KR20190117760A - 경화물 패턴의 제조 방법, 광학 부품, 회로 기판 및 석영 몰드 레플리카의 제조 방법, 및 임프린트 전처리 코팅용 재료 및 그의 경화물 - Google Patents

경화물 패턴의 제조 방법, 광학 부품, 회로 기판 및 석영 몰드 레플리카의 제조 방법, 및 임프린트 전처리 코팅용 재료 및 그의 경화물 Download PDF

Info

Publication number
KR20190117760A
KR20190117760A KR1020197028418A KR20197028418A KR20190117760A KR 20190117760 A KR20190117760 A KR 20190117760A KR 1020197028418 A KR1020197028418 A KR 1020197028418A KR 20197028418 A KR20197028418 A KR 20197028418A KR 20190117760 A KR20190117760 A KR 20190117760A
Authority
KR
South Korea
Prior art keywords
component
curable composition
composition
alpha
mold
Prior art date
Application number
KR1020197028418A
Other languages
English (en)
Other versions
KR102256349B1 (ko
Inventor
준 가토
도시키 이토
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20190117760A publication Critical patent/KR20190117760A/ko
Application granted granted Critical
Publication of KR102256349B1 publication Critical patent/KR102256349B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/026Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing of layered or coated substantially flat surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0048Photosensitive materials characterised by the solvents or agents facilitating spreading, e.g. tensio-active agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Polymerisation Methods In General (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명의 목적은 높은 처리량을 제공하며 기판의 샷 영역에서 균일한 물성을 갖는 경화물 패턴의 제조 방법을 제공하는 것이다.
기판(301) 상에, 중합성 화합물인 성분 (A1)을 적어도 함유하는 경화성 조성물 (α1)의 액막으로 형성된 층(302)을 배치하는 제1 단계 (배치 단계) 및
용매인 성분 (D1)을 제외한 상기 경화성 조성물 (α1)의 성분의 조성물 (α1')로 형성된 층(302) 상에, 중합성 화합물인 성분 (A2)를 적어도 함유하는 경화성 조성물 (α2)의 액적(303)을 이산적으로 분배하는 제2 단계 (분배 단계)
를 포함하며,
상기 조성물 (α1')과 상기 경화성 조성물 (α2)와의 혼합이 발열적인,
경화물 패턴의 제조 방법.

Description

경화물 패턴의 제조 방법, 광학 부품, 회로 기판 및 석영 몰드 레플리카의 제조 방법, 및 임프린트 전처리 코팅용 재료 및 그의 경화물
본 발명은, 경화물 패턴의 제조 방법, 광학 부품, 회로 기판 및 석영 몰드 레플리카의 제조 방법, 및 임프린트 전처리 코팅용 재료 및 그의 경화물에 관한 것이다.
반도체 디바이스, MEMS 등에서 미세화의 요구가 높아져 왔다. 특히, 광 나노임프린트 기술이 주목받아 왔다. 광 나노임프린트 기술에서는, 표면에 미세한 요철 패턴이 형성된 몰드를 광경화성 조성물 (레지스트)이 도포된 기판 (웨이퍼)에 대해 가압한 상태에서, 레지스트를 경화시킨다. 이에 의해, 몰드의 요철 패턴을 레지스트의 경화물 상에 전사하고, 따라서 기판 상에 패턴을 형성한다. 광 나노임프린트 기술에 따르면, 기판 상에 수 나노미터 오더의 미세한 구조체를 형성할 수 있다.
광 나노임프린트 기술에서는, 먼저, 기판 상의 패턴 형성 영역에 레지스트를 도포한다 (배치 단계). 이어서, 이 레지스트를 패턴이 형성된 몰드를 사용하여 성형한다 (몰드 접촉 단계). 그리고, 광을 조사하여 레지스트를 경화 (광 조사 단계)시킨 후, 몰드를 이형시킨다 (이형 단계). 이들 단계를 실시함으로써, 미리 결정된 형상을 갖는 수지의 패턴 (광경화물)이 기판 상에 형성된다. 또한, 기판 상의 다른 위치에 상기의 전 단계를 반복함으로써, 기판 전체에 미세한 구조체를 형성할 수 있다.
특허문헌 1에 개시된 광 나노임프린트 기술에 의한 패턴 형성 방법을, 도 1의 모식 단면도를 참조하여 설명한다. 먼저, 잉크젯 방법을 사용하여 기판(101) 상의 패턴 형성 영역에 액상 경화성 조성물 (레지스트)(102)를 이산적으로 적하한다 (배치 단계 (1), 도 1(a) 내지 도 1(c)). 적하된 경화성 조성물(102)의 액적은 각각 액적이 확산되는 방향을 나타내는 화살표(104)로 표시된 바와 같이 기판(101) 상에서 확산되며 (도 1(c)), 이러한 현상을 예비확산(prespread)으로 칭한다. 이어서, 상기 경화성 조성물(102)을, 패턴이 형성된 하기 기재된 조사광(106)에 대해 투명한 몰드(105)를 사용하여 성형한다 (몰드 접촉 단계 (2), 도 1(d) 및 확대부). 몰드 접촉 단계에서는, 경화성 조성물(102)의 액적은 각각 액적이 확산되는 방향을 나타내는 화살표(104)로 표시된 바와 같이 기판(101)과 몰드(105) 사이의 간극의 전체 영역 상에 걸쳐 확산된다 (도 1(d) 및 확대부). 이러한 현상을 확산(spread)으로 칭한다. 또한, 몰드 접촉 단계에서는, 경화성 조성물(102)은 몰드(105) 상의 오목부의 내부에도, 각각 액적이 확산되는 방향을 나타내는 화살표(104)로 표시된 바와 같이, 모세관 현상에 의해 충전된다 (도 1(d)의 확대부). 이러한 충전 현상을 충전(fill)으로 칭한다. 확산 및 충전을 완료하는데 필요한 시간을 충전 시간(filling time)으로 칭한다. 경화성 조성물(102)의 충전을 완료한 후, 조사광(106)을 조사하여 경화성 조성물(102)를 경화 (광 조사 단계 (3), 도 1(e))시키고, 그 후 기판(101)으로부터 몰드(105)를 이형시킨다 (이형 단계 (4), 도 1(f)). 상기 단계들을 순차적으로 수행함으로써 미리 결정된 패턴 형상을 갖는 경화된 경화성 조성물(102)의 패턴 (광경화막(107), 도 1(f) 및 확대부)이 기판(101) 상에 형성된다. 또한, 몰드(105)의 볼록부에 대응하는 레지스트 패턴의 오목부에 잔막(108)이 잔류할 수 있다 (도 1(f)의 확대부).
일본 특허 공개 제 2010-073811호 공보
S. Reddy, R.T. Bonnecaze, Microelectronic Engineering, 82, 60-70 (2005) N. Imaishi, Int. J. Microgravity Sci. No. 31 Supplement 2014 (S5-S12)
특허문헌 1에 개시된 광 나노임프린트 기술에서는, 몰드 접촉 개시부터 확산 및 충전의 완료까지의 시간 (충전 시간)이 길고, 따라서 처리량이 낮다는 과제가 있었다.
상기를 고려하여, 본 발명의 발명자들은 충전 시간이 짧은, 즉 처리량이 높은 광 나노임프린트 기술 (짧은 확산 시간 나노임프린트 리소그래피(Short Spread Time Nanoimprint Lithography), 이하 "SST-NIL"로 지칭됨)을 고안하였다. SST-NIL은, 도 2의 모식 단면도에 도시된 바와 같이,
기판(201) 상에 경화성 조성물 (α1)(202)의 액막을 배치하는 배치 단계 (1),
상기 경화성 조성물 (α1)(202)의 액막으로 형성된 층 상에 경화성 조성물 (α2)(203)의 액적을 이산적으로 분배하는 분배 단계 (2),
경화성 조성물 (α1)(202)과 경화성 조성물 (α2)(203)가 부분적으로 혼합됨으로써 수득된 혼합층을 몰드(205)에 접촉시키는 몰드 접촉 단계 (3),
상기 경화성 조성물 (α1)(202)과 상기 경화성 조성물 (α2)(203)가 혼합됨으로써 수득된 혼합층을 조사광(206)으로 경화시키는 광 조사 단계 (4), 및
경화 후의 혼합층으로부터 상기 몰드(205)를 이형시키는 이형 단계 (5),
를 포함하는, 패턴 형상을 갖는 경화막을 수득하는 기술이다.
SST-NIL에서, 분배 단계 (2)로부터 이형 단계 (5)까지의 일련의 단계 유닛을 "샷(shot)"으로 칭하며, 몰드(205)가 경화성 조성물 (α1)(202) 및 경화성 조성물 (α2)(203)과 접촉하는 영역, 즉, 기판(201) 상에서 패턴이 형성되는 영역을 "샷 영역"으로 칭한다.
SST-NIL에서는, 이산적으로 적하된 경화성 조성물 (α2)(203)의 액적이, 경화성 조성물 (α1)(202)의 액막 상에서, 각각 액적이 확산되는 방향을 나타내는 화살표(204)로 표시된 바와 같이 신속하게 확산되기 때문에, 충전 시간이 짧고, 처리량이 높다.
그러나, 도 2에 도시된 SST-NIL은 하기 문제를 포함한다. 즉, 경화성 조성물 (α1)(202)은, 기판(201) 상에 샷 영역보다 더 넓은 면적, 예를 들어 기판의 전체 표면을 점유하도록 예를 들어 스핀 코팅 방법을 사용하여 배치된다 (도 2(b)). 한편, 경화성 조성물 (α2)(203)는, 예를 들어 잉크젯 방법을 사용하여 이산적으로 분배된다. 본원에서, 경화성 조성물 (α1)(202)과 경화성 조성물 (α2)(203)는 상이한 조성물이며, 경화성 조성물 (α2)(203)의 적하 후, 2종의 조성물은 광 조사 단계 (4) 전까지 혼합된다. 경화성 조성물 (α1)(202)과 경화성 조성물 (α2)(203)의 혼합이 불충분할 경우, 조성이 균일하지 않게 되고 막 물성의 불균일이 발생한다. 조성이 충분히 혼합되지 않은 영역(209), 혼합이 불충분한 상태의 경화성 조성물 (α1)(202) 및 경화성 조성물 (α2)(203)의 혼합물(208)이 존재하는 상태에서 (도 2(e)), 영역(209) 및 혼합물(208)에 조사광(206)을 조사하여 경화시키는 경우 (도 2(f)), 경화에 의해 수득된 막의 건식 에칭 내성 등의 막 물성이 불균일해진다는 문제가 발생한다.
경화성 조성물 (α1)(202)과 경화성 조성물 (α2)(203)은, 분배 단계 (2)에서 광 조사 단계 (4) 전까지 혼합되어, 경화성 조성물 (α1)(202)과 경화성 조성물 (α2)(203)의 혼합물(208)을 형성한다. 일반적으로, 경화성 조성물 (α1)(202)과 경화성 조성물 (α2)(203)의 건식 에칭 내성은 차이가 있는 경우가 많다. 예를 들어, 경화성 조성물 (α1)(202)의 건식 에칭 내성이, 경화성 조성물 (α2)(203)보다 낮은 경우, 조성이 충분히 혼합되어 있지 않은 영역(209)에서의 경화막은 건식 에칭 내성이 낮다. 건식 에칭 내성이 낮은 영역은 후속 단계의 잔막 제거 단계에서의 에칭시에 결함으로 작용한다. 상기와 같은 결함을 방지하기 위해 경화성 조성물 사이의 혼합을 충분히 수행할 필요가 있다. 경화성 조성물 (α1)(202)에 경화성 조성물 (α2)(203)을 확산시키기 위해, 경화성 조성물 (α1)(202)과 경화성 조성물 (α2)(203)은 서로 긴 시간 동안 접촉될 필요가 있다. 그러나, 혼합에 긴 시간이 소요되는 경우, 1샷에 소요되는 시간이 길어지기 때문에, 처리량이 현저하게 감소하는 문제가 발생한다.
상기 관점에서 본 발명은, 높은 처리량을 제공하며 기판의 샷 영역에서 균일한 물성을 갖는 경화물 패턴의 제조 방법을 제공하는 것을 목적으로 한다.
상기 언급된 과제를 해결하기 위해 본 발명에 따르면,
(1) 기판 상에, 중합성 화합물인 성분 (A1)을 적어도 함유하는 경화성 조성물 (α1)의 액막으로 형성된 층을 배치하는 제1 단계 (배치 단계),
(2) 용매인 성분 (D1)을 제외한 성분의 조성물 (α1')의 액막으로 형성된 층 상에, 중합성 화합물인 성분 (A2)를 적어도 함유하는 경화성 조성물 (α2)의 액적을 이산적으로 분배하는 제2 단계 (분배 단계),
(3) 상기 조성물 (α1') 및 상기 경화성 조성물 (α2)가 혼합됨으로써 수득된 혼합층을 몰드에 접촉시키는 제3 단계 (몰드 접촉 단계),
(4) 상기 혼합층에 상기 몰드의 측면으로부터 광을 조사하여 상기 층을 경화시키는 제4 단계 (광 조사 단계), 및
(5) 경화 후의 상기 혼합층으로부터 상기 몰드를 이형시키는 제5 단계 (이형 단계)
를 포함하며,
상기 조성물 (α1')과 제2 단계에서 분배되는 상기 경화성 조성물 (α2)와의 혼합이 발열적인,
경화물 패턴의 제조 방법이 제공된다.
또한, 본 발명에 따르면,
중합성 화합물인 성분 (A1)을 적어도 함유하는 경화성 조성물 (α1)을 포함하는 임프린트 전처리 코팅용 재료이며,
기판 상에 임프린트 전처리 코팅용 재료로 이루어진 액막을 형성하고, 상기 액막에 대해 중합성 화합물인 성분 (A2)를 적어도 함유하는 경화성 조성물 (α2)로 형성된 액적을 분배했을 때에, 상기 액적의 성분의 기판 표면 방향으로의 확산이 촉진되고,
상기 경화성 조성물 (α1)은, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')과 제2 단계에서 분배되는 경화성 조성물 (α2)와의 혼합이 발열적인,
임프린트 전처리 코팅용 재료가 제공된다.
본 발명에 따르면, 높은 처리량을 제공하며, 기판의 샷 영역에서 균일한 물성을 갖는 경화물 패턴의 제조 방법을 제공할 수 있다.
도 1은 광 나노임프린트 기술의 선행예를 도시하는 모식 단면도이다.
도 2는 본 발명이 해결하고자 하는 과제를 설명하는 모식 단면도이다.
도 3은 본 발명에 따른 광 나노임프린트 기술을 나타내는 모식 단면도이다.
도 4는 본 발명의 잔막 제거 단계를 나타내는 모식 단면도이다.
이하, 본 발명의 실시형태에 대해 적절히 도면을 참조하면서 상세하게 설명한다. 단, 본 발명은 이하에 설명하는 실시형태에 한정되는 것은 아니다. 또한, 본 발명의 취지를 일탈하지 않는 범위에서, 관련 기술분야의 통상의 기술자의 통상 지식에 기초하여, 이하에 설명하는 실시형태에 대하여 적절히 변경, 개량 등이 추가된 것이 또한 본 발명의 범주에 포함된다.
[경화성 조성물]
본 발명의 경화물 패턴의 제조 방법은, 적어도 경화성 조성물 (α1) 및 경화성 조성물 (α2) (이하, 둘 다 "경화성 조성물 (α)"이라고도 칭함)를 사용한다. 경화성 조성물 (α1)은, 기판 상에 임프린트 전처리 코팅이 되는 액막을 형성하고, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')의 액막에 대해 경화성 조성물 (α2)로 이루어진 액적을 분배했을 때에 액적 성분의 기판 표면 방향으로의 확산을 촉진하도록 구성된다.
경화성 조성물 (α1)은, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')과 분배되는 액적, 즉, 그 액막 상에 분배되는 경화성 조성물 (α2)와의 혼합이 발열적이고, 또한, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')의 표면 장력이 경화성 조성물 (α2)의 표면 장력보다 더 큰 것을 특징으로 한다.
여기서, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')과 경화성 조성물 (α2)와의 혼합이 발열적이라는 것은, 예를 들어 25℃의 환경 하에, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')과, 경화성 조성물 (α2)를 1:1 (중량비)로 교반 혼합하였을 때, 2종의 경화성 조성물을 혼합한 조성물의 온도가 상승하는 것을 의미한다. 이와 같이, 혼합시 발열하는, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1') 및 경화성 조성물 (α2)를 사용함으로써, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1') 상으로 경화성 조성물 (α2)를 적하 혼합하는 경우, 온도 저하에 기인하는 점도 상승을 방지하여 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')과 경화성 조성물 (α2)의 혼합을 촉진한다. 따라서, 높은 처리량을 제공하며 기판의 샷 영역에서 균일한 물성을 갖는 패턴 형성 방법을 제공할 수 있다.
또한, 온도 상승은, 6℃ 이하인 것이 바람직하고, 5℃ 이하인 것이 보다 바람직하고, 4℃ 이하인 것이 보다 더 바람직하다. 온도 상승을 6℃ 이하로 설정함으로써, 경화성 조성물-몰드 계면에서 경화 반응 이외의 부반응이 억제된다. 또한, 본 발명의 충분한 효과를 얻기 위해서는, 0.5℃ 이상 온도 상승 하는 것이 보다 바람직하다.
혼합시의 온도 변화가 미미하여 측정이 어려운 경우에는, 시차 열분석 장치(DTA), 시차열-열중량 동시 측정 장치(TG-DTA), 시차 주사 열량 측정 장치(DSC) 등의 열분석장치를 사용하여, 혼합시의 발열량 또는 흡열량을 측정하고, 각각을 온도 상승과 온도 저하에 대응시키는 것이 바람직하다.
온도 상승의 평가의 일례로서, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')과 경화성 조성물 (α2)를 1:1 (중량비)로 교반 혼합할 때, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')과 경화성 조성물 (α2)를 혼합한 조성물의 온도를 측정하고, 혼합시의 온도 상승의 유무를 판정할 수 있다. 온도 상승은 예를 들어 25℃의 환경 하에 평가될 수 있다.
다른 예로서, 혼합시의 온도 변화가 미미하여 측정이 어려운 경우에는, 시차 열분석 장치(DTA), 시차열-열중량 동시 측정 장치(TG-DTA), 시차 주사 열량 측정 장치(DSC) 등의 열분석장치를 사용하여 평가할 수 있다. 예를 들어, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')과 경화성 조성물 (α2)를 1:1 (중량비)로 혼합할 때, 열분석기를 통해 발열량 또는 흡열량을 측정할 수 있다. 온도 상승은 예를 들어 실온의 환경 하에 평가될 수 있다.
또한, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')과 경화성 조성물 (α2)는 신속하게 혼합하는 것이 바람직하며, 예를 들어 25℃, 정치 상태에서, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')과 경화성 조성물 (α2)를 혼합하는 경우, 5초 이내에 혼합하는 것이 바람직하고, 2초 이내에 혼합하는 것이 보다 바람직하고, 1초 이내에 혼합하는 것이 보다 더 바람직하다.
또한, 본 명세서에 사용된 용어 "경화물"은, 경화성 조성물 등의 조성물에 함유되는 중합성 화합물을 중합하고, 일부 또는 전부를 경화시킴으로써 수득된 생성물을 의미한다. 또한, 경화물 중 면적에 비해 두께가 극단적으로 얇은 것을 강조하는 때에는, 특히 "경화막"이라고 기재하는 경우가 있다. 또한, 경화막 중 층 상에 적층되어 있는 것을 강조하는 때에는, 특히 "경화층"이라고 기재하는 경우가 있다. 이들 "경화물", "경화막", "경화층"의 형상은 특별히 한정되지 않고 표면에 패턴 형상을 가질 수 있다. 이하, 본 발명에 따른 각 성분에 대해 상세하게 설명한다.
(경화성 조성물 (α))
본 발명에서, 경화성 조성물 (α), 즉 경화성 조성물 (α1) 및 경화성 조성물 (α2)는, 중합성 화합물인 성분 (A)를 적어도 포함하는 화합물이다. 본 발명에서, 경화성 조성물 (α)는 또한 광중합 개시제인 성분 (B), 비중합성 화합물인 성분 (C), 용매인 성분 (D1)을 함유할 수 있다. 단, 경화성 조성물 (α)는 광을 조사함으로써 경화하는 조성물인 한, 이에 제한되지 않는다. 예를 들어, 경화성 조성물 (α)는 성분 (A) 및 성분 (B)로서 작용하는 반응성 관능기를, 그의 동일 분자 내에 갖는 화합물을 함유할 수 있다. 또한, 경화성 조성물 (α1)에 함유되는 각 성분을 성분 (A1) 내지 성분 (D1)로 하고, 경화성 조성물 (α2)에 함유되는 각 성분을 성분 (A2) 내지 성분 (D2)로 한다. 이하, 경화성 조성물 (α)의 각 성분에 대해서, 상세하게 설명한다.
<성분 (A): 중합성 화합물>
성분 (A)는 중합성 화합물이다. 여기서, 본 발명에서 중합성 화합물이란, 광중합 개시제인 성분 (B)로부터 발생한 중합 인자(라디칼 등)와 반응하고, 연쇄 반응(중합 반응)에 의해 중합하는 화합물이다. 중합성 화합물은 이 연쇄 반응에 의해, 고분자 화합물로 이루어진 경화물을 형성하는 화합물인 것이 바람직하다.
또한 본 발명에서, 각각의 경화성 조성물 (α) 중에 함유되는 모든 중합성 화합물을 통합해서 성분 (A)로 하는 것이 바람직하다. 이 경우, 각각의 경화성 조성물 (α) 중에 함유되는 중합성 화합물이 단지 1종인 구성 및 특정한 복수 종의 중합성 화합물인 구성이 포함된다.
이러한 중합성 화합물로서는, 예를 들어 라디칼 중합성 화합물을 들 수 있다. 중합 속도, 경화 속도, 공정 시간 등의 단축의 관점에서, 본 발명에 따른 중합성 화합물은 라디칼 중합성 화합물인 것이 보다 바람직하다. 라디칼 중합성 화합물은, 1개 이상의 아크릴로일 기 또는 메타크릴로일 기를 갖는 화합물, 즉, (메트)아크릴 화합물인 것이 바람직하다.
따라서, 본 발명에서, 경화성 조성물 (α)의 성분 (A)로서, (메트)아크릴 화합물을 포함하는 것이 바람직하다. 또한, 성분 (A)의 주성분이 (메트)아크릴 화합물인 것이 보다 바람직하다. 나아가 각각의 경화성 조성물 (α) 중에 함유되는 중합성 화합물이 모두 (메트)아크릴 화합물인 것이 가장 바람직하다. 또한, 여기에서 기재하는 "성분 (A)에 대한 주요 성분은 (메트)아크릴 화합물이다"라는 어구는 성분 (A)의 90 중량% 이상이 (메트)아크릴 화합물인 것을 의미한다.
라디칼 중합성 화합물이, 복수 종의 (메트)아크릴 화합물로 이루어지는 경우에는, 단관능 (메트)아크릴 단량체 및 다관능 (메트)아크릴 단량체를 함유하는 것이 바람직하다. 이는, 단관능 (메트)아크릴 단량체와 다관능 (메트)아크릴 단량체를 조합함으로써, 기계적 강도가 강한 경화물이 수득되기 때문이다.
1개의 아크릴로일 기 또는 메타크릴로일 기를 갖는 단관능 (메트)아크릴 화합물로서는, 예를 들어 페녹시에틸 (메트)아크릴레이트, 페녹시-2-메틸에틸 (메트)아크릴레이트, 페녹시에톡시에틸 (메트)아크릴레이트, 3-페녹시-2-히드록시프로필 (메트)아크릴레이트, 2-페닐페녹시에틸 (메트)아크릴레이트, 4-페닐페녹시에틸 (메트)아크릴레이트, 3-(2-페닐페닐)-2-히드록시프로필 (메트)아크릴레이트, EO 변성 p-쿠밀페닐 (메트)아크릴레이트, 2-브로모페녹시에틸 (메트)아크릴레이트, 2,4-디브로모페녹시에틸 (메트)아크릴레이트, 2,4,6-트리브로모페녹시에틸 (메트)아크릴레이트, EO 변성 페녹시 (메트)아크릴레이트, PO 변성 페녹시 (메트)아크릴레이트, 폴리옥시에틸렌 노닐페닐 에테르 (메트)아크릴레이트, 이소보르닐 (메트)아크릴레이트, 1-아다만틸 (메트)아크릴레이트, 2-메틸-2-아다만틸 (메트)아크릴레이트, 2-에틸-2-아다만틸 (메트)아크릴레이트, 보르닐 (메트)아크릴레이트, 트리시클로데카닐 (메트)아크릴레이트, 디시클로펜타닐 (메트)아크릴레이트, 디시클로펜테닐 (메트)아크릴레이트, 시클로헥실 (메트)아크릴레이트, 4-부틸시클로헥실 (메트)아크릴레이트, 아크릴로일 모르폴린, 2-히드록시에틸 (메트)아크릴레이트, 2-히드록시프로필 (메트)아크릴레이트, 2-히드록시부틸 (메트)아크릴레이트, 메틸 (메트)아크릴레이트, 에틸 (메트)아크릴레이트, 프로필 (메트)아크릴레이트, 이소프로필 (메트)아크릴레이트, 부틸 (메트)아크릴레이트, 아밀 (메트)아크릴레이트, 이소부틸 (메트)아크릴레이트, t-부틸 (메트)아크릴레이트, 펜틸 (메트)아크릴레이트, 이소아밀 (메트)아크릴레이트, 헥실 (메트)아크릴레이트, 헵틸 (메트)아크릴레이트, 옥틸 (메트)아크릴레이트, 이소옥틸 (메트)아크릴레이트, 2-에틸헥실 (메트)아크릴레이트, 노닐 (메트)아크릴레이트, 데실 (메트)아크릴레이트, 이소데실 (메트)아크릴레이트, 운데실 (메트)아크릴레이트, 도데실 (메트)아크릴레이트, 라우릴 (메트)아크릴레이트, 스테아릴 (메트)아크릴레이트, 이소스테아릴 (메트)아크릴레이트, 벤질 (메트)아크릴레이트, 1-나프틸메틸 (메트)아크릴레이트, 2-나프틸메틸 (메트)아크릴레이트, 테트라히드로푸르푸릴 (메트)아크릴레이트, 부톡시에틸 (메트)아크릴레이트, 에톡시 디에틸렌 글리콜 (메트)아크릴레이트, 폴리에틸렌 글리콜 모노(메트)아크릴레이트, 폴리프로필렌 글리콜 모노(메트)아크릴레이트, 메톡시 에틸렌 글리콜 (메트)아크릴레이트, 에톡시에틸 (메트)아크릴레이트, 메톡시 폴리에틸렌 글리콜 (메트)아크릴레이트, 메톡시 폴리프로필렌 글리콜 (메트)아크릴레이트, 디아세톤 (메트)아크릴아미드, 이소부톡시메틸 (메트)아크릴아미드, N,N-디메틸 (메트)아크릴아미드, t-옥틸 (메트)아크릴아미드, 디메틸아미노에틸 (메트)아크릴레이트, 디에틸아미노에틸 (메트)아크릴레이트, 7-아미노-3,7-디메틸옥틸 (메트)아크릴레이트, N,N-디에틸 (메트)아크릴아미드, 및 N,N-디메틸아미노프로필 (메트)아크릴아미드 등을 들 수 있으나, 이에 제한되지는 않는다.
상기 단관능 (메트)아크릴 화합물의 시판품의 예는, 아로닉스(ARONIX) M101, M102, M110, M111, M113, M117, M5700, TO-1317, M120, M150, 및 M156 (이들 모두는 도아고세이 캄파니, 리미티드(Toagosei Co., Ltd)에 의해 제조됨); MEDOL10, MIBDOL10, CHDOL10, MMDOL30, MEDOL30, MIBDOL30, CHDOL30, LA, IBXA, 2-MTA, HPA, 및 비스코트(Viscoat) #150, #155, #158, #190, #192, #193, #220, #2000, #2100, 및 #2150 (이들 모두는 오사카 오가닉 케미칼 인더스트리 리미티드(Osaka Organic Chemical Industry Ltd.)에 의해 제조됨); 라이트 아크릴레이트(LIGHT ACRYLATE) BO-A, EC-A, DMP-A, THF-A, HOP-A, HOA-MPE, HOA-MPL, PO-A, P-200A, NP-4EA, 및 NP-8EA, 및 에폭시 에스테르 M-600A (이들 모두는 교에이샤 케미칼 캄파니, 리미티드(Kyoeisha Chemical Co., Ltd.)에 의해 제조됨); 가야라드(KAYARAD) TC110S, R-564, 및 R-128H (이들 모두는 니폰 가야쿠 캄파니, 리미티드(Nippon Kayaku Co., Ltd.)에 의해 제조됨); NK 에스테르 AMP-10G 및 AMP-20G (이들 둘 다는 신-나카무라 케미칼 캄파니, 리미티드(Shin-Nakamura Chemical Co., Ltd.)에 의해 제조됨); FA-511A, 512A, 및 513A (이들 모두는 히타치 케미칼 캄파니, 리미티드(Hitachi Chemical Co., Ltd.)에 의해 제조됨); PHE, CEA, PHE-2, PHE-4, BR-31, BR-31M, 및 BR-32 (이들 모두는 DKS에 의해 제조됨); VP (바스프(BASF)에 의해 제조됨); 및 ACMO, DMAA, 및 DMAPAA (이들 모두는 고진 캄파니, 리미티드(Kohjin Co., Ltd.)에 의해 제조됨)를 포함하나, 이에 제한되지는 않는다.
추가로, 각각 2개 이상의 아크릴로일 기 또는 메타크릴로일 기를 갖는 다관능 (메트)아크릴 화합물로서는, 예를 들어 트리메틸올프로판 디(메트)아크릴레이트, 트리메틸올프로판 트리(메트)아크릴레이트, EO 변성 트리메틸올프로판 트리(메트)아크릴레이트, PO 변성 트리메틸올프로판 트리(메트)아크릴레이트, EO,PO 변성 트리메틸올프로판 트리(메트)아크릴레이트, 디메틸올트리시클로데칸 디(메트)아크릴레이트, 펜타에리트리톨 트리(메트)아크릴레이트, 펜타에리트리톨 테트라(메트)아크릴레이트, 에틸렌 글리콜 디(메트)아크릴레이트, 테트라에틸렌 글리콜 디(메트)아크릴레이트, 페닐 에틸글리콜 디(메트)아크릴레이트, 폴리에틸렌 글리콜 디(메트)아크릴레이트, 폴리프로필렌 글리콜 디(메트)아크릴레이트, 1,4-부탄디올 디(메트)아크릴레이트, 1,6-헥산디올 디(메트)아크릴레이트, 네오펜틸 글리콜 디(메트)아크릴레이트, 1,9-노난디올 디(메트)아크릴레이트, 1,10-데칸디올 디(메트)아크릴레이트, 1,12-도데칸디올 디아크릴레이트, 1,3-아다만탄 디메탄올 디(메트)아크릴레이트, o-크실릴렌 디(메트)아크릴레이트, m-크실릴렌 디(메트)아크릴레이트, p-크실릴렌 디(메트)아크릴레이트, 트리스(2-히드록시에틸)이소시아누레이트 트리(메트)아크릴레이트, 트리스(아크릴로일옥시)이소시아누레이트, 비스(히드록시메틸)트리시클로데칸 디(메트)아크릴레이트, 디펜타에리트리톨 펜타(메트)아크릴레이트, 디펜타에리트리톨 헥사(메트)아크릴레이트, EO 변성 2,2-비스(4-((메트)아크릴옥시)페닐)프로판, PO 변성 2,2-비스(4-((메트)아크릴옥시)페닐)프로판, 및 EO,PO 변성 2,2-비스(4-((메트)아크릴옥시)페닐)프로판을 들 수 있으나, 이에 제한되지는 않는다.
상기 다관능 (메트)아크릴 화합물의 시판품의 예는, 유피머(YUPIMER) UV SA1002 및 SA2007 (이들 둘 다는 미츠비시 케미칼 코포레이션(Mitsubishi Chemical Corporation)에 의해 제조됨); 비스코트 #195, #230, #215, #260, #335HP, #295, #300, #360, #700, GPT, 및 3PA (이들 모두는 오사카 오가닉 케미칼 인더스트리 리미티드에 의해 제조됨); 라이트 아크릴레이트 4EG-A, 9EG-A, NP-A, DCP-A, BP-4EA, BP-4PA, TMP-A, PE-3A, PE-4A, 및 DPE-6A (이들 모두는 교에이샤 케미칼 캄파니, 리미티드에 의해 제조됨); 가야라드 PET-30, TMPTA, R-604, DPHA, DPCA-20, -30, -60, 및 -120, 및 HX-620, D-310, 및 D-330 (이들 모두는 니폰 가야쿠 캄파니, 리미티드에 의해 제조됨); 아로닉스 M208, M210, M215, M220, M240, M305, M309, M310, M315, M325, 및 M400 (이들 모두는 도아고세이 캄파니, 리미티드에 의해 제조됨); 및 리폭시(Ripoxy) VR-77, VR-60, 및 VR-90 (이들 모두는 쇼와 덴코 KK(Showa Denko KK)에 의해 제조됨)을 포함하나, 이에 제한되지는 않는다.
이들 라디칼 중합성 화합물은, 단독으로 사용되거나 또는 그의 조합으로 사용될 수 있다. 또한, 상기 언급된 화합물 군에서, 용어 "(메트)아크릴레이트"는 아크릴레이트, 또는 상기 아크릴레이트와 동등한 알콜 잔기를 갖는 메타크릴레이트를 의미한다. 용어 "(메트)아크릴로일 기"는 아크릴로일 기, 또는 상기 아크릴로일 기와 동등한 알콜 잔기를 갖는 메타크릴로일 기를 의미한다. 약어 "EO"는 에틸렌 옥시드를 지칭하고, 용어 "EO 변성 화합물 A"는 화합물 A의 (메트)아크릴산 잔기와 알콜 잔기가 에틸렌 옥시드 기의 블록 구조를 통해 서로 결합된 화합물을 의미한다. 또한, 약어 "PO"는 프로필렌 옥시드를 지칭하고, 용어 "PO 변성 화합물 B"는 화합물 B의 (메트)아크릴산 잔기와 알콜 잔기가 프로필렌 옥시드 기의 블록 구조를 통해 서로 결합된 화합물을 의미한다.
경화성 조성물 (α1)은 방향족 기 및/또는 지환족 탄화수소 기를 갖는 중합성 화합물(A1)을 함유하는 것이 바람직하다. 이에 의해, 경화성 조성물 (α1)의 건식 에칭 내성을 향상시킬 수 있다.
경화성 조성물 (α1)은 알킬렌 에테르 기를 갖는 중합성 화합물인 성분 (A1)을 함유하는 것이 바람직하다. 또한, 조성물이 2개 이상의 알킬렌 에테르 기의 반복 단위를 갖는 중합성 화합물인 성분 (A1)을 함유하는 것이 보다 바람직하다. 이에 의해, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')과 경화성 조성물 (α2)를 혼합할 때의 발열량을 향상시킬 수 있다.
경화성 조성물 (α2)은, 방향족 기 및/또는 지환족 탄화수소 기를 갖는 중합성 화합물인 성분 (A2)를 함유하는 것이 바람직하다. 이에 의해, 경화성 조성물 (α2)의 건식 에칭 내성을 향상시킬 수 있다.
중합성 화합물인 성분 (A1)의 경화성 조성물 (α1)에서의 배합 비율은 성분 (A1), 성분 (B1), 성분 (C1)의 합계 중량, 즉 용매인 성분 (D1)을 제외한 모든 성분의 합계 중량에 대하여, 바람직하게는 50 중량% 이상 100 중량% 이하이다. 또한, 배합 비율은 바람직하게는 80 중량% 이상 100 중량% 이하이고, 보다 바람직하게는 90 중량% 이상 100 중량% 이하이다.
중합성 화합물인 성분 (A1)의 배합 비율을, 경화성 조성물 (α1')의 성분의 합계 중량에 대하여 50 중량% 이상으로 함으로써, 수득되는 경화막을 어느 정도의 기계적 강도를 갖는 경화막으로 할 수 있다.
중합성 화합물인 성분 (A2)의 경화성 조성물 (α2)에서의 배합 비율은, 성분 (A2), 성분 (B2), 성분 (C2)의 합계 중량, 즉 용매인 성분 (D2)를 제외한 모든 성분의 합계 중량에 대하여, 바람직하게는 50 중량% 이상 99.9 중량% 이하이다. 또한, 배합 비율은 바람직하게는 80 중량% 이상 99 중량% 이하이고, 보다 바람직하게는 90 중량% 이상 98 중량% 이하이다.
중합성 화합물인 성분 (A2)의 배합 비율을, 경화성 조성물 (α2')의 성분의 합계 중량에 대하여 50 중량% 이상으로 함으로써, 수득되는 경화막을 어느 정도의 기계적 강도를 갖는 경화막으로 할 수 있다.
또한, 하기 기재된 바와 같이, 경화성 조성물 (α1)은 성분 (D1)을 함유하는 것이 바람직하다. 경화성 조성물 (α1) 중 성분 (A1)의 배합 비율은 용매인 성분 (D1)을 함유하는 경화성 조성물 (α1)의 성분의 합계 중량에 대하여, 바람직하게는 0.01 중량% 이상 10중량% 이하이다.
<성분 (B): 광중합 개시제>
성분 (B)는, 광중합 개시제이다. 본 발명에 따른 경화성 조성물 (α)는, 상기 기재된 성분 (A) 이외에, 다양한 목적에 따라, 본 발명의 효과를 손상시키지 않는 범위에서, 또한 광중합 개시제인 성분 (B)을 함유할 수 있다. 성분 (B)는, 1종의 중합 개시제로 이루어지거나, 또는 복수 종의 중합 개시제로 이루어질 수 있다.
광중합 개시제는, 미리 결정된 파장의 광을 감지하여 상기 중합 인자(라디칼 등)를 발생시키는 화합물이다. 구체적으로는, 광중합 개시제는, 광 (적외선, 가시광선, 자외선, 원자외선, X선, 전자 빔 등의 하전 입자선, 방사선)에 의해 라디칼을 발생시키는 중합 개시제 (라디칼 발생제)이다.
라디칼 발생제의 예는, 2-(o-클로로페닐)-4,5-디페닐이미다졸 이량체, 2-(o-클로로페닐)-4,5-디(메톡시페닐)이미다졸 이량체, 2-(o-플루오로페닐)-4,5-디페닐이미다졸 이량체, 및 2-(o- 또는 p-메톡시페닐)-4,5-디페닐이미다졸 이량체 등의 치환기를 가질 수 있는 2,4,5-트리아릴이미다졸 이량체; 벤조페논, 및 N,N'-테트라메틸-4,4'-디아미노벤조페논 (미힐러(Michler) 케톤), N,N'-테트라에틸-4,4'-디아미노벤조페논, 4-메톡시-4'-디메틸아미노벤조페논, 4-클로로벤조페논, 4,4'-디메톡시벤조페논, 및 4,4'-디아미노벤조페논 등의 벤조페논 유도체; 2-벤질-2-디메틸아미노-1-(4-모르폴리노페닐)-부타논-1,2-메틸-1-[4-(메틸티오)페닐]-2-모르폴리노-프로판-1-온 등의 α-아미노 방향족 케톤 유도체; 2-에틸안트라퀴논, 페난트렌퀴논, 2-t-부틸안트라퀴논, 옥타메틸안트라퀴논, 1,2-벤즈안트라퀴논, 2,3-벤즈안트라퀴논, 2-페닐안트라퀴논, 2,3-디페닐안트라퀴논, 1-클로로안트라퀴논, 2-메틸안트라퀴논, 1,4-나프토퀴논, 9,10-페난트라퀴논, 2-메틸-1,4-나프토퀴논, 및 2,3-디메틸안트라퀴논 등의 퀴논; 벤조인 메틸 에테르, 벤조인 에틸 에테르, 및 벤조인 페닐 에테르 등의 벤조인 에테르 유도체; 벤조인, 및 메틸벤조인, 에틸벤조인, 및 프로필벤조인 등의 벤조인 유도체; 벤질 디메틸 케탈 등의 벤질 유도체; 9-페닐아크리딘 및 1,7-비스(9,9'-아크리디닐)헵탄 등의 아크리딘 유도체; N-페닐글리신 등의 N-페닐글리신 유도체; 아세토페논, 및 3-메틸아세토페논, 아세토페논 벤질 케탈, 1-히드록시시클로헥실 페닐 케톤, 및 2,2-디메톡시-2-페닐아세토페논 등의 아세토페논 유도체; 티오크산톤, 및 디에틸티오크산톤, 2-이소프로필티오크산톤, 및 2-클로로티오크산톤 등의 티오크산톤 유도체; 2,4,6-트리메틸벤조일 디페닐 포스핀 옥시드, 비스(2,4,6-트리메틸벤조일) 페닐 포스핀 옥시드, 및 비스(2,6-디메톡시벤조일)-2,4,4-트리메틸펜틸 포스핀 옥시드 등의 아실포스핀 옥시드 유도체; 1,2-옥탄디온, 1-[4-(페닐티오)페닐]-, 2-(O-벤조일옥심)] 및 에타논, 1-[9-에틸-6-(2-메틸벤조일)-9H-카르바졸-3-일]-, 1-(O-아세틸옥심) 등의 옥심 에스테르 유도체; 크산톤; 플루오레논; 벤즈알데히드; 플루오렌; 안트라퀴논; 트리페닐아민; 카르바졸; 1-(4-이소프로필페닐)-2-히드록시-2-메틸프로판-1-온; 및 2-히드록시-2-메틸-1-페닐프로판-1-온을 포함하나, 이에 제한되지는 않는다.
상기 라디칼 발생제의 시판품의 예는, 이르가큐어(Irgacure) 184, 369, 651, 500, 819, 907, 784, 및 2959, CGI-1700, -1750, 및 -1850, CG24-61, 다로큐어(Darocur) 1116 및 1173, 루시린(Lucirin) TPO, LR8893, 및 LR8970 (이들 모두는 바스프에 의해 제조됨), 및 우베크릴(Ubecryl) P36 (UCB에 의해 제조됨)을 포함하나, 이에 제한되지는 않는다.
이들 중, 성분 (B)는 아실포스핀 옥시드계 중합 개시제 또는 알킬페논계 중합 개시제인 것이 바람직하다. 상기 기재된 예 중, 아실포스핀 옥시드계 중합 개시제는, 2,4,6-트리메틸벤조일 디페닐 포스핀 옥시드, 비스(2,4,6-트리메틸벤조일) 페닐 포스핀 옥시드, 또는 비스(2,6-디메톡시벤조일)-2,4,4-트리메틸펜틸 포스핀 옥시드 등의 아실포스핀 옥시드 화합물이다. 또한, 상기의 예 중, 알킬 페논계 중합 개시제는, 벤조인 메틸에테르, 벤조인 에틸에테르, 벤조인 페닐에테르 등의 벤조인 에테르 유도체; 벤조인, 메틸 벤조인, 에틸 벤조인, 프로필 벤조인 등의 벤조인 유도체; 벤질 디메틸 케탈 등의 벤질 유도체; 아세토페논, 3-메틸아세토페논, 아세토페논벤질케탈, 1-히드록시시클로헥실페닐케톤, 또는 2,2-디메톡시-2-페닐아세토페논 등의 아세토페논 유도체; 또는 2-벤질-2-디메틸아미노-1-(4-모르폴리노페닐)-부타논-1,2-메틸-1-[4-(메틸티오)페닐]-2-모르폴리노프로판-1-온 등의 α-아미노 방향족케톤 유도체이다.
본 발명에서, 경화성 조성물 (α1)은 광반응성을 실질적으로 갖지 않는 것이 바람직하다. 이를 위해, 광중합 개시제인 성분 (B1)의 경화성 조성물 (α1)에서의 배합 비율은, 성분 (A1), 성분 (B1), 하기 기재된 비중합성 화합물인 성분 (C1)의 합계, 즉 용매인 성분 (D1)을 제외한 모든 성분의 합계 중량에 대하여, 0.1 중량% 미만으로 하는 것이 바람직하다. 또한, 배합 비율은 바람직하게는 0.01 중량% 이하이고, 보다 바람직하게는 0.001 중량% 이하이다.
경화성 조성물 (α1)은, 성분 (B1)의 배합 비율을 성분 (A1), 성분 (B1), 성분 (C1)의 합계에 대하여 0.1 중량% 미만으로 하는 것에 의해, 경화성 조성물 (α1)은 광반응성을 실질적으로 갖지 않는다. 임프린트 기술에서, 장치 구성에 따라, 임의의 샷 영역을 노광할 때에 누출 광이 발생하고, 해당 샷 영역에 인접한, 임프린팅 단계를 수행하지 않은 샷 영역이 노광되는 경우가 있다. 경화성 조성물 (α1)이 광반응성을 갖지 않는 것인 경우, 임프린팅 단계를 수행하지 않은 샷 영역에서 누출 광에 의한 경화성 조성물 (α1)의 광경화가 발생하지 않고, 상기 샷 영역에서도 짧은 충전 시간에서도 비-충전 결함이 적은 패턴이 수득된다.
경화성 조성물 (α2)는, 광중합 개시제인 2종 이상의 성분 (B2)를 함유하는 것이 바람직하다. 이에 의해, 경화성 조성물 (α1)과 경화성 조성물 (α2)의 혼합물의 광경화 성능을 향상시킬 수 있다.
광중합 개시제인 성분 (B2)의 경화성 조성물 (α2)에서의 배합 비율은, 성분 (A2), 성분 (B2) 및 하기 기재된 성분 (C2)의 합계 중량, 즉 용매인 성분 (D2)를 제외한 경화성 조성물 (α2)의 성분의 합계 중량에 대하여, 0 중량% 이상 50 중량% 이하이고, 바람직하게는 0.1 중량% 이상 20 중량% 이하이고, 보다 바람직하게는 1 중량% 이상 20 중량% 이하이다.
경화성 조성물 (α2)에서의 성분 (B2)의 배합 비율을, 성분 (A2), 성분 (B2), 성분 (C2)의 합계 중량에 대하여 0.1 중량% 이상으로 함으로써, 경화성 조성물 (α2)의 경화 속도를 증가시킬 수 있다. 그 결과, 반응 효율이 우수해질 수 있다. 또한, 성분 (B2)의 배합 비율을 성분 (A2), 성분 (B2), 성분 (C2)의 합계 중량에 대하여 50 중량% 이하로 설정함으로써, 수득되는 경화물을 어느 정도의 기계적 강도를 갖는 경화물로 할 수 있다.
<비중합성 성분 (C)>
본 발명에 따른 경화성 조성물 (α)는, 상기 기재된 성분 (A), 성분 (B) 이외에, 여러 목적에 따라, 본 발명의 효과를 손상시키지 않는 범위에서, 또한 비중합성 화합물인 성분 (C)를 함유할 수 있다. 이러한 성분 (C)로서는, 증감제, 수소 공여체, 내첨형 이형제, 계면 활성제, 산화 방지제, 중합체 성분, 기타 첨가제 등을 들 수 있다.
증감제는, 중합 반응 촉진 또는 반응 전환율의 향상을 목적으로 하여 적절히 첨가되는 화합물이다. 증감제로서, 예를 들어 증감 색소 등을 들 수 있다. 증감 색소는, 특정한 파장의 광을 흡수함으로써 여기되어, 광중합 개시제인 성분 (B)와 상호작용하는 화합물이다. 또한, 본원에 기재된 용어 "상호 작용"은, 여기 상태의 증감 색소로부터 광중합 개시제인 성분 (B)로의 에너지 전달 또는 전자 전달 등을 지칭한다.
증감 색소의 구체예는, 안트라센 유도체, 안트라퀴논 유도체, 피렌 유도체, 페릴렌 유도체, 카르바졸 유도체, 벤조페논 유도체, 티오크산톤 유도체, 크산톤 유도체, 쿠마린 유도체, 페노티아진 유도체, 캄포르퀴논 유도체, 아크리딘계 색소, 티오피릴륨 염계 색소, 메로시아닌계 색소, 퀴놀린계 색소, 스티릴퀴놀린계 색소, 케토쿠마린계 색소, 티오크산텐계 색소, 크산텐계 색소, 옥소놀계 색소, 시아닌계 색소, 로다민계 색소, 및 피릴륨 염계 색소를 포함하나, 이에 제한되지는 않는다.
증감제는 단독으로 또는 그의 혼합물로서 사용될 수 있다.
수소 공여체는 광중합 개시제인 성분 (B)로부터 발생된 개시 라디칼, 또는 중합 성장 말단의 라디칼과 반응하여, 반응성이 큰 라디칼을 발생시키는 화합물이다. 성분 (B)가 광 라디칼 발생제인 경우, 바람직하게는 수소 공여체가 첨가된다.
이러한 수소 공여체의 구체예는, n-부틸아민, 디-n-부틸아민, 트리-n-부틸아민, 알릴티오우레아, 4,4'-비스(디알킬아미노)벤조페논, N,N-디메틸아미노벤조산 에틸 에스테르, N,N-디메틸아미노벤조산 이소아밀 에스테르, 펜틸-4-디메틸아미노벤조에이트, 트리에탄올아민, 및 N-페닐글리신 등의 아민 화합물, 및 2-메르캅토-N-페닐벤즈이미다졸 및 메르캅토프로피온산 에스테르 등의 메르캅토 화합물, s-벤질이소티우로늄-p-톨루엔술피네이트 등의 황 화합물 및 트리-n-부틸포스핀 등의 인 화합물을 포함하나, 이에 제한되지는 않는다.
수소 공여체는 단독으로 사용될 수 있거나, 또는 그의 혼합물로서 사용될 수 있다. 또한, 수소 공여체는 증감제로서의 기능을 가질 수 있다.
몰드와 경화성 조성물 (α) 사이의 계면 결합력의 저감, 즉, 하기 기재된 이형 단계에서의 이형력의 저감의 목적을 위해, 각각의 경화성 조성물 (α) 중에 내첨형 이형제를 첨가할 수 있다. 여기서, 본원에 사용된 용어 "내첨형"은 이형제가 하기 기재된 배치 단계 또는 분배 단계 전에 미리 각각의 경화성 조성물 (α)에 첨가되는 것을 의미한다.
내첨형 이형제로서는, 실리콘계 계면 활성제, 불소계 계면 활성제 및 탄화수소계 계면 활성제 등의 계면 활성제 등을 사용할 수 있다. 본 발명에서, 내첨형 이형제는 중합성을 갖지 않는다.
불소계 계면활성제의 예는, 퍼플루오로알킬 기를 갖는 알콜의 폴리알킬렌 옥시드 (폴리에틸렌 옥시드 또는 폴리프로필렌 옥시드 등) 부가물, 및 퍼플루오로폴리에테르의 폴리알킬렌 옥시드 (폴리에틸렌 옥시드 또는 폴리프로필렌 옥시드 등) 부가물을 포함한다. 불소계 계면활성제는, 예를 들어 분자 구조의 일부 (예를 들어, 말단기)에, 히드록실 기, 알콕시 기, 알킬 기, 아미노 기 또는 티올 기를 가질 수 있다.
불소계 계면활성제로서는, 시판품이 사용될 수 있다. 불소계 계면활성제의 시판품의 예는, 메가팩(MEGAFACE) F-444, TF-2066, TF-2067, 및 TF-2068 (이들 모두는 DIC 코포레이션(DIC Corporation)에 의해 제조됨), 플루오라드(Fluorad) FC-430 및 FC-431 (이들 둘 다는 3M 리미티드(3M Limited)에 의해 제조됨), 서플론(SURFLON) S-382 (AGC에 의해 제조됨), EFTOP EF-122A, 122B, 및 122C, EF-121, EF-126, EF-127, 및 MF-100 (이들 모두는 미츠비시 머티리얼스 일렉트로닉 케미칼스 캄파니 리미티드(Mitsubishi Materials Electronic Chemicals Co., Ltd.)에 의해 제조됨), PF-636, PF-6320, PF-656, 및 PF-6520 (이들 모두는 옴노바 솔루션스(OMNOVA Solutions)에 의해 제조됨), 유니다인(UNIDYNE) DS-401, DS-403, 및 DS-451 (이들 모두는 다이킨 인더스트리즈, 리미티드(Daikin Industries, Ltd.)에 의해 제조됨), 및 프터전트(Ftergent) 250, 251, 222F, 및 208G (이들 모두는 네오스 코포레이션(Neos Corporation)에 의해 제조됨)를 포함하나, 이에 제한되지는 않는다.
탄화수소 계면활성제는, 예를 들어 탄소 원자수 1 이상 50 이하의 알킬 알콜에 탄소 원자수 2 이상 4 이하의 알킬렌 옥시드가 부가된 알킬 알콜 폴리알킬렌 옥시드 부가물을 포함한다.
알킬 알콜 폴리알킬렌 옥시드 부가물의 예는, 메틸 알콜 폴리에틸렌 옥시드 부가물, 데실 알콜 폴리에틸렌 옥시드 부가물, 라우릴 알콜 폴리에틸렌 옥시드 부가물, 세틸 알콜 폴리에틸렌 옥시드 부가물, 스테아릴 알콜 폴리에틸렌 옥시드 부가물, 및 스테아릴 알콜 폴리에틸렌 옥시드/프로필렌 옥시드 부가물을 포함한다. 또한, 알킬 알콜 폴리알킬렌 옥시드 부가물의 말단기는, 단순하게 알킬 알콜에 폴리알킬렌 옥시드를 부가함으로써 제조된 히드록실 기에 제한되지는 않는다. 이러한 히드록실 기는 또 다른 치환기, 예를 들어 카르복실 기, 아미노 기, 피리딜 기, 티올 기 또는 실라놀 기 등의 극성 관능기, 또는 알킬 기 또는 알콕시 기 등의 소수성 관능기로 전환될 수 있다.
알킬 알콜 폴리알킬렌 옥시드 부가물로서는, 시판품이 사용될 수 있다. 알킬 알콜 폴리알킬렌 옥시드 부가물의 시판품의 예는, 아오키 오일 인더스트리얼 캄파니, 리미티드(Aoki Oil Industrial Co., Ltd.)에 의해 제조된 폴리옥시에틸렌 메틸 에테르 (메틸 알콜 폴리에틸렌 옥시드 부가물) (블라우논(BLAUNON) MP-400, MP-550, 및 MP-1000), 아오키 오일 인더스트리얼 캄파니, 리미티드에 의해 제조된 폴리옥시에틸렌 데실 에테르 (데실 알콜 에틸렌 옥시드 부가물) (파인서프(FINESURF) D-1303, D-1305, D-1307, 및 D-1310), 아오키 오일 인더스트리얼 캄파니, 리미티드에 의해 제조된 폴리옥시에틸렌 라우릴 에테르 (라우릴 알콜 폴리에틸렌 옥시드 부가물) (블라우논 EL-1505), 아오키 오일 인더스트리얼 캄파니, 리미티드에 의해 제조된 폴리옥시에틸렌 세틸 에테르 (세틸 알콜 폴리에틸렌 옥시드 부가물) (블라우논 CH-305 및 CH-310), 아오키 오일 인더스트리얼 캄파니, 리미티드에 의해 제조된 폴리옥시에틸렌 스테아릴 에테르 (스테아릴 알콜 폴리에틸렌 옥시드 부가물) (블라우논 SR-705, SR-707, SR-715, SR-720, SR-730, 및 SR-750), 아오키 오일 인더스트리얼 캄파니, 리미티드에 의해 제조된 랜덤 중합형 폴리옥시에틸렌 폴리옥시프로필렌 스테아릴 에테르 (블라우논 SA-50/50 1000R 및 SA-30/70 2000R), 바스프에 의해 제조된 폴리옥시에틸렌 메틸 에테르 (플루리올(Pluriol) A760E), 및 카오 케미칼스(Kao Chemicals)에 의해 제조된 폴리옥시에틸렌 알킬 에테르 (에멀겐(EMULGEN) 시리즈)를 포함하나, 이에 제한되지는 않는다.
이들 탄화수소 계면활성제 중에서도, 내첨형 이형제로서는, 알킬 알콜 폴리알킬렌 옥시드 부가물이 바람직하고, 장쇄 알킬 알콜 폴리알킬렌 옥시드 부가물이 보다 바람직하다. 내첨형 이형제는 단독으로 또는 그의 혼합물로서 사용될 수 있다. 경화성 조성물에 내첨형 이형제를 첨가하는 경우에는, 내첨형 이형제로서, 불소계 계면 활성제 또는 탄화수소계 계면 활성제 중 적어도 1종이 첨가되는 것이 바람직하다.
비중합성 화합물인 성분 (C)의 경화성 조성물 (α)에서의 배합 비율은, 성분 (A), 성분 (B), 성분 (C)의 합계 중량, 즉 용매인 성분 (D)를 제외한 경화성 조성물 (α)의 성분의 합계 중량에 대하여, 0 중량% 이상 50 중량% 이하이고, 바람직하게는 0.1 중량% 이상 50 중량% 이하이고, 보다 바람직하게는 0.1 중량% 이상 20 중량% 이하이다.
성분 (C)의 배합 비율을, 성분 (A), 성분 (B), 성분 (C)의 합계 중량에 대하여 50 중량% 이하로 설정함으로써, 수득되는 경화물을 어느 정도의 기계적 강도를 갖는 경화물로 할 수 있다.
<용매 성분 (D)>
본 발명에 따른 경화성 조성물 (α)는, 용매인 성분 (D)를 함유할 수 있다. 성분 (D)는 성분 (A), 성분 (B), 성분 (C)를 용해시키는 용매인 한 특별히 제한되지는 않는다. 바람직한 용매는 상압에서의 비점이 80℃ 이상 200℃ 이하인 용매이다. 보다 바람직하게는, 히드록실기, 에테르 구조, 에스테르 구조, 케톤 구조 중 적어도 1개를 갖는 용매이다.
본 발명에 따른 성분 (D)로서는, 구체적으로는, 프로필알콜, 이소프로필알콜, 부틸알콜 등의 알콜계 용매; 에틸렌 글리콜 모노메틸 에테르, 에틸렌 글리콜 디메틸 에테르, 에틸렌 글리콜 모노에틸 에테르, 에틸렌 글리콜 디에틸 에테르, 에틸렌 글리콜 모노부틸 에테르, 프로필렌 글리콜 모노메틸 에테르 등의 에테르계 용매; 부틸 아세테이트, 에틸렌 글리콜 모노에틸 에테르 아세테이트, 에틸렌 글리콜 모노부틸 에테르 아세테이트, 프로필렌 글리콜 모노메틸 에테르 아세테이트 등의 에스테르계 용매; 메틸 이소부틸 케톤, 디이소부틸 케톤, 시클로헥사논, 2-헵타논, γ-부티로락톤, 에틸 락테이트 등의 케톤계 용매로부터 선택되는 1종, 또는 그의 2종 이상의 혼합 용매가 바람직하다.
본 발명에 따른 경화성 조성물 (α1)은, 성분 (D1)을 함유하는 것이 바람직하다. 하기 기재된 바와 같이, 기판 상에 경화성 조성물 (α1)을 도포하는 방법으로서 스핀 코팅 방법이 바람직하기 때문이다. 이 경우, 프로필렌 글리콜 모노메틸 에테르 아세테이트, 프로필렌 글리콜 모노메틸 에테르, 시클로헥사논, 2-헵타논, γ-부티로락톤, 에틸 락테이트로부터 선택되는 1종, 또는 그의 2종 이상의 혼합 용액이 도포성의 관점에서 특히 바람직하다.
본 발명에 따른 성분 (D1)의 경화성 조성물 (α1)에서의 배합 비율은, 성분 (A1), 성분 (B1), 성분 (C1)의 점도 또는 도포성, 형성되는 액막의 막 두께 등에 의해 적절히 조정할 수 있으나, 경화성 조성물 (α1)의 총량에 대하여 70 중량% 이상이 바람직하다. 배합 비율은 보다 바람직하게는 90 중량% 이상, 보다 바람직하게는 95 중량% 이상이다. 성분 (D1)의 배합 비율이 증가할수록 형성되는 액막의 막 두께가 감소할 수 있다. 또한, 성분 (D1)의 경화성 조성물 (α1)에서의 배합 비율이 70 중량% 이하인 경우에는 충분한 도포성이 수득되지 않는 경우가 있다.
또한, 도포 후의 경화성 조성물 (α1) 중의 성분 (D1)은, 배치 단계와 분배 단계 사이에 휘발 등에 의해 제거되는 것이 바람직하다.
또한, 본 발명에 따른 경화성 조성물 (α2)에는 용매인 성분 (D2)를 사용할 수도 있으나, 경화성 조성물 (α2)은 용매를 실질적으로 함유하지 않는 것이 바람직하다. 본원에서, "용매를 실질적으로 함유하지 않는다"는 조성물이 불순물 등의 의도치 않게 함유된 용매 이외의 용매를 함유하지 않는 것을 의미한다. 즉, 예를 들어 본 발명에 따른 경화성 조성물 (α2)의 용매인 성분 (D2)의 함유량은 경화성 조성물 (α2) 전체에 대하여 3 중량% 이하인 것이 바람직하고, 1 중량% 이하인 것이 보다 바람직하다. 또한, 본원에 사용된 용어 "용매"는 경화성 조성물 또는 포토레지스트에서 일반적으로 사용되는 용매를 지칭한다. 즉 용매의 종은, 본 발명에서 사용하는 화합물을 용해 및 균일 분산시키는 것으로, 또한 해당 화합물과 반응하지 않는 한 특별히 제한되지는 않는다.
본 발명에 따른 경화성 조성물 (α)는, 나노임프린트용 경화성 조성물인 것이 바람직하고, 광 나노임프린트용 경화성 조성물인 것이 보다 바람직하고, 상기 기재된 SST-NIL 공정에서 사용하는 경화성 조성물, 즉 SST-NIL용 경화성 조성물인 것이 보다 바람직하다.
또한, 본 발명에 따른 경화성 조성물 (α) 또는 이를 경화하여 수득되는 경화물을 적외 분광법, 자외 가시 분광법, 열분해 기체 크로마토그래피 질량분석법 등에서 분석함으로써, 각각의 경화성 조성물 (α)에서의 성분 (A), 성분 (B), 성분 (C), 성분 (D)의 비율을 구할 수 있다.
<경화성 조성물 (α)의 배합시의 온도>
본 발명에 따른 경화성 조성물 (α)를 제조시, 각 성분을 미리 결정된 온도 조건 하에서 혼합 및 용해시킨다. 구체적으로는, 혼합 및 용해는 0℃ 이상 100℃ 이하의 범위의 온도에서 수행한다.
<경화성 조성물 (α)의 점도>
본 발명에 따른 경화성 조성물 (α1) 및 (α2)은 액체인 것이 바람직하다. 이는 왜냐하면 하기 기재된 몰드 접촉 단계에서, 경화성 조성물 (α1) 및 (α2)가 액체이기 때문에 경화성 조성물 (α1) 및/또는 경화성 조성물 (α2)의 확산 및 충전이 신속하게 완료되며, 즉 충전 시간이 짧기 때문이다.
본 발명에 따른 경화성 조성물 (α1)에서, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 조성물 (α1')의 23℃에서의 점도는, 1 mPa·s 이상 1000 mPa·s 이하인 것이 바람직하다. 또한, 점도는 1 mPa·s 이상 500 mPa·s 이하인 것이 보다 바람직하고, 1 mPa·s 이상 100 mPa·s 이하인 것이 보다 더 바람직하다.
본 발명에 따른 경화성 조성물 (α2)에서, 용매인 성분 (D2)를 제외한 경화성 조성물 (α2)의 조성물 (α2')의 23℃에서의 점도는, 1 mPa·s 이상 100 mPa·s 이하인 것이 바람직하다. 또한, 점도는 1 mPa·s 이상 50 mPa·s 이하인 것이 보다 바람직하고, 1 mPa·s 이상 12 mPa·s 이하인 것이 보다 더 바람직하다.
또한, 경화성 조성물 (α2)는, 용매인 성분 (D2)를 포함하지 않으며, 또한 23℃에서의 점도가, 1 mPa·s 이상 100 mPa·s 이하, 보다 바람직하게는 1 mPa·s 이상 50 mPa·s 이하, 보다 더 바람직하게는 1 mPa·s 이상 12 mPa·s 이하인 것이 바람직하다.
용매인 성분 (D)를 제외한 경화성 조성물 (α)의 성분의 조성물 (α')의 점도를 100 mPa·s 이하로 설정함으로써, 경화성 조성물 (α)를 몰드에 접촉시킬 때 확산 및 충전이 신속하게 완료된다 (비특허문헌 1). 즉, 본 발명에 따른 경화성 조성물 (α)를 사용하는 경우 광 나노임프린트 방법을 높은 처리량으로 행할 수 있다. 또한, 충전 불량으로 인한 패턴 결함이 발생하기 어려워진다.
또한, 점도를 1 mPa·s 이상으로 설정하는 경우, 경화성 조성물 (α)를 기판 상에 도포했을 때에 도포 불균일이 발생하기 어려워진다. 또한, 경화성 조성물 (α)를 몰드에 접촉시켰을 때에, 몰드의 단부로부터 경화성 조성물 (α)가 유출되기 어려워진다.
<경화성 조성물 (α)의 표면 장력>
본 발명에 따른 경화성 조성물 (α)의 표면 장력은, 용매인 성분 (D)를 제외한 경화성 조성물 (α)의 성분의 조성물 (α')에 대해서, 23℃에서의 표면 장력이, 5 mN/m 이상 70 mN/m 이하인 것이 바람직하다. 또한, 표면 장력은 보다 바람직하게는 7 mN/m 이상 50 mN/m 이하이고, 보다 더 바람직하게는 10 mN/m 이상 40 mN/m 이하이다. 이러한 경우에, 표면 장력이 더 높아짐에 따라, 예를 들어 표면 장력이 5 mN/m 이상인 경우, 모세관력이 강하게 작용하고, 따라서 조성물 (α')을 몰드에 접촉시켰을 때에, 조성물 (α')의 확산 및 충전이 더 단기간에 완료된다 (비특허문헌 1). 또한, 표면 장력을 70 mN/m 이하로 설정하는 경우, 조성물 (α')을 경화시킴으로써 수득되는 경화물은 표면 평활성을 갖는 경화물이 된다.
본 발명에서는, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')의 표면 장력이, 용매인 성분 (D2)를 제외한 경화성 조성물 (α2)의 성분의 조성물 (α2')의 표면 장력보다 높은 것이 바람직하다. 이는, 몰드 접촉 단계 전에, 하기 기재된 마란고니(Marangoni) 효과에 의해 경화성 조성물 (α2)의 예비확산이 가속되고 (액적이 광범위하게 확산됨), 따라서 하기 기재된 몰드 접촉 단계에서의 확산에 필요한 시간이 단축되어, 그 결과 충전 시간이 단축되기 때문이다.
마란고니 효과는 액체들 사이의 국소적인 표면 장력 차로 인한 자유 표면 이동 현상이다 (비특허문헌2). 표면 장력, 즉 표면 에너지의 차가 구동력으로서 기능하여, 표면 장력이 낮은 액체가 더 넓은 표면을 피복하도록 하는 디퓨젼(diffusion)을 유발한다. 즉, 기판 전체 표면에 도포된 표면 장력이 높은 조성물 (α1)에 대하여, 표면 장력이 낮은 경화성 조성물 (α2)를 적하하는 경우, 경화성 조성물 (α2)의 예비확산이 가속된다.
<경화성 조성물 (α)의 접촉각>
본 발명에 따른 경화성 조성물 (α1) 및 경화성 조성물 (α2)의 접촉각은, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1') 및 경화성 조성물 (α2)의 성분의 조성물에 대해 기판 표면 및 몰드 표면 둘 다에 대해 0° 이상 90° 이하인 것이 바람직하다. 접촉각이 90°보다 큰 경우, 몰드 패턴의 내부 또는 기판과 몰드 사이의 간극에서 모세관력이 음의 방향 (몰드와 경화성 조성물 사이의 접촉 계면을 수축시키는 방향)으로 작용하고, 따라서 조성물이 충전되지 않는다. 또한, 접촉각은 0° 이상 30° 이하인 것이 특히 바람직하다. 접촉각이 낮을수록 모세관력이 강하게 작용하여, 충전 속도가 증가된다 (비특허문헌 1).
본 발명에 따른 경화성 조성물 (α1)의 점도, 표면 장력 및 접촉각은, 용매인 성분 (D1)을 첨가함으로써 변화할 수 있다. 그러나, 용매인 성분 (D1)은 경화성 조성물 (α1)의 경화를 방해할 수 있다. 따라서, 본 발명에서는, 경화성 조성물 (α1) 중의 용매인 성분 (D1)은, 분배 단계 전에 휘발 등에 의해 제거된다. 또한, 경화성 조성물 (α2)은, 용매인 성분 (D2)를 실질적으로 함유하지 않는다. 따라서, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1') 및 경화성 조성물 (α2)의 점도, 표면 장력 및 접촉각을 미리 결정된 값으로 하는 것이 바람직하다.
<경화성 조성물 (α)에 혼입되는 불순물>
본 발명에 따른 경화성 조성물 (α)는 각각, 가능한 한 불순물을 함유하지 않는 것이 바람직하다. 본원에 사용된 용어 "불순물"은, 경화성 조성물 (α)에 의도적으로 함유시킨 것 이외의 성분을 지칭한다. 즉, 용어는 성분 (A), 성분 (B), 성분 (C) 및 성분 (D) 이외의 성분을 지칭한다. 구체적으로는 예를 들어, 입자, 금속 불순물, 유기 불순물 등을 들 수 있지만, 이들에 제한되지는 않는다.
따라서, 본 발명에 따른 경화성 조성물 (α)는, 정제 단계를 거쳐서 수득된 것인 것이 바람직하다. 이러한 정제 단계로서, 필터를 사용하는 여과 등이 바람직하다. 필터를 사용하는 여과를 행할 경우, 구체적으로는, 상기 기재된 성분 (A) 및 필요에 따라 첨가되는 성분 (B), 성분 (C), 성분 (D)를 혼합한 후, 예를 들어 구멍 직경 0.001μm 이상 5.0μm 이하의 필터로 여과하는 것이 바람직하다. 필터를 사용하는 여과를 행하는 경우, 복수의 단계로 행하거나, 복수 회 반복하는 것이 보다 바람직하다. 또한, 여과한 액체는 다시 여과될 수 있다. 상이한 구멍 직경을 갖는 복수의 필터가 여과를 수행하는데 사용될 수 있다. 필터를 사용하는 여과 방법으로서, 구체적으로는, 상압 여과, 가압 여과, 감압 여과, 순환 여과 등을 들 수 있지만, 이에 제한되지는 않는다. 여과에 사용하는 필터로서는, 폴리에틸렌 수지, 폴리프로필렌 수지, 불소 수지, 나일론 수지로 제조된 필터가 사용될 수 있으나, 그에 특별히 제한되지는 않는다. 본 발명에서 사용될 수 있는 필터의 구체예는, "울티플리트(Ultipleat) P-나일론 66", "울티포어(Ultipor) N66", 및 "P 엠플론(Emflon)" (이들 모두는 니혼 폴 리미티드(Nihon Pall Ltd.)에 의해 제조됨), "라이프어슈어(LifeASSURE) PSN 시리즈", "라이프어슈어 EF 시리즈", "포토쉴드(PhotoSHIELD)", 및 "일렉트로포어(Electropor) IIEF" (이들 모두는 3M 재팬 리미티드(3M Japan Limited)에 의해 제조됨), 및 "마이크로가드(Microgard)", "옵티마이저(Optimizer) D", "임팩트 미니(Impact Mini)", 및 "임팩트(Impact) 2" (이들 모두는 엔테그리스 재팬 캄파니 리미티드 (Entegris Japan Co., Ltd.)에 의해 제조됨)를 포함한다. 이들 필터 중 1종이 단독으로 사용될 수 있거나, 또는 그의 조합으로 사용될 수 있다.
이러한 정제 단계를 거침으로써, 각각의 경화성 조성물 (α)에 혼입된 입자 등의 불순물을 제거할 수 있다. 이에 의해, 입자 등의 불순물로 인해, 경화성 조성물 (α)를 경화시킨 후에 수득되는 경화막에 예기치 못한 요철이 형성되어 패턴의 결함이 발생하는 것 또는 하기 기재된 몰드 접촉 단계 또는 위치 정렬 단계에서 몰드가 파손되는 것을 방지할 수 있다.
또한, 본 발명에 따른 경화성 조성물 (α)를 반도체 집적 회로의 제조에 사용하는 경우, 제품의 작동을 방해하지 않도록 하기 위해서 경화성 조성물 (α) 중에 금속 원자를 함유하는 불순물 (금속 불순물)이 혼입되는 것을 가능한 한 방지하는 것이 바람직하다.
따라서, 경화성 조성물 (α)는 그의 제조 단계에서 금속과 접촉하지 않는 것이 바람직하다. 즉, 각 재료를 칭량하는 경우 또는 재료를 배합하고 교반하는 경우에, 금속으로 제조된 칭량 기구, 용기 등을 사용하지 않는 것이 바람직하다. 또한, 상기 정제 단계 (입자 제거 단계)에서, 금속 불순물 제거 필터를 사용한 여과를 추가로 행할 수 있다.
금속 불순물 제거 필터로서는, 셀룰로스 및 규조토, 이온 교환 수지로 제조된 필터가 사용될 수 있으나, 필터는 특별히 제한되지는 않는다. 금속 불순물 제거 필터로서는, 예를 들어 "제타 플러스(Zeta Plus) GN 그레이드" 또는 "일렉트로포어" (이들 각각은 3M 재팬 리미티드에 의해 제조됨), "포지다인(Posidyne)", "이온클린(IonKleen) AN", 또는 "이온클린 SL" (이들 모두는 니혼 폴 리미티드에 의해 제조됨), 또는 "프로테고(Protego)" (엔테그리스 재팬 캄파니 리미티드에 의해 제조됨)가 사용될 수 있다. 각각의 금속 불순물 제거 필터는 단독으로 사용될 수 있거나, 또는 그의 조합으로 사용될 수 있다.
이들 금속 불순물 제거 필터는 세척 후 사용하는 것이 바람직하다. 세척 방법으로서는, 초순수로의 세척, 알콜로의 세척, 경화성 조성물 (α)로의 예비세척을 언급된 순서로 행하는 것이 바람직하다.
금속 불순물 제거 필터의 구멍 직경은, 예를 들어 적합하게는 0.001 μm 이상 5.0 μm 이하, 바람직하게는 0.003 μm 이상 0.01 μm 이하이다. 구멍 직경이 5.0 μm보다 더 큰 경우, 입자 및 금속 불순물을 흡착하는 필터의 능력이 낮다. 또한, 상기 구멍 직경이 0.001 μm보다 더 작은 경우, 필터가 경화성 조성물 (α)의 구성 성분도 포획하고, 따라서 경화성 조성물 (α)의 조성을 변동될 수 있거나, 필터 막 막힘이 발생할 수 있다.
이러한 경우, 경화성 조성물 (α)에 함유되는 금속 불순물의 농도는 10 ppm 이하가 바람직하고, 100 ppb이하가 보다 바람직하다.
[경화막]
본 발명에 따른 경화성 조성물 (α)를 경화시킴으로써, 경화물이 수득된다. 이때, 경화성 조성물 (α)를 기재 물질 상에 도포하여 도포막을 형성한 후 이어서 경화시켜 경화막을 수득하는 것이 바람직하다. 이하, 도포막의 형성 방법, 경화물 또는 경화막의 형성 방법에 대해 설명한다.
[경화물 패턴의 형성 방법]
이어서, 본 발명에 따른 경화성 조성물 (α)를 사용하여 경화물 패턴을 형성하는 경화물 패턴의 형성 방법에 대해서, 도 3의 모식 단면도를 참조하여 설명한다.
본 발명의 경화물 패턴의 제조 방법은,
(1) 기판(301) 상에 중합성 화합물인 성분 (A1)을 적어도 함유하는 경화성 조성물 (α1)(302)의 액막으로 형성된 층을 배치하는 제1 단계 (배치 단계),
(2) 용매인 성분 (D1)을 제외한 상기 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302')의 액막으로 형성된 층 상에, 중합성 화합물인 성분 (A2)를 적어도 함유하는 경화성 조성물 (α2)(303)의 액적을 이산적으로 분배하는 제2 단계 (분배 단계),
(3) 상기 조성물 (α1')(302') 및 상기 경화성 조성물 (α2)(303)가 혼합됨으로써 수득된 혼합층을 몰드(305)에 접촉시키는 제3 단계 (몰드 접촉 단계),
(4) 상기 혼합층에 상기 몰드(305)의 측면으로부터 광을 조사하여 상기 층을 경화시키는 제4 단계 (광 조사 단계), 및
(5) 경화 후의 상기 혼합층으로부터 상기 몰드(305)를 이형시키는 제5 단계 (이형 단계)
를 포함한다.
본 발명의 경화물 패턴의 제조 방법은, 광 나노임프린트 방법을 사용하는 경화물 패턴의 형성 방법이다.
본 발명의 경화물 패턴의 제조 방법에 의해 수득되는 경화막은, 1nm 이상 10mm 이하의 크기의 패턴을 갖는 경화물 패턴인 것이 바람직하다. 또한, 10nm 이상 100μm 이하의 크기의 패턴을 갖는 경화물 패턴인 것이 보다 바람직하다. 또한, 일반적으로, 광을 사용하여 나노 크기 (1 nm 이상 100 nm 이하)의 패턴(요철 구조)을 갖는 막을 제조하는 패턴 형성 기술은, 광 나노임프린트 방법으로 칭해진다. 본 발명의 패턴 제조 방법은, 광 나노임프린트 방법을 사용한다.
이하, 각 단계에 대해 설명한다.
<배치 단계 (제1 단계)>
배치 단계에서는, 도 3(a) 및 도 3(b)에 도시된 바와 같이, 상기 기재된 본 발명에 따른 경화성 조성물 (α1)(302)을 기판(301) 상에 배치(도포)하여 임프린트 전처리 코팅이 되는 도포막을 형성한다. 기판(301) 상에 임프린트 전처리 코팅이 되는 액막이 형성되는 경우에, 하기 기재된 분배 단계에서 경화성 조성물 (α2)(303)의 액적이 분배되면, 액적 성분의 기판 표면 방향으로의 확산이 촉진된다. 어구 "확산이 촉진된다"는 임프린트 전처리 코팅 상에 액적을 분배한 경우에, 직접 기판(301) 상에 액적을 분배한 경우의 액적 확대 속도보다 더 신속하게 기판 표면 방향으로 확산되는 것을 의미한다. 그 결과, 이산적으로 적하된 경화성 조성물 (α2)(303)의 액적이 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302')의 액막 상에서 신속하게 확대되고, 따라서 충전 시간이 짧고, 처리량이 높은 임프린트 공정을 제공할 수 있다.
임프린트 전처리 코팅용 재료의 성분인 경화성 조성물 (α1)(302)을 배치하는 대상인 기판(301)은 피가공기판이며, 전형적으로 실리콘 웨이퍼가 사용된다. 기판(301) 상에는, 피가공층이 형성될 수 있다. 기판(301)과 피가공층 사이에 또 다른 층이 형성될 수 있다.
본 발명에서, 기판(301)은 실리콘 웨이퍼에 제한되지는 않는다. 기판(301)은, 알루미늄, 티타늄-텅스텐 합금, 알루미늄-규소 합금, 알루미늄-구리-규소 합금, 산화규소, 질화규소 등의 반도체 디바이스용 기판으로서 공지된 기판으로부터 임의로 선택될 수 있다. 또한, 기판(301)으로서 석영 기판이 사용되는 경우, 석영 임프린트 몰드의 레플리카 (석영 몰드 레플리카)가 제조될 수 있다. 또한, 사용되는 기판(301)(피가공기판)에는, 실란 커플링 처리, 실라잔 처리, 유기 박막의 성막 등의 표면 처리에 의해 밀착층을 형성하는 것을 통해, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)과의 밀착성을 향상시킨 기판이 사용될 수 있다.
본 발명에서, 임프린트 전처리 코팅용 재료의 성분인 경화성 조성물 (α1)(302)을 기판(301) 상에 배치하는 방법으로서는, 예를 들어, 잉크젯 방법, 딥 코팅 방법, 에어 나이프 코팅법, 커튼 코팅 방법, 와이어 바 코팅 방법, 그라비아 코팅 방법, 압출 코팅 방법, 스핀 코팅 방법, 슬릿 스캔 방법 등이 사용될 수 있다. 본 발명에서는, 스핀 코팅 방법이 특히 바람직하다.
스핀 코팅 방법을 사용하여 경화성 조성물 (α1)(302)을 기판(301) 또는 피가공층 상에 배치하는 경우, 필요에 따라 베이킹 단계를 행하여, 용매 성분 (D1)을 휘발시킬 수 있다.
또한, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302')의 평균 막 두께는, 사용되는 용도에 따라 달라지지만, 예를 들어 0.1 nm 이상 10,000 nm 이하이고, 바람직하게는 1 nm 이상 20 nm 이하이고, 특히 바람직하게는 1 nm 이상 10 nm 이하이다.
<분배 단계 (제2 단계)>
분배 단계에서는, 도 3(c)에 도시된 바와 같이, 경화성 조성물 (α2)(303)의 액적을, 임프린트 전처리 코팅으로서 기판(301) 상에 배치된 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302')의 층 상에 이산적으로 분배하는 것이 바람직하다. 분배 방법으로서는, 잉크젯 방법이 특히 바람직하다. 경화성 조성물 (α2)(303)의 액적은, 몰드(305) 상에서 오목부가 조밀하게 존재하는 영역에 대향하는 기판(301) 상에는 조밀하게 배치되고, 오목부가 희소하게 존재하는 영역에 대향하는 기판(301) 상에는 희소하게 배치된다. 따라서, 하기 기재된 잔막을 몰드(305) 상의 패턴의 밀도와 상관 없이 균일한 두께로 제어할 수 있다.
본 발명에서는, 분배 단계에서 분배된 경화성 조성물 (α2)(303)의 액적은, 상기 기재된 바와 같이, 표면에너지 (표면 장력)의 차를 구동력으로 하는 마란고니 효과에 의해, 각각 액적의 확산 방향을 나타내는 화살표(304)로 나타낸 바와 같이, 신속하게 확산된다 (예비확산) (도 3(d)). 경화성 조성물 (α1)(302)이 광중합 개시제인 성분 (B)을 함유하지 않고, 광반응성을 실질적으로 갖지 않는 경우, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302')과 경화성 조성물 (α2)(303)의 혼합의 결과로서, 경화성 조성물 (α2)(303)의 광중합 개시제인 성분 (B)가 조성물 (α1')(302')로 이동하고, 따라서 조성물 (α1')(302')은 처음 감광성을 수득한다.
전형적으로, 샷 영역 내의 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302')과 경화성 조성물 (α2)(303)의 액적의 혼합은, 조성의 차이에 따른 상호 확산에 의존하기 때문에, 균일한 조성이 될 때까지 수초 내지 수십초의 긴 시간이 소요된다. 도 2(e)에 도시된 바와 같이, 조성물 (α1')(302') 내로 경화성 조성물 (α2)(203)이 디퓨젼되는 시간이 불충분한 경우, 조성물 (α1')(302')과 경화성 조성물 (α2)(203)이 충분히 혼합되지 않은 영역(209)이 발생한다. 이러한 조성물 (α1')(202')과 경화성 조성물 (α2)(203)이 충분히 혼합되지 않은 영역(209)에서의 경화물은, 충분히 혼합된 조성물 (α1')(302')과 경화성 조성물 (α2)(303)의 혼합물(308)의 경화물과 비교하여, 도 2(f)의 조사광(206)로 경화시킨 후에, 건식 에칭 내성이 낮아진다. 따라서, 하기 문제가 발생한다: 이들 조성물로 형성된 막을 후속 단계, 즉 잔막 제거 단계에서 에칭시 의도하지 않는 부분이 에칭된다. 이러한 잔막 제거 단계의 세부사항에 대해서는, <경화막의 일부를 제거하는 잔막 제거 단계 (제6 단계)>에 후술한다.
이러한 경우, 조성물 (α1')(302')과 경화성 조성물 (α2)(303)의 혼합을 신속하게 행하기 위해, 본 발명에서는, 혼합이 발열적인, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)을 사용함으로써, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 상에 경화성 조성물 (α2)(303)를 적하 혼합하는 경우에, 혼합 계면의 온도 저하, 또는 혼합액 전체의 온도 저하로 인한 점도 상승을 방지하고, 조성물 (α1')(302')과 경화성 조성물 (α2)(303)의 혼합을 촉진할 수 있다는 것, 즉, 보다 단시간에, 기판의 샷 영역에서 균일한 물성을 갖는 혼합된 조성물 (α1')(302')과 경화성 조성물 (α2)(303)의 혼합물(308)의 액막을 수득할 수 있다는 것을 밝혀내었다 (도 3(e)). 이에 의해, 높은 처리량을 제공하며, 기판의 샷 영역에서 균일한 물성을 갖는 패턴 제조 방법을 제공할 수 있다.
<몰드 접촉 단계 (제3 단계)>
이어서, 도 3(f)에 도시된 바와 같이, 제1 단계 및 제2 단계 (배치 단계 및 분배 단계)에서 형성된 혼합물(308)인, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302')과 경화성 조성물 (α2)(303)의 혼합물(308)에 패턴 형상을 전사하기 위한 원형 패턴을 갖는 몰드(305)를 접촉시킨다. 이에 의해, 몰드(305) 표면 상의 미세 패턴의 오목부에, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302')과 경화성 조성물 (α2)(303)의 혼합물(308)이 충전되고, 따라서 몰드(305)의 미세 패턴에 충전된 액막이 수득된다.
필요에 따라, 제2 단계 종료 후 및 본 단계 개시 전에, 몰드 측 상의 위치결정 마크와, 기판(301) (피가공기판)의 위치결정 마크가 서로 일치하도록, 몰드(305) 및/또는 기판(301) (피가공기판)의 위치를 조정할 수 있다 (위치 정렬 단계).
몰드(305)로서는, 다음 제4 단계 (광 조사 단계)을 고려하여 광 투과성의 재료로 형성된 몰드(305)가 바람직하게 사용된다. 몰드(305)를 형성하는 재료로서는, 구체적으로는, 유리, 석영, PMMA, 폴리카르보네이트 수지 등의 광 투명성 수지, 투명 금속 증착막, 폴리디메틸실록산 등의 유연막, 광경화막, 금속막 등이 바람직하다. 단, 몰드(305)를 형성하는 재료로서 광 투명성 수지를 사용하는 경우에는, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)에 함유된 성분에 용해되지 않는 수지를 선택할 필요가 있다. 열 팽창 계수가 작고 패턴 왜곡(또는 변형)이 작기 때문에, 몰드(305)를 형성하는 재료는 석영인 것이 특히 바람직하다.
몰드(305) 표면 상의 미세 패턴은 패턴 높이(H)가 1 nm 이상 1,000 nm 이하이다. 또한 미세 패턴의 오목부의 폭(S)이 1 nm 이상 1000 nm 이하인 것이 바람직하고, 4 nm 이상 30 nm 미만인 것이 보다 바람직하다. 또한, 미세 패턴은, 1 이상 10 이하의 요철 패턴의 오목부 종횡비(H/S)를 갖는 것이 바람직하다.
몰드(305)에는, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303) 각각과 몰드(305)의 표면 사이의 박리성을 향상시키기 위해서, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)과 몰드(305)와의 몰드 접촉 단계인 본 단계 전에, 표면 처리가 행해질 수 있다. 표면 처리 방법으로서는, 몰드(305)의 표면에 이형제를 도포하여 이형제 층을 형성하는 방법을 들 수 있다. 이 경우, 몰드(305)의 표면에 도포되는 이형제로서는, 실리콘계 이형제, 불소계 이형제, 탄화수소계 이형제, 폴리에틸렌계 이형제, 폴리프로필렌계 이형제, 파라핀계 이형제, 몬탄계 이형제, 카르나우바계 이형제 등을 들 수 있다. 예를 들어, 다이킨 인더스트리즈, 리미티드에 의해 제조된 옵툴(OPTOOL)(상표명) DSX 등의 시판되는 도포형 이형제가 적합하게 사용될 수 있다. 이형제는 단독으로 사용될 수 있거나, 또는 그의 조합으로 사용될 수 있다. 이들 중, 불소계 및 탄화수소계 이형제가 특히 바람직하다.
몰드 접촉 단계에서, 도 3(f)에 도시된 바와 같이, 몰드(305)와 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)을 서로 접촉시킬 때, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)에 인가되는 압력은 특별히 제한되지는 않는다. 해당 압력은 바람직하게는 0 MPa 이상 100 MPa 이하이다. 또한, 해당 압력은 0 MPa 이상 50 MPa 이하인 것이 바람직하고, 0 MPa 이상 30 MPa 이하인 것이 보다 바람직하고, 0 MPa 이상 20 MPa 이하인 것이 보다 더 바람직하다.
본 발명에서는, 전 단계에서 경화성 조성물 (α2)(303)의 액적 예비확산이 진행되었기 때문에, 본 단계에서의 경화성 조성물 (α2)(303)의 확산은 신속하게 완료된다.
이 때, 본 발명에서는, 혼합이 발열적인, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)을 사용한다. 따라서, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 상에 경화성 조성물 (α2)(303)를 적하 혼합하는 경우, 혼합 계면의 온도 저하, 또는 혼합액 전체의 온도 저하에 기인하는 점도 상승을 방지하여 조성물 (α1')(302)과 경화성 조성물 (α2)(303)의 혼합을 촉진할 수 있다. 따라서, 보다 단시간에 기판의 샷 영역에서 균일한 물성을 갖는 액막이 형성된다.
상기와 같이, 본 단계에서 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)의 확산 및 충전은 신속하게 완료되기 때문에, 몰드(305)와 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)을 접촉시키는 시간을 짧게 설정할 수 있다. 즉, 단시간 내에 많은 패턴 형성 단계를 완료할 수 있고, 따라서 높은 생산성을 수득하는 것이, 본 발명의 효과 중 하나이다. 몰드와 조성물을 서로 접촉시키는 시간은, 특별히 제한되지는 않지만, 바람직하게는 예를 들어 0.1초 이상 600초 이하로 설정된다. 또한, 해당 시간은 0.1초 이상 3초 이하인 것이 바람직하고, 0.1초 이상 1초 이하인 것이 특히 바람직하다. 0.1초보다 짧은 경우에는, 확산 및 충전이 불충분해지고, 미충전 결함으로 칭하는 결함이 다수 발생하는 경향이 있다.
또한, 확산 및 충전이 완료되었을 때의 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)(피형상 전사층)의 평균 막 두께는, 사용하는 용도에 따라 상이하지만, 예를 들어 0.001 μm 이상 100.0 μm 이하이다.
본 단계에서 대기 분위기, 감압 분위기 및 불활성 기체 중 어느 조건 하에서나 행해질 수 있으나, 경화 반응에 대한 산소 또는 수분의 영향을 방지할 수 있기 때문에, 바람직하게는 감압 분위기 또는 불활성 기체 분위기 하에 행하는 것이 바람직하다. 불활성 기체 분위기 하에서 본 단계를 행하는 경우에 사용될 수 있는 불활성 기체의 구체예로서, 질소, 이산화탄소, 헬륨, 아르곤, 다양한 플루오로카본 기체 등, 또는 이들의 혼합 기체를 들 수 있다. 대기 분위기를 포함하는 특정한 기체 분위기 하에서 본 단계를 행하는 경우, 바람직한 압력은, 0.0001 atm 이상 10 atm 이하이다.
몰드 접촉 단계는, 응축성 기체를 함유하는 분위기 (이하, "응축성 기체 분위기"로 지칭됨) 하에 행해질 수 있다. 본원에 사용된 용어 "응축성 기체"는, 몰드(305) 상에 형성된 미세 패턴의 오목부, 및 몰드(305)와 기판(301) 사이의 간극에, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)과 함께 분위기 중의 기체가 충전되었을 때, 충전 시에 발생하는 모세관 압력에 의해 응축되어 액화되는 기체를 지칭한다. 또한 응축성 기체는, 몰드 접촉 단계에서 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)과 몰드(305)가 접촉하기 전에는 분위기 중의 기체로서 존재한다 (도 3(c) 내지 도 3(e)).
응축성 기체 분위기 하에서 몰드 접촉 단계를 행하는 경우, 미세 패턴의 오목부에 충전된 기체가 액화되어 기포가 소멸되기 때문에 충전성이 우수해진다. 응축성 기체는, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및/또는 경화성 조성물 (α2)(303) 중에 용해될 수 있다.
응축성 기체의 비점은, 몰드 접촉 단계의 주위 온도 이하인 한, 제한되지는 않지만, -10℃ 내지 23℃가 바람직하고, 보다 바람직하게는 10℃ 내지 23℃이다. 비점이 이러한 범위 내인 경우, 충전성이 더욱 우수하다.
응축성 기체의 몰드 접촉 단계의 주위 온도에서의 증기압은, 몰드 접촉 단계에서 압인할 때의, 몰드(305)와 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)을 접촉시킬 때, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)에 인가하는 압력 이하인 한 제한되지는 않지만, 0.1 MPa 내지 0.4 MPa가 바람직하다. 이러한 범위 내인 경우, 충전성이 더욱 우수하다. 주위 온도에서의 증기압이 0.4 MPa보다 큰 경우, 기포의 소멸 효과를 충분히 얻을 수 없는 경향이 관찰된다. 한편, 주위 온도에서의 증기압이 0.1 MPa보다도 작은 경우에는, 감압이 필요해지고, 따라서 장치가 복잡해지는 경향이 있다. 몰드 접촉 단계의 주위 온도는, 특별히 제한되지는 않지만, 20℃ 내지 25℃가 바람직하다.
응축성 기체의 구체예는 트리클로로플루오로메탄 등의 클로로플루오로카본 (CFC); 플루오로카본 (FC); 히드로클로로플루오로카본 (HCFC); 1,1,1,3,3-펜타플루오로프로판 (CHF2CH2CF3, HFC-245fa, PFP) 등의 히드로플루오로카본 (HFC); 및 펜타플루오로에틸 메틸 에테르 (CF3CF2OCH3, HFE-245mc) 등의 히드로플루오로에테르 (HFE) 등의 플루오로카본을 포함한다.
이들 중, 몰드 접촉 단계의 주위 온도가 20℃ 내지 25℃인 경우에 충전성이 우수하다는 관점에서, 1,1,1,3,3-펜타플루오로 프로판 (23℃에서의 증기압 0.14 MPa, 비점 15℃), 트리클로로플루오로메탄 (23℃에서의 증기압 0.1056 MPa, 비점 24℃) 및 펜타플루오로에틸 메틸 에테르가 바람직하다. 또한, 안전성이 우수하다는 관점에서, 1,1,1,3,3-펜타플루오로프로판이 특히 바람직하다.
응축성 기체는 단독으로 또는 그의 혼합물로서 사용될 수 있다. 또한, 임의의 이러한 응축성 기체는 공기, 질소, 이산화탄소, 헬륨 또는 아르곤 등의 비응축성 기체와 혼합하여 사용될 수 있다. 응축성 기체와 혼합되는 비응축성 기체는 충전성의 관점에서 헬륨이 바람직하다. 헬륨은 몰드(305)를 투과할 수 있다. 따라서, 몰드 접촉 단계에서 몰드(305) 상에 형성된 미세 패턴의 오목부에, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및/또는 경화성 조성물 (α2)(303)과 함께 분위기 중의 기체 (응축성 기체 및 헬륨)가 충전되었을 때에, 응축성 기체는 액화되고, 헬륨은 몰드(305)를 투과한다.
<광 조사 단계 (제4 단계)>
이어서, 도 3(g)에 도시된 바와 같이, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)가 혼합됨으로써 수득된 혼합층에 대하여, 몰드(305)를 통해 조사광(306)을 조사한다. 보다 상세하게는, 몰드(305)의 미세 패턴에 충전된 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및/또는 경화성 조성물 (α2)(303)에, 몰드(305)를 통해 조사광(306)을 조사한다. 이에 의해, 몰드(305)의 미세 패턴에 충전된 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및/또는 경화성 조성물 (α2)(303)은, 조사광(306)에 의해 경화되어 패턴 형상을 갖는 경화막(307)이 된다.
이러한 경우에, 몰드(305)의 미세 패턴에 충전된 피형상 전사층을 구성하는 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)에 조사하는 조사광(306)은, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)의 감도 파장에 따라서 선택된다. 구체적으로는, 150 nm 이상 400 nm 이하의 파장을 갖는 UV광, X선, 전자 빔 등을 적절히 선택 및 사용하는 것이 바람직하다.
이들 중에서도, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)에 조사하는 광(조사광(306))은 UV광이 특히 바람직하다. 이는, 경화 보조제 (광중합 개시제)로서 시판되는 화합물 중 다수가 UV광에 감도를 갖는 화합물이기 때문이다. 이러한 경우에, UV광 광원의 예는, 고압 수은 램프, 초고압 수은 램프, 저압 수은 램프, 딥-UV 램프, 카본 아크 램프, 케미칼 램프, 메탈 할라이드 램프, 크세논 램프, KrF 엑시머 레이저, ArF 엑시머 레이저, 및 F2 엑시머 레이저를 포함한다. 이들 중, 초고압 수은 램프가 특히 바람직하다. 또한, 사용되는 광원의 수는 1개, 또는 2개 이상일 수 있다. 또한, 광 조사를 행할 때에는, 몰드(305)의 미세 패턴에 충전된 피형상 전사층 (용매인 성분 (D1)을 제외한 경화성 조성물 (α1)(302)의 성분의 조성물 (α1')(302') 및 경화성 조성물 (α2)(303)의 전체 표면)에 행하거나, 또는 일부 영역에만 행할 수 있다.
또한, 광 조사는, 기판(301) 상의 전체 영역에 단속적으로 복수회 행해질 수 있거나, 또는 전체 영역에 연속적으로 조사될 수 있다. 또한, 제1 조사 과정에서 일부 영역 A에 광을 조사하고, 제2 조사 과정에서 영역 A와는 상이한 영역 B에 광을 조사할 수 있다.
<이형 단계 (제5 단계)>
이어서, 패턴 형상을 갖는 경화막(307)으로부터 몰드(305)를 이형시킨다. 본 단계에서는, 도 3(h)에 도시된 바와 같이, 패턴 형상을 갖는 경화막(307)으로부터 몰드(305)를 이형시킨다. 따라서, 제4 단계 (광 조사 단계)에서 형성되는 막인, 몰드(305) 상에 형성된 미세 패턴의 반전 패턴이 되는 패턴 형상을 갖는 경화막(307)이 수득된다.
또한, 몰드 접촉 단계를 응축성 기체 분위기 하에 행하는 경우, 이형 단계에서 패턴 형상을 갖는 경화막(307)과 몰드(305)를 이형시킬 때에, 패턴 형상을 갖는 경화막(307)과 몰드(305)가 서로 접촉하는 계면의 압력이 저하되는 것에 따라 응축성 기체가 기화한다. 이에 의해, 패턴 형상을 갖는 경화막(307)과 몰드(305)를 이형시키기 위해 필요한 힘인 이형력을 저감시키는 효과를 발휘되는 경향이 있다.
패턴 형상을 갖는 경화막(307)과 몰드(305)를 이형시키는 방법으로서는, 이형시에 패턴 형상을 갖는 경화막(307)의 일부가 물리적으로 파손되지 않는 한, 특별히 제한되지는 않으며, 다양한 조건 등도 특별히 제한되지는 않는다. 예를 들어, 기판(301) (피가공기판)을 고정하고, 몰드(305)를 기판(301)로부터 멀어지도록 이동시킴으로써 박리할 수 있다. 대안적으로, 몰드(305)를 고정해서 기판(301)을 몰드(305)로부터 멀어지도록 이동시킴으로써 박리할 수 있다. 대안적으로, 기판과 몰드 둘 다를 서로에 대해 정반대 방향으로 인장함으로써 박리시킬 수 있다.
상기 제1 단계 내지 제5 단계를 포함하는 일련의 단계 (제조 공정)에 의해, 원하는 위치에, 원하는 요철의 패턴 형상 (몰드(305)의 요철 형상과 연관된 패턴 형상)을 갖는 경화막(307)을 수득할 수 있다. 수득된 패턴 형상을 갖는 경화막(307)은, 예를 들어 하기 기재된 반도체 가공 용도 외에도, 프레넬 렌즈 또는 회절격자 등의 광학 부재 (이러한 경화막이 광학 부재 중 1개의 부재로서 사용되는 경우 포함)로서 이용될 수 있다. 이러한 경우에, 기판(301), 및 상기 기판(301) 상에 배치된 패턴 형상을 갖는 경화막(307)을 적어도 포함하는 광학 부재를 수득할 수 있다.
본 발명에 따른 패턴 형상을 갖는 막의 제조 방법에서는, 제1 단계에서 기판(301) 표면의 대부분에 경화성 조성물 (α1)(302)을 일괄 배치하고, 제2 단계 내지 제5 단계를 포함하는 반복 유닛(샷)을 동일 기판 상에서 반복적으로 복수회 행할 수 있다. 또한, 제1 단계 내지 제5 단계를 동일 기판 상에서 반복적으로 복수회 행할 수 있다. 제1 단계 내지 제5 단계 또는 제2 단계 내지 제5 단계를 포함하는 반복 유닛(샷)을 복수회 반복함으로써, 기판(301) (피가공기판)의 원하는 위치에 복수의 원하는 요철의 패턴 형상(몰드(305)의 요철 형상과 연관된 패턴 형상)을 갖는 경화막을 수득할 수 있다.
<경화막의 일부를 제거하는 잔막 제거 단계 (제6 단계)>
이형 단계에 의해 수득되는 패턴 형상을 갖는 경화막(402)(도 3의 경화막(307)에 상응)은, 특정한 패턴 형상을 갖지만, 이러한 패턴 형상이 형성되는 영역 이외의 영역에서도, 도 4(h')에 도시된 바와 같이, 경화막의 일부가 남아있는 경우가 있다 (이하, 이러한 경화막의 일부를 "잔막(403)"이라고 칭한다). 이러한 경우, 도 4(i)에 도시된 바와 같이, 수득된 패턴 형상을 갖는 경화막(402) 중 제거해야 할 영역에 있는 경화막(잔막(403))을 에칭 가스 A(405)(도 4(i)) 등에 의해 제거한다. 이에 의해, 원하는 요철 패턴 형상 (도 3의 몰드(305)의 요철 형상과 연관된 패턴 형상)을 가지며 잔막이 없는 (기판(401) 표면의 원하는 부분이 노출된) 경화물 패턴(404)을 얻을 수 있다.
여기서, 잔막(403)을 제거하는 방법으로서는, 예를 들어, 패턴 형상을 갖는 경화막(402)의 오목부인 경화막 (잔막(403))을 에칭 등의 방법에 의해 제거하여, 패턴 형상을 갖는 경화막(402)의 패턴의 오목부에서 기판(401)의 표면을 노출시키는 방법을 들 수 있다.
패턴 형상을 갖는 경화막(402)의 오목부에 존재하는 잔막(403)을 에칭에 의해 제거할 경우, 그의 구체적인 방법으로서는, 특별히 제한되지는 않지만, 종래 공지의 방법, 예를 들어 에칭 가스 A(405)(도 4(i))을 사용하는 건식 에칭을 사용할 수 있다. 건식 에칭에는, 종래 공지의 건식 에칭 장치가 사용될 수 있다. 그리고, 에칭 가스 A(405)는 에칭이 행해지는 경화막의 원소 조성에 의해 적절히 선택되며, 예를 들어 CF4, C2F6, C3F8, CCl2F2, CCl4, CBrF3, BCl3, PCl3, SF6, 또는 Cl2 등의 할로겐계 기체, O2, CO, 또는 CO2 등의 산소 원자를 함유하는 기체, He, N2, 또는 Ar 등의 불활성 기체, 또는 H2 또는 NH3 기체가 사용될 수 있다. 또한, 이들의 가스는 혼합하여 사용될 수 있다.
또한, 사용되는 기판(401)(피가공기판)이 실란 커플링 처리, 실라잔 처리, 유기 박막의 성막 등의 표면 처리에 의해 패턴 형상을 갖는 경화막(402)과의 밀착성을 향상시킨 기판인 경우에는, 패턴 형상을 갖는 경화막(402)의 오목부에 있는 경화막(잔막(403))의 에칭에 후속적으로, 상기 표면 처리층도 에칭에 의해 제거될 수 있다.
상기 제1 단계 내지 제6 단계를 포함하는 제조 공정에 의해, 원하는 요철 패턴 형상 (몰드(305)의 요철 형상과 연관된 패턴 형상)을 원하는 위치에 가지며 잔막이 없는 경화물 패턴(404)을 얻을 수 있고, 따라서 경화물 패턴을 갖는 물품을 얻을 수 있다. 또한, 수득된 잔막이 없는 경화물 패턴(404)을 이용해서 기판(401)을 가공하는 경우에는, 하기 기재된 기판(401)에 대하여 기판 가공 단계를 행한다.
한편, 수득된 잔막이 없는 경화물 패턴(404)은, 예를 들어 하기 기재된 반도체 가공 용도 외에도, 회절 격자 또는 편광판 등의 광학 부재 (이러한 패턴이 광학 부재 중 1개의 부재로서 사용되는 경우 포함)로서 이용되어, 광학 부품을 수득할 수 있다. 이러한 경우, 기판(401), 및 상기 기판(401) 상에 배치된 잔막이 없는 경화물 패턴(404)을 적어도 포함하는 광학 부품을 수득할 수 있다.
<기판 가공 단계 (제7 단계)>
잔막 제거 단계 후, 잔막이 없는 경화물 패턴(404)을 레지스트 막으로서 이용하여, 제6 단계에서 표면이 노출된 기판(401)의 일부에 대해 건식 에칭을 행한다. 건식 에칭에는, 종래 공지의 건식 에칭 장치가 사용될 수 있다. 그리고, 에칭 가스 B(406)(도 4(j))는, 에칭이 행해지는 경화막의 원소 조성 및 기판(401)의 원소 조성에 따라 적절히 선택되며, CF4, C2F6, C3F8, CCl2F2, CCl4, CBrF3, BCl3, PCl3, SF6, 또는 Cl2 등의 할로겐계 기체, O2, CO, 또는 CO2 등의 산소 원자를 함유하는 기체, He, N2, 또는 Ar 등의 불활성 기체, 또는 H2 또는 NH3 기체가 사용될 수 있다. 또한, 이들 기체는 혼합물로 사용될 수 있다. 에칭 가스 A(405)(도 4(i)) 및 에칭 가스 B(406) (도 4(j))는 동일하거나 상이할 수 있다.
이상의 제1 단계 내지 제7 단계를 포함하는 일련의 단계 (제조 공정)에 추가로 전자 부품을 형성함으로써, 몰드(305)의 요철 형상과 연관된 패턴 형상에 기초하는 회로 구조를 기판(401) 상에 형성할 수 있다. 이에 의해, 반도체 소자 등에 이용되는 회로 기판을 제조할 수 있다. 본원에 사용된 용어 "반도체 소자"는 예를 들어 LSI, 시스템 LSI, DRAM, SDRAM, RDRAM, D-RDRAM, 또는 NAND 플래시를 지칭한다. 또한, 상기 회로 기판과 회로 기판의 회로제어 기구 등을 접속함으로써, 디스플레이, 카메라, 의료 장치 등의 전자 기기를 형성할 수 있다.
또한, 유사하게, 잔막이 없는 경화물 패턴(404)을 레지스트 막으로서 이용하여 건식 에칭에 의해 기판(401)을 가공하여 광학 부품을 수득할 수 있다.
또한, 기판(401)으로서 석영 기판을 사용하고, 잔막이 없는 경화물 패턴(404)을 레지스트 막으로서 이용하여 건식 에칭에 의해 석영을 가공함으로써, 석영 임프린트 몰드의 레플리카 (석영 레플리카 몰드)를 제조할 수 있다.
또한, 회로 부착 기판 또는 전자 부품을 제조하는 경우, 최종적으로, 가공된 기판(401)으로부터 잔막이 없는 경화물 패턴(404)을 제거할 수 있지만, 임의의 이러한 소자를 구성하는 부재로서 상기 패턴을 남기는 구성이 채택될 수도 있다.
<임프린트 전처리 코팅 재료 및 그의 경화물>
본 발명의 또 다른 실시형태는 상기 언급된 경화성 조성물 (α1)을 포함하는 임프린트 전처리 코팅용 재료이다. 적합하게는, 본 발명의 임프린트 전처리 코팅용 재료는, 경화성 조성물 (α1)로 형성된다.
즉, 본 발명의 임프린트 전처리 코팅용 재료는, 중합성 화합물인 성분 (A1)을 적어도 함유하는 경화성 조성물 (α1)로 이루어진 임프린트 전처리 코팅용 재료이며, 기판 상에 임프린트 전처리 코팅이 되는 액막을 형성하고, 상기 액막에 중합성 화합물인 성분 (A2)를 적어도 함유하는 경화성 조성물 (α2)로 형성된 액적을 분배했을 때에, 상기 액적의 성분의 기판 표면 방향으로의 확산이 촉진되며, 상기 경화성 조성물 (α1)은 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')과 제2 단계에서 분배되는 상기 경화성 조성물 (α2)와의 혼합이 발열적인, 임프린트 전처리 코팅용 재료이다.
이하, 실시예에 의해 본 발명을 더 상세하게 설명하지만, 본 발명의 기술적 범위는 하기 기재된 실시예에 제한되지는 않는다.
(실시예 1)
(1) 경화성 조성물 (α1-1)의 제조
하기에 기재된 성분 (A1), 성분 (B1), 성분 (C1), 성분 (D1)을 배합하고, 이를 0.2 마이크로미터의 초고분자량 폴리에틸렌으로 제조된 필터로 여과하고, 실시예 1의 경화성 조성물 (α1-1)을 제조하였다.
(1-1) 성분 (A1): 합계 100 중량부
<A1-1> 1,12-도데칸디올 디아크릴레이트(완다 사이언스(Wanda Science)에 의해 제조됨): 100 중량부
(1-2) 성분 (B1): 합계 0 중량부
성분 (B1)은 첨가하지 않았다.
(1-3) 성분 (C1): 합계 0 중량부
성분 (C1)은 첨가하지 않았다.
(1-4) 성분 (D1): 합계 33,000 중량부
<D1-1> 프로필렌 글리콜 모노메틸 에테르 아세테이트(도쿄 케미칼 인더스트리 캄파니, 리미티드(Tokyo Chemical Industry Co., Ltd.)에 의해 제조됨, 약칭: PGMEA): 33,000 중량부
(실시예 2)
(1) 경화성 조성물 (α1-2)의 제조
성분 (A1)을, <A1-1> 1,12-도데칸디올 디아크릴레이트(완다 사이언스에 의해 제조됨) 30 중량부, 및 <A1-2> 디메틸올트리시클로데칸 디아크릴레이트(사토머(Sartomer)에 의해 제조됨, 상품명:SR833s) 70 중량부로 변경한 것을 제외하고, 실시예 1과 동일한 방식으로 경화성 조성물 (α1-2)를 제조하였다.
(실시예 3)
(1) 경화성 조성물 (α1-3)의 제조
성분 (A1)을, <A1-3> 폴리에틸렌 글리콜 #200 디아크릴레이트 (신-나카무라 케미칼 캄파니, 리미티드(Shin-Nakamura Chemical Co., Ltd.)에 의해 제조됨, 상품명: A-200) 100 중량부로 변경한 것을 제외하고, 실시예 1과 동일한 방식으로 경화성 조성물 (α1-3)을 제조하였다.
(실시예 4)
(1) 경화성 조성물 (α1-4)의 제조
성분 (A)를, <A1-1> 1,12-도데칸디올 디아크릴레이트(완다 사이언스에 의해 제조됨) 30 중량부, 및 <A1-3> 폴리에틸렌 글리콜 #200 디아크릴레이트 (신-나카무라 케미칼 캄파니, 리미티드에 의해 제조됨, 상품명: A-200) 70 중량부로 변경한 것을 제외하고, 실시예 1과 동일한 방식으로 경화성 조성물 (α1-4)를 제조하였다.
(실시예 5)
(1) 경화성 조성물 (α2-1)의 제조
하기에 제시된 성분 (A2), 성분 (B2), 성분 (C2), 성분 (D2)를 배합하고, 이를 0.2 마이크로미터의 초고분자량 폴리에틸렌으로 제조된 필터로 여과하고, 실시예 5의 경화성 조성물 (α2-1)을 제조하였다.
(1-1) 성분 (A2): 합계 94 중량부
<A2-1> 이소보르닐 아크릴레이트 (교에이샤 케미칼 캄파니, 리미티드(Kyoeisha Chemical Co., Ltd.)에 의해 제조됨, 상표명: IB-XA): 9.0 중량부
<A2-2> 벤질 아크릴레이트 (오사카 오가닉 케미칼 인더스트리 리미티드(Osaka Organic Chemical Industry Ltd.)에 의해 제조됨, 상표명: V#160): 38.0 중량부
<A2-3> 네오펜틸 글리콜 디아크릴레이트 (교에이샤 케미칼 캄파니, 리미티드에 의해 제조됨, 상표명: NP-A): 47.0 중량부
(1-2) 성분 (B2): 합계 3 중량부
<B2-1> 루시린 TPO (바스프에 의해 제조됨): 3 중량부
(1-3) 성분 (C2): 합계 2.1 중량부
<C2-1> SR-730 (아오키 오일 인더스트리얼 캄파니, 리미티드에 의해 제조됨): 1.6 중량부
<C2-2> 4,4'-비스(디에틸아미노)벤조페논 (도쿄 케미칼 인더스트리 캄파니, 리미티드에 의해 제조됨): 0.5 중량부
(1-4) 성분 (D2): 합계 0 중량부
성분 (D2)는 첨가하지 않았다.
(실시예 6)
(1) 경화성 조성물 (α2-2)의 제조
하기 제시된 성분 (A2), 성분 (B2), 성분 (C2), 및 성분 (D2)를 배합하고, 이를 0.2 마이크로미터의 초고분자량 폴리에틸렌으로 제조된 필터로 여과하고, 실시예 6의 경화성 조성물 (α2-2)를 제조하였다.
(1-1) 성분 (A2): 합계 94 중량부
<A2-1> 이소보르닐 아크릴레이트 (교에이샤 케미칼 캄파니, 리미티드에 의해 제조됨, 상품명: IB-XA): 9.0 중량부
<A2-2> 벤질 아크릴레이트 (오사카 오가닉 케미칼 인더스트리 리미티드에 의해 제조됨, 상품명: V#160): 38.0 중량부
<A2-3> 네오펜틸글리콜 디아크릴레이트 (교에이샤 케미칼 캄파니, 리미티드에 의해 제조됨, 상품명: NP-A): 47.0 중량부
(1-2) 성분 (B2): 합계 0 중량부
성분 (B2)는 첨가하지 않았다.
(1-3) 성분 (C2): 합계 0 중량부
성분 (C2)는 첨가하지 않았다.
(1-4) 성분 (D2): 합계 0 중량부
성분 (D2)는 첨가하지 않았다.
<용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1') 및 경화성 조성물 (α2)의 표면 장력의 측정>
용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1') 및 경화성 조성물 (α2)의 표면 장력의 측정은, 자동 표면 장력계 DY-300 (교와 인터페이스 사이언스 캄파니, 리미티드(Kyowa Interface Science Co., Ltd.)에 의해 제조됨)을 사용하여, 백금 플레이트를 사용하는 플레이트 방법에 의해, 25℃에서의 표면 장력을 측정함으로써 행하였다. 또한, 측정은, 측정 횟수 5회, 백금 플레이트의 프리웨트(prewet) 침지 거리 0.35 mm의 조건 하에 행하였다. 1회차의 측정치를 제외하고, 2회차 내지 5회차 측정치의 평균을 표면 장력으로서 규정하였다. 실시예 1 내지 6에 의해 제조한 경화성 조성물의 표면 장력 측정 결과를 표 1에 나타내었다. 또한, 실시예 1 내지 4의 경화성 조성물 (α1)에 대해서는, 용매인 성분 (D)를 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')의 표면 장력을 표 1에 나타낸다.
[표 1]
Figure pct00001
<경화성 조성물 (α1) 및 경화성 조성물 (α2)를 사용한 광 나노임프린트>
(실시예 7)
스핀 코터를 사용하여 경화성 조성물 (α1-1)을 직경 450 nm의 실리콘 웨이퍼 상에 도포했다. 이때, 경화성 조성물 (α1-1) 중의 용매인 성분 (D1)이 휘발하고, 약 7 nm 두께의, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1-1)의 성분의 조성물 (α1'-1)의 막을 얻었다.
경화성 조성물 (α1'-1)의 막 상에 잉크젯 방법을 사용하여 경화성 조성물 (α2-1)의 1 pL의 액적을 이산적으로 배치했다. 액적량은, 경화성 조성물 (α1'-1)과 경화성 조성물 (α2-1)의 혼합물의 액막을 광경화하였을 때 경화막의 평균 막 두께가 약 37 nm가 되는 양으로 설정하였다. 이때, 하층에 배치된 경화성 조성물 (α1'-1)의 표면 장력은, 상층을 형성하는 적하되는 경화성 조성물 (α2-1)의 표면 장력보다 더 높기 때문에, 마란고니 효과가 발현되어, 경화성 조성물 (α2-1)의 액적의 확장 (예비확산)이 신속하였다.
또한, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1-1)의 성분의 조성물 (α1'-1)에, 경화성 조성물 (α2-1)을 첨가하여 1:1 (중량비)로 혼합하였을 때, 경화성 조성물 (α2-1)과 조성물 (α1'-1)은 발열적으로 혼합되었다.
또한, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 경화성 조성물 (α1') 및 경화성 조성물 (α2)의 표면 장력의 측정, 및 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 경화성 조성물 (α1') 및 경화성 조성물 (α2)를 혼합하였을 때의 발열 유무의 측정은, 상기 기재된대로 행하였다.
(실시예 8)
경화성 조성물 (α1-1)을 경화성 조성물 (α1-2)로 변경한 것을 제외하고, 실시예 7과 동일한 방식으로, 액적의 확장 관찰 및 경화성 조성물의 혼합 시의 발열의 측정을 행하였다.
하층에 배치된 용매인 성분 (D1)을 제외한 경화성 조성물 (α1-2)의 성분의 조성물 (α1'-2)의 표면 장력은, 상층을 형성하는 적하되는 경화성 조성물 (α2-1)의 표면 장력보다 더 높기 때문에, 마란고니 효과가 발현되어, 경화성 조성물 (α2-1)의 액적의 확장 (예비확산)이 신속하였다.
또한, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1-2)의 성분의 조성물 (α1'-2)에, 경화성 조성물 (α2-1)을 1:1 (중량비)로 첨가하여 혼합하였을 때, 경화성 조성물 (α2-1)과 조성물 (α1'-2)는 발열적으로 혼합되었다.
(실시예 9)
경화성 조성물 (α1-1)을 경화성 조성물 (α1-3)으로 변경한 것을 제외하고, 실시예 7과 동일한 방식으로, 액적의 확장 관찰 및 경화성 조성물의 혼합 시의 발열의 측정을 행하였다.
하층에 배치된 용매인 성분 (D1)을 제외한 경화성 조성물 (α1-3)의 성분의 조성물 (α1'-3)의 표면 장력은, 상층을 형성하는 적하되는 경화성 조성물 (α2-1)의 표면 장력보다 더 높기 때문에, 마란고니 효과가 발현되어, 경화성 조성물 (α2-1)의 액적의 확장 (예비확산)이 신속하였다.
또한, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1-3)의 성분의 조성물 (α1'-3)에, 경화성 조성물 (α2-1)을 1:1 (중량비)로 첨가하여 혼합하였을 때, 경화성 조성물 (α2-1)과 조성물 (α1'-3)은 발열적으로 혼합되었다.
(실시예 10)
경화성 조성물 (α1-1)을 경화성 조성물 (α1-4)로 변경한 것을 제외하고, 실시예 7과 동일한 방식으로, 액적의 확장 관찰 및 경화성 조성물의 혼합 시의 발열의 측정을 행하였다.
하층에 배치된 용매인 성분 (D1)을 제외한 경화성 조성물 (α1-4)의 성분의 조성물 (α1'-4)의 표면 장력은, 상층을 형성하는 적하되는 경화성 조성물 (α2-1)의 표면 장력보다 더 높기 때문에, 마란고니 효과가 발현되어, 경화성 조성물 (α2-1)의 액적의 확장 (예비확산)이 신속하였다.
또한, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1-4)의 성분의 조성물 (α1'-4)에, 경화성 조성물 (α2-1)을 1:1 (중량비)로 첨가하여 혼합하였을 때, 경화성 조성물 (α2-1)과 조성물 (α1'-4)는 발열적으로 혼합되었다.
(비교예 1)
경화성 조성물 (α2-1)을 경화성 조성물 (α2-2)로 변경한 것을 제외하고, 실시예 9와 동일한 방식으로, 액적의 확장 관찰 및 경화성 조성물의 혼합 시의 발열의 측정을 행하였다.
하층에 배치된 용매인 성분 (D1)을 제외한 경화성 조성물 (α1-3)의 성분의 조성물 (α1'-3)의 표면 장력은, 상층을 형성하는 적하되는 경화성 조성물 (α2-2)의 표면 장력보다 더 높기 때문에, 마란고니 효과가 발현되어, 경화성 조성물 (α2-2)의 액적의 확장 (예비확산)이 신속하였다.
또한, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1-3)의 성분의 조성물 (α1'-3)에, 경화성 조성물 (α2-2)를 1:1 (중량비)로 첨가하여 혼합하였을 때, 경화성 조성물 (α2-2)와 조성물 (α1'-3)은 발열적으로 혼합되지 않았다.
<용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')과 경화성 조성물 (α2)를 혼합하였을 때의 발열 유무의 측정>
상기 언급된 각각의 실시예에 대해 제시된 바와 같이, 시차 주사 열량 측정 장치(DSC)를 사용하여, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')에, 경화성 조성물 (α2)를 1:1 (중량비)로 첨가하여 혼합하고, 각각의 실시예에서 혼합시의 발열량 또는 흡열량을 측정하였고, 즉 혼합시의 발열의 유무를 판정하였다. 평가는 실온의 환경 하에 행하였다. 결과를 표 2에 나타내었다.
[표 2]
Figure pct00002
이와 같이, 혼합이 발열적인, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1') 및 경화성 조성물 (α2)를 사용함으로써, 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1') 상에 경화성 조성물 (α2)를 적하 혼합하는 경우, 온도 저하에 기인하는 점도 상승을 방지하여 조성물 (α1') 및 경화성 조성물 (α2)의 혼합을 촉진할 수 있다. 즉, 보다 단시간에, 기판의 샷 영역에서 균일한 물성의 조성물 (α1') 및 경화성 조성물 (α2)의 혼합물(308)의 액막을 수득할 수 있다 (도 3(e)). 이에 의해, 높은 처리량을 제공하며, 기판의 샷 영역에서 균일한 물성을 갖는 패턴을 형성할 수 있다.
본 출원은 2017년 3월 8일에 출원된 미국 특허 출원 번호 62/468,462의 이익을 주장하며, 그의 전문이 본원에 참조로 포함된다.
101 기판
102 레지스트
104 액적이 확산되는 방향을 나타내는 화살표
105 몰드
106 조사광
107 광경화막
108 잔막
201 기판
202 경화성 조성물 (α1)
203 경화성 조성물 (α2)
204 액적이 확산되는 방향을 나타내는 화살표
205 몰드
206 조사광
207 패턴 형상을 갖는 경화막
208 경화성 조성물 (α1)과 경화성 조성물 (α2)의 혼합물
209 조성물이 충분히 혼합되지 않은 영역
301 기판 (피가공기판)
302 경화성 조성물 (α1)
302' 용매인 성분 (D1)을 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')
303 경화성 조성물 (α1)
304 액적이 확산되는 방향을 나타내는 화살표
305 몰드
306 조사광
307 패턴 형상을 갖는 경화막
308 경화성 조성물 (α1)과 경화성 조성물 (α2)의 혼합물
309 조성물 (α1')과 경화성 조성물 (α2)가 충분히 혼합되지 않은 영역
401 기판 (피가공기판)
402 패턴 형상을 갖는 경화막
403 잔막
404 잔막이 없는 경화물 패턴
405 에칭 가스 A
406 에칭 가스 B

Claims (28)

  1. (1) 기판 상에, 중합성 화합물인 성분 (A1)을 적어도 함유하는 경화성 조성물 (α1)의 액막으로 형성된 층을 배치하는 제1 단계 (배치 단계),
    (2) 용매인 성분 (D1)을 제외한 상기 경화성 조성물 (α1)의 성분의 조성물 (α1')의 액막으로 형성된 층 상에, 중합성 화합물인 성분 (A2)를 적어도 함유하는 경화성 조성물 (α2)의 액적을 이산적으로 분배하는 제2 단계 (분배 단계),
    (3) 상기 조성물 (α1')과 상기 경화성 조성물 (α2)가 혼합됨으로써 수득된 혼합층을 몰드에 접촉시키는 제3 단계 (몰드 접촉 단계),
    (4) 상기 혼합층에 상기 몰드의 측면으로부터 광을 조사하여 상기 층을 경화시키는 제4 단계 (광 조사 단계),
    (5) 경화 후의 상기 혼합층으로부터 상기 몰드를 이형시키는 제5 단계 (이형 단계)
    를 포함하며,
    상기 조성물 (α1')과 상기 경화성 조성물 (α2)와의 혼합이 발열적인,
    경화물 패턴의 제조 방법.
  2. 제1항에 있어서, 상기 조성물 (α1')의 표면 장력이 상기 경화성 조성물 (α2)의 표면 장력보다 큰 것인, 경화물 패턴의 제조 방법.
  3. 제1항 또는 제2항에 있어서, 상기 기판의 상기 경화성 조성물 (α1)의 액막으로 형성된 층을 배치하는 면에, 밀착층이 형성되어 있는 것인, 경화물 패턴의 제조 방법.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 몰드가, 표면에 요철 패턴이 형성된 몰드이며,
    상기 요철 패턴의 오목부 폭이 4nm 이상 30nm 미만이고,
    상기 요철 패턴의 오목부 종횡비가 1 이상 10 이하인,
    경화물 패턴의 제조 방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 제2 단계와 상기 제3 단계의 사이에, 상기 기판과 상기 몰드와의 위치 정렬을 행하는 단계를 더 포함하는, 경화물 패턴의 제조 방법.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 제2 단계 내지 상기 제5 단계를, 상기 기판 상의 상이한 영역들에서 복수회 반복하는 것인, 경화물 패턴의 제조 방법.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 제3 단계가, 응축성 기체를 포함하는 분위기 하에서 행하여지는 것인, 경화물 패턴의 제조 방법.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 경화물 패턴의 제조 방법을 포함하는, 광학 부품의 제조 방법.
  9. 제1항 내지 제7항 중 어느 한 항에 따른 경화물 패턴의 제조 방법을 포함하는, 회로 기판의 제조 방법.
  10. 제1항 내지 제7항 중 어느 한 항에 따른 경화물 패턴의 제조 방법을 포함하는, 석영 몰드 레플리카의 제조 방법.
  11. 중합성 화합물인 성분 (A1)을 적어도 함유하는 경화성 조성물 (α1)을 포함하는 임프린트 전처리 코팅용 재료이며,
    기판 상에 상기 임프린트 전처리 코팅용 재료로 이루어진 액막을 형성하고, 용매인 성분 (D1)을 제외한 상기 경화성 조성물 (α1)의 성분의 조성물 (α1')의 액막에 대해 중합성 화합물인 성분 (A2)를 적어도 함유하는 경화성 조성물 (α2)로 형성된 액적을 분배했을 때에, 상기 액적의 성분의 기판 표면 방향으로의 확산이 촉진되고,
    상기 경화성 조성물 (α1)에서는, 용매인 성분 (D)를 제외한 경화성 조성물 (α1)의 성분의 조성물 (α1')과 제2 단계에서 분배되는 상기 경화성 조성물 (α2)와의 혼합이 발열적인,
    임프린트 전처리 코팅용 재료.
  12. 제11항에 있어서, 상기 조성물 (α1')의 표면 장력이 상기 경화성 조성물 (α2)의 표면 장력보다 큰 것인, 임프린트 전처리 코팅용 재료.
  13. 제11항 또는 제12항에 있어서, 상기 성분 (A1)이, 단관능 (메트)아크릴 화합물 또는 다관능 (메트)아크릴 화합물 중 적어도 1종을 함유하는 것인, 임프린트 전처리 코팅용 재료.
  14. 제11항 내지 제13항 중 어느 한 항에 있어서, 상기 성분 (A1)이, 방향족 기 및/또는 지환족 탄화수소 기를 갖는 중합성 화합물을 함유하는 것인, 임프린트 전처리 코팅용 재료.
  15. 제11항 내지 제14항 중 어느 한 항에 있어서, 상기 성분 (A1)이, 알킬렌 에테르 기를 갖는 중합성 화합물을 함유하는 것인, 임프린트 전처리 코팅용 재료.
  16. 제11항 내지 제15항 중 어느 한 항에 있어서, 상기 성분 (A1)이, 2개 이상의 알킬렌 에테르 기의 반복 단위를 갖는 중합성 화합물을 함유하는 것인, 임프린트 전처리 코팅용 재료.
  17. 제11항 내지 제16항 중 어느 한 항에 있어서, 상기 경화성 조성물 (α1) 중의 광중합 개시제인 성분 (B1)의 함유량이, 상기 성분 (D1)을 제외한 모든 성분의 합계 중량에 대하여 0.1 중량% 미만인, 임프린트 전처리 코팅용 재료.
  18. 제11항 내지 제17항 중 어느 한 항에 있어서, 상기 경화성 조성물 (α1)이, 불소계 계면 활성제 또는 탄화수소계 계면 활성제를 함유하는 것인, 임프린트 전처리 코팅용 재료.
  19. 제11항 내지 제18항 중 어느 한 항에 있어서, 상기 조성물 (α1')의 23℃에서의 점도가 1 mPa·s 이상 1000 mPa·s 이하인, 임프린트 전처리 코팅용 재료.
  20. 제11항 내지 제19항 중 어느 한 항에 있어서, 상기 성분 (A2)가, 단관능 (메트)아크릴 화합물 및 다관능 (메트)아크릴 화합물 중 적어도 1종을 함유하는 것인, 임프린트 전처리 코팅용 재료.
  21. 제11항 내지 제20항 중 어느 한 항에 있어서, 상기 성분 (A2)가, 방향족 기 및/또는 지환족 탄화수소 기를 갖는 중합성 화합물을 함유하는 것인, 임프린트 전처리 코팅용 재료.
  22. 제11항 내지 제21항 중 어느 한 항에 있어서, 상기 경화성 조성물 (α2)가, 광중합 개시제인 성분 (B)를 함유하는 것인, 임프린트 전처리 코팅용 재료.
  23. 제22항에 있어서, 상기 성분 (B)가, 2종 이상의 광중합 개시제를 함유하는 것인, 임프린트 전처리 코팅용 재료.
  24. 제11항 내지 제23항 중 어느 한 항에 있어서, 상기 경화성 조성물 (α2)가, 불소계 계면 활성제 또는 탄화수소계 계면 활성제를 함유하는 것인, 임프린트 전처리 코팅용 재료.
  25. 제11항 내지 제23항 중 어느 한 항에 있어서, 상기 경화성 조성물 (α2)가, 불소계 계면 활성제 및 탄화수소계 계면 활성제 중 적어도 1종을 함유하는 것인, 임프린트 전처리 코팅용 재료.
  26. 제11항 내지 제25항 중 어느 한 항에 있어서, 상기 경화성 조성물 (α2) 중 용매인 성분 (D2)를 제외한 성분의 조성물 (α2')의 23℃에서의 점도가 1 mPa·s 이상 12 mPa·s 이하인, 임프린트 전처리 코팅용 재료.
  27. 제11항 내지 제26항 중 어느 한 항에 따른 임프린트 전처리 코팅용 재료를 경화하여 수득되는 경화물.
  28. 제9항에 있어서, 상기 회로 기판이 반도체 소자인, 제조 방법.
KR1020197028418A 2017-03-08 2018-03-02 경화물 패턴의 제조 방법, 광학 부품, 회로 기판 및 석영 몰드 레플리카의 제조 방법, 및 임프린트 전처리 코팅용 재료 및 그의 경화물 KR102256349B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762468462P 2017-03-08 2017-03-08
US62/468,462 2017-03-08
PCT/JP2018/008158 WO2018164017A1 (ja) 2017-03-08 2018-03-02 硬化物パターンの製造方法、光学部品、回路基板および石英モールドレプリカの製造方法、ならびにインプリント前処理コート用材料およびその硬化物

Publications (2)

Publication Number Publication Date
KR20190117760A true KR20190117760A (ko) 2019-10-16
KR102256349B1 KR102256349B1 (ko) 2021-05-27

Family

ID=63447605

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197028418A KR102256349B1 (ko) 2017-03-08 2018-03-02 경화물 패턴의 제조 방법, 광학 부품, 회로 기판 및 석영 몰드 레플리카의 제조 방법, 및 임프린트 전처리 코팅용 재료 및 그의 경화물

Country Status (6)

Country Link
US (2) US11037785B2 (ko)
JP (1) JP7328888B2 (ko)
KR (1) KR102256349B1 (ko)
CN (1) CN110546734B (ko)
TW (1) TWI666108B (ko)
WO (1) WO2018164017A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10488753B2 (en) 2015-09-08 2019-11-26 Canon Kabushiki Kaisha Substrate pretreatment and etch uniformity in nanoimprint lithography
US20170066208A1 (en) 2015-09-08 2017-03-09 Canon Kabushiki Kaisha Substrate pretreatment for reducing fill time in nanoimprint lithography
US10620539B2 (en) 2016-03-31 2020-04-14 Canon Kabushiki Kaisha Curing substrate pretreatment compositions in nanoimprint lithography
CN109075034B (zh) * 2016-04-08 2023-05-16 佳能株式会社 固化物图案的形成方法和压印预处理涂布用材料
US10509313B2 (en) 2016-06-28 2019-12-17 Canon Kabushiki Kaisha Imprint resist with fluorinated photoinitiator and substrate pretreatment for reducing fill time in nanoimprint lithography
US10317793B2 (en) 2017-03-03 2019-06-11 Canon Kabushiki Kaisha Substrate pretreatment compositions for nanoimprint lithography
WO2018164016A1 (ja) 2017-03-08 2018-09-13 キヤノン株式会社 光ナノインプリント技術を用いたパターン形成方法、インプリント装置、および硬化性組成物
WO2018164015A1 (ja) 2017-03-08 2018-09-13 キヤノン株式会社 パターン形成方法、インプリント前処理コーティング材料、及び基板の前処理方法
JP7425602B2 (ja) 2017-03-08 2024-01-31 キヤノン株式会社 パターン形成方法、ならびに加工基板、光学部品及び石英モールドレプリカの製造方法、ならびにインプリント前処理コーティング材料及びそれとインプリントレジストとのセット
WO2018164017A1 (ja) 2017-03-08 2018-09-13 キヤノン株式会社 硬化物パターンの製造方法、光学部品、回路基板および石英モールドレプリカの製造方法、ならびにインプリント前処理コート用材料およびその硬化物
KR102419881B1 (ko) 2017-08-10 2022-07-12 캐논 가부시끼가이샤 패턴 형성 방법
WO2020059604A1 (ja) * 2018-09-18 2020-03-26 富士フイルム株式会社 インプリント用積層体、インプリント用積層体の製造方法、パターン形成方法およびキット
US10892167B2 (en) * 2019-03-05 2021-01-12 Canon Kabushiki Kaisha Gas permeable superstrate and methods of using the same
US11752519B2 (en) 2020-06-19 2023-09-12 Canon Kabushiki Kaisha Planarization method and photocurable composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083172A (ja) * 2007-09-28 2009-04-23 Hitachi Ltd 光インプリント方法
JP2010073811A (ja) 2008-09-17 2010-04-02 Fujifilm Corp ナノインプリント用硬化性組成物、これを用いた硬化物、並びに、液晶表示装置用部材
JP2010080632A (ja) * 2008-09-25 2010-04-08 Canon Inc インプリント装置およびインプリント方法
JP2010258182A (ja) * 2009-04-24 2010-11-11 Hitachi High-Technologies Corp 微細構造転写方法及び微細構造転写装置
JP2013056440A (ja) * 2011-09-07 2013-03-28 National Institute Of Advanced Industrial Science & Technology 液浸インプリント方法
JP2013093552A (ja) * 2011-10-07 2013-05-16 Fujifilm Corp インプリント用下層膜組成物およびこれを用いたパターン形成方法
JP2015026740A (ja) * 2013-07-26 2015-02-05 株式会社東芝 レジスト材料及びそれを用いたパターン形成方法
JP2016028419A (ja) * 2014-07-08 2016-02-25 キヤノン株式会社 密着層組成物、ナノインプリントによる膜の製造方法、光学部品の製造方法、回路基板の製造方法、および電子機器の製造方法

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873087B1 (en) 1999-10-29 2005-03-29 Board Of Regents, The University Of Texas System High precision orientation alignment and gap control stages for imprint lithography processes
US7432634B2 (en) 2000-10-27 2008-10-07 Board Of Regents, University Of Texas System Remote center compliant flexure device
EP2264522A3 (en) 2000-07-16 2011-12-14 The Board of Regents of The University of Texas System Method of forming a pattern on a substrate
EP1303793B1 (en) 2000-07-17 2015-01-28 Board Of Regents, The University Of Texas System Method and system of automatic fluid dispensing for imprint lithography processes
US20050160011A1 (en) 2004-01-20 2005-07-21 Molecular Imprints, Inc. Method for concurrently employing differing materials to form a layer on a substrate
US7387508B2 (en) 2004-06-01 2008-06-17 Molecular Imprints Inc. Compliant device for nano-scale manufacturing
US20050274219A1 (en) 2004-06-01 2005-12-15 Molecular Imprints, Inc. Method and system to control movement of a body for nano-scale manufacturing
US20060005657A1 (en) 2004-06-01 2006-01-12 Molecular Imprints, Inc. Method and system to control movement of a body for nano-scale manufacturing
EP1352295B1 (en) 2000-10-12 2015-12-23 Board of Regents, The University of Texas System Template for room temperature, low pressure micro- and nano-imprint lithography
US20050064344A1 (en) 2003-09-18 2005-03-24 University Of Texas System Board Of Regents Imprint lithography templates having alignment marks
MXPA06006738A (es) * 2003-12-19 2006-08-31 Univ North Carolina Metodos para fabricar micro- y nano-estructuras aisladas utilizando litografia suave o de impresion.
US20050275311A1 (en) 2004-06-01 2005-12-15 Molecular Imprints, Inc. Compliant device for nano-scale manufacturing
WO2006060758A2 (en) 2004-12-01 2006-06-08 Molecular Imprints, Inc. Methods of exposure for the purpose of thermal management for imprint lithography processes
JP2006168147A (ja) * 2004-12-15 2006-06-29 Aitesu:Kk 有機無機ハイブリッド材料とナノインプリント技術を用いた微細構造体の製造方法および微細構造体
CN101883797B (zh) * 2007-11-30 2012-10-17 昭和电工株式会社 转印材料用固化性组合物和使用该组合物的微细图案形成方法
CN101923282B (zh) 2009-06-09 2012-01-25 清华大学 纳米压印抗蚀剂及采用该纳米压印抗蚀剂的纳米压印方法
JP2011222732A (ja) * 2010-04-09 2011-11-04 Fujifilm Corp パターン形成方法及びパターン基板製造方法
JP5337776B2 (ja) 2010-09-24 2013-11-06 富士フイルム株式会社 ナノインプリント方法およびそれを利用した基板の加工方法
JP5710553B2 (ja) * 2011-08-25 2015-04-30 富士フイルム株式会社 インプリント用硬化性組成物、パターン形成方法およびパターン
JP6000712B2 (ja) * 2012-07-24 2016-10-05 キヤノン株式会社 樹脂の製造方法及び樹脂の製造装置
US20150060113A1 (en) * 2013-01-22 2015-03-05 Yongcai Wang Photocurable composition, article, and method of use
JP6328001B2 (ja) * 2013-08-30 2018-05-23 キヤノン株式会社 インプリント用硬化性組成物、膜、膜の製造方法
JP5804160B2 (ja) * 2013-09-19 2015-11-04 大日本印刷株式会社 インプリント方法およびインプリントモールドの製造方法
TWI632188B (zh) 2014-08-27 2018-08-11 日商富士軟片股份有限公司 底層膜形成用樹脂組成物、積層體、圖案形成方法、壓印形成用套組及元件的製造方法
US20170068159A1 (en) 2015-09-08 2017-03-09 Canon Kabushiki Kaisha Substrate pretreatment for reducing fill time in nanoimprint lithography
JP6141500B2 (ja) * 2015-09-08 2017-06-07 キヤノン株式会社 ナノインプリントリソグラフィーにおける充填時間を短縮するための基板の前処理
US10488753B2 (en) 2015-09-08 2019-11-26 Canon Kabushiki Kaisha Substrate pretreatment and etch uniformity in nanoimprint lithography
US20170066208A1 (en) 2015-09-08 2017-03-09 Canon Kabushiki Kaisha Substrate pretreatment for reducing fill time in nanoimprint lithography
US10754245B2 (en) 2016-03-31 2020-08-25 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10845700B2 (en) 2016-03-31 2020-11-24 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10754244B2 (en) 2016-03-31 2020-08-25 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10883006B2 (en) 2016-03-31 2021-01-05 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10829644B2 (en) 2016-03-31 2020-11-10 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10578965B2 (en) 2016-03-31 2020-03-03 Canon Kabushiki Kaisha Pattern forming method
US10754243B2 (en) 2016-03-31 2020-08-25 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
CN109075034B (zh) 2016-04-08 2023-05-16 佳能株式会社 固化物图案的形成方法和压印预处理涂布用材料
TW201817582A (zh) * 2016-09-16 2018-05-16 日商富士軟片股份有限公司 圖案形成方法及半導體元件的製造方法
WO2018164016A1 (ja) 2017-03-08 2018-09-13 キヤノン株式会社 光ナノインプリント技術を用いたパターン形成方法、インプリント装置、および硬化性組成物
JP7425602B2 (ja) 2017-03-08 2024-01-31 キヤノン株式会社 パターン形成方法、ならびに加工基板、光学部品及び石英モールドレプリカの製造方法、ならびにインプリント前処理コーティング材料及びそれとインプリントレジストとのセット
WO2018164017A1 (ja) 2017-03-08 2018-09-13 キヤノン株式会社 硬化物パターンの製造方法、光学部品、回路基板および石英モールドレプリカの製造方法、ならびにインプリント前処理コート用材料およびその硬化物
WO2018164015A1 (ja) 2017-03-08 2018-09-13 キヤノン株式会社 パターン形成方法、インプリント前処理コーティング材料、及び基板の前処理方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083172A (ja) * 2007-09-28 2009-04-23 Hitachi Ltd 光インプリント方法
US8133427B2 (en) * 2007-09-28 2012-03-13 Hitachi, Ltd. Photo nanoimprint lithography
JP2010073811A (ja) 2008-09-17 2010-04-02 Fujifilm Corp ナノインプリント用硬化性組成物、これを用いた硬化物、並びに、液晶表示装置用部材
JP2010080632A (ja) * 2008-09-25 2010-04-08 Canon Inc インプリント装置およびインプリント方法
US9039402B2 (en) * 2008-09-25 2015-05-26 Canon Kabushiki Kaisha Imprinting apparatus and method therefor
JP2010258182A (ja) * 2009-04-24 2010-11-11 Hitachi High-Technologies Corp 微細構造転写方法及び微細構造転写装置
JP2013056440A (ja) * 2011-09-07 2013-03-28 National Institute Of Advanced Industrial Science & Technology 液浸インプリント方法
JP2013093552A (ja) * 2011-10-07 2013-05-16 Fujifilm Corp インプリント用下層膜組成物およびこれを用いたパターン形成方法
JP2015026740A (ja) * 2013-07-26 2015-02-05 株式会社東芝 レジスト材料及びそれを用いたパターン形成方法
JP2016028419A (ja) * 2014-07-08 2016-02-25 キヤノン株式会社 密着層組成物、ナノインプリントによる膜の製造方法、光学部品の製造方法、回路基板の製造方法、および電子機器の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
N. Imaishi, Int. J. Microgravity Sci. No. 31 Supplement 2014 (S5-S12)
S. Reddy, R.T. Bonnecaze, Microelectronic Engineering, 82, 60-70 (2005)

Also Published As

Publication number Publication date
CN110546734B (zh) 2024-04-02
US11037785B2 (en) 2021-06-15
TW201832904A (zh) 2018-09-16
JP7328888B2 (ja) 2023-08-17
KR102256349B1 (ko) 2021-05-27
WO2018164017A1 (ja) 2018-09-13
TWI666108B (zh) 2019-07-21
US20210265160A1 (en) 2021-08-26
US20190393026A1 (en) 2019-12-26
CN110546734A (zh) 2019-12-06
JPWO2018164017A1 (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
KR102208986B1 (ko) 패턴 형성 방법, 가공 기판의 제조 방법, 광학 부품의 제조 방법, 회로 기판의 제조 방법, 전자 부품의 제조 방법, 임프린트 몰드의 제조 방법
KR102256349B1 (ko) 경화물 패턴의 제조 방법, 광학 부품, 회로 기판 및 석영 몰드 레플리카의 제조 방법, 및 임프린트 전처리 코팅용 재료 및 그의 경화물
KR102211414B1 (ko) 패턴 형성 방법, 및 가공 기판, 광학 부품, 회로 기판, 전자 부품, 및 임프린트 몰드의 제조 방법
KR102208977B1 (ko) 패턴 형성 방법과, 가공 기판, 광학 부품, 회로 기판, 전자 부품 및 임프린트 몰드의 제조 방법
KR102216503B1 (ko) 경화물 패턴의 형성 방법과, 가공 기판, 광학 부품, 회로 기판, 전자 부품 및 임프린트 몰드의 제조 방법과, 임프린트 전처리 코팅용 재료
KR102208728B1 (ko) 패턴 형성 방법, 가공 기판의 제조 방법, 광학 부품의 제조 방법, 회로 기판의 제조 방법, 전자 부품의 제조 방법, 임프린트 몰드의 제조 방법
KR102209277B1 (ko) 패턴 형성 방법, 가공 기판의 제조 방법, 광학 부품의 제조 방법, 회로 기판의 제조 방법, 전자 부품의 제조 방법, 임프린트 몰드의 제조 방법
US11327397B2 (en) Pattern forming method, coating material for imprint pretreatment and substrate pretreatment method
KR102256347B1 (ko) 패턴 형성 방법, 및 가공 기판, 광학 부품 및 석영 몰드 레플리카의 제조 방법, 및 임프린트 전처리 코팅 재료 및 그와 임프린트 레지스트와의 세트
WO2017130853A1 (ja) パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
JP2017135413A (ja) 膜の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、及び光硬化性組成物
KR101988782B1 (ko) 임프린트용 광경화성 조성물, 이를 사용한 막의 제조 방법, 이를 사용한 광학 부품의 제조 방법, 이를 사용한 회로 기판의 제조 방법, 및 이를 사용한 전자 부품의 제조 방법
JP2016162862A (ja) パターンの形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法
JP2016030829A (ja) 光硬化性組成物、これを用いた硬化物パターンの製造方法、光学部品の製造方法、回路基板の製造方法
JP2016162863A (ja) パターンの形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法
US20170287695A1 (en) Photocurable composition, and methods using the same for forming cured product pattern and for manufacturing optical component, circuit board and imprinting mold
JP2016119457A (ja) インプリント用光硬化性組成物、硬化膜の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法
KR20230024917A (ko) 평탄화 방법 및 광경화성 조성물

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right