RU2480592C1 - Система очистки выхлопных газов двигателя внутреннего сгорания - Google Patents

Система очистки выхлопных газов двигателя внутреннего сгорания Download PDF

Info

Publication number
RU2480592C1
RU2480592C1 RU2011139713/06A RU2011139713A RU2480592C1 RU 2480592 C1 RU2480592 C1 RU 2480592C1 RU 2011139713/06 A RU2011139713/06 A RU 2011139713/06A RU 2011139713 A RU2011139713 A RU 2011139713A RU 2480592 C1 RU2480592 C1 RU 2480592C1
Authority
RU
Russia
Prior art keywords
exhaust gas
catalyst
purification
gas purification
purification method
Prior art date
Application number
RU2011139713/06A
Other languages
English (en)
Other versions
RU2011139713A (ru
Inventor
Юки БИСАИДЗИ
Кохей ЙОСИДА
Микио ИНОУЕ
Original Assignee
Тойота Дзидося Кабусики Кайся
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тойота Дзидося Кабусики Кайся filed Critical Тойота Дзидося Кабусики Кайся
Publication of RU2011139713A publication Critical patent/RU2011139713A/ru
Application granted granted Critical
Publication of RU2480592C1 publication Critical patent/RU2480592C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1028Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2022Potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2027Sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2045Calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9025Three layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • F01N2430/085Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing at least a part of the injection taking place during expansion or exhaust stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0684Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1612SOx amount trapped in catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1626Catalyst activation temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Изобретение относится к системе очистки выхлопных газов двигателя внутреннего сгорания. Сущность изобретения: в выпускном канале двигателя, в порядке от стороны впуска, размещается клапан (16) подачи углеводорода, катализатор (13) окисления и катализатор (14) очистки выхлопных газов. В соответствии с рабочим режимом двигателя избирательно используются первый способ очистки от NOX, в котором понижают отношение "воздух-топливо" выхлопного газа, протекающего в катализатор (14) очистки выхлопных газов с предварительно определенным периодом при поддержании его бедным, с тем чтобы удалять NOX без принудительного накопления NOX в форме нитратов, и второй способ очистки от NOX, в котором переключает состав смеси "воздух-топливо" выхлопного газа, протекающего в катализатор (14) очистки выхлопных газов, с бедной на богатую смесь с периодом, превышающим вышеуказанный период, с тем чтобы удалять NOX. Техническим результатом изобретения является обеспечение высокой скорости очистки от NOX при высокой температуре катализатора очистки выхлопных газов. 17 з.п. ф-лы, 22 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к системе очистки выхлопных газов двигателя внутреннего сгорания.
Уровень техники
В данной области техники известен двигатель внутреннего сгорания, в котором, в выпускном канале двигателя, размещается катализатор накопления NOX, который накапливает NOX, который содержится в выхлопном газе, когда состав смеси "воздух-топливо" втекающего выхлопного газа является бедным, и который высвобождает накопленный NOX, когда состав смеси "воздух-топливо" втекающего выхлопного газа становится богатым, в котором в выпускном канале двигателя выше по потоку катализатора накопления NOX, размещается катализатор окисления, который имеет функцию адсорбции, и в котором углеводороды подаются в выпускной канал двигателя выше по потоку катализатора окисления, чтобы задавать «богатый» состав смеси "воздух-топливо" выхлопного газа, протекающего в катализатор накопления NOX, при высвобождении NOX из катализатора накопления NOX (например, см. патентный документ 1).
В таком двигателе внутреннего сгорания углеводороды, которые подаются при высвобождении NOX из катализатора накопления NOX, становятся газообразными углеводородами в катализаторе окисления, и газообразные углеводороды подаются в катализатор накопления NOX. Как результат, NOX, который высвобождается из катализатора накопления NOX, хорошо восстанавливается.
Список библиографических ссылок
Патентные документы
Патентный документ 1. Патент (Япония) № 3969450
Сущность изобретения
Техническая задача
Тем не менее, имеется проблема в том, что когда катализатор накопления NOX достигает высокой температуры, скорость очистки от NOX падает.
Цель настоящего изобретения состоит в том, чтобы предложить систему очистки выхлопных газов двигателя внутреннего сгорания, которая позволяет получить высокую скорость очистки от NOX, даже если температура катализатора очистки выхлопных газов достигает высокой температуры.
Решение задачи
Согласно настоящему изобретению, предлагается система очистки выхлопных газов двигателя внутреннего сгорания, в которой клапан подачи углеводорода для подачи углеводородов размещается в выпускном канале двигателя, катализатор очистки выхлопных газов для реакции NOX, содержащегося в выхлопном газе, и углеводородов, которые впрыскиваются из клапана подачи углеводорода и частично окисляются, размещается в выпускном канале двигателя ниже по потоку клапана подачи углеводорода, катализатор на основе драгоценных металлов содержится в катализаторе очистки выхлопных газов, и в катализаторе очистки выхлопных газов формируется базовый слой; и катализатор очистки выхлопных газов имеет свойство восстановления NOX, который содержится в выхлопном газе, когда углеводороды впрыскиваются из клапана подачи углеводорода с предварительно определенными интервалами подачи, при поддержании состава смеси "воздух-топливо" выхлопного газа, протекающего в катализатор очистки выхлопных газов, бедным, и имеет свойство увеличения накопленного объема NOX, который содержится в выхлопном газе, когда интервалы подачи углеводородов являются более длительными, чем предварительно определенные интервалы подачи; и, во время работы двигателя в соответствии с рабочим режимом двигателя избирательно используется первый способ очистки от NOX, в котором впрыскивают углеводороды из клапана подачи углеводорода с предварительно определенными интервалами подачи при поддержании состава смеси "воздух-топливо" выхлопного газа, протекающего в катализатор очистки выхлопных газов, бедным, с тем чтобы удалять NOX, содержащийся в выхлопном газе, и второй способ очистки от NOX, который переключает состав смеси "воздух-топливо" выхлопного газа, который протекает в катализатор очистки выхлопных газов, с бедной на богатую смесь с интервалами, превышающими предварительно определенные интервалы подачи, с тем, чтобы удалять NOX.
Преимущества изобретения
Посредством избирательного использования первого способа очистки от NOX и второго способа очистки от NOX можно получать высокую скорость очистки от NOX независимо от рабочего режима двигателя.
Краткое описание чертежей
Фиг.1 является общим видом двигателя внутреннего сгорания с воспламенением от сжатия.
Фиг.2 является видом, схематично показывающим поверхностную часть носителя катализатора.
Фиг.3 является видом для пояснения реакции окисления в катализаторе окисления.
Фиг.4 является видом, показывающим изменение состава смеси "воздух-топливо" выхлопного газа, протекающего в катализатор очистки выхлопных газов.
Фиг.5 является видом, показывающим скорость очистки от NOX.
Фиг.6 является видом для пояснения окислительно-восстановительной реакции в катализаторе очистки выхлопных газов.
Фиг.7 является видом для пояснения окислительно-восстановительной реакции в катализаторе очистки выхлопных газов.
Фиг.8 является видом, показывающим изменение состава смеси "воздух-топливо" выхлопного газа, протекающего в катализатор очистки выхлопных газов, и т.д.
Фиг.9 является видом, показывающим карту объема NOXA выпущенного NOX.
Фиг.10 является видом, показывающим регулирование впрыска топлива.
Фиг.11 является видом, показывающим скорость очистки от NOX.
Фиг.12 является видом, показывающим карту объема впрыска углеводородов.
Фиг.13 является видом, показывающим скорость расхода NOX и т.д.
Фиг.14 является видом, показывающим изменение в составе смеси "воздух-топливо" выхлопного газа (A/F)in и т.д. при переключении второго способа очистки от NOX на первый способ очистки от NOX.
Фиг.15 является блок-схемой последовательности операций способа для управления очисткой от NOX.
Фиг.16 является видом, показывающим блок-схему последовательности операций способа и т.д., показывающую другой вариант осуществления части A определения способа очистки от NOX, показанной на фиг.15.
Фиг.17 является видом, показывающим блок-схему последовательности операций способа и т.д., показывающую еще один другой вариант осуществления части A определения способа очистки от NOX, показанной на фиг.15.
Фиг.18 является видом, показывающим блок-схему последовательности операций способа и т.д., показывающую другой вариант осуществления части A определения способа очистки от NOX, показанной на фиг.15.
Фиг.19 является временной диаграммой, показывающей изменения в составе (A/F)in смеси "воздух-топливо" выхлопного газа и т.д. во время переключения второго способа очистки от NOX на первый способ очистки от NOX.
Фиг.20 является временной диаграммой, показывающей изменения в составе (A/F)in смеси "воздух-топливо" выхлопного газа и т.д. во время переключения второго способа очистки от NOX на первый способ очистки от NOX.
Фиг.21 является видом, показывающим коэффициент увеличения.
Фиг.22 является частичным укрупненным видом в поперечном сечении другого катализатора для удаления NOX.
Подробное описание вариантов осуществления
Фиг.1 является общим видом двигателя внутреннего сгорания с воспламенением от сжатия.
Ссылаясь на фиг.1, поз. 1 указывает корпус двигателя, 2 - камеру сгорания каждого цилиндра, 3 - топливный инжектор с электронным управлением для впрыскивания топлива в каждую камеру 2 сгорания, 4 - впускной коллектор и 5 - выпускной коллектор. Впускной коллектор 4 соединяется через впускной канал 6 с выпускным отверстием компрессора 7a турбонагнетателя 7, приводимого во вращение выхлопными газами, в то время как впускное отверстие компрессора 7a соединяется через датчик 8 объема всасываемого воздуха с воздухоочистителем 9. Во впускном канале 6 размещается дроссельный клапан 10, приводимый действие посредством шагового электромотора. Кроме того, вокруг впускного канала 6 размещается охлаждающее устройство 11 для охлаждения всасываемого воздуха, который протекает через внутреннюю часть впускного канала 6. В варианте осуществления, показанном на фиг.1, охлаждающая вода для двигателя направляется внутрь охлаждающего устройства 11, в котором охлаждающая вода для двигателя используется для того, чтобы охлаждать всасываемый воздух.
С другой стороны, выпускной коллектор 5 соединяется с впускным отверстием турбины 7b, приводимой во вращение выхлопными газами, турбонагнетателя 7, приводимого во вращение выхлопными газами, в то время как выпускное отверстие турбины 7b, приводимой во вращение выхлопными газами, соединяется через выхлопную трубу 12 с впускным отверстием катализатора 13 частичного окисления углеводородов, который может частично окислять углеводороды HC. В варианте осуществления, показанном на фиг.1, этот катализатор 13 частичного окисления углеводородов состоит из катализатора окисления. Выпускное отверстие катализатора частичного окисления углеводородов, т.е. катализатора 13 окисления соединяется с впускным отверстием катализатора 14 очистки выхлопных газов, в то время как выпускное отверстие катализатора 14 очистки выхлопных газов соединяется с сажевым фильтром 15 для улавливания твердых частиц, которые содержатся в выхлопном газе. В выхлопной трубе 12 выше катализатора 13 окисления размещается клапан 16 подачи углеводорода для подачи углеводородов, состоящих из дизельного топлива или другого топлива, используемого в качестве топлива для двигателя внутреннего сгорания с воспламенением от сжатия. В варианте осуществления, показанном на фиг.1, дизельное топливо используется в качестве углеводородов, которые подаются из клапана 16 подачи углеводорода. Следует отметить, что настоящее изобретение также может применяться к двигателю внутреннего сгорания с искровым зажиганием, который сжигает топливо при бедном составе смеси "воздух-топливо". В этом случае из клапана 16 подачи углеводорода, подаются углеводороды, состоящие из бензина или другого топлива, которое используется в качестве топлива двигателя внутреннего сгорания с искровым зажиганием.
С другой стороны, выпускной коллектор 5 и впускной коллектор 4 соединяются друг с другом через канал 17 для рециркуляции выхлопных газов (в дальнейшем называемый "EGR"). В EGR-канале 17 размещается регулирующий EGR-клапан 18 с электронным управлением. Дополнительно, вокруг EGR-канала 17 размещается охлаждающее устройство 19 для охлаждения EGR-газа, протекающего через внутреннюю часть EGR-канала 17. В варианте осуществления, показанном на фиг.1, охлаждающая вода для двигателя направляется внутрь охлаждающего устройства 19, в котором охлаждающая вода для двигателя используется для того, чтобы охлаждать EGR-газ. С другой стороны, каждый топливный инжектор 3 соединяется через трубку 20 подачи топлива с общей топливной магистралью 21. Эта общая топливная магистраль 21 соединяется через топливный насос 22 с регулируемой подачей и электронным управлением с топливным баком 23. Топливо, которое накапливается в топливном баке 23, подается посредством топливного насоса 22 внутрь общей топливной магистрали 21. Топливо, которое подается внутрь общей топливной магистрали 21, подается через каждую трубку 20 подачи топлива в топливный инжектор 3.
Электронный модуль 30 управления состоит из цифрового компьютера, содержащего ROM (постоянное запоминающее устройство) 32, RAM (оперативное запоминающее устройство) 33, CPU (микропроцессор) 34, порт 35 ввода и порт 36 вывода, которые соединяются друг с другом посредством двунаправленной шины 31. В катализаторе 13 окисления присоединяется температурный датчик 24 для определения температуры катализатора 13 окисления. В катализаторе 14 очистки выхлопных газов присоединяется температурный датчик 25 для определения температуры катализатора 14 очистки выхлопных газов. Выходные сигналы этих температурных датчиков 24 и 25 и детектора 8 объема всасываемого воздуха вводятся через соответствующие аналого-цифровые преобразователи 37 в порт 35 ввода. Дополнительно, педаль 40 акселератора имеет присоединенный к ней датчик 41 нагрузки, который формирует выходное напряжение, пропорциональное величине нажатия L педали 40 акселератора. Выходное напряжение датчика 41 нагрузки вводится через соответствующий аналого-цифровой преобразователь 37 в порт 35 ввода. Кроме того, к порту 35 ввода присоединяется датчик 42 угла поворота коленчатого вала, который формирует выходной импульс каждый раз, когда коленчатый вал вращается, например, на 15°. С другой стороны, порт 36 вывода соединяется через соответствующие возбуждающие схемы 38 с каждым из топливного инжектора 3, шагового электромотора для приведения дроссельного клапана 10, клапана 16 подачи углеводорода, регулирующего EGR-клапана 18 и топливного насоса 22.
Фиг.2(A) схематично показывает поверхностную часть носителя катализатора, содержащегося на подложке катализатора 13 окисления. Как показано на фиг.2(A), например, катализатор 51, состоящий из платины Pt или другого подобного драгоценного металла или из серебра Ag, или меди Cu, или другого подобного переходного металла, содержится на носителе 50 катализатора, состоящем из оксида алюминия.
С другой стороны, фиг.29(В) схематично показывает поверхностную часть носителя катализатора, который содержится на подложке катализатора 14 очистки выхлопных газов. В этом катализаторе 14 очистки выхлопных газов, как показано на фиг.2(В), например, предусматривается носитель 52 катализатора, изготовленный из оксида алюминия, на котором содержатся катализаторы 53 и 54 на основе драгоценных металлов. Кроме того, на этом носителе 52 катализатора формируется базовый слой 55, который включает в себя, по меньшей мере, один элемент, выбранный из калия K, натрия Na, цезия Cs или другого подобного щелочного металла, бария Ba, кальция Ca или другого подобного щелочноземельного металла, лантаноида или другого подобного редкоземельного металла, и серебра Ag, меди Cu, железа Fe, иридия Ir или другого металла, который может отдавать электроны NOX. Выхлопной газ протекает по верху носителя 52 катализатора, и таким образом, можно сказать, что катализаторы 53 и 54 на основе драгоценных металлов содержатся на поверхности протекания выхлопных газов катализатора 14 очистки выхлопных газов. В дополнение к этому, поверхность базового слоя 55 демонстрирует основность, и таким образом, поверхность базового слоя 55 называется базовой частью 56 поверхности протекания выхлопных газов.
На фиг.2(B) катализатор 53 на основе драгоценных металлов состоит из платины Pt, в то время как катализатор 54 на основе драгоценных металлов состоит из родия Rh. Т.е. катализаторы 53 и 54 на основе драгоценных металлов, которые содержатся на носителе 52 катализатора, состоят из платины Pt и родия Rh. Следует отметить, что на носителе 52 катализатора для катализатора 14 очистки выхлопных газов, в дополнение к платине Pt и родию Rh дополнительно может содержаться палладий Pd, или вместо родия Rh может содержаться палладий Pd. Т.е. катализаторы 53 и 54 на основе драгоценных металлов, которые содержатся на носителе 52 катализатора, состоят из платины Pt и, по меньшей мере, одного из родия Rh и палладия Pd.
Когда углеводороды впрыскиваются из клапана 16 подачи углеводорода в выхлопной газ, углеводороды окисляются в катализаторе 13 окисления. В настоящем изобретении углеводороды в это время, частично окисляются в катализаторе 13 окисления, и частично окисленные углеводороды используются для того, чтобы удалять NOX в катализаторе 14 очистки выхлопных газов. В этом случае, при задании силы окисления, т.е. способности к окислению катализатора 13 окисления слишком большой, углеводороды окисляются до конца, а частичного окисления в катализаторе 13 окисления не происходит. Чтобы получить частичное окисление углеводородов, необходимо уменьшать силу окисления катализатора 13 окисления. Следовательно, в варианте осуществления настоящего изобретения, в качестве катализатора 13 окисления используется катализатор, несущий небольшое количество катализатора на основе драгоценных металлов, катализатор, несущий основной металл, или катализатор с небольшим объемом.
Фиг.3 схематично показывает реакцию окисления, которая выполняется в катализаторе 13 окисления. Как показано на фиг.3, углеводороды HC, которые впрыскиваются из клапана 16 подачи углеводорода, становятся радикалами углеводородов HC с небольшим числом атомов углерода благодаря катализатору 51. Следует отметить, что в это время часть углеводородов HC связывается с NO с получением нитрозосоединений, к примеру, показанных на фиг.3, в то время как часть углеводородов HC связывается с NO2 с образованием нитросоединений. Эти углеводородные радикалы и т.д., сформированные в катализаторе 13 окисления, отправляются в катализатор 14 очистки выхлопных газов.
Далее, ссылаясь на фиг.4-6, поясняется первый способ очистки от NOX, выявленный авторами изобретения.
Следует отметить, что, фиг.4 показывает изменение в составе (A/F)in смеси "воздух-топливо" выхлопного газа, протекающего в катализатор 14 очистки выхлопных газов, в то время как фиг.5 показывает скорость очистки от NOX посредством катализатора 14 очистки выхлопных газов относительно температур TC катализатора 14 очистки выхлопных газов при изменении состава (A/F)in смеси "воздух-топливо" выхлопного газа, протекающего в катализатор 14 очистки выхлопных газов, как показано на фиг.4.
Далее, авторы изобретения провели повторные исследования очистки от NOX в течение длительного периода времени и в процессе исследования выяснили то, что, как показано на фиг.4, при скачкообразном понижении отношения (A/F)in в смеси "воздух-топливо" выхлопного газа, протекающего в катализатор 14 очистки выхлопных газов, в течение поясненных ниже определенных временных интервалов в диапазоне бедного состава смеси "воздух-топливо", чрезвычайно высокая скорость очистки от NOX получается даже в области высоких температур в 400°C или более, как показано на фиг.5. Кроме того, выяснено, что в это время, большой объем восстанавливающего промежуточного соединения, содержащего азот и углеводороды, продолжает удерживаться или адсорбироваться на поверхности базового слоя 55, т.е. на базовой части 56 поверхности протекания выхлопных газов катализатора 14 очистки выхлопных газов, и это восстанавливающее промежуточное соединение играет центральную роль в получении высокой скорости очистки от NOX.
Далее это поясняется со ссылкой на фиг.6(A) и 6(B). Следует отметить, что эти фиг.6(A) и 6(B) схематично показывают поверхностную часть носителя 52 катализатора для катализатора 14 очистки выхлопных газов. Эти фиг.6(A) и 6(B) показывают реакцию, которая предположительно возникает, когда отношение (A/F)in смеси "воздух-топливо" выхлопного газа, протекающего в катализатор 14 очистки выхлопных газов, скачкообразно уменьшается в диапазоне бедного состава смеси "воздух-топливо", как показано на фиг.4.
Т.е. как можно понять из фиг.4, состав смеси "воздух-топливо" выхлопного газа, протекающего в катализатор 14 очистки выхлопных газов, поддерживается бедным, таким образом, выхлопной газ, который протекает в катализатор 14 очистки выхлопных газов, оказывается в состоянии избытка кислорода. Следовательно, NO, который содержится в выхлопном газе, как показано на фиг.6(A), окисляется на платине 53 и становится NO2. Затем, это NO2 дополнительно окисляется и становится стабильными ионами NO3- нитрата.
С другой стороны, когда нитраты NO3- формируются, нитраты NO3- втягиваются обратно в восстановление за счет углеводородов HC, которые направляются на поверхность базового слоя 55, от них отрывается кислород, и они становятся нестабильным NO2-. Этот нестабильный NO2- имеет существенную активность. Ниже, данный нестабильный NO2- называется активным NO2-. Такой активный NO2-, как показано на фиг.6(A), реагирует, главным образом, с радикалами углеводородов HC, которые прикрепляются к поверхности базового слоя 55 или родия Rh 54 или, главным образом, с углеводородными HC радикалами, содержащимися в выхлопном газе на родии Rh 54, за счет чего формируется восстанавливающее промежуточное соединение. Это восстанавливающее промежуточное соединение прикрепляется или адсорбируется на поверхности базового слоя 55.
Следует отметить, что в этот момент, первое сформированное восстанавливающее промежуточное соединение считается нитросоединением R-NO2. Если образуется такое нитросоединение R-NO2, в результате получается нитриловое соединение R-CN, но это нитриловое соединение R-CN может существовать лишь в течение краткого промежутка времени в этом состоянии, так как оно сразу становится изоцианатным соединением R-NCO. Это изоцианатное соединение R-NCO при гидролизе становится аминосоединением R-NH2. Тем не менее, в этом случае то, что гидролизируется, рассматривается как часть изоцианатного соединения R-NCO. Следовательно, как показано на фиг.6(B), большая часть восстанавливающего промежуточного соединения, которое удерживается или адсорбируется на поверхности базового слоя 55, предположительно является изоцианатным соединением R-NCO и аминосоединением R-NH2.
С другой стороны, как показано на фиг.6(B), активный NO2* реагирует с восстанавливающим промежуточным соединением R-NCO или R-NH2 на родии Rh 54 так, что он формирует N2, CO2 и H2O, и, следовательно, NOX удаляется. Т.е. если восстанавливающее промежуточное соединение R-NCO или R-NH2 не удерживается или адсорбируется на базовом слое 55, NOX не удаляется. Следовательно, чтобы получать высокую скорость очистки от NOX, необходимо всегда обеспечивать непрерывное присутствие достаточного объема восстанавливающего промежуточного соединения R-NCO или R-NH2 для формирования активного NO2* N2, CO2 и H2O на базовом слое 55, т.е. на базовой части 26 поверхности протекания выхлопных газов.
Т.е., как показано на фиг.6(A) и 6(B), чтобы окислять NO на платине Pt 53, состав (A/F)in смеси "воздух-топливо" выхлопного газа должен быть бедным. Необходимо удерживать достаточный объем восстанавливающего промежуточного соединения R-NCO или R-NH2 для формирования активного NO2*, N2, CO2 и H2O на поверхности базового слоя 55, т.е. необходимо предоставлять базовую часть 26 поверхности протекания выхлопных газов для удерживания восстанавливающего промежуточного соединения R-NCO или R-NH2.
Следовательно, как показано на фиг.6(A) и 6(B), чтобы вызывать реакцию NOX, содержащегося в выхлопном газе, и частично окисленных углеводородов и формировать восстанавливающее промежуточное соединение R-NCO или R-NH2, содержащее азот и углеводород, на поверхности протекания выхлопных газов катализатора 14 очистки выхлопных газов содержатся катализаторы 53 и 54 на основе драгоценных металлов, вокруг катализаторов 53 и 54 на основе драгоценных металлов формируется базовая часть 26 поверхности протекания выхлопных газов, чтобы удерживать сформированное восстанавливающее промежуточное соединение R-NCO или R-NH2 в катализаторе 14 очистки выхлопных газов, и NOX восстанавливается посредством действия восстановления восстанавливающего промежуточного соединения R-NCO или R-NH2, удерживаемого на базовой части 26 поверхности протекания выхлопных газов. Следовательно, в этом первом способе очистки от NOX, углеводороды HC прерывисто подаются из клапана 16 подачи углеводорода посредством предварительно определенных интервалов подачи при поддержании состава смеси "воздух-топливо" выхлопного газа, протекающего в катализатор 14 очистки выхлопных газов, бедным. Предварительно определенные интервалы подачи углеводородов HC становятся интервалом подачи, требуемым для продолжения обеспечения присутствия восстанавливающего промежуточного соединения R-NCO или R-NH2 на базовой части 56 поверхности протекания выхлопных газов.
В этом случае, если объем впрыска становится слишком большим, или интервал между впрысками становится слишком коротким, объем углеводородов становится чрезмерным, и большой объем HC углеводородов выпускается из катализатора 14 очистки выхлопных газов, в то время как, если объем впрыска становится слишком небольшим или интервал между впрысками становится слишком длительным, восстанавливающее промежуточное соединение R-NCO или R-NH2 больше не может оставаться на базовой части 56 поверхности протекания выхлопных газов. Следовательно, в этом случае, важным является задание объема впрыска и интервала впрыска углеводородов таким, что избыток углеводородов HC не выходит из катализатора 14 очистки выхлопных газов, и таким, что восстанавливающее промежуточное соединение R-NCO или R-NH2 продолжает присутствовать на базовой части 26 поверхности протекания выхлопных газов. В этой связи, в примере, показанном на фиг.4, интервал впрыска задается равным 3 секундам.
Далее, со ссылкой на фиг.7-11, поясняется второй способ очистки от NOX. В случае, показанном на фиг.4, при задании интервалов подачи углеводородов HC превышающими вышеуказанные предварительно определенные интервалы подачи, углеводороды HC и восстанавливающее промежуточное соединение R-NCO или R-NH2 исчезают с поверхности базового слоя 55. В этот момент, на ионы NO3- нитрата, сформированные на платине Pt 53 не действует движущая сила в сторону снижения количества ионов NO3- нитрата. Следовательно, в это время, ионы NO3- нитрата диффундируют в базовом слое 55 и становятся нитратами, как показано на фиг.7(A). Т.е. в это время, NOX в выхлопном газе абсорбируется в форме нитратов в базовом слое 55.
С другой стороны, фиг.7(B) показывает случай, когда состав смеси "воздух-топливо" выхлопного газа, который протекает в катализатор 14 очистки выхлопных газов, задается как стехиометрический или богатый состав смеси "воздух-топливо", если NOX абсорбируется в форме нитратов в базовом слое 55. В этом случае, концентрация кислорода в выхлопном газе падает, таким образом, реакция продолжается во встречном направлении (NO3-->NO2), и, следовательно, нитраты, абсорбируемые в базовом слое 55, становятся ионами NO3- нитрата один за другим и, как показано на фиг.7(B), высвобождаются из базового слоя 55 в форме NO2. Затем высвобождаемый NO2 восстанавливается посредством углеводородов HC и CO, содержащихся в выхлопном газе.
Фиг.8 показывает второй способ очистки от NOX с использованием действия адсорбции и высвобождения NOX. В этом втором способе очистки от NOX, как показано на фиг.8, когда объем ∑NOX накопленного NOX, который накапливается в базовом слое 55, превышает предварительно определенный допустимый объем MAX, состав (A/F)in смеси "воздух-топливо" выхлопного газа, протекающего в катализатор 14 очистки выхлопных газов, задается временно богатым. Если состав (A/F)in смеси "воздух-топливо" выхлопного газа задается богатым, NOX, который был абсорбирован в базовом слое 55, когда состав (A/F)in смеси "воздух-топливо" выхлопного газа был бедным, высвобождается одновременно из базового слоя 55 и восстанавливается. Вследствие этого, NOX удаляется.
Объем ∑NOX накопленного NOX, например, вычисляется из объема NOX, который выпускается из двигателя. В варианте осуществления настоящего изобретения, объем NOXA выпущенного NOX, который выпускается из двигателя в единицу времени, накапливается в качестве функции от нагрузки L двигателя и частоты N вращения двигателя в форме карты, к примеру, показанной на фиг.9, заранее в ROM 32. Объем ∑NOX накопленного NOX вычисляется из этого объема NOXA выпущенного NOX. Период, в течение которого состав (A/F)in смеси "воздух-топливо" выхлопного газа становится богатым, намного превышает период, в течение которого отношение (A/F)in смеси "воздух-топливо" выхлопного газа понижается, как показано на фиг.4, и период, в течение которого состав (A/F)in смеси "воздух-топливо" выхлопного газа становится богатым, обычно составляет 1 минуту или более.
Во втором способе очистки от NOX, когда состав (A/F)in смеси "воздух-топливо" выхлопного газа является бедным, NOX, который содержится в выхлопном газе, поглощается в базовом слое 55. Следовательно, базовый слой 55 выполняет роль абсорбента для временной абсорбции NOX. Следует отметить, что в это время, иногда базовый слой 55 временно адсорбирует NOX. Следовательно, при использовании термина "накопление" в качестве термина, включающего в себя как абсорбцию, так и адсорбцию, в это время, базовый слой 55 выполняет роль агента накопления NOX для временного накопления NOX. Т.е. в этом случае, если соотношение воздуха и топлива (углеводородов), которые подаются во впускной канал двигателя, камеры 2 сгорания и выпускной канал выше по потоку, чем катализатор 14 очистки выхлопных газов, называется составом смеси "воздух-топливо" выхлопного газа, в этом втором способе очистки от NOX катализатор 14 очистки выхлопных газов выступает в качестве катализатора накопления NOX, который накапливает NOX, когда состав смеси "воздух-топливо" выхлопного газа является бедным, и высвобождает накопленный NOX, когда концентрация кислорода в выхлопном газе падает.
Дополнительно, в этом втором способе очистки от NOX, как показано на фиг.10, в дополнение к топливу M для расходования при сгорании из топливного инжектора 3, дополнительное топливо W впрыскивается в камеру 2 сгорания, посредством чего состав (A/F)in смеси "воздух-топливо" выхлопного газа, протекающего в катализатор 14 очистки выхлопных газов, задается богатым. Следует отметить, что абсцисса по фиг.10 показывает угол поворота коленчатого вала. Это дополнительное топливо W впрыскивается в то время, когда оно сжигается, но не появляется в качестве выходной мощности двигателя, т.е. непосредственно перед ATDC 90° после верхней мертвой точки сжатия. Конечно, в этом случае, также можно принудительно увеличивать объем подачи углеводородов из клапана 16 подачи углеводорода, с тем чтобы задавать состав (A/F)in смеси "воздух-топливо" выхлопного газа богатым.
Фиг.11 показывает скорость очистки от NOX при принудительном выполнении катализатором 14 очистки выхлопных газов функции катализатора накопления NOX. Следует отметить, что абсцисса фиг.11 показывает температуру TC катализатора для катализатора 14 очистки выхлопных газов. При принудительном выполнении катализатором 14 очистки выхлопных газов функции катализатора накопления NOX, как показано на фиг.11, когда температура TC катализатора составляет 300-400°C, получается чрезвычайно высокая скорость очистки от NOX, но когда температура TC катализатора становится 400°C или более высокой температурой, скорость очистки от NOX падает.
Таким образом, когда температура TC катализатора становится 400°C или больше, скорость очистки от NOX падает, поскольку, если температура TC катализатора становится 400°C или больше, нитраты термически распадаются посредством тепла и высвобождаются в форме NO2 из катализатора 14 очистки выхлопных газов. Т.е. при накоплении NOX в форме нитратов, когда температура TC катализатора является высокой, трудно получать высокую скорость очистки от NOX. Тем не менее, в первом способе очистки от NOX, показанном на фиг.4-6(A), 6(B), как должно пониматься из фиг.6(A) и 6(B), нитраты не формируются, или даже если формируются, являются чрезвычайно малыми по объему, следовательно, как показано на фиг.5, даже когда температура TC катализатора является высокой, получается высокая скорость очистки от NOX.
Т.е. можно сказать, что первый способ очистки от NOX, показанный на фиг.4-6(A) и 6(B) является новым способом очистки от NOX, который удаляет NOX практически без формирования нитратов при использовании катализатора очистки выхлопных газов, который содержит катализатор на основе драгоценных металлов и в котором сформирован базовый слой, который может поглощать NOX. В действительности, при использовании этого первого способа очистки от NOX, количество нитратов, которые определяются по базовому слою 53, становится намного меньшим по сравнению со случаем с использованием второго способа очистки от NOX.
С другой стороны, чтобы использовать первый способ очистки от NOX, чтобы удалять NOX, необходимо подавать определенное количество или более углеводородов с коротким периодом, даже когда концентрация NOX в выхлопном газе является низкой. Следовательно, когда концентрация NOX выхлопного газа является низкой, эффективность очистки от NOX снижается. В отличие от этого, во втором способе очистки от NOX, когда концентрация NOX в выхлопном газе является низкой, время до тех пор, пока объем ∑NOX накопленного NOX не достигает допустимого значения MAX, становится более длительным, и тем самым период, протекающий до момента, когда состав (A/F)in смеси "воздух-топливо" выхлопного газа нужно сделать богатым, становится более длительным. Соответственно, эффективность очистки от NOX не становится низкой. Следовательно, когда концентрация NOX в выхлопном газе является низкой, можно сказать, что предпочтительно использовать второй способ очистки от NOX, а не первый способ очистки от NOX.
Т.е. то, какой из первого способа очистки от NOX и второго способа очистки от NOX должен быть использован, варьирует в рабочем режиме двигателя. Следовательно, в настоящем изобретении, в катализаторе 14 очистки выхлопных газов, содержатся катализаторы 53 и 54 на основе драгоценных металлов, и формируется базовый слой 55, и катализатор 14 очистки выхлопных газов имеет свойство восстанавливать NOX, который содержится в выхлопном газе, когда углеводороды впрыскиваются из клапана 16 подачи углеводорода с предварительно определенными интервалами подачи при поддержании бедного состава смеси "воздух-топливо" выхлопного газа, протекающего в катализатор 14 очистки выхлопных газов, и имеет свойство увеличивать накопленный объем NOX, который содержится в выхлопном газе, когда интервалы подачи углеводородов задаются превышающими предварительно определенные интервалы подачи. Во время работы двигателя в соответствии с рабочим режимом двигателя избирательно используются первый способ очистки от NOX, в котором впрыскивают углеводороды из клапана 16 подачи углеводорода с предварительно определенными интервалами подачи при поддержании состава смеси "воздух-топливо" выхлопного газа, протекающего в катализатор 14 очистки выхлопных газов, бедным, с тем, чтобы удалять NOX, содержащийся в выхлопном газе, и второй способ очистки от NOX, в котором состав смеси "воздух-топливо" выхлопного газа, который протекает в катализатор 14 очистки выхлопных газов, переключают с бедной на богатую смесь с интервалами, превышающими предварительно определенные интервалы подачи, так чтобы удалять NOX.
Далее, со ссылкой на фиг.12-15, поясняется характерный вариант осуществления согласно настоящему изобретению.
Фиг.12(A) показывает объем QE подачи углеводорода из клапана 16 подачи углеводорода, в то время как фиг.12(B) показывает объем W дополнительного топлива, который подается в камеру 2 сгорания. Объем QE подачи углеводорода заранее сохраняется в ROM 32 в виде функции от нагрузки QE двигателя и частоты N вращения двигателя в форме карты, к примеру, показанной на фиг.12(A). Объем W дополнительного топлива также заранее сохраняется в ROM 32 в качестве функции от нагрузки QE двигателя и частоты N вращения двигателя в форме карты, к примеру, показанной на фиг.12(B).
Фиг.13(A) показывает скорость NOXD расхода накопленного NOX, который расходуется из катализатора 14 очистки выхлопных газов, когда состав (A/F)in смеси "воздух-топливо" выхлопного газа является бедным. Как пояснено выше, NOX, который накапливается в форме нитратов, распадается за счет тепла и расходуется, если температура TC катализатора 14 очистки выхлопных газов повышается. В это время, скорость NOXD расхода NOX, т.е. объем NOXD NOX, который расходуется в единицу времени, быстро повышается, если температура TC катализатора 14 очистки выхлопных газов превышает температуру начала распада за счет тепла, составляющего примерно в 450°C.
С другой стороны, фиг.13(B) показывает скорость SX накопления NOX, который накапливается в катализаторе 14 очистки выхлопных газов, когда используется первый способ очистки от NOX для того, чтобы выполнять функцию очистки от NOX. Когда используется первый способ очистки от NOX для того, чтобы выполнять функцию очистки от NOX, обычно NOX не накапливается в катализаторе 14 очистки выхлопных газов. Тем не менее, если скорость потока выхлопного газа увеличивается, т.е. если объем GA всасываемого воздуха увеличивается, время срабатывания становится короче, и реакция больше не может протекать в достаточной степени, таким образом, активный NO2* не формируется, и NOX, который поглощается в базовом слое 55, увеличивается. Следовательно, как показано на фиг.13(B), когда объем GA всасываемого воздуха становится превышающим определенное значение, скорость SX накопления NOX начинает увеличиваться.
Таким образом, даже когда для выполнения функции очистки от NOX, используется первый способ очистки от NOX, NOX иногда накапливается в катализаторе 14 очистки выхлопных газов. В это время объем NOX, накапливаемого в единицу времени, имеет значение SX*NOXA скорости SX накопления NOX, умноженной на объем NOXA NOX, выпускаемый в единицу времени. В варианте осуществления настоящего изобретения, SX*NOXA кумулятивно складывают, чтобы вычислять объем накопленного NOX, который накапливается, когда используется первый способ очистки от NOX для выполнения функции очистки от NOX. При переключении с первого способа очистки от NOX на второй способ очистки от NOX, в качестве базиса, для начала вычисления объема накопленного NOX используется объем накопленного NOX, который вычисляется во время первого способа очистки от NOX.
Т.е. в характерном примере согласно настоящему изобретению, при переключении с первого способа очистки от NOX на второй способ очистки от NOX, суммируется накопленный объем NOX, который вычислен, когда используется первый способ очистки от NOX, и объем накопления NOX, который вычислен после переключения на второй способ очистки от NOX. Когда это совокупное значение ∑NOX превышает предварительно определенное допустимое значение MAX, состав смеси "воздух-топливо" выхлопного газа, протекающего в катализатор 14 очистки выхлопных газов, делают временно богатым. В этом случае, если игнорировать объем NOX, накопленного во время использования первого способа очистки от NOX, наступление момента времени, когда состав (A/F)in смеси "воздух-топливо" выхлопного газа задается богатым при переключении на второй способ очистки от NOX замедляется, и, следовательно, часть NOX выпускается в атмосферу без накопления. Однако, в варианте осуществления настоящего изобретения, объем накопления NOX для времени, когда используется первый способ очистки от NOX, учитывается. Следовательно, вышеуказанная подобная проблема не возникает.
С другой стороны, при переключении со второго способа очистки от NOX на первый способ очистки от NOX, если накопленный NOX остается в катализаторе 14 очистки выхлопных газов, то накопленный NOX выделяется из катализатора 14 очистки от NOX, когда температура TC катализатора 14 очистки выхлопных газов принудительно повышается вследствие подачи углеводородов. Когда функция очистки от NOX выполняется посредством первого способа очистки от NOX, восстановление таким образом выделяемого NOX не реализуется, следовательно, NOX выпускается в атмосферу.
Однако, при задании состава (A/F)in смеси "воздух-топливо" выхлопного газа богатым можно восстанавливать накопленный NOX, который остается в катализаторе 14 очистки выхлопных газов, и, следовательно, можно не допускать выпуска NOX в атмосферу. Следовательно, в варианте осуществления настоящего изобретения, как показано на фиг.14, при переключении со второго способа очистки от NOX на первый способ очистки от NOX, состав смеси "воздух-топливо" выхлопного газа, который протекает в катализатор 14 очистки выхлопных газов, временно задается богатым, чтобы высвобождать и восстанавливать NOX, который накоплен в катализаторе 14 очистки выхлопных газов.
В этом случае, в варианте осуществления, показанном на фиг.14, непосредственно перед переключением со второго способа очистки от NOX на первый способ очистки от NOX, в камеру 2 сгорания подается дополнительное топливо W, за счет чего состав смеси "воздух-топливо" выхлопного газа, который протекает в катализатор 14 очистки выхлопных газов делается богатым.
Следует отметить, что, фиг.14 показывает изменение состава (A/F)in смеси "воздух-топливо" выхлопного газа, который протекает в катализатор 14 очистки выхлопных газов, и объема ∑NOX накопленного NOX, который накапливается в катализаторе 14 очистки выхлопных газов. Как следует понимать из фиг.14, когда начинается первый способ очистки от NOX, объем ∑NOX накопленного NOX становится нулевым, и, следовательно, не допускается выпуск NOX в атмосферу.
С другой стороны, функция очистки от NOX посредством первого способа очистки от NOX не выполняется до тех пор, пока катализатор 13 окисления не активируется. Следовательно, в варианте осуществления настоящего изобретения, первый способ очистки от NOX используется только тогда, когда температура TB катализатора 13 окисления становится равной температуре TB0 активации или более. Когда температура TB катализатора 13 окисления ниже температуры TB0 активации, использование первого способа очистки от NOX запрещается. В это время, т.е. когда температура TB катализатора 13 окисления ниже температуры TB0 активации, используется второй способ очистки от NOX.
Следует отметить, что, в характерном варианте осуществления настоящего изобретения, когда температура TB катализатора 13 окисления равна температуре TB0 активации или более, используется первый способ очистки от NOX или второй способ очистки от NOX. В этом случае, если использование первого способа очистки от NOX приводит к более высокой эффективности очистки от NOX по сравнению с использованием второго способа очистки от NOX, используется первый способ очистки от NOX, а если использование второго способа очистки от NOX приводит к более высокой эффективности очистки от NOX по сравнению с использованием первого способа очистки от NOX, то используется второй способ очистки от NOX.
Фиг.15 показывает процедуру управления очисткой от NOX для выполнения характерного варианта осуществления настоящего изобретения. Эта процедура выполняется посредством прерывания каждый предварительно определенный временной интервал.
Со ссылкой на фиг.15, во-первых, на этапе 60, объем NOX NOXA, выпускаемого в единицу времени, вычисляется из карты, показанной на фиг.9. Затем процедура переходит к части A определения способа очистки от NOX для определения того, использовать ли первый способ очистки от NOX или использовать второй способ очистки от NOX. В этой части A определения способа очистки от NOX, во-первых, на этапе 61 определяется, равна или нет температура TB катализатора 13 окисления температуре TB0 активации или более. Когда TB<TB0, определяется, что должен быть использован второй способ очистки от NOX. В этот момент, процедура переходит к этапу 64.
В отличие от этого, когда TB>TB0, процедура переходит к этапу 62, на котором вычисляются эффективность F1 очистки от NOX при использовании первого способа очистки от NOX и эффективность F2 очистки от NOX при использовании второго способа очистки от NOX. Эффективности F1 и F2 очистки от NOX выражаются как объемы потребления топлива или углеводородов в единицу времени, требуемых для получения единичной скорости очистки от NOX. В этом случае, эффективность F1 очистки от NOX вычисляется из объема QE подачи углеводорода и интервала впрыска углеводорода, показанных на фиг.12A, и скорости очистки от NOX, показанной на фиг.5, в то время как эффективность F2 очистки от NOX вычисляется из объема W дополнительного топлива, показанного на фиг.12B, интервала между моментами времени, в которые задается богатый состав смеси "воздух-топливо" на фиг.8, и скорости очистки от NOX, показанной на фиг.11.
Затем, на этапе 63, определяется, выше или нет эффективность F1 очистки от NOX эффективности F2 очистки от NOX. Когда F1>F2, определяется, что должен быть использован первый способ очистки от NOX. В этот момент, процедура переходит к этапу 68. В отличие от этого, когда F1<F2, определяется, что должен быть использован второй способ очистки от NOX, и процедура переходит к этапу 64.
Далее поясняется второй способ очистки от NOX, который выполняется от этапа 64 до этапа 67. Во-первых, на этапе 64, объем NOXA выпущенного NOX, показанный на фиг.9, добавляется к ∑NOX, чтобы вычислять объем ∑NOX накопленного NOX. Затем, на этапе 65, определяется то, превышает или нет объем ∑NOX накопленного NOX допустимое значение MAX. Когда ∑NOX>MAX, процедура переходит к этапу 66, на котором из карты, показанной на фиг.20 вычисляется дополнительный объем WR топлива, и выполняется впрыскивание дополнительного топлива. Затем, на этапе 67, значение ∑NOX сбрасывается.
Далее поясняется первый способ очистки от NOX, который выполняется от этапа 68 до этапа 74. Во-первых, на этапе 68, определяется, выполнять или нет обработку накопленного NOX для обработки накопленного NOX, остающегося в катализаторе 14 очистки выхлопных газов. Если обработку накопленного NOX выполнять не надо, процедура переходит к этапу 69, на котором определяется, принято или нет решение переключаться со второго способа очистки от NOX на первый способ очистки от NOX. Если решение переключаться со второго способа очистки от NOX на первый способ очистки от NOX уже принято, процедура переходит к этапу 70, на котором определяется, меньше или нет объем ∑NOX накопленного NOX, чем предварительно определенное небольшое значение MIN.
Когда ∑NOX>MIN, процедура переходит к этапу 71, на котором выполняется обработка накопленного NOX. В этом варианте осуществления, как показано на фиг.14, непосредственно перед переключением со второго способа очистки от NOX на первый способ очистки от NOX, состав (A/F)in смеси "воздух-топливо" выхлопного газа временно задается богатым. Затем, на этапе 72, ∑NOX сбрасывают. Следует отметить, что когда обработка накопленного NOX начата, процедура переходит от этапа 68 к этапу 71 до тех пор, пока обработка накопленного NOX не завершается.
С другой стороны, когда на этапе 69 определяется, что решение переключаться со второго способа очистки от NOX на первый способ очистки от NOX не принято, процедура переходит к этапу 73. Дополнительно, когда на этапе 70 определяется, что ∑NOX<MIN, т.е. даже когда определяется, что NOX практически не накапливается, процедура переходит к этапу 73. На этапе 73 объем QE подачи углеводорода вычисляется из карты, к примеру, показанной на фиг.12(A), и таким образом, выполняется обработка впрыска углеводородов. Затем, на этапе 74, в качестве основы для того, чтобы вычислять объем ∑NOX NOX, который накапливается в катализаторе 14 очистки выхлопных газов во время действия очистки от NOX посредством первого способа очистки от NOX, используется следующая формула.
∑NOX<-∑NOX+SX*NOXA-NOXD,
где SX*NOXA, как пояснено выше, является объемом NOX, который накапливается в единицу времени, и NOXD является скоростью расхода, показанной на фиг.13A. При переключении с первого способа очистки от NOX на второй способ очистки от NOX, на этапе 64, NOXA добавляется к ∑NOX, вычисленному на этапе 74.
Фиг.16 показывает другой вариант осуществления. В этом варианте осуществления, рабочая область двигателя, в которой эффективность F2 очистки от NOX становится выше эффективности F1 очистки от NOX, задана заранее, как показано посредством штриховки на фиг.16(A), например, в качестве функции от нагрузки L двигателя и частоты N вращения двигателя. Когда катализатор 13 окисления активируется, способ очистки от NOX определяется в соответствии с фиг.16(A).
Фиг.16(B) показывает другой вариант осуществления части A определения способа очистки от NOX по фиг.15. Со ссылкой на фиг.16(B), на этапе 61, когда температура TB катализатора 13 окисления ниже температуры TB0 активации, определяется, что должен быть использован второй способ очистки от NOX, и после этого процедура переходит к этапу 64 по фиг.15. В отличие от этого, когда на этапе 61 определяется, что TB>TB0, процедура переходит к этапу 61a, на котором определяется, является или нет рабочий режим двигателя областью, показанной посредством штриховки на фиг.16(A), в которой должен быть использован второй способ очистки от NOX. Когда рабочий режим двигателя является областью, в которой должен быть использован второй способ очистки от NOX, процедура переходит к этапу 64 по фиг.15. В отличие от этого, когда определено, что рабочий режим двигателя не является областью, в которой должен быть использован второй способ очистки от NOX, процедура переходит к этапу 68 по фиг.15.
Фиг.17 показывает еще один вариант осуществления части A определения способа очистки от NOX по фиг.15. А именно, скорость очистки от NOX при использовании первого способа очистки от NOX, как показано на фиг.5, быстро понижается, когда температура TC катализатора 14 очистки выхлопных газов становится равной предельной температуре TC0 или меньше. В отличие от этого, как показано на фиг.11, скорость очистки от NOX при использовании второго способа очистки от NOX падает относительно медленно, когда температура TC катализатора 14 очистки выхлопных газов падает. Следовательно, в этом варианте осуществления, когда температура TC катализатора 14 очистки выхлопных газов превышает предельную температуру TC0, используется первый способ очистки от NOX, в то время как, когда температура TC катализатора 14 очистки выхлопных газов ниже предельной температуры TC0, используется второй способ очистки от NOX.
Т.е., ссылаясь на фиг.17, на этапе 61, когда температура TB катализатора 13 окисления ниже температуры TB0 активации, определяется, что должен быть использован второй способ очистки от NOX, и после этого процедура переходит к этапу 64 по фиг.15. В отличие от этого, когда на этапе 61 определяется, что TB>TB0, процедура переходит к этапу 61a, на котором определяется то, превышает или нет температура TC катализатора 14 очистки выхлопных газов предельную температуру TC0. Когда TC<T0, процедура переходит к этапу 64 по фиг.15. В отличие от этого, когда TC>T0, определяется, что должен быть использован первый способ очистки от NOX, и после этого процедура переходит к этапу 68 по фиг.15.
Фиг.18 показывает еще один вариант осуществления части A определения способа очистки от NOX по фиг.15. А именно, первый способ очистки от NOX может давать высокую скорость очистки от NOX по сравнению со вторым способом очистки от NOX, когда объем от NOX, который должен быть восстановлен, является большим, т.е. когда концентрация NOX в выхлопном газе является высокой. Следовательно, в этом варианте осуществления, использовать ли первый способ очистки от NOX или второй способ очистки от NOX, определяется посредством определения того, превышает или нет концентрация D NOX в выхлопном газе заданное значение D0.
Т.е. ссылаясь на фиг.18, на этапе 61, когда температура TB катализатора 13 окисления ниже температуры TB0 активации, определяется, что должен быть использован второй способ очистки от NOX, и после этого процедура переходит к этапу 64 по фиг.15. В отличие от этого, когда на этапе 61 определяется, что TB>TB0, процедура переходит к этапу 61a, на котором определяется, превышает или нет температура TC катализатора 14 очистки выхлопных газов предельную температуру TC0. Когда TC<T0, процедура переходит к этапу 64 по фиг.15. В отличие от этого, когда TC>T0, процедура переходит к этапу 61b, на котором определяется, превышает или нет концентрация D NOX в выхлопном газе, которая определяется посредством, например, датчика концентрации NOX, заданное значение D0. Когда D<D0, процедура переходит к этапу 64 по фиг.15. В отличие от этого, когда D>D0, определяется, что должен быть использован первый способ очистки от NOX, и после этого процедура переходит к этапу 68 по фиг.15.
Фиг.19 показывает другой вариант осуществления обработки накопленного NOX, которая выполняется на этапе 71 по фиг.15. В этом варианте осуществления, сразу после переключения со второго способа очистки от NOX на первый способ очистки от NOX, состав (A/F)in смеси "воздух-топливо" выхлопного газа, протекающего в катализатор 14 очистки выхлопных газов, также делают богатым. В этот момент объем углеводородов, который подается из клапана 16 подачи углеводорода, увеличивается так, что состав (A/F)in смеси "воздух-топливо" выхлопного газа задается богатым.
Т.е. когда принято решение, чтобы переключаться со второго способа очистки от NOX на первый способ очистки от NOX, если объем ∑NOX накопленного NOX является большим, просто при впрыскивании дополнительного топлива вовнутрь части камеры 2 сгорания для задания богатого состава (A/F)in смеси "воздух-топливо" выхлопного газа только один раз, иногда невозможно высвобождать весь накопленный NOX для восстановления. В таком случае, как показано на фиг.19, когда начинается осуществление очистки от NOX, посредством первого способа очистки от NOX, посредством увеличения объема подачи углеводородов состав (A/F)in смеси "воздух-топливо" выхлопного газа делают богатым, за счет чего весь накопленный NOX высвобождается и восстанавливается.
С другой стороны, при впрыскивании дополнительного топлива в камеру 2 сгорания, температура в камере 2 сгорания повышается. Следовательно, во время работы при высокой нагрузке, когда температура возгорания становится более высокой, состав (A/F)in смеси "воздух-топливо" выхлопного газа иногда не может быть задан богатым за счет впрыскивания дополнительного топлива в камеру 2 сгорания. В таком случае, состав (A/F)in смеси "воздух-топливо" выхлопного газа задается богатым за счет прекращения впрыска дополнительного топлива и увеличения объема подачи углеводородов.
Фиг.20 показывает еще один вариант осуществления обработки накопленного NOX, которая выполняется на этапе 71 по фиг.15. В этом варианте осуществления, после переключения со второго способа очистки от NOX на первый способ очистки от NOX, начинается очистка от NOX посредством первого способа очистки от NOX, затем состав (A/F)in смеси "воздух-топливо" выхлопного газа, протекающего в катализатор 14 очистки выхлопных газов, делают богатым. В этом варианте осуществления, когда накопленный NOX выделяется из катализатора 14 очистки выхлопных газов, этот выделяемый NOX восстанавливается посредством подачи дополнительного топлива в камеру 2 сгорания или увеличения объема подачи углеводородов, так чтобы сделать состав (A/F)in смеси "воздух-топливо" выхлопного газа богатым.
С другой стороны, если сера, которая содержится в выхлопном газе, прилипает к поверхности драгоценного металла, т.е. если драгоценный металл отравляется серой, становится труднее получать активный NO2*. Следовательно, предпочтительно увеличивать объем подачи углеводородов QE по мере того, как увеличивается степень отравления серой драгоценного металла, так чтобы формирование активного NO2* не падало, даже если драгоценный металл отравляется серой. В варианте осуществления, показанном на фиг.21, коэффициент увеличения для объема QE подачи углеводорода увеличивается вместе с увеличением степени отравления серой, так что объем формирования активного NO2* не падает, даже если степень отравления серой увеличивается.
Фиг.22 показывает случай формирования катализатора 13 частичного окисления углеводородов и катализатора 14 очистки выхлопных газов, показанных на фиг.1, в виде одного катализатора. Этот катализатор, например, содержит большое число каналов для выхлопных газов, идущих в направлении потока выхлопного газа. Фиг.22 показывает укрупненный вид в поперечном сечении поверхностной части внутренней окружающей стенки 80 канала для выхлопных газов катализатора. Как показано на фиг.22, на поверхности внутренней окружающей стенки 80 канала для выхлопных газов, формируется нижний покровный слой 81. На этом нижнем покровном слое 81, формируется верхний покровный слой 82. В примере, показанном на фиг.22, покровные слои 81 и 82 состоят из порошковых агрегатов. Фиг.22 показывает укрупненные виды порошка, формирующего покровные слои 81 и 82. Из укрупненных видов порошка понятно, что верхний покровный слой 82 состоит из катализатора частичного окисления углеводородов, показанного на фиг.2(A), например, катализатора окисления, в то время как нижний покровный слой 81 состоит из катализатора очистки выхлопных газов, показанного на фиг.2(B).
Когда катализатор, показанный на фиг.22, используется как показано на фиг.22, углеводороды HC, которые содержатся в выхлопном газе, диффундируют в верхнем покровном слое 82 и частично окисляются. Частично окисленные углеводороды диффундируют в нижнем покровном слое 81. Т.е. в примере, показанном на фиг.22, аналогично примеру, показанному на фиг.1, катализатор частичного окисления углеводородов и катализатор очистки выхлопных газов также размещаются так, что углеводороды, которые частично окислены в катализаторе частичного окисления углеводородов, протекают в катализатор очистки выхлопных газов. С другой стороны, в катализаторе, показанном на фиг.22, когда используется первый способ очистки от NOX, NOX, который содержится в выхлопном газе, диффундирует вовнутрь нижнего покровного слоя 81 и становится активным NO2*. В это время, в нижнем покровном слое 81, восстанавливающее промежуточное соединение R-NCO или R-NH2 формируется из активного NO2* и частично окисленных углеводородов. Кроме того, активный NO2* реагирует с восстанавливающим промежуточным соединением R-HCO или R-NH2 так, что он превращается N2, CO2 и H2O.
С другой стороны, как показано на фиг.2(B), на носителе 52 катализатора для катализатора 14 очистки выхлопных газов, находятся драгоценные металлы 53 и 54. Следовательно, в катализаторе 14 очистки выхлопных газов также можно реформировать углеводороды в углеводороды HC радикалов с небольшим углеродным числом. В этом случае, если углеводороды могут в достаточной степени преобразовываться в катализаторе 14 очистки выхлопных газов, т.е. если углеводороды могут в достаточной степени частично окисляться в катализаторе 14 очистки выхлопных газов, необязательно размещать катализатор 13 окисления, как показано на фиг.1, выше по потоку катализатора 14 очистки выхлопных газов. Следовательно, в варианте осуществления согласно настоящему изобретению, катализатор 13 окисления не присоединяется к выпускному каналу двигателя. Следовательно, в этом варианте осуществления, углеводороды, которые впрыскиваются из клапана 16 подачи углеводорода, непосредственно подаются в катализатор 14 очистки выхлопных газов.
В этом варианте осуществления, углеводороды, которые впрыскиваются из клапана 16 подачи углеводорода, частично окисляются в катализаторе 14 очистки выхлопных газов. Кроме того, в катализаторе 14 очистки выхлопных газов, активный NO2* формируется из NOX, который содержится в выхлопном газе. В катализаторе 14 очистки выхлопных газов, восстанавливающее промежуточное соединение R-NCO и R-NH2 формируется из этих активного NO2* и частично окисленных углеводородов. Кроме того, активный NO2* реагирует с восстанавливающим промежуточным соединением R-NCO или R-NH2 так, что он становится N2, CO2 и H2O. Т.е. в этом варианте осуществления, катализатор 14 очистки выхлопных газов для реакции углеводородов, впрыскиваемых из клапана 16 подачи углеводорода и частично окисленных, и NOX, содержащегося в выхлопном газе, размещается в выпускном канале двигателя ниже по потоку клапана 16 подачи углеводорода.
Список ссылочных позиций
4 - впускной коллектор
5 - выпускной коллектор
7 - турбонагнетатель, приводимый во вращение выхлопными газами
12 - выхлопная труба
13 - катализатор окисления
14 - катализатор очистки выхлопных газов
16 - клапан подачи углеводорода.

Claims (18)

1. Система очистки выхлопных газов двигателя внутреннего сгорания, в которой клапан подачи углеводородов для подачи углеводородов размещается в выпускном канале двигателя, катализатор очистки выхлопных газов для осуществления реакции NOX, содержащегося в выхлопном газе, и углеводородов, которые впрыскиваются из клапана подачи углеводородов и частично окисляются, размещается в выпускном канале двигателя ниже по потоку клапана подачи углеводорода, на катализаторе очистки выхлопных газов размещен катализатор, на основе драгоценных металлов содержится и на катализаторе очистки выхлопных газов формируется базовый слой, при этом катализатор очистки выхлопных газов имеет свойство восстанавливать NOX, который содержится в выхлопном газе, когда углеводороды впрыскиваются из клапана подачи углеводорода с предварительно определенными интервалами подачи при поддержании бедного состава смеси "воздух-топливо" в выхлопном газе, протекающем в катализатор очистки выхлопных газов, и имеет свойство увеличивать накопленный объем NOX, который содержится в выхлопном газе, когда интервалы подачи углеводородов превышают предварительно определенные интервалы подачи, и во время работы двигателя в соответствии с рабочим режимом двигателя избирательно используются первый способ очистки от NOX, в котором впрыскивают углеводороды из клапана подачи углеводорода с упомянутыми предварительно определенными интервалами подачи при поддержании бедного состава смеси "воздух-топливо" в выхлопном газе, протекающем в катализатор очистки выхлопных газов, с тем, чтобы удалять NOX, содержащийся в выхлопном газе, и второй способ очистки от NOX, в котором переключают состав смеси "воздух-топливо" выхлопного газа, который протекает в катализатор очистки выхлопных газов, с бедной на богатую смесь с интервалами, превышающими упомянутые предварительно определенные интервалы подачи, с тем, чтобы удалять NOX.
2. Система очистки выхлопных газов двигателя внутреннего сгорания по п.1, в которой в выпускном канале двигателя ниже по потоку клапана подачи углеводорода упомянутые катализатор очистки выхлопных газов и катализатор частичного окисления углеводородов, который может частично окислять углеводороды, впрыскиваемые из клапана подачи углеводорода, размещаются так, что углеводороды, которые частично окисляются в катализаторе частичного окисления углеводородов, протекают в катализатор очистки выхлопных газов.
3. Система очистки выхлопных газов двигателя внутреннего сгорания по п.2, в которой в состав катализатора частичного окисления углеводородов входит катализатор окисления, который размещается в выпускном канале двигателя выше по потоку катализатора очистки выхлопных газов.
4. Система очистки выхлопных газов двигателя внутреннего сгорания по п.2, в которой верхний слой покрытия, образующий катализатор частичного окисления углеводородов, формируется на нижнем литом слое, образующем катализатор очистки выхлопных газов.
5. Система очистки выхлопных газов двигателя внутреннего сгорания по п.1 или 2, в которой в первом способе очистки от NOX, NOX, содержащийся в выхлопном газе, и частично окисленные углеводороды реагируют с помощью катализатора на основе драгоценных металлов с образованием восстанавливающего промежуточного соединения, содержащего азот и углеводороды, сформированное восстанавливающее промежуточное соединение удерживается на базовом слое, NOX восстанавливается за счет восстанавливающего воздействия промежуточного восстанавливающего соединения, удерживаемого на базовом слое, и предварительно определенные интервалы подачи углеводородов являются интервалами подачи, необходимыми для непрерывного присутствия восстанавливающего промежуточного соединения на базовой части поверхности протекания выхлопных газов.
6. Система очистки выхлопных газов двигателя внутреннего сгорания по п.1, в которой во втором способе очистки от NOX, когда состав смеси "воздух-топливо" выхлопного газа, протекающего в катализатор очистки выхлопных газов, является бедным, NOX в выхлопном газе поглощается в базовом слое, а когда состав смеси "воздух-топливо" выхлопного газа, протекающего в катализатор очистки выхлопных газов, становится богатым, поглощаемый NOX высвобождается из базового слоя и восстанавливается.
7. Система очистки выхлопных газов двигателя внутреннего сгорания по п.1, в которой упомянутый катализатор на основе драгоценных металлов состоит из платины Pt и, по меньшей мере, одного элемента из родия Rh и палладия Pd.
8. Система очистки выхлопных газов двигателя внутреннего сгорания по п.1, в которой упомянутый базовый слой включает в себя щелочной металл, щелочноземельный металл, редкоземельный металл или металл, который может быть донором электронов для NOX.
9. Система очистки выхлопных газов двигателя внутреннего сгорания по п.1, в которой первый способ очистки от NOX используется только тогда, когда температура катализатора окисления становится равной температуре активации или более, и в которой использование первого способа очистки от NOX запрещается, когда температура катализатора окисления ниже температуры активации.
10. Система очистки выхлопных газов двигателя внутреннего сгорания по п.9, в которой, когда температура катализатора окисления равна температуре активации или более, используется либо первый способ очистки от NOX, либо второй способ очистки от NOX.
11. Система очистки выхлопных газов двигателя внутреннего сгорания по п.10, в которой, когда использование первого способа очистки от NOX приводит к более высокой эффективности очистки от NOX по сравнению с использованием второго способа очистки от NOX, используется первый способ очистки от NOX, в то время как когда использование второго способа очистки от NOX приводит к более высокой эффективности очистки от NOX по сравнению с использованием первого способа очистки от NOX, используется второй способ очистки от NOX.
12. Система очистки выхлопных газов двигателя внутреннего сгорания по п.10, в которой скорость очистки от NOX при использовании первого способа очистки от NOX начинает понижаться, когда температура катализатора очистки выхлопных газов достигает предельной температуры или более низкой, используется первый способ очистки от NOX, если температура катализатора очистки выхлопных газов превышает предельную температуру, а если температура катализатора очистки выхлопных газов ниже предельной температуры, используется второй способ очистки от NOX.
13. Система очистки выхлопных газов двигателя внутреннего сгорания по п.9, в которой используется второй способ очистки от NOX, если температура катализатора окисления ниже температуры активации.
14. Система очистки выхлопных газов двигателя внутреннего сгорания по п.1, в которой при переключении со второго способа очистки от NOX на первый способ очистки от NOX, состав смеси "воздух-топливо" выхлопного газа, протекающего в катализатор очистки выхлопных газов, временно задается богатым, чтобы высвобождать и восстанавливать NOX, который накапливается в катализаторе очистки выхлопных газов.
15. Система очистки выхлопных газов двигателя внутреннего сгорания по п.14, в которой непосредственно перед переключением со второго способа очистки от NOX на первый способ очистки от NOX состав смеси "воздух-топливо" выхлопного газа, протекающего в катализатор очистки выхлопных газов, задается богатым.
16. Система очистки выхлопных газов двигателя внутреннего сгорания по п.15, в которой состав смеси "воздух-топливо" выхлопного газа, протекающего в катализатор очистки выхлопных газов, задается богатым также сразу после переключения со второго способа очистки от NOX на первый способ очистки от NOX.
17. Система очистки выхлопных газов двигателя внутреннего сгорания по п.14, в которой после переключения со второго способа очистки от NOX на первый способ очистки от NOX очистка от NOX начинается за счет первого способа очистки от NOX, а затем состав смеси "воздух-топливо" выхлопного газа, протекающего в катализатор очистки выхлопных газов, задается богатым.
18. Система очистки выхлопных газов двигателя внутреннего сгорания по п.1, в которой, если используется второй способ очистки от NOX, когда вычисленный объем накопления NOX для катализатора очистки выхлопных газов превышает предварительно определенное допустимое значение, состав смеси "воздух-топливо" выхлопного газа, протекающего в катализатор очистки выхлопных газов, временно задается богатым, а при переключении с первого способа очистки от NOX на второй способ очистки от NOX объем накопления NOX, который вычисляется для использования первого способа очистки от NOX, и объем накопления NOX, который вычисляется после переключения на второй способ очистки от NOX, суммируются, и когда совокупное значение превышает предварительно определенное допустимое значение, состав смеси "воздух-топливо" выхлопного газа, протекающего в катализатор очистки выхлопных газов, задается временно богатым.
RU2011139713/06A 2010-03-15 2010-03-15 Система очистки выхлопных газов двигателя внутреннего сгорания RU2480592C1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/054740 WO2011114501A1 (ja) 2010-03-15 2010-03-15 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
RU2011139713A RU2011139713A (ru) 2013-04-10
RU2480592C1 true RU2480592C1 (ru) 2013-04-27

Family

ID=44648629

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011139713/06A RU2480592C1 (ru) 2010-03-15 2010-03-15 Система очистки выхлопных газов двигателя внутреннего сгорания

Country Status (9)

Country Link
US (2) US8683784B2 (ru)
EP (1) EP2402572B1 (ru)
KR (1) KR101339523B1 (ru)
CN (1) CN102378854B (ru)
BR (1) BRPI1012611B1 (ru)
CA (1) CA2755977C (ru)
ES (1) ES2508365T3 (ru)
RU (1) RU2480592C1 (ru)
WO (1) WO2011114501A1 (ru)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101339523B1 (ko) 2010-03-15 2013-12-10 도요타지도샤가부시키가이샤 내연 기관의 배기 정화 장치
BRPI1012615B1 (pt) 2010-03-15 2020-08-11 Toyota Jidosha Kabushiki Kaisha Sistema de purificação de exaustão de motor de combustão interna
BRPI1014237B1 (pt) 2010-04-01 2020-06-09 Toyota Motor Co Ltd método de purificação de gás de escape de motor de combustão interna
JP5196024B2 (ja) 2010-07-28 2013-05-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
ES2599154T3 (es) 2010-08-30 2017-01-31 Toyota Jidosha Kabushiki Kaisha Dispositivo de purificación de gases de escape para motor de combustión interna
KR101326348B1 (ko) 2010-08-30 2013-11-11 도요타지도샤가부시키가이샤 내연 기관의 배기 정화 방법
US8656706B2 (en) * 2010-09-02 2014-02-25 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
WO2012046333A1 (ja) 2010-10-04 2012-04-12 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP2530267B1 (en) 2010-10-04 2016-07-06 Toyota Jidosha Kabushiki Kaisha Method for exhaust purification in exhaust purification system of internal combustion engine
WO2012053117A1 (ja) 2010-10-18 2012-04-26 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN103221648B (zh) 2010-12-06 2016-08-24 丰田自动车株式会社 内燃机的排气净化装置
WO2012086093A1 (ja) 2010-12-20 2012-06-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP2495409B1 (en) 2010-12-24 2017-04-19 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
EP2503121B1 (en) 2011-02-07 2017-03-22 Toyota Jidosha Kabushiki Kaisha Exhaust-gas purifying system for internal-combustion engine
US9140162B2 (en) 2011-02-10 2015-09-22 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
EP2511493B8 (en) * 2011-02-18 2017-05-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying method for internal combustion engine
JP5152417B2 (ja) 2011-03-17 2013-02-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2012140784A1 (ja) 2011-04-15 2012-10-18 トヨタ自動車株式会社 内燃機関の排気浄化装置
ES2633727T3 (es) 2011-11-07 2017-09-25 Toyota Jidosha Kabushiki Kaisha Dispositivo de limpieza de gases de escape para motor de combustión interna
EP2626529B1 (en) 2011-11-09 2015-10-21 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
EP2626528B1 (en) 2011-11-30 2016-10-26 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
EP2623738B1 (en) 2011-11-30 2019-08-21 Toyota Jidosha Kabushiki Kaisha NOx purification method of an exhaust purification system of an internal combustion engine
JP5641360B2 (ja) * 2011-12-08 2014-12-17 トヨタ自動車株式会社 排ガス浄化用触媒及びその利用
JP5392411B1 (ja) 2012-02-07 2014-01-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2013181502A (ja) 2012-03-02 2013-09-12 Toyota Motor Corp 排ガス浄化装置
DE102012211684A1 (de) 2012-07-05 2014-01-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur Reinigung des Abgases einer Brennkraftmaschine
JP2014025430A (ja) * 2012-07-27 2014-02-06 Mitsubishi Motors Corp 排気浄化装置
WO2014016965A1 (ja) 2012-07-27 2014-01-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6003351B2 (ja) * 2012-07-30 2016-10-05 三菱自動車工業株式会社 排気浄化装置
EP2955348B1 (en) 2013-02-05 2017-07-05 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
EP2957736B1 (en) * 2013-02-15 2018-11-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine
US9291080B2 (en) * 2013-02-27 2016-03-22 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US9567889B2 (en) * 2013-04-19 2017-02-14 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
EP2993324B1 (en) * 2013-04-30 2017-11-22 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
JP5741643B2 (ja) * 2013-08-08 2015-07-01 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6183537B2 (ja) 2013-08-21 2017-08-23 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6003847B2 (ja) 2013-08-26 2016-10-05 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5991285B2 (ja) 2013-08-26 2016-09-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6128041B2 (ja) * 2014-03-31 2017-05-17 トヨタ自動車株式会社 内燃機関の制御システム
JP6036764B2 (ja) * 2014-08-19 2016-11-30 トヨタ自動車株式会社 内燃機関の制御装置および制御方法
JP6547348B2 (ja) * 2015-03-18 2019-07-24 いすゞ自動車株式会社 排気浄化システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2191270C2 (ru) * 1997-10-22 2002-10-20 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Способ и устройство для регулирования диапазона температур nox-накопителя в системе выпуска отработавших газов двигателя внутреннего сгорания
RU2211724C2 (ru) * 1997-04-09 2003-09-10 Дегусса Акциенгезельшафт Автомобильный каталитический нейтрализатор отработавших газов
JP2005177738A (ja) * 2003-12-19 2005-07-07 Caterpillar Inc 排ガス処理エレメント用のマルチパート触媒システム
RU2278281C2 (ru) * 2000-11-06 2006-06-20 Умикор АГ унд Ко. КГ Устройство и способ для обработки отработавших газов, образующихся при работе двигателя на бедных смесях, селективным каталитическим восстановлением окислов азота
WO2007001500A1 (en) * 2005-06-21 2007-01-04 Exxonmobil Research And Engineering Company Method and apparatus for reducing nox with first and second catalysis
JP3969450B2 (ja) * 2003-12-01 2007-09-05 トヨタ自動車株式会社 圧縮着火式内燃機関の排気浄化装置
JP2008069769A (ja) * 2006-08-14 2008-03-27 Toyota Motor Corp 内燃機関の排気浄化装置

Family Cites Families (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075274A (en) 1989-03-15 1991-12-24 Kabushiki Kaisha Riken Exhaust gas cleaner
US5052178A (en) 1989-08-08 1991-10-01 Cummins Engine Company, Inc. Unitary hybrid exhaust system and method for reducing particulate emmissions from internal combustion engines
US5057483A (en) 1990-02-22 1991-10-15 Engelhard Corporation Catalyst composition containing segregated platinum and rhodium components
JP2605586B2 (ja) 1992-07-24 1997-04-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
US6667018B2 (en) 1994-07-05 2003-12-23 Ngk Insulators, Ltd. Catalyst-adsorbent for purification of exhaust gases and method for purification of exhaust gases
JP3436427B2 (ja) 1994-10-21 2003-08-11 株式会社豊田中央研究所 排ガス浄化用触媒及び排ガス浄化方法
EP0710499A3 (en) 1994-11-04 1997-05-21 Agency Ind Science Techn Exhaust gas purifier and method for purifying an exhaust gas
WO1998051919A1 (fr) 1997-05-12 1998-11-19 Toyota Jidosha Kabushiki Kaisha Appareil de reduction des emissions de gaz d'echappement pour moteur a combustion interne
JP3456408B2 (ja) 1997-05-12 2003-10-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
GB9713428D0 (en) 1997-06-26 1997-08-27 Johnson Matthey Plc Improvements in emissions control
FR2778205B1 (fr) 1998-04-29 2000-06-23 Inst Francais Du Petrole Procede d'injection controlee d'hydrocarbures dans une ligne d'echappement d'un moteur a combustion interne
US7707821B1 (en) 1998-08-24 2010-05-04 Legare Joseph E Control methods for improved catalytic converter efficiency and diagnosis
US6718756B1 (en) 1999-01-21 2004-04-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifier for use in internal combustion engine
JP2000257419A (ja) 1999-03-03 2000-09-19 Toyota Motor Corp 排気浄化方法及び装置
US6685897B1 (en) 2000-01-06 2004-02-03 The Regents Of The University Of California Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures
US6311484B1 (en) 2000-02-22 2001-11-06 Engelhard Corporation System for reducing NOx transient emission
DE10023439A1 (de) 2000-05-12 2001-11-22 Dmc2 Degussa Metals Catalysts Verfahren zur Entfernung von Stickoxiden und Rußpartikeln aus dem mageren Abgas eines Verbrennungsmotors und Abgasreinigungssystem hierfür
JP4889873B2 (ja) 2000-09-08 2012-03-07 日産自動車株式会社 排気ガス浄化システム、これに用いる排気ガス浄化触媒及び排気浄化方法
JP3617450B2 (ja) 2000-12-20 2005-02-02 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP3826357B2 (ja) 2001-02-19 2006-09-27 トヨタ自動車株式会社 水素生成触媒及び排ガス浄化用触媒
JP2002364415A (ja) 2001-06-07 2002-12-18 Mazda Motor Corp エンジンの排気浄化装置
LU90795B1 (en) 2001-06-27 2002-12-30 Delphi Tech Inc Nox release index
US6677272B2 (en) 2001-08-15 2004-01-13 Corning Incorporated Material for NOx trap support
US7082753B2 (en) 2001-12-03 2006-08-01 Catalytica Energy Systems, Inc. System and methods for improved emission control of internal combustion engines using pulsed fuel flow
RU2004120435A (ru) * 2001-12-03 2005-05-27 Каталитика Энерджи Системз, Инк. (Us) Система и способы для управления содержанием вредных компонентов в отработавших газах двигателей внутреннего сгорания и блок обработки топлива
US6813882B2 (en) 2001-12-18 2004-11-09 Ford Global Technologies, Llc System and method for removing NOx from an emission control device
WO2003071106A1 (fr) 2002-02-19 2003-08-28 Kabushiki Kaisha Chemical Auto Filtre de purification des gaz d'echappement des diesels
JP3963130B2 (ja) 2002-06-27 2007-08-22 トヨタ自動車株式会社 触媒劣化判定装置
EP1386656B1 (en) 2002-07-31 2009-01-21 Umicore AG & Co. KG Process for regenerating a nitrogen oxides storage catalyst
JP2004068700A (ja) 2002-08-06 2004-03-04 Toyota Motor Corp 排気ガス浄化方法
KR100636567B1 (ko) 2002-09-10 2006-10-19 도요다 지도샤 가부시끼가이샤 내연 기관의 배기 정화 장치
US7332135B2 (en) 2002-10-22 2008-02-19 Ford Global Technologies, Llc Catalyst system for the reduction of NOx and NH3 emissions
EP1563169A1 (en) 2002-11-15 2005-08-17 Catalytica Energy Systems, Inc. Devices and methods for reduction of nox emissions from lean burn engines
JP4385593B2 (ja) 2002-12-10 2009-12-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE10300298A1 (de) 2003-01-02 2004-07-15 Daimlerchrysler Ag Abgasnachbehandlungseinrichtung und -verfahren
DE10308287B4 (de) 2003-02-26 2006-11-30 Umicore Ag & Co. Kg Verfahren zur Abgasreinigung
US7043902B2 (en) 2003-03-07 2006-05-16 Honda Motor Co., Ltd. Exhaust gas purification system
US6854264B2 (en) 2003-03-27 2005-02-15 Ford Global Technologies, Llc Computer controlled engine adjustment based on an exhaust flow
JP4288985B2 (ja) 2003-03-31 2009-07-01 株式会社デンソー 内燃機関の排気浄化装置
DE10315593B4 (de) 2003-04-05 2005-12-22 Daimlerchrysler Ag Abgasnachbehandlungseinrichtung und -verfahren
US6983589B2 (en) 2003-05-07 2006-01-10 Ford Global Technologies, Llc Diesel aftertreatment systems
JP4158697B2 (ja) 2003-06-17 2008-10-01 トヨタ自動車株式会社 内燃機関の排気浄化装置および排気浄化方法
ATE362041T1 (de) 2003-06-18 2007-06-15 Johnson Matthey Plc Verfahren zur steuerung der reduktionsmittelzugabe
GB0318776D0 (en) * 2003-08-09 2003-09-10 Johnson Matthey Plc Lean NOx catalyst
JP4020054B2 (ja) * 2003-09-24 2007-12-12 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP3876874B2 (ja) 2003-10-28 2007-02-07 トヨタ自動車株式会社 触媒再生方法
GB0329095D0 (en) 2003-12-16 2004-01-14 Johnson Matthey Plc Exhaust system for lean burn IC engine including particulate filter
JP4321332B2 (ja) 2004-04-01 2009-08-26 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4232690B2 (ja) 2004-05-24 2009-03-04 トヨタ自動車株式会社 内燃機関の排気浄化装置に適用される燃料添加制御方法、及び排気浄化装置
JP4338586B2 (ja) 2004-05-26 2009-10-07 株式会社日立製作所 エンジンの排気系診断装置
WO2006023079A2 (en) 2004-08-20 2006-03-02 Southwest Research Institute Method for rich pulse control of diesel engines
JP3852461B2 (ja) 2004-09-03 2006-11-29 いすゞ自動車株式会社 排気ガス浄化方法及び排気ガス浄化システム
EP1662102B1 (en) 2004-11-23 2007-06-27 Ford Global Technologies, LLC Method and apparatus for conversion of NOx
JP2008542609A (ja) 2005-06-03 2008-11-27 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング 内燃機関の排出ガスの処理方法と装置
US7685813B2 (en) 2005-06-09 2010-03-30 Eaton Corporation LNT regeneration strategy over normal truck driving cycle
US7743602B2 (en) 2005-06-21 2010-06-29 Exxonmobil Research And Engineering Co. Reformer assisted lean NOx catalyst aftertreatment system and method
JP4464876B2 (ja) 2005-07-01 2010-05-19 日立オートモティブシステムズ株式会社 エンジンの制御装置
JP2007064167A (ja) 2005-09-02 2007-03-15 Toyota Motor Corp 内燃機関の排気浄化装置および排気浄化方法
FR2890577B1 (fr) 2005-09-12 2009-02-27 Rhodia Recherches & Tech Procede de traitement d'un gaz contenant des oxydes d'azote (nox), utilisant comme piege a nox une composition a base d'oxyde de zirconium et d'oxyde de praseodyme
US7063642B1 (en) 2005-10-07 2006-06-20 Eaton Corporation Narrow speed range diesel-powered engine system w/ aftertreatment devices
JP4548309B2 (ja) 2005-11-02 2010-09-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7412823B2 (en) 2005-12-02 2008-08-19 Eaton Corporation LNT desulfation strategy
JP4270201B2 (ja) 2005-12-05 2009-05-27 トヨタ自動車株式会社 内燃機関
JP5087836B2 (ja) 2005-12-14 2012-12-05 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP2007260618A (ja) 2006-03-29 2007-10-11 Toyota Motor Corp 排ガス浄化触媒及び排ガス浄化装置
JP2007297918A (ja) 2006-04-27 2007-11-15 Toyota Motor Corp 内燃機関の排気浄化装置
US20090049826A1 (en) 2006-05-24 2009-02-26 Toyota Jidosha Kabushiki Kaisha Exhaust Purification System of Internal Combustion Engine
JP5373255B2 (ja) 2006-05-29 2013-12-18 株式会社キャタラー NOx還元触媒、NOx還元触媒システム、及びNOx還元方法
US7562522B2 (en) 2006-06-06 2009-07-21 Eaton Corporation Enhanced hybrid de-NOx system
JP4404073B2 (ja) 2006-06-30 2010-01-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4487982B2 (ja) 2006-07-12 2010-06-23 トヨタ自動車株式会社 内燃機関の排気浄化システム
US7614214B2 (en) 2006-07-26 2009-11-10 Eaton Corporation Gasification of soot trapped in a particulate filter under reducing conditions
US7624570B2 (en) 2006-07-27 2009-12-01 Eaton Corporation Optimal fuel profiles
JP4155320B2 (ja) 2006-09-06 2008-09-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4329799B2 (ja) 2006-09-20 2009-09-09 トヨタ自動車株式会社 内燃機関の空燃比制御装置
DE502006004606D1 (de) 2006-10-06 2009-10-01 Umicore Ag & Co Kg Stickoxidspeicherkatalysator mit abgesenkter Entschwefelungstemperatur
JP4733002B2 (ja) 2006-11-24 2011-07-27 本田技研工業株式会社 内燃機関の排ガス浄化装置
EP1936164B1 (en) 2006-12-22 2010-06-30 Ford Global Technologies, LLC An internal combustion engine system and a method for determining a condition of an exhaust gas treatment device in such a system
JP4221026B2 (ja) 2006-12-25 2009-02-12 三菱電機株式会社 内燃機関の空燃比制御装置
JP4221025B2 (ja) 2006-12-25 2009-02-12 三菱電機株式会社 内燃機関の空燃比制御装置
US20080196398A1 (en) 2007-02-20 2008-08-21 Eaton Corporation HC mitigation to reduce NOx spike
JP4665923B2 (ja) 2007-03-13 2011-04-06 トヨタ自動車株式会社 触媒劣化判定装置
JP4710924B2 (ja) 2007-03-19 2011-06-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4420048B2 (ja) 2007-03-20 2010-02-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2008255858A (ja) 2007-04-03 2008-10-23 Yanmar Co Ltd ディーゼルエンジン用黒煙浄化装置
JP4702318B2 (ja) 2007-04-10 2011-06-15 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP4710866B2 (ja) 2007-04-18 2011-06-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7788910B2 (en) * 2007-05-09 2010-09-07 Ford Global Technologies, Llc Particulate filter regeneration and NOx catalyst re-activation
JP4304539B2 (ja) 2007-05-17 2009-07-29 いすゞ自動車株式会社 NOx浄化システムの制御方法及びNOx浄化システム
JP5590640B2 (ja) 2007-08-01 2014-09-17 日産自動車株式会社 排気ガス浄化システム
JP5067614B2 (ja) 2007-08-21 2012-11-07 株式会社デンソー 内燃機関の排気浄化装置
JP5037283B2 (ja) 2007-09-26 2012-09-26 本田技研工業株式会社 内燃機関の排気浄化装置
JP2009114879A (ja) 2007-11-02 2009-05-28 Toyota Motor Corp 内燃機関の排気浄化装置
US8074443B2 (en) 2007-11-13 2011-12-13 Eaton Corporation Pre-combustor and large channel combustor system for operation of a fuel reformer at low exhaust temperatures
JP4428443B2 (ja) 2007-12-18 2010-03-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2009082035A1 (ja) * 2007-12-26 2009-07-02 Toyota Jidosha Kabushiki Kaisha 内燃機関の排気浄化装置
WO2009087818A1 (ja) 2008-01-08 2009-07-16 Honda Motor Co., Ltd. 内燃機関の排気浄化装置
JP2009209839A (ja) 2008-03-05 2009-09-17 Denso Corp 内燃機関の排気浄化装置
JP2009221939A (ja) 2008-03-14 2009-10-01 Denso Corp 排気浄化システムおよびその排気浄化制御装置
JP2009275666A (ja) 2008-05-16 2009-11-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP4527792B2 (ja) 2008-06-20 2010-08-18 本田技研工業株式会社 排ガス浄化装置の劣化判定装置
JP5386121B2 (ja) 2008-07-25 2014-01-15 エヌ・イーケムキャット株式会社 排気ガス浄化触媒装置、並びに排気ガス浄化方法
JP5157739B2 (ja) 2008-08-11 2013-03-06 日産自動車株式会社 排ガス浄化システム及びこれを用いた排ガス浄化方法
KR101020819B1 (ko) 2008-11-28 2011-03-09 기아자동차주식회사 흡장형 NOx 촉매의 후분사용 가변 분사장치와 그 분사방법
WO2010064497A1 (ja) 2008-12-03 2010-06-10 第一稀元素化学工業株式会社 排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法
US20100154387A1 (en) 2008-12-19 2010-06-24 Toyota Jidosha Kabushiki Kaisha Abnormality detection device for reductant addition valve
US9453443B2 (en) 2009-03-20 2016-09-27 Basf Corporation Emissions treatment system with lean NOx trap
US9662611B2 (en) 2009-04-03 2017-05-30 Basf Corporation Emissions treatment system with ammonia-generating and SCR catalysts
KR101091627B1 (ko) 2009-08-31 2011-12-08 기아자동차주식회사 배기 시스템
US8353155B2 (en) 2009-08-31 2013-01-15 General Electric Company Catalyst and method of manufacture
US20110120100A1 (en) 2009-11-24 2011-05-26 General Electric Company Catalyst and method of manufacture
JP5847094B2 (ja) 2010-02-01 2016-01-20 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company 押出しソリッド体を含む三元触媒
US8459010B2 (en) 2010-02-26 2013-06-11 General Electric Company System and method for controlling nitrous oxide emissions of an internal combustion engine and regeneration of an exhaust treatment device
CN102782268B (zh) 2010-03-15 2015-04-15 丰田自动车株式会社 内燃机的排气净化装置
KR101339523B1 (ko) 2010-03-15 2013-12-10 도요타지도샤가부시키가이샤 내연 기관의 배기 정화 장치
EP2460989B1 (en) 2010-03-15 2016-04-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine
BRPI1012615B1 (pt) 2010-03-15 2020-08-11 Toyota Jidosha Kabushiki Kaisha Sistema de purificação de exaustão de motor de combustão interna
CN102782274B (zh) 2010-03-18 2015-05-13 丰田自动车株式会社 内燃机的排气净化装置
EP2460995B1 (en) 2010-03-23 2016-03-23 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for an internal combustion engine
BRPI1014237B1 (pt) 2010-04-01 2020-06-09 Toyota Motor Co Ltd método de purificação de gás de escape de motor de combustão interna
KR101326348B1 (ko) 2010-08-30 2013-11-11 도요타지도샤가부시키가이샤 내연 기관의 배기 정화 방법
US8656706B2 (en) 2010-09-02 2014-02-25 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US8701390B2 (en) 2010-11-23 2014-04-22 International Engine Intellectual Property Company, Llc Adaptive control strategy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2211724C2 (ru) * 1997-04-09 2003-09-10 Дегусса Акциенгезельшафт Автомобильный каталитический нейтрализатор отработавших газов
RU2191270C2 (ru) * 1997-10-22 2002-10-20 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Способ и устройство для регулирования диапазона температур nox-накопителя в системе выпуска отработавших газов двигателя внутреннего сгорания
RU2278281C2 (ru) * 2000-11-06 2006-06-20 Умикор АГ унд Ко. КГ Устройство и способ для обработки отработавших газов, образующихся при работе двигателя на бедных смесях, селективным каталитическим восстановлением окислов азота
JP3969450B2 (ja) * 2003-12-01 2007-09-05 トヨタ自動車株式会社 圧縮着火式内燃機関の排気浄化装置
JP2005177738A (ja) * 2003-12-19 2005-07-07 Caterpillar Inc 排ガス処理エレメント用のマルチパート触媒システム
WO2007001500A1 (en) * 2005-06-21 2007-01-04 Exxonmobil Research And Engineering Company Method and apparatus for reducing nox with first and second catalysis
JP2008069769A (ja) * 2006-08-14 2008-03-27 Toyota Motor Corp 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
KR20110136798A (ko) 2011-12-21
CA2755977A1 (en) 2011-09-22
US20140007557A1 (en) 2014-01-09
BRPI1012611B1 (pt) 2020-08-11
EP2402572A1 (en) 2012-01-04
CN102378854A (zh) 2012-03-14
US20120124971A1 (en) 2012-05-24
US8683784B2 (en) 2014-04-01
EP2402572B1 (en) 2014-08-06
WO2011114501A1 (ja) 2011-09-22
CA2755977C (en) 2014-01-21
CN102378854B (zh) 2014-06-18
US9458745B2 (en) 2016-10-04
ES2508365T3 (es) 2014-10-16
RU2011139713A (ru) 2013-04-10
BRPI1012611A2 (pt) 2018-06-19
KR101339523B1 (ko) 2013-12-10
EP2402572A4 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
RU2480592C1 (ru) Система очистки выхлопных газов двигателя внутреннего сгорания
RU2485333C1 (ru) Система очистки выхлопных газов двигателя внутреннего сгорания
EP2610450B1 (en) NOx PURIFICATION METHOD OF AN EXHAUST PURIFICATION SYSTEM OF AN INTERNAL COMBUSTION ENGINE
RU2489578C2 (ru) Система очистки выхлопных газов двигателя внутреннего сгорания
US8763370B2 (en) Exhaust purification system of internal combustion engine
US9021788B2 (en) Exhaust purification system of internal combustion engine
US9109491B2 (en) Exhaust purification system of internal combustion engine
JP5304948B1 (ja) 内燃機関の排気浄化装置
US8833056B2 (en) Exhaust purification system of internal combustion engine
US9631535B2 (en) Exhaust purification system of internal combustion engine
EP2617959B1 (en) Nox purification method of an exhaust purification system of an internal combustion engine
EP2792863A1 (en) Exhaust purification device of internal combustion engine
US9856809B2 (en) Exhaust purification device for internal combustion engine
CN107882615B (zh) 内燃机的排气净化装置
EP3030763B1 (en) Exhaust purification system of internal combustion engine
US9567889B2 (en) Exhaust purification system for internal combustion engine
US9784155B2 (en) Exhaust purification system for internal combustion engine
US9034267B2 (en) Exhaust purification system of internal combustion engine
JP4019867B2 (ja) 内燃機関の排気浄化装置
JP5741643B2 (ja) 内燃機関の排気浄化装置