KR20180053694A - 콘포말한 금속 또는 메탈로이드 실리콘 니트라이드 막을 증착시키는 방법 및 얻어진 막 - Google Patents

콘포말한 금속 또는 메탈로이드 실리콘 니트라이드 막을 증착시키는 방법 및 얻어진 막 Download PDF

Info

Publication number
KR20180053694A
KR20180053694A KR1020187010145A KR20187010145A KR20180053694A KR 20180053694 A KR20180053694 A KR 20180053694A KR 1020187010145 A KR1020187010145 A KR 1020187010145A KR 20187010145 A KR20187010145 A KR 20187010145A KR 20180053694 A KR20180053694 A KR 20180053694A
Authority
KR
South Korea
Prior art keywords
group
plasma
tris
bis
aluminum
Prior art date
Application number
KR1020187010145A
Other languages
English (en)
Other versions
KR102188750B1 (ko
Inventor
신지안 레이
무성 김
지안헹 리
Original Assignee
버슘머트리얼즈 유에스, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 버슘머트리얼즈 유에스, 엘엘씨 filed Critical 버슘머트리얼즈 유에스, 엘엘씨
Publication of KR20180053694A publication Critical patent/KR20180053694A/ko
Application granted granted Critical
Publication of KR102188750B1 publication Critical patent/KR102188750B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

본원에는 콘포말한 막, 및 콘포말한 4, 5, 6, 13족 금속 또는 메탈로이드 도핑된 실리콘 니트라이드 유전체 막을 형성시키는 방법이 기술된다. 일 양태에서, 알루미늄 실리콘 니트라이드 막을 형성시키는 방법으로서, 반응기에 기판을 제공하는 단계; 화학흡착된 층을 제공하기 위해 기판 표면의 적어도 일부 상에서 반응하는 적어도 하나의 금속 전구체를 반응기에 도입하는 단계; 반응기를 퍼지 가스로 퍼징시키는 단계; 화학흡착된 층을 제공하도록 기판 표면의 적어도 일부 상에서 반응시키기 위해 반응기에 오가노아미노실란 전구체를 도입하는 단계; 화학흡착된 층의 적어도 일부와 반응시키고 적어도 하나의 반응성 사이트를 제공하기 위해 반응기에 질소 및 불활성 가스를 포함하는 플라즈마를 도입하는 단계로서, 플라즈마가 약 0.01 내지 약 1.5 W/㎠ 범위의 출력 밀도에서 발생되는 단계; 및 임의적으로 반응기를 불활성 가스로 퍼징시키는 단계를 포함하며, 이러한 단계들은 알루미늄 니트라이드 막의 요망되는 두께가 수득될 때까지 반복되는, 방법이 제공된다.

Description

콘포말한 금속 또는 메탈로이드 실리콘 니트라이드 막을 증착시키는 방법 및 얻어진 막
관련 특허 출원에 대한 상호 참조문헌
본 출원은 2015년 9월 11일에 출원된 미국출원번호 제62/217296호, 및 2015년 10월 6일에 출원된 미국출원번호 제62/237899호의 이익을 주장한다. 출원번호 제62/217296호 및 제62/237899호의 개시내용은 본원에 참고로 포함된다.
본원에는 하나 이상의 4, 5, 6, 또는 13족 금속 또는 메탈로이드 전구체를 사용하여 하나 이상의 주기율표의 4, 5, 6, 또는 13족 금속 또는 메탈로이드로 도핑된 화학양론적 또는 비-화학양론적 실리콘 니트라이드 막을 증착시키는 방법이 기술된다. 더욱 상세하게, 본원에는 예를 들어, 집적회로 소자의 제작에서 사용될 수 있는 4, 5, 6, 및/또는 13족 도핑된 금속 또는 메탈로이드 유전체 막, 예를 들어, 알루미늄, 갈륨, 인듐, 탈륨, 붕소, 또는 이들의 조합의 실리콘 니트라이드 막을 증착시키기 위해 사용되는 플라즈마 강화 원자층 증착("PEALD"), 플라즈마 강화 사이클릭 화학적 증기 증착("PECCVD") 방법을 포함하지만 이로 제한되지 않는 플라즈마-기반, 사이클릭 방법이 기술된다.
이의 독특한 성질들의 조합으로 인하여, 4, 5, 6, 13족 함유 금속 또는 메탈로이드 유전체 막, 예를 들어, 비제한적으로, 알루미늄 니트라이드(AlN) 또는 붕소 니트라이드(BN) 막은 다양한 전자 적용을 위해 사용될 수 있다. 종래 기술은 13족 도핑된 금속 또는 메탈로이드 유전체 막, 예를 들어, AlSiN 막을 제조하고 사용하기 위한 상이한 방법들을 제공한다. 예를 들어, 미국특허번호 제3,974,003호에는 Al, N을 함유한 층을 증착시키기 위한 화학적 증기 증착(CVD) 방법으로서, 코팅될 기판, 운반 가스, 및 질소 소스 화합물, 알루미늄 소스 화합물 및 실리콘 소스 물질의 가스상 혼합물을 제공하고, 기판을 약 500 내지 1300℃ 범위의 온도까지 가열하여 Al, N 및 Si를 함유한 층을 형성시키는 것을 포함하는 방법이 기재되어 있다. 반응물, NH3, AlCl3, 및 SiH4가 사용될 수 있다.
미국공개번호 제2015/0221495호에는 제1 원소를 함유한 가스를 공급함으로써 기판 상에 제1 원소를 포함하는 제1 층을 형성시키고; 제1 층을 개질시키기 위해 제2 원소를 함유한 가스를 공급함으로써 제1 원소 및 제2 원소를 포함하는 제2 층을 형성시키고; 제1 층의 형성 및 제2 층의 형성을 1 사이클로 설정함으로써 사전결정된 두께를 갖는 박막을 형성시키고; 이러한 사이클을 적어도 1회 반복하는 것을 포함하는, 막을 형성시키기 위한 사이클릭 증착 공정이 기재되어 있다.
미국특허번호 제8,791,034호에는 기판 상에 알루미늄-실리콘 니트라이드 층을 증착시키기 위한 CVD 조건 하에서 금속 전구체, 실리콘 전구체 및 질소 전구체를 사용하여 기판 상에 알루미늄-실리콘 니트라이드 층을 형성시키기 위한 CVD 방법이 기재되어 있다.
상기에서 확인된 특허 및 특허출원은 본원에 참고로 포함된다.
이에 따라, 당해 분야에서는 콘포말한, 고품질의 4, 5, 6, 13족 원소 도핑된, 예를 들어, 비제한적으로, 알루미늄-도핑된 실리콘 니트라이드 또는 알루미늄-도핑된 실리콘 카보니트라이드 막을 증착시키기 위한 저온(예를 들어, 약 500℃ 이하의 가공 온도) 방법으로서, 막이 입방 센티미터 당 2.0 그램(g/cc) 이상의 밀도, (묽은 불화수소산(0.5 중량% HF)에서 측정하는 경우) 낮은 습식 에칭률, 20 원자중량 퍼센트% 미만의 수소 함량, 1.80 이상의 반사 지수, 및 이들의 조합의 특징 중 하나 이상을 갖는 방법을 제공하는 것이 요구되고 있다.
도면의 다양한 도에 대한 간단한 설명
도 1은 실시예 4에 기술된 바와 같이 트리스(디메틸아미노)알루미늄, 디-이소-프로필아미노실란 및 질소 플라즈마를 사용하여 증착된 AlSiN 막의 투과 전자 현미경(TEM) 이미지를 제공하며, 이는 하기 단차 피복을 나타낸다: 중간 69% 및 하부 78%.
도 2는 실시예 6에 기술된 바와 같이 트리메틸알루미늄, 비스(3차-부틸아미노)실란 및 질소 플라즈마를 사용하여 증착된 AlSiN 막의 투과 전자 현미경(TEM) 이미지를 제공하며, 이는 하기 단차 피복을 나타낸다: 중간 81% 및 하부 94%.
본 발명의 간단한 요약
본원에는 기판의 적어도 일부 상에 화학양론적 또는 비-화학양론적 4, 5, 6, 13족 금속 또는 메탈로이드 도핑된 실리콘 니트라이드 막, 예를 들어, 알루미늄, 갈륨, 인듐, 탈륨, 붕소, 또는 이들의 조합 도핑된, 실리콘 니트라이드 막을 형성시키는 방법이 기술된다. 더욱 상세하게, 본원에는 알루미늄-도핑된 실리콘 니트라이드 또는 알루미늄-도핑된 실리콘 카보니트라이드 막을 증착시키기 위한 원자층 증착(ALD) 또는 사이클릭 CVD 방법이 기술된다.
일 양태에서, 알루미늄 도핑된 실리콘 니트라이드 막을 증착시키는 방법으로서,
a. 반응기에 기판을 제공하는 단계;
b. 반응기에, 금속 전구체를 반응시키고 화학흡착된 층을 제공하기에 충분한 공정 조건 하에서, AlCl3, 트리메틸알루미늄(TMA), 트리에틸알루미늄, 트리스(디메틸아미노)알루미늄(TDMAA), 트리스(디메틸아미노)알루미늄(TDMAA), 및 트리스(디에틸아미노)알루미늄(TDEAA)으로 이루어진 군으로부터 선택된 금속 전구체를 도입하는 단계;
c. 미반응된 금속 전구체를 제거하기 위해 퍼징시키는 단계;
d. 화학흡착된 층의 적어도 일부와 반응하고 적어도 하나의 반응성 사이트를 제공하기 위해 플라즈마 함유 소스를 반응기에 도입하는 단계로서, 플라즈마가 약 0.01 내지 약 1.5 W/㎠ 범위의 출력 밀도에서 발생되는 단계;
e. 반응기를 퍼지 가스로 퍼징시키는 단계;
f. 반응기에 하기 화학식 I 내지 화학식 IV에 의해 표현되는 오가노아미노실란 전구체를 도입하는 단계로서, 오가노아미노실란 전구체가 화학흡착된 층을 제공하기 위해 기판 표면의 적어도 일부 상에서 반응하는 단계;
g. 반응기를 퍼지 가스로 퍼징시키는 단계;
h. 화학흡착된 층의 적어도 일부와 반응하고 적어도 하나의 반응성 사이트를 제공하기 위해 플라즈마 함유 소스를 반응기에 도입하는 단계로서, 플라즈마가 약 0.01 내지 약 1.5 W/㎠ 범위의 출력 밀도에서 발생되는 단계; 및
i. 임의적으로 반응기를 불활성 가스로 퍼징시키는 단계를 포함하며,
단계 b 내지 단계 i가 요망되는 막 두께가 얻어질 때까지 반복되는, 방법이 제공된다:
Figure pct00001
상기 식에서, R1은 선형 C1 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C3 내지 C10 알케닐 기, 선형 또는 분지형 C3 내지 C10 알키닐 기, C1 내지 C6 디알킬아미노 기, 전자 끄는 기, C6 내지 C10 아릴 기, C1 내지 C10 알킬 실릴 기, 및 실릴 기로부터 선택되며; R2는 수소, 선형 C2 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C3 내지 C6 알케닐 기, 선형 또는 분지형 C3 내지 C6 알키닐 기, C1 내지 C6 디알킬아미노 기, C6 내지 C10 아릴 기, 전자 끄는 기, 및 C4 내지 C10 아릴 기로부터 선택되며; n=1 또는 2; x=0, 1, 2; y=2, 3; 임의적으로 화학식 I, 화학식 III 및 화학식 IV에서 R1 및 R2는 함께 연결되어 치환되거나 비치환된 방향족 고리 또는 치환되거나 비치환된 지방족 고리로부터 선택된 고리를 형성한다. 화학식 I, 화학식 III, 및 화학식 IV의 특정 구체예에서, R1 및 R2는 동일하다. 화학식 I, 화학식 III 및 화학식 IV의 다른 구체예에서, R1 및 R2는 상이하다. 화학식 I 및 화학식 IV의 상기 구체예 또는 다른 구체예에서, R1 및 R2는 고리를 형성하기 위해 함께 연결될 수 있다. 이러한 구체예에서, 고리는 치환되거나 비치환된 방향족 또는 지방족 고리일 수 있다. 또 다른 구체예에서, R1 및 R2는 고리를 형성하도록 함께 연결되지 않는다. 다른 구체예에서, 플라즈마 함유 소스는 질소 및 아르곤 플라즈마, 질소 및 네온 플라즈마, 암모니아 플라즈마, 질소 및 암모니아 플라즈마, 암모니아 및 헬륨 플라즈마, 암모니아 및 아르곤 플라즈마, 암모니아 및 질소 플라즈마, NF3 함유 플라즈마, 오가노아민 함유 플라즈마, 및 이들의 혼합물로 이루어진 군으로부터 선택된다. 또 다른 구체예에서, 플라즈마 함유 소스는 질소 플라즈마; 질소 및 헬륨을 포함하는 플라즈마; 질소 및 아르곤 플라즈마를 포함하는 플라즈마; 질소 및 아르곤 플라즈마를 포함하는 플라즈마, 및 질소 및 네온을 포함하는 플라즈마로 이루어진 군으로부터 선택된 비-수소 함유 플라즈마를 포함한다.
일 구체예에서, 본원에는 질소 및 임의적으로 희가스(noble gas)를 포함하는 플라즈마 공정에서 본원에 기술된 화학식 I 내지 화학식 IV를 갖는 오가노아미노실란 전구체 및 4, 5, 6, 13족 금속 또는 메탈로이드 전구체를 사용하여, 저온에서 또는 약 25℃ 내지 약 500℃ 범위의 하나 이상의 증착 온도에서, 콘포말한 4, 5, 6, 13족 금속 또는 메탈로이드 실리콘 니트라이드 또는 카보니트라이드 막을 증착시키기 위한 플라즈마 강화 원자층 증착(ALD) 또는 플라즈마 강화 ALD-유사 방법이 기술된다.
본 발명의 다른 양태는 실리콘 함유 막, 콘포말한 막 및 본 발명의 공정에 의해 얻어진 막에 관한 것이다. 본 발명의 일 양태는 입방 센티미터 당 2.0 그램(g/cc) 이상의 밀도, (묽은 불화수소산(HF)에서 측정하는 경우) 낮은 습식 에칭율, 20 원자중량 퍼센트% 미만의 수소 함량, 1.80 이상의 반사 지수, 및 이들의 조합의 특징들 중 하나 이상을 갖는, 알루미늄-도핑된 실리콘 니트라이드 또는 알루미늄-도핑된 실리콘 카보니트라이드 막에 관한 것이다.
본 발명의 다른 양태는 입방 센티미터 당 2.0 그램(g/cc) 이상의 밀도, 20 원자중량 퍼센트% 미만의 수소 함량, 1.80 이상의 반사 지수, 및 이들의 조합의 특징 중 하나 이상을 갖는, 갈륨-도핑된 실리콘 니트라이드 또는 갈륨-도핑된 실리콘 카보니트라이드 막에 관한 것이다.
본 발명의 다른 양태는 입방 센티미터 당 2.0 그램(g/cc) 이상의 밀도, 20 원자중량 퍼센트% 미만의 수소 함량, 1.80 이상의 반사 지수, 및 이들의 조합의 특징 중 하나 이상을 갖는, 티탄-도핑된 실리콘 니트라이드 또는 티탄-도핑된 실리콘 카보니트라이드 막에 관한 것이다.
본 발명의 다른 양태는 입방 센티미터 당 2.0 그램(g/cc) 이상의 밀도, 20 원자중량 퍼센트% 미만의 수소 함량, 1.80 이상의 반사 지수, 및 이들의 조합의 특징 중 하나 이상을 갖는, 지르코늄-도핑된 실리콘 니트라이드 또는 지르코늄-도핑된 실리콘 카보니트라이드 막에 관한 것이다.
본 발명의 추가 양태는 입방 센티미터 당 2.0 그램(g/cc) 이상의 밀도, 20 원자중량 퍼센트% 미만의 수소 함량, 1.80 이상의 반사 지수, 및 이들의 조합의 특징 중 하나 이상을 갖는, 하프늄-도핑된 실리콘 니트라이드 또는 하프늄-도핑된 실리콘 카보니트라이드 막에 관한 것이다.
본 발명의 다른 양태는 입방 센티미터 당 2.0 그램(g/cc) 이상의 밀도, 20 원자중량 퍼센트% 미만의 수소 함량, 1.80 이상의 반사 지수, 및 이들의 조합의 특징 중 하나 이상을 갖는, 탄탈-도핑된 실리콘 니트라이드 또는 탄탈-도핑된 실리콘 카보니트라이드 막에 관한 것이다.
본 발명의 다양한 양태 및 구체예는 단독으로, 또는 서로 조합하여 사용될 수 있다.
고품질의 막으로 여겨지는 하나 이상의 기준을 충족시키는, 저온, 예를 들어, 500℃ 이하, 약 200℃내지 약 400℃ 및 일부 경우에 약 250℃ 내지 약 450℃의 온도에서, 콘포말한, 화학양론적 또는 비-화학양론적 4, 5, 6, 13족 금속 또는 메탈로이드 도핑된 실리콘 니트라이드 또는 실리콘 카보니트라이드 유전체 막, 예를 들어, 비제한적으로, 알루미늄 또는 붕소 또는 갈륨 도핑된 실리콘 니트라이드 막의 증착은 오래된 산업 문제이었다. 알루미늄 도핑된 실리콘 니트라이드 막은 X-선-반사측정(XRR; X-ray-reflectometry)에 의해 측정하는 경우 입방 센티미터 당 2.2 그램(g/cc) 이상(예를 들어, 약 2.2 내지 약 3.0 g/cc, 약 2.4 내지 약 2.9 g/cc 및 일부 경우에 약 2.4 내지 약 2.8 g/cc)의 밀도, 낮은 습식 에칭율(묽은 불화수소산(DI수 중 0.5 중량% HF)에서 측정하는 경우), 이차 이온 질량 분광법(SIMS; secondary ion mass spectrometry)에 의해 측정하는 경우 20 원자(at.)% 이하(예를 들어, 약 1 원자% 내지 약 20 원자%, 약 5 원자% 내지 약 20 원자% 및 일부 경우에 약 1 원자% 내지 약 10 원자%)의 수소 함량, 1.80 이상(예를 들어, 약 1.8 내지 약 2.8, 약 2.0 내지 약 2.6 및 일부 경우에 약 2.2 내지 약 2.4)의 반사 지수, 수은 프로브에 의해 측정하는 경우 1E-7 A/㎠ 이하(예를 들어, 약 1E-8 A/㎠ 내지 약 9E-7 A/㎠, 약 1E-8 A/㎠ 내지 약 1E-9 A/㎠ 및 일부 경우에 약 1E-7 A/㎠ 내지 약 1E-9 A/㎠)의 낮은 누설 전류, 수은 프로브에 의해 측정하는 경우 6 MV/cm 이상(예를 들어, 약 6 MV/cm 내지 약 10 MV/cm, 약 6 MV/cm 내지 약 8 MV/cm 및 일부 경우에 약 7 MV/cm 내지 약 9 MV/cm)의 높은 파괴 전압, 및 이들의 조합의 특징 중 하나 이상을 갖는 경우에, "고품질" 막으로 여겨진다.
본원에는 기판의 적어도 일부 상에 화학양론적 또는 비-화학양론적 4, 5, 6, 또는 13족 원소 도핑된 실리콘 니트라이드 막, 예를 들어, 알루미늄 도핑된 실리콘 니트라이드, 붕소 도핑된 실리콘 니트라이드, 갈륨 도핑된 실리콘 니트라이드, 인듐 도핑된 실리콘 니트라이드, 탈륨 도핑된 니트라이드 및 이들의 조합을 형성시키는 방법이 기술된다. 4, 5, 6, 또는 13족 원소, 예를 들어, 티탄, 하프늄, 지르코늄, 탄탈, 텅스텐, 알루미늄, 갈륨, 인듐의 함량은 1 내지 20 원자%, 1 원자% 내지 15 원자%, 및 일부 경우에 약 1 원자% 내지 10 원자%에서 달라질 수 있다.
또한, 본원에는 기판의 적어도 일부 상에 실리콘 및 질소를 포함하는 화학양론적 또는 비-화학양론적 알루미늄 또는 갈륨 도핑된 실리콘 니트라이드 막을 형성시키는 방법이 기술된다. 특정 구체예에서, 알루미늄 도핑된 실리콘 니트라이드 막은 탄소 또는 알루미늄, 예를 들어, 실리콘 카보니트라이드 또는 실리콘 알루미늄 니트라이드 막을 추가로 포함한다. 특정 구체예에서, 알루미늄 도핑된 실리콘 니트라이드 막은 산소, 예를 들어, 실리콘 옥시니트라이드 막을 추가로 포함한다. 이러한 또는 다른 구체예에서, 알루미늄 도핑된 실리콘 니트라이드 막은 산소 및 탄소, 예를 들어, 실리콘 카복시니트라이드 막을 포함한다. 설명 전반에 걸쳐, 본원에서 사용되는 용어 "알루미늄 도핑된 실리콘 니트라이드"는 화학양론적 또는 비-화학양론적 알루미늄 실리콘 니트라이드, 알루미늄 실리콘 카보니트라이드, 알루미늄 실리콘 카복시니트라이드, 및 이들의 혼합물로 이루어진 군으로부터 선택된 알루미늄, 실리콘 및 질소를 포함하는 막을 지칭한다. 알루미늄 또는 갈륨의 함량은 1 내지 20 원자%, 1 원자% 내지 15 원자%, 및 일부 경우에 약 1 원자% 내지 10 원자%에서 달라질 수 있다.
상술된 바와 같이, 막은 4, 5, 6, 13족 금속 또는 메탈로이드 전구체, 예를 들어, 금속 전구체, 및 하기 화학식 I 내지 화학식 IV에 의해 표현되는 적어도 하나인 오가노아미노실란을 사용하여 증착된다:
Figure pct00002
상기 식에서, R1은 선형 C1 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C3 내지 C10 알케닐 기, 선형 또는 분지형 C3 내지 C10 알키닐 기, C1 내지 C6 디알킬아미노 기, 전자 끄는 기, C6 내지 C10 아릴 기, C1 내지 C10 알킬 실릴 기, 실릴 기, 오가노아미노실릴 기, 할리도실릴 기로부터 선택되며; R2는 수소, 선형 C2 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C3 내지 C6 알케닐 기, 선형 또는 분지형 C3 내지 C6 알키닐 기, C1 내지 C6 디알킬아미노 기, C6 내지 C10 아릴 기, 전자 끄는 기, 및 C4 내지 C10 아릴 기로부터 선택되며; n=1 또는 2; x=0, 1, 2; y=2, 3; 임의적으로 화학식 I, 화학식 III 및 화학식 IV에서 R1 및 R2는 함께 연결되어 치환되거나 비치환된 방향족 고리 또는 치환되거나 비치환된 지방족 고리로부터 선택된 고리를 형성하며; R3은 선형 C1 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C2 내지 C10 알케닐 기, 선형 또는 분지형 C2 내지 C10 알키닐 기로부터 선택된다. 화학식 I, 화학식 II, 화학식 III 및 화학식 IV를 갖는 예시적인 오가노아미노실란은 디-이소-프로필아미노실란, 디-2차-부틸아미노실란, 페닐메틸아미노실란, 2,6-디메틸피페리디노실란, N-메틸사이클로헥실아미노실란, N-에틸사이클로헥실아미노실란, N-이소프로필사이클로헥실아미노실란, 2-메틸피페리디노실란, N-실릴데카하이드로퀴놀린, 2,2,6,6-테트라틸피페리디노실란, 2-(N-실릴메틸아미노)피리딘, N-t-부틸디실라잔, N-t-펜틸디실라잔, N-(3-메틸-2-피리딜)디실라잔, N-(2-메틸페닐)디실라잔, N-(2-에틸페닐)디실라잔, N-(2,4,6-트리메틸페닐)디실라잔, N-(2,6-디-이소-프리필페닐)디실라잔, 디-이소-프로필아미노디실란, 디-이소-부틸아미노디실란, 디-2차-부틸아미노디실란, 2,6-디메틸피페리디노실란, N-메틸사이클로헥실아미노디실란, N-에틸사이클로헥실아미노디실란, 페닐메틸아미노디실란, 2-(N-디실릴메틸아미노)피리딘, N-페닐에틸디실란, N-이소프로필사이클로헥실아미노디실란, 1,1-(N,N'-디-3차-부틸에틸렌디아미노)디실란, 비스(이소-프로필아미노)메틸실란, 비스(이소-부틸아미노)메틸실란, 비스(2차-부틸아미노)메틸실란, 비스(3차-부틸아미노)메틸실란, 비스(3차-펜틸아미노)메틸실란, 비스(사이클로헥실아미노)메틸실란, 비스(이소-프로필아미노)디메틸실란, 비스(이소-부틸아미노)디메틸실란, 비스(2차-부틸아미노)디메틸실란, 비스(3차-부틸아미노)디메틸실란, 비스(3차-펜틸아미노)디메틸실란, 및 비스(사이클로헥실아미노)디메틸실란, 비스(디메틸아미노)실란, 비스(디에틸아미노)실란, 비스(에틸메틸아미노)실란, 비스(3차-부틸아미노)실란, 트리스(디메틸아미노)실란, 트리스(이소-프로필아미노)실란을 포함하지만, 이로 제한되지 않는다. 일부 구체예에서, R1은 화학식 II에서 실릴 기, 오가노아미노실릴 기, 할리도실릴 기이며, 화학식 II의 오가노아미노실란은 트리실릴아민(TSA, R1 = SiH3), 또는 TSA 유도체, 예를 들어, 모노클로로-TSA(R1 = ClSiH2), 모노브로모-TSA(R1 = BrSiH2), 모노오가노아미노-TSA(R1 = NR4R5, 여기서, R4 및 R5는 독립적으로 수소, 선형 C1 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C3 내지 C10 알케닐 기, 선형 또는 분지형 C3 내지 C10 알키닐 기로 이루어진 군으로부터 선택됨)가 된다.
본원에 기술된 화학식 I, 화학식 II, 화학식 III, 및 화학식 IV를 갖는 오가노아미노실란 전구체는 반도체 소자 제작 공정을 위해 PEALD 또는 PECCVD 전구체로서 이상적으로 적합하게 만드는 반응성 및 안정성의 균형을 나타낸다. 반응성과 관련하여, 특정 전구체는 증기화되고 기판 상에 막으로서 증착되도록 반응기에 전달되기에 너무 높은 비등점을 가질 수 있다. 비교적 더 높은 비등점(예를 들어, 약 250℃ 초과)을 갖는 전구체는 전달 용기 및 라인이 용기, 라인, 또는 둘 모두에서 응축 또는 입자 형성을 방지하기 위해 제공된 진공 하에서 전구체의 비등점 이상에서 가열되어야 할 필요가 있다. 임의의 이론 또는 설명에 의해 제한하고자 하는 것은 아니지만, 화학식 I, 화학식 II, 화학식 III, 또는 화학식 IV를 갖는 오가노아미노실란 전구체가 종래 기술에 개시된 것들 보다 더 많은 Si-H 기를 지니고, 이에 의해 Si-N-Si 연결을 형성하기 위해 흡착된 금속 전구체에 의해 촉매화된 Si-NH와 Si-H의 반응을 통해 고품질의 알루미늄 도핑된 실리콘 니트라이드의 증착을 잠재적으로 가능하게 하는 것으로 여겨진다. 또한, 특정 구체예에서, Si-NH 기를 갖는 화학식 IV의 오가노아미노실란 전구체, 예를 들어, 비스(3차-부틸아미노)실란(BTBAS) 또는 비스(2차-부틸아미노)메틸실란 또는 비스(이소-프로필아미노)메틸실란이 Al-N-Si 결합을 형성하기 위해 흡착된 Al-Me 기와 반응할 수 있고, 이후에, 구조화된 기판 상에 더 많은 실리콘 분절을 고정시킬 수 있고 고도로 콘포말한 알루미늄 도핑된 실리콘 니트라이드 또는 실리콘 카본니트라이드의 형성을 증진시킬 것으로 여겨진다. 특정 구체예에서, 본원에 기술된 화학식 I 내지 화학식 IV를 갖는 오가노아미노실란 전구체는 (6개월 이상, 또는 1년 이상의 시간 동안 저장된 후, 이는 저장 안정성을 나타냄) 2 중량% 이하, 또는 1 중량% 이하, 또는 0.5 중량% 이하의 부산물을 포함한다. 상기 장점들 이외에, 특정 구체예에서, 예를 들어, PEALD, 또는 PECCVD 증착 방법을 이용하여 알루미늄 도핑된 실리콘 니트라이드 막을 증착시키기 위해, 본원에 기술된 오가노아미노실란 전구체는 하나 이상의 증착 온도, 예를 들어, 400℃ 이하, 350℃ 이하, 300℃ 이하, 또는 250℃ 이하, 200℃ 이하, 150℃ 이하, 100℃ 이하, 또는 50℃ 이하에서 고밀도 물질을 증착시킬 수 있다.
본원의 화학식에서 그리고 명세서 전반에 걸쳐서, 용어 "알킬"은 1개의 수소 원자가 제공되고, 1 내지 10개 또는 3 내지 6개 또는 3 내지 4개의 탄소 원자를 갖는 알칸으로부터 유래된 기를 나타낸다. 예시적인 선형 알킬 기는 메틸, 에틸, n-프로필, n-부틸, 및 n-펜틸을 포함하지만, 이로 제한되지 않는다. 예시적인 분지형 알킬 기는 이소-프로필, 3차-부틸, 및 2차-부틸을 포함하지만, 이로 제한되지 않는다.
본원의 화학식에서 그리고 명세서 전반에 걸쳐서, 용어 "환형 알킬"은 3 내지 10개 또는 4 내지 10개의 탄소 원자 또는 5 내지 10개의 탄소 원자를 갖는 환형 작용기를 나타낸다. 예시적인 환형 알킬 기는 사이클로부틸, 사이클로펜틸, 사이클로헥실, 및 사이클로옥틸 기를 포함하지만, 이로 제한되지 않는다.
본원의 화학식에서 그리고 명세서 전반에 걸쳐서, 용어 "아릴"은 5 내지 12개의 탄소 원자 또는 6 내지 10개의 탄소 원자를 갖는 방향족 환형 작용기를 나타낸다. 예시적인 아릴 기는 페닐, 벤질, 클로로벤질, 톨릴, 및 o-자일릴을 포함하지만, 이로 제한되지 않는다.
본원의 화학식에서 그리고 명세서 전반에 걸쳐서, 용어 "알케닐 기"는 하나 이상의 탄소-탄소 이중 결합을 가지고 3 내지 10개 또는 3 내지 6개 또는 3 내지 4개의 탄소 원자를 갖는 기를 나타낸다.
본원의 화학식에서 그리고 명세서 전반에 걸쳐서, 용어 "알키닐 기"는 하나 이상의 탄소-탄소 삼중 결합을 가지고 3 내지 10개 또는 3 내지 6개 또는 3 내지 4개의 탄소 원자를 갖는 기를 나타낸다.
본원의 화학식에서 그리고 명세서 전반에 걸쳐서, 용어 "디알킬아미노 기"는 질소 원자에 부착된 두 개의 알킬 기를 가지고 1 내지 10개, 또는 2 내지 6개, 또는 2 내지 4개의 탄소 원자를 갖는 기를 나타낸다. 예시적인 아릴 기는 디메틸아미노, 디에틸아미노, 및 에틸메틸아미노를 포함하지만, 이로 제한되지 않는다.
본원의 화학식에서 그리고 명세서 전반에 걸쳐서, 용어 "알킬실릴 기"는 적어도 하나의 실리콘 원자, 뿐만 아니라, 1 내지 10개, 또는 2 내지 6개, 또는 2 내지 4개의 탄소 원자를 갖는 기를 나타낸다. 예시적인 알킬실릴 기는 메틸실릴(MeSiH2-), 디메틸실릴(Me2SiH-), 트리메틸실릴(Me3Si-)을 포함하지만, 이로 제한되지 않는다. 실릴 기는 H3Si- 또는 (H3Si)2NSiH2-를 지칭한다.
본원의 화학식에서 그리고 명세서 전반에 걸쳐서, 용어 "전자 끄는 기"는 M-N 결합으로부터 전자를 끌어당기도록 작용하는 원자 또는 이들의 그룹(group)을 나타낸다. 적합한 전자 끄는 기 또는 치환체의 예는 니트릴(CN)을 포함하지만, 이로 제한되지 않는다. 특정 구체예에서, 전자 끄는 치환체는 화학식 I 내지 화학식 III 중 어느 하나에서 N에 인접하거나 근위일 수 있다. 전자 끄는 기의 추가의 비-제한적인 예는 F, Cl, Br, I, CN, NO2, RSO, 및/또는 RSO2를 포함하며, 여기서, R은 C1 내지 C10 알킬 기, 예를 들어, 비제한적으로, 메틸 기 또는 다른 기일 수 있다.
본원의 화학식에서 그리고 명세서 전반에 걸쳐서, 용어 "트리실릴아민 유도체"는 트리실릴아민으로부터 유래된 화합물을 나타낸다. 예시적인 트리실릴아민 유도체는 (ClSiH2)N(SiH3)2의 화학식을 갖는 (클로로실릴)비스(실릴)아민, (BrSiH2)N(SiH3)2의 화학식을 갖는 (브로모실릴)비스(실릴)아민, (iPr2NSiH2)N(SiH3)2의 화학식을 갖는 (디-이소프로필아미노실릴)비스(실릴)아민, (Et2NSiH2)N(SiH3)2의 화학식을 갖는 (디에틸아미노실릴)비스(실릴)아민, (Me2NSiH2)N(SiH3)2의 화학식을 갖는 (디메틸아미노실릴)비스(실릴)아민, (EtMeNSiH2)N(SiH3)2의 화학식을 갖는 (에틸메틸아미노실릴)비스(실릴)아민, N(H2SiNMe2)3의 화학식을 갖는 트리스(디메틸아미노실릴)아민, N(H2SiNEt2)3의 화학식을 갖는 트리스(디에틸아미노실릴)아민을 포함하지만, 이로 제한되지 않는다.
설명 전반에 걸쳐서, 용어 "휘발성 알루미늄 전구체"는 증기를 갖는 적어도 하나의 Al-C 결합, Al-N 결합, Al-할리도 결합 또는 이들의 조합을 갖는 알루미늄 화합물을 나타낸다.
설명 전반에 걸쳐서, 용어 "휘발성 갈륨 전구체"는 50℃ 이상의 온도에서 0.5 torr 이상의 증기압을 갖는 적어도 하나의 Ga-C 결합, Ga-N 결합, Ga-할리도 결합 또는 이들의 조합을 갖는 갈륨 화합물을 나타낸다.
특정 구체예에서, 화학식 I 내지 화학식 IV에서 알킬 기, 알케닐 기, 알키닐 기, 알콕시 기, 디알킬아미노 기, 아릴 기, 및/또는 전자 끄는 기 중 하나 이상은 치환될 수 있거나, 예를 들어, 수소 원자 대신에 치환된 하나 이상의 원자 또는 원자들의 그룹을 가질 수 있다. 예시적인 치환체는 산소, 황, 할로겐 원자(예를 들어, F, Cl, I, 또는 Br), 질소, 및 인을 포함하지만, 이로 제한되지 않는다. 예를 들어, 용어 "플루오르화된 알킬 기"는 알킬 기가 수소 원자와 같은 이의 원자들 중 하나 이상이 불소 원자로 치환된 기를 나타낸다.
설명 전반에 걸쳐서, 본원에서 사용되는 용어 "오가노아민"은 적어도 하나의 질소 원자를 갖는 유기 화합물을 기술한다. 오가노아민의 예는 메틸아민, 에틸아민, 프로필아민, 이소-프로필아민, 3차-부틸아민, 2차-부틸아민, 3차-아밀아민, 에틸렌디아민, 디메틸아민, 트리메틸아민, 디에틸아민, 피롤, 2,6-디메틸피페리딘, 디-n-프로필아민, 디-이소-프로필아민, 에틸메틸아민, N-메틸아닐린, 피리딘, 및 트리에틸아민을 포함하며, 이로 제한되지 않는다. 유사하게, 설명 전반에 걸쳐서, 본원에서 사용되는 용어 "오가노아미노 기"는 상술된 바와 같이 2차 또는 1차 오가노아민으로부터 유래된 적어도 하나의 질소 원자로 이루어진 유기 기를 지칭한다. "오가노아미노 기"는 -NH2 기를 포함하지 않는다.
설명 전반에 걸쳐서, 본원에서 사용되는 용어 "단차 피복(step coverage)"은 비아(via) 또는 트랜치(trench) 중 어느 하나 또는 둘 모두를 갖는 구조화되거나 피쳐를 갖는 기판(featured substrate)에서 증착된 금속 도핑된 실리콘 니트라이드 유전체 막의 두 개의 두께의 백분율로서 규정되며, 하부 단차 피복은 비율(% 단위)로 나타내며, 피쳐(feature)의 측벽 상의 두께는 피쳐의 상부에서의 두께에 의해 나누어진다. 본원에 기술된 방법을 이용하여 증착된 막은 약 60% 이상, 약 70% 이상, 약 80% 이상, 또는 약 90% 이상의 단차 피복을 나타내며, 이는 막이 콘포말(conformal)하다는 것을 나타낸다.
설명 전반에 걸쳐서, 본원에서 사용되는 용어 "유전체 막"은 수은 프로브에 의해 측정하는 경우, 20 이하, 10 이하, 7 이하, 6 이하, 5 이하, 4 이하의 유전 상수를 갖는 물질로서 규정된다.
본 방법은 또한, 4, 5, 6, 13족 금속 또는 메탈로이드 전구체를 포함한다. 예시적인 4, 5, 6, 13족 금속 또는 메탈로이드 전구체는 트리메틸알루미늄, 트리에틸알루미늄, 트리스(디메틸아미노)알루미늄, 트리스(에틸메틸아미노)알루미늄, 알킬알루미늄 클로라이드(예를 들어, 메틸알루미늄 클로라이드, DMACl), 트리메틸보란, 트리에틸보란, 트리스(디메틸아미노)보란, 트리스(에틸메틸아미노)보란, 트리스(디에틸아미노)보란, 갈륨 클로라이드, 트리메틸갈륨, 트리에틸갈륨, 트리스(디메틸아미노)갈륨, 트리스(에틸메틸아미노)갈륨, 지르코늄 클로라이드(ZrCl4), 테트라키스(디메틸아미노)지르코늄(TDMAZ), 테트라키스(디에틸아미노)지르코늄(TDEAZ), 테트라키스(에틸메틸아미노)지르코늄(TEMAZ), 트리스(디메틸아미노)(사이클로펜타디에닐)지르코늄, 트리스(디메틸아미노)(메틸사이클로펜타디에닐)지르코늄, 트리스(디메틸아미노)(에틸사이클로펜타디에닐)지르코늄, 트리스(디에틸아미노)(사이클로펜타디에닐)지르코늄, 트리스(디에틸아미노)(메틸사이클로펜타디에닐)지르코늄, 트리스(디에틸아미노)(에틸사이클로펜타디에닐)지르코늄, 트리스(에틸메틸아미노)(사이클로펜타디에닐)지르코늄, 트리스(에틸메틸아미노)(메틸사이클로펜타디에닐)지르코늄, 트리스(에틸메틸아미노)(에틸사이클로펜타디에닐)지르코늄, 테트라키스(디메틸아미노)하프늄(TDMAH), 테트라키스(디에틸아미노)하프늄(TDEAH), 테트라키스(에틸메틸아미노)하프늄(TEMAH), 트리스(디메틸아미노)(사이클로펜타디에닐)하프늄, 트리스(디메틸아미노)(메틸사이클로펜타디에닐)하프늄, 트리스(디메틸아미노)(에틸사이클로펜타디에닐)하프늄, 트리스(디에틸아미노)(사이클로펜타디에닐)하프늄, 트리스(디에틸아미노)(메틸사이클로펜타디에닐)하프늄, 트리스(디에틸아미노)(에틸사이클로펜타디에닐)하프늄, 트리스(에틸메틸아미노)(사이클로펜타디에닐)하프늄, 트리스(에틸메틸아미노)(메틸사이클로펜타디에닐)하프늄, 트리스(에틸메틸아미노)(에틸사이클로펜타디에닐)하프늄, 티탄 클로라이드(TiCl4), 테트라키스(디메틸아미노)티탄(TDMAT), 테트라키스(디에틸아미노)티탄(TDEAT), 테트라키스(에틸메틸아미노)티탄(TEMAT), 탄탈 클로라이드(TaCl5), 3차-부틸이미노 트리(디에틸아미노)탄탈(TBTDET), 3차-부틸이미노 트리(디메틸아미노)탄탈(TBTDMT), 3차-부틸이미노 트리(에틸메틸아미노)탄탈(TBTEMT), 에틸이미노 트리(디에틸아미노)탄탈(EITDET), 에틸이미노 트리(디메틸아미노)탄탈(EITDMT), 에틸이미노 트리(에틸메틸아미노)탄탈(EITEMT), 3차-아밀이미노 트리(디메틸아미노)탄탈(TAIMAT), 3차-아밀이미노 트리(디에틸아미노)탄탈, 펜타키스(디메틸아미노)탄탈, 3차-아밀이미노 트리(에틸메틸아미노)탄탈, 텅스텐 헥사클로라이드, 텅스텐 펜타클로라이드, 비스(3차-부틸이미노)비스(디메틸아미노)텅스텐(BTBMW), 비스(3차-부틸이미노)비스(디에틸아미노)텅스텐, 비스(3차-부틸이미노)비스(에틸메틸아미노)텅스텐, 및 이들의 조합을 포함하지만, 이로 제한되지 않는다. 추가의 예시적인 4, 5, 6, 13족 금속 또는 메탈로이드 전구체는 "보란 오가노아민 착물"을 포함한다. "보란 오가노아민 착물"은 보란 또는 디보란을 오가노아민과 반응시킴으로써 형성된 안정하고 휘발성의 보란 착물을 나타낸다. 예시적인 오가노아민 보란 착물은 보란 트리메틸아민 착물, 보란 트리에틸아민 착물, 디메틸아민 보란, 보란 피리딘 착물, 보란 모르폴린 착물, 보란 3차-부틸아민 착물, 보란 4-메틸모르폴린 착물, 보란 N,N-디이소프로필에틸아민 착물, 보란 에틸렌디아민 착물, 2-메틸피리딘 보란 착물을 포함하지만, 이로 제한되지 않는다.
특정 구체예에서, 4, 5, 6, 13족 금속은 알루미늄을 포함한다. 이러한 구체예에서, 전구체는 AlCl3, 트리메틸알루미늄(TMA), 트리에틸알루미늄, 메틸알루미늄 클로라이드(MeAlCl2), 트리스(디메틸아미노)알루미늄(TDMAA), 트리스(디메틸아미노)알루미늄(TDMAA), 및 트리스(디에틸아미노)알루미늄(TDEAA)으로 이루어진 군으로부터 선택된 알루미늄 전구체이다.
4, 5, 6, 13족 금속 또는 메탈로이드 니트라이드 막, 예를 들어, 비제한적으로, 알루미늄 또는 붕소 니트라이드 막 또는 코팅을 형성시키기 위해 사용되는 방법은 증착 공정이다. 본원에 개시된 방법을 위한 적합한 증착 공정의 예는 당해 분야에 공지된 장비를 사용하는 플라즈마 강화 ALD(PEALD) 또는 플라즈마 강화 사이클릭 CVD(PECCVD) 공정을 포함하지만, 이로 제한되지 않는다. 본원에서 사용되는 용어 "화학적 증기 증착 공정"은 기판이 하나 이상의 휘발성 전구체에 노출되어, 기판 표면 상에서 반응하고/거나 분해하여 요망되는 증착을 생성시키는 임의의 공정을 지칭한다. 본원에서 사용되는 용어 "원자층 증착 공정"은 다양한 조성의 기판 상에 물질 막을 증착시키는 자가-제한(예를 들어, 각 반응 사이클에 증착된 막 물질의 양이 일정함), 순차적 표면 화학을 지칭한다. 본원에서 사용되는 전구체, 시약 및 소스가 때때로 "가스상"으로서 기술될 수 있지만, 전구체가 직접 기화, 버블링 또는 승화를 통해 불활성 가스와 함께 또는 이의 없이 반응기로 수송되는 액체 또는 고체 중 어느 하나일 수 있는 것으로 이해된다. 일부 경우에, 증기화된 전구체는 플라즈마 발생기로 통과할 수 있다. 일 구체예에서, 알루미늄 니트라이드 막은 ALD 공정을 이용하여 증착된다. 다른 구체예에서, 알루미늄 니트라이드 막은 CCVD 공정을 이용하여 증착된다. 추가 구체예에서, 알루미늄 니트라이드 막은 열적 CVD 공정을 이용하여 증착된다. 본원에서 사용되는 용어 "반응기"는 비제한적으로, 당해 분야에 공지된 설계 및 운용을 갖는 반응 챔버 또는 증착 챔버를 포함한다. ALD-유사 공정은 본원에서 엘립소미터에 의해 측정하는 경우 약 5% 이하의 불균일성의 백분율, 사이클 당 0.1Å 이상의 증착율, 또는 이들의 조합 중 적어도 하나를 갖는 것으로 나타나는 바와 같이 기판 상에 높은 콘포말한 알루미늄 니트라이드 막을 제공하는 사이클릭 CVD 공정으로서 규정된다.
특정 구체예에서, 본원에 기술된 방법은 반응기에 도입하기 전 및/또는 동안에 전구체들을 분리하는 PEALD 또는 PECCVD 방법을 이용함으로써 전구체의 사전-반응을 방지한다. 이와 관련하여, PEALD 또는 PECCVD 공정과 같은 증착 기술은 4, 5, 6, 13족 금속 또는 메탈로이드 니트라이드 막을 증착시키기 위해 사용된다. 일 구체예에서, 막은 알루미늄 니트라이드 전구체, 질소-함유 소스, 또는 다른 전구체 또는 시약에 교대로, 기판 표면을 노출시킴으로써 PEALD 공정을 통해 증착된다. 막 성장은 표면 반응의 자가-제한 제어, 각 전구체 또는 시약의 펄스 길이, 및 증착 온도에 의해 진행한다. 그러나, 기판의 표면이 포화된 직후에, 막 성장은 멈춘다.
특정 구체예에서, 4, 5, 6, 13족 금속 또는 메탈로이드 니트라이드 막은 알루미늄 및 질소 또는 붕소 및 질소 또는 갈륨 및 질소 또는 티탄 및 니트라이드를 포함한다. 이러한 구체예에서, 본원에 기술된 방법을 이용하여 증착된 알루미늄 또는 붕소 또는 갈륨 니트라이드 막은 질소-함유 소스의 존재 하에 형성된다. 질소-함유 소스는 적어도 하나의 질소-함유 소스 형태로 반응기에 도입될 수 있고/거나 증착 공정에서 사용되는 다른 전구체에 부수적으로 존재할 수 있다. 적합한 질소-함유 소스 가스는 예를 들어, 질소/아르곤 플라즈마를 포함할 수 있다. 특정 구체예에서, 질소-함유 소스는 반응기에 약 1 내지 약 2000 표준 입방 센티미터(sccm) 또는 약 1 내지 약 1000 sccm 범위의 유량으로 도입되는 질소/아르곤 플라즈마 소스를 포함한다. 질소-함유 소스는 약 0.1 내지 약 100초 범위의 시간 동안 도입될 수 있다. 막이 ALD 또는 사이클릭 CVD 공정에 의해 증착되는 구체예에서, 전구체 펄스는 0.01초 이상의 펄스 시간을 가질 수 있으며, 질소-함유 소스는 0.01초 미만의 펄스 시간을 가질 수 있으며, 워터 펄스(water pulse) 시간은 0.01초 미만의 펄스 시간을 가질 수 있다. 또 다른 구체예에서, 펄스들 사이의 퍼지 시간은 0초 정도로 낮을 수 있거나, 중간 퍼지 없이 연속적으로 펄스화된다.
본원에 기술된 방법에서, 질소 함유 가스, 예를 들어, 비제한적으로, 질소 및 임의적으로 희가스, 바람직하게, 질소 원자량(즉, 28 amu) 보다 더 큰 원자량을 갖는 희가스를 포함하는 질소-함유 플라즈마는 인시튜로 또는 원격으로 발생될 수 있다. 임의의 이론 또는 설명에 의해 제한하고자 하는 것은 아니지만, 질소 원자량 보다 큰 원자량을 갖는 희가스의 존재는 보다 큰 원자 질소 라디칼을 생성시키는 것으로 여겨진다. 질소 플라즈마 소스 가스는 반응기에 약 1 내지 약 2000 제곱 입방 센티미터(sccm) 또는 약 1 내지 약 1000 sccm 이상의 범위의 유량으로 도입된다. 질소 함유 플라즈마는 약 0.01 내지 약 100초 이상 범위의 시간 동안 도입될 수 있다. 구체예에서, 전구체 펄스는 0.01초 이상의 펄스 시간을 가질 수 있으며, 질소-함유 플라즈마는 0.01초 미만의 펄스 시간을 가질 수 있으며, 워터 펄스 시간은 0.01초 미만의 펄스 시간을 가질 수 있다. 또 다른 구체예에서, 전구체 펄스와 질소 플라즈마 사이의 퍼지 시간은 0초 정도로 낮을 수 있다. 또 다른 구체예에서, 수소 플라즈마는 수소 플라즈마가 사용될 수 있을 때 희가스와 혼합된 순수한 수소(H2)를 사용하여 인시튜로 또는 원격으로 발생될 수 있다. 질소 및 희가스 둘 모두를 함유한 플라즈마에서 희가스의 중량 백분율은 1 중량% 내지 99 중량%(예를 들어, 약 1 중량% 내지 약 50중량%, 약 10 중량% 내지 약 90 중량% 및 일부 경우에 약 5 중량% 내지 약 95 중량%)에서 달라질 수 있으며, 수소 및 희가스 둘 모두를 함유한 플라즈마에서 희가스의 중량 백분율은 또한, 1 중량% 내지 99 중량%에서 달라질 수 있다.
이론으로 제한하고자 하는 것은 아니지만, 질소 및 아르곤과 같은 희가스 둘 모두를 함유한 플라즈마가 낮은 수소 함량을 갖는 알루미늄 니트라이드 막과 같은 4, 5, 6, 13족 금속 또는 메탈로이드 유전체 막의 형성을 촉진시킬 수 있을 뿐만 아니라, 화학흡착된 표면의 적어도 일부, 특히, 후속 증착 사이클에서 이러한 반응성 사이트 상에 실리콘 함유 분절을 고정시킬 수 있는, 화학흡착된 표면의 적어도 일부, 특히 구조화된 기판의 측벽 상에 Al-Me 또는 Al-NMe2와 같은 반응성 사이트를 제공할 수 있고, 이에 따라 비아 또는 트랜치의 측벽 또는 하부 상에 실리콘 니트라이드의 증착을 신장시키고 이러한 단차 피복을 달성하기 매우 어렵기 때문에 60% 이상의 단차 피복을 가능하게 할 수 있는 것으로 사료된다. 또한, 전극 면적에 대한 플라즈마 출력에 의해 규정되는 플라즈마 밀도(예를 들어, 6" 웨이퍼 ALD 반응기에 대하여 450W의 플라즈마 출력, 플라즈마 밀도는 전극의 면적이 웨이퍼와 동일한 것으로 추정하여 약 약 2.5 W/㎠임), 및 바람직하게, 기판 상의 가능한 플라즈마 손상, 뿐만 아니라, 기판 상의 임의의 내장 구조(built-in structure)를 감소시키고, 또한 반도체 제작 공정에서 실행될 수 있는 고품질의 알루미늄 니트라이드 막을 생성시키기 위해 2 W/㎠ 보다 낮은 것으로 사료된다. 본원에 기술된 방법의 플라즈마 밀도는 약 0.01 내지 약 2 W/㎠, 또는 약 0.01 내지 약 1.5 W/㎠, 또는 약 0.01 내지 1 W/㎠의 범위이다. 통상적인 플라즈마 주파수는 10 KHz 내지 2.4 GHz, 바람직하게, 10 kHz 내지 60 MHz의 범위이다. 일부 구체예에서, 이중 RF 플라즈마가 사용될 수 있으며, 하나의 저주파수는 10 kHz 내지 1 MHz의 범위이며, 다른 중간 주파수는 13.56 MHz 및 27.1 MHz로 이루어진 군으로부터 선택된다.
본원에 기술된 증착 방법은 하나 이상의 퍼지 가스를 포함할 수 있다. 소비되지 않은 반응물 및/또는 반응 부산물을 퍼징 제거하기 위해 사용되는 퍼지 가스는 전구체와 반응하지 않는 불활성 가스이다. 예시적인 퍼지 가스는 아르곤(Ar), 질소(N2), 헬륨(He), 네온(Ne), 수소(H2), 및 이들의 혼합물을 포함하지만, 이로 제한되지 않는다. 특정 구체예에서, 퍼지 가스로서 사용되는 불활성 가스는 희가스를 포함한다. 본원에서 사용되는 용어 "희가스"는 주기율표의 18족에서 확인되는 그러한 가스를 의미하고, 헬륨(He), 네온(Ne), 아르곤(Ar), 제논(Xe), 크립톤(Kr), 및 이들의 혼합물을 포함한다. 하나의 특정 구체예에서, 퍼지 가스로서 사용되는 희가스는 아르곤을 포함한다. 이러한 또는 다른 구체예에서, Ar을 포함하는 퍼지 가스는 약 0.1 내지 1000초 동안 약 10 내지 약 2000 sccm 범위의 유량으로 반응기에 공급되며, 이에 의해 반응기에 잔류할 수 있는 미반응된 전구체 물질 및 임의의 부산물을 퍼징시킨다.
전구체, 질소-함유 소스 및/또는 다른 전구체, 소스 가스, 및/또는 반응물을 공급하는 개개 단계는 얻어진 막의 화학양론적 조성을 변경시키기 위해 이를 공급하기 위한 시간을 변경시킴으로써 수행될 수 있다.
에너지는 반응을 유도하고 기판 상에 막 또는 코팅을 형성시키기 위해 전구체, 질소-함유 소스, 환원제, 다른 전구체, 또는 이들의 조합 중 적어도 하나에 적용된다. 이러한 에너지는 당해 분야에 공지된 장비를 이용함으로써, 비제한적으로, 열적, 플라즈마, 펄스화된 플라즈마, 헬리콘 플라즈마, 고밀도 플라즈마, 유도 결합 플라즘, X-선, e-빔, 광자, 원격 플라즈마 방법, 및 이들의 조합에 의해 제공될 수 있다. 특정 구체예에서, 2차 RF 주파수 소스는 기판 표면에서 플라즈마 특징을 개질시키기 위해 사용될 수 있다. 증착이 플라즈마를 포함하는 구체예에서, 플라즈마-발생 공정은 플라즈마가 반응기에 직접적으로 발생되는 직접 플라즈마-발생 공정, 또는 플라즈마가 반응기의 외부에서 발생되고 반응기로 공급되는 원격 플라즈마-발생 공정을 포함할 수 있다.
4, 5, 6, 13족 금속 또는 메탈로이드 전구체, 화학식 I 내지 화학식 IV를 갖는 오가노아미노실란, 또는 둘 모두는 다양한 방식, 예를 들어, 버블링, 증기 드로우(vapor draw), 또는 직접 액체 주입(DLI)에서 단일 웨이퍼 또는 배치 중 어느 하나에서 PEALD 또는 PECCVD 반응기와 같은 반응 챔버로 전달될 수 있다. 일 구체예에서, 액체 전달 시스템이 사용될 수 있다. 대안적인 구체예에서, 결합된 액체 전달 및 플래시 기화 공정 유닛, 예를 들어, MSP Corporation(Shoreview, MN)에 의해 제작된 터보 기화기가 저휘발성 물질을 체적으로 전달하기 위해 사용될 수 있으며, 이는 전구체의 열적 분해 없이 재현 가능한 수송 및 증착을 야기시킨다. 액체 전달 포뮬레이션에서, 본원에 기술된 전구체는 순수한 액체 형태로 전달될 수 있거나, 대안적으로, 이를 포함하는 용매 포뮬레이션 또는 조성물에서 사용될 수 있다. 이에 따라, 특정 구체예에서, 전구체 포뮬레이션은 기판 상에 막을 형성시키기 위해 제공된 최종 용도 적용에서 요망되고 유리할 수 있기 때문에 적합한 특징의 용매 성분(들)을 포함할 수 있다. 본원에 기술된 조성물의 특정 구체예에서, 예시적인 용매는 비제한적으로, 에테르, 3차 아민, 알킬 탄화수소, 방향족 탄화수소, 3차 아미노에테르, 및 이들의 조합을 포함할 수 있다. 특정 구체예에서, 오가노아미노디실란의 비등점과 용매의 비등점의 차이는 40℃ 이하이다. 용매 중 실리콘 전구체 화합물의 중량%는 1 내지 99 중량%, 또는 10 내지 90 중량%, 또는 20 내지 80 중량%, 또는 30 내지 70 중량%, 또는 40 내지 60 중량%, 또는 50 내지 50 중량%에서 달라질 수 있다.
특정 구체예에서, 전구체 캐니스터에서 반응 챔버까지 연결하는 가스 라인은 공정 요건에 따라 하나 이상의 온도까지 가열되며, 본원에 기술된 화학식 I 내지 화학식 IV를 갖는 금속 전구체의 용기는 버블링을 위해 하나 이상의 온도에서 유지된다. 다른 구체예에서, 본원에 기술된 화학식을 갖는 적어도 하나의 알루미늄 니트라이드 전구체를 포함하는 용액은 직접 액체 주입을 위해 하나 이상의 온도에서 유지된 기화기에 주입된다.
아르곤 및/또는 다른 불활성 가스의 흐름은 전구체 펄싱 동안 반응 챔버로 적어도 하나의 금속 전구체의 증기를 전달하는데 도움을 주기 위해 운반 가스로서 사용될 수 있다. 특정 구체예에서, 반응 챔버 공정 압력은 약 2 Torr 이하이다. 다른 구체예에서, 반응 챔버 공정 압력은 약 10 Torr 이하이다.
통상적인 PEALD 또는 PECCVD 또는 PEALD-유사 공정에서, 기판, 예를 들어, 비제한적으로, 실리콘 옥사이드, 탄소 도핑된 실리콘 옥사이드 플렉서블 기판, 또는 금속 니트라이드 기판은 초기에 기판의 표면 상에 금속 전구체를 화학적으로 흡착시키기 위해 알루미늄 니트라이드 전구체에 노출되는 반응 챔버에서 가열기 스테이지 상에서 가열된다. 퍼지 가스, 예를 들어, 질소, 아르곤, 또는 다른 불활성 가스는 공정 챔버로부터 흡착되지 않은 과량의 알루미늄을 퍼징 제거한다. 충분한 퍼징 후에, 질소-함유 소스는 흡착된 표면과 반응시키기 위해 반응 챔버에 도입될 수 있고, 이후에, 챔버로부터 반응 부산물을 제거하기 위해 다른 가스 퍼징된다. 공정 사이클은 요망되는 막 두께를 달성하기 위해 반복될 수 있다. 다른 구체예에서, 진공 하에서의 펌핑은 공정 챔버로부터 흡착되지 않은 과량의 알루미늄을 제거하기 위해 사용될 수 있으며, 펌핑 하에서 충분한 배기 후에, 질소-함유 소소는 흡착된 표면과 반응하기 위해 반응 챔버에 도입될 수 있고, 이후에, 챔버로부터 반응 부산물을 제거하기 위해 다른 펌핑 다운 퍼징될 수 있다.
일 양태에서, 플라즈마 강화 원자층 증착 또는 플라즈마 강화 ALD-유사 증착을 통해 알루미늄 도핑된 실리콘 니트라이드 또는 갈륨 도핑된 실리콘 니트라이드 막을 증착시키는 방법으로서,
a. 반응기에 기판을 제공하는 단계;
b. 기판과 상호작용하기에(예를 들어, 알루미늄 전구체를 반응시키고 화학흡착된 층을 제공하기에) 충분한 공정 조건 하에서 AlCl3, 트리메틸알루미늄(TMA), 메틸알루미늄 클로라이드, 트리에틸알루미늄, 트리스(디메틸아미노)알루미늄(TDMAA), 트리스(디메틸아미노)알루미늄(TDMAA), 트리스(디에틸아미노)알루미늄(TDEAA), 갈륨 클로라이드, 트리메틸갈륨, 트리에틸갈륨, 트리스(디메틸아미노)갈륨 트리스(에틸메틸아미노)갈륨, 트리스(디에틸아미노)갈륨으로 이루어진 군으로부터 선택된 알루미늄 또는 갈륨 전구체를 반응기에 도입하는 단계;
c. 미반응된 알루미늄 전구체를 제거하기 위해 퍼징시키는 단계;
d. 화학흡착된 층의 적어도 일부와 반응하고 적어도 하나의 반응성 사이트를 제공하기 위해 플라즈마 함유 소스를 반응기에 도입하는 단계로서, 플라즈마가 약 0.01 내지 약 1.5 W/㎠ 범위의 출력 밀도에서 발생되는 단계;
e. 반응기를 퍼지 가스로 퍼징시키는 단계;
f. 반응기에 하기 화학식 I 내지 화학식 IV에 의해 표현되는 오가노아미노실란 전구체를 도입하는 단계로서, 오가노아미노실란 전구체가 기판과 상호작용하는(예를 들어, 화학흡착된 층을 제공하기 위해 기판 표면의 적어도 일부 상에서 반응하는) 단계;
g. 반응기를 퍼지 가스로 퍼징시키는 단계;
h. 화학흡착된 층의 적어도 일부와 상호작용(예를 들어, 반응)하고 적어도 하나의 반응성 사이트를 제공하기 위해 반응기에 플라즈마 함유 소스를 도입하는 단계로서, 플라즈마가 약 0.01 내지 약 1.5 W/㎠ 범위의 출력 밀도에서 발생되는 단계; 및
i. 임의적으로 반응기를 불활성 가스로 퍼징시키는 단계를 포함하며, 단계 b 내지 단계 i가 요망되는 막 두께가 얻어질 때까지 반복되는 방법이 제공된다:
Figure pct00003
상기 식에서, R1은 선형 C1 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C3 내지 C10 알케닐 기, 선형 또는 분지형 C3 내지 C10 알키닐 기, C1 내지 C6 디알킬아미노 기, 전자 끄는 기, C6 내지 C10 아릴 기, C1 내지 C10 알킬 실릴 기, 및 실릴 기로부터 선택되며; R2는 수소, 선형 C2 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C3 내지 C6 알케닐 기, 선형 또는 분지형 C3 내지 C6 알키닐 기, C1 내지 C6 디알킬아미노 기, C6 내지 C10 아릴 기, 전자 끄는 기, 및 C4 내지 C10 아릴 기로부터 선택되며; n=1 또는 2; x=0, 1, 2; y=2, 3; 임의적으로 화학식 I, 화학식 III 및 화학식 IV에서 R1 및 R2는 함께 연결되어 치환되거나 비치환된 방향족 고리 또는 치환되거나 비치환된 지방족 고리로부터 선택된 고리를 형성하며; R3은 선형 C1 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C2 내지 C10 알케닐 기, 선형 또는 분지형 C2 내지 C10 알키닐 기로부터 선택된다. 일부 구체예에서, 플라즈마 함유 소스는 적어도 하나의 질소 소스의 형태로 반응기에 도입될 수 있고/거나 증착 공정에서 사용되는 다른 전구체에 부수적으로 존재할 수 있다. 적합한 질소-함유 소스 가스는 예를 들어, 암모니아, 모노알킬하이드라진, 디알킬하이드라진, 질소 플라즈마, 질소/수소, 질소/헬륨, 질소/아르곤 플라즈마, 암모니아 플라즈마, 질소/암모니아 플라즈마, 암모니아/헬륨 플라즈마, 암모니아/아르곤 플라즈마, 암모니아/질소 플라즈마, NF3 플라즈마, 오가노아민 플라즈마, 및 이들의 혼합물을 포함할 수 있다. 다른 구체예에서, 플라즈마는 수소 플라즈마, 헬륨 플라즈마, 네온 플라즈마, 아르곤 플라즈마, 제논 플라즈마, 수소/헬륨 플라즈마, 수소/아르곤 플라즈마 및 이들의 혼합물로 이루어진 군으로부터 선택된다. 본원에 기술된 방법의 특정 구체예에서, 단계 b 내지 단계 i는 약 0.1 내지 약 500Å, 또는 약 0.1 내지 약 5Å, 또는 약 0.1 내지 약 10Å, 또는 약 0.1 내지 약 50Å, 또는 0.1 내지 100Å 범위의 두께를 갖는 막을 제공하기 위해 반복된다. 일부 구체예에서, 단계 b 내지 단계 e는 낮은 알루미늄 함량(즉, XPS 측정을 기초로 하여 Al 함량은 10% 이하임)을 갖는 교대하는 알루미늄 니트라이드 및 실리콘 니트라이드를 포함하는 나노라미네이트 구조를 생성시키기 위해 단계 f 내지 단계 i 전에 여러 차례 반복될 수 있다. 이러한 또는 다른 구체예에서, 단계 f 내지 단계 i는 높은 알루미늄 함량(예를 들어, XPS 측정을 기초로 하여 Al 함량은 10% 이상임)을 갖는 교대하는 알루미늄 니트라이드 및 실리콘 니트라이드를 포함하는 나노라미네이트를 생성시키기 위해 여러 차례 반복된다. 일부 구체예에서, 플라즈마 함유 소스는 적어도 하나의 질소 소스 형태로 반응기에 도입될 수 있고/거나 증착 공정에서 사용되는 다른 전구체에 부수적으로 존재할 수 있다. 본원에 기술된 방법의 하나의 특정 구체예에서, 수소 플라즈마, 수소/헬륨, 수소/아르곤 플라즈마, 수소/네온 플라즈마 및 이들의 혼합물로 이루어진 군으로부터 선택된 수소를 포함하는 플라즈마는 알루미늄 또는 붕소 전구체와 표면 간의 반응으로부터 발생된 탄화수소를 제거하는데 도움을 주기 위해 단계 d 또는 단계 h 전에 삽입될 수 있다. 대안적인 구체예에서, 플라즈마는 비-수소 플라즈마를 포함한다. 다른 구체예에서, 단계 b에서 알루미늄 전구체는 테트라키스(디메틸아미노)티탄(TDMAT), 실란 및 암모니아로부터 증착된 10 원자% 미만의 실리콘 함량을 갖는 TiSiN과 같은 통상적인 금속 도핑된 실리콘 및 질소 함유 전도 막과는 상반되게, 금속 도핑된 실리콘 및 질소 함유 유전체 막을 제공하기 위해 금속 전구체로 대체될 수 있다. 금속 전구체는 지르코늄 클로라이드(ZrCl4), 테트라키스(디메틸아미노)지르코늄(TDMAZ), 테트라키스(디에틸아미노)지르코늄(TDEAZ), 테트라키스(에틸메틸아미노)지르코늄(TEMAZ), 트리스(디메틸아미노)(사이클로펜타디에닐)지르코늄, 트리스(디메틸아미노)(메틸사이클로펜타디에닐)지르코늄, 트리스(디메틸아미노)(에틸사이클로펜타디에닐)지르코늄, 트리스(디에틸아미노)(사이클로펜타디에닐)지르코늄, 트리스(디에틸아미노)(메틸사이클로펜타디에닐)지르코늄, 트리스(디에틸아미노)(에틸사이클로펜타디에닐)지르코늄, 트리스(에틸메틸아미노)(사이클로펜타디에닐)지르코늄, 트리스(에틸메틸아미노)(메틸사이클로펜타디에닐)지르코늄, 트리스(에틸메틸아미노)(에틸사이클로펜타디에닐)지르코늄, 테트라키스(디메틸아미노)하프늄(TDMAH), 테트라키스(디에틸아미노)하프늄(TDEAH), 테트라키스(에틸메틸아미노)하프늄(TEMAH), 트리스(디메틸아미노)(사이클로펜타디에닐)하프늄, 트리스(디메틸아미노)(메틸사이클로펜타디에닐)하프늄, 트리스(디메틸아미노)(에틸사이클로펜타디에닐)하프늄, 트리스(디에틸아미노)(사이클로펜타디에닐)하프늄, 트리스(디에틸아미노)(메틸사이클로펜타디에닐)하프늄, 트리스(디에틸아미노)(에틸사이클로펜타디에닐)하프늄, 트리스(에틸메틸아미노)(사이클로펜타디에닐)하프늄, 트리스(에틸메틸아미노)(메틸사이클로펜타디에닐)하프늄, 트리스(에틸메틸아미노)(에틸사이클로펜타디에닐)하프늄, 티탄 클로라이드(TiCl4), 테트라키스(디메틸아미노)티탄(TDMAT), 테트라키스(디에틸아미노)티탄(TDEAT), 테트라키스(에틸메틸아미노)티탄(TEMAT), 탄탈 클로라이드(TaCl5), 3차-부틸이미노 트리(디에틸아미노)탄탈(TBTDET), 3차-부틸이미노 트리(디메틸아미노)탄탈(TBTDMT), 3차-부틸이미노 트리(에틸메틸아미노)탄탈(TBTEMT), 에틸이미노 트리(디에틸아미노)탄탈(EITDET), 에틸이미노 트리(디메틸아미노)탄탈(EITDMT), 에틸이미노 트리(에틸메틸아미노)탄탈(EITEMT), 3차-아밀이미노 트리(디메틸아미노)탄탈(TAIMAT), 3차-아밀이미노 트리(디에틸아미노)탄탈, 펜타키스(디메틸아미노)탄탈, 3차-아밀이미노 트리(에틸메틸아미노)탄탈, 텅스텐 헥사클로라이드, 텅스텐 펜타클로라이드, 비스(3차-부틸이미노)비스(디메틸아미노)텅스텐(BTBMW), 비스(3차-부틸이미노)비스(디에틸아미노)텅스텐, 비스(3차-부틸이미노)비스(에틸메틸아미노)텅스텐, 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있다. 다른 구체예에서, 금속 전구체는 오가노아미노실란 전구체 이후에 반응기에 도입될 수 있으며, 즉, 오가노아미노실란 전구체는 단계 b에서 도입되며, 금속 전구체는 단계 f에서 도입된다.
다른 양태에서, 플라즈마 강화 원자층 증착 또는 플라즈마 강화 ALD-유사 증착을 통해 갈륨 도핑된 실리콘 니트라이드 또는 알루미늄 도핑된 실리콘 카보니트라이드 막을 증착시키는 방법으로서,
a. 반응기에 기판을 제공하는 단계;
b. 반응기에 AlCl3, 트리메틸알루미늄(TMA), 트리에틸알루미늄, 메틸알루미늄 클로라이드, 트리스(디메틸아미노)알루미늄(TDMAA), 트리스(디메틸아미노)알루미늄(TDMAA), 트리스(디에틸아미노)알루미늄(TDEAA), 갈륨 클로라이드, 트리메틸갈륨, 트리에틸갈륨, 트리스(디메틸아미노)갈륨, 트리스(에틸메틸아미노)갈륨, 트리스(디에틸아미노)갈륨 및 다른 휘발성 알루미늄 또는 갈륨 전구체로 이루어진 군으로부터 선택된 적어도 하나의 금속 전구체를 도입하는 단계;
c. 미반응된 금속 전구체를 제거하기 위해 퍼징시키는 단계;
d. 반응기에 하기 화학식 I 내지 화학식 IV에 의해 표현되는 오가노아미노실란 전구체를 도입하는 단계로서, 오가노아미노실란 전구체가 화학흡착된 층을 제공하기 위해 표면의 적어도 일부와 상호작용(예를 들어, 적어도 일부 상에서 반응)하는 단계;
e. 반응기를 퍼지 가스로 퍼징시키는 단계;
f. 화학흡착된 층의 적어도 일부와 상호작용(예를 들어, 반응)하고 적어도 하나의 반응성 사이트를 제공하기 위해 반응기에 플라즈마 함유 소스를 도입하는 단계로서, 플라즈마가 약 0.01 내지 약 1.5 W/㎠ 범위의 출력 밀도에서 발생되는 단계; 및
g. 임의적으로 반응기를 불활성 가스로 퍼징시키는 단계를 포함하며,
단계 b 내지 단계 g가 요망되는 막 두께가 얻어질 때까지 반복되는, 방법이 제공된다:
Figure pct00004
상기 식에서, R1은 선형 C1 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C3 내지 C10 알케닐 기, 선형 또는 분지형 C3 내지 C10 알키닐 기, C1 내지 C6 디알킬아미노 기, 전자 끄는 기, C6 내지 C10 아릴 기, C1 내지 C10 알킬 실릴 기, 및 실릴 기로부터 선택되며; R2 및 R3은 수소, 선형 C2 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C3 내지 C6 알케닐 기, 선형 또는 분지형 C3 내지 C6 알키닐 기, C1 내지 C6 디알킬아미노 기, C6 내지 C10 아릴 기, 전자 끄는 기, 및 C4 내지 C10 아릴 기로부터 선택되며; n=1 또는 2; x=0, 1, 2; y=2, 3; 임의적으로 화학식 I, 화학식 III 및 화학식 IV에서 R1 및 R2는 함게 연결되어 치환되거나 비치환된 방향족 고리 또는 치환되거나 비치환된 지방족 고리로부터 선택된 고리를 형성하며; R3은 선형 C1 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C2 내지 C10 알케닐 기, 선형 또는 분지형 C2 내지 C10 알키닐 기로부터 선택된다. 일부 구체예에서, 플라즈마 함유 소스는 적어도 하나의 질소 소스 형태로 반응기에 도입될 수 있고/거나 증착 공정에서 사용되는 다른 전구체에 부수적으로 존재할 수 있다. 적합한 질소-함유 소스 가스는 예를 들어, 암모니아, 모노알킬하이드라진, 디알킬하이드라진, 질소 플라즈마, 질소/수소, 질소/헬륨, 질소/아르곤 플라즈마, 암모니아 플라즈마, 질소/암모니아 플라즈마, 암모니아/헬륨 플라즈마, 암모니아/아르곤 플라즈마, 암모니아/질소 플라즈마, NF3 플라즈마, 오가노아민 플라즈마, 및 이들의 혼합물을 포함할 수 있다. 다른 구체예에서, 플라즈마는 수소 플라즈마, 헬륨 플라즈마, 네온 플라즈마, 아르곤 플라즈마, 제논 플라즈마, 수소/헬륨 플라즈마, 수소/아르곤 플라즈마 및 이들의 혼합물로 이루어진 군으로부터 선택된다. 다른 구체예에서, 금속 전구체는 오가노아미노실란 전구체 이후에 반응기에 도입될 수 있으며, 즉, 오가노아미노실란 전구체는 단계 b에서 도입되며, 금속 전구체는 단계 f에서 도입된다.
상기 단계들은 본원에 기술된 방법에 대해 1 사이클을 규정하며, 이러한 사이클은 요망되는 막 두께가 얻어질 때까지 반복될 수 있다. 이러한 또는 다른 구체예에서, 본원에 기술된 방법의 단계들이 다양한 순서로 수행될 수 있고, 순차적으로 또는 동시에(예를 들어, 다른 단계의 적어도 일부 동안에) 수행될 수 있고, 이들의 임의의 조합일 수 있는 것으로 이해된다. 전구체 및 플라즈마 함유 소스를 공급하는 개개 단계는 얻어진 니트라이드 막의 화학양론적 조성을 변경시키게 하기 위해 이러한 것들을 공급하기 위한 시간을 다양하게 함으로써 수행될 수 있으며, 항상 입수 가능한 4, 5, 6, 13족 금속 또는 메탈로이드에 대해 더 낮은 화학양론적 양으로 질소를 사용한다.
특정 구체예에서, 얻어진 4, 5, 6, 13족 금속 또는 메탈로이드 도핑된 실리콘 니트라이드 막 또는 코팅은 증착후 처리, 예를 들어, 비제한적으로, 플라즈마 처리, 화학적 처리, 자외선광 노출, 전자빔 노출, 및/또는 막의 하나 이상의 성질에 영향을 미치는 다른 처리에 노출될 수 있다. 본원에 기술된 방법의 또 다른 구체예에서, 막 또는 증착시 막은 처리 단계로 처리된다. 처리 단계는 증착 단계의 적어도 일부 동안, 증착 단계 후, 및 이들의 조합에서 수행될 수 있다. 예시적인 처리 단계는 비제한적으로, 고온 열적 어닐링을 통한 처리; 플라즈마 처리; 자외선(UV)광 처리; 레이저; 전자빔 처리 및 막의 하나 이상의 성질에 영향을 미치는 이들의 조합을 포함한다. 본원에 기술된 하나 또는 두 개의 Si-C-Si 연결을 갖는 실리콘 전구체로 증착된 막은 동일한 조건 하에서 이전에 개시된 실리콘 전구체로 증착된 막과 비교할 때, 개선된 성질, 예를 들어, 비제한적으로, 처리 단계 전의 막의 습식 에칭률 보다 낮은 습식 에칭률 또는 처리 단계 전의 밀도 보다 높은 밀도를 갖는다. 하나의 특정 구체예에서, 증착 공정 동안에, 증착시 막은 간헐적으로 처리된다. 이러한 간헐적 또는 중간-증착 처리는 예를 들어, 각 ALD 사이클 후에, 매 특정 수의 ALD 후에, 예를 들어, 비제한적으로 1회 (1) ALD 사이클, 2회 (2) ALD 사이클, 5회 (5) ALD 사이클, 10회 (10) 이상의 ALD 사이클, 50회 (50) 이상, 100회 (100) 이상, 500회 (500) 이상의 ALD 사이클 후에, 수행될 수 있다.
막이 고온 어닐링 단계로 처리되는 일 구체예에서, 어닐링 온도는 증착 온도 보다 적어도 100℃ 이상 더 높다. 이러한 또는 다른 구체예에서, 어닐링 온도는 약 400℃ 내지 약 1000℃의 범위이다, 이러한 또는 다른 구체예에서, 어닐링 처리는 진공(< 760 Torr), 불활성 환경 또는 산소 함유 환경(예를 들어, H2O, N2O, NO2 또는 O2)에서 수행될 수 있다.
막이 UV 처리로 처리되는 일 구체예에서, 막은 광대역 UV, 또는 대안적으로, 약 150 나노미터(nm) 내지 약 400 nm 범위의 파장을 갖는 UV 소스에 노출된다. 하나의 특정 구체예에서, 증착시 막은 요망되는 막 두께에 도달한 후에 증착 챔버와는 다른 챔버에서 UV에 노출된다.
막이 플라즈마로 처리되는 일 구체예에서, 플라즈마 소스는 수소 플라즈마, 수소 및 헬륨을 포함하는 플라즈마, 수소 및 아르곤을 포함하는 플라즈마, 헬륨 플라즈마, 아르곤 플라즈마, 질소 플라즈마, 암모니아 플라즈마, 및 이들의 조합으로 이루어진 군으로부터 선택된다.
상기에서 언급된 바와 같이, 본원에 기술된 방법은 기판의 적어도 일부 상에 4, 5, 6, 13족 금속 또는 메탈로이드 도핑된 실리콘 니트라이드 막을 증착시키기 위해 사용될 수 있다. 적합한 기판의 예는 실리콘, 게르마늄, 실리콘/게르마늄, SiO2, Si3N4, OSG, FSG, 실리콘 카바이드, 수소화된 실리콘 카바이드, 실리콘 니트라이드, 수소화된 실리콘 니트라이드, 실리콘 카보니트라이드, 수소화된 실리콘 카보니트라이드, 보로니트라이드, 반사방지 코팅, 포토레지스트, 플렉서블 기판, 예를 들어, IGZO, 유기 폴리머, 다공성 유기 및 무기 물질, 금속, 예를 들어, 구리 및 알루미늄, 및 확산 배리어 층, 예를 들어, 비제한적으로, TiN, Ti(C)N, TaN, Ta(C)N, Ta, W, 또는 WN을 포함하지만, 이로 제한되지 않는다. 막은 예를 들어, 화학적 기계적 평탄화(CMP) 및 이방성 에칭 공정과 같은 다양한 후속 가공 단계와 양립 가능하다.
증착된 막은 컴퓨터 칩, 광학 소자, 자기 정보 저장 매체, 지지 물질 또는 기판 상의 코팅, 마이크로전자기계적 시스템(MEMS), 나노전자기계적 시스템, 박막 트랜지스터(TFT), 발광 다이오드(LED), 유기 발광 다이오드(OLED), IGZO, 및 액정 디스플레이(LCD)를 포함하지만, 이로 제한되지 않는 적용을 갖는다.
하기 실시예는 본원에 기술된 4, 5, 6, 13족 금속 또는 메탈로이드 도핑된 실리콘 니트라이드 막을 증착시키는 방법을 예시하고, 첨부된 청구범위를 제한하지 않을 것이다.
실시예
하기 실시예에서, 달리 기술하지 않는 한, 중간 비저항(14 내지 17 Ω-cm) 단결정 실리콘 웨이퍼 기판 상에 증착된 샘플 막으로부터의 성질을 획득하였다. 모든 막 증착을 샤워헤드 설계를 가지고 13.56 MHz 직접 플라즈마를 사용하는 CN-1 반응기 또는 플라즈마 없는 직교류형(cross flow type) CN-1 반응기(비교예를 위함)를 이용하여 수행하였다. 통상적인 공정 조건에서, 달리 기술하지 않는 한, 챔버 압력을 약 1 내지 약 5 torr 범위의 압력에서 고정하였다. 추가적인 불활성 가스, 예를 들어, 아르곤 또는 질소를 사용하여 챔버 압력을 유지시켰다. 금속 전구체를 증기 드로우(vapor draw) 또는 Ar 버블링(Ar bubbling)을 이용하여 전달하고, 오가노아미노실란 전구체를 증기 드로우를 이용하여 전달하였다. 사용되는 통상적인 RF 출력은 0.7 W/㎠의 출력 밀도를 제공하기 위해 150 mm 웨이퍼 서셉터(susceptor)의 전극 면적에 걸쳐 125W이었다. 막 증착은 각각 열적 ALD 및 플라즈마 강화 ALD(PEALD)에 대해 표 1에 나열된 단계들을 포함하였다.
표 1. ALD 금속 도핑된 실리콘 니트라이드 유전체 막에서 사용되는 단계
Figure pct00005
증착된 막에 대한 반응성 지수(RI; reactive index) 및 두께를 엘립소미터(ellipsometer)를 이용하여 측정하였다. 막 불균일성(film non-uniformity)을 표준 방정식을 이용하여 계산하였다: % 불균일성 = ((최대 두께 - 최소 두께)/(2*평균(avg) 두께)) × 100. 막 구조 및 조성을 푸리에 변환 적외선(FTIR) 분광법, X-선 광전자 분광법(XPS) 및 동적 이차 이온 질량 분광법(DSIMS)을 이용하여 분석하였다. 막에 대한 밀도를 X-선 반사율(XRR)로 측정하였다.
비교예 1. 디-이소-프로필아미노실란(DIPAS) 및 질소 플라즈마를 사용한 PEALD 실리콘 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 오가노아미노실란 전구체 디-이소-프로필아미노실란(DIPAS)을 증기 드로우 방법을 이용하여 반응 챔버에 전달하였다. 패턴 웨이퍼 피스(pattern wafer piece)는 종횡비(AR) = 12:1을 가지고(예를 들어, AR은 비아 또는 트랜치의 폭으로 나누어진 깊이로서 정의됨; 폭= ~ 84 nm, 깊이= ~ 1030 nm), 단차 피복(step coverage)을 시험하기 위해 사용되었다. ALD 사이클은 하기 공정 단계를 포함하였다:
a. 반응기를 준비하고 웨이퍼를 로딩하는 단계
√ 챔버 압력: 2 torr
b. 반응기에 오가노아미노실란 전구체를 도입하는 단계
√ N2의 총 유량: 1000 sccm
√ 오가노아미노실란 펄스: 1초
c. 퍼징하는 단계
√ N2의 총 유량: 1000 sccm
√ 퍼징 시간: 10초
d. 플라즈마를 도입하는 단계
√ N2의 총 유량: 1000 sccm
√ 플라즈마 출력: 125W
√ 플라즈마 펄스: 10초
e. 퍼징하는 단계
√ N2의 총 유량: 1000 sccm
√ 퍼징 시간: 10초
단계를 1500회 사이클 동안 반복하였다. 막의 단면의 투과 전자 현미경법(TEM) 측정은 하기 두께를 나타내었다: 상부 상의 실리콘 니트라이드 = 235 옹스트롱(Å), 이는 0.16 Å/사이클의 실리콘 니트라이드 성장률에 해당함. 얻어진 실리콘 니트라이드에 대한 단차 피복은 중간 20% 및 하부 42%이었다.
실시예 1. 트리메틸알루미늄(TMA), 디-이소-프로필아미노실란(DIPAS) 및 질소 플라즈마를 사용한 PEALD 알루미늄 도핑된 실리콘 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 전구체, 즉, 금속 전구체로서 트리메틸알루미늄(TMA) 및 오가노아미노실란 전구체로서 디-이소-프로필아미노실란(DIPAS)을 증기 드로우 방법을 이용하여 반응기로 전달하였다. 질소 플라즈마를 플라즈마 소스로서 사용하였다. 패턴 웨이퍼 피스는 종횡비(AR) = 13:1을 가지고(예를 들어, AR은 비아 또는 트랜치에 의해 나누어진 깊이로서 정의됨; 폭= 80 nm, 깊이= 1050 nm), 단차 피복을 시험하기 위해 사용되었다.
a. 반응기를 준비하고 웨이퍼를 로딩하는 단계
√ 챔버 압력: 2 torr
b. 반응기에 금속 전구체를 도입하는 단계
√ N2의 총 유량: 1000 표준 입방 센티미터(sccm)
√ TMA 펄스: 0.1초
c. 퍼징하는 단계
√ N2의 총 유량: 1000 sccm
√ 퍼징 시간: 10초
d. 플라즈마를 도입하는 단계
√ N2의 총 유량: 1000 sccm
√ 플라즈마 출력: 125W
√ 플라즈마 펄스: 5초
e. 퍼징하는 단계
√ N2의 총 유량: 1000 sccm
√ 퍼징 시간: 10초
f. 반응기에 오가노아미노실란 전구체를 도입하는 단계
√ N2의 총 유량: 1000 sccm
√ DIPAS 전구체 펄스: 1초
g. 퍼징하는 단계
√ N2의 총 유량: 1000 sccm
√ 퍼징 시간: 10초
h. 플라즈마를 도입하는 단계
√ N2의 총 유량: 1000 sccm
√ 플라즈마 출력: 125W
√ 플라즈마 펄스: 10초
i. 퍼징하는 단계
√ N2의 총 유량: 1000 sccm
√ 퍼징 시간: 10초
실시예 1에서, 단계 b 내지 단계 e를 50회 반복하고, 이후에, 단계 f 내지 단계 i를 1000회 사이클 반복하였다(즉, 알루미늄 니트라이드: 50 사이클 동안 TMA/퍼지/플라즈마/퍼지 = 0.1s/10s/5*s/10s; 이후, 실리콘 니트라이드: 1000회 사이클 동안 DIPAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s). 막의 단면의 투과 전자 현미경법(TEM) 측정은 하기 두께를 나타내었다: 상부 상에서의 실리콘 니트라이드 = 190 옹스트롱(Å), 이는 약 0.19 Å/사이클의 실리콘 니트라이드 성장률에 해당함, 및 알루미늄 니트라이드 = 18 Å. 알루미늄 니트라이드가 실리콘 니트라이드의 성장률을 개선시키는데, 성장률을 0.16 Å에서 0.19 Å/사이클로 증가하는데 약간 도움을 주는 것으로 보인다. 실리콘 니트라이드에 대한 단차 피복: 중간 11% 및 하부 32%.
비교예 2a. 트리메틸알루미늄(TMA) 및 질소 플라즈마를 사용한 PEALD 알루미늄 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 트리메틸알루미늄(TMA)을 금속 전구체로서 사용하고, 질소 플라즈마를 플라즈마 소스로서 사용하였다. ALD 사이클을 하기 공정 파라미터를 이용하여 수행하였다.
a. 반응기를 준비하고 웨이퍼를 로딩하는 단계
√ 챔버 압력: 2 torr
b. 반응기에 금속 전구체를 도입하는 단계
√ N2의 총 유량: 1000 sccm
√ TMA 펄스: 0.1초
c. 퍼징하는 단계
√ N2의 총 유량: 1000 sccm
√ 퍼징 시간: 10초
d. 플라즈마를 도입하는 단계
√ N2의 총 유량: 1000 sccm
√ 플라즈마 출력: 125W
√ 플라즈마 펄스: 5초
e. 퍼징하는 단계
√ N2의 총 유량: 1000 sccm
√ 퍼징 시간: 10초
단계 b 내지 단계 e를 각각 100 사이클, 200 사이클, 및 400 사이클 동안 반복하였다. 알루미늄 니트라이드에 대한 성장률은 사이클의 수에 대한 두께의 그래프로부터 0.58 Å/사이클로서 계산되었다.
비교예 2b. 디-이소-프로필아미노실란(DIPAS) 및 질소 플라즈마를 사용한 PEALD 실리콘 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 디-이소-프로필아미노실란(DIPAS)을 실리콘 전구체로서 사용하고, 질소 플라즈마를 플라즈마 소스로서 사용하였다. ALD 사이클은 하기와 같다: DIPAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s. 사이클을 각각 250 사이클, 500 사이클, 1000, 및 1500 사이클 동안 반복하였다. 실리콘 니트라이드에 대한 성장률은 사이클의 수에 대한 두께의 그래프로부터 0.15 Å/사이클로서 계산되었다.
실시예 2. 트리메틸알루미늄(TMA), 디-이소-프로필아미노실란(DIPAS), 및 질소 플라즈마를 사용한 PEALD 알루미늄 도핑된 실리콘 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 금속 전구체로서 트리메틸알루미늄(TMA) 및 오가노아미노실란 전구체로서 디-이소-프로필아미노실란(DIPAS)을 증기 드로우 방법을 이용하여 반응기로 전달하였다. AR= 13:1(폭= 80 nm, 깊이= 1050 nm)을 갖는 패턴 웨이퍼 피스를 단차 피복을 시험하기 위해 사용하였다. ALD 사이클은 표 1에 제공되고 하기 공정 파라미터를 사용한 공정 단계를 포함하였다.
a. 반응기를 준비하고 웨이퍼를 로딩하는 단계
√ 챔버 압력: 2 torr
b. 반응기에 금속 전구체를 도입하는 단계
√ N2의 총 유량: 1000 sccm
√ TMA 펄스: 0.1초
c. 퍼징하는 단계
√ N2의 총 유량: 1000 sccm
√ 퍼징 시간: 10초
d. 플라즈마를 도입하는 단계
√ N2의 총 유량: 1000 sccm
√ 플라즈마 출력: 125W
√ 플라즈마 펄스: 5초
e. 퍼징하는 단계
√ N2의 총 유량: 1000 sccm
√ 퍼징 시간: 10초
f. 반응기에 오가노아미노실란 전구체를 도입하는 단계
√ N2의 총 유량: 1000 sccm
√ DIPAS 펄스: 1초
g. 퍼징하는 단계
√ N2의 총 유량: 1000 sccm
√ 퍼징 시간: 10초
h. 플라즈마를 도입하는 단계
√ N2의 총 유량: 1000 sccm
√ 플라즈마 출력: 125W
√ 플라즈마 펄스: 10초
i. 퍼징하는 단계
√ N2의 총 유량: 1000 sccm
√ 퍼징 시간: 10초
본 실시예에서, 단계 b 내지 단계 e를 갖는 알루미늄 니트라이드로 이루어진 1회 수퍼 사이클(super cycle)을 1회 반복하고, 이후에, 단계 f 내지 단계 i를 갖는 실리콘 니트라이드를 20회 반복하였다(즉, 수퍼 사이클 = 알루미늄 니트라이드: (TMA/퍼지/플라즈마/퍼지 = 0.1s/10s/5*s/10s) × 1 사이클 + 실리콘 니트라이드: (DIPAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s ) × 20 사이클)). 수퍼 사이클을 50회 반복하였다(즉, (알루미늄 니트라이드: (TMA/퍼지/플라즈마/퍼지 = 0.1s/10s/5*s/10s) × 1 사이클) + 실리콘 니트라이드: (DIPAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s) × 20) × 50 사이클. TEM 측정은 하기 두께를 나타내었다: 상부 상에서의 알루미늄 도핑된 실리콘 니트라이드 = 270 Å, 이는 29 Å 알루미늄 니트라이드를 추정하여 약 0.24 Å/사이클의 실리콘 니트라이드 성장률에 해당하고, 이는 알루미늄 니트라이드 및 실리콘 니트라이드의 교대 증착(alternating deposition)을 통한 실리콘 니트라이드의 성장률의 상당한 개선을 나타내며, 즉, 증착된 알루미늄 니트라이드 층은 실리콘 니트라이드의 증착을 신장시킨다. 단차 피복: 중간 56% 및 하부 67%.
비교예 3a. 트리메틸알루미늄(TMA) 및 질소 플라즈마를 사용한 PEALD 알루미늄 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 트리메틸알루미늄(TMA)을 금속 전구체로서 사용하고, 질소 플라즈마를 플라즈마 소스로서 사용하였다. ALD 사이클을 하기 공정 파라미터를 이용하여 수행하였다.
a. 반응기를 준비하고 웨이퍼를 로딩하는 단계
√ 챔버 압력: 2 torr
b. 반응기에 금속 전구체를 도입하는 단계
√ N2 총 유량: 1000 sccm
√ TMA 펄스: 0.5초
c. 퍼징하는 단계
√ N2의 총 유량: 1000 sccm
√ 퍼징 시간: 10초
d. 플라즈마를 도입하는 단계
√ N2 총 유량: 1000 sccm
√ 플라즈마 출력: 125W
√ 플라즈마 펄스: 5초
e. 퍼징하는 단계
√ N2의 총 유량: 1000 sccm
√ 퍼징 시간: 10초
단계 b 내지 단계 e를 각각 100 사이클, 200 사이클, 및 300 사이클 동안 반복하였다. 알루미늄 니트라이드에 대한 성장률은 사이클의 수에 대한 두께의 그래프로부터 0.72 Å/사이클로서 계산되었다.
실시예 3. 트리메틸알루미늄(TMA) 및 디-이소-프로필아미노실란(DIPAS), 및 질소 플라즈마를 사용한 PEALD 알루미늄 도핑된 실리콘 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 금속 전구체로서 트리메틸알루미늄(TMA) 및 오가노아미노실란 전구체로서 디-이소-프로필아미노실란(DIPAS)을 증기 드로우 방법을 이용하여 반응기로 전달하였다. 질소 플라즈마를 플라즈마로서 사용하였다. AR= 13:1(폭= 80 nm, 깊이= 1050 nm)을 갖는 패턴 웨이퍼 피스를 단차 피복을 시험하기 위해 사용하였다. 이러한 실험에서, 단계 b 내지 단계 e를 갖는 알루미늄 니트라이드로 이루어진 1회 수퍼 사이클을 1회 반복하고, 이후에, 단계 f 내지 단계 i를 10회 반복하였다(즉, 수퍼 사이클 =(알루미늄 니트라이드: (TMA/퍼지/플라즈마/퍼지 = 0.5s/10s/5*s/10s) × 1 사이클 + 실리콘 니트라이드: 10 사이클 동안 (DIPAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s))). 수퍼 사이클을 50회 반복하였다(즉, (알루미늄 니트라이드: (TMA/퍼지/플라즈마/퍼지 = 0.5s/10s/5*s/10s) × 1 사이클 + (실리콘 니트라이드: 10 사이클 동안 (DIPAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s) × 50 사이클). TEM 측정은 하기 두께를 나타내었다: 상부 상에서의 알루미늄 도핑된 실리콘 니트라이드 = 175 Å, 이는 36 Å 알루미늄 니트라이드를 추정하여 약 0.28 Å/사이클의 실리콘 니트라이드 성장률에 해당하며, 이는 알루미늄 니트라이드 및 실리콘 니트라이드의 교대 증착을 통해 실리콘 니트라이드의 성장률의 상당한 개선을 나타내며, 즉, 증착된 알루미늄 니트라이드 층은 실리콘 니트라이드의 증착을 신장시킨다. 단차 피복: 중간 68% 및 하부 82%; 이는, 금속 전구체의 도입이 단차 피복을 더욱 향상시킴을 나타낸다. 증착된 알루미늄 도핑된 실리콘 니트라이드의 이차 이온 질량 분광법(SIMS) 측정은 Si, 31 원자%, Al, 8.5 원자%, N, 47 원자%, C, 2 원자%, O, 1.7 원자%, 및 H, 9.5 원자%를 나타낸다.
비교예 4a. 트리스(디메틸아미노)알루미늄(TDMAA) 및 질소 플라즈마를 사용한 PEALD 알루미늄 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 금속 전구체로서 트리스(디메틸아미노)알루미늄(TDMAA). ALD 사이클을 하기 공정 파라미터를 이용하여 수행하였다.
a. 반응기를 준비하고 웨이퍼를 로딩하는 단계
√ 챔버 압력: 2 torr
b. 반응기에 금속 전구체를 도입하는 단계
√ N2 총 유량: 1000 sccm
√ TDMAA 펄스: 2초
c. 퍼징하는 단계
√ N2의 총 유량: 1000 sccm
√ 퍼징 시간: 10초
d. 플라즈마를 도입하는 단계
√ N2 총 유량: 1000 sccm
√ 플라즈마 출력: 125W
√ 플라즈마 펄스: 5초
e. 퍼징하는 단계
√ N2의 총 유량: 1000 sccm
√ 퍼징 시간: 10초
단계 b 내지 단계 e를 각각 100 사이클, 200 사이클, 및 300 사이클 동안 반복하였다. 알루미늄 니트라이드에 대한 성장률은 사이클의 수에 대한 두께의 그래프로부터 0.60 Å/사이클로서 계산되었다.
실시예 4. 트리스(디메틸아미노)알루미늄(TDMAA) 및 디-이소-프로필아미노실란(DIPAS), 및 질소 플라즈마를 사용한 PEALD 알루미늄 도핑된 실리콘 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 금속 전구체로서 트리스(디메틸아미노)알루미늄(TDMAA) 및 오가노아미노실란 전구체로서 디-이소-프로필아미노실란(DIPAS)을 증기 드로우 방법을 이용하여 반응기로 전달하였다. 질소 플라즈마를 플라즈마에 대해 사용하였다. AR= 12:1(폭= 84 nm, 깊이= 1030 nm)을 갖는 패턴 웨이퍼 피스를 단차 피복을 시험하기 위해 사용하였다. 이러한 실험에서, 단계 b 내지 단계 e를 갖는 알루미늄 니트라이드로 이루어진 1회 수퍼 사이클을 1회 반복하고, 단계 f 내지 단계 i를 10회 동안 반복하였다(즉, 수퍼 사이클 = (알루미늄 니트라이드: (TDMAA/퍼지/플라즈마/퍼지 = 2s/10s/5*s/10s) × 1 사이클 + 실리콘 니트라이드: 10회 사이클 동안 (DIPAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s). 수퍼 사이클을 100회 동안 반복하였다(즉, (알루미늄 니트라이드: (TMA/퍼지/플라즈마/퍼지 = 2s/10s/5*s/10s) × 1 사이클 + 실리콘 니트라이드: 10 사이클 동안 (DIPAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s)) × 100 사이클. 도 1을 참조로 하여, TEM 측정(도 1)은 하기 두께를 나타내었다: 상부 상에서의 알루미늄 도핑된 실리콘 니트라이드 = 320 Å, 이는 60 Å 알루미늄 니트라이드를 추정하여 약 0.26 Å/사이클의 실리콘 니트라이드 성장률에 해당하는데, 이는 알루미늄 니트라이드 및 실리콘 니트라이드의 교대 증착을 통해 실리콘 니트라이드의 성장률의 상당한 개선을 나타내며, 즉, 증착된 알루미늄 니트라이드 층은 실리콘 니트라이드의 증착을 신장시킨다. 단차 피복: 중간 69% 및 하부 78%는 또한, 금속 전구체의 도입이 단차 피복을 더욱 향상시킴을 나탄내다.
비교예 5a. 트리스(디메틸아미노)알루미늄(TDMAA) 및 암모니아 플라즈마를 사용한 PEALD 알루미늄 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 트리스(디메틸아미노)알루미늄(TDMAA)을 금속 전구체로서 사용하고, 암모니아 플라즈마를 플라즈마 소스로서 사용하였다. ALD 사이클을 하기 공정 파라미터를 이용하여 수행하였다.
a. 반응기를 준비하고 웨이퍼를 로딩하는 단계
√ 챔버 압력: 2 torr
b. 반응기에 금속 전구체를 도입하는 단계
√ 아르곤 총 유량: 1050 sccm
√ TDMAA 펄스: 2초
c. 퍼징하는 단계
√ 아르곤 총 유량: 1000 sccm
√ 퍼징 시간: 20초
d. 플라즈마를 도입하는 단계
√ 아르곤 총 유량: 1000 sccm
√ 암모니아의 유량: 300 sccm
√ 플라즈마 출력: 125W
√ 플라즈마 펄스: 5초
e. 퍼징하는 단계
√ 아르곤 총 유량: 1000 sccm
√ 퍼징 시간: 20초
단계 b 내지 단계 e를 각각 100 사이클, 200 사이클, 및 300 사이클 동안 반복하였다. 알루미늄 니트라이드에 대한 성장률은 사이클의 수에 대한 두께의 그래프로부터 0.74 Å/사이클로서 계산되었다.
비교예 5b. 디-이소-프로필아미노실란(DIPAS) 및 암모니아 플라즈마를 사용한 PEALD 실리콘 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 디-이소-프로필아미노실란(DIPAS)을 오가노아미노실란 전구체로서 사용하고, 암모니아 플라즈마를 플라즈마 소스로서 사용하였다. DIPAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/15s로 이루어진 사이클을 500회 사이클 동안 반복하여 23Å을 제공하는데, 이는 약 0.046 Å/사이클의 실리콘 니트라이드 성장률에 해당한다.
실시예 5. 트리스(디메틸아미노)알루미늄(TDMAA), 디-이소-프로필아미노실란(DIPAS), 및 암모니아 플라즈마를 사용한 PEALD 알루미늄 도핑된 실리콘 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 금속 전구체로서 트리스(디메틸아미노)알루미늄(TDMAA) 및 오가노아미노실란으로서 디-이소-프로필아미노실란(DIPAS)을 증기 드로우 방법을 이용하여 반응기로 전달하였다. 암모니아 플라즈마를 플라즈마로 사용하였다. AR= 14:1(폭= 78 nm, 깊이= 1020 nm)을 갖는 패턴 웨이퍼 피스를 단차 피복을 시험하기 위해 사용하였다. 이러한 실험에서, 표 1에서 단계 b 내지 단계 e를 갖는 알루미늄 니트라이드로 이루어진 1회 수퍼 사이클을 1회 반복하고, 이후에, 표 1에서 단계 f 내지 단계 i를 10회 반복하였다(즉, 수퍼 사이클 = (알루미늄 니트라이드: (TDMAA/퍼지/플라즈마/퍼지 = 2s/20s/5*s/20s) × 1 사이클 + 실리콘 니트라이드: 30 사이클 동안 (DIPAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/15s). 수퍼 사이클을 100회 동안 반복하였다(즉, (알루미늄 니트라이드: (TDMAA/퍼지/플라즈마/퍼지 = 2s/20s/5*s/20s) × 1 사이클 + 실리콘 니트라이드: 30 사이클 동안 (DIPAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/15s)) × 50 사이클. TEM 측정은 하기 두께를 나타내었다: 상부 상에서의 알루미늄 도핑된 실리콘 니트라이드 = 160 Å, 이는 38 Å 알루미늄 니트라이드를 추정하여 약 0.08 Å/사이클의 실리콘 니트라이드 성장률에 해당하는데, 이는 알루미늄 니트라이드 및 실리콘 니트라이드의 교대 증착을 통해 실리콘 니트라이드의 성장률의 상당한 개선을 나타내며, 즉, 증착된 알루미늄 니트라이드 층은 실리콘 니트라이드의 증착을 신장시킨다. 단차 피복: 중간 69% 및 하부 69%는 알루미늄 전구체의 도입이 단차 피복을 더욱 향상시킴을 나타낸다. 증착된 알루미늄 도핑된 실리콘 니트라이드의 이차-이온 질량 분광법(SIMS) 측정은 Si, 21.2 원자%, Al, 2.6 원자%, N, 42 원자%, C, 0.01 원자%, O, 5.5 원자%, H, 18.6 원자%를 나타낸다.
비교예 6a. 비스(3차-부틸아미노)실란(BTBAS) 및 질소 플라즈마를 사용한 PEALD 실리콘 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 비스(3차-부틸아미노)실란(BTBAS)을 오가노아미노실란 전구체로서 사용하고, 암모니아 플라즈마를 플라즈마 소스로서 사용하였다. BTBAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s로 이루어진 사이클을 각각 500, 1000, 및 1500 사이클 동안 반복하였다. 알루미늄 니트라이드에 대한 성장률은 사이클의 수에 대한 두께의 그래프로부터 0.28 Å/사이클로서 계산되었다.
실시예 6. 트리메틸알루미늄(TMA), 비스(3차-부틸아미노)실란(BTBAS), 및 질소 플라즈마를 사용한 PEALD 알루미늄 도핑된 실리콘 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 금속 전구체로서 트리메틸알루미늄(TMA) 및 오가노아미노실란 전구체로서 비스(3차-부틸아미노)실란(BTBAS)을 증기 드로우 방법을 이용하여 반응기로 전달하였다. AR= 14:1(폭= 74 nm, 깊이= 1006 nm)을 갖는 패턴 웨이퍼 피스를 단차 피복을 시험하기 위해 사용하였다. 이러한 실험에서, 표 1에서 단계 b 내지 단계 e를 갖는 알루미늄 니트라이드로 이루어진 1회 수퍼 사이클을 1회 반복하고, 이후에 표 1에서 단계 f 내지 단계 i를 10회 반복하였다(즉, 수퍼 사이클 = (알루미늄 니트라이드: (TMA/퍼지/플라즈마/퍼지 = 0.5s/10s/5*s/10s) × 1 사이클 + 실리콘 니트라이드: 10 사이클 동안 (BTBAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s). 수퍼 사이클을 90회 반복하였다(즉, (알루미늄 니트라이드: (TMA/퍼지/플라즈마/퍼지 = 0.5s/10s/5*s/10s) × 1 사이클 + 실리콘 니트라이드: 10 사이클 동안 (BTBAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s)) × 70 사이클. 도 2를 참조로 하여, TEM 측정(도 2)은 하기 두께를 나타낸다. 상부 상에서의 알루미늄 도핑된 실리콘 니트라이드 = 320 Å, 이는 50 Å 알루미늄 니트라이드를 추정하여 약 0.39 Å/사이클의 실리콘 니트라이드 성장률에 해당하는데, 이는 이는 알루미늄 니트라이드 및 실리콘 니트라이드의 교대 증착을 통해 실리콘 니트라이드의 성장률의 상당한 개선을 나타내며, 즉, 증착딘 알루미늄 니트라이드 층은 실리콘 니트라이드의 증착을 신장시킨다. 단차 피복: 중간 81% 및 하부 94%는 또한, TMA의 도입이 단차 피복을 더욱 향상시킴을 나타낸다. 증착된 알루미늄 도핑된 실리콘 니트라이드의 2차-이온 질량 분광법(SIMS) 측정은 Si, 33.3 원자%, Al, 7.1 원자%, N, 45.2 원자%, C, 2.4 원자%, O, 0.7 원자%, H, 11.3 원자%를 나타낸다.
비교예 7a. 트리메틸알루미늄(TMA) 및 암모니아 플라즈마를 사용한 PEALD 알루미늄 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 트리메틸알루미늄(TMA)을 금속 전구체로서 사용하고, 암모니아 플라즈마를 플라즈마 소스로서 사용하였다. ALD 사이클을 하기 공정 파라미터를 이용하여 수행하였다.
a. 반응기를 준비하고 웨이퍼를 로딩하는 단계
√ 챔버 압력: 2 torr
b. 반응기에 금속 전구체를 도입하는 단계
√ 아르곤 총 유량: 1000 sccm
√ TMA 펄스: 0.5초
c. 퍼징하는 단계
√ 아르곤 총 유량: 1000 sccm
√ 퍼징 시간: 10초
d. 플라즈마를 도입하는 단계
√ 아르곤의 총 유량: 1000 sccm
√ 암모니아의 유량: 500 sccm
√ 플라즈마 출력: 125W
√ 플라즈마 펄스: 5초
e. 퍼징하는 단계
√ 아르곤 총 유량: 1000 sccm
√ 퍼징 시간: 10초
단계 b 내지 단계 e를 각각 200회 사이클 및 300회 사이클 동안 반복하였다. 알루미늄 니트라이드에 대한 성장률은 사이클의 수에 대한 두께의 그래프로부터 1.21 Å/사이클로서 계산되었다.
비교예 7b. 비스(3차-부틸아미노실란(BTBAS) 및 암모니아 플라즈마를 사용한 PEALD 실리콘 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 비스(3차-부틸아미노실란(BTBAS)을 오가노아미노실란 전구체로서 사용하고, 암모니아 플라즈마를 플라즈마 소스로서 사용하였다. BTBAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/15s로 이루어진 사이클을 500, 1000, 및 1500 사이클 동안 반복하였다. 실리콘 니트라이드에 대한 성장률은 사이클의 수에 대한 두께의 그래프로부터 0.045 Å/사이클로서 계산되었다.
실시예 7. 트리메틸알루미늄(TMA), 비스(3차-부틸아미노)실란(BTBAS), 및 암모니아 플라즈마를 사용한 PEALD 알루미늄 도핑된 실리콘 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 금속 전구체로서 트리메틸알루미늄(TMA) 및 오가노아미노실란 전구체로서 비스(3차-부틸아미노)실란(BTBAS)을 증기 드로우 방법을 이용하여 반응기로 전달하였다. 암모니아 플라즈마를 플라즈마로서 사용하였다. AR= 14:1(폭= 74 nm, 깊이= 1006 nm)을 갖는 패턴 웨이퍼 피스를 단차 피복을 시험하기 위해 사용하였다. 이러한 실험에서, 표 1에서 단계 b 내지 단계 e를 갖는 알루미늄 니트라이드로 이루어진 1회 수퍼 사이클을 1회 반복하고, 이후에, 표 1에서 단계 f 내지 단계 i를 10회 반복하였다(즉, 수퍼 사이클 = (알루미늄 니트라이드: (TMA/퍼지/플라즈마/퍼지 = 0.5s/10s/5*s/10s) × 1 사이클 + 실리콘 니트라이드: 20회 사이클 동안 (BTBAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s). 수퍼 사이클을 45회 반복하였다(즉, (알루미늄 니트라이드: (TMA/퍼지/플라즈마/퍼지 = 0.5s/10s/5*s/10s) × 1 사이클 + 실리콘 니트라이드: 20 사이클 동안 (BTBAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s)) × 45 사이클. TEM 측정은 하기 두께를 나타내었다: 상부 상에서의 알루미늄 도핑된 실리콘 니트라이드 = 160 Å, 이는 55 Å 알루미늄 니트라이드를 추정하여 약 0.12 Å/사이클의 실리콘 니트라이드 성장률에 해당하는데, 이는 알루미늄 니트라이드 및 실리콘 니트라이드의 교대 증착을 통해 실리콘 니트라이드의 성장률의 상당한 개선을 나타내며, 즉, 증착된 알루미늄 니트라이드 층은 실리콘 니트라이드의 증착을 신장시킨다. 단차 피복: 중간 88% 및 하부 91%는 또한, TMA 도입이 단차 피복을 더욱 향상시킴을 나타낸다.
비교예 8a. 디-이소-프로필아미노디실란(DIPADS) 및 질소 플라즈마를 사용한 PEALD 실리콘 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 디-이소-프로필아미노디실란(DIPADS)를 실리콘 전구체로서 사용하고, 질소 플라즈마를 플라즈마로서 사용하였다. ALD 사이클은 하기와 같다: DIPADS/퍼지/플라즈마/퍼지 = 1.0s/10s/15*s/5s. 사이클을 각각 250 사이클, 500 사이클, 및 750 사이클 동안 반복하였다. 실리콘 니트라이드에 대한 성장률은 사이클의 수에 대한 두께의 그래프로부터 0.38 Å/사이클로서 계산되었다.
비교예 8b. 트리메틸갈륨(TMGa) 및 질소 플라즈마를 사용한 PEALD 갈륨 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 트리메틸갈륨을 갈륨 전구체로서 사용하고, 질소 플라즈마를 플라즈마로서 사용하였다. ALD 사이클은 하기와 같다: TMGa/퍼지/플라즈마/퍼지 = 0.5s/10s/15*s/5s. 사이클을 각각 100 사이클, 200 사이클, 및 400 사이클 동안 반복하였다. 갈륨 니트라이드에 대한 성장률은 사이클의 수에 대한 두께의 그래프로부터 0.42 Å/사이클로서 계산되었다.
실시예 8. 트리메틸갈륨(TMGa), 디-이소-프로필아미노디실란(DIPADS), 및 질소 플라즈마를 사용한 PEALD 갈륨 도핑된 실리콘 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 금속 전구체로서 트리메틸갈륨(TMGa) 및 오가노아미노실란 전구체로서 디-이소-프로필아미노디실란(DIPADS)을 증기 드로우 방법을 이용하여 반응기로 전달하였다. 이러한 실험에서, 표 1에서 단계 b 내지 단계 e를 갖는 갈륨 니트라이드로 이루어진 1회 수퍼 사이클을 1회 반복하고, 이후에, 표 1에서 단계 f 내지 단계 i를 20회 반복하였다(즉, 수퍼 사이클 = (갈륨 니트라이드: (TMGa/퍼지/플라즈마/퍼지 = 0.5s/10s/15*s/5s) × 1 사이클 + 실리콘 니트라이드: 20회 사이클 동안 (DIPADS/퍼지/플라즈마/퍼지 = 1.0s/10s/15*s/5s). 수퍼 사이클을 25회 동안 반복하였다(즉, (갈륨 니트라이드: (TMGa/퍼지/플라즈마/퍼지 = 0.5s/10s/15*s/5s) × 1 사이클 + 실리콘 니트라이드: 20 사이클 동안 (DIPADS/퍼지/플라즈마/퍼지 = 1.0s/10s/15*s/5s)) × 25 사이클). TEM 측정은 하기 두께를 나타내었다: 갈륨 도핑된 실리콘 니트라이드 = 250 Å, 이는 11 Å 갈륨 니트라이드를 추정하여 약 0.48 Å/사이클(단지 DIPADS를 사용한 PEALD 실리콘 니트라이드와 비교하여 약 28% 증가)의 실리콘 니트라이드 성장률에 해당하는데, 이는 갈륨 니트라이드 및 실리콘 니트라이드의 교대 증착을 통해 실리콘 니트라이드의 성장률의 상당한 개선을 나타내며, 즉, 증착된 갈륨 니트라이드 층은 실리콘 니트라이드의 증착을 신장시킨다. 다른 실험에서, 표 1에서 단계 b 내지 단계 e를 갖는 갈륨 니트라이드로 이루어진 1회 수퍼 사이클을 1회 반복하고, 이후에 표 1에서 단계 f 내지 단계 i를 5회 동안 반복하였다(즉, 수퍼 사이클 = (갈륨 니트라이드: (TMGa/퍼지/플라즈마/퍼지 = 0.5s/10s/15*s/5s) × 1 사이클 + 실리콘 니트라이드: 5회 사이클 동안 (DIPADS/퍼지/플라즈마/퍼지 = 1.0s/10s/15*s/5s). 수퍼 사이클을 100회 반복하였다(즉, (갈륨 니트라이드: (TMGa/퍼지/플라즈마/퍼지 = 0.5s/10s/15*s/5s) × 1 사이클 + 실리콘 니트라이드: 5회 사이클 동안 (DIPADS/퍼지/플라즈마/퍼지 = 1.0s/10s/15*s/5s) × 100 사이클. TEM 측정은 하기 두께를 나타내었다: 갈륨 도핑된 실리콘 니트라이드 = 320 Å, 이는 42 Å 갈륨 니트라이드를 추정하여 약 0.56 Å/사이클(단지 DIPADS를 사용하여 PEALD 실리콘 니트라이드와 비교하여 47% 증가)의 실리콘 니트라이드 성장률에 해당하는데, 이는 갈륨 니트라이드 및 실리콘 니트라이드의 교대 증착을 통해 실리콘 니트라이드의 성장률의 상당한 개선을 나타내며, 즉, 증착된 갈륨 니트라이드 층은 실리콘 니트라이드의 증착을 상당히 신장시킨다.
비교예 9a. 테트라키스(디메틸아미노)티탄(TDMAT) 및 질소 플라즈마를 사용한 PEALD 티탄 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. TDMAT를 티탄 전구체로서 사용하고, 질소 플라즈마를 플라즈마 소스로서 사용하였다. ALD 사이클은 하기와 같다: TDMAT/퍼지/플라즈마/퍼지 = 1s/20s/5*s/10s. 사이클을 각각 50 사이클, 100 사이클, 및 200 사이클 동안 반복하였다. 티탄 니트라이드에 대한 성장률은 사이클의 수에 대한 두께의 그래프로부터 1.11 Å/사이클로서 계산되었다.
실시예 9. 테트라키스(디메틸아미노)티탄(TDMAT), 디-이소-프로필아미노실란(DIPAS), 및 질소 플라즈마를 사용한 PEALD 티탄 도핑된 실리콘 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 금속 전구체로서 테트라키스(디메틸아미노)티탄(TDMAT) 및 오가노아미노실란 전구체로서 디-이소-프로필아미노실란(DIPAS)을 각각 Ar 버블링(Ar 유량 = 50 sccm) 및 증기 드로우 방법을 이용하여 반응기에 전달하였다. 이러한 실험에서, 표 1에서 단계 b 내지 단계 e를 갖는 티탄 니트라이드로 이루어진 1회 수퍼 사이클을 2회 반복하고, 이후에 표 1에서 단계 f 내지 단계 i를 20회 반복하였다(즉, 수퍼 사이클 = (티탄 니트라이드: (TDMAT/퍼지/플라즈마/퍼지 = 1s/20s/5*s/10s) × 2 사이클 + 실리콘 니트라이드: 20 사이클 동안 (DIPAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s). 수퍼 사이클을 40회 반복하였다(즉, (티탄 니트라이드: (TDMAT/퍼지/플라즈마/퍼지 = 1s/20s/5*s/10s) × 2 사이클 + 실리콘 니트라이드: 20 사이클 동안 (DIPAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s)) × 40 사이클. TEM 측정은 하기 두께를 나타내었다: 티탄 도핑된 실리콘 니트라이드 = 230 Å, 이는 36 Å의 티탄 니트라이드의 XRF 측정을 기초로 하여 약 0.24 Å/사이클의 실리콘 니트라이드 성장률에 해당하며, 이는 티탄 니트라이드 및 실리콘 니트라이드의 교대 증착을 통해 실리콘 니트라이드의 성장률의 상당한 개선을 나타내며, 즉, 증착된 티탄 니트라이드 층은 실리콘 니트라이드의 증착을 신장시킨다. 다른 실험에서, 표 1에서 단계 b 내지 단계 e를 갖는 티탄 니트라이드로 이루어진 1회 수퍼 사이클을 3회 동안 반복하고, 이후에, 표 1에서 단계 f 내지 단계 i를 20회 반복하였다(즉, 수퍼 사이클 = (티탄 니트라이드: (TDMAT/퍼지/플라즈마/퍼지 = 1s/20s/5*s/10s) × 3 사이클 + 실리콘 니트라이드: 20 사이클 동안 (DIPAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s). 수퍼 사이클을 40회 반복하였다(즉, (티탄 니트라이드: (TDMAT/퍼지/플라즈마/퍼지 = 1s/20s/5*s/10s) × 3 사이클 + 실리콘 니트라이드: 20 사이클 동안 (DIPAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s)) × 40 사이클. TEM 측정은 하기 두께를 나타내었다: 티탄 도핑된 실리콘 니트라이드 = 285 Å, 이는 65 Å의 티탄 니트라이드의 XRF 측정을 기초로 하여 약 0.28 Å/사이클(단지 DIPAS를 사용하여 PEALD 실리콘 니트라이드와 비교하여 약 26% 증가)의 실리콘 니트라이드 성장률에 해당하는데, 이는 티탄 니트라이드 및 실리콘 니트라이드의 교대 증착을 통해 실리콘 니트라이드의 성장률의 상당한 개선을 나타내며, 즉, 증착된 티탄 니트라이드 층은 실리콘 니트라이드의 증착을 상당히 신장시킨다.
실시예 10. 테트라키스(디메틸아미노)티탄(TDMAT), 비스(3차-부틸아미노)실란(BTBAS), 및 질소 플라즈마를 사용한 PEALD 티탄 도핑된 실리콘 니트라이드 막
실리콘 웨이퍼를 13.56 MHz 직접 플라즈마와 함께 샤워헤드 설계를 갖는 CN-1 반응기에 로딩하고, 2 torr의 챔버 압력과 함께 300℃까지 가열하였다. 금속 전구체로서 테트라키스(디메틸아미노)티탄(TDMAT) 및 오가노아미노실란 전구체로서 디-비스(3차-부틸아미노)실란(BTBAS)을 각각 Ar 버블링(Ar 유량 = 50 sccm) 및 증기 드로우 방법을 이용하여 반응기에 전달하였다. 이러한 실험에서, 표 1에서 단계 b 내지 단계 e를 갖는 티탄 니트라이드로 이루어진 1회 수퍼 사이클을 2회 동안 반복하고, 이후에, 표 1에서 단계 f 내지 단계 i를 20회 반복하였다(즉, 수퍼 사이클 = (티탄 니트라이드: (TDMAT/퍼지/플라즈마/퍼지 = 1s/20s/5*s/10s) × 2 사이클 + 실리콘 니트라이드: 20 사이클 동안 (BTBAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s). 수퍼 사이클을 40회 반복하였다(즉, (티탄 니트라이드: (TDMAT/퍼지/플라즈마/퍼지 = 1s/20s/5*s/10s) × 2 사이클 + 실리콘 니트라이드: 20 사이클 동안 (BTBAS /퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s)) × 40 사이클. TEM 측정은 하기 두께를 나타내었다: 티탄 도핑된 실리콘 니트라이드 = 265 Å, 이는 35 Å의 티탄 니트라이드의 XRF 측정을 기초로 하여 약 0.29 Å/사이클(단지 BTBAS를 사용하여 PEALD 실리콘 니트라이드와 비교하여 약 26% 증가)의 실리콘 니트라이드 성장률에 해당하며, 이는 티탄 니트라이드 및 실리콘 니트라이드의 교대 증착을 통해 실리콘 니트라이드의 성장률의 상당한 개선을 나타내며, 즉, 증착된 티탄 니트라이드 층은 실리콘 니트라이드의 증착을 신징시킨다. 다른 실험에서, 표 1에서 단계 b 내지 단계 e를 갖는 티탄 니트라이드로 이루어진 1회 수퍼 사이클을 3회 동안 반복하고, 이후에, 표 1에서 단계 f 내지 단계 i를 20회 반복하였다(즉, 수퍼 사이클 = (티탄 니트라이드: (TDMAT/퍼지/플라즈마/퍼지 = 1s/20s/5*s/10s) × 3 사이클 + 실리콘 니트라이드: 20회 사이클 동안 (BTBAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s). 수퍼 사이클을 40회 반복하였다(즉, (티탄 니트라이드: (TDMAT/퍼지/플라즈마/퍼지 = 1s/20s/5*s/10s) × 3 사이클 + 실리콘 니트라이드: 20회 사이클 동안 (BTBAS/퍼지/플라즈마/퍼지 = 1.0s/10s/10*s/10s)) × 40 사이클. TEM 측정은 하기 두께를 나타내었다: 티탄 도핑된 실리콘 니트라이드 = 305 Å, 이는 62 Å의 티탄 니트라이드의 XRF 측정을 기초로 하여 0.30 Å/사이클(단지 BTBAS를 사용한 PEALD 실리콘 니트라이드와 비교하여 약 30% 증가)의 실리콘 니트라이드 성장률에 상응하는데, 이는 티탄 니트라이드 및 실리콘 니트라이드의 교대 증착을 통해 실리콘 니트라이드의 성장률의 상당한 개선을 나타내며, 즉, 증착된 티탄 니트라이드 층은 실리콘 니트라이드의 증착을 상당히 신장시킨다.
본 발명이 특정 양태 또는 구체예를 참조로 하여 기술되었지만, 본 발명의 범위를 벗어나지 않으면서 다양한 변경이 이루어질 수 있고, 균등물이 이들의 구성요소로 대체될 수 있다는 것이 당업자에 의해 이해될 것이다. 또한, 본 발명의 본질적인 범위를 벗어나지 않으면서 본 발명의 교시에 특정 상황 또는 물질을 구성하도록 여러 수정이 이루어질 수 있다. 이에 따라, 본 발명이 특정 구체예로 제한되지 않고, 본 발명이 첨부된 청구범위 내에 속하는 모든 구체예를 포함할 것으로 의도된다.

Claims (22)

  1. 증기 증착 방법에서 알루미늄 또는 갈륨 도핑된 실리콘 니트라이드 막을 증착시키는 방법으로서,
    a. 반응기에 기판을 제공하는 단계;
    b. 반응기에 금속 전구체를 기판과 상호작용시키기에 충분한 공정 조건 하에서 AlCl3, 메틸알루미늄 클로라이드, 트리메틸알루미늄(TMA), 트리에틸알루미늄, 트리스(디메틸아미노)알루미늄(TDMAA), 트리스(디메틸아미노)알루미늄(TDMAA), 트리스(디에틸아미노)알루미늄(TDEAA), 갈륨 클로라이드, 트리메틸갈륨, 트리에틸갈륨, 트리스(디메틸아미노)갈륨, 트리스(디에틸아미노)갈륨, 트리스(에틸메틸아미노)갈륨, 및 다른 휘발성 알루미늄 또는 갈륨 전구체로 이루어진 군으로부터 선택된 금속 전구체를 도입하는 단계;
    c. 미반응된 금속 전구체를 제거하기 위해 퍼징시키는 단계;
    d. 기판의 적어도 일부와 상호작용하고 적어도 하나의 반응성 사이트를 제공하기 위해 플라즈마 함유 소스를 반응기에 도입하는 단계로서, 플라즈마가 약 0.01 내지 약 1.5 W/㎠ 범위의 출력 밀도에서 발생되는 단계;
    e. 반응기를 퍼지 가스로 퍼징시키는 단계;
    f. 반응기에 하기 화학식 I 내지 화학식 IV에 의해 표현되는 오가노아미노실란 전구체를 도입하는 단계로서, 오가노아미노실란 전구체가 기판 표면의 적어도 일부와 상호작용하는 단계;
    g. 반응기를 퍼지 가스로 퍼징시키는 단계;
    h. 화학흡착된 층의 적어도 일부와 반응하고 적어도 하나의 반응성 사이트를 제공하기 위해 플라즈마 함유 소스를 반응기에 도입하는 단계로서, 플라즈마가 약 0.01 내지 약 1.5 W/㎠ 범위의 출력 밀도에서 발생되는 단계; 및
    i. 임의적으로 반응기를 불활성 가스로 퍼징시키는 단계를 포함하며,
    단계 b 내지 단계 i가 요망되는 막 두께가 얻어질 때까지 반복되는, 방법:
    Figure pct00006

    상기 식에서, R1은 선형 C1 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C3 내지 C10 알케닐 기, 선형 또는 분지형 C3 내지 C10 알키닐 기, C1 내지 C6 디알킬아미노 기, 전자 끄는 기, C6 내지 C10 아릴 기, C1 내지 C10 알킬 실릴 기, 및 실릴 기로부터 선택되며; R2 및 R3은 수소, 선형 C2 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C3 내지 C6 알케닐 기, 선형 또는 분지형 C3 내지 C6 알키닐 기, C1 내지 C6 디알킬아미노 기, C6 내지 C10 아릴 기, 전자 끄는 기, 및 C4 내지 C10 아릴 기로부터 선택되며; n=1 또는 2; x=0, 1, 2; y=2, 3; 임의적으로 화학식 I, 화학식 III 및 화학식 IV에서 R1 및 R2는 함께 연결되어 치환되거나 비치환된 방향족 고리 또는 치환되거나 비치환된 지방족 고리로부터 선택된 고리를 형성하며; R3은 선형 C1 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C2 내지 C10 알케닐 기, 선형 또는 분지형 C2 내지 C10 알키닐 기로부터 선택된다.
  2. 제1항에 있어서, 적어도 하나의 오가노아미노실란 전구체가 디-이소-프로필아미노실란, 디-2차-부틸아미노실란, 페닐메틸아미노실란, 2,6-디메틸피페리디노실란, N-메틸사이클로헥실아미노실란, N-에틸사이클로헥실아미노실란, N-이소프로필사이클로헥실아미노실란, 2-메틸피페리디노실란, N-실릴데카하이드로퀴놀린, 2,2,6,6-테트라틸피페리디노실란, 2-(N-실릴메틸아미노)피리딘, N-t-부틸디실라잔, N-t-펜틸디실라잔, N-(3-메틸-2-피리딜)디실라잔, N-(2-메틸페닐)디실라잔, N-(2-에틸페닐)디실라잔, N-(2,4,6-트리메틸페닐)디실라잔, N-(2,6-디-이소-프리필페닐)디실라잔, 디-이소-프로필아미노디실란, 디-이소-부틸아미노디실란, 디-2차-부틸아미노디실란, 2,6-디메틸피페리디노실란, N-메틸사이클로헥실아미노디실란, N-에틸사이클로헥실아미노디실란, 페닐메틸아미노디실란, 2-(N-디실릴메틸아미노)피리딘, N-페닐에틸디실란, N-이소프로필사이클로헥실아미노디실란, 1,1-(N,N'-디-3차-부틸에틸렌디아미노)디실란, 비스(이소-프로필아미노)메틸실란, 비스(이소-부틸아미노)메틸실란, 비스(2차-부틸아미노)메틸실란, 비스(3차-부틸아미노)메틸실란, 비스(3차-펜틸아미노)메틸실란, 비스(사이클로헥실아미노)메틸실란, 비스(이소-프로필아미노)디메틸실란, 비스(이소-부틸아미노)디메틸실란, 비스(2차-부틸아미노)디메틸실란, 비스(3차-부틸아미노)디메틸실란, 비스(3차-펜틸아미노)디메틸실란, 및 비스(사이클로헥실아미노)디메틸실란, 비스(디메틸아미노)실란, 비스(디에틸아미노)실란, 비스(에틸메틸아미노)실란, 비스(3차-부틸아미노)실란, 트리스(디메틸아미노)실란, 트리스(이소-프로필아미노)실란, 트리실릴아민, 및 트리실릴아민 유도체로 이루어진 군으로부터 선택된 적어도 하나의 일원인 방법.
  3. 제1항에 있어서, 플라즈마 함유 소스가 질소 및 아르곤 플라즈마, 질소 및 헬륨 플라즈마, 암모니아 플라즈마, 질소 및 암모니아 플라즈마, 암모니아 및 헬륨 플라즈마, 암모니아 및 아르곤 플라즈마, NF3 함유 플라즈마, 오가노아민 함유 플라즈마, 및 이들의 혼합물로 이루어진 군으로부터 선택된 적어도 하나의 일원인 방법.
  4. 제1항에 있어서, 막이 약 2.0 g/cc 이상의 밀도를 갖는 방법.
  5. 제1항에 있어서, 방법이 증기 증착 공정이고, 플라즈마 강화 화학적 증기 증착 및 플라즈마 강화 사이클릭 화학적 증기 증착으로부터 선택된 적어도 하나로 이루어진 군으로부터 선택되는 방법.
  6. 제1항에 있어서, 방법이 약 500℃ 이하의 하나 이상의 온도에서 수행되는 방법.
  7. 제1항에 있어서, 방법이 약 400℃ 이하의 하나 이상의 온도에서 수행되는 방법.
  8. 제1항에 있어서, 방법이 약 300℃ 이하의 하나 이상의 온도에서 수행되는 방법.
  9. 알루미늄 도핑된 실리콘 니트라이드 또는 알루미늄 도핑된 실리콘 카보니트라이드 또는 갈륨 도핑된 실리콘 니트라이드 또는 갈륨 도핑된 실리콘 카보니트라이드 막을 형성시키는 방법으로서,
    a. 반응기에 기판을 제공하는 단계;
    b. 반응기에 AlCl3, 트리메틸알루미늄(TMA), 트리에틸알루미늄, 메틸알루미늄 클로라이드, 트리스(디메틸아미노)알루미늄(TDMAA), 트리스(디메틸아미노)알루미늄(TDMAA), 트리스(디에틸아미노)알루미늄(TDEAA), 갈륨 클로라이드, 트리메틸갈륨, 트리에틸갈륨, 트리스(디메틸아미노)갈륨, 트리스(디에틸아미노)갈륨, 트리스(에틸메틸아미노)갈륨, 및 다른 휘발성 알루미늄 또는 갈륨 전구체로 이루어진 군으로부터 선택된 적어도 하나의 알루미늄 전구체를 도입하는 단계;
    c. 미반응된 알루미늄 전구체를 제거하기 위해 퍼징시키는 단계;
    d. 반응기에 하기 화학식 I 내지 화학식 IV에 의해 표현되는 오가노아미노실란 전구체를 도입하는 단계로서, 오가노아미노실란 전구체가 화학흡착된 층을 제공하기 위해 기판 표면의 적어도 일부 상에서 반응하는 단계;
    e. 반응기를 퍼지 가스로 퍼징시키는 단계;
    f. 화학흡착된 층의 적어도 일부와 반응하고 적어도 하나의 반응성 사이트를 제공하기 위해 플라즈마 함유 소스를 반응기에 도입하는 단계로서, 플라즈마가 약 0.01 내지 약 1.5 W/㎠ 범위의 출력 밀도에서 발생되는 단계; 및
    g. 임의적으로 반응기를 불활성 가스로 퍼징시키는 단계를 포함하며,
    단계 b 내지 단계 i가 요망되는 막 두께가 얻어질 때까지 반복되는, 방법:
    Figure pct00007

    상기 식에서, R1은 선형 C1 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C3 내지 C10 알케닐 기, 선형 또는 분지형 C3 내지 C10 알키닐 기, C1 내지 C6 디알킬아미노 기, 전자 끄는 기, C6 내지 C10 아릴 기, C1 내지 C10 알킬 실릴 기, 및 실릴 기로부터 선택되며; R2 및 R3은 수소, 선형 C2 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C3 내지 C6 알케닐 기, 선형 또는 분지형 C3 내지 C6 알키닐 기, C1 내지 C6 디알킬아미노 기, C6 내지 C10 아릴 기, 전자 끄는 기, 및 C4 내지 C10 아릴 기로부터 선택되며; n=1 또는 2; x=0, 1, 2; y=2, 3; 임의적으로 화학식 I, 화학식 III 및 화학식 IV에서 R1 및 R2는 함께 연결되어 치환되거나 비치환된 방향족 고리 또는 치환되거나 비치환된 지방족 고리로부터 선택된 고리를 형성하며; R3은 선형 C1 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C2 내지 C10 알케닐 기, 선형 또는 분지형 C2 내지 C10 알키닐 기로부터 선택된다.
  10. 제9항에 있어서, 적어도 하나의 오가노아미노실란 전구체가 디-이소-프로필아미노실란, 디-2차-부틸아미노실란, 페닐메틸아미노실란, 2,6-디메틸피페리디노실란, N-메틸사이클로헥실아미노실란, N-에틸사이클로헥실아미노실란, N-이소프로필사이클로헥실아미노실란, 2-메틸피페리디노실란, N-실릴데카하이드로퀴놀린, 2,2,6,6-테트라틸피페리디노실란, 2-(N-실릴메틸아미노)피리딘, N-t-부틸디실라잔, N-t-펜틸디실라잔, N-(3-메틸-2-피리딜)디실라잔, N-(2-메틸페닐)디실라잔, N-(2-에틸페닐)디실라잔, N-(2,4,6-트리메틸페닐)디실라잔, N-(2,6-디-이소-프리필페닐)디실라잔, 디-이소-프로필아미노디실란, 디-이소-부틸아미노디실란, 디-2차-부틸아미노디실란, 2,6-디메틸피페리디노실란, N-메틸사이클로헥실아미노디실란, N-에틸사이클로헥실아미노디실란, 페닐메틸아미노디실란, 2-(N-디실릴메틸아미노)피리딘, N-페닐에틸디실란, N-이소프로필사이클로헥실아미노디실란, 1,1-(N,N'-디-3차-부틸에틸렌디아미노)디실란, 비스(이소-프로필아미노)메틸실란, 비스(이소-부틸아미노)메틸실란, 비스(2차-부틸아미노)메틸실란, 비스(3차-부틸아미노)메틸실란, 비스(3차-펜틸아미노)메틸실란, 비스(사이클로헥실아미노)메틸실란, 비스(이소-프로필아미노)디메틸실란, 비스(이소-부틸아미노)디메틸실란, 비스(2차-부틸아미노)디메틸실란, 비스(3차-부틸아미노)디메틸실란, 비스(3차-펜틸아미노)디메틸실란, 및 비스(사이클로헥실아미노)디메틸실란, 비스(디메틸아미노)실란, 비스(디에틸아미노)실란, 비스(에틸메틸아미노)실란, 비스(3차-부틸아미노)실란, 트리스(디메틸아미노)실란, 트리스(이소-프로필아미노)실란, 및 트리실릴아민으로 이루어진 군으로부터 선택되는 방법.
  11. 500℃ 미만의 온도에서 열적 원자층 증착을 통해 콘포말한 금속 도핑된 실리콘 니트라이드 유전체 막을 증착시키는 방법으로서,
    a. 반응기에 기판을 제공하는 단계;
    b. 반응기에 금속 전구체를 반응시키고 화학흡착된 층을 제공하는데 충분한 공정 조건 하에서 금속 전구체를 도입하는 단계;
    c. 미반응된 금속 전구체를 제거하기 위해 퍼징시키는 단계;
    d. 화학흡착된 층의 적어도 일부와 반응시키고 적어도 하나의 반응성 사이트를 제공하기 위해 반응기에 질소 소스를 도입하는 단계;
    e. 반응기를 퍼지 가스로 퍼징시키는 단계;
    f. 반응기에 하기 화학식 I 내지 화학식 IV에 의해 표현되는 오가노아미노실란 전구체를 도입하는 단계로서, 오가노아미노실란 전구체는 화학흡착된 층을 제공하기 위해 기판 표면의 적어도 일부 상에서 반응하는 단계;
    g. 반응기를 퍼지 가스로 퍼징시키는 단계;
    h. 화학흡착된 층의 적어도 일부와 반응하고 적어도 하나의 반응성 사이트를 제공하기 위해 질소를 함유한 플라즈마 소스를 반응기에 도입하는 단계; 및
    i. 임의적으로 반응기를 불활성 가스로 퍼징시키는 단계를 포함하는, 방법:
    Figure pct00008

    상기 식에서, R1은 선형 C1 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C3 내지 C10 알케닐 기, 선형 또는 분지형 C3 내지 C10 알키닐 기, C1 내지 C6 디알킬아미노 기, 전자 끄는 기, C6 내지 C10 아릴 기, C1 내지 C10 알킬 실릴 기, 및 실릴 기로부터 선택되며; R2는 수소, 선형 C2 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C3 내지 C6 알케닐 기, 선형 또는 분지형 C3 내지 C6 알키닐 기, C1 내지 C6 디알킬아미노 기, C6 내지 C10 아릴 기, 전자 끄는 기, 및 C4 내지 C10 아릴 기로부터 선택되며; n=1 또는 2; x=0, 1, 2; y=2, 3; 임의적으로 화학식 I, 화학식 III 및 화학식 IV에서 R1 및 R2는 함께 연결되어 치환되거나 비치환된 방향족 고리 또는 치환되거나 비치환된 지방족 고리로부터 선택된 고리를 형성하며; R3은 선형 C1 내지 C10 알킬 기, 분지형 C3 내지 C10 알킬 기, 선형 또는 분지형 C2 내지 C10 알케닐 기, 선형 또는 분지형 C2 내지 C10 알키닐 기로부터 선택된다.
  12. 제11항에 있어서, 적어도 하나의 오가노아미노실란 전구체가 디-이소-프로필아미노실란, 디-2차-부틸아미노실란, 페닐메틸아미노실란, 2,6-디메틸피페리디노실란, N-메틸사이클로헥실아미노실란, N-에틸사이클로헥실아미노실란, N-이소프로필사이클로헥실아미노실란, 2-메틸피페리디노실란, N-실릴데카하이드로퀴놀린, 2,2,6,6-테트라틸피페리디노실란, 2-(N-실릴메틸아미노)피리딘, N-t-부틸디실라잔, N-t-펜틸디실라잔, N-(3-메틸-2-피리딜)디실라잔, N-(2-메틸페닐)디실라잔, N-(2-에틸페닐)디실라잔, N-(2,4,6-트리메틸페닐)디실라잔, N-(2,6-디-이소-프리필페닐)디실라잔, 디-이소-프로필아미노디실란, 디-이소-부틸아미노디실란, 디-2차-부틸아미노디실란, 2,6-디메틸피페리디노실란, N-메틸사이클로헥실아미노디실란, N-에틸사이클로헥실아미노디실란, 페닐메틸아미노디실란, 2-(N-디실릴메틸아미노)피리딘, N-페닐에틸디실란, N-이소프로필사이클로헥실아미노디실란, 1,1-(N,N'-디-3차-부틸에틸렌디아미노)디실란, 비스(이소-프로필아미노)메틸실란, 비스(이소-부틸아미노)메틸실란, 비스(2차-부틸아미노)메틸실란, 비스(3차-부틸아미노)메틸실란, 비스(3차-펜틸아미노)메틸실란, 비스(사이클로헥실아미노)메틸실란, 비스(이소-프로필아미노)디메틸실란, 비스(이소-부틸아미노)디메틸실란, 비스(2차-부틸아미노)디메틸실란, 비스(3차-부틸아미노)디메틸실란, 비스(3차-펜틸아미노)디메틸실란, 및 비스(사이클로헥실아미노)디메틸실란, 비스(디메틸아미노)실란, 비스(디에틸아미노)실란, 비스(에틸메틸아미노)실란, 비스(3차-부틸아미노)실란, 트리스(디메틸아미노)실란, 트리스(이소-프로필아미노)실란, 트리실릴아민, 및 트리실릴아민 유도체로 이루어진 군으로부터 선택되는 방법.
  13. 제11항에 있어서, 적어도 하나의 금속 전구체가 AlCl3, 트리메틸알루미늄(TMA), 메틸알루미늄 클로라이드, 트리에틸알루미늄, 트리스(디메틸아미노)알루미늄(TDMAA), 트리스(디메틸아미노)알루미늄(TDMAA), 트리스(디에틸아미노)알루미늄(TDEAA), 갈륨 클로라이드, 트리메틸갈륨, 트리에틸갈륨, 트리스(디메틸아미노)갈륨, 트리스(디에틸아미노)갈륨, 트리스(에틸메틸아미노)갈륨 및 다른 휘발성 알루미늄 또는 갈륨 전구체, 지르코늄 클로라이드(ZrCl4), 테트라키스(디메틸아미노)지르코늄(TDMAZ), 테트라키스(디에틸아미노)지르코늄(TDEAZ), 테트라키스(에틸메틸아미노)지르코늄(TEMAZ), 트리스(디메틸아미노)(사이클로펜타디에닐)지르코늄, 트리스(디메틸아미노)(메틸사이클로펜타디에닐)지르코늄, 트리스(디메틸아미노)(에틸사이클로펜타디에닐)지르코늄, 트리스(디에틸아미노)(사이클로펜타디에닐)지르코늄, 트리스(디에틸아미노)(메틸사이클로펜타디에닐)지르코늄, 트리스(디에틸아미노)(에틸사이클로펜타디에닐)지르코늄, 트리스(에틸메틸아미노)(사이클로펜타디에닐)지르코늄, 트리스(에틸메틸아미노)(메틸사이클로펜타디에닐)지르코늄, 트리스(에틸메틸아미노)(에틸사이클로펜타디에닐)지르코늄, 테트라키스(디메틸아미노)하프늄(TDMAH), 테트라키스(디에틸아미노)하프늄(TDEAH), 테트라키스(에틸메틸아미노)하프늄(TEMAH), 트리스(디메틸아미노)(사이클로펜타디에닐)하프늄, 트리스(디메틸아미노)(메틸사이클로펜타디에닐)하프늄, 트리스(디메틸아미노)(에틸사이클로펜타디에닐)하프늄, 트리스(디에틸아미노)(사이클로펜타디에닐)하프늄, 트리스(디에틸아미노)(메틸사이클로펜타디에닐)하프늄, 트리스(디에틸아미노)(에틸사이클로펜타디에닐)하프늄, 트리스(에틸메틸아미노)(사이클로펜타디에닐)하프늄, 트리스(에틸메틸아미노)(메틸사이클로펜타디에닐)하프늄, 트리스(에틸메틸아미노)(에틸사이클로펜타디에닐)하프늄, 티탄 클로라이드(TiCl4), 테트라키스(디메틸아미노)티탄(TDMAT), 테트라키스(디에틸아미노)티탄(TDEAT), 테트라키스(에틸메틸아미노)티탄(TEMAT), 탄탈 클로라이드(TaCl5), 3차-부틸이미노 트리(디에틸아미노)탄탈(TBTDET), 3차-부틸이미노 트리(디메틸아미노)탄탈(TBTDMT), 3차-부틸이미노 트리(에틸메틸아미노)탄탈(TBTEMT), 에틸이미노 트리(디에틸아미노)탄탈(EITDET), 에틸이미노 트리(디메틸아미노)탄탈(EITDMT), 에틸이미노 트리(에틸메틸아미노)탄탈(EITEMT), 3차-아밀이미노 트리(디메틸아미노)탄탈(TAIMAT), 3차-아밀이미노 트리(디에틸아미노)탄탈, 펜타키스(디메틸아미노)탄탈, 3차-아밀이미노 트리(에틸메틸아미노)탄탈, 텅스텐 헥사클로라이드, 텅스텐 펜타클로라이드, 비스(3차-부틸이미노)비스(디메틸아미노)텅스텐(BTBMW), 비스(3차-부틸이미노)비스(디에틸아미노)텅스텐, 비스(3차-부틸이미노)비스(에틸메틸아미노)텅스텐, 및 이들의 조합으로 이루어진 군으로부터 선택되는 방법.
  14. 제11항에 있어서, 질소-소스가 암모니아, 모노알킬하이드라진, 디알킬하이드라진, 3차-부틸아민, 메틸아민, 에틸아민, 에틸렌디아민, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 방법.
  15. 제1항의 방법에 따라 형성된 막.
  16. 입방 센티미터 당 2.0 그램(g/cc) 이상의 밀도, 20 원자중량 퍼센트% 미만의 수소 함량, 1.80 이상의 반사 지수, 및 이들의 조합의 특징 중 하나 이상을 갖는, 알루미늄-도핑된 실리콘 니트라이드 또는 알루미늄-도핑된 실리콘 카보니트라이드 막.
  17. 입방 센티미터 당 2.0 그램(g/cc) 이상의 밀도, 20 원자중량 퍼센트% 미만의 수소 함량, 1.80 이상의 반사 지수, 및 이들의 조합의 특징 중 하나 이상을 갖는, 갈륨-도핑된 실리콘 니트라이드 또는 갈륨-도핑된 실리콘 카보니트라이드 막.
  18. 입방 센티미터 당 2.0 그램(g/cc) 이상의 밀도, 20 원자중량 퍼센트% 미만의 수소 함량, 1.80 이상의 반사 지수, 및 이들의 조합의 특징 중 하나 이상을 갖는, 티탄-도핑된 실리콘 니트라이드 또는 티탄-도핑된 실리콘 카보니트라이드 막.
  19. 입방 센티미터 당 2.0 그램(g/cc) 이상의 밀도, 20 원자중량 퍼센트% 미만의 수소 함량, 1.80 이상의 반사 지수, 및 이들의 조합의 특징 중 하나 이상을 갖는, 지르코늄-도핑된 실리콘 니트라이드 또는 지르코늄-도핑된 실리콘 카보니트라이드 막.
  20. 입방 센티미터 당 2.0 그램(g/cc) 이상의 밀도, 20 원자중량 퍼센트% 미만의 수소 함량, 1.80 이상의 반사 지수, 및 이들의 조합의 특징 중 하나 이상을 갖는, 하프늄-도핑된 실리콘 니트라이드 또는 하프늄-도핑된 실리콘 카보니트라이드 막.
  21. 입방 센티미터 당 2.0 그램(g/cc) 이상의 밀도, 20 원자중량 퍼센트% 미만의 수소 함량, 1.80 이상의 반사 지수, 및 이들의 조합의 특징 중 하나 이상을 갖는, 탄탈-도핑된 실리콘 니트라이드 또는 탄탈-도핑된 실리콘 카보니트라이드 막.
  22. 입방 센티미터 당 2.0 그램(g/cc) 이상의 밀도, 20 원자중량 퍼센트% 미만의 수소 함량, 1.80 이상의 반사 지수, 및 이들의 조합의 특징 중 하나 이상을 갖는, 텅스텐-도핑된 실리콘 니트라이드 또는 텅스텐-도핑된 실리콘 카보니트라이드 막.
KR1020187010145A 2015-09-11 2016-09-09 콘포말한 금속 또는 메탈로이드 실리콘 니트라이드 막을 증착시키는 방법 및 얻어진 막 KR102188750B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562217296P 2015-09-11 2015-09-11
US62/217,296 2015-09-11
US201562237899P 2015-10-06 2015-10-06
US62/237,899 2015-10-06
PCT/US2016/050874 WO2017044690A1 (en) 2015-09-11 2016-09-09 Methods for depositing a conformal metal or metalloid silicon nitride film and resultant films

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020207034629A Division KR102251774B1 (ko) 2015-09-11 2016-09-09 콘포말한 금속 또는 메탈로이드 실리콘 니트라이드 막을 증착시키는 방법 및 얻어진 막

Publications (2)

Publication Number Publication Date
KR20180053694A true KR20180053694A (ko) 2018-05-23
KR102188750B1 KR102188750B1 (ko) 2020-12-08

Family

ID=56940449

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020187010145A KR102188750B1 (ko) 2015-09-11 2016-09-09 콘포말한 금속 또는 메탈로이드 실리콘 니트라이드 막을 증착시키는 방법 및 얻어진 막
KR1020207034629A KR102251774B1 (ko) 2015-09-11 2016-09-09 콘포말한 금속 또는 메탈로이드 실리콘 니트라이드 막을 증착시키는 방법 및 얻어진 막

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020207034629A KR102251774B1 (ko) 2015-09-11 2016-09-09 콘포말한 금속 또는 메탈로이드 실리콘 니트라이드 막을 증착시키는 방법 및 얻어진 막

Country Status (8)

Country Link
US (2) US11104990B2 (ko)
EP (1) EP3347504B1 (ko)
JP (1) JP6761028B2 (ko)
KR (2) KR102188750B1 (ko)
CN (2) CN108026637A (ko)
IL (1) IL257990B2 (ko)
TW (1) TWI642803B (ko)
WO (1) WO2017044690A1 (ko)

Families Citing this family (282)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US9777025B2 (en) * 2015-03-30 2017-10-03 L'Air Liquide, Société pour l'Etude et l'Exploitation des Procédés Georges Claude Si-containing film forming precursors and methods of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10745808B2 (en) * 2015-07-24 2020-08-18 Versum Materials Us, Llc Methods for depositing Group 13 metal or metalloid nitride films
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10157736B2 (en) 2016-05-06 2018-12-18 Lam Research Corporation Methods of encapsulation
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
KR102532607B1 (ko) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. 기판 가공 장치 및 그 동작 방법
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
JP6832785B2 (ja) * 2016-08-08 2021-02-24 東京エレクトロン株式会社 シリコン窒化膜の成膜方法および成膜装置
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (ko) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기체 공급 유닛 및 이를 포함하는 기판 처리 장치
KR20180068582A (ko) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR102700194B1 (ko) 2016-12-19 2024-08-28 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
JP6920082B2 (ja) * 2017-03-17 2021-08-18 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
KR102457289B1 (ko) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US20180331118A1 (en) * 2017-05-12 2018-11-15 Sandisk Technologies Llc Multi-layer barrier for cmos under array type memory device and method of making thereof
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (ko) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102491945B1 (ko) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102401446B1 (ko) 2017-08-31 2022-05-24 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR102630301B1 (ko) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
CN111344522B (zh) 2017-11-27 2022-04-12 阿斯莫Ip控股公司 包括洁净迷你环境的装置
KR102597978B1 (ko) 2017-11-27 2023-11-06 에이에스엠 아이피 홀딩 비.브이. 배치 퍼니스와 함께 사용하기 위한 웨이퍼 카세트를 보관하기 위한 보관 장치
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TWI799494B (zh) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 沈積方法
CN111630203A (zh) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 通过等离子体辅助沉积来沉积间隙填充层的方法
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
KR102636427B1 (ko) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 장치
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (ko) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
KR102501472B1 (ko) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
TWI811348B (zh) 2018-05-08 2023-08-11 荷蘭商Asm 智慧財產控股公司 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
KR20190129718A (ko) 2018-05-11 2019-11-20 에이에스엠 아이피 홀딩 비.브이. 기판 상에 피도핑 금속 탄화물 막을 형성하는 방법 및 관련 반도체 소자 구조
KR102596988B1 (ko) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 그에 의해 제조된 장치
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
TWI840362B (zh) 2018-06-04 2024-05-01 荷蘭商Asm Ip私人控股有限公司 水氣降低的晶圓處置腔室
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (ko) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 시스템
JP2021529254A (ja) 2018-06-27 2021-10-28 エーエスエム・アイピー・ホールディング・ベー・フェー 金属含有材料ならびに金属含有材料を含む膜および構造体を形成するための周期的堆積方法
US10879456B2 (en) * 2018-06-27 2020-12-29 Taiwan Semiconductor Manufacturing Co., Ltd. Sidewall spacer stack for magnetic tunnel junctions
TWI815915B (zh) 2018-06-27 2023-09-21 荷蘭商Asm Ip私人控股有限公司 用於形成含金屬材料及包含含金屬材料的膜及結構之循環沉積方法
KR102686758B1 (ko) 2018-06-29 2024-07-18 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10755922B2 (en) * 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) * 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11239420B2 (en) 2018-08-24 2022-02-01 Lam Research Corporation Conformal damage-free encapsulation of chalcogenide materials
KR102707956B1 (ko) 2018-09-11 2024-09-19 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
KR20200038184A (ko) 2018-10-01 2020-04-10 에이에스엠 아이피 홀딩 비.브이. 기판 유지 장치, 장치를 포함하는 시스템, 및 이를 이용하는 방법
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (ko) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102546322B1 (ko) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
KR102605121B1 (ko) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (ko) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (ko) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치를 세정하는 방법
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
TW202037745A (zh) 2018-12-14 2020-10-16 荷蘭商Asm Ip私人控股有限公司 形成裝置結構之方法、其所形成之結構及施行其之系統
TW202405220A (zh) 2019-01-17 2024-02-01 荷蘭商Asm Ip 私人控股有限公司 藉由循環沈積製程於基板上形成含過渡金屬膜之方法
KR20200091543A (ko) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN111524788B (zh) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 氧化硅的拓扑选择性膜形成的方法
KR102626263B1 (ko) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치
TW202044325A (zh) 2019-02-20 2020-12-01 荷蘭商Asm Ip私人控股有限公司 填充一基板之一表面內所形成的一凹槽的方法、根據其所形成之半導體結構、及半導體處理設備
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
TWI845607B (zh) 2019-02-20 2024-06-21 荷蘭商Asm Ip私人控股有限公司 用來填充形成於基材表面內之凹部的循環沉積方法及設備
TWI842826B (zh) 2019-02-22 2024-05-21 荷蘭商Asm Ip私人控股有限公司 基材處理設備及處理基材之方法
KR20200108248A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOCN 층을 포함한 구조체 및 이의 형성 방법
KR20200108242A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체
KR20200108243A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOC 층을 포함한 구조체 및 이의 형성 방법
JP2020167398A (ja) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー ドアオープナーおよびドアオープナーが提供される基材処理装置
KR20200116855A (ko) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. 반도체 소자를 제조하는 방법
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (ko) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. 기상 반응기 시스템 및 이를 사용하는 방법
KR20200130121A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 딥 튜브가 있는 화학물질 공급원 용기
KR20200130118A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 비정질 탄소 중합체 막을 개질하는 방법
KR20200130652A (ko) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조
JP2020188254A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
JP2020188255A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (ko) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 배기 가스 분석을 포함한 기상 반응기 시스템을 사용하는 방법
KR20200143254A (ko) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (ko) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법
JP7499079B2 (ja) 2019-07-09 2024-06-13 エーエスエム・アイピー・ホールディング・ベー・フェー 同軸導波管を用いたプラズマ装置、基板処理方法
CN112216646A (zh) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 基板支撑组件及包括其的基板处理装置
KR20210010307A (ko) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210010816A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 라디칼 보조 점화 플라즈마 시스템 및 방법
KR20210010820A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 실리콘 게르마늄 구조를 형성하는 방법
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
KR20210010817A (ko) 2019-07-19 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 토폴로지-제어된 비정질 탄소 중합체 막을 형성하는 방법
TWI839544B (zh) 2019-07-19 2024-04-21 荷蘭商Asm Ip私人控股有限公司 形成形貌受控的非晶碳聚合物膜之方法
CN112309843A (zh) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 实现高掺杂剂掺入的选择性沉积方法
CN112309899A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
CN112309900A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
KR20210018759A (ko) 2019-08-05 2021-02-18 에이에스엠 아이피 홀딩 비.브이. 화학물질 공급원 용기를 위한 액체 레벨 센서
JP7246284B2 (ja) * 2019-08-15 2023-03-27 東京エレクトロン株式会社 成膜方法
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (ja) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. 成膜原料混合ガス生成装置及び成膜装置
KR20210024423A (ko) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 홀을 구비한 구조체를 형성하기 위한 방법
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210024420A (ko) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법
KR20210029090A (ko) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. 희생 캡핑 층을 이용한 선택적 증착 방법
KR20210029663A (ko) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20220057621A (ko) * 2019-09-11 2022-05-09 버슘머트리얼즈 유에스, 엘엘씨 규소 도핑된 산화하프늄의 증착을 위한 배합물
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
KR102156663B1 (ko) * 2019-09-25 2020-09-21 솔브레인 주식회사 박막 제조 방법
CN112593212B (zh) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法
KR20210042810A (ko) 2019-10-08 2021-04-20 에이에스엠 아이피 홀딩 비.브이. 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법
TWI846953B (zh) 2019-10-08 2024-07-01 荷蘭商Asm Ip私人控股有限公司 基板處理裝置
TWI846966B (zh) 2019-10-10 2024-07-01 荷蘭商Asm Ip私人控股有限公司 形成光阻底層之方法及包括光阻底層之結構
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
TWI834919B (zh) 2019-10-16 2024-03-11 荷蘭商Asm Ip私人控股有限公司 氧化矽之拓撲選擇性膜形成之方法
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (ko) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. 막을 선택적으로 에칭하기 위한 장치 및 방법
KR20210050453A (ko) 2019-10-25 2021-05-07 에이에스엠 아이피 홀딩 비.브이. 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (ko) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (ko) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112951697A (zh) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 基板处理设备
CN112885693A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
CN112885692A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
JP7527928B2 (ja) 2019-12-02 2024-08-05 エーエスエム・アイピー・ホールディング・ベー・フェー 基板処理装置、基板処理方法
KR20210070898A (ko) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
TW202125596A (zh) 2019-12-17 2021-07-01 荷蘭商Asm Ip私人控股有限公司 形成氮化釩層之方法以及包括該氮化釩層之結構
US11482414B2 (en) * 2019-12-18 2022-10-25 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Ultra-low temperature ALD to form high-quality Si-containing film
KR20210080214A (ko) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. 기판 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
CN111162088B (zh) * 2020-01-02 2023-01-24 长江存储科技有限责任公司 含硅衬底中凹槽的制作方法、三维nand存储器及制作方法
JP2021109175A (ja) 2020-01-06 2021-08-02 エーエスエム・アイピー・ホールディング・ベー・フェー ガス供給アセンブリ、その構成要素、およびこれを含む反応器システム
TW202142733A (zh) 2020-01-06 2021-11-16 荷蘭商Asm Ip私人控股有限公司 反應器系統、抬升銷、及處理方法
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
KR102675856B1 (ko) 2020-01-20 2024-06-17 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법 및 박막 표면 개질 방법
TW202130846A (zh) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 形成包括釩或銦層的結構之方法
TW202146882A (zh) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
TW202203344A (zh) 2020-02-28 2022-01-16 荷蘭商Asm Ip控股公司 專用於零件清潔的系統
KR20210116240A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 조절성 접합부를 갖는 기판 핸들링 장치
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
KR20210117157A (ko) 2020-03-12 2021-09-28 에이에스엠 아이피 홀딩 비.브이. 타겟 토폴로지 프로파일을 갖는 층 구조를 제조하기 위한 방법
EP4126886A4 (en) * 2020-03-31 2024-05-01 Entegris, Inc. PRECURSORS AND METHODS FOR PRODUCING SILICON-CONTAINING FILMS
CN118223007A (zh) 2020-04-01 2024-06-21 株式会社Adeka 原子层沉积法用薄膜形成用原料及薄膜的制造方法
KR20210124042A (ko) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법
TW202146689A (zh) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 阻障層形成方法及半導體裝置的製造方法
TW202145344A (zh) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 用於選擇性蝕刻氧化矽膜之設備及方法
KR20210128343A (ko) 2020-04-15 2021-10-26 에이에스엠 아이피 홀딩 비.브이. 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
KR20210132600A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템
TW202146831A (zh) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法
KR20210132576A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐 나이트라이드 함유 층을 형성하는 방법 및 이를 포함하는 구조
KR20210134226A (ko) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. 고체 소스 전구체 용기
KR20210134869A (ko) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Foup 핸들러를 이용한 foup의 빠른 교환
TW202147543A (zh) 2020-05-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 半導體處理系統
KR20210141379A (ko) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. 반응기 시스템용 레이저 정렬 고정구
TW202146699A (zh) 2020-05-15 2021-12-16 荷蘭商Asm Ip私人控股有限公司 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統
KR20210143653A (ko) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210145078A (ko) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법
KR102702526B1 (ko) 2020-05-22 2024-09-03 에이에스엠 아이피 홀딩 비.브이. 과산화수소를 사용하여 박막을 증착하기 위한 장치
KR20220156952A (ko) * 2020-05-26 2022-11-28 가부시키가이샤 고준도가가쿠 겐큐쇼 결정성의 질화갈륨 박막의 제조 방법
TW202201602A (zh) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202212620A (zh) 2020-06-02 2022-04-01 荷蘭商Asm Ip私人控股有限公司 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法
TW202218133A (zh) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 形成含矽層之方法
TW202217953A (zh) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202202649A (zh) 2020-07-08 2022-01-16 荷蘭商Asm Ip私人控股有限公司 基板處理方法
KR20220010438A (ko) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. 포토리소그래피에 사용하기 위한 구조체 및 방법
TW202204662A (zh) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 用於沉積鉬層之方法及系統
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
KR20220027026A (ko) 2020-08-26 2022-03-07 에이에스엠 아이피 홀딩 비.브이. 금속 실리콘 산화물 및 금속 실리콘 산질화물 층을 형성하기 위한 방법 및 시스템
TW202229601A (zh) 2020-08-27 2022-08-01 荷蘭商Asm Ip私人控股有限公司 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
KR20220045900A (ko) 2020-10-06 2022-04-13 에이에스엠 아이피 홀딩 비.브이. 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치
CN114293174A (zh) 2020-10-07 2022-04-08 Asm Ip私人控股有限公司 气体供应单元和包括气体供应单元的衬底处理设备
TW202229613A (zh) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法
TW202217037A (zh) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 沉積釩金屬的方法、結構、裝置及沉積總成
WO2022087036A1 (en) * 2020-10-23 2022-04-28 Entegris, Inc. Method for preparing iodosilanes
TW202223136A (zh) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 用於在基板上形成層之方法、及半導體處理系統
TW202235649A (zh) 2020-11-24 2022-09-16 荷蘭商Asm Ip私人控股有限公司 填充間隙之方法與相關之系統及裝置
TW202235675A (zh) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 注入器、及基板處理設備
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (zh) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
WO2024129836A1 (en) * 2022-12-16 2024-06-20 Villanova University Biscationic quaternary phosphonium compounds as soft antimicrobial agents

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013503A (ja) * 2004-06-29 2006-01-12 Internatl Business Mach Corp <Ibm> ドープ窒化膜、ドープ酸化膜、およびその他のドープ膜
KR20080111702A (ko) * 2007-06-19 2008-12-24 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 금속 실리콘 질화물 박막의 플라즈마 강화 사이클릭증착방법
KR20150040234A (ko) * 2013-10-03 2015-04-14 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 질화규소 막을 증착시키는 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974003A (en) 1975-08-25 1976-08-10 Ibm Chemical vapor deposition of dielectric films containing Al, N, and Si
US7081271B2 (en) * 2001-12-07 2006-07-25 Applied Materials, Inc. Cyclical deposition of refractory metal silicon nitride
US20060182885A1 (en) * 2005-02-14 2006-08-17 Xinjian Lei Preparation of metal silicon nitride films via cyclic deposition
US7678422B2 (en) * 2006-12-13 2010-03-16 Air Products And Chemicals, Inc. Cyclic chemical vapor deposition of metal-silicon containing films
JP2009260151A (ja) * 2008-04-18 2009-11-05 Tokyo Electron Ltd 金属ドープ層の形成方法、成膜装置及び記憶媒体
JP5384291B2 (ja) 2008-11-26 2014-01-08 株式会社日立国際電気 半導体装置の製造方法、基板処理方法及び基板処理装置
WO2010151856A2 (en) 2009-06-26 2010-12-29 Cornell University Chemical vapor deposition process for aluminum silicon nitride
EP2730676A1 (en) 2010-04-01 2014-05-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for deposition of silicon nitride layers
US8912353B2 (en) * 2010-06-02 2014-12-16 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for depositing films comprising same
KR101295031B1 (ko) 2011-04-22 2013-08-09 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 금속 실리콘 질화물 박막의 플라즈마 강화 사이클릭 증착방법
US8771807B2 (en) * 2011-05-24 2014-07-08 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for making and using same
US8993072B2 (en) * 2011-09-27 2015-03-31 Air Products And Chemicals, Inc. Halogenated organoaminosilane precursors and methods for depositing films comprising same
TWI563539B (en) 2012-01-18 2016-12-21 Sino American Silicon Prod Inc Composite substrate, manufacturing method thereof and light emitting device having the same
US8912101B2 (en) 2012-03-15 2014-12-16 Asm Ip Holding B.V. Method for forming Si-containing film using two precursors by ALD
US9460912B2 (en) * 2012-04-12 2016-10-04 Air Products And Chemicals, Inc. High temperature atomic layer deposition of silicon oxide thin films
US9337018B2 (en) 2012-06-01 2016-05-10 Air Products And Chemicals, Inc. Methods for depositing films with organoaminodisilane precursors
US20140273516A1 (en) * 2013-03-13 2014-09-18 Applied Materials, Inc. Vbd and tddb improvement thru interface engineering
TWI649803B (zh) * 2013-09-30 2019-02-01 蘭姆研究公司 具有電漿輔助式原子層沉積及電漿輔助式化學氣相沉積合成法之深寬比可變的特徵物之間隙填充
WO2015103358A1 (en) 2014-01-05 2015-07-09 Applied Materials, Inc. Film deposition using spatial atomic layer deposition or pulsed chemical vapor deposition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013503A (ja) * 2004-06-29 2006-01-12 Internatl Business Mach Corp <Ibm> ドープ窒化膜、ドープ酸化膜、およびその他のドープ膜
KR20080111702A (ko) * 2007-06-19 2008-12-24 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 금속 실리콘 질화물 박막의 플라즈마 강화 사이클릭증착방법
KR20150040234A (ko) * 2013-10-03 2015-04-14 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 질화규소 막을 증착시키는 방법

Also Published As

Publication number Publication date
JP2018528615A (ja) 2018-09-27
KR20200137053A (ko) 2020-12-08
WO2017044690A1 (en) 2017-03-16
KR102188750B1 (ko) 2020-12-08
CN108026637A (zh) 2018-05-11
EP3347504B1 (en) 2024-09-25
TW201710538A (zh) 2017-03-16
US11732351B2 (en) 2023-08-22
TWI642803B (zh) 2018-12-01
JP6761028B2 (ja) 2020-09-23
EP3347504A1 (en) 2018-07-18
US20180245215A1 (en) 2018-08-30
US20210388489A1 (en) 2021-12-16
IL257990B2 (en) 2023-07-01
CN117265512A (zh) 2023-12-22
US11104990B2 (en) 2021-08-31
IL257990B1 (en) 2023-03-01
KR102251774B1 (ko) 2021-05-12
IL257990A (en) 2018-05-31

Similar Documents

Publication Publication Date Title
US11732351B2 (en) Methods for depositing a conformal metal or metalloid silicon nitride film and resultant films
JP6437962B2 (ja) 13族金属又は半金属の窒化物膜の堆積方法
US11605535B2 (en) Boron-containing compounds, compositions, and methods for the deposition of a boron containing films
CN113025992B (zh) 组合物和使用所述组合物沉积含硅膜的方法
JP6730429B2 (ja) コンフォーマルな金属又はメタロイド窒化ケイ素膜の堆積方法
TW202035430A (zh) 用於含矽膜的組合物及使用其的方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant