WO2017130853A1 - パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法 - Google Patents

パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法 Download PDF

Info

Publication number
WO2017130853A1
WO2017130853A1 PCT/JP2017/001875 JP2017001875W WO2017130853A1 WO 2017130853 A1 WO2017130853 A1 WO 2017130853A1 JP 2017001875 W JP2017001875 W JP 2017001875W WO 2017130853 A1 WO2017130853 A1 WO 2017130853A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
mold
substrate
pattern forming
forming method
Prior art date
Application number
PCT/JP2017/001875
Other languages
English (en)
French (fr)
Inventor
伊藤 俊樹
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN201780008232.3A priority Critical patent/CN108602238B/zh
Priority to JP2017564210A priority patent/JP6961495B2/ja
Priority to KR1020187023715A priority patent/KR102285063B1/ko
Publication of WO2017130853A1 publication Critical patent/WO2017130853A1/ja
Priority to US16/042,421 priority patent/US11126078B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/005Surface shaping of articles, e.g. embossing; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • B29C33/3857Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F122/00Homopolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F122/10Esters
    • C08F122/1006Esters of polyhydric alcohols or polyhydric phenols, e.g. ethylene glycol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31058After-treatment of organic layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate

Definitions

  • the present invention relates to a pattern forming method, a processed substrate manufacturing method, an optical component manufacturing method, a circuit board manufacturing method, an electronic component manufacturing method, and an imprint mold manufacturing method.
  • the photocurable composition is cured in a state where a mold (mold) having a fine uneven pattern formed on the surface is pressed against a substrate (wafer) coated with the photocurable composition (resist).
  • corrugated pattern of a mold is transcribe
  • a fine structure of the order of several nanometers can be formed on a substrate.
  • FIGS. 1A1 to 1D The optical nanoimprint technique described in Patent Document 1 will be described with reference to FIGS. 1A1 to 1D.
  • a liquid resist is discretely dropped onto the pattern formation region on the substrate by using an inkjet method (arrangement process, FIGS. 1A1 to 1A3). Although the dropped resist droplet spreads on the substrate, this phenomenon is called pre-spread (FIGS. 1A1 to 1A3, 104).
  • this resist is formed using a mold having a pattern and transparent to irradiation light described later (mold contact step, FIG. 1B). In the mold contact process, resist droplets spread across the entire gap between the substrate and the mold by capillary action (FIGS. 1B and 104). This phenomenon is called spread.
  • the resist is filled into the recesses on the mold by capillary action (FIGS. 1B and 104). This filling phenomenon is called fill. The time until the spread and fill are completed is called the filling time.
  • the resist is cured by irradiating light (light irradiation process, FIG. 1C) and then separated (mold release process, FIG. 1D). By performing these steps, a resist pattern (photocured film, FIGS. 1D and 107) having a predetermined shape is formed on the substrate.
  • the pattern forming method includes a step (1) of laminating a layer made of a curable composition (A1) containing at least a polymerizable compound (a1) on the surface of a substrate, A step (2) in which droplets of the curable composition (A2) containing at least the polymerizable compound (a2) are discretely dropped on the curable composition (A1) layer and laminated.
  • the curable composition (A1) contains at least a compound represented by the following general formula (1) as the polymerizable compound (a1).
  • Ar represents the monovalent
  • R1 represents the alkyl group or hydrogen atom which may have a substituent
  • R2 represents an (m + n) -valent alkyl group which may have a substituent
  • m is an integer of 2 or more
  • n is an integer of 1 or more.
  • the pattern forming method includes a step (1) of laminating a layer made of a curable composition (A1) containing at least a polymerizable compound (a1) on the surface of a substrate, A step (2) in which droplets of the curable composition (A2) containing at least the polymerizable compound (a2) are discretely dropped on the curable composition (A1) layer and laminated.
  • the curable composition (A1) contains at least a compound represented by the following general formula (1) as the polymerizable compound (a1).
  • Ar represents the monovalent
  • R1 represents the alkyl group or hydrogen atom which may have a substituent
  • R2 represents an (m + n) -valent alkyl group which may have a substituent
  • m is an integer of 2 or more
  • n is an integer of 1 or more.
  • the curable composition (A1) preferably contains at least a compound represented by the following general formula (2) as the polymerizable compound (a1).
  • the curable composition (A1) preferably contains at least a compound represented by the following general formula (3) as the polymerizable compound (a1).
  • the pattern forming method of the present invention includes: A step (1) of laminating a layer comprising a curable composition (A1) containing at least a polymerizable compound (a1) on the surface of the substrate; A step (2) in which droplets of the curable composition (A2) containing at least the polymerizable compound (a2) are discretely dropped on the curable composition (A1) layer and laminated.
  • the curable composition (A1) contains at least a compound represented by the following general formula (1) as the polymerizable compound (a1).
  • Ar represents the monovalent, bivalent, trivalent, or tetravalent aromatic group which may have a substituent
  • X represents a single bond or an organic coupling group
  • R1 represents an optionally substituted alkyl group or a hydrogen atom
  • R1 represents an optionally substituted alkyl group or a hydrogen atom
  • n is 1, 2, 3, or 4.
  • the curable composition (A1) contains at least a compound represented by the following general formula (7) as the polymerizable compound (a1).
  • the said curable composition (A1) contains at least the compound represented by following General formula (8) as the said polymeric compound (a1).
  • the said curable composition (A1) contains at least the compound represented by following General formula (9) as said polymeric compound (a1).
  • the curable composition (A1) contains at least a compound represented by the following general formula (10) as the polymerizable compound (a1).
  • the surface tension of curable composition (A1) except a solvent is higher than the surface tension of curable composition (A2) except a solvent.
  • the viscosity of the curable composition (A1) excluding the solvent is 1 mPa ⁇ s to 1000 mPa ⁇ s
  • the viscosity of the curable composition (A2) excluding the solvent is 1 mPa ⁇ s to 12 mPa ⁇ s.
  • the material of the mold surface is preferably quartz.
  • mold contact process is performed in the atmosphere containing a condensable gas.
  • a 2nd process is performed in the atmosphere of the mixed gas of condensable gas and noncondensable gas.
  • the non-condensable gas is preferably helium.
  • the condensable gas is preferably 1,1,1,3,3-pentafluoropropane.
  • substrate characterized by having the formation method of the said pattern is included.
  • the manufacturing method of the optical component characterized by having the formation method of the said pattern is included.
  • the manufacturing method of the imprint mold characterized by having the formation method of the said pattern is included.
  • the present invention relates to an optical nanoimprint technology (Short Spread Time Nanoimprint Lithography, hereinafter referred to as SST-NIL) having a short filling time, that is, a high throughput.
  • SST-NIL Short Spread Time Nanoimprint Lithography
  • Lamination process 1 (FIGS. 2A1, 2A2) for laminating a liquid curable composition (A1) on a substrate
  • Lamination process 2 (FIGS. 2B1 and 2B2) for discretely laminating droplets of the curable composition (A2) on the curable composition (A1) layer
  • a mold contact step of sandwiching a layer formed by partially mixing the curable composition (A1) and the curable composition (A2) between the mold and the substrate (FIG. 2C)
  • a light irradiation step of curing a layer formed by partially mixing the two curable compositions at once by irradiating light from the mold side
  • a mold release step (FIG. 2E) for separating the mold from the layer made of the curable composition after curing.
  • a series of process units from the lamination process 1 (FIGS. 2B1 and 2B2) to the mold release process (FIG. 2E) is referred to as “shot”, and the mold contacts the curable compositions (A1) and (A2).
  • a region to be formed, that is, a region where a pattern is formed on the substrate is referred to as a “shot region”.
  • the characteristics of SST-NIL will be described with reference to the schematic cross-sectional views of FIGS. 2A1 to 2E.
  • the droplets of the curable composition (A2) 203 dropped on the liquid film of the curable composition (A1) 202 expand while mixing with the curable composition (A1) 202, and the mold 205 is imprinted.
  • a region where the concentration of the curable composition (A1) is high occurs between the droplets of the curable composition (A2) 203.
  • the concentration of the curable composition (A2) is high at the center of the droplets of the curable composition (A2).
  • the substrate 201 is processed by dry etching using a cured film 207 having a pattern shape, that is, a mixed cured product of the curable composition (A1) and the curable composition (A2) as a dry etching mask.
  • the cured film 207 may have non-uniformity in dry etching resistance based on the above-described concentration non-uniformity.
  • the curable composition (A1) is required to have a dry etching resistance equivalent to or higher than that of the curable composition (A2).
  • the curable composition (A1) needs not only to have dry etching resistance but also to have a certain low viscosity in order to obtain the high throughput effect of SST-NIL. Therefore, the present invention provides an SST-NIL technique that has high throughput and excellent dry etching processing uniformity.
  • the curable compositions (A1) and (A2) according to this embodiment are compounds having at least a component (a) that is a polymerizable compound.
  • the curable composition according to this embodiment may further contain a component (b) that is a photopolymerization initiator, a non-polymerizable compound (c), and a component (d) that is a solvent.
  • a cured film means the film
  • the shape of a cured film is not specifically limited, You may have a pattern shape on the surface.
  • Component (a) is a polymerizable compound.
  • the polymerizable compound means a film made of a polymer compound by reacting with a polymerization factor (radical or the like) generated from a photopolymerization initiator (component (b)) and by a chain reaction (polymerization reaction). It is a compound that forms. Examples of such a polymerizable compound include a radical polymerizable compound.
  • the polymerizable compound as component (a) may be composed of only one type of polymerizable compound or may be composed of a plurality of types of polymerizable compounds.
  • the radical polymerizable compound is preferably a compound having at least one acryloyl group or methacryloyl group, that is, a (meth) acrylic compound. Therefore, it is preferable that the curable composition which concerns on this embodiment contains a (meth) acrylic compound as a component (a), and it is more preferable that the main component of a component (a) is a (meth) acrylic compound, Most preferred is a (meth) acrylic compound. In addition, that the main component of the component (a) described here is a (meth) acrylic compound indicates that 90% by weight or more of the component (a) is a (meth) acrylic compound.
  • the radically polymerizable compound is composed of a plurality of types of compounds having one or more acryloyl groups or methacryloyl groups, it is preferable to include a monofunctional (meth) acryl monomer and a polyfunctional (meth) acryl monomer. This is because a cured film having high mechanical strength can be obtained by combining a monofunctional (meth) acrylic monomer and a polyfunctional (meth) acrylic monomer.
  • the curable composition (A1) contains a polyfunctional (meth) acrylic monomer represented by the following general formula (1) as a polymerizable compound as a polymerizable compound (a) component.
  • Ar represents a monovalent aromatic group which may have a substituent
  • R1 represents an alkyl group or a hydrogen atom which may have a substituent
  • R2 represents a substituent.
  • M is preferably an integer of 2 or more and 4 or less, and n is preferably an integer of 1 or more and 4 or less.
  • the cured film of the curable composition (A1) according to this embodiment containing the polyfunctional (meth) acrylic monomer represented by the general formula (1) as a polymerizable compound has high dry etching resistance.
  • the polyfunctional (meth) acrylic monomer represented by the general formula (1) specifically, for example, PhEDA and PhPDA described later have a relatively low viscosity of about 100 mPa ⁇ s or less.
  • the lower the viscosity of the curable composition (A1) excluding the solvent, the faster the spread and fill are completed Non-Patent Document 1). That is, when the curable composition (A1) containing the polyfunctional (meth) acrylic monomer represented by the general formula (1) as the polymerizable compound (a) component is used, the optical nanoimprint method is performed with high throughput. be able to.
  • Examples of the polyfunctional (meth) acrylic monomer represented by the general formula (1) include, for example, phenylethylene glycol diacrylate (PhEDA) represented by the following general formula (2) and the following general formula (3).
  • PhEDA phenylethylene glycol diacrylate
  • PMP 2-phenylpropane-1,3-diyl diacrylate
  • PhEDA can be synthesized, for example, by a synthesis scheme such as the following general formula (4).
  • PhPDA can be synthesized by a synthesis scheme such as the following general formula (5).
  • the curable composition (A1) contains a polyfunctional (meth) acrylic monomer represented by the following general formula (6) as a polymerizable compound as a polymerizable compound (a) component.
  • Ar represents the monovalent, bivalent, trivalent, or tetravalent aromatic group which may have a substituent
  • X represents a single bond or an organic coupling group
  • R1 represents an optionally substituted alkyl group or a hydrogen atom
  • R1 represents an optionally substituted alkyl group or a hydrogen atom
  • n is 1, 2, 3, or 4.
  • n is preferably 1 or 2.
  • the cured film of the curable composition (A1) according to this embodiment containing the polyfunctional (meth) acrylic monomer represented by the general formula (6) as a polymerizable compound has high dry etching resistance.
  • Examples of the polyfunctional (meth) acrylic monomer represented by the general formula (6) include acrylic monomers represented by the following general formulas (7) to (10).
  • curable composition (A1) which concerns on this embodiment contains compounds other than the polyfunctional (meth) acryl monomer represented by the said General formula (1) as a polymeric compound (a) component. good.
  • the curable composition (A1) includes, as the component (a), a monofunctional (meth) acryl compound having one acryloyl group or methacryloyl group, for example, phenoxyethyl (meth) acrylate, phenoxy- 2-methylethyl (meth) acrylate, phenoxyethoxyethyl (meth) acrylate, 3-phenoxy-2-hydroxypropyl (meth) acrylate, 2-phenylphenoxyethyl (meth) acrylate, 4-phenylphenoxyethyl (meth) acrylate, 3- (2-phenylphenyl) -2-hydroxypropyl (meth) acrylate, (meth) acrylate of EO-modified p-cumylphenol, 2-bromophenoxyethyl (meth) acrylate, 2,4-dibromophenoxyethyl (meth) A) Relate, 2,4,6-tribromophenoxy
  • Examples of the polyfunctional (meth) acrylic compound having two or more acryloyl groups or methacryloyl groups include trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and EO-modified trimethylolpropane tri (meth) ) Acrylate, PO-modified trimethylolpropane tri (meth) acrylate, EO, PO-modified trimethylolpropane tri (meth) acrylate, dimethyloltricyclodecane di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra ( (Meth) acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene Glycol di (meth) acrylate, 1,4-butanedi
  • UV SA1002 As a commercial item of the said polyfunctional (meth) acryl compound, Iupimer (trademark) UV SA1002, SA2007 (above, Mitsubishi Chemical make), Biscote # 195, # 230, # 215, # 260, # 335HP, # 295, # 300, # 360, # 700, GPT, 3PA (above, manufactured by Osaka Organic Chemical Industry), Light Acrylate 4EG-A, 9EG-A, NP-A, DCP-A, BP-4EA, BP-4PA, TMP- A, PE-3A, PE-4A, DPE-6A (manufactured by Kyoeisha Chemical), KAYARAD (registered trademark) PET-30, TMPTA, R-604, DPHA, DPCA-20, -30, -60, -120 HX-620, D-310, D-330 (Nippon Kayaku Co., Ltd.), Aronix (registered trademark) M208, M210, M215 M220, M240, M305,
  • (meth) acrylate means acrylate or methacrylate having an alcohol residue equivalent thereto.
  • the (meth) acryloyl group means an acryloyl group or a methacryloyl group having an alcohol residue equivalent thereto.
  • EO represents ethylene oxide
  • EO-modified compound A refers to a compound in which the (meth) acrylic acid residue and alcohol residue of compound A are bonded via a block structure of an ethylene oxide group.
  • PO represents propylene oxide
  • PO-modified compound B refers to a compound in which the (meth) acrylic acid residue and alcohol residue of compound B are bonded via a block structure of a propylene oxide group.
  • Component (b) is a photopolymerization initiator.
  • the photopolymerization initiator is a compound that generates the polymerization factor (radical) by sensing light of a predetermined wavelength.
  • the photopolymerization initiator is a polymerization initiator (radical generator) that generates radicals by light (infrared rays, visible rays, ultraviolet rays, far ultraviolet rays, charged particle beams such as X-rays, electron beams, etc., radiation). It is.
  • the component (b) may be composed of one kind of photopolymerization initiator or may be composed of a plurality of kinds of photopolymerization initiators.
  • radical generator examples include 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- May have a substituent such as (o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o- or p-methoxyphenyl) -4,5-diphenylimidazole dimer, 4,5-triarylimidazole dimer; benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy -4'-dimethylaminobenzophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diamy Benz
  • Benzoin methyl Benzoin ether derivatives such as ether, benzoin ethyl ether and benzoin phenyl ether; benzoin derivatives such as benzoin, methyl benzoin, ethyl benzoin and propyl benzoin; benzyl derivatives such as benzyl dimethyl ketal; 9-phenylacridine, 1,7-bis (9 , 9′-acridinyl) heptane derivatives; N-phenylglycine derivatives such as N-phenylglycine; acetophenone, 3-methylacetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-2- Acetophenone derivatives such as phenylacetophenone; thioxanthone such as thioxanthone, diethylthioxanthone, 2-isopropylthioxanthone,
  • Examples of commercially available radical generators include Irgacure 184, 369, 651, 500, 819, 907, 784, 2959, CGI-1700, -1750, -1850, CG24-61, Darocur 1116, 1173, Lucirin (registered trademark). Examples include, but are not limited to, TPO, LR8883, LR8970 (above, manufactured by BASF), Ubekrill P36 (manufactured by UCB), and the like.
  • the component (b) is preferably an acyl phosphine oxide polymerization initiator.
  • acylphosphine oxide polymerization initiators are 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2 , 6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide.
  • the blending ratio of the component (b) as the photopolymerization initiator in the curable compositions (A1) and (A2) is the sum of the component (a), the component (b) and the component (c) described later, that is, the solvent component ( It is good that it is 0.1 weight% or more and 50 weight% or less with respect to the total weight of all the components except d). Further, it is preferably 0.1% by weight or more and 20% by weight or less, more preferably more than 10% by weight and 20% by weight or less.
  • the curing rate of the composition is increased, and the reaction efficiency is increased. Can be better.
  • the cured film obtained has a certain degree of mechanical strength by setting the blending ratio of component (b) to 50% by weight or less with respect to the total of component (a), component (b), and component (c). It can be set as a cured film.
  • Non-polymerizable compound Non-polymerizable compound
  • a non-polymerizable compound can be contained as component (c).
  • Such a component (c) does not have a polymerizable functional group such as a (meth) acryloyl group, and has the ability to generate the polymerization factor (radical) by sensing light of a predetermined wavelength.
  • No compound. Examples include sensitizers, hydrogen donors, internal release agents, surfactants, antioxidants, polymer components, and other additives. You may contain multiple types of the said compound as a component (c).
  • the sensitizer is a compound added as appropriate for the purpose of promoting the polymerization reaction or improving the reaction conversion rate.
  • Examples of the sensitizer include sensitizing dyes.
  • the sensitizing dye is a compound that is excited by absorbing light of a specific wavelength and interacts with the photopolymerization initiator that is component (b).
  • the interaction described here is an energy transfer, an electron transfer, etc. from the sensitizing dye of an excited state to the photoinitiator which is a component (b).
  • sensitizing dyes include anthracene derivatives, anthraquinone derivatives, pyrene derivatives, perylene derivatives, carbazole derivatives, benzophenone derivatives, thioxanthone derivatives, xanthone derivatives, coumarin derivatives, phenothiazine derivatives, camphorquinone derivatives, acridine dyes, thiopyrylium salt series Dyes, merocyanine dyes, quinoline dyes, styrylquinoline dyes, ketocoumarin dyes, thioxanthene dyes, xanthene dyes, oxonol dyes, cyanine dyes, rhodamine dyes, pyrylium salt dyes, etc. It is not limited to these.
  • a sensitizer may be used individually by 1 type and may be used in mixture of 2 or more types.
  • the hydrogen donor is a compound that reacts with an initiation radical generated from the photopolymerization initiator as the component (b) or a radical at a polymerization growth terminal to generate a radical having higher reactivity. It is preferable to add when the photoinitiator which is a component (b) is a photoradical generator.
  • hydrogen donors include n-butylamine, di-n-butylamine, tri-n-butylphosphine, allylthiourea, s-benzylisothiuronium-p-toluenesulfinate, triethylamine, diethylaminoethyl Methacrylate, triethylenetetramine, 4,4′-bis (dialkylamino) benzophenone, N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethanol
  • examples thereof include, but are not limited to, amine compounds such as amine and N-phenylglycine, mercapto compounds such as 2-mercapto-N-phenylbenzimidazole and mercaptopropionic acid ester, and the like.
  • a hydrogen donor may be used individually by 1 type, and
  • An internal release agent can be added to the curable composition for the purpose of reducing the interfacial bonding force between the mold and the resist, that is, reducing the release force in the release step described later.
  • the internally added type means that it is added to the curable composition in advance before the step of arranging the curable composition.
  • the internally added release agent surfactants such as silicone surfactants, fluorine surfactants and hydrocarbon surfactants can be used.
  • the internally added mold release agent is not polymerizable.
  • Fluorosurfactants include polyalkylene oxide (polyethylene oxide, polypropylene oxide, etc.) adducts of alcohols having a perfluoroalkyl group, polyalkylene oxide (polyethylene oxide, polypropylene oxide, etc.) adducts of perfluoropolyether, etc. included.
  • the fluorine-based surfactant may have a hydroxyl group, an alkoxy group, an alkyl group, an amino group, a thiol group, or the like as part of the molecular structure (for example, a terminal group).
  • a commercially available product may be used as the fluorosurfactant.
  • Commercially available products include, for example, MegaFace (registered trademark) F-444, TF-2066, TF-2067, TF-2068 (above, manufactured by DIC), Florard FC-430, FC-431 (above, manufactured by Sumitomo 3M) , Surflon (registered trademark) S-382 (manufactured by AGC), EFTOP EF-122A, 122B, 122C, EF-121, EF-126, EF-127, MF-100 (above, manufactured by Tochem Products), PF-636 , PF-6320, PF-656, PF-6520 (above, OMNOVA Solutions), Unidyne (registered trademark) DS-401, DS-403, DS-451 (above, manufactured by Daikin Industries), Footent (registered trademark) 250, 251, 222F, 208G (Neos).
  • the internally added mold release agent may be a hydrocarbon surfactant.
  • the hydrocarbon-based surfactant include an alkyl alcohol polyalkylene oxide adduct obtained by adding an alkylene oxide having 2 to 4 carbon atoms to an alkyl alcohol having 1 to 50 carbon atoms.
  • alkyl alcohol polyalkylene oxide adduct examples include methyl alcohol ethylene oxide adduct, decyl alcohol ethylene oxide adduct, lauryl alcohol ethylene oxide adduct, cetyl alcohol ethylene oxide adduct, stearyl alcohol ethylene oxide adduct, stearyl alcohol ethylene oxide adduct / Examples thereof include propylene oxide adducts.
  • the terminal group of the alkyl alcohol polyalkylene oxide adduct is not limited to a hydroxyl group that can be produced by simply adding a polyalkylene oxide to an alkyl alcohol.
  • This hydroxyl group may be substituted with other substituents, for example, a polar functional group such as a carboxyl group, an amino group, a pyridyl group, a thiol group, and a silanol group, and a hydrophobic functional group such as an alkyl group and an alkoxy group.
  • a polar functional group such as a carboxyl group, an amino group, a pyridyl group, a thiol group, and a silanol group
  • a hydrophobic functional group such as an alkyl group and an alkoxy group.
  • alkyl alcohol polyalkylene oxide adduct a commercially available product may be used.
  • examples of commercially available products include polyoxyethylene methyl ether (methyl alcohol ethylene oxide adduct) (BLAUNON MP-400, MP-550, MP-1000) manufactured by Aoki Yushi Kogyo, and polyoxyethylene decyl ether manufactured by Aoki Yushi Kogyo.
  • (Decyl alcohol ethylene oxide adduct) FINESURF D-1303, D-1305, D-1307, D-1310), polyoxyethylene lauryl ether (lauryl alcohol ethylene oxide adduct) (BLAUNON EL-1505) manufactured by Aoki Oil & Fats Industries, Ltd.
  • Stearyl ether (BLAUNON SA-50 / 50 1000R, SA-30 / 70 2000R), BASF polyoxyethylene methyl ether (Pluriol (registered trademark) A760E), Kao polyoxyethylene alkyl ether (Emulgen series), etc. Can be mentioned.
  • the internally added mold release agent is preferably an alkyl alcohol polyalkylene oxide adduct, and more preferably a long-chain alkyl alcohol polyalkylene oxide adduct.
  • An internal addition type mold release agent may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • the blending ratio in the curable composition of the component (c) which is a non-polymerizable compound is the sum of the component (a), the component (b) and the component (c) described later, that is, the total weight of all components excluding the solvent.
  • the content is preferably 0% by weight to 50% by weight. Further, it is preferably 0.1% by weight or more and 50% by weight or less, and more preferably 0.1% by weight or more and 20% by weight or less.
  • the curable composition concerning this embodiment may contain the solvent as a component (d).
  • the component (d) is not particularly limited as long as it is a solvent in which the component (a), the component (b), and the component (c) are dissolved.
  • a preferable solvent is a solvent having a boiling point of 80 ° C. or higher and 200 ° C. or lower at normal pressure. More preferably, it is a solvent having at least one of an ester structure, a ketone structure, a hydroxyl group, and an ether structure.
  • propylene glycol monomethyl ether acetate propylene glycol monomethyl ether, cyclohexanone, 2-heptanone, ⁇ -butyrolactone, ethyl lactate, or a mixed solvent thereof.
  • the curable composition (A1) according to the present embodiment preferably contains a component (d). This is because, as will be described later, a spin coating method is preferable as a method for applying the curable composition (A1) onto the substrate.
  • At least component (a) and component (b) are mixed and dissolved under a predetermined temperature condition. Specifically, it is performed in the range of 0 ° C. or higher and 100 ° C. or lower. The same applies when the component (c) and the component (d) are contained.
  • the curable compositions (A1) and (A2) according to this embodiment are preferably liquids. This is because the spread and fill of the curable composition (A1) and / or (A2) are completed quickly, that is, the filling time is short in the mold contact step described later.
  • the viscosity at 25 ° C. of the mixture of components excluding the solvent (component (d)) of the curable composition (A1) according to this embodiment is preferably 1 mPa ⁇ s or more and 1000 mPa ⁇ s or less. Further, it is more preferably 1 mPa ⁇ s or more and 500 mPa ⁇ s or less, and further preferably 1 mPa ⁇ s or more and 100 mPa ⁇ s or less.
  • the viscosity at 25 ° C. of the mixture of components excluding the solvent (component (d)) of the curable composition (A2) according to this embodiment is preferably 1 mPa ⁇ s or more and 100 mPa ⁇ s or less. Further, it is more preferably 1 mPa ⁇ s or more and 50 mPa ⁇ s or less, and further preferably 1 mPa ⁇ s or more and 12 mPa ⁇ s or less.
  • Non-Patent Document 1 That is, by using the curable composition according to the present embodiment, the optical nanoimprint method can be performed with high throughput. Also, pattern defects due to poor filling are less likely to occur. Moreover, when the viscosity is 1 mPa ⁇ s or more, uneven coating is less likely to occur when the curable compositions (A1) and (A2) are applied on the substrate. Further, when the curable compositions (A1) and (A2) are brought into contact with the mold, the curable compositions (A1) and (A2) are less likely to flow out from the end of the mold.
  • the surface tension of the curable compositions (A1) and (A2) according to the present embodiment is such that the surface tension at 23 ° C. of the component composition excluding the solvent (component (d)) is 5 mN / m or more and 70 mN / m.
  • the following is preferable. More preferably, it is 7 mN / m or more and 50 mN / m or less, More preferably, it is 10 mN / m or more and 40 mN / m or less.
  • Non-Patent Document 1 the cured film obtained by hardening
  • curing a curable composition turns into a cured film which has surface smoothness by setting surface tension to 70 mN / m or less.
  • the surface tension of the curable composition (A1) excluding the solvent (component (d)) is higher than the surface tension of the curable composition (A2) excluding the solvent (component (d)). preferable.
  • the pre-spread of the curable composition (A2) is accelerated by the Marangoni effect described later (the droplet spreads over a wide area), and the time required for the spread during the mold contact process described later is shortened, and as a result This is because the filling time is shortened.
  • the Marangoni effect is a phenomenon of free surface movement caused by a local difference in the surface tension of the liquid (Non-Patent Document 2).
  • the surface tension that is, the difference in surface energy, is used as a driving force to cause diffusion such that a liquid having a low surface tension covers a wider surface. That is, if the curable composition (A1) having a high surface tension is applied to the entire surface of the substrate and the curable composition (A2) having a low surface tension is dropped, the pre-spread of the curable composition (A2) is accelerated. It is done.
  • the contact angles of the curable compositions (A1) and (A2) according to this embodiment are 0 ° or more and 90 ° with respect to both the substrate surface and the mold surface for the composition of the component excluding the solvent (component (d)). It is preferable that the angle is not more than °.
  • the contact angle is larger than 90 °, the capillary force acts in the negative direction (the direction in which the contact interface between the mold and the curable composition is contracted) in the mold pattern or in the gap between the substrate and the mold and is not filled. It is particularly preferable that the angle is 0 ° or more and 30 ° or less. Since the capillary force works stronger as the contact angle is lower, the filling speed is faster (Non-Patent Document 1).
  • the curable compositions (A1) and (A2) according to this embodiment contain no impurities as much as possible.
  • the impurities described here mean other than the components (a), (b), (c) and (d) described above. Therefore, it is preferable that the curable composition which concerns on this embodiment is obtained through the refinement
  • a pore size of 0.001 ⁇ m or more and 5. It is preferable to filter with a filter of 0 ⁇ m or less. When performing filtration using a filter, it is more preferable to carry out in multiple stages or repeat many times. Moreover, you may filter the filtered liquid again. Filtration may be performed using a plurality of filters having different pore diameters.
  • filters made of polyethylene resin, polypropylene resin, fluororesin, nylon resin, etc. can be used, but are not particularly limited.
  • impurities such as particles mixed in the curable composition can be removed. Thereby, it can prevent that the unevenness
  • an impurity containing a metal atom (metal) in the curable composition is used so as not to hinder the operation of the product. It is preferable to avoid contamination of impurities) as much as possible.
  • the concentration of the metal impurities contained in the curable composition is preferably 10 ppm or less, and more preferably 100 ppb or less.
  • the pattern formation method according to the present embodiment is an embodiment of an optical nanoimprint method.
  • the pattern forming method of this embodiment is Lamination process 1 (FIGS. 2A1, 2A2) for laminating the above-described curable composition (A1) of this embodiment on a substrate, Lamination process 2 (FIG.
  • the cured film obtained by the method for producing a cured film having a pattern shape according to this embodiment is preferably a film having a pattern having a size of 1 nm or more and 10 mm or less.
  • a film having a pattern having a size of 10 nm or more and 100 ⁇ m or less is more preferable.
  • a pattern forming technique for producing a film having a nano-size (1 nm or more and 100 nm or less) pattern (uneven structure) using light is called an optical nanoimprint method.
  • the pattern forming method according to the present embodiment uses an optical nanoimprint method.
  • ⁇ Lamination process 1 (FIG. 2A1, 2A2)>
  • the curable composition (A1) 202 according to the present embodiment described above is laminated (coated) on the substrate 201 to form a coating film.
  • the substrate 201 that is a target on which the curable composition (A1) 202 is to be disposed is a substrate to be processed, and a silicon wafer is usually used.
  • a layer to be processed may be formed over the substrate 201. Another layer may be formed between the substrate 201 and the layer to be processed. If a quartz substrate is used as the substrate 201, a replica of the quartz imprint mold (mold replica) can be produced.
  • the substrate 201 is not limited to a silicon wafer or a quartz substrate.
  • the substrate 201 can be arbitrarily selected from those known as semiconductor device substrates such as aluminum, titanium-tungsten alloy, aluminum-silicon alloy, aluminum-copper-silicon alloy, silicon oxide, and silicon nitride.
  • the surface of the substrate 201 (substrate to be processed) or the layer to be used is subjected to surface treatment such as silane coupling treatment, silazane treatment, or organic thin film formation, and the curable compositions (A1) and (A2). Adhesiveness may be improved.
  • a method of disposing the curable composition (A1) 202 on the substrate 201 or the layer to be processed for example, an inkjet method, a dip coating method, an air knife coating method, a curtain coating method, a wire bar coating method. Gravure coating method, extrusion coating method, spin coating method, slit scanning method and the like can be used. In the present invention, the spin coating method is particularly preferable.
  • a baking process may be performed as necessary to volatilize the solvent component (d).
  • the average film thickness of the curable composition (A1) 202 varies depending on the application to be used, but is, for example, from 0.1 nm to 10,000 nm, preferably from 1 nm to 20 nm, particularly preferably 1 nm. It is 10 nm or less.
  • ⁇ Lamination process 2 (FIG. 2B1, 2B2)>
  • this step laminate step 2
  • droplets of the curable composition (A2) 203 are discretely dropped and arranged on the curable composition (A1) layer.
  • the droplets of the curable composition (A2) 203 are densely arranged on the substrate facing the region where the concave portions are densely present on the mold, and sparsely arranged on the substrate facing the region where the concave portions are sparsely present. Is done.
  • the residual film described later can be controlled to a uniform thickness regardless of the density of the pattern on the mold.
  • the droplets of the curable composition (A2) 203 disposed in this step are caused by the Marangoni effect using the difference in surface energy (surface tension) as a driving force. It spreads quickly (pre-spread) (FIGS. 2B1 and 2B2).
  • FIG. 2C ⁇ Mold contact process (FIG. 2C)>
  • a pattern shape is formed in a liquid obtained by partially mixing the curable composition (A1) and the curable composition (A2) formed in the previous step (lamination steps 1 and 2).
  • a mold 205 having an original pattern for transferring the film is brought into contact.
  • the concave portion of the fine pattern on the surface of the mold 205 is filled (filled) with a liquid obtained by partially mixing the curable composition (A1) and the curable composition (A2).
  • the liquid film is filled (filled).
  • a mold 205 made of a light-transmitting material may be used in consideration of the next process (light irradiation process).
  • the material constituting the mold 205 include glass, quartz, PMMA, a light transparent resin such as polycarbonate resin, a transparent metal vapor-deposited film, a flexible film such as polydimethylsiloxane, a photocured film, and a metal film. Etc. are preferred.
  • a light transparent resin as the material of the material constituting the mold 205, it is necessary to select a resin that does not dissolve in the components contained in the curable composition 205. Since the coefficient of thermal expansion is small and the pattern distortion is small, the material of the material constituting the mold 205 is particularly preferably quartz.
  • the fine pattern that the mold 205 has on the surface preferably has a pattern height of 4 nm or more and 200 nm or less.
  • the lower the pattern height the lower the force to peel the mold from the photocured film of the resist in the mold release process, that is, the mold release force, and the resist pattern is torn off along with the mold release and remains on the mask side.
  • Adjacent resist patterns may come into contact with each other due to the elastic deformation of the resist pattern due to impact when the mold is peeled off, and the resist pattern may adhere or break, but the pattern height is about twice or less than the pattern width (aspect ratio If it is 2 or less), there is a high possibility that these problems can be avoided.
  • the pattern height is too low, the processing accuracy of the substrate to be processed is low.
  • a mold contact step between the curable compositions (A1) and (A2) and the mold 205 is performed.
  • Surface treatment may be performed before this step.
  • the surface treatment method include a method of applying a release agent to the surface of the mold 205 to form a release agent layer.
  • a mold release agent to be applied to the surface of the mold 205 a silicone mold release agent, a fluorine mold release agent, a hydrocarbon mold release agent, a polyethylene mold release agent, a polypropylene mold release agent, a paraffin mold release agent.
  • Examples thereof include a mold agent, a montan release agent, and a carnauba release agent.
  • a commercially available coating mold release agent such as OPTOOL (registered trademark) DSX manufactured by Daikin Industries, Ltd. can be suitably used.
  • a mold release agent may be used individually by 1 type, and may be used in combination of 2 or more types. Of these, fluorine-based and hydrocarbon-based release agents are particularly preferable.
  • the pressure is not particularly limited.
  • the pressure is preferably 0 MPa or more and 100 MPa or less.
  • the pressure is preferably 0 MPa or more and 50 MPa or less, more preferably 0 MPa or more and 30 MPa or less, and further preferably 0 MPa or more and 20 MPa or less.
  • the spread of the curable composition (A2) 203 in this step is completed quickly. To do. In the inter-droplet boundary region of the curable composition (A2) 203, the spread is finally completed, and the concentration of the curable composition (A1) is high.
  • the time for contacting the mold 205 with the curable compositions (A1) and (A2) is shortened.
  • the time for contact is not particularly limited, but may be, for example, 0.1 seconds to 600 seconds.
  • the time is preferably 0.1 second or more and 3 seconds or less, particularly preferably 0.1 second or more and 1 second or less. If it is shorter than 0.1 seconds, spread and fill are insufficient, and defects called unfilled defects tend to occur frequently.
  • this step can be performed under any conditions of air atmosphere, reduced pressure atmosphere, and inert gas atmosphere, it can prevent the influence of oxygen and moisture on the curing reaction.
  • a gas atmosphere is preferable.
  • Specific examples of the inert gas that can be used when this step is performed in an inert gas atmosphere include nitrogen, carbon dioxide, helium, argon, various chlorofluorocarbons, and a mixed gas thereof.
  • a preferable pressure is 0.0001 atm or more and 10 atm or less.
  • the mold contact step may be performed under an atmosphere containing a condensable gas (hereinafter referred to as “condensable gas atmosphere”).
  • the condensable gas refers to the gas in the atmosphere together with the curable compositions (A1) and (A2) in the concave portions of the fine pattern formed on the mold 205 and the gap between the mold and the substrate. When filled, it refers to a gas that condenses and liquefies with the capillary pressure generated during filling.
  • the condensable gas exists as a gas in the atmosphere before the curable compositions (A1) and (A2) and the mold 205 come into contact with each other in the mold contact step (FIGS. 2B1 and 2B2).
  • the gas filled in the concave portions of the fine pattern is liquefied by the capillary pressure generated by the curable compositions (A1) and (A2), so that the bubbles disappear, Excellent fillability.
  • the condensable gas may be dissolved in the curable composition (A1) and / or (A2).
  • the boiling point of the condensable gas is not limited as long as it is equal to or lower than the atmospheric temperature in the mold contact step, but is preferably ⁇ 10 ° C. to 23 ° C., more preferably 10 ° C. to 23 ° C. If it is this range, a filling property will be further excellent.
  • the vapor pressure of the condensable gas at the atmospheric temperature in the mold contact process is not limited as long as it is equal to or lower than the mold pressure at the time of imprinting in the mold contact process, but is preferably 0.1 to 0.4 MPa. If it is this range, a filling property will be further excellent. When the vapor pressure at the atmospheric temperature is larger than 0.4 MPa, there is a tendency that the effect of eliminating the bubbles cannot be obtained sufficiently. On the other hand, if the vapor pressure at the ambient temperature is less than 0.1 MPa, pressure reduction is required and the apparatus tends to be complicated.
  • the atmosphere temperature in the mold contact step is not particularly limited, but is preferably 20 ° C to 25 ° C.
  • the condensable gas include chlorofluorocarbon (CFC) such as trichlorofluoromethane, fluorocarbon (FC), hydrochlorofluorocarbon (HCFC), 1,1,1,3,3-pentafluoropropane (CHF 2 CH 2 Fluorocarbons such as hydrofluorocarbon (HFC) such as CF 3 , HFC-245fa, PFP) and hydrofluoroether (HFE) such as pentafluoroethyl methyl ether (CF 3 CF 2 OCH 3 , HFE-245mc) .
  • CFC chlorofluorocarbon
  • FC trichlorofluoromethane
  • FC fluorocarbon
  • HCFC hydrochlorofluorocarbon
  • CH 2 Fluorocarbons such as hydrofluorocarbon (HFC) such as CF 3 , HFC-245fa, PFP) and hydrofluoroether (HFE) such as pentafluoroethyl methyl
  • 1,1,1,3,3-pentafluoropropane vapour pressure at 23 ° C., 0.14 MPa, from the viewpoint of excellent filling properties at an atmospheric temperature of 20 ° C. to 25 ° C. in the mold contact process.
  • Preferred are boiling point 15 ° C.
  • trichlorofluoromethane vapor pressure 0.1056 MPa at 23 ° C., boiling point 24 ° C.
  • pentafluoroethyl methyl ether is particularly preferable from the viewpoint of excellent safety.
  • Condensable gas may be used alone or in combination of two or more. These condensable gases may be used by mixing with non-condensable gases such as air, nitrogen, carbon dioxide, helium, and argon.
  • the non-condensable gas mixed with the condensable gas is preferably helium from the viewpoint of filling properties. Helium can pass through the mold 205. Therefore, when the concave portion of the fine pattern formed on the mold 205 in the mold contact process is filled with the gas (condensable gas and helium) in the atmosphere together with the curable composition (A1) and / or (A2). As the condensable gas liquefies, helium passes through the mold.
  • FIG. 2D ⁇ Light irradiation process (FIG. 2D)>
  • light is irradiated through the mold 205 with respect to the layer formed by partially mixing a curable composition (A1) and a curable composition (A2). More specifically, the curable composition (A1) and / or (A2) filled in the fine pattern of the mold is irradiated with light through the mold 205. Thereby, the curable composition (A1) and / or (A2) filled in the fine pattern of the mold 205 is cured by the irradiated light to become a cured film 207 having a pattern shape.
  • the light 206 applied to the curable composition (A1) and / or (A2) filled in the fine pattern of the mold 205 is selected according to the sensitivity wavelength of the curable compositions (A1) and (A2). Is done. Specifically, it is preferable to appropriately select and use ultraviolet light having a wavelength of 150 nm to 400 nm, X-rays, electron beams, and the like. Among these, the irradiation light 206 is particularly preferably ultraviolet light. This is because many commercially available curing aids (photopolymerization initiators) are sensitive to ultraviolet light.
  • Examples of light sources that emit ultraviolet light include high pressure mercury lamps, ultrahigh pressure mercury lamps, low pressure mercury lamps, deep-UV lamps, carbon arc lamps, chemical lamps, metal halide lamps, xenon lamps, KrF excimer lasers, ArF excimer lasers, and F 2. Although an excimer laser etc. are mentioned, an ultrahigh pressure mercury lamp is especially preferable. Further, the number of light sources used may be one or plural. Moreover, when performing light irradiation, you may carry out to the whole surface of the curable composition (A1) and / or (A2) with which the fine pattern of the mold was filled, and you may carry out only to a partial area
  • the light irradiation may be intermittently performed a plurality of times on the entire region on the substrate, or the entire region may be continuously irradiated. Furthermore, the partial area A may be irradiated in the first irradiation process, and the area B different from the area A may be irradiated in the second irradiation process.
  • the cured film 207 having a pattern shape is separated from the mold 205.
  • this step (release step) as shown in FIG. 2E, the cured film 207 having a pattern shape is separated from the mold 205, and the fine pattern formed on the mold 205 in the step (light irradiation step) in FIG. 2D.
  • the cured film 207 having a pattern shape that becomes a reverse pattern is obtained in a self-supporting state.
  • this film shall be called a residual film.
  • the method of separating the cured film 207 having a pattern shape from the mold 205 is not particularly limited as long as a part of the cured film 207 having the pattern shape is not physically damaged when being separated, and various conditions are not particularly limited. .
  • the substrate 201 (substrate to be processed) may be fixed and the mold 205 may be moved away from the substrate 201 to be peeled off.
  • the mold 205 may be fixed and the substrate 201 may be moved away from the mold and peeled off.
  • both of them may be peeled by pulling in the opposite direction.
  • a desired concavo-convex pattern shape (pattern shape due to the concavo-convex shape of the mold 205) is obtained by a series of steps (manufacturing process) including the above-described lamination process 1 (FIGS.
  • a cured film having the position can be obtained.
  • the curable composition (A1) is collectively laminated on most of the substrate surface in the lamination step 1 (FIGS. 2A1 and 2A2), and the lamination step 2 (FIG. 2B1).
  • 2B2) to the releasing step (FIG. 2E) can be repeated a plurality of times on the same substrate.
  • the stacking step 1 (FIGS. 2A1 and 2A2) to the release step (FIG. 2E) may be repeated a plurality of times on the same substrate.
  • a cured film having a plurality of desired concavo-convex pattern shapes (pattern shapes caused by the concavo-convex shape of the mold 205) at desired positions on the processed substrate can be obtained.
  • ⁇ Residual film removal step for removing part of the cured film (FIG. 3B)>
  • the cured film obtained by the mold release step (FIG. 2E) has a specific pattern shape, but a part of the cured film remains in the region other than the region where the pattern shape is formed as shown in FIG. 3A.
  • a part of such a cured film is referred to as “residual film 303”.
  • the cured film (residual film 303) in the region to be removed of the obtained cured film having the pattern shape is removed by etching gas 1 or the like.
  • a cured film pattern 304 having a desired uneven pattern shape (a pattern shape due to the uneven shape of the mold 205 in FIGS. 2C to 2E) and having no residual film can be obtained.
  • the surface of the substrate 301 is exposed.
  • a specific method for removing the remaining film 303 is not particularly limited, and a conventionally known method, for example, dry etching using an etching gas A (305 in FIG. 3B) can be used.
  • a conventionally known dry etching apparatus can be used for the dry etching.
  • the etching gas A (305 in FIG. 3B) is appropriately selected according to the elemental composition of the cured film to be etched, but CF4, C2F6, C3F8, CCl2F2, CCl4, CBrF3, BCl3, PCl3, SF6, Cl2, etc.
  • Halogen-containing gas, gas containing oxygen atoms such as O 2, CO, CO 2, inert gas such as He, N 2, Ar, gas H 2, NH 3, etc. can be used. In addition, these gases can also be mixed and used.
  • ⁇ Substrate processing step (FIG. 3C)> Using the cured film pattern 304 having no residual film as a resist film, dry etching is performed on a part of the substrate 301 whose surface is exposed in the process of FIG. 3B. A conventionally known dry etching apparatus can be used for the dry etching.
  • the etching gas B (306 in FIG. 3C) is appropriately selected according to the elemental composition of the cured film to be etched and the elemental composition of the substrate 301.
  • Halogenous gases such as PCl3, SF6, and Cl2, gases containing oxygen atoms such as O2, CO, and CO2, inert gases such as He, N2, and Ar, and gases such as H2 and NH3 can be used. In addition, these gases can also be mixed and used.
  • the etching gas A (305 in FIG. 3B) and the etching gas B (306 in FIG. 3C) may be the same or different.
  • the non-uniformity of the concentration of the curable composition (A1) and the curable composition (A2) may occur.
  • the curable composition (A1) has a dry etching resistance equal to or higher than that of the curable composition (A2). For this reason, the substrate 301 can be satisfactorily processed even in a region having a high concentration of the curable composition (A1), and as a result, the substrate 301 can be uniformly processed.
  • an electronic component is formed, which is based on the pattern shape due to the uneven shape of the mold 205.
  • a circuit structure can be formed on the substrate 301.
  • the circuit board utilized by a semiconductor element etc. can be manufactured. Examples of the semiconductor element here include LSI, system LSI, DRAM, SDRAM, RDRAM, D-RDRAM, and NAND flash.
  • the circuit board and a circuit control mechanism of the circuit board electronic devices such as a display, a camera, and a medical device can be formed.
  • an optical component can be obtained by processing the substrate by dry etching using the cured product pattern 304 as a resist film.
  • a quartz imprint mold replica (mold replica) can be manufactured by using a quartz substrate as the substrate 201 and processing the quartz by dry etching using the cured product pattern 304 as a resist film. Note that when a circuit board or an electronic component is manufactured, the cured product pattern 304 may be finally removed from the processed substrate, but may be left as a member constituting the element.
  • Pretreatment coating material and imprint resist set Another aspect of the present invention described above is an imprint in which a liquid film serving as a pretreatment coating is formed on a substrate, and droplets are applied to the liquid film to promote the spread of droplet components in the substrate surface direction.
  • a pretreatment coating material is provided.
  • the present invention provides an imprint pretreatment coating that forms a liquid film to be a pretreatment coating on a substrate and promotes the spread of droplet components in the substrate surface direction by applying droplets to the liquid film.
  • the imprint pretreatment coating material includes an imprint pretreatment coating material containing at least a compound represented by the following general formula (1) as the polymerizable compound (a1).
  • Ar represents the monovalent
  • R1 represents the alkyl group or hydrogen atom which may have a substituent
  • R2 represents an (m + n) -valent alkyl group which may have a substituent
  • m is an integer of 2 or more
  • n is an integer of 1 or more.
  • the present invention also provides an imprint pretreatment coating that forms a liquid film as a pretreatment coating on a substrate and promotes the spread of droplet components in the substrate surface direction by applying droplets to the liquid film.
  • the imprint pretreatment coating material includes at least a compound represented by the following general formula (6) as the polymerizable compound (a1).
  • Ar represents the monovalent, bivalent, trivalent, or tetravalent aromatic group which may have a substituent
  • X represents a single bond or an organic coupling group
  • R1 represents an optionally substituted alkyl group or a hydrogen atom
  • R1 represents an optionally substituted alkyl group or a hydrogen atom
  • n is 1, 2, 3, or 4.
  • the surface tension of the pretreatment coating is preferably higher than the surface tension of the applied droplets.
  • the surface tension of the imprint pretreatment coating material excluding the solvent is preferably higher than the surface tension of the imprint resist excluding the solvent.
  • an imprint resist is preferably provided as a combination of an imprint resist and a pretreatment coating material. That is, by providing a set in which the surface tension of the imprint pretreatment coating material excluding the solvent is higher than the surface tension of the imprint resist excluding the solvent, a suitable imprint is realized. Can do.
  • the difference between the surface tension of the pretreatment coating material and the surface tension of the imprint resist is a combination set of 1 mN / m to 25 mN / m.
  • Another aspect of the present invention also provides a pretreatment method for a substrate suitable for imprinting by coating a pretreatment coating material on the substrate.
  • the present invention includes a pattern forming method for forming a pattern on a substrate.
  • the pattern forming method of the present invention has a step of dropping the resist discontinuously on the substrate coated with the pretreatment coating material, thereby promoting the spread of the resist component in the substrate surface direction, which is necessary for imprinting. Time can be shortened.
  • Example 1 (1) Preparation of curable composition (A1-1) Component (a1), component (b1), component (c1) and component (d1) shown below were blended, and this was added to an ultra high molecular weight of 0.2 ⁇ m. The mixture was filtered through a polyethylene filter to prepare a curable composition (A1-1) of Example 1.
  • Component (a1) Total 100 parts by weight Phenylethylene glycol diacrylate (PhEDA): 100 parts by weight (1-2)
  • Component (b1) Total 3 parts by weight Lucirin TPO (manufactured by BASF): 3 parts by weight (1-3)
  • Component (c1) Total 0 parts by weight Component (c) was not added.
  • Component (d1) 33,000 parts in total Propylene glycol monomethyl ether acetate (manufactured by Tokyo Chemical Industry, abbreviated as PGMEA): 33000 parts by weight
  • the coating film was irradiated with light emitted from a UV light source equipped with an ultrahigh pressure mercury lamp and passed through an interference filter through quartz glass for 200 seconds.
  • an interference filter VPF-25C-10-15-31300 (manufactured by Sigma Kogyo Co., Ltd.) was used.
  • the wavelength of ultraviolet light as irradiation light was single wavelength light of 313 ⁇ 5 nm, and the illuminance was 1 mW / cm 2.
  • the quartz glass was peeled off, and a cured film of the composition excluding the solvent component (d1) of the curable composition (A1-1) was obtained on the silicon wafer with an average film thickness of 3.2 ⁇ m.
  • the dry etching rate (nm / s) was calculated by measuring the film thickness reduced by dry etching.
  • the relative value of the curable composition (A2-1) described later with respect to the dry etching rate of 100 was 90. Note that the lower the value of the dry etching rate, the higher the dry etching resistance.
  • curable composition (A2-1) Component (a2), component (b2), component (c2) and component (d2) shown below were blended, and this was added to an ultra high molecular weight of 0.2 ⁇ m. The mixture was filtered through a polyethylene filter to prepare a curable composition (A2-1) of Example 1.
  • Component (a2) Total 94 parts by weight Isobornyl acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: IB-XA): 9 parts by weight Benzyl acrylate (manufactured by Osaka Organic Chemical Industry, trade name: V # 160) : 38 parts by weight Neopentyl glycol diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: NP-A): 47 parts by weight (4-2) Component (b2): Total 3 parts by weight Irgacure 369 (manufactured by BASF): 3 parts by weight (4 -3) Component (c2): Total 0 parts by weight Component (c) was not added. (4-4) Component (d2): Total 0 parts by weight Component (d) was not added.
  • a curable composition (A1-1) having a thickness of about 5 to 10 nm is formed by applying the curable composition (A1-1) onto a silicon substrate using a spin coater. Obtainable.
  • 1 pL droplets of the curable composition (A2-1) can be discretely arranged using an inkjet method. The amount of droplets is, for example, an amount such that the average film thickness of the cured film is about 50 nm. Since the viscosity of the curable composition (A1-1) is low, the droplet expansion (pre-spread) of the curable composition (A2-1) is rapid. For this reason, the optical nanoimprint process can be completed with high throughput.
  • a quartz mold in which a fine pattern is formed is imprinted on the layer formed by partially mixing the curable composition (A1-1) and the curable composition (A2-1), and light is transmitted through the quartz mold. Irradiate.
  • the quartz mold is pulled away from the cured film (A3-1) comprising the curable composition (A1-1) and the curable composition (A2-1).
  • the cured film (A3-1) having a pattern shape that is a reverse pattern of the fine pattern formed on the quartz mold is obtained in a self-supporting state.
  • a dry etching process is performed on the cured film (A3-1).
  • the curable composition (A1-1) has a dry etching resistance equal to or higher than that of the curable composition (A2-1). Even in the dry etching conditions optimized for the conductive composition (A2-1), it is possible to uniformly dry-process the region where the optical nanoimprint process has been performed.
  • Example 2 (1) Preparation of curable composition (A1-2) Component (a1), component (b1), component (c1) and component (d1) shown below were blended, and this was added to an ultra high molecular weight of 0.2 ⁇ m. The mixture was filtered through a polyethylene filter to prepare a curable composition (A1-2) of Example 2.
  • Component (a1) Total 100 parts by weight 2-Phenylpropane-1,3-diyldiacrylate (PhPDA): 100 parts by weight (1-2)
  • Component (b1) Total 0 parts by weight Lucirin TPO ( (Made by BASF): 3 parts by weight (1-3)
  • Component (c1) Total 3 parts by weight Component (b) was not added.
  • Component (d1) 33,000 parts in total Propylene glycol monomethyl ether acetate (manufactured by Tokyo Chemical Industry, abbreviated as PGMEA): 33000 parts by weight
  • Curable composition (A2-2) The same composition as in Example 1 was used as the curable composition (A2-2).
  • Photo-nanoimprint process The photo-nanoimprint process is carried out in the same manner as in Example 1, and a cured film (A3-2) having a pattern shape is obtained in a self-supporting state. Since the viscosity of the curable composition (A1-2) is low, the expansion (pre-spread) of the droplets of the curable composition (A2-2) is rapid. For this reason, the optical nanoimprint process can be completed with high throughput. Subsequently, a dry etching step is performed on the cured film (A3-2). Since the curable composition (A1-2) has a dry etching resistance equal to or higher than that of the curable composition (A2-2), the cured film (A3-2) is cured. Even in the dry etching conditions optimized for the conductive composition (A2-2), the dry etching process can be uniformly performed on the region where the optical nanoimprint process is performed.
  • the evaluation of the pre-spread was a relative evaluation based on Comparative Example 1. That is, if the speed was faster than Comparative Example 1, it was “fast”, and if it was the same speed as Comparative Example 1 or slower than Comparative Example 1, it was “slow”.
  • the pre-spreads of Examples 1 and 2 are faster than Comparative Example 1, that is, the case where the curable composition (A1) is not used.
  • the uniformity of the dry etching process is good.
  • the component (a1) used in Examples 1 and 2 is a material having high dry etching resistance, and the dry etching resistance of the cured film can be increased even in a region where the concentration of the curable composition (A1) is high. . Thereby, a defect does not occur in processing of the substrate to be processed, that is, uniform processing can be realized.
  • the pattern forming method of this embodiment is excellent in high throughput and uniformity in dry etching processing.
  • Curable composition 101, 201, 301 Substrate 102 Curable composition 104, 204 Direction 105, 205 mold 106, 206 Irradiated light 107, 207, 302 Cured film 108, 303 Residual film 202 Curable composition ( A1) 203 curable composition (A2) 304 Cured film pattern 305 without residual film Etching gas A 306 Etching gas B

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

基板の表面に、少なくとも重合性化合物(a1)を含む硬化性組成物(A1)からなる層を積層する工程(1)、硬化性組成物(A1)層上に、少なくとも重合性化合物(a2)を含む硬化性組成物(A2)の液滴を離散的に滴下して積層する工程(2)、モールドと基板の間に硬化性組成物(A1)及び硬化性組成物(A2)が部分的に混合してなる層をサンドイッチする工程(3)、前記2種の硬化性組成物が部分的に混合してなる層のうち、モールドと基板にサンドイッチされた部分をモールド側から光を照射することにより一度に硬化させる工程(4)、モールドを硬化後の硬化性組成物からなる層から引き離す工程(5)、を該順に有するパターン形成方法であって、硬化性組成物(A1)が、重合性化合物(a1)として下記一般式(1)で表される化合物を少なくとも含有することを特徴とするパターン形成方法。

Description

パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
 本発明は、パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、およびインプリントモールドの製造方法に関する。
 半導体デバイスやMEMS等においては、微細化の要求が高まっており、微細加工技術として、光ナノインプリント技術が注目されている。
 光ナノインプリント技術では、表面に微細な凹凸パターンが形成されたモールド(型)を光硬化性組成物(レジスト)が塗布された基板(ウエハ)に押しつけた状態で光硬化性組成物を硬化させる。これにより、モールドの凹凸パターンを光硬化性組成物の硬化膜に転写し、パターンを基板上に形成する。光ナノインプリント技術によれば、基板上に数ナノメートルオーダーの微細な構造体を形成することができる。
 特許文献1に記載の光ナノインプリント技術を、図1A1~1Dを用いて説明する。まず、基板上のパターン形成領域にインクジェット法を用いて、液状のレジストを離散的に滴下する(配置工程、図1A1~1A3)。滴下されたレジストの液滴は基板上に広がるが、この現象をプレスプレッドと呼ぶ(図1A1~1A3、104)。次に、このレジストを、パターンが形成され、後述する照射光に対して透明なモールド(型)を用いて成形する(型接触工程、図1B)。型接触工程においては、レジストの液滴が毛細管現象により基板とモールドの間隙の全域へ拡がる(図1B、104)。この現象をスプレッドと呼ぶ。また、型接触工程においては、レジストはモールド上の凹部の内部へも毛細管現象により充填される(図1B、104)。この充填現象をフィルと呼ぶ。スプレッドとフィルが完了するまでの時間を充填時間と呼ぶ。レジストの充填が完了した後、光を照射してレジストを硬化(光照射工程、図1C)させたうえで引き離す(離型工程、図1D)。これらの工程を実施することにより、所定の形状を有するレジストのパターン(光硬化膜、図1D、107)が基板上に形成される。
特許4791357号公報
S.Reddy,R.T.Bonnecaze/Microelectronic Engineering,82(2005)60-70 N.Shiraishi/Int. J. Microgravity Sci.No.31 Supplement 2014 (S5-S12)
 特許文献1に記載の光ナノインプリント技術においては、型接触開始からスプレッドとフィルが完了するまでの時間(充填時間)が長く、スループットが低い、という課題があった。
 本発明に係るパターン形成方法は、基板の表面に、少なくとも重合性化合物(a1)を含む硬化性組成物(A1)からなる層を積層する工程(1)、
硬化性組成物(A1)層上に、少なくとも重合性化合物(a2)を含む硬化性組成物(A2)の液滴を離散的に滴下して積層する工程(2)、
モールドと基板の間に硬化性組成物(A1)及び硬化性組成物(A2)が部分的に混合してなる層をサンドイッチする工程(3)、
前記2種の硬化性組成物が部分的に混合してなる層のうち、モールドと基板にサンドイッチされた部分をモールド側から光を照射することにより一度に硬化させる工程(4)、
モールドを硬化後の硬化性組成物からなる層から引き離す工程(5)、
を該順に有するパターン形成方法であって、
硬化性組成物(A1)が、重合性化合物(a1)として下記一般式(1)で表される化合物を少なくとも含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000011

 ただし、前記一般式(1)において、Arは置換基を有していてもよい1価の芳香族基を表し、R1は置換基を有していてもよいアルキル基または水素原子を表し、R2は置換基を有していてもよい(m+n)価のアルキル基を表し、mは2以上の整数、nは1以上の整数である。
 本発明によれば、高スループット、かつ、ドライエッチング加工の均一性に優れたパターン形成方法を提供することができる。
光ナノインプリント技術の従来例を示す模式断面図である。 光ナノインプリント技術の従来例を示す模式断面図である。 光ナノインプリント技術の従来例を示す模式断面図である。 光ナノインプリント技術の従来例を示す模式断面図である。 光ナノインプリント技術の従来例を示す模式断面図である。 光ナノインプリント技術の従来例を示す模式断面図である。 本実施形態に係る光ナノインプリント技術を示す模式断面図である。 本実施形態に係る光ナノインプリント技術を示す模式断面図である。 本実施形態に係る光ナノインプリント技術を示す模式断面図である。 本実施形態に係る光ナノインプリント技術を示す模式断面図である。 本実施形態に係る光ナノインプリント技術を示す模式断面図である。 本実施形態に係る光ナノインプリント技術を示す模式断面図である。 本実施形態に係る光ナノインプリント技術を示す模式断面図である。 本実施形態に係る光ナノインプリント技術を示す模式断面図である。 本実施形態に係る光ナノインプリント技術を示す模式断面図である。 本実施形態に係る光ナノインプリント技術を示す模式断面図である。
 本発明に係るパターン形成方法は、基板の表面に、少なくとも重合性化合物(a1)を含む硬化性組成物(A1)からなる層を積層する工程(1)、
硬化性組成物(A1)層上に、少なくとも重合性化合物(a2)を含む硬化性組成物(A2)の液滴を離散的に滴下して積層する工程(2)、
モールドと基板の間に硬化性組成物(A1)及び硬化性組成物(A2)が部分的に混合してなる層をサンドイッチする工程(3)、
前記2種の硬化性組成物が部分的に混合してなる層のうち、モールドと基板にサンドイッチされた部分をモールド側から光を照射することにより一度に硬化させる工程(4)、
モールドを硬化後の硬化性組成物からなる層から引き離す工程(5)、
を該順に有するパターン形成方法であって、
硬化性組成物(A1)が、重合性化合物(a1)として下記一般式(1)で表される化合物を少なくとも含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000012

 ただし、前記一般式(1)において、Arは置換基を有していてもよい1価の芳香族基を表し、R1は置換基を有していてもよいアルキル基または水素原子を表し、R2は置換基を有していてもよい(m+n)価のアルキル基を表し、mは2以上の整数、nは1以上の整数である。
 硬化性組成物(A1)が、重合性化合物(a1)として下記一般式(2)で表される化合物を少なくとも含有することが好ましい。
Figure JPOXMLDOC01-appb-C000013
 また、硬化性組成物(A1)が、重合性化合物(a1)として下記一般式(3)で表される化合物を少なくとも含有することが好ましい。
Figure JPOXMLDOC01-appb-C000014
 また、本発明のパターン形成方法は、
 基板の表面に、少なくとも重合性化合物(a1)を含む硬化性組成物(A1)からなる層を積層する工程(1)、
硬化性組成物(A1)層上に、少なくとも重合性化合物(a2)を含む硬化性組成物(A2)の液滴を離散的に滴下して積層する工程(2)、
モールドと基板の間に硬化性組成物(A1)及び硬化性組成物(A2)が部分的に混合してなる層をサンドイッチする工程(3)、
前記2種の硬化性組成物が部分的に混合してなる層のうち、モールドと基板にサンドイッチされた部分をモールド側から光を照射することにより一度に硬化させる工程(4)、
モールドを硬化後の硬化性組成物からなる層から引き離す工程(5)、
を該順に有するパターン形成方法であって、
硬化性組成物(A1)が、重合性化合物(a1)として下記一般式(1)で表される化合物を少なくとも含有する
ことを特徴とする。
Figure JPOXMLDOC01-appb-C000015

 ただし、前記一般式(6)において、Arは置換基を有していてもよい1価、2価、3価または4価の芳香族基を表し、Xは単結合または有機連結基を表し、R1は置換基を有していてもよいアルキル基または水素原子を表し、R1は置換基を有していてもよいアルキル基または水素原子を表し、nは1、2、3、または4である。
 また、前記硬化性組成物(A1)が、前記重合性化合物(a1)として下記一般式(7)で表される化合物を少なくとも含有することが好ましい。
Figure JPOXMLDOC01-appb-C000016
また、前記硬化性組成物(A1)が、前記重合性化合物(a1)として下記一般式(8)で表される化合物を少なくとも含有することが好ましい。
Figure JPOXMLDOC01-appb-C000017
また、前記硬化性組成物(A1)が、前記重合性化合物(a1)として下記一般式(9)で表される化合物を少なくとも含有することが好ましい。
Figure JPOXMLDOC01-appb-C000018
 また、前記硬化性組成物(A1)が、前記重合性化合物(a1)として下記一般式(10)で表される化合物を少なくとも含有することが好ましい。
Figure JPOXMLDOC01-appb-C000019
 また、溶剤を除く硬化性組成物(A1)の表面張力が、溶剤を除く硬化性組成物(A2)の表面張力より高いことが好ましい。
 また、溶剤を除く硬化性組成物(A1)の粘度が1mPa・s以上1000mPa・s以下であり、かつ、溶剤を除く硬化性組成物(A2)の粘度が1mPa・s以上12mPa・s以下であることが好ましい。
 また、モールドの表面の材質が石英であることが好ましい。
 また、型接触工程が、凝縮性ガスを含む雰囲気下で行われることが好ましい。
 また、第2の工程が、凝縮性ガスと非凝縮性ガスとの混合ガスの雰囲気下で行われることが好ましい。
 また、非凝縮性ガスが、ヘリウムであることが好ましい。
 また、凝縮性ガスが、1,1,1,3,3-ペンタフルオロプロパンであることが好ましい。
 また、上記パターンの形成方法を有することを特徴とする加工基板の製造方法を包含する。
 また、上記パターンの形成方法を有することを特徴とする光学部品の製造方法を包含する。
 また、上記パターンの形成方法を有することを特徴とするインプリントモールドの製造方法を包含する。
 以下、本発明の実施形態について適宜図面を参照しながら詳細に説明する。ただし、本発明は以下に説明する実施形態に限定されるものではない。また、本発明においては、その趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下に説明する実施形態に対して適宜変更、改良等が加えられたものについても本発明の範囲に含まれる。
 本発明は、充填時間が短い、つまり高スループットな光ナノインプリント技術(Short Spread Time Nanoimprint Lithography、以下、SST-NIL)に関する。
 SST-NILを、図2A1~2Eの模式断面図を用いて説明する。
 基板上に、液状の硬化性組成物(A1)を積層する積層工程1(図2A1、2A2)、
 前記硬化性組成物(A1)層上に、硬化性組成物(A2)の液滴を離散的に積層する積層工程2(図2B1、2B2)、
 モールドと基板の間に硬化性組成物(A1)と硬化性組成物(A2)が部分的に混合してなる層をサンドイッチする型接触工程(図2C)、
 前記2種の硬化性組成物が部分的に混合してなる層をモールド側から光を照射することにより一度に硬化させる光照射工程(図2D)、
 モールドを硬化後の硬化性組成物からなる層から引き離す離型工程(図2E)、
を有する。
 SST-NILにおいて、積層工程1(図2B1、2B2)から離型工程(図2E)までの一連の工程単位を「ショット」と称し、モールドが硬化性組成物(A1)及び(A2)と接触する領域、つまり、基板上でパターンが形成される領域を「ショット領域」と称する。
 SST-NILにおいては、離散的に滴下された硬化性組成物(A2)の液滴が、硬化性組成物(A1)の液膜上において速やかに拡大するため、充填時間が短く、高スループットである。
 SST-NILの詳しいメカニズムを以下に述べる。
 SST-NILの特徴を、図2A1~2Eの模式断面図を用いて説明する。
 硬化性組成物(A1)202の液膜上に滴下された硬化性組成物(A2)203の液滴は、硬化性組成物(A1)202と混合しながら拡大し、モールド205が押印される。
 ここで、硬化性組成物(A2)203の液滴と液滴の間において、硬化性組成物(A1)の濃度が高い領域が生じる。逆に、硬化性組成物(A2)の液滴中央部においては硬化性組成物(A2)の濃度が高い。
 パターン形状を有する硬化膜207、つまり硬化性組成物(A1)と硬化性組成物(A2)の混合硬化物をドライエッチングマスクとして基板201をドライエッチングで加工する場合がある。
 この場合、前述の濃度不均一性に基づいて硬化膜207にドライエッチング耐性の不均一性が生じる恐れがある。このため、硬化性組成物(A1)は硬化性組成物(A2)と同等以上のドライエッチング耐性を有していることが要求される。
 また硬化性組成物(A1)は、ドライエッチング耐性が必要なだけでなく、SST-NILの高スループット効果を得るために、ある程度低粘度である必要もある。
 そこで本発明は、高スループット、かつ、ドライエッチング加工の均一性に優れたSST-NIL技術を提供するものである。
 [硬化性組成物]
 本実施形態に係る硬化性組成物(A1)及び(A2)は、少なくとも重合性化合物である成分(a)を有する化合物である。本実施形態に係る硬化性組成物はさらに、光重合開始剤である成分(b)、非重合性化合物(c)、溶剤である成分(d)を含有してもよい。
 また、本明細書において硬化膜とは、基板上で硬化性組成物を重合させて硬化させた膜を意味する。なお、硬化膜の形状は特に限定されず、表面にパターン形状を有していてもよい。
 以下、各成分について、詳細に説明する。
 <成分(a):重合性化合物>
 成分(a)は重合性化合物である。ここで、本明細書において重合性化合物とは、光重合開始剤(成分(b))から発生した重合因子(ラジカル等)と反応し、連鎖反応(重合反応)によって高分子化合物からなる膜を形成する化合物である。
 このような重合性化合物としては、例えば、ラジカル重合性化合物が挙げられる。成分(a)である重合性化合物は、一種類の重合性化合物のみから構成されていてもよく、複数種類の重合性化合物で構成されていてもよい。
 ラジカル重合性化合物としては、アクリロイル基又はメタクリロイル基を1つ以上有する化合物、すなわち、(メタ)アクリル化合物であることが好ましい。したがって、本実施形態に係る硬化性組成物は、成分(a)として(メタ)アクリル化合物を含むことが好ましく、成分(a)の主成分が(メタ)アクリル化合物であることがより好ましく、(メタ)アクリル化合物であることが最も好ましい。なお、ここで記載する成分(a)の主成分が(メタ)アクリル化合物であるとは、成分(a)の90重量%以上が(メタ)アクリル化合物であることを示す。
 ラジカル重合性化合物が、アクリロイル基又はメタクリロイル基を1つ以上有する複数種類の化合物で構成される場合には、単官能(メタ)アクリルモノマーと多官能(メタ)アクリルモノマーを含むことが好ましい。これは、単官能(メタ)アクリルモノマーと多官能(メタ)アクリルモノマーを組み合わせることで、機械的強度が強い硬化膜が得られるからである。
 本実施形態に係る硬化性組成物(A1)は、重合性化合物として、下記一般式(1)で表される多官能(メタ)アクリルモノマーを重合性化合物(a)成分として含有する。
Figure JPOXMLDOC01-appb-C000020

 一般式(1)中、Arは置換基を有していてもよい1価の芳香族基を表し、R1は置換基を有していてもよいアルキル基または水素原子を表し、R2は置換基を有していてもよい(m+n)価のアルキル基を表し、mは2以上の整数、nは1以上の整数である。
 なお、mは2以上4以下の整数であることが好ましく、nは1以上4以下の整数であることが好ましい。
 上記一般式(1)で表される多官能(メタ)アクリルモノマーを重合性化合物として含有する本実施形態に係る硬化性組成物(A1)の硬化膜は、高いドライエッチング耐性を有する。
 また、上記一般式(1)で表される多官能(メタ)アクリルモノマー、具体的には例えば後述するPhEDAやPhPDAは特に、100mPa・s程度以下の比較的低い粘度を有する。溶剤を除く硬化性組成物(A1)の粘度が低いほど、スプレッド及びフィルは速やかに完了する(非特許文献1)。つまり、上記一般式(1)で表される多官能(メタ)アクリルモノマーを重合性化合物(a)成分として含有する硬化性組成物(A1)を用いれば、光ナノインプリント法を高いスループットで実施することができる。
 上記一般式(1)で表される多官能(メタ)アクリルモノマーの一例としては、例えば、下記一般式(2)で表されるフェニルエチレングリコールジアクリレート(PhEDA)や、下記一般式(3)で表される2-フェニルプロパン-1,3-ジイルジアクリレート(PhPDA)が挙げられる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 PhEDAは、例えば下記一般式(4)のような合成スキームで合成することができる。
Figure JPOXMLDOC01-appb-C000023
 PhPDAは、例えば下記一般式(5)のような合成スキームで合成することができる。
Figure JPOXMLDOC01-appb-C000024
 本実施形態に係る硬化性組成物(A1)は、重合性化合物として、下記一般式(6)で表される多官能(メタ)アクリルモノマーを重合性化合物(a)成分として含有する。
Figure JPOXMLDOC01-appb-C000025

 ただし、前記一般式(6)において、Arは置換基を有していてもよい1価、2価、3価または4価の芳香族基を表し、Xは単結合または有機連結基を表し、R1は置換基を有していてもよいアルキル基または水素原子を表し、R1は置換基を有していてもよいアルキル基または水素原子を表し、nは1、2、3、または4である。特に、nは、1または2であることが好ましい。
 上記一般式(6)で表される多官能(メタ)アクリルモノマーを重合性化合物として含有する本実施形態に係る硬化性組成物(A1)の硬化膜は、高いドライエッチング耐性を有する。
上記一般式(6)で表される多官能(メタ)アクリルモノマーの一例としては、例えば、下記一般式(7)から(10)で表されるアクリルモノマーが挙げられる。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 なお、本実施形態に係る硬化性組成物(A1)は、重合性化合物(a)成分として上記一般式(1)で表される多官能(メタ)アクリルモノマー以外の化合物を含有していても良い。
 例えば、本実施形態に係る硬化性組成物(A1)は成分(a)としてアクリロイル基又はメタクリロイル基を1つ有する単官能(メタ)アクリル化合物としては、例えば、フェノキシエチル(メタ)アクリレート、フェノキシ-2-メチルエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、3-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-フェニルフェノキシエチル(メタ)アクリレート、4-フェニルフェノキシエチル(メタ)アクリレート、3-(2-フェニルフェニル)-2-ヒドロキシプロピル(メタ)アクリレート、EO変性p-クミルフェノールの(メタ)アクリレート、2-ブロモフェノキシエチル(メタ)アクリレート、2,4-ジブロモフェノキシエチル(メタ)アクリレート、2,4,6-トリブロモフェノキシエチル(メタ)アクリレート、EO変性フェノキシ(メタ)アクリレート、PO変性フェノキシ(メタ)アクリレート、ポリオキシエチレンノニルフェニルエーテル(メタ)アクリレート、イソボルニル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、2-エチル-2-アダマンチル(メタ)アクリレート、ボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4-ブチルシクロヘキシル(メタ)アクリレート、アクリロイルモルホリン、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソアミル(メタ)アクリレート、へキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、エトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ジアセトン(メタ)アクリルアミド、イソブトキシメチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、t-オクチル(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート、N,N-ジエチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド等が挙げられるが、これらに限定されない。
 上記単官能(メタ)アクリル化合物の市販品としては、アロニックス(登録商標)M101、M102、M110、M111、M113、M117、M5700、TO-1317、M120、M150、M156(以上、東亞合成製)、MEDOL10、MIBDOL10、CHDOL10、MMDOL30、MEDOL30、MIBDOL30、CHDOL30、LA、IBXA、2-MTA、HPA、ビスコート#150、#155、#158、#190、#192、#193、#220、#2000、#2100、#2150(以上、大阪有機化学工業製)、ライトアクリレートBO-A、EC-A、DMP-A、THF-A、HOP-A、HOA-MPE、HOA-MPL、PO-A、P-200A、NP-4EA、NP-8EA、エポキシエステルM-600A(以上、共栄社化学製)、KAYARAD(登録商標) TC110S、R-564、R-128H(以上、日本化薬製)、NKエステルAMP-10G、AMP-20G(以上、新中村化学工業製)、FA-511A、512A、513A(以上、日立化成製)、PHE、CEA、PHE-2、PHE-4、BR-31、BR-31M、BR-32(以上、第一工業製薬製)、VP(BASF製)、ACMO、DMAA、DMAPAA(以上、興人製)等が挙げられるが、これらに限定されない。
 また、アクリロイル基又はメタクリロイル基を2つ以上有する多官能(メタ)アクリル化合物としては、例えば、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、EO,PO変性トリメチロールプロパントリ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、トリス(2-ヒドキシエチル)イソシアヌレートトリ(メタ)アクリレート、トリス(アクリロイルオキシ)イソシアヌレート、ビス(ヒドロキシメチル)トリシクロデカンジ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、EO変性2,2-ビス(4-((メタ)アクリロキシ)フェニル)プロパン、PO変性2,2-ビス(4-((メタ)アクリロキシ)フェニル)プロパン、EO,PO変性2,2-ビス(4-((メタ)アクリロキシ)フェニル)プロパン等が挙げられるが、これらに限定されない。
 上記多官能(メタ)アクリル化合物の市販品としては、ユピマー(登録商標)UV SA1002、SA2007(以上、三菱化学製)、ビスコート#195、#230、#215、#260、#335HP、#295、#300、#360、#700、GPT、3PA(以上、大阪有機化学工業製)、ライトアクリレート4EG-A、9EG-A、NP-A、DCP-A、BP-4EA、BP-4PA、TMP-A、PE-3A、PE-4A、DPE-6A(以上、共栄社化学製)、KAYARAD(登録商標) PET-30、TMPTA、R-604、DPHA、DPCA-20、-30、-60、-120、HX-620、D-310、D-330(以上、日本化薬製)、アロニックス(登録商標)M208、M210、M215、M220、M240、M305、M309、M310、M315、M325、M400(以上、東亞合成製)、リポキシ(登録商標)VR-77、VR-60、VR-90(以上、昭和高分子製)等が挙げられるが、これらに限定されない。
 なお、上述した化合物群において、(メタ)アクリレートとは、アクリレートまたはそれと同等のアルコール残基を有するメタクリレートを意味する。(メタ)アクリロイル基とは、アクリロイル基またはそれと同等のアルコール残基を有するメタクリロイル基を意味する。EOは、エチレンオキサイドを示し、EO変性化合物Aとは、化合物Aの(メタ)アクリル酸残基とアルコール残基がエチレンオキサイド基のブロック構造を介して結合している化合物を示す。また、POは、プロピレンオキサイドを示し、PO変性化合物Bとは、化合物Bの(メタ)アクリル酸残基とアルコール残基がプロピレンオキサイド基のブロック構造を介して結合している化合物を示す。
 <成分(b):光重合開始剤>
 成分(b)は、光重合開始剤である。
 本明細書において光重合開始剤は、所定の波長の光を感知して上記重合因子(ラジカル)を発生させる化合物である。具体的には、光重合開始剤は、光(赤外線、可視光線、紫外線、遠紫外線、X線、電子線等の荷電粒子線等、放射線)によりラジカルを発生する重合開始剤(ラジカル発生剤)である。
 成分(b)は、一種類の光重合開始剤で構成されていてもよく、複数種類の光重合開始剤で構成されていてもよい。
 ラジカル発生剤としては、例えば、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-又はp-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の置換基を有してもよい2,4,5-トリアリールイミダゾール二量体;ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4,4’-ジアミノベンゾフェノン等のベンゾフェノン誘導体;2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノ-プロパン-1-オン等のα―アミノ芳香族ケトン誘導体;2-エチルアントラキノン、フェナントレンキノン、2-t-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナンタラキノン、2-メチル-1,4-ナフトキノン、2,3-ジメチルアントラキノン等のキノン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル誘導体;ベンゾイン、メチルベンゾイン、エチルベンゾイン、プロピルベンゾイン等のベンゾイン誘導体;ベンジルジメチルケタール等のベンジル誘導体;9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;N-フェニルグリシン等のN-フェニルグリシン誘導体;アセトフェノン、3-メチルアセトフェノン、アセトフェノンベンジルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-2-フェニルアセトフェノン等のアセトフェノン誘導体;チオキサントン、ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン等のチオキサントン誘導体;2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等のアシルフォスフィンオキサイド誘導体;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル誘導体;キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等が挙げられるが、これらに限定されない。
 上記ラジカル発生剤の市販品として、Irgacure 184、369、651、500、819、907、784、2959、CGI-1700、-1750、-1850、CG24-61、Darocur 1116、1173、Lucirin(登録商標) TPO、LR8893、LR8970(以上、BASF製)、ユベクリルP36(UCB製)等が挙げられるが、これらに限定されない。
 これらの中でも、成分(b)は、アシルフォスフィンオキサイド系重合開始剤であることが好ましい。なお、上記の例のうち、アシルフォスフィンオキサイド系重合開始剤は、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイドなどのアシルフォスフィンオキサイド化合物である。
 光重合開始剤である成分(b)の硬化性組成物(A1)及び(A2)における配合割合は、成分(a)、成分(b)、後述する成分(c)の合計、すなわち溶剤成分(d)を除く全成分の合計重量に対して、0.1重量%以上50重量%以下であるとよい。また、好ましくは、0.1重量%以上20重量%以下であり、さらに好ましくは10重量%より大きく20重量%以下である。
 成分(b)の配合割合を成分(a)、成分(b)、成分(c)の合計に対して0.1重量%以上とすることにより、組成物の硬化速度が速くなり、反応効率を良くすることができる。また、成分(b)の配合割合を成分(a)、成分(b)、成分(c)の合計に対して50重量%以下とすることにより、得られる硬化膜をある程度の機械的強度を有する硬化膜とすることができる。
 <成分(c):非重合性化合物>
 本実施形態に係る硬化性組成物(A1)及び(A2)は、前述した、成分(a)、成分(b)の他に、種々の目的に応じ、本発明の効果を損なわない範囲で、更に成分(c)として非重合性化合物を含有することができる。このような成分(c)としては、(メタ)アクリロイル基などの重合性官能基を有さず、かつ、所定の波長の光を感知して上記重合因子(ラジカル)を発生させる能力を有さない化合物が挙げられる。例えば、増感剤、水素供与体、内添型離型剤、界面活性剤、酸化防止剤、ポリマー成分、その他添加剤等が挙げられる。成分(c)として前記化合物を複数種類含有してもよい。
 増感剤は、重合反応促進や反応転化率の向上を目的として、適宜添加される化合物である。増感剤として、例えば、増感色素等が挙げられる。
 増感色素は、特定の波長の光を吸収することにより励起され、成分(b)である光重合開始剤と相互作用する化合物である。なお、ここで記載する相互作用とは、励起状態の増感色素から成分(b)である光重合開始剤へのエネルギー移動や電子移動等である。
 増感色素の具体例としては、アントラセン誘導体、アントラキノン誘導体、ピレン誘導体、ペリレン誘導体、カルバゾール誘導体、ベンゾフェノン誘導体、チオキサントン誘導体、キサントン誘導体、クマリン誘導体、フェノチアジン誘導体、カンファキノン誘導体、アクリジン系色素、チオピリリウム塩系色素、メロシアニン系色素、キノリン系色素、スチリルキノリン系色素、ケトクマリン系色素、チオキサンテン系色素、キサンテン系色素、オキソノール系色素、シアニン系色素、ローダミン系色素、ピリリウム塩系色素等が挙げられるが、これらに限定されない。
 増感剤は、一種類を単独で用いてもよいし、二種類以上を混合して用いてもよい。
 水素供与体は、成分(b)である光重合開始剤から発生した開始ラジカルや、重合生長末端のラジカルと反応し、より反応性が高いラジカルを発生する化合物である。成分(b)である光重合開始剤が光ラジカル発生剤である場合に添加することが好ましい。
 このような水素供与体の具体例としては、n-ブチルアミン、ジ-n-ブチルアミン、トリ-n-ブチルホスフィン、アリルチオ尿素、s-ベンジルイソチウロニウム-p-トルエンスルフィネート、トリエチルアミン、ジエチルアミノエチルメタクリレート、トリエチレンテトラミン、4,4’-ビス(ジアルキルアミノ)ベンゾフェノン、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエタノールアミン、N-フェニルグリシンなどのアミン化合物、2-メルカプト-N-フェニルベンゾイミダゾール、メルカプトプロピオン酸エステル等のメルカプト化合物、等が挙げられるが、これらに限定されない。
 水素供与体は、一種類を単独で用いてもよいし二種類以上を混合して用いてもよい。また、水素供与体は、増感剤としての機能を有してもよい。
 モールドとレジストとの間の界面結合力の低減、すなわち後述する離型工程における離型力の低減を目的として、硬化性組成物に内添型離型剤を添加することができる。本明細書において内添型とは、硬化性組成物の配置工程の前に予め硬化性組成物に添加されていることを意味する。
 内添型離型剤としては、シリコーン系界面活性剤、フッ素系界面活性剤および炭化水素系界面活性剤等の界面活性剤等を使用できる。なお、本発明において内添型離型剤は、重合性を有さないものとする。
 フッ素系界面活性剤としては、パーフルオロアルキル基を有するアルコールのポリアルキレンオキサイド(ポリエチレンオキサイド、ポリプロピレンオキサイド等)付加物、パーフルオロポリエーテルのポリアルキレンオキサイド(ポリエチレンオキサイド、ポリプロピレンオキサイド等)付加物等が含まれる。なお、フッ素系界面活性剤は、分子構造の一部(例えば、末端基)に、ヒドロキシル基、アルコキシ基、アルキル基、アミノ基、チオール基等を有してもよい。
 フッ素系界面活性剤としては、市販品を使用してもよい。市販品としては、例えば、メガファック(登録商標)F-444、TF-2066、TF-2067、TF-2068(以上、DIC製)、フロラード FC-430、FC-431(以上、住友スリーエム製)、サーフロン(登録商標) S-382(AGC製)、EFTOP EF-122A、122B、122C、EF-121、EF-126、EF-127、MF-100(以上、トーケムプロダクツ製)、PF-636、PF-6320、PF-656、PF-6520(以上、OMNOVA Solutions製)、ユニダイン(登録商標)DS-401、DS-403、DS-451(以上、ダイキン工業製)、フタージェント(登録商標) 250、251、222F、208G(以上、ネオス製)等が挙げられる。
 また、内添型離型剤は、炭化水素系界面活性剤でもよい。
 炭化水素系界面活性剤としては、炭素数1~50のアルキルアルコールに炭素数2~4のアルキレンオキサイドを付加した、アルキルアルコールポリアルキレンオキサイド付加物等が含まれる。
 アルキルアルコールポリアルキレンオキサイド付加物としては、メチルアルコールエチレンオキサイド付加物、デシルアルコールエチレンオキサイド付加物、ラウリルアルコールエチレンオキサイド付加物、セチルアルコールエチレンオキサイド付加物、ステアリルアルコールエチレンオキサイド付加物、ステアリルアルコールエチレンオキサイド/プロピレンオキサイド付加物等が挙げられる。なお、アルキルアルコールポリアルキレンオキサイド付加物の末端基は、単純にアルキルアルコールにポリアルキレンオキサイドを付加して製造できるヒドロキシル基に限定されない。このヒドロキシル基が他の置換基、例えば、カルボキシル基、アミノ基、ピリジル基、チオール基、シラノール基等の極性官能基やアルキル基、アルコキシ基等の疎水性官能基に置換されていてもよい。
 アルキルアルコールポリアルキレンオキサイド付加物は、市販品を使用してもよい。市販品としては、例えば、青木油脂工業製のポリオキシエチレンメチルエーテル(メチルアルコールエチレンオキサイド付加物)(BLAUNON MP-400、MP-550、MP-1000)、青木油脂工業製のポリオキシエチレンデシルエーテル(デシルアルコールエチレンオキサイド付加物)(FINESURF D-1303、D-1305、D-1307、D-1310)、青木油脂工業製のポリオキシエチレンラウリルエーテル(ラウリルアルコールエチレンオキサイド付加物)(BLAUNON EL-1505)、青木油脂工業製のポリオキシエチレンセチルエーテル(セチルアルコールエチレンオキサイド付加物)(BLAUNON CH-305、CH-310)、青木油脂工業製のポリオキシエチレンステアリルエーテル(ステアリルアルコールエチレンオキサイド付加物)(BLAUNON SR-705、SR-707、SR-715、SR-720、SR-730、SR-750)、青木油脂工業製のランダム重合型ポリオキシエチレンポリオキシプロピレンステアリルエーテル(BLAUNON SA-50/50 1000R、SA-30/70 2000R)、BASF製のポリオキシエチレンメチルエーテル(Pluriol(登録商標) A760E)、花王製のポリオキシエチレンアルキルエーテル(エマルゲンシリーズ)等が挙げられる。
 これらの炭化水素系界面活性剤の中でも内添型離型剤としては、アルキルアルコールポリアルキレンオキサイド付加物であることが好ましく、長鎖アルキルアルコールポリアルキレンオキサイド付加物であることがより好ましい。
 内添型離型剤は、一種類を単独で用いてもよいし、二種類以上を混合して用いてもよい。
 非重合性化合物である成分(c)の硬化性組成物における配合割合は、成分(a)、成分(b)、後述する成分(c)の合計、すなわち溶剤を除く全成分の合計重量に対して、0重量%以上50重量%以下であるとよい。また、好ましくは、0.1重量%以上50重量%以下であり、さらに好ましくは0.1重量%以上20重量%以下である。
 成分(c)の配合割合を成分(a)、成分(b)、成分(c)の合計に対して50重量%以下とすることにより、得られる硬化膜をある程度の機械的強度を有する硬化膜とすることができる。
 <成分(d):溶剤>
 本実施形態に係る硬化性組成物は、成分(d)として溶剤を含有していてもよい。成分(d)としては、成分(a)、成分(b)、成分(c)が溶解する溶剤であれば、特に限定はされない。好ましい溶剤としては常圧における沸点が80℃以上200℃以下の溶剤である。さらに好ましくは、エステル構造、ケトン構造、水酸基、エーテル構造のいずれかを少なくとも1つ有する溶剤である。具体的には、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノン、2-ヘプタノン、γ-ブチロラクトン、乳酸エチルから選ばれる単独、あるいはこれらの混合溶剤である。
 本実施形態に係る硬化性組成物(A1)は、成分(d)を含有することが好ましい。後述するように、基板上への硬化性組成物(A1)の塗布方法としてスピンコート法が好ましいためである。
 <硬化性組成物の配合時の温度>
 本実施形態の硬化性組成物(A1)及び(A2)を調製する際には、少なくとも成分(a)、成分(b)を所定の温度条件下で混合・溶解させる。具体的には、0℃以上100℃以下の範囲で行う。成分(c)、成分(d)を含有する場合も同様である。
 <硬化性組成物の粘度>
 本実施形態に係る硬化性組成物(A1)及び(A2)は液体であることが好ましい。なぜならば、後述する型接触工程において、硬化性組成物(A1)及び/または(A2)のスプレッド及びフィルが速やかに完了する、つまり充填時間が短いからである。
 本実施形態に係る硬化性組成物(A1)の溶剤(成分(d))を除く成分の混合物の25℃での粘度は、1mPa・s以上1000mPa・s以下であることが好ましい。また、より好ましくは、1mPa・s以上500mPa・s以下であり、さらに好ましくは、1mPa・s以上100mPa・s以下である。
 本実施形態に係る硬化性組成物(A2)の溶剤(成分(d))を除く成分の混合物の25℃での粘度は、1mPa・s以上100mPa・s以下であることが好ましい。また、より好ましくは、1mPa・s以上50mPa・s以下であり、さらに好ましくは、1mPa・s以上12mPa・s以下である。
 硬化性組成物(A1)及び(A2)の粘度を100mPa・s以下とすることにより、硬化性組成物(A1)及び(A2)をモールドに接触する際に、スプレッド及びフィルが速やかに完了する(非特許文献1)。つまり、本実施形態に係る硬化性組成物を用いることで、光ナノインプリント法を高いスループットで実施することができる。また、充填不良によるパターン欠陥が生じにくい。
 また、粘度を1mPa・s以上とすることにより、硬化性組成物(A1)及び(A2)を基板上に塗布する際に塗りムラが生じにくくなる。さらに、硬化性組成物(A1)及び(A2)をモールドに接触する際に、モールドの端部から硬化性組成物(A1)及び(A2)が流出しにくくなる。
 <硬化性組成物の表面張力>
 本実施形態に係る硬化性組成物(A1)及び(A2)の表面張力は、溶剤(成分(d))を除く成分の組成物について23℃での表面張力が、5mN/m以上70mN/m以下であることが好ましい。また、より好ましくは、7mN/m以上50mN/m以下であり、さらに好ましくは、10mN/m以上40mN/m以下である。ここで、表面張力が高いほど、例えば5mN/m以上であると、毛細管力が強く働くため、硬化性組成物(A1)及び/または(A2)をモールドに接触させた際に、充填(スプレッド及びフィル)が短時間で完了する(非特許文献1)。
 また、表面張力を70mN/m以下とすることにより、硬化性組成物を硬化して得られる硬化膜が表面平滑性を有する硬化膜となる。
 本実施形態においては、溶剤(成分(d))を除く硬化性組成物(A1)の表面張力が、溶剤(成分(d))を除く硬化性組成物(A2)の表面張力より高いことが好ましい。型接触工程前に、後述するマランゴニ効果により硬化性組成物(A2)のプレスプレッドが加速され(液滴が広範囲に広がり)、後述する型接触工程中のスプレッドに要する時間が短縮され、結果として充填時間が短縮されるためである。
 マランゴニ効果とは液体の表面張力の局所的な差に起因した自由表面移動の現象である(非特許文献2)。表面張力、つまり表面エネルギーの差を駆動力として、表面張力の低い液体が、より広い表面を覆うような拡散が生じる。つまり、基板全面に表面張力の高い硬化性組成物(A1)を塗布しておき、表面張力の低い硬化性組成物(A2)を滴下すれば、硬化性組成物(A2)のプレスプレッドが加速されるのである。
 <硬化性組成物の接触角>
 本実施形態に係る硬化性組成物(A1)及び(A2)の接触角は、溶剤(成分(d))を除く成分の組成物について、基板表面及びモールド表面の双方に対して0°以上90°以下であることが好ましい。接触角が90°より大きいと、モールドパターンの内部や基板-モールドの間隙において毛細管力が負の方向(モールドと硬化性組成物間の接触界面を収縮させる方向)に働き、充填しない。0°以上30°以下であることが特に好ましい。接触角が低いほど毛細管力が強く働くため、充填速度が速い(非特許文献1)。
 <硬化性組成物に混入している不純物>
 本実施形態に係る硬化性組成物(A1)及び(A2)は、できる限り不純物を含まないことが好ましい。ここで記載する不純物とは、前述した成分(a)、成分(b)、成分(c)および成分(d)以外のものを意味する。
 したがって、本実施形態に係る硬化性組成物は、精製工程を経て得られたものであることが好ましい。このような精製工程としては、フィルタを用いた濾過等が好ましい。
 フィルタを用いた濾過を行う際には、具体的には、前述した成分(a)、成分(b)および必要に応じて添加する添加成分を混合した後、例えば、孔径0.001μm以上5.0μm以下のフィルタで濾過することが好ましい。フィルタを用いた濾過を行う際には、多段階で行ったり、多数回繰り返したりすることがさらに好ましい。また、濾過した液を再度濾過してもよい。孔径の異なるフィルタを複数用いて濾過してもよい。濾過に使用するフィルタとしては、ポリエチレン樹脂製、ポリプロピレン樹脂製、フッ素樹脂製、ナイロン樹脂製等のフィルタを使用することができるが、特に限定されるものではない。
 このような精製工程を経ることで、硬化性組成物に混入したパーティクル等の不純物を取り除くことができる。これにより、パーティクル等の不純物によって、硬化性組成物を硬化した後に得られる硬化膜に不用意に凹凸が生じてパターンの欠陥が発生することを防止することができる。
 なお、本実施形態に係る硬化性組成物を、半導体集積回路を製造するために使用する場合、製品の動作を阻害しないようにするため、硬化性組成物中に金属原子を含有する不純物(金属不純物)が混入することを極力避けることが好ましい。このような場合、硬化性組成物に含まれる金属不純物の濃度としては、10ppm以下が好ましく、100ppb以下にすることがさらに好ましい。
 [パターン形成方法]
 次に、本実施形態に係るパターン形成方法について、図2A1~2E及び図3A~3Cの模式断面図を用いて説明する。
 本実施形態に係るパターン形成方法は、光ナノインプリント方法の一形態である。本実施形態のパターン形成方法は、
 基板上に、前述の本実施形態の硬化性組成物(A1)を積層する積層工程1(図2A1、2A2)、
 前記硬化性組成物(A1)層上に、硬化性組成物(A2)を積層する積層工程2(図2B1、2B2)、
 モールドと基板の間に硬化性組成物(A1)と硬化性組成物(A2)が部分的に混合してなる層をサンドイッチする型接触工程(図2C)、
 前記2種の硬化性組成物が部分的に混合してなる層をモールド側から光を照射することにより一度に硬化させる光照射工程(図2D)、
 モールドを硬化後の硬化性組成物からなる層から引き離す離型工程(図2E)、
を有する。
 本実施形態に係るパターン形状を有する硬化膜の製造方法によって得られる硬化膜は、1nm以上10mm以下のサイズのパターンを有する膜であることが好ましい。また、10nm以上100μm以下のサイズのパターンを有する膜であることがより好ましい。なお、一般に、光を利用してナノサイズ(1nm以上100nm以下)のパターン(凹凸構造)を有する膜を作製するパターン形成技術は、光ナノインプリント法と呼ばれている。本実施形態に係るパターン形成方法は、光ナノインプリント法を利用している。
 以下、各工程について説明する。
 <積層工程1(図2A1、2A2)>
 本工程(積層工程1)では、図2A1、2A2に示す通り、前述した本実施形態に係る硬化性組成物(A1)202を基板201上に積層(塗布)して塗布膜を形成する。
 硬化性組成物(A1)202を配置する対象である基板201は、被加工基板であり、通常、シリコンウエハが用いられる。基板201上には、被加工層が形成されていてもよい。基板201及び被加工層の間にさらに他の層が形成されていてもよい。また、基板201として石英基板を用いれば、石英インプリントモールドのレプリカ(モールドレプリカ)を作製することができる。
 ただし本発明において、基板201はシリコンウエハや石英基板に限定されるものではない。基板201は、アルミニウム、チタン-タングステン合金、アルミニウム-ケイ素合金、アルミニウム-銅-ケイ素合金、酸化ケイ素、窒化ケイ素等の半導体デバイス用基板として知られているものの中からも任意に選択することができる。
 なお、使用される基板201(被加工基板)あるいは被加工層の表面は、シランカップリング処理、シラザン処理、有機薄膜の成膜、等の表面処理によって硬化性組成物(A1)及び(A2)との密着性を向上されていてもよい。
 本実施形態において、硬化性組成物(A1)202を基板201あるいは被加工層上に配置する方法としては、例えば、インクジェット法、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スピンコート法、スリットスキャン法等を用いることができる。本発明においては、スピンコート法が特に好ましい。
 スピンコート法を用いて硬化性組成物(A1)202を基板201あるいは被加工層上に配置する場合、必要に応じてベーク工程を実施し、溶剤成分(d)を揮発させても良い。
 なお、硬化性組成物(A1)202の平均膜厚は、使用する用途によっても異なるが、例えば、0.1nm以上10,000nm以下であり、好ましくは1nm以上20nm以下であり、特に好ましくは1nm以上10nm以下である。
 <積層工程2(図2B1、2B2)>
 本工程(積層工程2)では、図2B1、2B2に示す通り、硬化性組成物(A2)203の液滴を、前記硬化性組成物(A1)層上に離散的に滴下して配置することが好ましい。配置方法としてはインクジェット法が特に好ましい。硬化性組成物(A2)203の液滴は、モールド上に凹部が密に存在する領域に対向する基板上には密に、凹部が疎に存在する領域に対向する基板上には疎に配置される。このことにより、後述する残膜を、モールド上のパターンの疎密によらずに均一な厚さに制御することができる。
 本発明においては、本工程(積層工程2)で配置された硬化性組成物(A2)203の液滴は、前述のように、表面エネルギー(表面張力)の差を駆動力とするマランゴニ効果により速やかに広がる(プレスプレッド)(図2B1、2B2)。
 <型接触工程(図2C)>
 次に、図2Cに示すように、前工程(積層工程1、2)で形成された硬化性組成物(A1)及び硬化性組成物(A2)が部分的に混合してなる液体にパターン形状を転写するための原型パターンを有するモールド205を接触させる。これにより、モールド205が表面に有する微細パターンの凹部に硬化性組成物(A1)及び硬化性組成物(A2)が部分的に混合してなる液体が充填(フィル)されて、モールドの微細パターンに充填(フィル)された液膜となる。
 モールド205としては、次の工程(光照射工程)を考慮して光透過性の材料で構成されたモールド205を用いるとよい。モールド205を構成する材料の材質としては、具体的には、ガラス、石英、PMMA、ポリカーボネート樹脂等の光透明性樹脂、透明金属蒸着膜、ポリジメチルシロキサン等の柔軟膜、光硬化膜、金属膜等が好ましい。ただし、モールド205を構成する材料の材質として光透明性樹脂を使用する場合は、硬化性組成物205に含まれる成分に溶解しない樹脂を選択する必要がある。熱膨張係数が小さくパターン歪みが小さいことから、モールド205を構成する材料の材質は、石英であることが特に好ましい。
 モールド205が表面に有する微細パターンは、4nm以上200nm以下のパターン高さを有することが好ましい。
 パターン高さが低いほど、離型工程においてモールドをレジストの光硬化膜から引き剥がす力、すなわち離型力が低く、また、離型に伴ってレジストパターンがひきちぎられてマスク側に残存する離型欠陥数が少ない。モールドを引き剥がす際の衝撃によるレジストパターンの弾性変形で隣接レジストパターン同士が接触し、レジストパターンが癒着あるいは破損する場合があるが、パターン幅に対してパターン高さが2倍程度以下(アスペクト比2以下)であると、それらの不具合を回避できる可能性が高い。一方、パターン高さが低過ぎると、被加工基板の加工精度が低い。
 モールド205には、硬化性組成物(A1)及び(A2)とモールド205の表面との剥離性を向上させるために、硬化性組成物(A1)及び(A2)とモールド205との型接触工程である本工程の前に表面処理を行っておいてもよい。表面処理の方法としては、モールド205の表面に離型剤を塗布して離型剤層を形成する方法が挙げられる。ここで、モールド205の表面に塗布する離型剤としては、シリコーン系離型剤、フッ素系離型剤、炭化水素系離型剤、ポリエチレン系離型剤、ポリプロピレン系離型剤、パラフィン系離型剤、モンタン系離型剤、カルナバ系離型剤等が挙げられる。例えば、ダイキン工業(株)製のオプツール(登録商標)DSX等の市販の塗布型離型剤も好適に用いることができる。なお、離型剤は、一種類を単独で用いてもよいし、二種類以上を併用して用いてもよい。これらの中でも、フッ素系および炭化水素系の離型剤が特に好ましい。
 本工程(型接触工程)において、図2Cに示すように、モールド205と硬化性組成物(A1)及び(A2)とを接触させる際に、硬化性組成物(A1)及び(A2)に加える圧力は特に限定はされない。該圧力は0MPa以上100MPa以下とするとよい。また、該圧力は0MPa以上50MPa以下であることが好ましく、0MPa以上30MPa以下であることがより好ましく、0MPa以上20MPa以下であることがさらに好ましい。
 本発明では、前工程(積層工程2)において硬化性組成物(A2)203の液滴のプレスプレッドが進行しているため、本工程における硬化性組成物(A2)203のスプレッドは速やかに完了する。硬化性組成物(A2)203の液滴間境界領域においては、スプレッドが最後に完了し、かつ硬化性組成物(A1)の濃度が高い。
 以上のように、本工程において硬化性組成物(A1)及び(A2)のスプレッド及びフィルが速やかに完了するため、モールド205と硬化性組成物(A1)及び(A2)を接触させる時間を短く設定できる。つまり短時間で多くのパターン形成工程を完了でき、高い生産性を得られることが、本発明の効果の一つである。接触させる時間は、特に限定はされないが、例えば0.1秒以上600秒以下とすると良い。また、該時間は0.1秒以上3秒以下であることが好ましく、0.1秒以上1秒以下であることが特に好ましい。0.1秒より短いと、スプレッド及びフィルが不十分となり、未充填欠陥と呼ばれる欠陥が多発する傾向がある。
 本工程は、大気雰囲気下、減圧雰囲気下、不活性ガス雰囲気下のいずれの条件下でも行うことができるが、酸素や水分による硬化反応への影響を防ぐことができるため、減圧雰囲気や不活性ガス雰囲気とすることが好ましい。不活性ガス雰囲気下で本工程を行う場合に使用することができる不活性ガスの具体例としては、窒素、二酸化炭素、ヘリウム、アルゴン、各種フロンガス等、あるいはこれらの混合ガスが挙げられる。大気雰囲気下を含めて特定のガスの雰囲気下で本工程を行う場合、好ましい圧力は、0.0001気圧以上10気圧以下である。
 型接触工程は、凝縮性ガスを含む雰囲気(以下、「凝縮性ガス雰囲気」と称する)下で行ってもよい。本明細書において凝縮性ガスとは、モールド205上に形成された微細パターンの凹部、およびモールドと基板との間隙に、硬化性組成物(A1)及び(A2)と一緒に雰囲気中のガスが充填されたとき、充填時に発生する毛細管圧力で凝縮して液化するガスのことを指す。なお凝縮性ガスは、型接触工程で硬化性組成物(A1)及び(A2)とモールド205とが接触する前(図2B1、2B2)は雰囲気中に気体として存在する。
 凝縮性ガス雰囲気下で型接触工程を行うと、微細パターンの凹部に充填されたガスが硬化性組成物(A1)及び(A2)により発生する毛細管圧力により液化することで気泡が消滅するため、充填性が優れる。凝縮性ガスは、硬化性組成物(A1)及び/または(A2)に溶解してもよい。
 凝縮性ガスの沸点は、型接触工程の雰囲気温度以下であれば限定はされないが、-10℃~23℃が好ましく、さらに好ましくは10℃~23℃である。この範囲であれば、充填性がさらに優れる。
 凝縮性ガスの型接触工程の雰囲気温度での蒸気圧は、型接触工程で押印するときのモールド圧力以下であれば制限がないが、0.1~0.4MPaが好ましい。この範囲であれば、充填性がさらに優れる。雰囲気温度での蒸気圧が0.4MPaより大きいと、気泡の消滅の効果を十分に得ることができない傾向がある。一方、雰囲気温度での蒸気圧が0.1MPaよりも小さいと、減圧が必要となり、装置が複雑になる傾向がある。
 型接触工程の雰囲気温度は、特に制限がないが、20℃~25℃が好ましい。
 凝縮性ガスとして、具体的には、トリクロロフルオロメタン等のクロロフルオロカーボン(CFC)、フルオロカーボン(FC)、ハイドロクロロフルオロカーボン(HCFC)、1,1,1,3,3-ペンタフルオロプロパン(CHFCHCF、HFC-245fa、PFP)等のハイドロフルオロカーボン(HFC)、ペンタフルオロエチルメチルエーテル(CFCFOCH、HFE-245mc)等のハイドロフルオロエーテル(HFE)等のフロン類が挙げられる。
 これらのうち、型接触工程の雰囲気温度が20℃~25℃での充填性が優れるという観点から、1,1,1,3,3-ペンタフルオロプロパン(23℃での蒸気圧0.14MPa、沸点15℃)、トリクロロフルオロメタン(23℃での蒸気圧0.1056MPa、沸点24℃)、およびペンタフルオロエチルメチルエーテルが好ましい。さらに、安全性が優れるという観点から、1,1,1,3,3-ペンタフルオロプロパンが特に好ましい。
 凝縮性ガスは、一種類を単独で用いてもよいし、二種類以上を混合して用いてもよい。またこれら凝縮性ガスは、空気、窒素、二酸化炭素、ヘリウム、アルゴン等の非凝縮性ガスと混合して用いてもよい。凝縮性ガスと混合する非凝縮性ガスとしては、充填性の観点から、ヘリウムが好ましい。ヘリウムはモールド205を透過することができる。そのため、型接触工程でモールド205上に形成された微細パターンの凹部に硬化性組成物(A1)及び/または(A2)と一緒に雰囲気中のガス(凝縮性ガスおよびヘリウム)が充填されたとき、凝縮性ガスが液化するとともにヘリウムはモールドを透過する。
 <光照射工程(図2D)>
 次に、図2Dに示すように、硬化性組成物(A1)及び硬化性組成物(A2)が部分的に混合してなる層に対し、モールド205を介して光を照射する。より詳細には、モールドの微細パターンに充填された硬化性組成物(A1)及び/または(A2)に、モールド205を介して光を照射する。これにより、モールド205の微細パターンに充填された硬化性組成物(A1)及び/または(A2)は、照射される光によって硬化してパターン形状を有する硬化膜207となる。
 ここで、モールド205の微細パターンに充填された硬化性組成物(A1)及び/または(A2)に照射する光206は、硬化性組成物(A1)及び(A2)の感度波長に応じて選択される。具体的には、150nm以上400nm以下の波長の紫外光や、X線、電子線等を適宜選択して使用することが好ましい。
 これらの中でも、照射光206は、紫外光が特に好ましい。これは、硬化助剤(光重合開始剤)として市販されているものは、紫外光に感度を有する化合物が多いからである。ここで紫外光を発する光源としては、例えば、高圧水銀灯、超高圧水銀灯、低圧水銀灯、Deep-UVランプ、炭素アーク灯、ケミカルランプ、メタルハライドランプ、キセノンランプ、KrFエキシマレーザ、ArFエキシマレーザ、Fエキシマレーザ等が挙げられるが、超高圧水銀灯が特に好ましい。また使用する光源の数は1つでもよいし又は複数であってもよい。また、光照射を行う際には、モールドの微細パターンに充填された硬化性組成物(A1)及び/または(A2)の全面に行ってもよく、一部領域にのみ行ってもよい。
 また、光照射は、基板上の全領域に断続的に複数回行ってもよいし、全領域に連続照射してもよい。さらに、第一の照射過程で一部領域Aを照射し、第二の照射過程で領域Aとは異なる領域Bを照射してもよい。
 <離型工程(図2E)>
 次に、パターン形状を有する硬化膜207とモールド205と引き離す。本工程(離型工程)では、図2Eに示すように、パターン形状を有する硬化膜207とモールド205とを引き離し、図2Dの工程(光照射工程)において、モールド205上に形成された微細パターンの反転パターンとなるパターン形状を有する硬化膜207が自立した状態で得られる。なお、パターン形状を有する硬化膜207の凹凸パターンの凹部にも硬化膜が残存するが、この膜のことを残膜と呼ぶこととする。
 なお、型接触工程を凝縮性ガス雰囲気下で行った場合、離型工程で硬化膜207とモールド205とを引き離す際に、硬化膜207とモールド205とが接触する界面の圧力が低下することに伴って凝縮性ガスが気化する。これにより、硬化膜207とモールド205とを引き離すために必要な力である離型力を低減させる効果を奏する傾向がある。
 パターン形状を有する硬化膜207とモールド205とを引き離す方法としては、引き離す際にパターン形状を有する硬化膜207の一部が物理的に破損しなければ特に限定されず、各種条件等も特に限定されない。例えば、基板201(被加工基板)を固定してモールド205を基板201から遠ざかるように移動させて剥離してもよい。もしくは、モールド205を固定して基板201をモールドから遠ざかるように移動させて剥離してもよい。あるいは、これらの両方を正反対の方向へ引っ張って剥離してもよい。
 以上の積層工程1(図2A1、2A2)~離型工程(図2E)を有する一連の工程(製造プロセス)によって、所望の凹凸パターン形状(モールド205の凹凸形状に因むパターン形状)を、所望の位置に有する硬化膜を得ることができる。
 本実施形態のパターン形状を有する膜の製造方法では、積層工程1(図2A1、2A2)で基板表面の大部分に硬化性組成物(A1)を一括して積層し、積層工程2(図2B1、2B2)~離型工程(図2E)からなる繰り返し単位(ショット)を、同一基板上で繰り返して複数回行うことができる。また、積層工程1(図2A1、2A2)~離型工程(図2E)同一基板上で繰り返して複数回行ってもよい。積層工程1(図2A1、2A2)~離型工程(図2E)あるいは積層工程2(図2B1、2B2)~離型工程(図2E)からなる繰り返し単位(ショット)を複数回繰り返すことで、被加工基板の所望の位置に複数の所望の凹凸パターン形状(モールド205の凹凸形状に因むパターン形状)を有する硬化膜を得ることができる。
 <硬化膜の一部を除去する残膜除去工程(図3B)>
 離型工程(図2E)により得られる硬化膜は、特定のパターン形状を有するものの、このパターン形状が形成される領域以外の領域においても図3Aに示すように、硬化膜の一部が残る場合がある(以下、このような硬化膜の一部を「残膜303」と称する)。そのような場合は、図3Bに示すように、得られたパターン形状を有する硬化膜のうちの除去すべき領域にある硬化膜(残膜303)をエッチングガス1などにより除去する。これにより、所望の凹凸パターン形状(図2C~2Eのモールド205の凹凸形状に因むパターン形状)を有し、残膜のない硬化膜パターン304を得ることができる。基板301の表面が露出する。
 残膜303を除去する具体的な方法としては、特に限定されるものではなく、従来公知の方法、例えば、エッチングガスA(図3Bの305)を用いたドライエッチングを用いることができる。ドライエッチングには、従来公知のドライエッチング装置を用いることができる。そして、エッチングガスA(図3Bの305)は、エッチングに供される硬化膜の元素組成によって適宜選択されるが、CF4、C2F6、C3F8、CCl2F2、CCl4、CBrF3、BCl3、PCl3、SF6、Cl2等のハロゲン系ガス、O2、CO、CO2等の酸素原子を含むガス、He、N2、Ar等の不活性ガス、H2、NH3のガス等を使用することができる。なお、これらのガスは混合して用いることもできる。
 <基板加工工程(図3C)>
 残膜のない硬化膜パターン304をレジスト膜として利用して、図3Bの工程にて表面が露出した基板301の一部分に対して、ドライエッチングを行う。ドライエッチングには、従来公知のドライエッチング装置を用いることができる。そして、エッチングガスB(図3Cの306)は、エッチングに供される硬化膜の元素組成及び基板301の元素組成によって適宜選択されるが、CF4、C2F6、C3F8、CCl2F2、CCl4、CBrF3、BCl3、PCl3、SF6、Cl2等のハロゲン系ガス、O2、CO、CO2等の酸素原子を含むガス、He、N2、Ar等の不活性ガス、H2、NH3のガス等を使用することができる。なお、これらのガスは混合して用いることもできる。エッチングガスA(図3Bの305)及びエッチングガスB(図3Cの306)は、同一であっても異なっていても良い。
 図2Eに示すように、パターン形状を有する硬化膜207において硬化性組成物(A1)と硬化性組成物(A2)の濃度の不均一性が生じる可能性がある。本発明においては、硬化性組成物(A1)は硬化性組成物(A2)と同等以上のドライエッチング耐性を有している。このため、硬化性組成物(A1)濃度の高い領域においても基板301を良好に加工することができ、結果として、基板301を均一に加工することができる。
 以上の積層工程1(図2A1、2A2)~基板加工工程(図3C)を有する一連の工程(製造プロセス)に加えて電子部品を形成することにより、モールド205の凹凸形状に因むパターン形状に基づく回路構造を基板301上に形成することができる。これにより、半導体素子等で利用される回路基板を製造することができる。ここでいう半導体素子とは、例えば、LSI、システムLSI、DRAM、SDRAM、RDRAM、D-RDRAM、NANDフラッシュ等が挙げられる。また、この回路基板と回路基板の回路制御機構などとを接続することにより、ディスプレイ、カメラ、医療装置などの電子機器を形成することもできる。
 また、同様に、硬化物パターン304をレジスト膜として利用してドライエッチングにより基板を加工して光学部品を得ることもできる。
 また、基板201として石英基板を用い、硬化物パターン304をレジスト膜として利用して石英をドライエッチングで加工して、石英インプリントモールドのレプリカ(モールドレプリカ)を作製することもできる。
 なお、回路付基板や電子部品を作製する場合、最終的には、加工された基板から硬化物パターン304を除去してもよいが、素子を構成する部材として残す構成としてもよい。
(前処理コーティング材料、およびインプリントレジストのセット)
 上述した本発明の別の側面は、基板上に前処理コーティングとなる液膜を形成し、液膜に対して液滴を付与することで液滴成分の基板面方向の広がりを促進するインプリント前処理コーティング材料を提供するものである。
 すなわち、本発明は、基板上に前処理コーティングとなる液膜を形成し、前記液膜に対して液滴を付与することで液滴成分の基板面方向の広がりを促進するインプリント前処理コーティング材料であって、
 前記インプリント前処理コーティング材料が、重合性化合物(a1)として下記一般式(1)で表される化合物を少なくとも含有することを特徴とするインプリント前処理コーティング材料、を包含する。
Figure JPOXMLDOC01-appb-C000030

 ただし、前記一般式(1)において、Arは置換基を有していてもよい1価の芳香族基を表し、R1は置換基を有していてもよいアルキル基または水素原子を表し、R2は置換基を有していてもよい(m+n)価のアルキル基を表し、mは2以上の整数、nは1以上の整数である。
 また、本発明は、基板上に前処理コーティングとなる液膜を形成し、前記液膜に対して液滴を付与することで液滴成分の基板面方向の広がりを促進するインプリント前処理コーティング材料であって、
 前記インプリント前処理コーティング材料が、重合性化合物(a1)として下記一般式(6)で表される化合物を少なくとも含有することを特徴とするインプリント前処理コーティング材料、を包含する。
Figure JPOXMLDOC01-appb-C000031

 ただし、前記一般式(6)において、Arは置換基を有していてもよい1価、2価、3価または4価の芳香族基を表し、Xは単結合または有機連結基を表し、R1は置換基を有していてもよいアルキル基または水素原子を表し、R1は置換基を有していてもよいアルキル基または水素原子を表し、nは1、2、3、または4である。
 前処理コーティングの表面張力が、付与される液滴の表面張力よりも高いことが好ましい。
 特に、溶剤を除くインプリント前処理コーティング材料の表面張力が、溶剤を除くインプリントレジストの表面張力より高いことが好ましい。
 これにより、液膜に対して液滴を付与することで液滴成分の基板面方向の広がりが促進され、好適なインプリントを実現することができる。
 特に、インプリントレジストと、前処理コーティング材料とを組み合わせたセットとして提供されることが好ましい。
 すなわち、溶剤を除く前記インプリント前処理コーティング材料の表面張力が、溶剤を除く前記インプリントレジストの表面張力より高い、という関係で組み合わせたセットとして提供することで、好適なインプリントを実現することができる。
 さらに、前処理コーティング材料の表面張力と、インプリントレジストの表面張力の差が、1mN/m~25mN/mである組み合わせのセットであるとより好ましい。
 また、本発明の別の側面は、前処理コーティング材料を基板上にコーティングすることで、インプリントを行うための好適な基板の前処理方法をも提供するものである。
 加えて本発明は、基板上にパターンを形成するためのパターン形成方法をも包含するものである。かかる本発明のパターン形成方法は、前処理コーティング材料がコーティングされた基板上にレジストを不連続に滴下する工程を有し、それによりレジスト成分の基板面方向の広がりが促進され、インプリントに要する時間を短縮することができる。
 以下、実施例により本発明をより詳細に説明するが、本発明の技術的範囲は以下に説明する実施例に限定されるものではない。尚、以下に使用される「部」および「%」は特に示さない限りすべて重量基準である。
 (実施例1)
 (1)硬化性組成物(A1-1)の調製
 下記に示される成分(a1)、成分(b1)、成分(c1)、成分(d1)を配合し、これを0.2μmの超高分子量ポリエチレン製フィルタでろ過し、実施例1の硬化性組成物(A1-1)を調製した。
 (1-1)成分(a1):合計100重量部
 フェニルエチレングリコールジアクリレート(PhEDA):100重量部
 (1-2)成分(b1):合計3重量部
 Lucirin TPO(BASF製):3重量部
 (1-3)成分(c1):合計0重量部
 成分(c)は添加しなかった。
 (1-4)成分(d1):合計33000重量部
 プロピレングリコールモノメチルエーテルアセテート(東京化成工業製、略称PGMEA):33000重量部
 (2)硬化性組成物(A1-1)の粘度の測定
 円錐平板方式回転型粘度計RE-85L(東機産業製)を用いて、硬化性組成物(A1-1)の溶剤成分(d1)を除く組成物の25℃における粘度を測定したところ、23.0mPa・sであった。
 (3)硬化性組成物(A1-1)の硬化膜の作製及びドライエッチング速度の測定
 密着層として厚さ60nmの密着促進層が形成されたシリコンウエハ上に、硬化性組成物(A1-1)の溶剤成分(d1)を除く組成物を2μL滴下した。その後、上から厚さ1mmの石英ガラスを被せ、一辺25mmの正方形の領域に硬化性組成物(A1-1)の溶剤成分(d1)を除く組成物を充填させた。
 次に、超高圧水銀ランプを備えたUV光源から出射され、干渉フィルタを通した光を、石英ガラスを通して塗布膜に200秒照射した。干渉フィルタとしてはVPF-25C-10-15-31300(シグマ光機製)を使用し、このとき照射光である紫外光の波長を313±5nmの単一波長光とし、照度を1mW/cm2とした。
 光照射後、石英ガラスを剥がし、硬化性組成物(A1-1)の溶剤成分(d1)を除く組成物の硬化膜を、シリコンウエハ上に平均膜厚3.2μmで得た。
 ULVAC製高密度プラズマエッチング装置NE-550を用いて、エッチングガスとその流量をCF4/CHF3=50sccm/50sccmとして、(A1-1)の硬化膜に対して500秒間ドライエッチングを行った。ドライエッチングによって減少した膜厚を測定することでドライエッチング速度(nm/s)を算出した。後述する硬化性組成物(A2-1)のドライエッチング速度を100とする相対値は、90であった。なお、ドライエッチング速度は、値が低いほど、ドライエッチング耐性が高いことを意味する。
 (4)硬化性組成物(A2-1)の調製
 下記に示される成分(a2)、成分(b2)、成分(c2)、成分(d2)を配合し、これを0.2μmの超高分子量ポリエチレン製フィルタでろ過し、実施例1の硬化性組成物(A2-1)を調製した。
 (4-1)成分(a2):合計94重量部
 イソボルニルアクリレート(共栄社化学製、商品名:IB-XA):9重量部
 ベンジルアクリレート(大阪有機化学工業製、商品名:V#160):38重量部
 ネオペンチルグリコールジアクリレート(共栄社化学製、商品名:NP-A):47重量部
 (4-2)成分(b2):合計3重量部
 Irgacure369(BASF製):3重量部
 (4-3)成分(c2):合計0重量部
 成分(c)は添加しなかった。
 (4-4)成分(d2):合計0重量部
 成分(d)は添加しなかった。
 (5)硬化性組成物(A2-1)の粘度の測定
 硬化性組成物(A1-1)と同様の方法で硬化性組成物(A2-1)の粘度を測定したところ、3.9mPa・sであった。
 (6)硬化性組成物(A2-1)の硬化膜の作製及びドライエッチング速度の測定
 硬化性組成物(A1-1)と同様の方法で硬化性組成物(A2-1)の硬化膜を作成し、ドライエッチング速度(nm/s)を測定した。この値を100と規定して、本発明の実施例及び比較例の組成物のドライエッチング速度を評価した。
 (7)光ナノインプリントプロセス
 スピンコーターを用いて硬化性組成物(A1-1)をシリコン基板上に塗布することで、5~10nm程度の厚さの硬化性組成物(A1-1)の膜を得ることができる。
 硬化性組成物(A1-1)の膜の上に、インクジェット法を用いて硬化性組成物(A2-1)の1pLの液滴を離散的に配置することができる。液滴量は、例えば、硬化膜の平均膜厚が50nm程度になる量とする。硬化性組成物(A1-1)の粘度が低いため、硬化性組成物(A2-1)の液滴の拡大(プレスプレッド)は速やかである。このため、光ナノインプリントプロセスを高スループットに完了することができる。
 硬化性組成物(A1-1)及び硬化性組成物(A2-1)が部分的に混合してなる層に対し、微細パターンが形成された石英モールドを押印し、石英モールドを介して光を照射する。
 次に、硬化性組成物(A1-1)及び硬化性組成物(A2-1)からなる硬化膜(A3-1)から、石英モールドを引き離す。石英モールド上に形成された微細パターンの反転パターンとなるパターン形状を有する硬化膜(A3-1)が自立した状態で得られる。
 硬化膜(A3-1)に対して引き続き、ドライエッチング工程を行うが、硬化性組成物(A1-1)が硬化性組成物(A2-1)と同等以上のドライエッチング耐性を有するので、硬化性組成物(A2-1)に対して最適化されたドライエッチング条件でも、光ナノインプリントプロセスを実施した領域に対して均一にドライエッチング加工を施すことができる。
(実施例2)
 (1)硬化性組成物(A1-2)の調製
 下記に示される成分(a1)、成分(b1)、成分(c1)、成分(d1)を配合し、これを0.2μmの超高分子量ポリエチレン製フィルタでろ過し、実施例2の硬化性組成物(A1-2)を調製した。
 (1-1)成分(a1):合計100重量部
 2-フェニルプロパン-1,3-ジイルジアクリレート(PhPDA):100量部
 (1-2)成分(b1):合計0重量部
 Lucirin TPO(BASF製):3重量部
 (1-3)成分(c1):合計3重量部
 成分(b)は添加しなかった。
 (1-4)成分(d1):合計33000重量部
 プロピレングリコールモノメチルエーテルアセテート(東京化成工業製、略称PGMEA):33000重量部
 (2)硬化性組成物(A1-2)の粘度の測定
 硬化性組成物(A1-1)と同様の方法で硬化性組成物(A1-2)の溶剤成分(d1)を除く組成物の25℃における粘度を測定したところ、37.7mPa・sであった。
 (3)硬化性組成物(A1-2)の硬化膜の作製及びドライエッチング速度の測定
 硬化性組成物(A1-1)と同様の方法で硬化性組成物(A1-2)の硬化膜を作成し、ドライエッチング速度(nm/s)を測定した。硬化性組成物(A2-1)のドライエッチング速度を100とする相対値は、89であった。
 (4)~(6)硬化性組成物(A2-2)について
 実施例1と同様の組成物を硬化性組成物(A2-2)として用いた。
 (7)光ナノインプリントプロセス
 実施例1と同様に、光ナノインプリントプロセスを実施し、パターン形状を有する硬化膜(A3-2)が自立した状態で得られる。硬化性組成物(A1-2)の粘度が低いため、硬化性組成物(A2-2)の液滴の拡大(プレスプレッド)は速やかである。このため、光ナノインプリントプロセスを高スループットに完了することができる。
 硬化膜(A3-2)に対して引き続き、ドライエッチング工程を行うが、硬化性組成物(A1-2)が硬化性組成物(A2-2)と同等以上のドライエッチング耐性を有するので、硬化性組成物(A2-2)に対して最適化されたドライエッチング条件でも、光ナノインプリントプロセスを実施した領域に対して均一にドライエッチング加工を施すことができる。
(比較例1)
 (1)~(3)硬化性組成物(A1-0´)について
 比較例1において、硬化性組成物(A1)は使用しなかった。
 (4)~(6)硬化性組成物(A2-0´)
 実施例1と同様の組成物を硬化性組成物(A2-0´)として用いた。
 (7)光ナノインプリントプロセス
 硬化性組成物(A1)を用いないこと以外は実施例1と同様に、光ナノインプリントプロセスを実施し、パターン形状を有する硬化膜(A3-0´)が自立した状態で得られる。硬化性組成物(A2-0´)の液滴の拡大(プレスプレッド)は比較的遅い。このため、光ナノインプリントプロセスのスループットが低い。
 硬化膜(A3-0´)に対して引き続き、ドライエッチング工程を行うが、光ナノインプリントプロセスを実施した領域に対して均一にドライエッチング加工を施すことができる。
 (実施例及び比較例のまとめ)
 実施例1~2及び比較例1の組成表を表1及び表2に、発明の効果を表3にまとめて示す。
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
 表3において、プレスプレッドの評価は比較例1を基準とした相対評価とした。つまり、比較例1より速い速度であれば「速い」とし、比較例1と同程度あるいは比較例1より遅い速度であれば「遅い」とした。実施例1~2のプレスプレッドは、比較例1、つまり硬化性組成物(A1)を使用しない場合よりも速い。
 実施例1~2ではドライエッチング加工の均一性が良好である。
 実施例1~2で使用される成分(a1)はドライエッチング耐性の高い材料であり、硬化性組成物(A1)の濃度が高い領域においても、硬化膜のドライエッチング耐性を高くすることができる。これにより、被加工基板の加工に不具合が生じない、すなわち均一な加工を実現できる。
 以上、本実施形態のパターン形成方法が、高スループット、かつ、ドライエッチング加工の均一性に優れることが示された。
 この出願は2016年1月25日に出願された米国特許出願番号62/286,570、および2016年9月12日に出願された米国特許出願番号62/393,218の優先権を主張するものであり、それらの内容を引用してこの出願の一部とするものである。
101、201、301 基板
102 硬化性組成物
104、204 液滴の拡がる方向
105、205 モールド
106、206 照射光
107、207、302 パターン形状を有する硬化膜
108、303 残膜
202 硬化性組成物(A1)
203 硬化性組成物(A2)
304 残膜のない硬化膜パターン
305 エッチングガスA
306 エッチングガスB

Claims (26)

  1.  基板の表面に、少なくとも重合性化合物(a1)を含む硬化性組成物(A1)からなる層を積層する工程(1)、
    硬化性組成物(A1)層上に、少なくとも重合性化合物(a2)を含む硬化性組成物(A2)の液滴を離散的に滴下して積層する工程(2)、
    モールドと基板の間に硬化性組成物(A1)及び硬化性組成物(A2)が部分的に混合してなる層をサンドイッチする工程(3)、
    前記2種の硬化性組成物が部分的に混合してなる層のうち、モールドと基板にサンドイッチされた部分をモールド側から光を照射することにより一度に硬化させる工程(4)、
    モールドを硬化後の硬化性組成物からなる層から引き離す工程(5)、
    を該順に有するパターン形成方法であって、
    硬化性組成物(A1)が、重合性化合物(a1)として下記一般式(1)で表される化合物を少なくとも含有する
    ことを特徴とするパターン形成方法。
    Figure JPOXMLDOC01-appb-C000001

     ただし、前記一般式(1)において、Arは置換基を有していてもよい1価の芳香族基を表し、R1は置換基を有していてもよいアルキル基または水素原子を表し、R2は置換基を有していてもよい(m+n)価のアルキル基を表し、mは2以上の整数、nは1以上の整数である。
  2.  前記硬化性組成物(A1)が、前記重合性化合物(a1)として下記一般式(2)で表される化合物を少なくとも含有することを特徴とする請求項1に記載のパターン形成方法。
    Figure JPOXMLDOC01-appb-C000002
  3.  前記硬化性組成物(A1)が、前記重合性化合物(a1)として下記一般式(3)で表される化合物を少なくとも含有することを特徴とする請求項1に記載のパターン形成方法。
    Figure JPOXMLDOC01-appb-C000003
  4.  基板の表面に、少なくとも重合性化合物(a1)を含む硬化性組成物(A1)からなる層を積層する工程(1)、
    硬化性組成物(A1)層上に、少なくとも重合性化合物(a2)を含む硬化性組成物(A2)の液滴を離散的に滴下して積層する工程(2)、
    モールドと基板の間に硬化性組成物(A1)及び硬化性組成物(A2)が部分的に混合してなる層をサンドイッチする工程(3)、
    前記2種の硬化性組成物が部分的に混合してなる層のうち、モールドと基板にサンドイッチされた部分をモールド側から光を照射することにより一度に硬化させる工程(4)、
    モールドを硬化後の硬化性組成物からなる層から引き離す工程(5)、
    を該順に有するパターン形成方法であって、
    硬化性組成物(A1)が、重合性化合物(a1)として下記一般式(1)で表される化合物を少なくとも含有する
    ことを特徴とするパターン形成方法。
    Figure JPOXMLDOC01-appb-C000004

     ただし、前記一般式(6)において、Arは置換基を有していてもよい1価、2価、3価または4価の芳香族基を表し、Xは単結合または有機連結基を表し、R1は置換基を有していてもよいアルキル基または水素原子を表し、R1は置換基を有していてもよいアルキル基または水素原子を表し、nは1、2、3、または4である。
  5.  前記硬化性組成物(A1)が、前記重合性化合物(a1)として下記一般式(7)で表される化合物を少なくとも含有することを特徴とする請求項4に記載のパターン形成方法。
    Figure JPOXMLDOC01-appb-C000005
  6.  前記硬化性組成物(A1)が、前記重合性化合物(a1)として下記一般式(8)で表される化合物を少なくとも含有することを特徴とする請求項4に記載のパターン形成方法。
    Figure JPOXMLDOC01-appb-C000006
  7.  前記硬化性組成物(A1)が、前記重合性化合物(a1)として下記一般式(9)で表される化合物を少なくとも含有することを特徴とする請求項4に記載のパターン形成方法。
    Figure JPOXMLDOC01-appb-C000007
  8.  前記硬化性組成物(A1)が、前記重合性化合物(a1)として下記一般式(10)で表される化合物を少なくとも含有することを特徴とする請求項4に記載のパターン形成方法。
    Figure JPOXMLDOC01-appb-C000008
  9.  溶剤を除く前記硬化性組成物(A1)の表面張力が、溶剤を除く前記硬化性組成物(A2)の表面張力より高いことを特徴とする請求項1から8のいずれか1項に記載のパターン形成方法。
  10.  溶剤を除く前記硬化性組成物(A1)の粘度が1mPa・s以上1000mPa・s以下であり、かつ、溶剤を除く前記硬化性組成物(A2)の粘度が1mPa・s以上12mPa・s以下であることを特徴とする請求項1から9のいずれか1項に記載のパターン形成方法。
  11.  前記モールドの表面の材質が石英であることを特徴とする請求項1から10のいずれか1項に記載のパターン形成方法。
  12.  前記型接触工程が、凝縮性ガスを含む雰囲気下で行われることを特徴とする、請求項1から11のいずれか1項に記載のパターン形成方法。
  13.  前記第2の工程が、前記凝縮性ガスと非凝縮性ガスとの混合ガスの雰囲気下で行われることを特徴とする請求項12に記載のパターン形成方法。
  14.  前記非凝縮性ガスが、ヘリウムであることを特徴とする請求項13に記載のパターン形成方法。
  15.  前記凝縮性ガスが、1,1,1,3,3-ペンタフルオロプロパンであることを特徴とする請求項12から14のいずれか1項に記載のパターン形成方法。
  16.  請求項1から15のいずれか1項に記載のパターンの形成方法を有することを特徴とする加工基板の製造方法。
  17.  請求項1から15のいずれか1項に記載のパターンの形成方法を有することを特徴とする光学部品の製造方法。
  18.  請求項1から17のいずれか一項に記載のパターンの形成方法を有することを特徴とするインプリントモールドの製造方法。
  19.  基板上に前処理コーティングとなる液膜を形成し、前記液膜に対して液滴を付与することで液滴成分の基板面方向の広がりを促進するインプリント前処理コーティング材料であって、
     前記インプリント前処理コーティング材料が、重合性化合物(a1)として下記一般式(1)で表される化合物を少なくとも含有することを特徴とするインプリント前処理コーティング材料。
    Figure JPOXMLDOC01-appb-C000009

     ただし、前記一般式(1)において、Arは置換基を有していてもよい1価の芳香族基を表し、R1は置換基を有していてもよいアルキル基または水素原子を表し、R2は置換基を有していてもよい(m+n)価のアルキル基を表し、mは2以上の整数、nは1以上の整数である。
  20.  基板上に前処理コーティングとなる液膜を形成し、前記液膜に対して液滴を付与することで液滴成分の基板面方向の広がりを促進するインプリント前処理コーティング材料であって、
     前記インプリント前処理コーティング材料が、重合性化合物(a1)として下記一般式(6)で表される化合物を少なくとも含有することを特徴とするインプリント前処理コーティング材料。
    Figure JPOXMLDOC01-appb-C000010

     ただし、前記一般式(6)において、Arは置換基を有していてもよい1価、2価、3価または4価の芳香族基を表し、Xは単結合または有機連結基を表し、R1は置換基を有していてもよいアルキル基または水素原子を表し、R1は置換基を有していてもよいアルキル基または水素原子を表し、nは1、2、3、または4である。
  21.  前記インプリント前処理コーティング材料の表面張力が、付与される前記液滴の表面張力よりも高い請求項19または20に記載のインプリント前処理コーティング材料。
  22.  請求項19から21のいずれか1項に記載のインプリント前処理コーティング材料と、前記インプリント前処理コーティング材料でコーティングされた基板に滴下するためのインプリントレジストと、を有するセット。
  23.  溶剤を除く前記インプリント前処理コーティング材料の表面張力が、溶剤を除く前記インプリントレジストの表面張力より高いことを特徴とする請求項22に記載のセット。
  24.  請求項23に記載のセットに用いるインプリントレジスト。
  25.  基板上に硬化性組成物を配置してインプリントを行うための前処理方法であって、請求項19から21のいずれか1項に記載のインプリント前処理コーティング材料を基板上にコーティングすることを特徴とする基板の前処理方法。
  26.  基板上にパターンを形成するためのパターン形成方法であって、請求項19から21のいずれか1項に記載のインプリント前処理コーティング材料がコーティングされた基板上にレジストを不連続に滴下する工程を有することを特徴とするパターン形成方法。
PCT/JP2017/001875 2016-01-25 2017-01-20 パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法 WO2017130853A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780008232.3A CN108602238B (zh) 2016-01-25 2017-01-20 图案形成方法、加工基板的生产方法、光学组件的生产方法、电路基板的生产方法、电子组件的生产方法和压印模具的生产方法
JP2017564210A JP6961495B2 (ja) 2016-01-25 2017-01-20 パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
KR1020187023715A KR102285063B1 (ko) 2016-01-25 2017-01-20 패턴 형성 방법, 가공 기판의 제조 방법, 광학 부품의 제조 방법, 회로 기판의 제조 방법, 전자 부품의 제조 방법, 임프린트 몰드의 제조 방법
US16/042,421 US11126078B2 (en) 2016-01-25 2018-07-23 Pattern forming method, production method for processed substrate, production method for optical component, production method for circuit substrate, production method for electronic component and production method for imprint mold

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662286570P 2016-01-25 2016-01-25
US62/286570 2016-01-25
US201662393218P 2016-09-12 2016-09-12
US62/393218 2016-09-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/042,421 Continuation US11126078B2 (en) 2016-01-25 2018-07-23 Pattern forming method, production method for processed substrate, production method for optical component, production method for circuit substrate, production method for electronic component and production method for imprint mold

Publications (1)

Publication Number Publication Date
WO2017130853A1 true WO2017130853A1 (ja) 2017-08-03

Family

ID=59398015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001875 WO2017130853A1 (ja) 2016-01-25 2017-01-20 パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法

Country Status (6)

Country Link
US (1) US11126078B2 (ja)
JP (1) JP6961495B2 (ja)
KR (1) KR102285063B1 (ja)
CN (1) CN108602238B (ja)
TW (1) TWI642533B (ja)
WO (1) WO2017130853A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10095106B2 (en) 2016-03-31 2018-10-09 Canon Kabushiki Kaisha Removing substrate pretreatment compositions in nanoimprint lithography
US10134588B2 (en) 2016-03-31 2018-11-20 Canon Kabushiki Kaisha Imprint resist and substrate pretreatment for reducing fill time in nanoimprint lithography
US10317793B2 (en) 2017-03-03 2019-06-11 Canon Kabushiki Kaisha Substrate pretreatment compositions for nanoimprint lithography
US10488753B2 (en) 2015-09-08 2019-11-26 Canon Kabushiki Kaisha Substrate pretreatment and etch uniformity in nanoimprint lithography
US10509313B2 (en) 2016-06-28 2019-12-17 Canon Kabushiki Kaisha Imprint resist with fluorinated photoinitiator and substrate pretreatment for reducing fill time in nanoimprint lithography
US10578965B2 (en) 2016-03-31 2020-03-03 Canon Kabushiki Kaisha Pattern forming method
US10620539B2 (en) 2016-03-31 2020-04-14 Canon Kabushiki Kaisha Curing substrate pretreatment compositions in nanoimprint lithography
US10668677B2 (en) 2015-09-08 2020-06-02 Canon Kabushiki Kaisha Substrate pretreatment for reducing fill time in nanoimprint lithography
US10754243B2 (en) 2016-03-31 2020-08-25 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10754245B2 (en) 2016-03-31 2020-08-25 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10754244B2 (en) 2016-03-31 2020-08-25 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10829644B2 (en) 2016-03-31 2020-11-10 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10845700B2 (en) 2016-03-31 2020-11-24 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10883006B2 (en) 2016-03-31 2021-01-05 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US11597137B2 (en) 2016-04-08 2023-03-07 Canon Kabushiki Kaisha Method of forming pattern of cured product as well as production methods for processed substrate, optical component, circuit board, electronic component, imprint mold and imprint pretreatment coating material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6503606B2 (ja) * 2015-10-29 2019-04-24 国立研究開発法人産業技術総合研究所 インプリント装置
KR102385158B1 (ko) 2017-03-08 2022-04-12 캐논 가부시끼가이샤 패턴 형성 방법, 임프린트 전처리 코팅 재료, 및 기판의 전처리 방법
KR102419881B1 (ko) 2017-08-10 2022-07-12 캐논 가부시끼가이샤 패턴 형성 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179806A (ja) * 2013-09-18 2015-10-08 キヤノン株式会社 膜の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、及び光硬化性組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791357A (en) 1987-02-27 1988-12-13 Hyduke Stanley M Electronic Circuit board testing system and method
US7157036B2 (en) 2003-06-17 2007-01-02 Molecular Imprints, Inc Method to reduce adhesion between a conformable region and a pattern of a mold
JP4467611B2 (ja) * 2007-09-28 2010-05-26 株式会社日立製作所 光インプリント方法
JP2011222732A (ja) 2010-04-09 2011-11-04 Fujifilm Corp パターン形成方法及びパターン基板製造方法
US20140061970A1 (en) * 2011-02-15 2014-03-06 Dic Corporation Nanoimprint curable composition, nanoimprint-lithographic molded product, and method for forming pattern
CN102565942B (zh) * 2012-01-09 2014-01-15 吉林大学 紫外纳米压印技术制备有机聚合物光波导放大器的方法
JP5462903B2 (ja) * 2012-03-23 2014-04-02 株式会社東芝 滴状体配置方法、パターン形成方法、滴状体配置プログラム、滴状体配置装置、およびテンプレートのパターンの設計方法
DK2923817T3 (en) * 2012-11-22 2018-01-02 Soken Kagaku Kk Process for making an embossing mold, embossing mold and equipment for making an embossing mold
JP5744260B2 (ja) * 2014-02-21 2015-07-08 東洋合成工業株式会社 光硬化性組成物、モールド、樹脂、光学素子の製造方法及び半導体集積回路の製造方法
JP6643802B2 (ja) * 2014-05-09 2020-02-12 キヤノン株式会社 硬化性組成物、その硬化物、硬化物の製造方法、光学部品の製造方法、回路基板の製造方法、および電子部品の製造方法
US20170068159A1 (en) * 2015-09-08 2017-03-09 Canon Kabushiki Kaisha Substrate pretreatment for reducing fill time in nanoimprint lithography

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179806A (ja) * 2013-09-18 2015-10-08 キヤノン株式会社 膜の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、及び光硬化性組成物

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10488753B2 (en) 2015-09-08 2019-11-26 Canon Kabushiki Kaisha Substrate pretreatment and etch uniformity in nanoimprint lithography
US10668677B2 (en) 2015-09-08 2020-06-02 Canon Kabushiki Kaisha Substrate pretreatment for reducing fill time in nanoimprint lithography
US10620539B2 (en) 2016-03-31 2020-04-14 Canon Kabushiki Kaisha Curing substrate pretreatment compositions in nanoimprint lithography
US10578965B2 (en) 2016-03-31 2020-03-03 Canon Kabushiki Kaisha Pattern forming method
US10095106B2 (en) 2016-03-31 2018-10-09 Canon Kabushiki Kaisha Removing substrate pretreatment compositions in nanoimprint lithography
US10134588B2 (en) 2016-03-31 2018-11-20 Canon Kabushiki Kaisha Imprint resist and substrate pretreatment for reducing fill time in nanoimprint lithography
US10754243B2 (en) 2016-03-31 2020-08-25 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10754245B2 (en) 2016-03-31 2020-08-25 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10754244B2 (en) 2016-03-31 2020-08-25 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10829644B2 (en) 2016-03-31 2020-11-10 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10845700B2 (en) 2016-03-31 2020-11-24 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10883006B2 (en) 2016-03-31 2021-01-05 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US11597137B2 (en) 2016-04-08 2023-03-07 Canon Kabushiki Kaisha Method of forming pattern of cured product as well as production methods for processed substrate, optical component, circuit board, electronic component, imprint mold and imprint pretreatment coating material
US10509313B2 (en) 2016-06-28 2019-12-17 Canon Kabushiki Kaisha Imprint resist with fluorinated photoinitiator and substrate pretreatment for reducing fill time in nanoimprint lithography
US10317793B2 (en) 2017-03-03 2019-06-11 Canon Kabushiki Kaisha Substrate pretreatment compositions for nanoimprint lithography

Also Published As

Publication number Publication date
TWI642533B (zh) 2018-12-01
US20190004421A1 (en) 2019-01-03
CN108602238B (zh) 2021-04-13
JP6961495B2 (ja) 2021-11-05
KR20180104035A (ko) 2018-09-19
CN108602238A (zh) 2018-09-28
TW201800212A (zh) 2018-01-01
JPWO2017130853A1 (ja) 2018-11-15
US11126078B2 (en) 2021-09-21
KR102285063B1 (ko) 2021-08-04

Similar Documents

Publication Publication Date Title
JP6806766B2 (ja) パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
JP7086841B2 (ja) パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
JP6983757B2 (ja) パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
JP6855448B2 (ja) パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
WO2017130853A1 (ja) パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
JP7094878B2 (ja) パターン形成方法、加工基板の製造方法、光学部品の製造方法、石英モールドレプリカの製造方法、半導体素子の製造方法
JP7155002B2 (ja) パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
JP6884757B2 (ja) パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
JP7066674B2 (ja) パターン形成方法、インプリント前処理コーティング材料、及び基板の前処理方法
JP7328888B2 (ja) 硬化物パターンの製造方法、光学部品、回路基板および石英モールドレプリカの製造方法、ならびにインプリント前処理コート用材料およびその硬化物
JP7425602B2 (ja) パターン形成方法、ならびに加工基板、光学部品及び石英モールドレプリカの製造方法、ならびにインプリント前処理コーティング材料及びそれとインプリントレジストとのセット
WO2018164016A1 (ja) 光ナノインプリント技術を用いたパターン形成方法、インプリント装置、および硬化性組成物
JP6624808B2 (ja) 光硬化性組成物、これを用いた硬化物パターンの製造方法、光学部品の製造方法、回路基板の製造方法
JP2016162862A (ja) パターンの形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法
JP7118580B2 (ja) 光硬化性組成物、これを用いた硬化物パターンの製造方法、光学部品の製造方法、回路基板の製造方法、およびインプリント用モールドの製造方法
JP7077178B2 (ja) パターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017564210

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187023715

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187023715

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 17744083

Country of ref document: EP

Kind code of ref document: A1