей мере приблизительно 70%. В другом осуществлении, условия способа достаточны для получения акриловой кислоты, производных акриловой кислоты или их смесей с селективностью по меньшей мере приблизительно 80%.
В другом осуществлении, условия способа достаточны для получения акриловой кислоты, производных акриловой кислоты или их смесей с пропановой кислотой в качестве примеси, где селективность получения пропановой кислоты составляет менее, чем приблизительно 5%. В другом осуществлении, условия способа достаточны для получения акриловой кислоты, производных акриловой кислоты или их смесей с пропановой кислотой в качестве примеси, где селективность получения пропановой кислоты составляет менее, чем приблизительно 1%.
В другом осуществлении, условия способа достаточны для получения акриловой кислоты, производных акриловой кислоты или их смесей с конверсией указанной гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей более, чем приблизительно 50%. В другом осуществлении, условия способа достаточны для получения акриловой кислоты, производных акриловой кислоты или их смесей с конверсией указанной гидроксипропионовой кислоты, производных гидроксипропионовой кислоты или их смесей более, чем приблизительно 80%.
Среди преимуществ, присущих приведенным в данной заявке осуществлениям, является низкий выход побочных продуктов. В одном осуществлении, условия достаточны для получения пропановой кислоты с выходом менее, чем приблизительно 6% от молочной кислоты, присутствующей в газообразной смеси. В другом осуществлении, условия достаточны для получения пропановой кислоты с выходом менее, чем приблизительно 1% от молочной кислоты, присутствующей в газообразной смеси. В одном осуществлении, условия достаточны для получения каждого из уксусной кислоты, виноградной кислоты, 1,2-пропандиола и 2,3-пентандиола с выходом менее, чем приблизительно 2% от молочной кислоты, присутствующей в газообразном потоке. В другом осуществлении, условия достаточны для получения каждого из уксусной кислоты, виноградной кислоты, 1,2-пропандиола и 2,3-пентандиола с выходом менее, чем приблизительно 0,5% от молочной кислоты, присутствующей в газообразном потоке. В одном осуществлении, условия достаточны для получения ацетальдегида с выходом менее, чем приблизительно 8% от молочной кислоты, присутствующей в газообразной смеси. В другом осуществлении, условия достаточны для получения ацетальдегида с выходом менее, чем приблизительно 4% от молочной кислоты, присутствующей в газообразной смеси. В другом осуществлении, условия достаточны для получения ацетальдегида с выходом менее, чем приблизительно 3% от молочной кислоты, присутствующей в газообразной смеси. Эти выходы, как полагают, недостижимо низкие. Действительно, эти преимущества достижимы, как дополнительно свидетельствуют приведенные ниже Примеры.
В одном осуществлении настоящего изобретения, способ получения акриловой кислоты включает стадию, на которой вводят в контакт: (a) газообразный поток, содержащий: (i) молочную кислоту, (ii) воду и (iii) азот, при этом указанная молочная кислота присутствует в количестве приблизительно 2,5 мол.%, и причем указанная вода присутствует в количестве приблизительно 50 мол.%, исходя из общего количества молей указанного газообразного потока, с (b) катализатором, содержащим (i) Ba2-х-sK2xH2sP2O7 и (ii) (KPO3)n, где x и s превышают или равны 0 и менее, чем приблизительно 0,5 и n представляет собой положительное целое число, при этом указанную стадию приведения в контакт указанного газообразного потока с указанным катализатором выполняют при температуре от приблизительно 300°C до приблизительно 450°C, при часовой объемной скорости газа (GHSV) приблизительно 3600 ч-1 и при давлении приблизительно 360 фунт/кв. дюйм изб., в реакторе, имеющем внутреннюю поверхность, содержащую материал, который выбирают из группы, состоящей из кварца и боросиликатного стекла, таким образом с получением акриловой кислоты в результате приведения в контакт указанной молочной кислоты с указанным катализатором.
В другом осуществлении настоящего изобретения, способ получения акриловой кислоты включает стадию, на которой вводят в контакт: (a) газообразный поток, содержащий: (i) молочную кислоту, (ii) воду и (iii) азот, при этом указанная молочная кислота присутствует в количестве приблизительно 2,5 мол.%, и причем указанная вода присутствует в количестве 50 мол.%, исходя из общего количества молей указанного газообразного потока, с (b) катализатором, полученным способом, включающим следующие стадии, на которых: (i) объединяют соединение, содержащее фосфор, нитратную соль, фосфорную кислоту и воду с образованием влажной смеси, при этом мольное соотношение фосфора и катионов как в указанном соединении, содержащем фосфор, так и в указанной нитратной соли составляет приблизительно 1; (ii) прокаливают указанную влажную смесь постадийно при приблизительно 50°C, приблизительно 80°C, приблизительно 120°C и при приблизительно от 450°C до приблизительно 550°C с получением высушенного твердого вещества; и (iii) измельчают и просеивают указанное высушенное твердое вещество до размера от приблизительно 100 мкм до приблизительно 200 мкм, с получением указанного катализатора, и при этом указанную стадию приведения в контакт указанного газообразного потока с указанным катализатором выполняют при температуре от приблизительно 300°C до приблизительно 450°C, при GHSV приблизительно 3600 ч-1 и при давлении приблизительно 360 фунт/кв. дюйм изб., в реакторе, имеющем внутреннюю поверхность, содержащую материал, который выбирают из группы, состоящей из кварца и боросиликатного стекла, таким образом с получением акриловой кислоты в результате приведения в контакт указанной молочной кислоты с указанным катализатором.
В еще одном осуществлении настоящего изобретения, способ получения акриловой кислоты включает стадию, на которой вводят в контакт: (a) газообразный поток, содержащий: (i) молочную кислоту, (ii) воду и (iii) азот, при этом указанная молочная кислота присутствует в количестве приблизительно 2,5 мол.%, и причем указанная вода присутствует в количестве приблизительно 50 мол.%, исходя из общего количества молей указанного газообразного потока, с (b) катализатором, полученным способом, включающим следующие стадии, на которых: (i) объединяют Ca2P2O7 и KH2PO4 в мольном соотношении приблизительно 3:1 с образованием твердой смеси; и (ii) прокаливают указанную твердую смесь постадийно при приблизительно 50°C, приблизительно 80°C, приблизительно 120°C и при приблизительно от 450°C до приблизительно 550°C, с получением указанного катализатора; и при этом указанную стадию приведения в контакт указанного газообразного потока с указанным катализатором выполняют при температуре от приблизительно 300°C до приблизительно 450°C, при GHSV приблизительно 3600 ч-1 и при давлении приблизительно 360 фунт/кв. дюйм изб., в реакторе, имеющем внутреннюю поверхность, содержащую материал, который выбирают из группы, состоящей из кварца и боросиликатного стекла, таким образом с получением акриловой кислоты в результате приведения в контакт указанной молочной кислоты с указанным катализатором.
Представлен способ дегидратации глицерина в акролеин. Способ включает стадию, на которой вводят в контакт поток, содержащий глицерин, с катализатором, содержащим: (a) по меньшей мере один анион конденсированного фосфата, который выбирают из группы, состоящей из формул (I), (II) и (III)
Figure 00000084
Figure 00000085
Figure 00000086
где n составляет по меньшей мере 2 и m составляет по меньшей мере 1, и (b) по меньшей мере два различных катиона, при этом катализатор, по существу, нейтрально заряжен, и дополнительно, при этом мольное соотношение фосфора и по меньшей мере двух различных катионов составляет от приблизительно 0,7 до приблизительно 1,7, таким образом получая акролеин в результате приведения в контакт указанного глицерина с катализатором. Акролеин является промежуточным соединением, которое может быть преобразовано в акриловую кислоту с использованием условий, аналогичных используемым сегодня на второй стадии окисления в способе пропилена в акриловую кислоту.
V Примеры
Следующие примеры приведены для иллюстрации настоящего изобретения, но не предназначены для ограничения его объема. Примеры 1-7 описывают получение различных смешанных конденсированных фосфатных катализаторов в соответствии с различными осуществлениями, описанными выше. Примеры 8-12 описывают получение катализаторов не в соответствии с настоящим изобретением.
ПРИМЕР 1
Водный раствор нитрата бария, Ba(NO3)2 (85,36 мл 0,08 г/мл маточного раствора, 26 ммоль, 99,999%; Sigma - Aldrich Co., St. Louis, MO; каталог №202754), добавляли к твердому двухосновному фосфату калия, K2HPO4 (1,52 г, 8,7 ммоль, ≥98%; Sigma - Aldrich Co., St. Louis, MO; каталог №P3786) при комнатной температуре. Фосфорную кислоту, H3PO4 (2,45 мл 85 мас. %, плотность = 1,684 г/мл, 36 ммоль; Acros Organics, Geel, Belgium; каталог №295700010), добавляли в суспензию, получая раствор, содержащий катионы калия (K+, MI) и бария (Ba2+, MII). Конечное значение pH суспензии составляло 1,6. Суспензию, содержащую кислоту, затем медленно высушивали в стеклянном стакане при 80°C, используя нагревательную плиту с магнитным перемешиванием суспензии до испарения жидкости и почти полного высушивания материала. После выпаривания, материал переносили на разрушаемую керамику. Нагревание продолжали в печи с циркуляцией воздуха (N30/80 HA; Nabertherm GmbH, Lilienthal, Germany) при 50°C в течение 10 ч, затем при 80°C в течение 10 ч (0,5°C/мин линейное возрастание), 120°C в течение 2 часов (0,5°C/мин линейное возрастание) для удаления остаточной воды с последующим прокаливанием при 450°C в течение 4 часов (2°C/мин линейное возрастание). После прокаливания материал оставляли внутри печи до самоохлаждения при температуре ниже 100°C перед тем, как вынуть его из печи. Наконец, катализатор измельчали и просеивали до размера от приблизительно 100 мкм до приблизительно 200 мкм. Материал анализировали при помощи рентгеновской дифракции (XRD) и энергодисперсионной спектроскопии в сочетании со сканирующей электронной микроскопией (EDS/SEM), позволяя идентификацию σ-Ba2P2O7, α-Ba3P4O13, Ba(NO3)2 и KPO3 с некоторым включением K в Ba-содержащие фазы. Мольное соотношение фосфора (P) и катионов (MI и MII) в идентифицированных солях конденсированного фосфата составляло от приблизительно 1 до приблизительно 1,3.
ПРИМЕР 2
Твердый двухосновной фосфат калия, K2HPO4 (36,40 г, 209 ммоль, ≥98%; Sigma - Aldrich Co., St. Louis, MO; каталог №P3786) быстро смешивали с водным раствором нитрата бария, Ba(NO3)2 (2050 мл 0,08 г/мл маточного раствора, 627 ммоль, 99,999%; Sigma - Aldrich Co., St. Louis, MO; каталог №202754) при комнатной температуре. Фосфорную кислоту, H3PO4 (58,7 мл 85 мас. %, плотность = 1,684 г/мл, 857 ммоль; Acros Organics, Geel, Belgium; каталог №295700010), добавляли в суспензию, получая раствор, содержащий катионы калия (K+, MI) и бария (Ba2+, MII). Конечное значение pH суспензии составляло приблизительно 1,6. Суспензию, содержащую кислоту, затем медленно высушивали в стеклянном стакане при 80°C, используя нагревательную плиту с магнитным перемешиванием суспензии до испарения жидкости и почти полного высушивания материала. Нагревание продолжали в печи с циркуляцией воздуха (G1530A, НР6890 GC; Agilent Corp., Santa Clara, СА) при 50°C в течение 5,3 ч, затем при 80°C в течение 10 ч (0,5°C/мин линейное возрастание), с последующим охлаждением при 25°C.Материал прокаливали при 120°C в течение 2 часов (0,5°C/мин линейное возрастание) и еще при 450°C в течение 4 часов (2°C/мин линейное возрастание) в той же печи. После прокаливания материал оставляли внутри печи до самоохлаждения при температуре ниже 25°C перед тем, как вынуть его из печи. Наконец, катализатор измельчали и просеивали до размера от приблизительно 100 мкм до приблизительно 200 мкм. Материал анализировали при помощи XRD и EDS/SEM, позволяя идентификацию σ-Ba2P2O7, α-Ba3P4O13, Ва(NO3)2, KPO3 и некоторого аморфного материала с некоторым включением K в Ba-содержащих фазах. Мольное соотношение фосфора (P) и катионов (MI и MII) в идентифицированных солях конденсированного фосфата составляло от приблизительно 1 до приблизительно 1,3.
Водный раствор нитрата калия, KNO3 (1,51 мл 1 г/мл маточного раствора, 14,9 ммоль, Sigma - Aldrich Co., St. Louis, MO; каталог №60415), добавляли к дифосфату кальция, Ca2P2O7 (5,93 г, 23,3 ммоль, Alfa Aesar, Ward Hill, MA; каталог №89836), при комнатной температуре. Фосфорную кислоту, H3PO4 (1,05 мл 85 мас. %, плотность = 1,684 г/мл, 15,3 ммоль, Acros Organics, Geel, Belgium; каталог №201140010), добавляли в суспензию, получая суспензию содержащую катионы калия (K+, MI) и кальция (Ca2+, MII). Материал нагревали в печи с циркуляцией воздуха (N30/80 HA; Nabertherm GmbH, Lilienthal, Germany) при 50°C в течение 2 ч, затем при 80°C в течение 10 ч (0,5°C/мин линейное возрастание), 120°C в течение 2 часов (0,5°C/мин линейное возрастание) для удаления остаточной воды с последующим прокаливанием при 450°C в течение 4 часов (2°C/мин линейное возрастание). После прокаливания материал оставляли внутри печи до самоохлаждения при температуре ниже 100°C перед тем, как вынуть его из печи. Наконец, катализатор измельчали и просеивали до размера от приблизительно 100 мкм до приблизительно 200 мкм. Материал анализировали при помощи XRD, позволяя идентификацию β-Ca2P2O7 и KPO3. Мольное соотношение фосфора (P) и катионов (MI и MII) в этих солях конденсированного фосфата составляло приблизительно 1.
ПРИМЕР 4
Дифосфат кальция, Ca2P2O7 (5,93 г, 23,3 ммоль, Alfa Aesar, Ward Hill, MA; каталог №89836), и одноосновной монофосфат калия, KH2PO4 (1,08 г, 7,9 ммоль, Sigma - Aldrich Co., St. Louis, MO; каталог №60216), которые предварительно просеивали до размера от приблизительно 100 мкм до приблизительно 200 мкм, смешивали в стеклянной бутылке в раскаточной машине в течение 5 мин, получая твердую смесь содержащую катионы калия (K+, MI) и кальция (Ca2+, MII). Материал нагревали в печи с циркуляцией воздуха (N30/80 HA; Nabertherm GmbH, Lilienthal, Germany) при 50°C в течение 2 ч, затем при 80°C в течение 10 ч (0,5°C/мин линейное возрастание), 120°C в течение 2 часов (0,5°C/мин линейное возрастание) для удаления остаточной воды с последующим прокаливанием при 550°C в течение 4 часов (2°C/мин линейное возрастание). После прокаливания материал оставляли внутри печи до самоохлаждения при температуре ниже 100°C перед тем, как вынуть его из печи. Материал анализировали при помощи XRD, позволяя идентификацию β-Ca2P2O7 и KPO3. Мольное соотношение фосфора (P) и катионов (MI и MII) в этих солях конденсированного фосфата составляло приблизительно 1.
ПРИМЕР 5
Водный раствор нитрата магния (II), Mn(NO3)2·4H2O (14,25 мл 0,3 г/мл маточного раствора, 17,0 ммоль, Sigma - Aldrich Co., St. Louis, MO; каталог №63547), добавляли к двухосновному монофосфату калия, K2HPO4 (4,45 г, 25,5 ммоль, Sigma - Aldrich Co., St. Louis, MO; каталог №P3786), при комнатной температуре. Фосфорную кислоту, H3PO4 (2,39 мл 85 мас. %, плотность = 1,684 г/мл, 34,9 ммоль, Acros Organics, Geel, Belgium; каталог №201140010), добавляли в суспензию, получая суспензию содержащую катионы калия (K+, MI) и магния (Mn2+, MII). Материал нагревали в печи с циркуляцией воздуха (N30/80 HA; Nabertherm GmbH, Lilienthal, Germany) при 50°C в течение 2 ч, затем при 80°C в течение 10 ч (0,5°C/мин линейное возрастание), 120°C в течение 2 часов (0,5°C/мин линейное возрастание) для удаления остаточной воды с последующим прокаливанием при 450°C в течение 4 часов (2°C/мин линейное возрастание). После прокаливания материал оставляли внутри печи до самоохлаждения при температуре ниже 100°C перед тем, как вынуть его из печи. Наконец, катализатор измельчали и просеивали до размера от приблизительно 100 мкм до приблизительно 200 мкм. Материал анализировали при помощи XRD, позволяя идентификацию MnKPO2O7 и KPO3; мольное соотношение фосфора (P) и катионов (MI и MI1) в этих солях конденсированного фосфата составляло приблизительно 1.
ПРИМЕР 6
Водный раствор нитрата калия, KNO3 (5,16 мл 1 г/мл маточного раствора, 51,1 ммоль, Sigma - Aldrich Co., St. Louis, MO; каталог №60415), добавляли к фосфату магния (III), MnPO4·qH2O (2,58 г, 17,2 ммоль на безводной основе, Alfa Aesar, Ward Hill, MA; каталог №A17868), при комнатной температуре. Фосфорную кислоту, H3PO4 (3,58 мл 85 мас. %, плотность = 1,684 г/мл, 52,4 ммоль, Acros Organics, Geel, Belgium; каталог №295700010), добавляли в суспензию, получая суспензию содержащую катионы калия (K+, MI) и магния (Mn3+, MIII). Материал нагревали в печи с циркуляцией воздуха (N30/80 HA; Nabertherm GmbH, Lilienthal, Germany) при 50°C в течение 2 ч, затем при 80°C в течение 10 ч (0,5°C/мин линейное возрастание), 120°C в течение 2 часов (0,5°C/мин линейное возрастание) для удаления остаточной воды с последующим прокаливанием при 550°C в течение 4 часов (2°C/мин линейное возрастание). После прокаливания материал оставляли внутри печи до самоохлаждения при температуре ниже 100°C перед тем, как вынуть его из печи. Наконец, катализатор измельчали и просеивали до размера от приблизительно 100 мкм до приблизительно 200 мкм. Материал анализировали при помощи XRD, позволяя идентификацию MnKP2O7 и KPO3. Мольное соотношение фосфора (P) и катионов (MI и MII) в этих солях конденсированного фосфата составляло приблизительно 1.
ПРИМЕР 7
Получение Ba3/(PO4)2: Фосфат натрия, Na3PO4 (85,68 г, 523 ммоль, Sigma - Aldrich Co., St. Louis, MO; каталог №342483), растворяли в 580 мл деионизированной воды и pH доводили до 7 концентрированным гидроксидом аммония. Нитрат бария, Ba(NO3)2 (121,07 г, 463 ммоль, Sigma - Aldrich Co., St. Louis, MO; каталог №202754), растворяли в 1220 мл деионизированной воды. Раствор Ba(NO3)2 добавляли по каплям к раствору Na3PO4 при перемешивании и нагревании до 60°C, образуя белую суспензию во время добавления. Значение pH постоянно монитор или и концентрированный гидроксид аммония добавляли по каплям для поддержания pH 7. Нагревание и перемешивание при 60°C продолжали в течение 60 мин, в это время твердое вещество фильтровали и тщательно промывали деионизированной водой. Твердое вещество суспендировали в 2 л деионизированной воды и снова фильтровали и тщательно промывали деионизированной водой. В печи с вентиляцией, осадок на фильтре высушивали при 120°C в течение 5 часов (1°C/мин линейное возрастание), с последующим прокаливанием при 350°C в течение 4 часов (2°C/мин линейное возрастание) с получение Ba3(PO4)2 в виде белого твердого вещества.
Получение катализатора: Водный раствор нитрата калия, KNO3 (0,68 мл 1 г/мл маточного раствора, 6,8 ммоль, Sigma - Aldrich Co., St. Louis, MO; каталог №60415), добавляли к фосфату бария, Ba3(PO4)2 (4,07 г, 6,8 ммоль) как получено выше, при комнатной температуре. Гидроксид фосфат меди(II), Cu2(OH)PO4 (3,23 г, 13,5 ммоль, Sigma - Aldrich Co., St. Louis, MO; каталог №344400), и фосфорную кислоту, H3PO4 (0,47 мл 85 мас. %, плотность=1,684 г/мл, 6,9 ммоль, Acros Organics, Geel, Belgium; каталог №201140010), добавляли к суспензии, получая суспензию, содержащую катионы калия (K+, MI), бария (Ba2+, MII) и меди (Cu2+, MII). Материал нагревали в печи с циркуляцией воздуха (N30/80 НА; Nabertherm GmbH, Lilienthal, Germany) при 50°C в течение 2 ч, затем при 80°C в течение 10 ч (0,5°C/мин линейное возрастание), 120°C в течение 2 часов (0,5°C/мин линейное возрастание) для удаления остаточной воды с последующим прокаливанием при 550°C в течение 4 часов (2°C/мин линейное возрастание). После прокаливания материал оставляли внутри печи до самоохлаждения при температуре ниже 100°C перед тем, как вынуть его из печи. Материал анализировали при помощи XRD, позволяя идентификацию α-Ba2P2O7, KPO3 и некоторого аморфного материала; мольное соотношение фосфора (P) и катионов (MI и MII) в этих солях конденсированного фосфата составляло приблизительно 1.
ПРИМЕР 8 (сравнительный)
Смешанный конденсированный фосфатный катализатор получали и использовали для целей сравнения. Водный раствор нитрата бария, Ba(NO3)2 (88,39 мл 0,08 г/мл маточного раствора, 27 ммоль, 99,999%; Sigma - Aldrich Co., St. Louis, MO; каталог №202754), добавляли к твердому двухосновному фосфату калия, K2HPO4 (1,57 г, 9,0 ммоль, ≥98%; Sigma - Aldrich Co., St. Louis, MO; каталог №P3786) при комнатной температуре. Фосфорную кислоту, H3PO4 (1,27 мл 85 мас. %, плотность = 1,684 г/мл, 19 ммоль; Acros Organics, Geel, Belgium; каталог №295700010), добавляли в суспензию, получая суспензию содержащую катионы калия (K+, MI) и бария (Ba2+, MII), так, что мольное соотношение фосфора (P) и катионов (MI и MII) составляло приблизительно 0,6. Суспензию, содержащую кислоту, затем медленно высушивали в стеклянном стакане при 80°C, используя нагревательную плиту при перемешивании суспензии до испарения жидкости и почти полного высушивания материала. После выпаривания, материал переносили на разрушаемую керамику. Нагревание продолжали в печи с циркуляцией воздуха (N30/80 HA; Nabertherm GmbH, Lilienthal, Germany) при 50°C в течение 2 ч, затем при 80°C в течение 10 ч (0,5°C/мин линейное возрастание), 120°C в течение 2 часов (0,5°C/мин линейное возрастание) для удаления остаточной воды с последующим прокаливанием при 450°C в течение 4 часов (2°C/мин линейное возрастание). После прокаливания материал оставляли внутри печи до самоохлаждения при температуре ниже 100°C перед тем, как вынуть его из печи. Наконец, катализатор измельчали и просеивали до размера от приблизительно 100 мкм до приблизительно 200 мкм.
ПРИМЕР 9 (сравнительный)
Смешанный конденсированный фосфатный катализатор получали и использовали для целей сравнения. Водный раствор нитрата бария, Ba(NO3)2 (88,39 мл 0,08 г/мл маточного раствора, 27 ммоль, 99,999%; Sigma - Aldrich Co., St Louis, MO; каталог №202754), добавляли к твердому двухосновному фосфату калия, K2HPO4 (1,57 г, 9,0 ммоль, ≥98%; Sigma - Aldrich Co., St Louis, MO; каталог №P3786) при комнатной температуре. Фосфорную кислоту, H3PO4 (5,06 мл 85 мас. %, плотность = 1,684 г/мл, 74 ммоль; Acros Organics, Geel, Belgium; каталог №295700010), добавляли в суспензию, получая раствор, содержащий катионы калия (K+, MI) и бария (Ba2+, MII), так что мольное соотношение фосфора (P) и катионов (MI и MII) составляло приблизительно 1,8. Раствор, содержащий кислоту, затем медленно высушивали в стеклянном стакане при 80°C, используя нагревательную плиту при перемешивании суспензии до испарения жидкости и почти полного высушивания материала. После выпаривания, материал переносили на разрушаемую керамику. Нагревание продолжали в печи с циркуляцией воздуха (N30/80 HA; Nabertherm GmbH, Lilienthal, Germany) при 50°C в течение 2 ч, затем при 80°C в течение 10 ч (0,5°C/мин линейное возрастание), 120°C в течение 2 часов (0,5°C/мин линейное возрастание) для удаления остаточной воды с последующим прокаливанием при 450°C в течение 4 часов (2°C/мин линейное возрастание). После прокаливания материал оставляли внутри печи до самоохлаждения при температуре ниже 100°C перед тем, как вынуть его из печи. Наконец, катализатор измельчали и просеивали до размера от приблизительно 100 мкм до приблизительно 200 мкм.
ПРИМЕР 10 (сравнительный)
Барий монофосфатный катализатор, не в соответствии с настоящим изобретением, получали и использовали для целей сравнения. Кислый фосфат аммония, (NH4)2HPO4 (142,20 г, 1,08 моль; Aldrich, St Louis, MO; каталог №215996), растворяли в 1 л деионизированной воды. Водный гидроксид аммония, NH4OH (290 мл, 28-29%; EMD, Merck KGaA, Darmstadt, Germany; каталог №AX1303) добавляли медленно и осторожно нагревали до растворения с образованием раствора фосфата аммония. В отдельном стакане, ацетат бария, (CH3COO)2Ba (285,43 г, 1,12 моль, Aldrich, St Louis, MO; каталог №243671), растворяли в 1 л деионизированной воды с образованием раствора ацетата бария. Раствор ацетата бария медленно добавляли к раствору фосфата аммония с образованием белого осадка. После перемешивания в течение 45 мин, белое твердое вещество фильтровали. Твердое вещество затем повторно суспендировали в 300 мл деионизированной воды, перемешивали в течение 10 мин, и снова фильтровали. Данный процесс повторяли дважды. Полученное в результате белое твердое вещество высушивали в печи с вентиляцией при 130°C всю ночь. Твердое вещество просеивали до размера от приблизительно 500 мкм до 710 мкм и прокаливали в кальцинаторе при 500°C в течение 4 часов (100°C/ч линейное возрастание). После прокаливания пробу катализатора просеивали до размера от приблизительно 100 мкм до приблизительно 200 мкм. Материал анализировали при помощи XRD, позволяя идентификацию Ba3(PO4)2.
ПРИМЕР 11 (сравнительный)
Барий дифосфатный катализатор, не в соответствии с настоящим изобретением, получали и использовали для целей сравнения. Пробу двухосновного фосфата бария, BaHPO4 (Sigma - Aldrich Co., St. Louis, МО; каталог №31139), прокаливали при 550°C в течение 12 ч, используя керамический тигель и линейное возрастание температуры 2°C/мин в термостате с гравитационной конвекцией. После прокаливания катализатор измельчали при помощи ступки и пестика и просеивали до размера от приблизительно 100 мкм до приблизительно 200 мкм. Материал анализировали при помощи XRD, позволяя идентификацию α-Ba2P2O7.
ПРИМЕР 12 (сравнительный)
Барий тетрафосфатный катализатор, не в соответствии с настоящим изобретением, получали и использовали для целей сравнения. Двухосновной барий монофосфат, BaHPO4 (23,52 г, 100,8 ммоль, Sigma - Aldrich Co., St Louis, MO; каталог №31139) и двухосновной монофосфат аммония, (NH4)2HPO4 (4,44 г, 33,6 ммоль, Sigma - Aldrich Co., St. Louis, MO; каталог №379980) смешивали и измельчали совместно при помощи ступки и пестика. Твердое вещество затем прокаливали при 300°C в течение 14 ч, используя линейное возрастание температуры 2°C/мин в термостате с гравитационной конвекцией. После прокаливания катализатор измельчали снова при помощи ступки и пестика, с последующим прокаливанием при 500°C в течение 14 ч при помощи того же самого линейного возрастания температуры и печи, как ранее. Наконец, дополнительный раунд измельчения и прокаливания проводили при 750°C в течение 14 ч. Катализатор просеивали до размера от приблизительно 100 мкм до приблизительно 200 мкм. Материал анализировали при помощи XRD, позволяя идентификацию α-Ba3P4O13.
ПРИМЕР 13
Эксперимент проводили для определения активности катализатора в соответствии с настоящим изобретением. Конкретно, катализатор получали как описано в Примере 1 в течение 21,6 часов времени реакции в условиях, изложенных в разделе VI. Результаты приведены в таблице 2, ниже, где выход и селективность получения акриловой кислоты скорректированы на ТМВ.
ПРИМЕР 14
Эксперименты проводили для учета влияния материала реактора на конверсию молочной кислоты в акриловую кислоту. Все тесты проводили при помощи той же самой конфигурации реактора, только варьируя условия использованием либо кварц-выровненного реактора, или 316 реактора из нержавеющей стали (SS). Не использовали инертную набивку, температуру реактора поддерживали при 350°C, и реактор функционировал в каждом тесте при GHSV 3438 ч-1. Результаты представлены в Таблице 3 ниже.
ПРИМЕР 15
Эксперименты без присутствия катализатора дополнительно продемонстрировали влияние стабилизации подачи в реакторе из кварца. Пустые реакторы сравнили с теми, которые набиты аморфным кварцем (SiO2) (Sigma - Aldrich Co., St. Louis, MO) и Zirblast (Saint Gobain Zirpro, Le Pontet Cedex, France) как в реакторах из нержавеющей стали (SS) так и в реакторах из кварца. Результаты представлены в Таблице 4 ниже.
VI Тестовые процедуры
XRD: Широкоугольные данные (WAXS) получали в дифрактометре STADI-P в режиме пропускания (Stoe & Cie GmbH, Darmstadt, Germany). Генератор работал при 40 кВ/40 мА, приводя в движение медную анодную с длинной тонкой фокусировкой Cu рентгеновскую трубку. Дифрактометр включает падающего пучка изогнутый монохроматор на кристалле германия, стандартную падающего пучка щелевую систему и чувствительный к положению сигнальной пластины детектор с угловым диапазоном приблизительно 124° 2θ. Данные получали в режиме пропускания. Пробы осторожно измельчали вручную с использованием ступки и пестика до тонкодисперсной консистенции, если возможно, перед загрузкой в стандартный держатель для проб для устройства. Кристаллические фазы идентифицировали с использованием наиболее современной базы данных порошковой дифракции (от ICDD) с использованием рутинных процедур Search/Match в Jade (Materials Data, Inc. v 9.4.2).
SEM/EDS: Сухие порошки диспергировали на двухстороннюю медную или угольную ленту, смонтированную на металлическую подложку электронного сканирующего микроскопа (SEM). Каждый образец покрывали Au/Pd в течение приблизительно 65-80 с, используя Gatan Alto 2500 Cryo камеру подготовки. SEM картирование формирования изображения и энергодисперсионной спектроскопии (EDS) производили с использованием либо Hitachi S-4700 FE-SEM или Hitachi S-5200 в линзах FE-SEM (Hitachi Ltd., Tokyo, Japan), оба оснащены EDS с Bruker XFlash 30 мм2 SDD детекторами (Quantax 2000 система с 5030 детектором; Bruker Corp., Billerica, MA). EDS картирование выполняли с использованием ускоряющего напряжения при 10 кВ в Методе анализа зондового тока. Все карты генерировали при помощи программного обеспечения Bruker Esprit V 1.9 в Hypermap модуле.
Реактор - система A (0,2 мл масштабный реактор): Некоторые из данных конверсий проводили в системе проточного реактора с максимумом объема слоя катализатора приблизительно 0,2 мл. Система содержала регуляторы температур и потока масс и поставлялась с отдельными системами подачи жидкости и газа, которые смешивали перед достижением слоя катализатора. Система подачи газа состояла из молекулярного азота (N2) и гелия (He), которые добавляли как внутренний стандарт для анализа при помощи газового хроматографа (GC). Система подачи жидкости представляла собой водный раствор молочной кислоты (20 мас. % L-молочной кислоты) и ее подавали в верхнюю часть реактора, контролируя давление насоса до приблизительно 360 фунт/кв. дюйм изб. для преодоления какого-либо падения давления из слоя катализатора. Использовали реакторы из кварца или нержавеющей стали с аспектным соотношением (т.е. длина/диаметр) 75.
Были использованы различные слои катализатора и системы подачи газовых потоков, приводя к диапазону объемных скоростей (сообщается в разделе Результаты в данной заявке). Выходящий из реактора поток был также подключен к другой линии разбавления азота, которая разбавляла выходящий поток с коэффициентом два. Внутренний стандарт гелия нормализовал любые изменения в этом разбавлении для аналитических целей. Конденсированные продукты собирали с помощью системы отбора проб жидкости, охлажденной до температуры от 6,5°C до 10°C, в то время как газообразные продукты накапливали в воздушной прослойке виалы сбора. Накопленные в прослойке газообразные продукты анализировали с помощью клапанов отбора проб и онлайн газовой хроматографии (GC).
Систему подачи приводили в равновесие в течение 1 часа, после этого жидкую пробу отбирали в течение 2,7 часа и анализировали в конце эксперимента при помощи офлайн ВЭЖХ. В течение этого времени, газообразные продукты анализировали онлайн дважды при помощи GC и сообщали среднее значение. Жидкие продукты анализировали при помощи высокоэффективной жидкостной хроматографии (ВЭЖХ) на приборе Agilent 1200 Series (Agilent Technologies, Santa Clara, CA), Supelcogel-H колонка (4,6×250 мм; Supelco, St. Louis, MO), и диодно-матричного детектора и детектора с коэффициентом преломления (RI). Аналиты элюировали изократически, используя 0,005 М H2SO4 (водн.) как элюирующий буфер, в течение периода 30 мин и при потоке 0,2 мл/мин. Температуры колонки и RI детектора устанавливали на 30°C. Газообразные продукты анализировали при помощи системы газовой хроматографии Interscience Compact (GC) (Interscience BV, Breda, Netherlands) используя три детектора (один пламенно-ионизационный детектор - FID - и два термопроводящих - TCD-детектора «A» и «B», которые в данной заявке называются «TCD-А» и «TCD-B», соответственно). Газообразные продукты сообщали как среднее значение, данное двумя последовательными GC хроматограммами.
Колонка TCD-А была Rt-Q Bond (Restek Corp., Bellefonte, PA), имела 26 м в длину и I.D. 0,32 мм с толщиной пленки 10 мкм и использовали пре-колонку 2 м. Давление устанавливали на 150 кПа, расщепление потока 10 мл/мин. Температуру печи колонки устанавливали на 100°C с температурой желоба печи 50°C. Поток устанавливали на 5,0 мл/мин, газ-носитель - гелий. TCD-B колонка была Mol sieve MS5A (Restek Corp., Bellefonte, PA), имела длину 21 м и толщину пленки 10 мкм и использовали пре-колонку 2 м. Давление устанавливали на 200 кПа, расщепление потока 10 мл/мин. Температуру печи колонки устанавливали на 70°C с температурой желоба печи 50°C. Поток устанавливали на 2,0 мл/мин, газ-носитель - аргон. FID колонка была RTx-624 (Restek, Bellefonte, PA), имела длину 28 м и внутренний диаметр 0,25 мм с толщиной пленки 14 мм и использовали пре-колонку 2 м. Давление устанавливали на 100 кПа, расщепление потока 20 мл/мин. Температуру печи колонки устанавливали на 45°C с температурой желоба печи 50°C.
Реактор - система B (1,6 мл масштабный реактор): Некоторые из данных конверсий проводили в системе проточного реактора с уплотненным слоем с объемом слоя катализатора приблизительно 1,6 мл. Трубку длиной 13 дюймов (330 мм) из нержавеющей стали и оклеенную стеклом (SGE Analytical Science Pty Ltd., Ringwood, Australia) с 4,0 мм внутренним диаметром (ID) набивали стекловолокном (3 дюйма/76 мм длина слоя), с катализатором наверху (1,6 см3 объем слоя, 5 дюймов/127 мм длина слоя) с получением 2,55 см3 уплотненного слоя (8 дюймов/203 мм) и 1,6 см3 (5 дюймов/127 мм) свободного пространства в верхней части реактора. Трубку помещали внутрь алюминиевого блока и помещали в печь из глинистого железняка серия 3210 (Applied Test Systems, Butler, PA) таким образом, что верх уплотненного слоя выравнивали по верхней части алюминиевого блока. Реактор устанавливали в режим нисходящего потока и оснащали Knauer Smartline 100 насосом подачи (Berlin, Germany), Brooks 0254 регулятором газового потока (Hatfield, PA), Brooks регулятором давления всасывания и улавливающим резервуаром. Печь из глинистого железняка нагревали таким образом, что температуру стенок реактора поддерживали постоянной при приблизительно 350°C во время течения реакции. Реактор поставлялся отдельными системами подачи жидкости и газа, которые смешивались вместе перед достижением слоя катализатора. Система подачи газа состояла из молекулярного азота (N2) при приблизительно 360 фунт/кв. дюйм изб. при потоке 45 мл/мин. Система подачи жидкости представляла собой водный раствор молочной кислоты (20 мас. % L-молочной кислоты) и подана при 0,045 мл/мин (1,7 ч-1 LHSV), что дает время пребывания приблизительно 1 c (3600 ч-1 GHSV) в условиях STP. После протекания через реактор, газообразный поток охлаждали и жидкости собирали в улавливающий резервуар для анализа при помощи офлайн ВЭЖХ, используя систему Agilent 1100 (Santa Clara, CA), оснащенную диодно-матричным детектором (DAD) и колонкой Waters Atlantis T3 (Каталог №186003748; Milford, MA) с использованием способов, известных специалистам в данной области техники. Газообразный поток анализировали онлайн при помощи GC, используя систему Agilent 7890 (Santa Clara, CA), оснащенную детектором FID и колонкой Varian CP-Para Bond Q (Каталог №CP7351; Santa Clara, CA).
Система подачи реактора: раствор (113,6 г) полученной из биомассы молочной кислоты (88 мас. %, Purac Corp., Lincolnshire, IL) растворяли в дистиллированной воде (386,4 г) с получением раствора с ожидаемой концентрацией молочной кислоты 20 мас. %. Данный раствор нагревали при от 95°C до 100°C в течение 12-30 часов. Полученную в результате смесь охлаждали и анализировали при помощи ВЭЖХ (описана выше) по сравнению с известными весовыми стандартами.
VII Результаты
В Таблице 1 ниже приведены параметры реакций с каждым катализатором, которые проводили в газовой фазе. Когда использовали 0,2 мл масштабный реактор, сообщенные выходы определяли через 222 мин (3 часа и 42 мин) времени реакции и использовали кварцевые реакторы, которые работали при 350°C. Когда использовали 1,6 мл масштабный реактор, использовали реактор из нержавеющей стали, покрытый с внутренней стороны эмалью, и сообщенные выходы определяли через от приблизительно 150 мин до приблизительно 650 мин. GHSV были следующими: 3490 ч-1 в Примере 1; 3535 ч-1 в Примерах 2, 10, 11 и 12; 3414 ч-1 в Примерах 3, 4 и 7; 3566 ч-1 в Примерах 5 и 6; и 3379 ч-1 в Примерах 8 и 9. В таблице, «N.D.» означает, что значение не было определено.
Figure 00000087
Figure 00000088
Результаты в Таблице 1 обеспечивают удобное сравнение конверсии молочной кислоты в акриловую кислоту с использованием катализаторов в соответствии с настоящим изобретением (т.е. Примеры 1-7) и не в соответствии с настоящим изобретением (т.е. Примеры 8-12). Среди прочего, в таких же или аналогичных условиях реакции, катализаторы в соответствии с настоящим изобретением приводят к значительно большей селективности для акриловой кислоты и значительно более низкой селективности для пропионовой кислоты, чем катализаторы не в соответствии с настоящим изобретением. Катализаторы в Примерах 8 и 9 имели более низкие селективности по сравнению с катализаторами в соответствии с настоящим изобретением, что демонстрирует, что присутствие определенных фосфатных анионов имеет важное значение для высокой селективности получения акриловой кислоты. Катализаторы в Примерах 10, 11 и 12 имели более низкую селективность, чем катализаторы в соответствии с настоящим изобретением, что демонстрирует, что присутствие двух различных металлов имеет важное значение для высокой селективности получения акриловой кислоты. Дополнительно, более низкие мольные соотношения фосфора (P) и металлов (т.е. сравнительный Пример 8) способствуют декарбоксилированию (образование CO2), в то время как более высокие мольные соотношения (т.е. сравнительные Примеры 9 и 12), кажутся предпочтительными для декарбонилирования (образование CO).
Figure 00000089
Результаты в Таблице 2 показывают, что катализатор стабилен в течение по меньшей мере 21,6 часа постольку поскольку катализатор, со временем, не кажется значительно или вредным образом измененным относительно выхода и селективности получения акриловой кислоты и аналогично не кажется вредным относительно селективности для нежелательных побочных продуктов, таких как пропионовая кислота, уксусная кислота, ацетальдегид и диоксид углерода.
Figure 00000090
Хотя хорошие выходы также наблюдаются с использованием кварца или нержавеющей стали (SS), данные, представленные в Таблице 3 выше, показывают, что состав реактора может быть важен, чтобы придать стабилизацию подачи и, что реакторы из кварца работают лучше, чем из нержавеющей стали при стабилизации подачи молочной кислоты от разложения в побочные продукты, такие как пропионовая кислота, что позволяет превосходную производительность катализатора.
Figure 00000091
Результаты, представленные в Таблице 4, показывают, что при высоких объемных скоростях, наблюдалось очень небольшое количество побочных продуктов при использовании реакторов из кварца, с или без инертных набивок. Таким образом, было определено, что использование реакторов из кварца минимизировало две важные побочные реакции: олигомеризации молочной кислоты и восстановления в пропионовую кислоту. Это важно, чтобы оценить истинную активность катализаторов.
Приведенное выше описание дано только для ясности понимания, и никаких ненужных ограничений не должно быть истолковано из него, так как модификации в объеме настоящего изобретения могут быть очевидными специалистам в данной области техники.
Размеры и значения, описанные в данной заявке, не следует понимать как строго ограниченные в точности приведенными численными значениями. Вместо этого, если не указано иное, каждый такой размер должен обозначать как приведенное значение, так и функционально эквивалентный диапазон, окружающий это значение. Например, размер, раскрытый как «40 мм» означает «приблизительно 40 мм».
Каждый документ, цитируемый в данной заявке, включая любые перекрестные ссылки или родственные патенты или заявки, настоящим включен в данную заявку путем ссылки во всей своей полноте, если специально не исключен или иным образом не ограничен. Цитирование любого документа не является признанием, что он является уровнем техники по отношению к любому изобретению, раскрытому или заявленному в данной заявке, или что только он, или в любой комбинации с любой другой ссылкой или ссылками, учит, предполагает или раскрывает любое такое изобретение. Кроме того, в той степени, в которой любое значение или определение термина в данной заявке противоречит любому значению или определению этого же термина в документе, включенном путем ссылки, значение или определение для этого термина в данной заявке превалирует.
В то время как конкретные осуществления настоящего изобретения были проиллюстрированы и описаны, специалистам в данной области техники будет очевидно, что различные другие изменения и модификации могут быть выполнены без отступления от сущности и объема настоящего изобретения. Поэтому прилагаемая формула изобретения предназначена для охвата всех таких изменений и модификаций, которые находятся в пределах объема настоящего изобретения.

Claims (35)

1. Способ получения акриловой кислоты, производных акриловой кислоты или их смесей, включающий стадию, на которой вводят в контакт поток, содержащий гидроксипропионовую кислоту, производные гидроксипропионовой кислоты или их смеси, с катализатором, содержащим:
(a) по меньшей мере один анион конденсированного фосфата, который выбирают из группы, состоящей из формул (I), (II) и (III):
Figure 00000092

Figure 00000093

Figure 00000094
,
где n составляет по меньшей мере 2 и m составляет по меньшей мере 1; и
(b) по меньшей мере, два различных катиона, причем указанные катионы включают:
(i) по меньшей мере, один одновалентный катион; и
(ii) по меньшей мере, один многовалентный катион;
при этом катализатор, по существу, нейтрально заряжен; и дополнительно при этом мольное соотношение фосфора и указанных по меньшей мере двух различных катионов составляет от 0,7 до 1,7, с получением таким образом акриловой кислоты, производных акриловой кислоты или их смесей в результате приведения в контакт указанного потока с указанным катализатором.
2. Способ по п. 1, отличающийся тем, что указанный поток дополнительно содержит:
(a) разбавитель; и
(b) инертный газ, выбранный из группы, состоящей из воздуха, азота, гелия, аргона, диоксида углерода, монооксида углерода, пара и их смесей.
3. Способ по п. 2, отличающийся тем, что указанный поток находится в виде газообразной смеси при контакте с катализатором.
4. Способ по п. 3, отличающийся тем, что указанный разбавитель представляет собой воду.
5. Способ по п. 1, отличающийся тем, что указанная гидроксипропионовая кислота представляет собой молочную кислоту.
6. Способ по п. 1, отличающийся тем, что указанный поток приводят в контакт с указанным катализатором при температуре от 150 до 500°С.
7. Способ по п. 6, отличающийся тем, что указанную молочную кислоту приводят в контакт с указанным катализатором при температуре от 300 до 450°С.
8. Способ по п. 3, отличающийся тем, что указанная гидроксипропионовая кислота, производные гидроксипропионовой кислоты или их смеси присутствуют в количестве от 1 до 10 мол.%, исходя из общего количества молей указанного потока.
9. Способ по п. 3, отличающийся тем, что указанный поток приводят в контакт с указанным катализатором при GHSV (часовая объемная скорость газа) от 720 до 36000 ч-1.
10. Способ по п. 9, отличающийся тем, что указанный поток приводят в контакт с указанным катализатором при GHSV 3600 ч-1.
11. Способ по п. 3, отличающийся тем, что указанный поток приводят в контакт с указанным катализатором при давлении от 0 фунт/кв.дюйм изб. (0 Па) до 550 фунт/кв.дюйм изб. (приблизительно 3,79 МПа).
12. Способ по п. 3, отличающийся тем, что указанный поток приводят в контакт с указанным катализатором при давлении 360 фунт/кв. дюйм изб. (приблизительно 2,48 МПа).
13. Способ по п. 1, отличающийся тем, что указанный поток приводят в контакт с указанным катализатором в реакторе, имеющем внутреннюю поверхность, содержащую материал, выбранный из группы, состоящей из кварца, боросиликатного стекла, кремния, сплава Hastelloy, инконеля, искусственного сапфира, нержавеющей стали и их смесей.
14. Способ по п. 13, отличающийся тем, что указанный материал представляет собой кварц или боросиликатное стекло.
15. Способ по п. 1, отличающийся тем, что указанный одновалентный катион выбирают из группы, состоящей из Н+, Li+, Na+, K+, Rb+, Cs+ и их смесей.
16. Способ по п. 1, отличающийся тем, что указанный многовалентный катион выбирают из группы, состоящей из двухвалентных катионов, трехвалентных катионов, четырехвалентных катионов, пятивалентных катионов и их смесей.
17. Способ по п. 16, отличающийся тем, что указанный многовалентный катион выбирают из группы, состоящей из Ве2+, Mg2+, Са2+, Sr2+, Ва2+, Mn2+, Fe2+, Со2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Pb2+, Ti3+, Cr3+, Mn3+, Fe3+, Al3+, Ga3+, Y3+, In3+, Sb3+, Bi3+, Si4+, Ti4+, V4+, Ge4+, Mo4+, Pt4+, V5+, Nb5+, Sb5+ и их смесей.
18. Способ по п. 1, отличающийся тем, что указанные анионы конденсированного фосфата описываются формулами (I) и (II).
19. Способ по п. 18, отличающийся тем, что указанный катализатор содержит:
(a) Ba2-x-sK2xH2SP2O7, или Са2-x-sK2xH2sP2O7, или Mn1-x-sK1+3xH3sP2O7, или Mn1-x-sK2+2xH2sP2O7 и
(b) (KPO3)n,,
где x и s больше или равны 0 и меньше чем 0,5 и n представляет собой положительное целое число.
20. Способ по п. 1, отличающийся тем, что мольное соотношение фосфора и катионов в указанном катализаторе составляет от приблизительно 0,8 до приблизительно 1,3.
21. Способ по п. 1, отличающийся тем, что мольное соотношение фосфора и катионов в указанном катализаторе составляет 1.
22. Способ по п. 21, отличающийся тем, что указанные катионы включают:
(i) Н+, Li+, Na+, K+, Rb+, Cs+ и их смеси и
(ii) Ве2+, Mg2+, Са2+, Sr2+, Ва2+, Mn2+, Fe2+, Со2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Pb2+, Ti3+, Cr3+, Mn3+, Fe3+, Al3+, Ga3+, Y3+, In3+, Sb3+, Bi3+, Si4+, Ti4+, V4+, Ge4+, Mo4+, Pt4+, V5+, Nb5+, Sb5+ и их смеси.
23. Способ по п. 1, отличающийся тем, что указанный катализатор включает инертный носитель, который выполнен из материала, содержащего силикаты, алюминаты, уголь, оксиды металлов и их смеси.
24. Способ по п. 1, отличающийся тем, что указанный катализатор получают с помощью способа, включающего стадии, на которых смешивают и нагревают по меньшей мере два различных соединения, содержащие фосфор, при этом каждое указанное соединение описывается одной из формул (IV)-(XXV) или любой из гидратированных форм указанных формул:
Figure 00000095

Figure 00000096

Figure 00000097

Figure 00000098

Figure 00000099

Figure 00000100

Figure 00000101

Figure 00000102

Figure 00000103

Figure 00000104

Figure 00000105

Figure 00000106

Figure 00000107

Figure 00000108

Figure 00000109

Figure 00000110

Figure 00000111

Figure 00000112

Figure 00000113

Figure 00000114

Figure 00000115

Figure 00000116

где MI представляет собой одновалентный катион; где MII представляет собой двухвалентный катион; где MIII представляет собой трехвалентный катион; где MIV представляет собой четырехвалентный катион; где у означает 0, 1, 2 или 3; где z означает 0, 1, 2, 3 или 4; где v означает 0, 1 или 2; где w означает 0 или любое положительное целое число; и где а, b, c, d, е, f, g, h, i, j, k и l означают любые положительные целые числа, таким образом, что удовлетворены уравнения: 2а=b+3с, 3d=е+3f, i=2g+h и 1=3j+k.
25. Способ по п. 24, отличающийся тем, что указанный способ получения указанного катализатора дополнительно включает стадию, на которой смешивают инертный носитель с указанными соединениями, содержащими фосфор, до, во время или после указанного смешивания и нагревания соединений, содержащих фосфор, при этом указанный инертный носитель содержит силикаты, алюминаты, уголь, оксиды металлов и их смеси.
26. Способ по п. 1, отличающийся тем, что указанный катализатор получают с помощью способа, включающего стадии, на которых смешивают и нагревают:
(а) по меньшей мере одно соединение, содержащее фосфор, при этом каждое указанное соединение описывается одной из формул (IV)-(XXV) или любой из гидратированных форм указанных формул:
Figure 00000117

Figure 00000118

Figure 00000119

Figure 00000120

Figure 00000121

Figure 00000122

Figure 00000123

Figure 00000124

Figure 00000125

Figure 00000126

Figure 00000127

Figure 00000128

Figure 00000129

Figure 00000130

Figure 00000131

Figure 00000132

Figure 00000133

Figure 00000134

Figure 00000135

Figure 00000136

Figure 00000137

Figure 00000138
,
где MI представляет собой одновалентный катион; где MII представляет собой двухвалентный катион; где MIII представляет собой трехвалентный катион; где MIV представляет собой четырехвалентный катион; где у означает 0, 1, 2 или 3; где z означает 0, 1, 2, 3 или 4; где v означает 0, 1 или 2; где w означает 0 или любое положительное целое число; и где а, b, с, d, е, f, g, h, i, j, k и l означают любые положительные целые числа, таким образом, что удовлетворены уравнения: 2а=b+3с, 3d=е+3f, i=2g+h и l=3j+k; и
(b) по меньшей мере одно соединение, не содержащее фосфор, выбранное из группы, состоящей из нитратных солей, карбонатных солей, ацетатных солей, оксидов металлов, хлоридных солей, сульфатных солей и гидроксидов металлов, при этом каждое указанное соединение описывается одной из формул (XXVI)-(XL) или любой из гидратированных форм указанных формул:
Figure 00000139

Figure 00000140

Figure 00000141

Figure 00000142

Figure 00000143

Figure 00000144

Figure 00000145

Figure 00000146

Figure 00000147

Figure 00000148

Figure 00000149

Figure 00000150

Figure 00000151

Figure 00000152

Figure 00000153

Figure 00000154

Figure 00000155

Figure 00000156

Figure 00000157

Figure 00000158

Figure 00000159

Figure 00000160

Figure 00000161

Figure 00000162

Figure 00000163
27. Способ по п. 26, отличающийся тем, что указанный способ получения указанного катализатора дополнительно включает стадию, на которой смешивают инертный носитель с указанными соединениями, содержащими фосфор, и указанными соединениями, не содержащими фосфор, при этом инертный носитель смешивают до, во время или после указанного смешивания и нагревания соединений, и причем указанный инертный носитель содержит силикаты, алюминаты, уголь, оксиды металлов и их смеси.
28. Способ получения акриловой кислоты, включающий стадию, на которой вводят в контакт:
(a) газообразный поток, содержащий:
(i) молочную кислоту,
(ii) воду, и
(iii) азот,
при этом указанная молочная кислота присутствует в количестве 2,5 мол.%, и причем указанная вода присутствует в количестве 50 мол.%, исходя из общего количества молей указанного газообразного потока, с
(b) катализатором, содержащим:
(i) Ba2-x-sK2xH2sP2O7 и
(ii) (KPO3)n,
где x и s больше или равны 0 и меньше чем 0,5 и n представляет собой положительное целое число, при этом указанную стадию приведения в контакт указанного газообразного потока с указанным катализатором выполняют при температуре от 300 до 450°С, при GHSV 3600 ч-1 и при давлении 360 фунт./кв. дюйм изб. (приблизительно 2,48 МПа), в реакторе, имеющем внутреннюю поверхность, содержащую материал, выбранный из группы, состоящей из кварца и боросиликатного стекла, с получением таким образом акриловой кислоты в результате приведения в контакт указанной молочной кислоты с указанным катализатором.
29. Способ получения акриловой кислоты, включающий стадию, на которой вводят в контакт:
(a) газообразный поток, содержащий:
(i) молочную кислоту,
(ii) воду и
(iii) азот,
при этом указанная молочная кислота присутствует в количестве 2,5 мол.%, и причем указанная вода присутствует в количестве 50 мол.%, исходя из общего количества молей указанного газообразного потока, с
(b) катализатором, полученным способом, включающим следующие стадии, на которых:
(i) объединяют соединение, содержащее фосфор, нитратную соль, фосфорную кислоту и воду с образованием влажной смеси, при этом мольное соотношение фосфора и катионов, присутствующих как в указанном соединении, содержащем фосфор, так и в указанной нитратной соли, составляет 1;
(ii) прокаливают указанную влажную смесь постадийно при 50, 80, 120°С и при от 450 до 550°С с получением высушенного твердого вещества; и
(iii) измельчают и просеивают указанное высушенное твердое вещество до размера от 100 до 200 мкм с получением указанного катализатора, и
причем указанную стадию приведения в контакт указанного газообразного потока с указанным катализатором выполняют при температуре от 300 до 450°С, при GHSV 3600 ч-1 и при давлении 360 фунт/кв.дюйм изб. (приблизительно 2,48 МПа), в реакторе, имеющем внутреннюю поверхность, содержащую материал, выбранный из группы, состоящей из кварца и боросиликатного стекла, с получением акриловой таким образом кислоты в результате приведения в контакт указанной молочной кислоты с указанным катализатором.
30. Способ по п. 29, отличающийся тем, что указанное соединение, содержащее фосфор, представляет собой MnPO4·qH2O, и указанная нитратная соль представляет собой KNO3, и при этом мольное соотношение MnPO4·qH2O, KNO3 и Н3РО4 составляет 0,3:1:1 на безводной основе.
31. Способ по п. 29, отличающийся тем, что указанное соединение, содержащее фосфор, представляет собой Ca2P2O7, и указанная нитратная соль представляет собой KNO3, и при этом мольное соотношение Ca2P2O7, KNO3 и Н3РО4 составляет 1,6:1:1.
32. Способ получения акриловой кислоты, включающий стадию, на которой вводят в контакт:
(a) газообразный поток, содержащий:
(i) молочную кислоту,
(ii) воду и
(iii) азот,
при этом указанная молочная кислота присутствует в количестве 2,5 мол.%, и причем указанная вода присутствует в количестве 50 мол.%, исходя из общего количества молей указанного газообразного потока, с
(b) катализатором, полученным способом, включающим следующие стадии, на которых:
(i) объединяют соединение, содержащее фосфор, нитратную соль, фосфорную кислоту и воду с образованием влажной смеси, при этом мольное соотношение фосфора и катионов, присутствующих как в указанном соединении, содержащем фосфор, так и в указанной нитратной соли, составляет 1;
(ii) нагревают указанную влажную смесь до 80°С при перемешивании почти до полного высушивания с образованием влажного твердого вещества,
(iii) прокаливают указанное влажное твердое вещество постадийно при 50, 80, 120°С и при от 450 до 550°С с получением высушенного твердого вещества; и
(iv) измельчают и просеивают указанное высушенное твердое вещество до размера от 100 до 200 мкм с получением указанного катализатора, и
причем указанную стадию приведения в контакт указанного газообразного потока с указанным катализатором выполняют при температуре от 300 до 450°С, при GHSV 3600 ч-1 и при давлении 360 фунт/кв. дюйм изб. (приблизительно 2,48 МПа) в реакторе, имеющем внутреннюю поверхность, содержащую материал, выбранный из группы, состоящей из кварца и боросиликатного стекла, с получением акриловой, таким образом, кислоты в результате приведения в контакт указанной молочной кислоты с указанным катализатором.
33. Способ по п. 32, отличающийся тем, что указанное соединение, содержащее фосфор, представляет собой K2HPO4, при этом указанная нитратная соль представляет собой Ва(NO3)2, и при этом мольное соотношение Ba(NO3)2, K2HPO4 и Н3РО4 составляет 3:1:4.
34. Способ по п. 32, отличающийся тем, что указанное соединение, содержащее фосфор, представляет собой K2HPO4, и указанная нитратная соль представляет собой Mn(NO3)2·4H2O, и при этом мольное соотношение Mn(NO3)2·4H2O, K2HPO4 и Н3РО4 составляет 1:1,5:2.
35. Способ получения акриловой кислоты, включающий стадию, на которой вводят в контакт:
(a) газообразный поток, содержащий:
(i) молочную кислоту,
(ii) воду и
(iii) азот,
при этом указанная молочная кислота присутствует в количестве 2,5 мол.%, и причем указанная вода присутствует в количестве 50 мол.%, исходя из общего количества молей указанного газообразного потока, с
(b) катализатором, полученным способом, включающим следующие стадии, на которых:
(i) объединяют Ca2P2O7 и KH2PO4 в мольном соотношении 3:1 с образованием твердой смеси; и
(ii) прокаливают указанную твердую смесь постадийно при 50, 80, 120°С и при от 450 до 550°С, с получением указанного катализатора; и
при этом указанную стадию приведения в контакт указанного газообразного потока с указанным катализатором выполняют при температуре от 300 до 450°С, при GHSV 3600 ч-1 и при давлении 360 фунт/кв. дюйм изб. (приблизительно 2,48 МПа) в реакторе, имеющем внутреннюю поверхность, содержащую материал, выбранный из группы, состоящей из кварца и боросиликатного стекла, с получением таким образом акриловой кислоты в результате приведения в контакт указанной молочной кислоты с указанным катализатором.
RU2014135176/04A 2012-04-11 2013-04-11 Каталитическая конверсия гидроксипропионовой кислоты или ее производных в акриловую кислоту и ее производные RU2586327C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261623054P 2012-04-11 2012-04-11
US61/623,054 2012-04-11
US13/760,472 US9714208B2 (en) 2012-04-11 2013-02-06 Catalysts conversion of hydroxypropionic acid or its derivatives to acrylic acid or its derivatives
US13/760,472 2013-02-06
PCT/US2013/036161 WO2013155295A1 (en) 2012-04-11 2013-04-11 Catalytic conversion of hydroxypropionic acid or its derivatives to acrylic acid or its derivatives

Publications (2)

Publication Number Publication Date
RU2014135176A RU2014135176A (ru) 2016-03-20
RU2586327C2 true RU2586327C2 (ru) 2016-06-10

Family

ID=49325607

Family Applications (5)

Application Number Title Priority Date Filing Date
RU2014138178/04A RU2598380C2 (ru) 2012-04-11 2013-04-11 Каталитическая конверсия молочной кислоты в акриловую кислоту
RU2014139167/04A RU2587494C2 (ru) 2012-04-11 2013-04-11 Способ получения акриловой кислоты или ее производных
RU2014136558/04A RU2591192C2 (ru) 2012-04-11 2013-04-11 Катализаторы для конверсии гидроксипропионовой кислоты или ее производных в акриловую кислоту или ее производные
RU2014138725/04A RU2586329C2 (ru) 2012-04-11 2013-04-11 Катализаторы для получения акриловой кислоты или ее производных
RU2014135176/04A RU2586327C2 (ru) 2012-04-11 2013-04-11 Каталитическая конверсия гидроксипропионовой кислоты или ее производных в акриловую кислоту и ее производные

Family Applications Before (4)

Application Number Title Priority Date Filing Date
RU2014138178/04A RU2598380C2 (ru) 2012-04-11 2013-04-11 Каталитическая конверсия молочной кислоты в акриловую кислоту
RU2014139167/04A RU2587494C2 (ru) 2012-04-11 2013-04-11 Способ получения акриловой кислоты или ее производных
RU2014136558/04A RU2591192C2 (ru) 2012-04-11 2013-04-11 Катализаторы для конверсии гидроксипропионовой кислоты или ее производных в акриловую кислоту или ее производные
RU2014138725/04A RU2586329C2 (ru) 2012-04-11 2013-04-11 Катализаторы для получения акриловой кислоты или ее производных

Country Status (14)

Country Link
US (13) US10106484B2 (ru)
EP (5) EP2688927B1 (ru)
JP (5) JP5770942B2 (ru)
CN (6) CN104220412B (ru)
AU (5) AU2013245858B2 (ru)
BR (5) BR112014025348B1 (ru)
CA (5) CA2869677C (ru)
ES (5) ES2611360T3 (ru)
IN (5) IN2014DN08292A (ru)
MX (5) MX369927B (ru)
MY (5) MY164542A (ru)
RU (5) RU2598380C2 (ru)
SG (5) SG11201406511VA (ru)
WO (5) WO2013155298A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2662229C2 (ru) * 2013-10-16 2018-07-25 Дзе Проктер Энд Гэмбл Компани Катализатор для получения акриловой кислоты и ее производных на основе биологического сырья и способ его получения
RU2711993C1 (ru) * 2016-07-29 2020-01-23 Дзе Проктер Энд Гэмбл Компани Способы получения акриловой кислоты из молочной кислоты или ее производных в жидкой фазе
RU2719485C1 (ru) * 2016-11-03 2020-04-17 Дзе Проктер Энд Гэмбл Компани Способ получения акриловой кислоты из гидроксипропионовой кислоты

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527456A (ja) 2011-05-13 2014-10-16 ノボマー, インコーポレイテッド 触媒的カルボニル化用触媒および方法
US20130273384A1 (en) 2012-04-11 2013-10-17 The Procter & Gamble Company Poly(Acrylic Acid) From Bio-Based Acrylic Acid And Its Derivatives
US20130274520A1 (en) * 2012-04-11 2013-10-17 The Procter & Gamble Company Purification Of Bio Based Acrylic Acid To Crude And Glacial Acrylic Acid
US10106484B2 (en) * 2012-04-11 2018-10-23 The Procter & Gamble Company Catalysts for the conversion of hydroxypropionic acid or its derivatives to acrylic acid or its derivatives
DE102013000602A1 (de) 2013-01-16 2014-07-17 Evonik Industries Ag Verfahren zur Herstellung von Acrylsäure
JP2016169162A (ja) * 2013-07-25 2016-09-23 株式会社日本触媒 アクリル酸および/またはアクリル酸エステルの製造方法
US9481589B2 (en) * 2013-08-30 2016-11-01 Verliant Energy, Inc. System and method for improved anaerobic digestion
CN103611544B (zh) * 2013-12-05 2015-04-22 湖北双雄催化剂有限公司 一种提高低压钴钼耐硫变换催化剂低温活性的制备方法
WO2015168493A1 (en) 2014-05-02 2015-11-05 Hamilton Ian C Device for converting radiation energy to electrical energy
US10858329B2 (en) 2014-05-05 2020-12-08 Novomer, Inc. Catalyst recycle methods
SG11201610058QA (en) 2014-05-30 2016-12-29 Novomer Inc Integrated methods for chemical synthesis
AU2015292361B2 (en) 2014-07-25 2019-07-18 Novomer, Inc. Synthesis of metal complexes and uses thereof
WO2016026763A1 (en) 2014-08-18 2016-02-25 Basf Se Process for preparing acrylic acid using a heterogeneous alumina catalyst
FR3029805B1 (fr) 2014-12-10 2017-01-13 Centre Nat Rech Scient Production d'acides ou d'esters d'acides carboxyliques insatures avec un catalyseur a base d'halogeno-apatite
WO2016099066A1 (ko) * 2014-12-19 2016-06-23 주식회사 엘지화학 글리세린 탈수 반응용 촉매, 이의 제조 방법 및 상기 촉매를 이용한 아크롤레인의 제조 방법
KR101774543B1 (ko) 2014-12-19 2017-09-04 주식회사 엘지화학 글리세린 탈수 반응용 촉매, 이의 제조 방법 및 상기 촉매를 이용한 아크롤레인의 제조 방법
MA41513A (fr) 2015-02-13 2017-12-19 Novomer Inc Procédé de distillation pour la production d'acide acrylique
MA41514A (fr) 2015-02-13 2017-12-19 Novomer Inc Procédés intégrés de synthèse chimique
MA41510A (fr) 2015-02-13 2017-12-19 Novomer Inc Procédé de production d'acide acrylique
EP3256441B1 (en) 2015-02-13 2020-04-08 Novomer, Inc. Continuous carbonylation processes
CN107531607A (zh) * 2015-03-13 2018-01-02 宝洁公司 用于将乳酸盐脱水成丙烯酸或丙烯酸盐的方法
WO2017040383A1 (en) * 2015-08-28 2017-03-09 The Procter & Gamble Company Catalysts for the dehydration of hydroxypropionic acid and its derivatives
US20170056253A1 (en) * 2015-08-28 2017-03-02 Fitesa Nonwoven, Inc. Absorbent Article Having A High Content Of Bio-Based Materials
US20170057901A1 (en) * 2015-08-28 2017-03-02 The Procter & Gamble Company Catalytic Dehydration Of Hydroxypropionic Acid And Its Derivatives
BR112018004058B1 (pt) * 2015-08-28 2022-05-03 The Procter & Gamble Company Catalisadores para a desidratação de ácido hidroxipropiônico e seus derivados
WO2017040384A1 (en) 2015-08-28 2017-03-09 The Procter & Gamble Company Catalytic dehydration of hydroxypropionic acid and its derivatives
EP3394026B1 (en) * 2015-12-21 2020-02-05 PURAC Biochem BV Process for manufacturing acrylic acid
WO2017165345A1 (en) * 2016-03-21 2017-09-28 Novomer, Inc. Systems and methods for producing superabsorbent polymers
CN109475848B (zh) * 2016-07-29 2021-11-19 宝洁公司 由乳酸或其衍生物以液相制备丙烯酸的催化剂
US10723687B2 (en) 2016-07-29 2020-07-28 The Procter & Gamble Company Methods of making acrylic acid from lactic acid or its derivatives in liquid phase
CN106431890B (zh) * 2016-09-08 2019-09-13 中国科学院青岛生物能源与过程研究所 一种羧酸的制备方法
WO2018118700A1 (en) 2016-12-22 2018-06-28 Eastman Chemical Company Separation of propionic acid from acrylic acid via azeotropic distillation
US11214534B2 (en) 2016-12-22 2022-01-04 Eastman Chemical Company Acrylic acid purification via dividing wall columns
AU2018230364B2 (en) 2017-03-07 2020-10-29 The Procter & Gamble Company Method of making acrylic acid from lactic acid or lactide using molten salt catalysts
EP3615503A1 (en) 2017-04-26 2020-03-04 The Procter and Gamble Company Methods of making acrylic acid from lactic acid or its derivatives in liquid phase
CN109304164B (zh) * 2017-07-28 2021-08-03 中国石油化工股份有限公司 甘油一步法合成丙烯酸催化剂
CN111148491B (zh) 2017-09-21 2023-04-07 宝洁公司 吸收制品
US11273434B2 (en) 2017-10-06 2022-03-15 The Procter & Gamble Company Regeneration method of solid catalyst
JP7126234B2 (ja) * 2017-11-29 2022-08-26 国立研究開発法人産業技術総合研究所 カリウム化合物及びそれを含有するカリウムイオン二次電池用正極活物質
KR20190062702A (ko) 2017-11-29 2019-06-07 롯데케미칼 주식회사 이온 교환수지를 이용한 락타이드로부터 아크릴산의 제조방법
KR20190062781A (ko) 2017-11-29 2019-06-07 롯데케미칼 주식회사 이온 교환수지를 이용한 락타이드로부터 아크릴산의 제조방법
US11433158B2 (en) 2017-12-12 2022-09-06 The Procter & Gamble Company Recycle friendly and sustainable absorbent articles
WO2020007808A1 (en) 2018-07-02 2020-01-09 Shell Internationale Research Maatschappij B.V. Production of alkyl esters of acrylic acid
CN108993479B (zh) * 2018-08-07 2020-11-24 重庆理工大学 钼基催化剂、制备方法及其应用
ES2969029T3 (es) 2018-08-22 2024-05-16 Procter & Gamble Artículo absorbente desechable
WO2020068524A1 (en) 2018-09-27 2020-04-02 The Procter & Gamble Company Nonwoven webs with visually discernible patterns
US11707548B2 (en) 2018-10-09 2023-07-25 The Procter & Gamble Company Absorbent article comprising a lotion resistant polymeric filler composition
WO2020099430A1 (en) 2018-11-14 2020-05-22 Shell Internationale Research Maatschappij B.V. Regeneration of catalyst for lactic acid dehydration
WO2020242714A1 (en) 2019-05-31 2020-12-03 The Procter & Gamble Company Method and apparatus for bonding elastic parts under tension to an advancing carrier
WO2021212348A1 (en) 2020-04-22 2021-10-28 The Procter & Gamble Company Absorbent articles having nonwoven materials with natural fibers
EP4146132A1 (en) 2020-05-05 2023-03-15 The Procter & Gamble Company Absorbent articles including improved elastic panels
FR3110570B1 (fr) 2020-05-19 2022-05-20 Commissariat Energie Atomique PROCEDE DE PREPARATION D’ACIDE ACRYLIQUE A PARTIR DE β-PROPIOLACTONE
EP4153113A1 (en) 2020-05-22 2023-03-29 The Procter & Gamble Company Absorbent articles with waistbands and waistband covers
EP3915533A1 (en) 2020-05-28 2021-12-01 The Procter & Gamble Company Absorbent article having a waist gasketing element
US20220087881A1 (en) 2020-09-22 2022-03-24 The Procter & Gamble Company Absorbent articles with patterned front ears
EP4228577A1 (en) 2020-10-16 2023-08-23 The Procter & Gamble Company Absorbent hygiene product comprising superabsorbent polymer partly derived from a recycled resource and methods of producing said product
JP2023547431A (ja) * 2020-11-11 2023-11-10 エルジー・ケム・リミテッド アクリル酸の製造方法
CN112479262B (zh) * 2020-11-27 2023-09-26 重庆理工大学 氧化铁制备及催化乳酸制备丙酮酸的方法
CN115427145A (zh) * 2020-11-27 2022-12-02 株式会社Lg化学 3-羟基丙酸脱氢用催化剂的生产方法、3-羟基丙酸脱氢用催化剂和使用该催化剂生产丙烯酸的方法
KR20220078275A (ko) * 2020-12-03 2022-06-10 주식회사 엘지화학 아크릴산의 제조 공정
CN112717956B (zh) * 2021-01-20 2023-07-18 贵研铂业股份有限公司 纳米MoS2/MoO3/C催化剂的制备及其催化乳酸制备丙酸的方法
EP4329693A1 (en) 2021-04-30 2024-03-06 The Procter & Gamble Company Packaged absorbent articles
EP4088704A1 (en) 2021-05-10 2022-11-16 The Procter & Gamble Company Absorbent core with nonwoven web(s) comprising superabsorbent fibers
EP4351492A1 (en) 2021-06-08 2024-04-17 The Procter & Gamble Company Absorbent articles including a waist panel with a frangible bond
EP4129259A1 (en) 2021-08-04 2023-02-08 The Procter & Gamble Company Absorbent article with urease inhibitor and use of the article
EP4140978A1 (fr) 2021-08-26 2023-03-01 Futerro S.A. Procédé de préparation d'acide acrylique ou d'ester d'acide acrylique par déshydratation catalytique à partir d'un flux de recyclage d'un procédé de production d'acide polylactique
CN218338615U (zh) 2021-09-22 2023-01-20 宝洁公司 图案化纤维基底
WO2023088179A1 (en) 2021-11-19 2023-05-25 The Procter & Gamble Company Absorbent article with front and/or back waist regions having a high-stretch zone and a low-stretch zone and methods for making
FR3129300B1 (fr) 2021-11-22 2023-11-10 Ifp Energies Now Procede de preparation d’une silice mise en forme par extrusion avec un liant phosphopotassique ou phosphate de cesium presentant des proprietes mecaniques ameliorees comprenant une etape de pre-melange
FR3129301A1 (fr) 2021-11-22 2023-05-26 IFP Energies Nouvelles Materiau comprenant une silice mise en forme par extrusion avec un liant phosphopotassique ou phosphate de cesium presentant des proprietes mecaniques ameliorees et son procede de preparation
US20230310229A1 (en) 2022-04-04 2023-10-05 The Procter & Gamble Company Absorbent articles including a waist panel
EP4279050A1 (en) 2022-05-16 2023-11-22 The Procter & Gamble Company Absorbent article
EP4279049A1 (en) 2022-05-16 2023-11-22 The Procter & Gamble Company Method for making an absorbent article and absorbent article
WO2023250479A1 (en) 2022-06-24 2023-12-28 The Procter & Gamble Company Absorbent articles containing wetness indicating compositions and methods for manufacture
US20240000633A1 (en) 2022-06-30 2024-01-04 The Procter & Gamble Company Absorbent articles with frangible pathways and concealed disposal fastener components
WO2024026286A1 (en) 2022-07-28 2024-02-01 The Procter & Gamble Company Absorbent articles with disposal fasteners having integral hook fasteners
FR3139733A1 (fr) * 2022-09-15 2024-03-22 IFP Energies Nouvelles Procede de preparation d’un catalyseur a base de carbure de silicium pour la deshydration d’acide hydroxypropanoïque et ses derives
WO2024097529A1 (en) 2022-11-01 2024-05-10 The Procter & Gamble Company Array of absorbent articles with ultrasonically bonded stretch laminates
US20240148562A1 (en) 2022-11-04 2024-05-09 The Procter & Gamble Company Method and apparatus for bonding elastic parts under tension to an advancing carrier
EP4364708A1 (en) 2022-11-07 2024-05-08 The Procter & Gamble Company Array of absorbent articles having waist gasketing elements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859240A (en) * 1956-01-12 1958-11-04 Minnesota Mining & Mfg Production of acrylates by catalytic dehydration of lactic acid and alkyl lactates
US4729978A (en) * 1987-05-04 1988-03-08 Texaco Inc. Catalyst for dehydration of lactic acid to acrylic acid
CN101537362A (zh) * 2009-04-22 2009-09-23 中国科学院上海有机化学研究所 活性炭催化剂、制备方法和在乳酸脱水制备丙烯酸中的应用
RU2008137274A (ru) * 2007-09-19 2010-03-27 Ром Энд Хаас Компани (Us) Улучшенный способ селективного удаления пропионовой кислоты из потоков (мет)акриловой кислоты

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2444538A (en) 1943-08-19 1948-07-06 Celanese Corp Process for the production of butadiene and catalyst therefor
DE1062696B (de) 1952-11-06 1959-08-06 Minnesota Mining & Mfg Verfahren zur Herstellung von Acrylsaeure oder ihren Alkylestern aus Milchsaeure oder Milchsaeurealkylestern
US3005456A (en) * 1956-07-03 1961-10-24 Personal Products Corp Catamenial device
FR2087011A5 (ru) 1970-04-16 1971-12-31 Raffinage Cie Francaise
FR2262005B1 (ru) 1974-02-22 1978-01-06 Raffinage Cie Francaise
US4028424A (en) * 1974-11-15 1977-06-07 Japan Synthetic Rubber Co., Ltd. Process for preparing unsaturated alcohols
CA1058214A (en) * 1975-10-30 1979-07-10 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Process for preparing sorbic acid
JPS5767534A (en) 1980-10-16 1982-04-24 Mitsui Toatsu Chem Inc Preparation of alpha,beta-unsaturated carboxylic ester and alpha,beta-unsaturated carboxylic acid
US4521600A (en) * 1982-05-24 1985-06-04 Air Products And Chemicals, Inc. Triethylenediamine preparation via phosphate catalysts
JPS6018690B2 (ja) * 1981-12-30 1985-05-11 住友精化株式会社 吸水性樹脂の吸水性改良方法
CA1249576A (en) * 1984-06-25 1989-01-31 Gary P. Hagen Coformed catalyst
US4786756A (en) 1984-11-05 1988-11-22 The Standard Oil Company Catalytic conversion of lactic acid and ammonium lactate to acrylic acid
DE3510568A1 (de) 1985-03-23 1986-09-25 Hüls AG, 4370 Marl Katalysatorsystem und verfahren zur herstellung von (alpha),(omega)-c(pfeil abwaerts)4(pfeil abwaerts)- bis c(pfeil abwaerts)2(pfeil abwaerts)(pfeil abwaerts)0(pfeil abwaerts)-alkenolen
JPH02160809A (ja) * 1988-12-14 1990-06-20 Toagosei Chem Ind Co Ltd ジアルキルアミノアルキル(メタ)アクリレート用重合防止剤
US5071754A (en) * 1990-01-23 1991-12-10 Battelle Memorial Institute Production of esters of lactic acid, esters of acrylic acid, lactic acid, and acrylic acid
DE69333752T3 (de) 1992-06-10 2011-03-03 Nippon Shokubai Co. Ltd. Verfahren zur Herstellung eines hydrophilen Harzes
DE4442124A1 (de) * 1994-11-26 1996-05-30 Basf Ag Verfahren zur Herstellung von Propandiol-1,2
WO1997018892A1 (en) * 1995-11-17 1997-05-29 Hydrocarbon Technologies, Inc. Supported solid superacid catalysts and method for making them
JPH10310557A (ja) * 1997-05-09 1998-11-24 Mitsui Chem Inc ナフタレンジカルボン酸のエチレングリコールエステル混合物の製造方法およびポリエチレンナフタレートの製造方法
DE19829477A1 (de) 1998-07-01 2000-01-05 Basf Ag Verfahren zur Reinigung von Acrylsäure oder Methacrylsäure durch Kristallisation und Destillation
WO2003082795A2 (en) * 2002-03-25 2003-10-09 Cargill, Incorporated METHODS OF MANUFACTURING DERIVATIVES OF β-HYDROXYCARBOXYLIC ACIDS
DE10221176A1 (de) * 2002-05-13 2003-11-27 Basf Ag Verfahren zur Herstellung geruchsarmer Hydrogelbildender Polymerisate
US6900283B2 (en) * 2002-11-04 2005-05-31 General Electric Company Method for making stable, homogeneous melt solutions
WO2005012369A1 (ja) 2003-08-04 2005-02-10 Sumitomo Seika Chemicals Co., Ltd. 吸水性樹脂の製造方法
US20060173432A1 (en) * 2005-02-01 2006-08-03 Laumer Jason M Absorbent articles comprising polyamine-coated superabsorbent polymers
DE602006012640D1 (de) * 2005-04-12 2010-04-15 Nippon Catalytic Chem Ind Altend wasserabsorbierendes harz auf basis von polyacrylsäure (polyacrylat) als hauptkomponente, herstellungsverfahren dafür, wasserabsorbierender kerige wasserabsorbierende mittel verwendet wird
WO2007119528A1 (ja) 2006-03-30 2007-10-25 Nippon Shokubai Co., Ltd. アクロレインの製造方法
DE102006039203B4 (de) * 2006-08-22 2014-06-18 Evonik Degussa Gmbh Verfahren zur Herstellung von durch Kristallisation gereinigter Acrylsäure aus Hydroxypropionsäure sowie Vorrichtung dazu
SA08290402B1 (ar) 2007-07-04 2014-05-22 نيبون شوكوباي كو. ، ليمتد عامل دقائقي ماص للماء وطريقة لتصنيعه
CN100484627C (zh) * 2007-11-27 2009-05-06 浙江大学 复合硫酸盐脱水催化剂和用其制备丙烯酸及其甲酯的方法
JPWO2010074177A1 (ja) 2008-12-26 2012-06-21 株式会社日本触媒 アクリル酸の製造方法
CN101474572B (zh) * 2009-01-15 2010-12-29 中国石油化工股份有限公司 一种用于制备生物基丙烯酸的高寿命催化剂
JP5780763B2 (ja) 2009-02-06 2015-09-16 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂およびその製造方法
WO2010095427A1 (ja) 2009-02-17 2010-08-26 株式会社日本触媒 ポリアクリル酸系吸水性樹脂粉末およびその製造方法
JP5458369B2 (ja) * 2009-02-20 2014-04-02 オリンパステルモバイオマテリアル株式会社 ナトリウム含有リン酸カルシウム組成物の製造方法
KR101109690B1 (ko) * 2009-07-01 2012-02-20 한국과학기술원 하향식 선형 증발원 및 이를 이용한 박막 형성 장치
CN101602010B (zh) 2009-07-08 2012-01-25 中国科学院上海有机化学研究所 分子筛催化剂、制备方法及其在乳酸脱水制备丙烯酸中的应用
KR101033660B1 (ko) * 2009-08-27 2011-05-12 한국화학연구원 젖산 에스테르의 탈수 반응용 인산칼슘-실리카 촉매 및 그의 제조방법 및 이를 이용하여 젖산 에스테르로부터 아크릴계 화합물을 제조하는 방법
CA2779614C (en) * 2009-11-02 2017-10-31 Mannkind Corporation Reactor for producing pharmaceutical particles in a precipitation process
EP2371869A1 (en) * 2010-03-30 2011-10-05 Evonik Stockhausen GmbH A process for the production of a superabsorbent polymer
KR101187804B1 (ko) * 2010-09-08 2012-10-09 한국화학연구원 젖산 에스테르로부터 아크릴산과 아크릴산 에스테르를 제조하는 방법
WO2012156921A1 (en) * 2011-05-16 2012-11-22 Council Of Scientific & Industrial Research An improved process for catalytic dehydration of lactic acid to acrylic acid
US20110319849A1 (en) * 2011-07-01 2011-12-29 Dimitris Ioannis Collias Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article
CN102516038A (zh) * 2011-11-18 2012-06-27 浙江师范大学 一种多聚甘油的生产方法
US10106484B2 (en) * 2012-04-11 2018-10-23 The Procter & Gamble Company Catalysts for the conversion of hydroxypropionic acid or its derivatives to acrylic acid or its derivatives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859240A (en) * 1956-01-12 1958-11-04 Minnesota Mining & Mfg Production of acrylates by catalytic dehydration of lactic acid and alkyl lactates
US4729978A (en) * 1987-05-04 1988-03-08 Texaco Inc. Catalyst for dehydration of lactic acid to acrylic acid
RU2008137274A (ru) * 2007-09-19 2010-03-27 Ром Энд Хаас Компани (Us) Улучшенный способ селективного удаления пропионовой кислоты из потоков (мет)акриловой кислоты
CN101537362A (zh) * 2009-04-22 2009-09-23 中国科学院上海有机化学研究所 活性炭催化剂、制备方法和在乳酸脱水制备丙烯酸中的应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2662229C2 (ru) * 2013-10-16 2018-07-25 Дзе Проктер Энд Гэмбл Компани Катализатор для получения акриловой кислоты и ее производных на основе биологического сырья и способ его получения
RU2711993C1 (ru) * 2016-07-29 2020-01-23 Дзе Проктер Энд Гэмбл Компани Способы получения акриловой кислоты из молочной кислоты или ее производных в жидкой фазе
RU2719485C1 (ru) * 2016-11-03 2020-04-17 Дзе Проктер Энд Гэмбл Компани Способ получения акриловой кислоты из гидроксипропионовой кислоты

Also Published As

Publication number Publication date
EP2836522A1 (en) 2015-02-18
WO2013155297A3 (en) 2013-11-28
RU2014136558A (ru) 2016-03-27
SG11201406511VA (en) 2014-11-27
JP5688187B2 (ja) 2015-03-25
EP2836477B1 (en) 2019-08-07
US9809527B2 (en) 2017-11-07
RU2598380C2 (ru) 2016-09-27
WO2013155245A2 (en) 2013-10-17
CA2869319C (en) 2017-03-28
CN106928048B (zh) 2020-06-09
ES2613273T3 (es) 2017-05-23
JP6046802B2 (ja) 2016-12-21
MX369927B (es) 2019-11-26
US20130274512A1 (en) 2013-10-17
CN103781809A (zh) 2014-05-07
AU2013245858B2 (en) 2016-07-07
WO2013155297A2 (en) 2013-10-17
US9422222B2 (en) 2016-08-23
IN2014DN08292A (ru) 2015-05-15
AU2013245900A1 (en) 2014-10-30
CA2869229A1 (en) 2013-10-17
AU2013245856B2 (en) 2015-12-03
MX2014011524A (es) 2015-01-16
WO2013155298A1 (en) 2013-10-17
US20190176135A9 (en) 2019-06-13
MX366549B (es) 2019-07-12
EP2836522B1 (en) 2016-11-16
EP2836300A2 (en) 2015-02-18
WO2013155245A4 (en) 2014-01-23
MY165576A (en) 2018-04-05
AU2013245859B2 (en) 2015-12-03
EP2836477A2 (en) 2015-02-18
US20130274095A1 (en) 2013-10-17
WO2013155295A1 (en) 2013-10-17
US10294186B2 (en) 2019-05-21
US20130274513A1 (en) 2013-10-17
MX2014011545A (es) 2015-03-19
CN103764698A (zh) 2014-04-30
RU2014138178A (ru) 2016-04-10
US9926256B2 (en) 2018-03-27
ES2909406T3 (es) 2022-05-06
BR112014025364B1 (pt) 2021-01-05
BR112014025359B1 (pt) 2020-11-24
JP5770942B2 (ja) 2015-08-26
RU2014135176A (ru) 2016-03-20
US20130274697A1 (en) 2013-10-17
MY165081A (en) 2018-02-28
IN2014DN08405A (ru) 2015-05-08
AU2013245925A1 (en) 2014-10-30
JP2015516292A (ja) 2015-06-11
JP5746441B2 (ja) 2015-07-08
MY164935A (en) 2018-02-15
US20130274516A1 (en) 2013-10-17
CA2869457C (en) 2020-10-27
MX2014011396A (es) 2014-11-25
CN104220411B (zh) 2016-05-18
SG11201405315QA (en) 2014-09-26
RU2591192C2 (ru) 2016-07-10
ES2563858T3 (es) 2016-03-16
US9630901B2 (en) 2017-04-25
CN104220411A (zh) 2014-12-17
AU2013245856A1 (en) 2014-10-30
MY164542A (en) 2018-01-15
MY164869A (en) 2018-01-30
IN2014DN08015A (ru) 2015-05-01
CA2869229C (en) 2016-11-29
JP2014528941A (ja) 2014-10-30
CN106928048A (zh) 2017-07-07
EP2836476A2 (en) 2015-02-18
EP2688927B1 (en) 2015-12-09
ES2611360T3 (es) 2017-05-08
IN2014DN07416A (ru) 2015-04-24
EP2836300B1 (en) 2016-11-09
RU2587494C2 (ru) 2016-06-20
EP2688927A1 (en) 2014-01-29
WO2013155270A2 (en) 2013-10-17
IN2014DN08423A (ru) 2015-05-08
US20180127348A1 (en) 2018-05-10
CA2869677A1 (en) 2013-10-17
JP2014530095A (ja) 2014-11-17
AU2013245925B2 (en) 2016-07-07
WO2013155245A3 (en) 2013-11-28
US20150031913A1 (en) 2015-01-29
WO2013155298A9 (en) 2013-12-27
JP5993084B2 (ja) 2016-09-14
US20160031793A1 (en) 2016-02-04
US20130274514A1 (en) 2013-10-17
US20130274518A1 (en) 2013-10-17
CA2869319A1 (en) 2013-10-17
JP2014518874A (ja) 2014-08-07
RU2014139167A (ru) 2016-04-20
AU2013245858A1 (en) 2014-10-30
CN103764698B (zh) 2016-01-06
CN104220412B (zh) 2018-04-24
US20130274094A1 (en) 2013-10-17
WO2013155270A3 (en) 2013-12-05
US9505697B2 (en) 2016-11-29
MX366550B (es) 2019-07-12
ES2750448T3 (es) 2020-03-25
AU2013245900B2 (en) 2016-07-07
RU2014138725A (ru) 2016-04-10
US10106484B2 (en) 2018-10-23
MX2014011400A (es) 2014-11-25
CN104220412A (zh) 2014-12-17
RU2586329C2 (ru) 2016-06-10
MX2014011406A (es) 2014-11-25
BR112014025347B1 (pt) 2020-12-01
CA2869457A1 (en) 2013-10-17
SG11201405711YA (en) 2014-10-30
WO2013155270A9 (en) 2014-01-30
CA2869677C (en) 2019-11-12
US20150031912A1 (en) 2015-01-29
BR112014025354B1 (pt) 2020-02-04
CA2869403C (en) 2019-12-17
JP2015517905A (ja) 2015-06-25
CN103764281A (zh) 2014-04-30
EP2836476B1 (en) 2022-02-23
US8884050B2 (en) 2014-11-11
SG11201406512WA (en) 2014-11-27
US20170362158A1 (en) 2017-12-21
CA2869403A1 (en) 2013-10-17
SG11201406510SA (en) 2014-11-27
US9714208B2 (en) 2017-07-25
AU2013245859A1 (en) 2014-10-30
BR112014025348B1 (pt) 2020-12-29

Similar Documents

Publication Publication Date Title
RU2586327C2 (ru) Каталитическая конверсия гидроксипропионовой кислоты или ее производных в акриловую кислоту и ее производные
RU2605206C2 (ru) Способ получения акриловой кислоты или ее производных