KR20120106786A - 반도체 장치 및 그 제작 방법 - Google Patents

반도체 장치 및 그 제작 방법 Download PDF

Info

Publication number
KR20120106786A
KR20120106786A KR1020127017530A KR20127017530A KR20120106786A KR 20120106786 A KR20120106786 A KR 20120106786A KR 1020127017530 A KR1020127017530 A KR 1020127017530A KR 20127017530 A KR20127017530 A KR 20127017530A KR 20120106786 A KR20120106786 A KR 20120106786A
Authority
KR
South Korea
Prior art keywords
layer
insulating layer
oxide semiconductor
forming
semiconductor layer
Prior art date
Application number
KR1020127017530A
Other languages
English (en)
Inventor
순페이 야마자키
Original Assignee
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 가부시키가이샤 한도오따이 에네루기 켄큐쇼
Publication of KR20120106786A publication Critical patent/KR20120106786A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/3003Hydrogenation or deuterisation, e.g. using atomic hydrogen from a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/38Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions
    • H01L21/385Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO

Abstract

반도체 장치의 제작 방법은, 절연 표면을 가진 기판 위에 게이트 전극층을 형성하는 단계, 상기 게이트 전극층 위에 게이트 절연층을 형성하는 단계, 상기 게이트 절연층 위에 산화물 반도체층을 형성하는 단계, 상기 산화물 반도체층 위에 소스 전극층 및 드레인 전극층을 형성하는 단계, 상기 산화물 반도체층, 상기 소스 전극층, 및 상기 드레인 전극층 위에 산소를 포함한 절연층을 형성하는 단계, 및 산소를 포함한 상기 절연층 위에 수소를 포함한 절연층의 형성 후, 수소를 포함한 상기 절연층의 수소가 적어도 상기 산화물 반도체층에 공급되도록 열 처리를 수행하는 단계를 포함한다.

Description

반도체 장치 및 그 제작 방법{SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF}
본 발명은 적어도 소자로서 트랜지스터와 같은 반도체 소자를 포함하는 회로를 포함하는 반도체 장치, 및 그 제작 방법에 관한 것이다. 예를 들면, 본 발명은 전원 회로에 탑재된 파워 디바이스; 메모리, 사이리스터, 컨버터, 이미지 센서 등을 포함한 반도체 집적 회로; 액정 표시 패널로 대표되는 전기 광학 장치; 또는 유기 발광 소자를 포함한 발광 표시 장치가 부품으로서 탑재되는 전자 기기에 관한 것이다.
본 명세서에서, 반도체 장치는 반도체 특성들을 이용함으로써 기능할 수 있는 임의의 장치를 의미하며, 전기-광학 장치, 반도체 회로, 및 전자 기기는 모두 반도체 장치들이다.
유리 기판 등 위에 형성된 트랜지스터들은 통상적으로 액정 표시 장치들에 보여지는 바와 같이, 비정질 실리콘, 다결정 실리콘 등을 사용하여 제작되어 왔다. 비정질 실리콘을 사용하여 제작된 트랜지스터들은 낮은 전계-효과 이동도를 가지지만, 보다 큰 유리 기판들을 사용할 수 있는 이점을 가진다. 또한, 다결정 실리콘을 사용하여 제작된 트랜지스터들은 높은 전계-효과 이동도를 가지지만, 그것들은 큰 유리 기판들에 적합하지 않다는 단점을 가진다.
실리콘을 사용하여 제작된 트랜지스터와 반대로, 트랜지스터가 산화물 반도체를 사용하여 제작되고 전자 기기 또는 광학 장치에 응용되는 기술이 주목되어 왔다. 예를 들면, 특허 문헌 1 및 특허 문헌 2는 산화물 반도체로서 산화 아연 또는 In-Ga-Zn-O-계 산화물 반도체를 사용하여 제작되고 이러한 트랜지스터가 표시 장치의 화소에서 스위칭 소자 등으로서 사용되는 기술을 개시한다.
일본 공개 특허 출원 번호 제2007-123861호 일본 공개 특허 출원 번호 제2007-96055호
또한, 대형 표시 장치들이 점차 보급되어져 왔다. 40인치 내지 50인치의 표시 화면 대각선을 가진 가정용 텔레비전들이 보급되기 시작하였다.
종래의 산화물 반도체를 사용하여 제작된 트랜지스터의 전계-효과 이동도는 10 ㎠/Vs 내지 20 ㎠/Vs이다. 산화물 반도체를 사용하여 제작된 트랜지스터의 전계-효과 이동도는 비정질 실리콘을 사용하여 제작된 트랜지스터의 10배 이상이다. 그러므로, 산화물 반도체를 사용하여 제작된 트랜지스터는 대형 표시 장치에서조차 화소 스위칭 소자로서 충분한 성능을 제공할 수 있다.
그러나, 반도체 장치의 구동 디바이스에서, 예를 들면, 대형 표시 장치의 구동 회로에서 스위칭 소자로서 사용될 때 산화물 반도체를 사용하여 제작된 상기 트랜지스터에 한계가 있다.
본 발명의 일 실시형태의 목적은 기판의 크기에서의 증가를 가능하게 할 뿐만 아니라 개선된 특성들을 가진 산화물 반도체층의 형성을 통해 바람직하게 높은 전계-효과 이동도를 가진 트랜지스터의 제조를 가능하게 하는 것이며, 또한 대형 표시 장치, 고-성능 반도체 장치 등을 실용화하는 것이다.
본 발명의 일 실시형태의 특징은 채널 형성 영역을 위한 산화물 반도체층을 사용한 트랜지스터에서, 상기 산화물 반도체층과 접하는 절연층 및 상기 절연층과 접하는 수소를 포함하는 절연층이 적층되고; 수소를 포함한 상기 절연층의 수소가 게이트 절연층과 상기 산화물 반도체층 사이의 계면, 상기 산화물 반도체층, 및 상기 산화물 반도체층과 상기 절연층 사이의 계면 중 적어도 하나에 공급되며, 그에 의해 상기 트랜지스터의 특성들이 개선된다는 것이다.
본 발명의 또 다른 실시형태는 절연 표면을 가진 기판 위에 게이트 전극층을 형성하는 단계; 상기 게이트 전극층 위에 게이트 절연층을 형성하는 단계; 상기 게이트 절연층 위에 산화물 반도체층을 형성하는 단계; 상기 산화물 반도체층 위에 소스 전극층 및 드레인 전극층을 형성하는 단계; 상기 산화물 반도체층, 상기 소스 전극층, 및 상기 드레인 전극층 위에 절연층을 형성하는 단계; 상기 절연층 위에 수소를 포함한 절연층을 형성하는 단계; 및 상기 수소를 포함한 절연층을 형성한 후, 상기 수소를 포함한 절연층의 수소가 적어도 상기 산화물 반도체층에 공급되도록 열 처리를 수행하는 단계를 포함하는, 반도체 장치의 제작 방법이다.
본 발명의 또 다른 실시형태는 상기 절연층을 형성한 후, 상기 절연층 위 및 상기 게이트 전극층과 중첩하는 영역에 백 게이트 전극을 형성하는 단계를 포함하는 반도체 장치의 제작 방법이다.
본 발명의 또 다른 실시형태는 절연 표면을 가진 기판 위에 게이트 전극층을 형성하는 단계; 상기 게이트 전극층 위에 게이트 절연층을 형성하는 단계; 상기 게이트 절연층 위에 산화물 반도체층을 형성하는 단계; 상기 산화물 반도체층의 일부 위에 채널 보호층으로서 기능하는 절연층을 형성하는 단계; 상기 산화물 반도체층 및 상기 절연층 위에 소스 전극층 및 드레인 전극층을 형성하는 단계; 상기 절연층, 상기 소스 전극층, 및 상기 드레인 전극층 위에 수소를 포함한 절연층을 형성하는 단계; 및 수소를 포함한 상기 절연층을 형성한 후, 수소를 포함한 상기 절연층의 수소가 적어도 상기 산화물 반도체층에 공급되도록 열 처리를 수행하는 단계를 포함하는, 반도체 장치의 제작 방법이다.
본 발명의 또 다른 실시형태는 절연 표면을 가진 기판 위에 산화물 반도체층을 형성하는 단계; 상기 산화물 반도체층 위에 소스 전극층 및 드레인 전극층을 형성하는 단계; 상기 산화물 반도체층, 상기 소스 전극층, 및 상기 드레인 전극층 위에 게이트 절연층으로서 기능하는 절연층을 형성하는 단계; 상기 절연층 위에 게이트 전극층을 형성하는 단계; 상기 절연층 및 상기 게이트 전극층 위에 수소를 포함한 절연층을 형성하는 단계; 및 수소를 포함한 상기 절연층을 형성한 후, 수소를 포함한 상기 절연층의 수소가 적어도 상기 산화물 반도체층에 공급되도록 열 처리를 수행하는 단계를 포함한, 반도체 장치의 제작 방법이다.
또한, 본 발명의 일 실시형태의 특징은, 채널 형성 영역을 위한 산화물 반도체층을 사용한 트랜지스터에서, 상기 트랜지스터의 특성들이, 상기 산화물 반도체층의 수소 농도를 감소시킨 후, 상기 산화물 반도체층과 접하는 산소를 포함한 절연층을 형성하는 단계; i-형(진성) 또는 실질적으로 i-형 산화물 반도체층이 형성되도록 상기 산화물 반도체층에 산소 결손 부분을 산화시키기 위해 열 처리를 수행한 후, 산소를 포함한 상기 절연층 위에 수소를 포함한 절연층을 형성하는 단계; 및 게이트 절연층과 상기 산화물 반도체층 사이의 계면, 상기 산화물 반도체층, 및 상기 산화물 반도체층과 산소를 포함한 상기 절연층 간의 계면 중 적어도 하나에 수소를 포함한 상기 절연층의 수소를 공급하는 단계에 의해 개선된다는 것이다. 본 명세서에서, "i-형 반도체"는 1×1012 cm-3 미만, 바람직하게는 1.45×1010 cm-3 미만의 캐리어 밀도를 가진 반도체를 의미한다는 것을 주의하자.
본 발명의 또 다른 실시형태는, 절연 표면을 가진 기판 위에 게이트 전극층을 형성하는 단계; 상기 게이트 전극층 위에 게이트 절연층을 형성하는 단계; 상기 게이트 절연층 위에 산화물 반도체층을 형성하는 단계; 상기 산화물 반도체층을 형성한 후, 상기 산화물 반도체층의 수소 농도가 감소되도록 제 1 열 처리를 수행하는 단계; 상기 산화물 반도체층 위에 소스 전극층 및 드레인 전극층을 형성하는 단계; 상기 산화물 반도체층, 상기 소스 전극층, 및 상기 드레인 전극층을 포함한 절연층을 형성하는 단계; 산소를 포함한 상기 절연층을 형성한 후, 산소가 상기 산화물 반도체층에 공급되도록 제 2 열 처리를 수행하는 단계; 산소를 포함한 상기 절연층 위에 수소를 포함한 절연층을 형성하는 단계; 및 수소를 포함한 상기 절연층을 형성한 후, 수소를 포함한 상기 절연층의 수소가 적어도 상기 산화물 반도체층에 공급되도록 제 3 열 처리를 수행하는 단계를 포함하는, 반도체 장치의 제작 방법이다.
본 발명의 또 다른 실시형태는 산소를 포함한 상기 절연층을 형성한 후, 산소를 포함한 상기 절연층 위에 및 상기 게이트 전극층과 중첩하는 영역에 백 게이트 전극을 형성하는 단계를 포함하는 반도체 장치의 제작 방법이다.
본 발명의 또 다른 실시형태는, 절연 표면을 가진 기판 위에 게이트 전극층을 형성하는 단계; 상기 게이트 전극층 위에 게이트 절연층을 형성하는 단계; 상기 게이트 절연층 위에 산화물 반도체층을 형성하는 단계; 상기 산화물 반도체층을 형성한 후, 상기 산화물 반도체층의 수소 농도가 감소되도록 제 1 열 처리를 수행하는 단계; 상기 산화물 반도체층의 일부 위에 채널 보호층으로서 기능하는 산소를 포함한 절연층을 형성하는 단계; 산소를 포함한 상기 절연층을 형성한 후, 산소가 상기 산화물 반도체층에 공급되도록 제 2 열 처리를 수행하는 단계; 상기 산화물 반도체층 및 산소를 포함한 상기 절연층 위에 소스 전극층 및 드레인 전극층을 형성하는 단계; 산소를 포함한 상기 절연층, 상기 소스 전극층, 및 상기 드레인 전극층 위에 수소를 포함한 절연층을 형성하는 단계; 및 수소를 포함한 상기 절연층을 형성한 후, 수소를 포함한 상기 절연층의 수소가 적어도 상기 산화물 반도체층에 공급되도록 제 3 열 처리를 수행하는 단계를 포함하는, 반도체 장치의 제작 방법이다.
본 발명의 또 다른 실시형태는, 절연 표면을 가진 기판 위에 산화물 반도체층을 형성하는 단계; 상기 산화물 반도체층을 형성한 후, 상기 산화물 반도체층의 수소 농도가 감소되도록 제 1 열 처리를 수행하는 단계; 상기 산화물 반도체층 위에 소스 전극층 및 드레인 전극층을 형성하는 단계; 상기 산화물 반도체층, 상기 소스 전극층, 및 상기 드레인 전극층 위에 게이트 절연층으로서 기능하는 산소를 포함한 절연층을 형성하는 단계; 산소를 포함한 상기 절연층을 형성한 후, 산소가 상기 산화물 반도체층에 공급되도록 제 2 열 처리를 수행하는 단계; 산소를 포함한 상기 절연층 위에 게이트 전극층을 형성하는 단계; 산소를 포함한 상기 절연층 및 상기 게이트 전극층 위에 수소를 포함한 절연층을 형성하는 단계; 및 상기 수소를 포함한 절연층을 형성한 후, 상기 수소를 포함한 절연층의 수소가 적어도 상기 산화물 반도체층에 공급되도록 제 3 열 처리를 수행하는 단계를 포함하는, 반도체 장치의 제작 방법이다.
상기 산화물 반도체층과 접하는 상기 산소를 포함한 절연층 위에 상기 수소를 포함한 절연층의 형성 후 수행된 상기 150℃ 이상 450℃ 이하, 바람직하게는 250℃ 이상 440℃ 이하의 온도에서의 열 처리는 상기 게이트 절연층과 상기 산화물 반도체층 사이의 계면, 상기 산화물 반도체층, 및 상기 산화물 반도체층과 상기 산소를 포함한 절연층 사이의 계면 중 적어도 하나에 상기 수소를 포함한 절연층의 수소의 공급을 가능하게 한다. 또한, 상기 공급된 수소로 상기 산화물 반도체층에 포함된 결함 또는 미결합수(dangling bond)가 종단될 수 있다. 그 결과, 상기 트랜지스터의 온-상태 전류 및 전계-효과 이동도가 증가될 수 있다.
노(furnace)에서의 열 처리 또는 급속 열 어닐링 법(RTA 법)이 상기 열 처리로서 사용된다. 상기 RTA 법으로서, 램프 광원을 사용한 방법 또는 기판이 가열된 가스로 이동되는 동안 열 처리가 단시간에 수행되는 방법이 이용될 수 있다. 상기 RTA 법의 사용으로, 열 처리를 위해 요구된 시간을 0.1시간보다 짧게 하는 것이 또한 가능하다.
상기 산소를 포함한 절연층은 바람직하게는 스퍼터링 법 또는 CVD 법에 의해 형성된 산화 실리콘층 또는 산화 질화 실리콘층이며, 그것은 특히 스퍼터링 법에 의해 형성된 산화 실리콘층을 사용하는 것이 바람직하다.
상기 수소를 포함한 절연층은 바람직하게는 스퍼터링 법 또는 CVD 방법에 의해 형성된 질화 실리콘층, 질화 산화 실리콘층, 질화 알루미늄층 또는 질화 산화 알루미늄층이다. 특히, 바람직하게는 원료 가스로서 적어도 실란 및 질소를 포함한 가스(대표적으로, 질소 가스, 암모니아 가스 등)를 사용한 CVD 법에 의해 형성된 질화 실리콘층 또는 질화 산화 실리콘층이 사용된다. 또한, 원료 가스로서 적어도 수소화 알루미늄 및 질소를 포함한 가스를 사용한 CVD 법에 의해 형성된 질화 알루미늄층 또는 질화 산화 알루미늄층이 비교적 많은 수의 수소 원자들을 포함하기 때문에 바람직하다. 상기 수소를 포함한 절연층은 상기 산화물 반도체층과 접하는 상기 절연층과 비교하여 많은 수소 원자들을 포함하는 절연층임을 주의하자. 예를 들면, 상기 수소를 포함한 절연층의 수소 농도는 1×1021 원자/㎤ 이상, 바람직하게는 1×1022 원자/㎤ 이상, 더욱 바람직하게는 1×1023 원자/㎤ 이상이다.
상기 산화물 반도체층은 금속 산화물이며, 4-원계 금속 산화물인 In-Sn-Ga-Zn-O-계 재료; 3-원계 금속 산화물들인 In-Ga-Zn-O-계 재료, In-Sn-Zn-O-계 재료, In-Al-Zn-O-계 재료, Sn-Ga-Zn-O-계 재료, Al-Ga-Zn-O-계 재료, 또는 Sn-Al-Zn-O-계 재료; 2-원계 금속 산화물들인 In-Zn-O-계 재료, Sn-Zn-O-계 재료, Al-Zn-O-계 재료, Zn-Mg-O-계 재료, Sn-Mg-O-계 재료, 또는 In-Mg-O-계 재료; 또는 In-O-계 재료, Sn-O-계 재료, Zn-O-계 재료 등을 사용하여 형성될 수 있다.
상기 산화물 반도체층을 위해, InMO3(ZnO)m(m>0)으로 표현된 재료가 사용될 수 있다. 여기서, M은 Ga, Al, Mn, 및 Co로부터 선택된 하나 이상의 금속 원소들을 나타낸다. 예를 들면, M은 Ga, Ga와 Al, Ga와 Mn, Ga와 Co 등일 수 있다.
상기 산화물 반도체층을 위해, In-Mx-Zny-Oz(Y=0.5 내지 5)로 표현된 산화물 반도체 재료가 사용될 수 있다. 여기에서, M은 갈륨(Ga), 알루미늄(Al), 및 붕소(B)와 같은 13족의 원소들로부터 선택된 하나 이상의 원소들을 나타낸다. In, M, Zn, 및 O의 함유량들은 자유롭게 설정될 수 있으며, 상기 M의 함유량이 제로(즉, x=0)인 경우가 포함된다는 것을 주의하자. In 및 Zn의 함유량들은 제로가 아니다. 달리 말하면, 상술된 표현은 In-Ga-Zn-O, In-Zn-O 등을 포함한다.
상기 산화물 반도체층은 비정질 구조 또는 결정 영역이 비정질 영역에 포함되는 구조를 가질 수 있다. 상기 산화물 반도체층이 비정질 구조를 가질 때, 복수의 원소들 중에서의 특징적 변화가 감소될 수 있다. 또한, 상기 산화물 반도체층이 결정 영역이 비정질 영역에 포함되는 구조를 가질 때, 높은 전계-효과 이동도 및 큰 온-상태 전류를 가진 트랜지스터가 획득될 수 있다.
채널 형성 영역을 위한 산화물 반도체층을 사용한 트랜지스터 상에서, 제 1 열 처리는 400℃ 이상 750℃ 이하, 바람직하게는 400℃ 이상 상기 기판의 변형점 미만의 온도에서 수소 및 수분을 거의 포함하지 않는 분위기(질소 분위기, 산소 분위기, 건조-대기 분위기(예로서, 수분에 대해, 이슬점이 -40℃ 이하, 바람직하게는 -50℃ 이하) 등)에서 수행되어, 상기 산화물 반도체층의 수소 농도가 감소되도록 한다. 다음으로, 상기 산화물 반도체층과 접하는 산소를 포함한 절연층이 형성되고, 그 후 제 2 열 처리가 불활성 가스 분위기 또는 산소 가스 분위기(바람직하게는 200℃ 이상 450℃ 이하의 온도로, 예를 들면 250℃ 이상 350℃ 이하의 온도로)에서 수행되어, 산소가 상기 산화물 반도체층의 산소 결손에 공급되도록 한다. 따라서, i-형(진성) 또는 실질적으로 i-형 반도체층이 형성된다. 다음으로, 수소를 포함한 절연층이 상기 산소를 포함한 절연층 위에 형성된다. 그 후, 제 3 열 처리가 150℃ 이상 450℃ 이하, 바람직하게는 250℃ 이상 440℃ 이하의 온도에서 수행되며, 그에 의해 상기 수소를 포함한 절연층의 수소가 상기 게이트 절연층과 상기 산화물 반도체층 사이의 계면, 상기 산화물 반도체층, 및 상기 산화물 반도체층과 상기 산소를 포함한 절연층 사이의 계면 중 적어도 하나에 공급된다. 상기 수소는 상기 산화물 반도체층에 포함된 결함 또는 미결합수를 종단시킨다. 이러한 방식으로, 트랜지스터 특성들이 개선될 수 있다.
상기 제 1 열 처리에서, 상기 산화물 반도체층에 포함된 수분 또는 수소와 같은 불순물이 감소되어, 상기 산화물 반도체층이 i-형(진성) 또는 실질적으로 i-형 산화물 반도체층이 되도록 고고순도화될 수 있다. 상기 i-형(진성) 또는 실질적으로 i-형 산화물 반도체층의 수소 농도는 2차 이온 질량 분석법(SIMS)을 사용한 측정에 따라, 1×1018 cm-3 이하, 바람직하게는 1×1016 cm-3 이하, 및 보다 바람직하게는 실질적으로 제로이다. 또한, 상기 i-형(진성) 또는 실질적으로 i-형 산화물 반도체의 캐리어 밀도는 홀 효과 측정 또는 CV 측정(capacitance-voltage measurement)에 따라 1×1012 cm-3 미만, 바람직하게는 1.45×1010 cm-3 미만이다. 즉, 상기 산화물 반도체층의 상기 캐리어 밀도는 거의 제로이다. 또한, 상기 i-형(진성) 또는 실질적으로 i-형 산화물 반도체의 밴드갭은 2 eV 이상, 바람직하게는 2.5 eV 이상, 및 보다 바람직하게는 3 eV 이상이다.
구체적으로, 예를 들면, 채널 형성 영역을 위한 상술된 방식으로 고고순도화된 상기 산화물 반도체층을 사용하는 트랜지스터가 1×104 ㎛의 채널 폭(W) 및 3㎛의 채널 길이를 가질 때조차, 그것은 10-13 A 이하의 오프-상태 전류 및 대략 0.1 V/dec의 서브스레스홀드 스윙(subthreshold swing; S 값)(게이트 절연층의 두께는 100nm이다)을 가진다. 따라서, 게이트 전극층 및 소스 전극층 사이의 전압이 대략 0인 상태에서의 오프-상태 전류, 즉, 상기 트랜지스터의 리크 전류가 결정성을 가진 실리콘을 포함한 트랜지스터보다 훨씬 더 작다. 본 명세서에서, 오프-상태 전류는, 예를 들면, n-채널 트랜지스터의 경우에, 상기 게이트-소스 전압이 -5V일 때 상기 소스 및 상기 드레인 간의 전류를 나타낸다는 것을 주의하자.
본 발명의 또 다른 실시형태는 절연 표면을 가진 기판 위의 게이트 전극층; 상기 게이트 전극층 위의 게이트 절연층; 상기 게이트 절연층 위의 산화물 반도체층; 상기 산화물 반도체층 위의 소스 전극층 및 드레인 전극층; 상기 산화물 반도체층과 접하는 산소를 포함한 절연층; 및 상기 산소를 포함한 절연층과 접하는 수소를 포함한 절연층을 포함하는 반도체 장치이다.
상기 트랜지스터는 보텀-게이트형 트랜지스터, 톱-게이트형 트랜지스터, 또는 보텀-콘택트형 트랜지스터일 수 있다. 상기 보텀-게이트형 트랜지스터는 기판 위의 게이트 전극층, 상기 게이트 전극층 위의 게이트 절연층, 상기 게이트 절연층 위의 상기 게이트 전극층과 중첩하는 산화물 반도체층, 및 상기 산화물 반도체층 위의 소스 전극층 및 드레인 전극층을 포함한다.
상기 톱-게이트형 트랜지스터는 기판 위의 산화물 반도체층, 상기 산화물 반도체층 위의 게이트 절연층, 상기 게이트 절연층 위의 상기 산화물 반도체층과 중첩하는 게이트 전극층, 및 소스 전극층 및 드레인 전극층을 포함한다.
상기 보텀-콘택트형 트랜지스터는 기판 위의 게이트 전극층, 상기 게이트 전극층 위의 게이트 절연층, 상기 게이트 절연층 위의 소스 전극층 및 드레인 전극층, 및 상기 소스 전극층 및 상기 드레인 전극층 위에 있고 상기 게이트 절연층이 사이에 위치되어 상기 게이트 전극층과 중첩하는 산화물 반도체층을 포함한다.
상기 트랜지스터의 온-상태 전류 및 전계-효과 이동도가 개선될 수 있다. 또한, 오프-상태 전류가 감소되고 온-상태 전류가 증가되어, 상기 트랜지스터의 온/오프 비가 증가될 수 있도록 한다. 이러한 트랜지스터의 사용으로, 대형 표시 장치, 고-성능 반도체 장치 등이 실현될 수 있다.
도 1은 본 발명의 일 실시형태를 도시한 단면도.
도 2a 내지 도 2c는 본 발명의 일 실시형태를 도시한 단면 공정도.
도 3a 내지 도 3c는 본 발명의 일 실시형태를 도시한 단면 공정도.
도 4a 내지 도 4c는 본 발명의 일 실시형태를 도시한 단면 공정도.
도 5는 본 발명의 일 실시형태를 도시한 단면도.
도 6a 내지 도 6d는 본 발명의 일 실시형태를 도시한 단면 공정도.
도 7a 내지 도 7d는 본 발명의 일 실시형태를 도시한 단면 공정도.
도 8a 및 도 8b는 각각 본 발명의 일 실시형태를 도시한 상면도 및 단면도.
도 9a 및 도 9b는 각각 본 발명의 일 실시형태를 도시한 상면도 및 단면도.
도 10은 본 발명의 일 실시에를 도시한 단면도.
도 11a 내지 도 11e는 전자 기기들의 예들을 도시한 도면.
도 12는 전자 기기의 일 예를 도시한 도면.
이후, 본 발명의 실시형태들이 도면들을 참조하여 상세히 설명될 것이다. 본 발명은 다음의 설명에 한정되지 않으며 이 기술분야의 숙련자들에 의해 모드들 및 세부사항들이 본 발명의 취지 및 범위로부터 벗어나지 않고 다양한 방식들로 변경될 수 있다는 것이 이해될 것임을 주의하자. 그러므로, 본 발명은 이하의 실시형태들에서의 설명에 한정되는 것으로서 해석되어서는 안된다.
본 발명은 마이크로프로세서들, 화상 처리 회로들과 같은 집적 회로들, RF 태그들 및 반도체 표시 장치들을 포함한 임의의 종류의 반도체 장치들을 제작하기 위해 응용될 수 있다. 반도체 장치는 반도체 특성들을 이용함으로써 기능할 수 있는 임의의 장치를 의미하며, 반도체 표시 장치, 반도체 회로, 및 전자 기기가 상기 반도체 장치의 카테고리에 모두 포함된다. 상기 반도체 표시 장치들은 그것의 카테고리에 다음을 포함한다: 액정 표시 장치들, 유기 발광 소자(OLED)에 의해 대표되는 발광 소자가 각각의 화소를 위해 제공되는 발광 장치들, 전자 페이퍼, 디지털 마이크로미러 장치들(DMD들), 플라즈마 표시 패널들(PDP들), 전계 방출 디스플레이들(FED들), 및 반도체 소자를 포함한 회로 소자가 구동 회로에 포함되는 다른 반도체 표시 장치들.
(실시형태 1)
이 실시형태에서, 본 발명의 일 실시형태인 반도체 장치에 포함된 트랜지스터의 구조가 설명될 것이다. 상기 트랜지스터로서, 역 스태거드 트랜지스터가 이 실시형태에 설명될 것이다.
도 1에 도시된 트랜지스터(150)에서, 게이트 전극층(101a)이 기판(100) 위에 형성되며, 게이트 절연층(102)이 상기 게이트 전극층(101a) 위에 형성된다. 채널 형성 영역으로서, 산화물 반도체층(106a)이 상기 게이트 절연층(102) 위에 형성되며, 소스 또는 드레인 전극층(108a) 및 소스 또는 드레인 전극층(108b)이 상기 산화물 반도체층(106a) 위에 형성된다. 산소를 포함한 절연층(112)이 상기 소스 또는 드레인 전극층(108a), 상기 소스 또는 드레인 전극층(108b), 및 상기 산화물 반도체층(106a) 위에 형성된다. 상기 산소를 포함한 절연층(112)은 상기 산화물 반도체층(106a)의 백 채널과 접한다. 수소를 포함한 절연층(116)은 상기 산소를 포함한 절연층(112)과 접하여 형성된다. 평탄화 막으로서 기능하는 층간 절연층(118)이 상기 수소를 포함한 절연층(116) 위에 형성될 수 있다. 이 실시형태에 설명된 상기 트랜지스터(150)는 상기 산화물 반도체층(106a)과 접하는 상기 산소를 포함한 절연층(112) 및 상기 산소를 포함한 절연층(112)과 접하는 상기 수소를 포함한 절연층(116)을 포함하는 특징을 갖는다.
상기 기판(100)은 적어도 나중에 처리될 열 처리를 견디기에 충분히 높은 내열성을 가질 필요가 있다. 예를 들면, 퓨전법(fusion process) 또는 플로트법(float process)에 의해 제작된 유리 기판이 상기 기판(100)으로서 사용될 수 있다. 유리 기판이 사용되고 나중에 처리될 상기 열 처리의 온도가 높은 경우에, 바람직하게는 변형점이 730℃ 이상인 유리 기판이 사용된다. 상기 유리 기판으로서, 예를 들면, 알루미노실리케이트 유리, 알루미노보로실리케이트 유리, 또는 바륨 보로실리케이트 유리와 같은 유리 재료의 기판이 사용된다. 산화 붕소보다 많은 양의 산화 바륨(BaO)을 포함함으로써, 내열적이고 보다 실용적인 유리 기판이 획득될 수 있다는 것을 주의하자. 그러므로, 바람직하게는 BaO의 양이 B2O3보다 많은 BaO 및 B2O3를 포함한 유리 기판이 사용된다.
세라믹 기판, 석영 기판, 또는 사파이어 기판과 같은 절연체로 형성된 기판이 상기 유리 기판 대신에 사용될 수 있다는 것을 주의하자. 대안적으로, 결정화된 유리 등이 사용될 수 있다. 또한, 대안적으로, 절연층을 갖춘 표면을 가진 스테인레스-스틸 합금 기판과 같은 금속 기판이 또한 적용될 수 있다.
또한, 플라스틱과 같은 가요성 합성 수지로부터 형성된 기판은 일반적으로 낮은 상한 온도를 가지려는 경향이 있지만, 상기 기판이 나중의 제작 공정에서 처리 온도들을 견딜 수 있는 한 상기 기판(100)으로서 사용될 수 있다. 플라스틱 기판의 예들은 폴리에틸렌테레프탈레이트(PET), 폴리에테르설폰(PES), 폴리에틸렌 나프탈레이트(PEN), 폴리카보네이트(PC), 폴리에테르에테르케톤(PEEK), 폴리설폰(PSF), 폴리에테르이미드(PEI), 폴리아릴레이트(PAR), 폴리부틸렌테레프탈레이트(PBT), 폴리이미드, 아크릴로니트릴-부타디엔-스티렌 수지, 폴리염화비닐, 폴리프로필렌, 폴리초산비닐, 아크릴 수지 등으로 대표되는 폴리에스테르를 포함한다.
상기 게이트 전극층(101a)은 몰리브덴, 티타늄, 크롬, 탄탈, 텅스텐, 네오디뮴, 또는 스칸듐과 같은 금속 재료; 이들 금속 재료들 중 임의의 것을 그것의 주성분으로서 포함하는 합금 재료의 도전층; 또는 이들 금속들 중 임의의 것을 포함하는 질화물을 사용한 단층 구조 또는 적층 구조를 갖도록 형성될 수 있다. 알루미늄 또는 구리가 또한 그것이 나중 공정에서 수행될 열 처리의 온도를 견딜 수 있다면 이러한 금속 재료로서 사용될 수 있다는 것을 주의하자. 알루미늄 또는 구리는 바람직하게는 내열성 또는 부식성의 문제들을 방지하기 위해 고융점 금속 재료(refractory metal material)와 결합하여 사용된다. 상기 고융점 금속 재료로서, 몰리브덴, 티타늄, 크롬, 탄탈, 텅스텐, 네오디뮴, 스칸듐 등이 사용될 수 있다.
예를 들면, 2-층 구조를 가진 상기 게이트 전극층(101a)을 위해, 바람직하게는 몰리브덴층이 알루미늄층 위에 적층되는 2-층 구조, 몰리브덴층이 구리층 위에 적층되는 2-층 구조, 질화 티타늄층 또는 질화 탄탈층이 구리층 위에 적층되는 2층 구조, 또는 질화 티타늄층 및 몰리브덴층이 적층되는 2층 구조가 사용된다. 3-층 구조를 가진 상기 게이트 전극층(101a)을 위해, 바람직하게는, 중간층으로서 알루미늄층, 알루미늄과 실리콘의 합금층, 알루미늄과 티타늄의 합금층, 또는 알루미늄과 네오디뮴의 합금층, 및 또한 상하층으로서 텅스텐층, 질화 텅스텐층, 질화 티타늄층, 및 티타늄층을 포함하는 적층 구조가 사용된다.
또한, 산화 인듐, 산화 인듐과 산화 주석의 합금, 산화 인듐과 산화 아연의 합금, 산화 아연, 산화 아연 알루미늄, 산화 질화 아연 알루미늄, 산화 아연 갈륨 등의 투광성 산화 도전층이 상기 게이트 전극층(101a)으로서 사용될 수 있으며, 그에 의해 표시 장치에서의 화소부의 개구율이 향상될 수 있다. 상기 게이트 전극층(101a)의 두께는 10nm 내지 400nm, 바람직하게는 100nm 내지 200nm이다.
상기 게이트 절연층(102)은 산화 실리콘층, 질화 실리콘층, 산화 질화 실리콘층, 질화 산화 실리콘층, 산화 알루미늄층, 질화 알루미늄층, 산화 질화 알루미늄층, 질화 산화 알루미늄층, 또는 산화 탄탈층을 포함한 단층 구조 또는 적층 구조를 갖도록 형성될 수 있다. 상기 게이트 절연층(102)의 두께는 특히 한정되지 않지만, 예를 들면 10nm 이상 500nm 이하일 수 있다.
대안적으로, 상기 게이트 절연층(102)은 하프늄 실리케이트(HfSiOx), 질소가 첨가되는 하프늄 실리케이트(HfSixOyNz), 질소가 첨가되는 하프늄 알루미네이트(HfAlxOyNz), 산화 하프늄 또는 산화 이트륨과 같은 하이-k(high-k) 재료를 사용하여 형성될 수 있으며, 그에 의해 게이트 리크가 저감될 수 있다. 또한, 대안적으로, 하이-k 재료 및 산화 실리콘층, 질화 실리콘층, 산화 질화 실리콘층, 질화 산화 실리콘층, 산화 알루미늄 중 하나 이상이 적층되는 적층 구조가 사용될 수 있다.
상기 산화물 반도체층(106a) 및 상기 게이트 절연층(102) 간의 계면 준위가 저감될 수 있고 양호한 계면 특성들이 획득될 수 있기 때문에, 상기 게이트 절연층(102)으로서, 마이크로파(2.45 GHz)를 사용한 고-밀도 플라즈마 CVD 법에 의해 형성되는, 높은 내전압을 가진 치밀하고 고품질의 절연층을 사용하는 것이 바람직하다.
상기 게이트 절연층(102)은 높은 배리어 특성을 가진 재료를 사용하여 형성된 절연층 및 산화 실리콘층 또는 산화 질화 실리콘층과 같은 질소의 낮은 함유량을 가진 절연층이 적층되는 구조를 가질 수 있다. 이러한 경우에, 산화 실리콘층 또는 산화 질화 실리콘층과 같은 상기 절연층은 배리어 특성들 가진 상기 절연층 및 상기 산화물 반도체층 사이에 형성된다. 높은 배리어 특성을 가진 상기 절연층으로서, 예를 들면, 질화 실리콘층, 질화 산화 실리콘층, 질화 알루미늄층, 질화 산화 알루미늄층 등이 제공될 수 있다. 배리어 특성을 가진 절연층이 사용될 때, 수분 또는 수소와 같이 분위기에서의 불순물들, 또는 알칼리 금속 또는 중금속과 같이 상기 기판에 포함된 불순물들이 상기 게이트 절연층(102), 상기 산화물 반도체층(106a), 상기 산화물 반도체층(106a) 및 또 다른 절연층 사이의 계면, 또는 그 부근에 들어가는 것이 방지될 수 있다. 또한, 산화 실리콘층 또는 산화 질화 실리콘층과 같은 질소의 낮은 함유량을 가진 상기 절연층이 상기 산화물 반도체층(106a)과 접하여 형성될 때, 높은 배리어 특성을 가진 재료를 사용하여 형성된 상기 절연층이 상기 산화물 반도체층과 직접 접하는 것이 방지될 수 있다.
상기 산화물 반도체층(106a)은 금속 산화물이며, 4-원계 금속 산화물인 In-Sn-Ga-Zn-O-계 재료; 3-원계 금속 산화물들인 In-Ga-Zn-O-계 재료, In-Sn-Zn-O-계 재료, In-Al-Zn-O-계 재료, Sn-Ga-Zn-O-계 재료, Al-Ga-Zn-O-계 재료, 또는 Sn-Al-Zn-O-계 재료; 2-원계 금속 산화물들인 In-Zn-O-계 재료, Sn-Zn-O-계 재료, Al-Zn-O-계 재료, Zn-Mg-O-계 재료, Sn-Mg-O-계 재료, 또는 In-Mg-O-계 재료; 또는 In-O-계 재료, Sn-O-계 재료, Zn-O-계 재료 등을 사용하여 형성될 수 있다.
상기 산화물 반도체층(106a)을 위해, InMO3(ZnO)m(m>0)으로 표현된 재료가 사용될 수 있다. 여기서, M은 Ga, Al, Mn, 및 Co로부터 선택된 하나 이상의 금속 원소들을 나타낸다. 예를 들면, M은 Ga, Ga와 Al, Ga와 Mn, Ga와 Co 등일 수 있다.
상기 산화물 반도체층(106a)을 위해, In-Mx-Zny-Oz(Y=0.5 내지 5)로 표현된 산화물 반도체 재료가 사용될 수 있다. 여기에서, M은 갈륨(Ga), 알루미늄(Al), 및 붕소(B)와 같은 13족의 원소들로부터 선택된 하나 이상의 원소들을 나타낸다. In, M, Zn, 및 O의 함유량들은 자유롭게 설정될 수 있으며, 상기 M의 함유량이 제로(즉, x=0)인 경우가 포함된다는 것을 주의하자. In 및 Zn의 함유량들은 제로가 아니다. 달리 말하면, 상술된 표현은 In-Ga-Zn-O, In-Zn-O 등을 포함한다.
상기 산화물 반도체층(106a)은 결정 성분을 포함하지 않는 비정질 구조 또는 결정 영역이 비정질 영역에 포함되는 구조를 가질 수 있다. 통상적으로, 결정 영역이 비정질 영역에 포함되는 구조는 비정질 영역에서 1nm 이상 20nm 이하(대표적으로, 2nm 이상 4nm 이하)의 결정립 크기를 가진 결정 영역을 포함한다. 상기 산화물 반도체층(106a)이 비정질 구조를 가질 때, 복수의 소자들 간의 특징적인 변화가 감소될 수 있다.
상기 소스 또는 드레인 전극층(108a) 및 상기 소스 또는 드레인 전극층(108b)은 알루미늄, 크롬, 구리, 탄탈, 티타늄, 몰리브덴, 텅스텐, 및 이트륨으로부터 선택된 금속 원소 이들 금속 원소들 중 임의의 것을 성분으로서 포함하는 합금; 이들 금속 원소들을 조합하여 포함하는 합금 등을 사용하여 형성된다. 대안적으로, 망간, 마그네슘, 지르코늄, 및 베릴륨으로부터 선택된 하나 이상의 금속 원소들이 사용될 수 있다. 상기 소스 또는 드레인 전극층(108a) 및 상기 소스 또는 드레인 전극층(108b)은 단층 구조 또는 2개 이상의층들의 적층 구조를 가질 수 있다. 예를 들면, 상기 소스 또는 드레인 전극층(108a) 및 상기 소스 또는 드레인 전극층(108b)은 실리콘을 포함한 알루미늄층의 단층 구조; 티타늄층이 알루미늄층 위에 적층되는 2층 구조; 티타늄층이 텅스텐층 위에 적층되는 2층 구조; 또는 티타늄층, 알루미늄층, 및 티타늄층이 이러한 순서로 적층되는 3-층 구조를 가질 수 있다. 대안적으로, 알루미늄 및 티타늄, 탄탈, 텅스텐, 몰리브덴, 크롬, 네오디뮴, 및 스칸듐으로부터 선택된 하나 이상의 원소들을 포함하는 층이 사용될 수 있다. 이러한 층의 합금층 또는 질화물층이 사용될 수 있다.
상기 소스 또는 드레인 전극층(108a) 및 상기 소스 또는 드레인 전극층(108b)은 인듐 주석 산화물층, 산화 텅스텐을 포함한 인듐 산화물층, 산화 텅스텐을 포함하는 인듐 아연 산화물층, 산화 티타늄을 포함하는 인듐 산화물층, 산화 티타늄을 포함하는 인듐 주석 산화물층, 인듐 아연 산화물층, 또는 산화 실리콘이 첨가되는 인듐 주석 산화물층과 같은 투광성 도전층을 사용하여 형성될 수 있다. 그것은 또한 상술된 투광성 도전층 및 상술된 금속 재료의 적층 구조를 이용하는 것이 가능하다.
상기 산소를 포함한 절연층(112)은 산화 실리콘층 또는 산화 질화 실리콘층과 같은 산소를 포함한 절연층을 사용하여 형성된다. 그것은 스퍼터링 법 또는 CVD 법에 의해 상기 산소를 포함한 절연층(112)을 형성하는 것이 바람직하며, 특히 상기 산소를 포함한 절연층(112)으로서 스퍼터링 법에 의해 산화 실리콘층을 형성하는 것이 바람직하다.
상기 수소를 포함한 절연층(116)은 질화 실리콘층, 질화 산화 실리콘층, 질화 알루미늄층, 질화 산화 알루미늄층 등과 같이, 수소를 포함한 절연층을 사용하여 형성된다. 예를 들면, 상기 수소를 포함한 절연층(116)의 수소 농도는 1×1021 원자/㎤ 이상, 바람직하게는 1×1022 원자/㎤ 이상, 및 보다 바람직하게는 1×1023 원자/㎤ 이상이다. 상기 수소를 포함한 절연층(116)은 바람직하게는 스퍼터링 법 또는 CVD 법에 의해 형성된다. 특히, 원료 가스로서 적어도 실란 및 질소를 포함한 가스(대표적으로, 질소 가스, 암모니아 가스 등)를 사용한 CVD 법에 의해 형성된 질화 실리콘층 또는 질화 산화 실리콘층, 또는 원료 가스로서 적어도 수소화 알루미늄 및 질소를 포함한 가스(대표적으로, 질소 가스, 암모니아 가스 등)를 사용한 CVD 법에 의해 형성된 질화 산화 알루미늄층이 그것들이 비교적 많은 수의 수소 원자들을 포함하기 때문에 바람직하다.
150℃ 이상 450℃ 이하, 바람직하게는 250℃ 이상 440℃ 이하의 온도에서의 열 처리에 의해, 상기 수소를 포함한 절연층(116)의 수소는 적어도 상기 산화물 반도체층(106a)으로 확산되거나 또는 공급되며 상기 산화물 반도체층(106a), 상기 게이트 절연층(102)과 상기 산화물 반도체층(106a) 사이의 계면, 및 상기 산화물 반도체층(106a)과 상기 산소를 포함한 절연층(112) 사이의 계면 중 적어도 하나에 포함된 결함 또는 미결합수를 종단시킨다. 따라서, 상기 산화물 반도체층(106a)에서의 결함들은 감소된다. 그 결과, 상기 트랜지스터의 온-상태 전류 및 전계-효과 이동도는 증가된다.
이 실시형태를 사용하여, 높은 전계-효과 이동도 및 큰 온-상태 전류를 가진 트랜지스터가 실현될 수 있다. 또한, 작은 오프-상태 전류, 높은 전계-효과 이동도, 및 큰 온-상태 전류를 가진 트랜지스터가 실현될 수 있다.
(실시형태 2)
다음으로, 반도체 장치의 구조의 일 예인 상기 트랜지스터(150)의 제작 방법이 도 2a 내지 도 2c, 도 3a 내지 도 3c, 및 도 4a 내지 도 4c를 참조하여 설명될 것이다.
먼저, 도전층(101)이 기판(100) 위에 형성된다(도 2a 참조).
절연 표면을 가진 기판인 한 임의의 기판이 상기 기판(100)을 위해 사용될 수 있으며, 예를 들면 유리 기판이 사용될 수 있다. 또한, 상기 유리 기판은 무-알칼리 유리 기판인 것이 바람직하다. 상기 무-알칼리 유리 기판의 재료로서, 예를 들면, 알루미노실리케이트 유리, 알루미노보로실리케이트 유리, 바륨 보로실리케이트 유리 등과 같은 유리 재료가 사용된다. 대안적으로, 상기 기판(100)으로서, 세라믹 기판, 석영 기판, 또는 사파이어 기판과 같은 절연체를 사용하여 형성된 절연 기판, 실리콘과 같은 반도체 재료를 사용하여 형성되고 그 표면이 절연 재료로 커버되는 반도체 기판, 또는 금속 또는 스테인레스 스틸과 같은 도전체를 사용하여 형성되고 그 표면이 절연 재료로 커버되는 도전성 기판이 사용될 수 있다.
또한, 플라스틱과 같은 가요성 합성 수지로부터 형성된 기판은 일반적으로 낮은 상한 온도를 가지려는 경향이 있지만, 상기 기판이 나중의 제작 공정에서 처리 온도를 견딜 수 있는 한 상기 기판(100)으로서 사용될 수 있다. 플라스틱 기판의 예들은 폴리에틸렌테레프탈레이트(PET)로 대표되는 폴리에스테르, 폴리에테르설폰(PES), 폴리에틸렌 나프탈레이트(PEN), 폴리카보네이트(PC), 폴리에테르에테르케톤(PEEK), 폴리설폰(PSF), 폴리에테르이미드(PEI), 폴리아릴레이트(PAR), 폴리부틸렌테레프탈레이트(PBT), 폴리이미드, 아크릴로니트릴-부타디엔-스티렌 수지, 폴리염화비닐, 폴리프로필렌, 폴리초산비닐, 아크릴 수지 등을 포함한다.
상기 도전층(101)은 스퍼터링 법과 같은 PVD 법, 또는 플라즈마 CVD 법과 같은 CVD 법을 사용하여 형성될 수 있다. 상기 도전층(101)은 알루미늄, 크롬, 구리, 탄탈, 티타늄, 몰리브덴, 및 텅스텐으로부터 선택된 하나의 원소, 이들 원소들 중 임의의 것을 성분으로서 포함하는 합금 등을 사용하여 형성될 수 있다. 망간, 마그네슘, 지르코늄, 및 베릴륨 중 하나 이상을 포함한 재료가 사용될 수 있다. 알루미늄과, 티타늄, 탄탈, 텅스텐, 몰리브덴, 크롬, 네오디뮴, 및 스칸듐으로부터 선택된 원소들 중 하나 이상을 포함하는 재료가 사용될 수 있다.
상기 도전층(101)은 도전성 금속 산화물을 사용하여 형성될 수 있다. 상기 도전성 금속 산화물로서, 산화 인듐(In2O3), 산화 주석(SnO2), 산화 아연(ZnO), 산화 인듐-산화 주석 합금(In2O3-SnO2, 몇몇 경우들에서 ITO로 약기된다), 산화 인듐-산화 아연 합금(In2O3-ZnO), 또는 실리콘 또는 산화 실리콘이 포함되는 이들 금속 산화물 재료 중 임의의 것이 사용될 수 있다.
상기 도전층(101)은 단층 구조 또는 2개 이상의 층들의 적층 구조를 가질 수 있다. 개시된 본 발명의 일 실시형태에서, 비교적 높은 온도에서의 열 처리가 상기 도전층(101)의 형성 후 수행되므로, 상기 도전층(101)은 바람직하게는 높은 내열성을 가진 재료를 사용하여 형성된다. 높은 내열성을 가진 재료로서, 예를 들면, 티타늄, 탄탈, 텅스텐, 몰리브덴 등이 제공될 수 있다. 불순물 원소의 첨가에 의해 도전성이 증가되는 폴리실리콘 등이 또한 사용될 수 있다.
다음으로, 상기 도전층(101)은 게이트 전극층(101a)을 형성하기 위해 선택적으로 에칭되며, 상기 게이트 전극층(101a)을 커버하는 게이트 절연층(102)이 형성된다(도 2b 참조).
에칭을 위해 사용된 마스크를 형성하기 위한 노광을 위해, 바람직하게는 자외선 광, KrF 레이저 광, 또는 ArF 레이저 광이 사용된다. 특히 상기 채널 길이(L)가 25nm 미만인 경우에서의 노광을 위해, 마스크를 형성하기 위한 노광이 바람직하게는 파장이 극히 짧은 수 나노미터 내지 수십 나노미터인 초 자외선 광으로 수행된다. 초 자외선 광을 사용한 노광은 높은 해상도 및 큰 초점 심도를 가지며, 그러므로 소형화에 적합하다.
상기 게이트 절연층(102)은 CVD 법, 스퍼터링 법 등을 사용하여 형성될 수 있다. 상기 게이트 절연층(102)은 바람직하게는 산화 실리콘, 질화 실리콘, 산화 질화 실리콘, 질화 산화 실리콘, 산화 알루미늄, 산화 하프늄, 산화 탄탈 등을 포함하도록 형성된다. 상기 게이트 절연층(102)은 단층 구조 또는 적층 구조 중 하나를 가질 수 있다. 상기 게이트 절연층(102)의 두께는 특히 제한되지는 않지만, 예를 들면, 10nm, 이상 500nm 이하일 수 있다.
대안적으로, 상기 게이트 절연층(102)은 하프늄 실리케이트(HfSiOx), 질소가 첨가되는 하프늄 실리케이트(HfSixOyNz), 질소가 첨가되는 하프늄 알루미네이트(HfAlxOyNz), 산화 하프늄 또는 산화 이트륨과 같은 하이-k(high-k) 재료를 사용하여 형성될 수 있으며, 그에 의해 게이트 리크가 저감될 수 있다. 또한, 대안적으로, 하이-k 재료 및 산화 실리콘층, 질화 실리콘층, 산화 질화 실리콘층, 질화 산화 실리콘층, 산화 알루미늄층 중 하나 이상이 적층되는 적층 구조가 사용될 수 있다.
상기 게이트 절연층(102)은 바람직하게는 수소 또는 물을 가능한 한 적게 포함하도록 형성된다.
예를 들면, 스퍼터링 법 등을 사용하는 경우에, 상기 게이트 절연층(102)은 처리실(treatment chamber)에 남아있는 수분이 제거되는 상태에서 형성되는 것이 바람직하다. 상기 처리실에 남아있는 수분을 제거하기 위해, 바람직하게는, 크라이오펌프, 이온 펌프, 또는 티타늄 서블리메이션 펌프와 같은 흡착형 진공 펌프가 사용된다. 콜드 트랩을 갖춘 터보 펌프가 상기 처리실에 남아있는 수분을 제거하기 위해 사용될 수 있다. 크라이오펌프 등으로 배기된 상기 처리실로부터, 수소, 물 등이 충분히 제거되며, 따라서 상기 게이트 절연층(102)에서의 불순물의 농도가 감소될 수 있다.
치밀하고 높은 내전압을 가진 상기 고-품질 게이트 절연층(102)이 형성될 수 있기 때문에 마이크로파(예로서, 2.45 GHz)를 사용한 고-밀도 플라즈마 CVD 법이 양호하다. 산화물 반도체층과 고-품질 게이트 절연층 간의 밀접한 접촉은 계면 준위들을 저감시키고 바람직한 계면 특성들을 생성한다. 1×1011/㎤ 이상의 플라즈마 밀도를 실현할 수 있는 고-밀도 플라즈마 장치를 사용하는 것이 특히 바람직하다.
따라서 상기 게이트 절연층(102) 및 산화물 반도체층(106a) 사이의 계면의 특성들을 개선하고 불순물, 특히 수소, 물 등을 상기 산화물 반도체로부터 제거함으로써, 임계 전압(Vth)이 게이트 바이어스-열 스트레스 시험(BT 시험: 예로서, 12시간 동안 85℃ 및 2×106 V/㎝로)에서 변하지 않는 안정된 트랜지스터를 획득하는 것이 가능하다.
상기 게이트 절연층(102)이 형성될 때, 수소 또는 물과 같은 불순물이 그 농도가 대략 단위 "ppm"(바람직하게는 "ppb")으로 표현된 값으로 감소되도록 저감되는 고-순도 가스를 사용하는 것이 바람직하다.
다음으로, 산화물 반도체층(106)이 상기 게이트 절연층(102) 위에 형성된다(도 2c 참조).
상기 산화물 반도체층(106)은 4-원계 금속 산화물인 In-Sn-Ga-Zn-O-계 재료; 3-원계 금속 산화물들인 In-Ga-Zn-O-계 재료, In-Sn-Zn-O-계 재료, In-Al-Zn-O-계 재료, Sn-Ga-Zn-O-계 재료, Al-Ga-Zn-O-계 재료, 또는 Sn-Al-Zn-O-계 재료; 2-원계 금속 산화물들인 In-Zn-O-계 재료, Sn-Zn-O-계 재료, Al-Zn-O-계 재료, Zn-Mg-O-계 재료, Sn-Mg-O-계 재료, 또는 In-Mg-O-계 재료; 또는 단-원계 금속 산화물들인 In-O-계 재료, Sn-O-계 재료, Zn-O-계 재료 등을 사용하여 형성될 수 있다.
특히, In-Ga-Zn-O-계 산화물 반도체 재료는 전기장이 없을 때 충분히 높은 저항을 가지며 따라서 오프-상태 전류가 충분히 작을 수 있다. 또한, 높은 전계-효과 이동도를 가질 때, In-Ga-Zn-O-계 산화물 반도체 재료는 반도체 장치에 사용된 반도체 재료를 위해 적합하다.
상기 In-Ga-Zn-O-계 산화물 반도체 재료의 대표적인 예로서, InGaO3(ZnO)m(m>0)으로 표현된 것이 제공된다. Ga 대신 M을 사용할 때, InMO3(ZnO)m(m>0)으로 표현된 산화물 반도체 재료가 존재한다. 여기서, M은 갈륨(Ga), 알루미늄(Al), 철(Fe), 니켈(Ni), 망간(Mn), 코발트(Co) 등으로부터 선택된 하나 이상의 원소들을 나타낸다. 예를 들면, M은 Ga, Ga와 Al, Ga와 Fe, Ga와 Ni, Ga와 Mn, Ga와 Co 등일 수 있다. 상술된 조성들은 상기 산화물 반도체 재료가 가질 수 있는 결정 구조들로부터 도출되며 이것은 단지 예들임을 주의하자.
이 실시형태에서, 상기 산화물 반도체층(106)으로서, 비정질 산화물 반도체층이 In-Ga-Zn-O-계 산화물 반도체를 성막하기 위한 타겟을 사용하는 스퍼터링 법에 의해 형성된다.
스퍼터링 법에 의해 In-Ga-Zn-O-계 산화물 반도체층(106)을 형성하기 위해 사용된 산화물 반도체를 성막하기 위한 상기 타겟으로서, 다음의 조성비를 가진 타겟이 사용될 수 있다: In:Ga:Zn = 1:x:y(x는 0 이상이며, y는 0.5 이상 5 이하이다). 예를 들면, In:Ga:Zn = 1:1:1 [원자비](x=1, y=1)(즉, In2O3:Ga2O3:ZnO = 1:1:2 [분자비]) 등의 조성비를 가진 산화물 반도체를 성막하기 위한 타겟이 사용될 수 있다. 산화물 반도체를 성막하기 위한 타겟으로서, In:Ga:Zn = 1:1:0.5 [원자비]인 조성비를 가진 산화물 반도체를 성막하기 위한 타겟, In:Ga:Zn = 1:1:2 [원자비]인 조성비를 가진 산화물 반도체를 성막하기 위한 타겟, 또는 In:Ga:Zn = 1:0:1 [원자비](x=0, y=1)의 조성비를 가진 산화물 반도체를 성막하기 위한 타겟이 사용될 수 있다.
또한, 산화물 반도체를 성막하기 위한 상기 타겟에 포함된 산화물 반도체는 80% 이상, 바람직하게는 95% 이상, 및 보다 바람직하게는 99.9% 이상의 상대 밀도를 갖는다. 높은 상대 밀도를 가진 산화물 반도체를 성막하기 위한 타겟으로, 상기 산화물 반도체층(106)이 치밀하게 형성될 수 있다.
상기 산화물 반도체층(106)이 형성되는 분위기는 바람직하게는 희가스(대표적으로, 아르곤) 분위기, 산소 분위기, 또는 희가스(대표적으로, 아르곤) 및 산소의 혼합 분위기이다. 구체적으로는, 예를 들면, 수소, 물, 수산기, 또는 수소화물과 같은 불순물이 그 농도가 대략 단위 "ppm"(바람직하게는 "ppb")로 표현된 값으로 감소되도록 제거되는 고-순도 가스 분위기를 사용하는 것이 바람직하다.
예를 들면, 상기 산화물 반도체층(106)을 형성할 때, 상기 기판은 감소된 압력에서 유지되는 처리실에 유지되고 상기 기판 온도는 100℃ 이상 600℃ 이하, 바람직하게는 200℃ 이상 400℃ 이하의 온도로 설정된다. 그 후, 수소 및 물이 제거되는 스퍼터링 가스가 상기 처리실에 남아있는 수분이 제거되는 동안 상기 처리실로 도입되고, 산화물 반도체를 성막하기 위해 상술된 타겟이 사용되며, 따라서 상기 산화물 반도체층(106)이 형성된다. 상기 산화물 반도체층(106)이 상기 기판이 가열되는 동안 형성될 때, 상기 산화물 반도체층(106)에 포함된 불순물들이 저감될 수 있다. 또한, 스퍼터링으로 인한 손상이 저감될 수 있다. 상기 처리실에 남아있는 수분을 제거하기 위해, 바람직하게는 흡착형 진공 펌프가 사용된다. 예를 들면, 크라이오펌프, 이온 펌프, 티타늄 서블리메이션 펌프 등이 사용될 수 있다. 콜드 트랩을 갖춘 터보 펌프가 사용될 수 있다. 수소, 물 등이 상기 크라이오펌프로 배기되는 상기 처리실로부터 제거되기 때문에, 상기 산화물 반도체층(106)에서의 불순물들의 농도는 감소될 수 있다.
예를 들면, 상기 산화물 반도체층(106)의 성막 조건들은 다음과 같다: 산화물 반도체를 성막하기 위한 상기 기판 및 상기 타겟 간의 거리는 170mm이고, 압력은 0.4 Pa이고, 직류(DC) 전력은 0.5 kW이며, 상기 분위기는 산소 분위기(산소의 비율이 100%이다) 및 아르곤 분위기(아르곤의 비율이 100%이다) 또는 산소와 아르곤의 혼합 분위기이다. 성막시 생성된 가루 물질들(또한 입자들 또는 먼지로서 불리우는)이 저감될 수 있고 상기 막 두께가 균일해질 수 있기 때문에 펄스 직류(DC) 전원의 사용이 바람직하다는 것을 주의하자. 상기 산화물 반도체층(106)의 두께는 2nm 이상 200nm 이하, 바람직하게는 5nm 이상 30nm 이하이다. 적절한 두께는 상기 산화물 반도체의 재료, 용도 등에 의존하여 변화하며, 따라서 상기 산화물 반도체층(106)의 두께는 상기 재료, 상기 용도 등에 의존하여 적절하게 결정될 수 있다는 것을 주의하자.
상기 산화물 반도체층(106)이 스퍼터링 법에 의해 형성되기 전에, 플라즈마가 도입된 아르곤 가스로 생성되는 역 스퍼터링이 바람직하게는 상기 게이트 절연층(102)의 표면에 부착된 재료가 제거되도록 수행된다는 것을 주의하자. 여기에서, 상기 역 스퍼터링은, 이온들이 스퍼터링 가스와 충돌하는 통상의 스퍼터링과 대조적으로, 상기 표면이 개질되도록 이온들이 처리 표면과 충돌하는 방법이다. 이온들이 처리 표면과 충돌하게 하기 위한 방법의 일 예는 고-주파수 전압이 플라즈마가 기판의 부근에 생성되도록 아르곤 분위기에서 상기 처리 표면 측에 인가되는 방법이다. 질소, 헬륨, 산소 등의 분위기가 아르곤 분위기 대신에 사용될 수 있다는 것을 주의하자.
다음으로, 상기 산화물 반도체층(106)은 마스크를 사용한 에칭과 같은 방법을 사용함으로써 섬-형상 산화물 반도체층(106a)으로 가공된다(도 3a 참조). 여기에서, 상기 섬-형성 산화물 반도체층(106a)은 상기 게이트 전극층(101a)과 중첩하는 영역에 형성된다.
상기 산화물 반도체층을 에칭하기 위한 방법으로서, 드라이 에칭 또는 웨트 에칭이 이용될 수 있다. 드라이 에칭 및 웨트 에칭이 결합하여 사용될 수 있다는 것은 말할 필요도 없다. 상기 에칭 조건들(예로서, 에칭 가스 또는 에천트, 에칭 시간, 및 온도)은 상기 산화물 반도체층이 원하는 형상으로 에칭될 수 있도록 상기 재료에 의존하여 적절하게 설정된다.
상기 드라이 에칭 방법으로서, 평행 평판형 RIE(반응성 이온 에칭) 방법 또는 ICP(유도 결합 플라즈마) 에칭 방법 등이 사용될 수 있다. 또한, 이 경우에, 에칭 조건들(예로서, 코일 전극에 인가된 전력의 양, 기판 측 상의 전극에 인가된 전력의 양, 및 기판 측상의 전극 온도)이 적절하게 설정될 필요가 있다.
드라이 에칭을 위해 사용될 수 있는 에칭 가스의 일 예는 염소를 포함한 가스(염소(Cl2), 염화 붕소(BCl3), 염화 규소(SiCl4), 또는 사염화탄소(CCl4)와 같은 염소-계 가스)이다. 게다가, 불소를 포함한 가스(사불화탄소(CF4), 육불화유황(SF6), 삼불화질소(NF3), 또는 트리플루오로메탄(CHF3)과 같은 불소-계 가스), 브롬화 수소(HBr), 산소(O2), 헬륨(He) 또는 아르곤(Ar)과 같은 희가스가 첨가되는 이들 가스들의 임의의 것 등이 사용될 수 있다.
웨트 에칭을 위해 사용될 수 있는 에천트의 예로서, 인산, 아세트산, 질산의 혼합액 등이 사용될 수 있다. ITO07N(칸토 케미칼 코., 인크.(KANTO CHEMICAL CO., INC.)에 의해 제작된)과 같은 에천트가 또한 사용될 수 있다.
그 후, 열 처리(제 1 열 처리)가 바람직하게는 상기 산화물 반도체층(106a) 상에서 수행된다. 상기 산화물 반도체층(106a)에서의 과잉 수소(물 및 수산기를 포함하는)가 이러한 제 1 열 처리에 의해 제거될 수 있으며, 그에 의해 상기 산화물 반도체층의 구조가 순서화될 수 있고 상기 산화물 반도체층(106a)에서의 결함들이 저감될 수 있다. 상기 제 1 열 처리의 온도는 예를 들면 400℃ 이상 750℃ 이하, 또는 400℃ 이상 상기 기판의 변형점 이하이다. 상기 산화물 반도체층(106a)에 포함된 수소의 양이 상기 성막 직후 충분히 작은 경우에, 상기 열 처리는 요구되지 않는다는 것을 주의하자.
상기 열 처리는 예를 들면, 상기 기판(100)이 저항 발열체 등이 사용되는 전기로로 도입되고 1시간 동안 질소 분위기 하에서 450℃로 가열되는 방식으로 수행될 수 있다. 상기 열 처리 동안, 상기 산화물 반도체층(106a)은 물 및 수소의 진입을 방지하기 위해, 상기 대기에 노출되지 않는다.
상기 열 처리 장치는 전기로에 한정되지 않으며, 상기 열 처리 장치는 가열된 가스 등과 같은 매체로부터의 열 전도 또는 열 복사를 사용하여 대상을 가열하는 장치일 수 있다. 예를 들면, GRTA(gas rapid thermal annealing) 장치 또는 LRTA(lamp rapid thermal annealing) 장치와 같은 RTA(rapid thermal annealing) 장치가 사용될 수 있다. LRTA 장치는 할로겐 램프, 메탈 할라이드 램프, 크세논 아크 램프, 탄소 아크 램프, 고압 나트륨 램프, 또는 고압 수은 램프와 같은 램프로부터 방출되는 광(전자파)의 복사에 의해 피처리물을 가열하기 위한 장치이다. GRTA 장치는 고-온 가스를 사용하여 열 처리를 수행하기 위한 장치이다. 상기 가스로서, 열 처리에 의해 피처리물과 반응하지 않는 불활성 가스, 예를 들면, 질소 또는 아르곤과 같은 희가스가 사용된다.
예를 들면, 상기 제 1 열 처리로서, GRTA 처리가 다음의 방식으로 수행될 수 있다. 상기 기판은 650℃ 내지 700℃의 고온으로 가열되는 불활성 가스 분위기에 넣어지고, 수 분 동안 가열된 후, 상기 불활성 가스 분위기로부터 꺼내어진다. GRTA 처리는 짧은 시간 동안 고-온 열 처리를 가능하게 한다. 게다가, 상기 GRTA 처리는 상기 열 처리가 단지 짧은 시간을 취하기 때문에 상기 기판의 상한 온도를 초과할 때조차 이용될 수 있다. 유리 기판이 사용되는 경우에, 상기 기판의 축소는 상기 상한 온도(변형점)보다 높은 온도에서 문제가 되지만, 단시간에 열 처리를 수행하는 경우에는 그렇지 않다. 상기 가스는 상기 처리 동안 상기 불활성 가스로부터 산소를 포함한 가스로 스위칭될 수 있다는 것을 주의하자. 이것은 산소 결손에 의해 야기된 결함들이 산소를 포함한 분위기에서 상기 제 1 열 처리를 수행함으로써 저감될 수 있기 때문이다.
상기 불활성 가스 분위기로서, 바람직하게는 그것의 주성분으로서 질소 또는 희가스(헬륨, 네온 또는 아르곤과 같은)를 포함하고 물, 수소 등을 포함하지 않는 분위기가 사용된다는 것을 주의하자. 예를 들면, 상기 열 처리 장치에 도입된 질소 또는 헬륨, 네온, 또는 아르곤과 같은 희가스의 순도는 6N(99.9999%) 이상, 바람직하게는 7N(99.99999%) 이상(즉, 상기 불순물 농도는 1 ppm 이하, 바람직하게는 0.1 ppm 이하이다)이다.
상술된 제 1 열 처리를 통해, 상기 산화물 반도체층(106a)에 포함된 수소가 저감되거나 또는 바람직하게는 제거되어, 상기 산화물 반도체층(106)이 상기 산화물 반도체층의 주 성분들 이외의 불순물들을 가능한 적게 포함하도록 고고순도화된다. 따라서, 과잉 수소 원자들로 인해 무질서해진 상기 산화물 반도체층(106)의 구조가 정렬될 수 있으며 상기 과잉 수소 원자들로 인해 야기된 결함들이 저감될 수 있다. 이때 상기 산화물 반도체층(106)의 수소 농도는 바람직하게는 1×1016 cm-3 이하이다. 상기 산화물 반도체층(106)은 바람직하게는 대략 1×1014 /㎤의 캐리어 밀도를 가진 일반적인 실리콘 웨이퍼와 비교하여 충분히 낮은 캐리어 밀도(예로서, 1×1012 /㎤ 미만, 바람직하게는 1.45×1010 /㎤ 미만)를 가진다. 더욱이, 상기 밴드갭은 2 eV 이상, 바람직하게는 2.5 eV 이상, 보다 바람직하게는 3 eV 이상이다.
1V 내지 10V의 범위에 있는 드레인 전압으로서, 상기 오프-상태 전류(상기 게이트-소스 전압이 0V 이하일 때 상기 소스 및 상기 드레인 간에 흐르는 전류)는, 상기 채널 길이가 10㎛이고 상기 산화물 반도체층의 두께가 30nm인 경우에, 1×10-13 A 이하이거나 또는 상기 오프-상태 전류 밀도(오프-상태 전류를 트랜지스터의 채널 폭으로 나눔으로써 획득된 값)는 100 aA/㎛ 이하, 바람직하게는 10 aA/㎛ 이하, 및 더욱 바람직하게는 1 aA/㎛ 이하("a(아토)"는 10-18의 인자를 나타낸다)이다. 상기 트랜지스터가 오프일 때 저항(오프-상태 저항(R))이 상기 오프-상태 전류 및 상기 드레인 전압으로부터 옴의 법칙을 사용하여 산출될 수 있다는 것을 주의하자. 또한, 상기 오프-상태 저항률(ρ)은 상기 채널 형성 영역의 단면적(A) 및 상기 채널 길이(L)로부터, 공식: ρ = RA/L(R은 상기 오프-상태 저항이다)을 사용하여 산출될 수 있다. 상기 오프-상태 저항률은 바람직하게는 1×109 Ω?m(또는, 1×1010 Ω?m) 이상이다. 여기에서, 상기 단면적(A)은 공식: A=dW(d: 상기 채널 형성 영역의 두께, W: 상기 채널 폭)를 사용하여 산출될 수 있다.
이러한 고순도화된 산화물 반도체층(106)이 채널 형성 영역을 위해 사용되는 트랜지스터는 감소된 오프-상태 전류를 가질 수 있다. 상기 오프-상태 전류의 흐름은 직접 재결합 또는 간접 재결합을 통해 전자들 및 홀들의 생성 및 재결합에 의해 야기되지만, 산화물 반도체층이 넓은 밴드갭을 가지며 높은 열적 에너지가 전자 여기를 위해 요구되기 때문에, 직접 재결합 및 간접 재결합이 발생할 가능성이 적다. 상기 오프 상태에서, 소수 캐리어들인 홀들은 실질적으로 제로이며, 따라서, 직접 재결합 및 간접 재결합은 발생할 가능성이 적고 상기 오프-상태 전류는 실질적으로 제로일 수 있다. 그러므로, 상기 오프-상태 전류가 저감되고 상기 온-상태 전류 및 전계-효과 이동도가 증가되는 우수한 특성들을 가진 트랜지스터가 획득될 수 있다.
상술된 바와 같이, 상기 고순도화된 산화물 반도체층은 경로로서 작용하며 캐리어들은 소스 전극 및 드레인 전극에 의해 공급된다. 상기 전자 친화력(χ) 및 페르미 준위, 바람직하게는 상기 산화물 반도체의 진성 페르미 준위에 대응하는 페르미 준위 및 상기 소스 전극과 상기 드레인 전극의 일 함수들이 적절하게 선택될 때, 캐리어들은 감소된 상기 산화물 반도체층의 캐리어 밀도를 갖고 상기 소스 전극 및 상기 드레인 전극으로부터 주입될 수 있다. 그러므로, n-채널 트랜지스터 및 p-채널 트랜지스터가 적절히 제작될 수 있다.
상기 고순도화된 산화물 반도체의 진성 캐리어 밀도는 실리콘과 비교하여 매우 낮다. 실리콘 및 산화물 반도체의 진성 캐리어 밀도들은 페르미-디랙 분포(Fermi-Dirac distribution) 및 볼츠만 분포(Boltzmann distribution)의 근사식들을 사용하여 획득될 수 있다. 실리콘(ni)의 진성 캐리어 밀도는 1.45×1010 cm-3이며, 산화물 반도체(여기에서, In-Ga-Zn-O 층)의 진성 캐리어 밀도(ni)는 1.2×10-7 cm-3이며, 전자는 후자보다 대략 1017 배 높다. 따라서, 산화물 반도체의 진성 캐리어 밀도는 실리콘과 비교하여 매우 낮다.
상기 제 1 열 처리의 조건들 및 상기 산화물 반도체층(106)의 재료에 의존하여, 미결정 또는 다결정이 상기 산화물 반도체층(106)에 형성될 수 있도록 몇몇 경우들에서 상기 산화물 반도체층(106)의 일부가 결정화할 수 있다.
상기 제 1 열 처리는 상기 섬-형상 산화물 반도체층(106a)으로 가공되기 전에 상기 산화물 반도체층(106)상에서 수행될 수 있다. 상기 경우에, 상기 제 1 열 처리 후, 상기 기판(100)은 상기 열 처리 장치로부터 꺼내어지며 포토리소그래피 단계가 수행된다.
상기 제 1 열 처리는 수소, 물 등을 제거하는 효과를 가지며 탈수화 처리, 탈수소화 처리 등으로서 불리울 수 있다. 상기 탈수화 처리 또는 탈수소화 처리는 또한 상기 산화물 반도체층이 형성된 후 또는 소스 전극층 및 드레인 전극층이 상기 산화물 반도체층(106a) 위에 적층된 후 수행될 수 있다. 이러한 탈수화 처리 또는 탈수소화 처리는 1회 이상 행해질 수 있다.
다음으로, 도전층(108)이 상기 산화물 반도체층(106a)과 접하여 형성된다(도 3b 참조).
상기 도전층(108)은 스퍼터링 법과 같은 PVD 법, 또는 플라즈마 CVD 법과 같은 CVD 법을 사용하여 형성될 수 있다. 상기 도전층(108)은 알루미늄, 크롬, 구리, 탄탈, 티타늄, 몰리브덴, 및 텅스텐으로부터 선택된 하나의 원소, 이들 원소들 중 임의의 것을 성분으로서 포함하는 합금 등을 사용하여 형성될 수 있다. 망간, 마그네슘, 지르코늄, 및 베릴륨 중 하나 이상을 포함한 재료가 사용될 수 있다. 알루미늄과, 티타늄, 탄탈, 텅스텐, 몰리브덴, 크롬, 네오디뮴, 및 스칸듐으로부터 선택된 원소들 중 하나 이상을 포함하는 재료가 사용될 수 있다.
상기 도전층(108)은 도전성 금속 산화물을 사용하여 형성될 수 있다. 상기 도전성 금속 산화물로서, 산화 인듐(In2O3), 산화 주석(SnO2), 산화 아연(ZnO), 산화 인듐-산화 주석 합금(In2O3-SnO2, 몇몇 경우들에서 ITO로 약기된다), 산화 인듐-산화 아연 합금(In2O3-ZnO), 또는 실리콘 또는 산화 실리콘이 포함되는 이들 금속 산화물 재료 중 임의의 것이 사용될 수 있다.
상기 도전층(108)은 단-층 구조 또는 둘 이상의 층들의 적층 구조를 가질 수 있다. 예를 들면, 알루미늄 막이 티타늄 막 위에 적층되고 티타늄 막이 상기 알루미늄 막 위에 적층되는 3-층 구조, 또는 알루미늄 막이 몰리브덴 막 위에 적층되고 몰리브덴 막이 상기 알루미늄 막 위에 적층되는 3-층 구조가 이용될 수 있다. 대안적으로, 알루미늄 막 및 텅스텐 막이 적층되는 2-층 구조, 구리 막 및 텅스텐 막이 적층되는 2-층 구조, 또는 알루미늄 막 및 몰리브덴 막이 적층되는 2-층 구조가 이용될 수 있다. 말할 필요도 없이, 상기 도전층(108)은 단층 구조 또는 4개 이상의 층들의 적층 구조를 가질 수 있다. 상기 단-층 구조의 경우에, 예를 들면, 티타늄 막의 단-층 구조가 양호하게 사용된다. 티타늄층의 단층 구조를 사용하는 경우에, 양호하게 테이퍼링된 형상이 나중에 수행될 에칭에 의해 획득될 수 있다. 여기에서는, 티타늄 막, 알루미늄 막, 및 티타늄 막을 포함한 3-층 구조가 이용된다.
산소를 추출하는 능력이 낮은 재료(낮은 산소 친화도를 가진 재료)가 상기 산화물 반도체층(106a)과 접하는, 상기 도전층(108)의 일부에서 사용될 수 있다. 이러한 재료로서, 예를 들면, 질화 티타늄, 질화 텅스텐, 및 백금이 제공될 수 있다. 상기와 유사한 방식으로, 상기 도전층(108)이 단층 구조 또는 적층 구조를 가질 수 있다. 적층 구조를 가진 상기 도전층(108)의 경우에, 예를 들면, 질화 티타늄 막 및 티타늄 막의 2-층 구조, 질화 티타늄 막 및 텅스텐 막의 2-층 구조, 질화 티타늄 막 및 구리-몰리브덴 합금 막의 2-층 구조, 질화 탄탈 막 및 텅스텐 막의 2-층 구조, 질화 탄탈 막 및 구리막의 2-층 구조, 질화 티타늄 막, 텅스텐 막, 및 티타늄 막의 3-층 구조 등이 이용될 수 있다.
상술된 바와 같이 산소를 추출하는 능력이 낮은 재료가 상기 도전층(108)을 위해 사용되는 경우에, 산소의 추출로 인한 상기 산화물 반도체층의 n-형으로의 변경이 방지될 수 있으며; 따라서, n-형 등으로의 불균일한 변화에 의해 야기된 트랜지스터 특성들에 대한 악영향이 방지될 수 있다.
상술된 바와 같이, 질화 티타늄 막 또는 질화 탄탈 막과 같은 높은 배리어 특성을 가진 재료를 사용하는 경우에, 상기 산화물 반도체층(106a)과 접하는 부분에서, 상기 산화물 반도체층(106a)으로의 불순물들의 진입이 방지될 수 있고 트랜지스터 특성들에 대한 악영향이 감소될 수 있다.
다음으로, 상기 도전층(108)은 소스 또는 드레인 전극층(108a) 및 소스 또는 드레인 전극층(108b)을 형성하기 위해 선택적으로 에칭된다(도 3c 참조). 또한, 절연층이 상기 도전층(108) 위에 형성될 수 있으며, 상기 절연층은 상기 소스 및 드레인 전극층들 위에, 상기 소스 및 드레인 전극층들과 실질적으로 동일한 형샹을 가진 절연층들을 형성하기 위해 에칭될 수 있다. 이러한 경우에, 상기 소스 및 드레인 전극층들 및 상기 게이트 전극 사이의 용량(소위 게이트 용량)은 저감될 수 있다. 상기 표현 "실질적으로 동일한"은 엄격한 의미에서 반드시 "정확히 동일한"을 의미하는 것은 아니며, 동일한 것으로서 고려되는 것의 의미를 포함한다는 것을 주의하자. 예를 들면, 단일 에칭 공정에 의해 만들어진 차이가 허용가능하다. 또한, 상기 두께는 동일할 필요가 없다.
에칭을 위해 사용된 마스크를 형성할 때 노광을 위해, 바람직하게는 자외선 광, KrF 레이저 광, 또는 ArF 레이저 광이 사용된다. 특히 상기 채널 길이(L)가 25nm 미만인 경우에서의 노광을 위해, 마스크를 형성하기 위한 노광이 바람직하게는 파장이 극히 짧은 수 나노미터 내지 수십 나노미터인 초 자외선 광으로 수행된다. 초 자외선 광을 사용한 노광에서, 해상도는 높으며 초점 심도는 크다. 그러므로, 나중에 완성되는 트랜지스터의 상기 채널 길이(L)는 10nm 내지 1000nm일 수 있다. 이러한 방법을 사용한 채널 길이에서의 감소에 의해, 동작 속도가 증가될 수 있다. 또한, 상술된 산화물 반도체를 포함한 트랜지스터의 오프-상태 전류는 작으며; 따라서, 미세화로 인한 전력 소비에서의 증가가 억제될 수 있다.
상기 도전층(108) 및 상기 산화물 반도체층(106a)의 재료들 및 에칭 조건들은 상기 산화물 반도체층(106a)이 상기 도전층(108)의 에칭시 제거되지 않도록 적절하게 조정된다. 몇몇 경우들에서, 상기 산화물 반도체층(106a)은 에칭 단계에서 부분적으로 에칭되며 따라서 상기 재료들 및 상기 에칭 조건들에 의존하여 홈부(오목부)를 가진다는 것을 주의하자.
사용될 마스크들의 수를 감소시키고 단계들의 수를 감소시키기 위해, 에칭 단계는 투과된 광이 복수의 강도들을 갖는 노-광 마스크인 다-계조(multi-tone) 마스크를 사용하여 형성된 레지스트 마스크를 사용하여 수행될 수 있다. 다-계조 마스크의 사용으로 형성된 레지스트 마스크는 복수의 두께들을 갖고(계단-형 형상을 갖고) 또한 애싱에 의해 형상이 변경될 수 있으며; 그러므로, 상기 레지스트 마스크는 복수의 에칭 단계들에 사용될 수 있다. 즉, 적어도 두 종류들의 상이한 패턴들에 대응하는 레지스트 마스크가 하나의 다-계조 마스크를 사용함으로써 형성될 수 있다. 따라서, 노-광 마스크들의 수가 감소될 수 있고 대응하는 포토리소그래피 단계들의 수가 또한 감소될 수 있으며, 그에 의해 공정이 간략화될 수 있다.
다음으로, 산소를 포함한 절연층(112)이 상기 산화물 반도체층(106a)의 일부와 접하여 형성되며, 제 2 열 처리가 수행된다(도 4a 참조). 상기 산소를 포함한 절연층(112)은 CVD 법, 스퍼터링 법 등에 의해 형성될 수 있다. 상기 산소를 포함한 절연층(112)은 바람직하게는 산화 실리콘, 산화 질화 실리콘, 산화 알루미늄, 산화 하프늄, 산화 탄탈 등을 포함하도록 형성된다. 특히, 상기 산소를 포함한 절연층(112)은 바람직하게는 스퍼터링 법에 의해 형성된 산화 실리콘 막이다. 상기 산소를 포함한 절연층(112)은 단층 구조 또는 적층 구조를 가질 수 있다. 상기 산소를 포함한 절연층(112)의 두께에 대한 특별한 제한은 없으며; 예를 들면, 상기 산소를 포함한 절연층(112)은 10nm 이상 500nm 이하, 바람직하게는 50nm 이상 200nm 이하의 두께를 가질 수 있다.
상기 제 2 열 처리는 바람직하게는 불활성 가스 분위기 또는 산소 분위기에서 수행된다. 상기 열 처리의 온도는 200℃ 내지 450℃, 바람직하게는 250℃ 내지 350℃의 범위에서 설정된다. 예를 들면, 상기 열 처리는 질소 분위기에서 1시간 동안 250℃로 수행될 수 있다. 상기 제 2 열 처리에 의해, 산소가 상기 산화물 반도체층(106a)에 공급되며, 따라서 상기 산화물 반도체층(106a)의 산소 결손이 저감되고, 그에 의해 i-형(진성) 또는 실질적으로 i-형 산화물 반도체층이 형성될 수 있다. 상기 제 2 열 처리는 상기 트랜지스터의 전기적 특성들에서의 변화를 감소시킬 수 있다.
다음으로, 수소를 포함한 절연층(116)이 상기 산소를 포함한 절연층(112) 위에 형성되며, 제 3 열 처리가 수행된다(도 4b 참조). 상기 수소를 포함한 절연층(116)은 CVD 방법, 스퍼터링 법 등에 의해 형성될 수 있다. 상기 수소를 포함한 절연층(116)은 바람직하게는 질화 실리콘층, 질화 산화 실리콘층, 질화 알루미늄층, 질화 산화 알루미늄층 등과 같이, 수소를 포함한 절연층을 사용하여 형성된다. 특히, 원료 가스로서 적어도 실란 및 질소를 포함한 가스(대표적으로, 질소 가스, 암모니아 가스 등)를 사용한 CVD 법에 의해 형성된 질화 실리콘층 또는 질화 산화 실리콘층, 또는 원료 가스로서 적어도 수소화 알루미늄 및 질소를 포함한 가스(대표적으로, 질소 가스, 암모니아 가스 등)를 사용한 CVD 법에 의해 형성된 질화 알루미늄층 또는 질화 산화 알루미늄층이 비교적 많은 수의 수소 원자들을 포함하기 때문에 바람직하다.
상기 제 3 열 처리는 150℃ 이상 450℃ 이하, 바람직하게는 250℃ 이상 440℃ 이하의 온도로 질소 분위기에서 수행된다. 상기 제 3 열 처리의 분위기는 상기 질소 분위기에 한정되지 않으며, 산소 분위기, 희가스 분위기, 또는 건조-대기 분위기일 수 있다.
상기 제 3 열 처리에 의해, 상기 수소를 포함한 절연층(116)의 수소가 적어도 상기 산화물 반도체층(106a)으로 확산되거나 또는 공급되며, 상기 산화물 반도체층(106a), 상기 게이트 절연층(102)과 상기 산화물 반도체층(106a) 사이의 계면, 및 상기 산화물 반도체층(106a)과 상기 산소를 포함한 절연층(112) 사이의 계면 중 적어도 하나에 남아있는 결함 또는 미결합수를 종단시킨다. 따라서, 상기 산화물 반도체층(106a)에서의 결함들은 감소된다. 그 결과, 상기 트랜지스터의 온-상태 전류 및 전계-효과 이동도는 증가된다. 상기 열 처리에 의한 수소의 공급은 상기 열 처리가 결함들이 충분히 감소되는 상기 i-형 산화물 반도체층상에서 수행될 때 특히 효과적이다.
상기 제 2 열 처리 및 상기 제 3 열 처리의 조건들 또는 상기 산화물 반도체층(106)의 재료에 의존하여, 미결정 또는 다결정이 상기 산화물 반도체층(106)에 형성될 수 있도록 몇몇 경우들에서 상기 산화물 반도체층(106)의 일부가 결정화할 수 있다.
다음으로, 층간 절연층(118)이 상기 수소를 포함한 절연층(116) 위에 형성될 수 있다(도 4c 참조). 상기 층간 절연층(118)은 PVD 법, CVD 법 등에 의해 형성될 수 있다. 상기 층간 절연층(118)은 산화 실리콘, 질화 산화 실리콘, 질화 실리콘, 산화 하프늄, 산화 알루미늄, 또는 산화 탄탈과 같은 무기 절연 재료를 포함한 재료를 사용하여 형성될 수 있다. 상기 층간 절연층(118)이 이 실시형태에서 단층 구조를 갖지만, 개시된 본 발명의 일 실시형태는 이 예에 한정되지 않는다는 것을 주의하자. 상기 층간 절연층(118)은 2개 이상의 층들을 포함한 적층 구조를 가질 수 있다.
상기 층간 절연층(118)은 바람직하게는 평탄한 표면을 갖도록 형성된다는 것을 주의하자. 이것은, 전극, 배선 등이 상기 층간 절연층(118)이 평탄한 표면을 갖도록 형성될 때 상기 층간 절연층(118) 위에 양호하게 형성될 수 있기 때문이다.
상술된 처리를 통해, 결함들이 상기 수소를 포함한 절연층(116)에 포함되는 수소의 확산에 의해 종단되는 상기 트랜지스터(150)가 완성된다.
다음으로, 이 실시형태의 반도체 장치의 구조의 또 다른 예가 도 5를 참조하여 설명될 것이다. 도 5에 도시된 상기 트랜지스터(150)는 채널-스톱형 트랜지스터이다.
도 5에 도시된 상기 트랜지스터(150)에서, 채널 스토퍼로서 절연층(113)은 상기 산화물 반도체층(106a)의 채널 형성 영역과 중첩하는 영역에 제공된다.
채널 스토퍼로서 제공된 상기 절연층(113)을 형성하기 위한 방법이 설명될 것이다. 먼저, 상기 산화물 반도체층(106a)은 도 3a에 도시된 바와 같이 형성되며, 그 후 절연막이 산화 실리콘 또는 산화 질화 실리콘과 같이 산소 원자들을 포함한 재료를 사용하여 스퍼터링 법, CVD 법 등에 의해, 상기 산화물 반도체층(106a)을 커버하도록 형성된다. 그 후, 상기 절연막이 선택적으로 에칭되어, 상기 절연층(113)이 형성될 수 있도록 한다. 상기 절연층(113)의 형성 후 공정을 위해, 도 3b 후의 상기 공정의 설명이 참조될 수 있다.
상기 산화물 반도체층(106a)의 상기 채널 형성 영역과 중첩하는 영역에 채널 스토퍼로서 제공된 상기 절연층(113)은 상기 소스 및 드레인 전극층들(108a, 108b)을 형성할 때 손상(에칭시 플라즈마 또는 에천트로 인한 막 두께의 감소)을 방지할 수 있다. 따라서, 상기 트랜지스터(150)의 신뢰성이 증가될 수 있다.
이 실시형태에 설명된 방법을 사용하여, 높은 전계-효과 이동도 및 큰 온-상태 전류를 가진 트랜지스터가 실현될 수 있다. 또한, 작은 오프-상태 전류, 높은 전계-효과 이동도, 및 큰 온-상태 전류를 가진 트랜지스터가 실현될 수 있다.
이 실시형태에 설명된 상기 구조들, 방법들 등은 다른 실시형태들에 설명된 구조들, 방법들 등 중 임의의 것과 적절하게 조합될 수 있다.
(실시형태 3)
이 실시형태에서, 상기 실시형태의 상기 반도체 장치의 또 다른 구조 및 또 다른 제작 방법이 설명될 것이다. 이 실시형태에서, 톱-게이트형 트랜지스터가 설명될 것이다.
<반도체 장치의 구조>
먼저, 이 실시형태의 반도체 장치의 구조의 일 예인 상기 트랜지스터(150)가 설명될 것이다. 도 6d에 도시된 상기 트랜지스터(150)에서, 상기 산화물 반도체층(106a)은 상기 기판(100) 위에 형성되며, 상기 소스 및 드레인 전극층들(108a, 108b)은 상기 산화물 반도체층(106a) 위에 형성된다. 상기 산소를 포함한 절연층(112)은 상기 소스 및 드레인 전극층들(108a, 108b)과 상기 산화물 반도체층(106a)을 커버하도록 형성된다. 상기 절연층(112)은 게이트 절연층으로서 기능한다. 상기 산소를 포함한 절연층(112)은 상기 산화물 반도체층(106a)의 채널과 접한다. 또한, 게이트 전극층(114)은 상기 산화물 반도체층(106a)과 중첩하도록 상기 절연층(112) 위에 형성된다. 또한, 상기 수소를 포함한 절연층(116)은 상기 산소를 포함한 절연층(112) 및 상기 게이트 전극층(114)을 커버하도록 형성된다. 평탄화막으로서 기능하는 상기 절연층(118)은 상기 수소를 포함한 절연층(116) 위에 형성될 수 있다. 이 실시형태에 설명된 상기 트랜지스터(150)는 상기 산화물 반도체층(106a)과 접하는 상기 산소를 포함한 절연층(112), 및 상기 산소를 포함한 절연층(112)과 접하는 상기 수소를 포함한 절연층(116)을 포함한다. 하지막으로서 기능하는 상기 절연층(102)은 상기 기판(100) 및 상기 산화물 반도체층(106a) 사이에서 형성될 수 있다는 것을 주의하자.
<반도체 장치의 제작 방법>
다음으로, 상기 반도체 장치의 구조의 일 예인 상기 트랜지스터(150)의 제작 방법이 도 6a 내지 도 6d를 참조하여 설명될 것이다.
먼저, 하지막으로서 기능하는 상기 절연층(102)이 형성되는 상기 기판(100) 위에, 상기 산화물 반도체층(106a)이 형성된다. 그 후, 상기 소스 및 드레인 전극층들(108a, 108b)이 상기 산화물 반도체층(106a) 위에 형성된다(도 6a 참조).
상기 기판(100)을 위해, 도 2a의 상기 기판(100)의 설명이 참조되며, 그러므로 그 상세한 설명은 생략될 것이다.
하지막으로서 기능하는 상기 절연층(102)은 CVD 법, 스퍼터링 법 등을 사용하여 형성될 수 있다. 상기 절연층(102)은 바람직하게는 산화 실리콘, 질화 실리콘, 산화 질화 실리콘, 질화 산화 실리콘, 산화 알루미늄, 산화 하프늄, 또는 산화 탄탈을 포함하도록 형성된다. 상기 절연층(102)은 단층 구조 또는 적층 구조를 가질 수 있다. 상기 절연층(102)의 두께는 예를 들면, 10nm 이상 500nm 이하일 수 있다. 스퍼터링 법 등을 사용하는 경우에, 상기 절연층(102)은 상기 처리실에 남아있는 수분이 제거되는 상태에서 형성되는 것이 바람직하다.
상기 산화물 반도체층은 스퍼터링 법 등에 의해 상기 기판(100) 또는 상기 절연층(102) 위에 형성된다. 상기 산화물 반도체층의 재료 및 형성 방법에 대해, 도 2c의 상기 산화물 반도체층(106a)의 설명이 참조될 수 있으며; 그러므로 상세한 설명은 생략될 것이다.
이 실시형태에서, 상기 산화물 반도체층(106a)으로서, 비정질 산화물 반도체층이 In-Ga-Zn-O-계 산화물 반도체를 성막하기 위한 타겟을 사용하여 스퍼터링 법에 의해 형성된다.
상기 산화물 반도체층이 스퍼터링 법에 의해 형성되기 전에, 플라즈마가 도입된 아르곤 가스로 생성되는 역 스퍼터링이 바람직하게는 상기 절연층(102)의 표면에 부착된 재료가 제거되도록 수행된다는 것을 주의하자.
다음으로, 상기 산화물 반도체층이 마스크를 사용한 에칭과 같은 방법을 사용함으로써 섬-형상 산화물 반도체층(106a)으로 가공된다. 상기 산화물 반도체층을 에칭하기 위한 방법으로서, 드라이 에칭 또는 웨트 에칭 중 하나 또는 그것들 모두를 조합하여 이용될 수 있다. 상기 산화물 반도체층의 에칭 조건들에 대해, 실시형태 2에서의 설명이 참조될 수 있으며; 그러므로 그것에 대한 상세한 설명은 생략될 것이다.
다음으로, 상기 제 1 열 처리(탈수화 처리, 탈수소화 처리)가 바람직하게는 상기 산화물 반도체층(106a) 상에서 수행된다. 상기 산화물 반도체층(106a)에서의 물(수산기를 포함한), 수소 등이 상기 제 1 열 처리에 의해 제거될 수 있다. 상기 제 1 열 처리의 조건들에 대해, 실시형태 2에서의 설명이 참조될 수 있으며; 그러므로, 그에 대한 상세한 설명은 생략될 것이다.
상기 제 1 열 처리는 상기 섬-형상 산화물 반도체층(106a)으로 가공되기 전에 상기 산화물 반도체층상에서 수행될 수 있다. 상기 경우에, 상기 제 1 열 처리 후, 상기 기판(100)은 상기 가열 장치로부터 꺼내어지며 포토리소그래피 단계가 수행된다.
다음으로, 상기 절연층(112)이 상기 산화물 반도체층(106a) 및 상기 소스 및 드레인 전극층들(108a, 108b)을 커버하도록 형성된다(도 6b 참조).
상기 절연층(112)은 게이트 절연층으로서 기능한다. 상기 절연층(112)은 바람직하게는 예를 들면, 산화 실리콘, 산화 질화 실리콘 등을 사용하여 산소 원자들을 포함하도록 형성된다. 상기 절연층(112)은 바람직하게는 스퍼터링 법 또는 CVD 법을 사용하여 형성된다.
다음으로, 상기 제 2 열 처리가 바람직하게는 상기 산화물 반도체층(106a) 상에서 수행된다. 상기 제 2 열 처리에 의해, 상기 산소를 포함한 절연층(112)의 산소가 상기 산화물 반도체층(106a)에 공급되며, 따라서 상기 산화물 반도체층(106a)의 산소 결손부가 산화되고, 그에 의해 상기 i-형(진성) 또는 실질적으로 i-형 산화물 반도체층(106a)이 형성될 수 있다. 상기 제 2 열 처리는 상기 트랜지스터의 전기적 특성들에서의 변화를 감소시킬 수 있다. 상기 제 2 열 처리의 조건들에 대해, 실시형태 2에서의 설명이 참조될 수 있으며; 그러므로, 그것에 대한 상세한 설명은 생략될 것이다.
다음으로, 상기 게이트 전극층(114)이 상기 산화물 반도체층(106a)과 중첩하도록 상기 산소를 포함한 절연층(112) 위에 형성된다(도 6c 참조).
먼저, 도전층이 스퍼터링 법 또는 CVD 법에 의해 상기 산소를 포함한 절연층(112) 위에 형성된다. 상기 도전층의 재료 및 형성 방법에 대해, 도 2a의 상기 도전층(101)의 설명이 참조될 수 있으며; 그러므로, 그것에 대한 상세한 설명은 생략될 것이다. 그 후, 상기 도전층은 선택적으로 에칭되며, 따라서 상기 게이트 전극층(114)이 형성된다.
다음으로, 상기 수소를 포함한 절연층(116)이 상기 게이트 전극층(114)을 커버하도록 형성되며, 평탄화 막으로서 기능하는 상기 절연층(118)이 형성된다(도 6d 참조).
상기 수소를 포함한 상기 절연층(116)으로서, 수소를 포함한 막이 질화 실리콘, 질화 산화 실리콘, 질화 알루미늄, 질화 산화 알루미늄 등을 사용하여 형성된다. 상기 수소를 포함한 절연층(116)은 바람직하게는 스퍼터링 법 또는 CVD 법에 의해 형성된다. 특히, 원료 가스로서 적어도 실란 및 질소를 포함한 가스(대표적으로, 질소 가스, 암모니아 가스 등)를 사용한 CVD 법에 의해 형성된 질화 실리콘층 또는 질화 산화 실리콘층, 또는 원료 가스로서 적어도 수소화 알루미늄 및 질소를 포함한 가스(대표적으로, 질소 가스, 암모니아 가스 등)를 사용한 CVD 법에 의해 형성된 질화 알루미늄층 또는 질화 산화 알루미늄층이 비교적 많은 수의 수소 원자들을 포함하기 때문에 바람직하다. 상기 산소를 포함한 절연층(112)과 접하도록 상기 수소를 포함한 절연층(116)을 형성하는 것이 바람직하다.
다음으로, 상기 제 3 열 처리가 상기 산화물 반도체층(106a) 상에서 수행된다. 상기 제 3 열 처리의 조건들에 대해, 실시형태 2에서의 설명이 참조될 수 있으며; 그러므로, 상세한 설명은 생략될 것이다. 상기 제 3 열 처리에 의해, 상기 수소를 포함한 절연층(116)의 수소는 적어도 상기 산화물 반도체층(106a)으로 확산되거나 또는 공급되며 상기 산화물 반도체층(106a), 상기 절연층(102)과 상기 산화물 반도체층(106a) 사이의 계면, 및 상기 산화물 반도체층(106a)과 상기 산소를 포함한 절연층(112) 사이의 계면 중 적어도 하나에 포함된 결함 또는 미결합수를 종단시킨다. 따라서, 상기 산화물 반도체층(106a)에서의 결함들은 감소된다. 그 결과, 상기 트랜지스터의 온-상태 전류 및 전계-효과 이동도는 증가된다.
상기 절연층(118)은 스퍼터링 법, CVD 법 등에 의해 형성될 수 있다. 상기 절연층(118)의 재료 및 형성 방법에 대해, 도 4c의 설명이 참조될 수 있으며; 그러므로, 상세한 설명은 생략될 것이다.
상술된 공정을 통해, 상기 산화물 반도체층(106a)을 포함한 상기 트랜지스터(150)가 완성된다.
이 실시형태의 상기 트랜지스터(150) 상에서, 상기 제 1 열 처리는 400℃ 이상 750℃ 이하, 바람직하게는 400℃ 이상 상기 기판의 변형점 이하의 온도로 수소 및 수분을 거의 포함하지 않는 분위기(질소 분위기, 산소 분위기, 건조-대기 분위기(예로서, 수분에 대해, 이슬점은 -40℃ 이하, 바람직하게는 -50℃ 이하이다) 등)에서 수행되며, 따라서 상기 산화물 반도체층(106a)의 수소 농도가 감소된다. 다음으로, 상기 산화물 반도체층(106a)과 접하는 상기 산소를 포함한 절연층(112)이 형성되며, 그 후 상기 제 2 열 처리가 불활성 가스 분위기 또는 산소 가스 분위기(바람직하게는, 200℃ 이상 450℃ 이하의 온도에서, 및 예를 들면 250℃ 이상 350℃ 이하의 온도에서)에서 수행되어, 상기 산화물 반도체층(106a)에서의 상기 산소 결손 부분이 산화되도록 한다. 따라서, 상기 i-형(진성) 또는 실질적으로 i-형 산화물 반도체층(106a)이 형성된다. 다음으로, 상기 수소를 포함한 절연층(116)이 상기 산소를 포함한 절연층(112) 위에 형성된다. 그 후, 상기 제 3 열 처리가 150℃ 이상 450℃ 이하, 바람직하게는 250℃ 이상 440℃ 이하의 온도에서 수행되며, 그에 의해 상기 수소를 포함한 절연층(116)의 수소가 상기 절연층(102)과 상기 산화물 반도체층(106a) 사이의 계면, 상기 산화물 반도체층(106a), 및 상기 산화물 반도체층(106a)과 상기 산소를 포함한 절연층(112) 사이의 계면 중 적어도 하나에 공급된다. 상기 수소는 상기 산화물 반도체층(106a)에 포함된 결함 또는 미결합수를 종단시킨다. 이러한 방식으로, 트랜지스터 특성들이 개선될 수 있다.
상기 제 1 열 처리, 상기 제 2 열 처리, 및 상기 제 3 열 처리의 조건들 또는 상기 산화물 반도체층(106a)의 재료에 의존하여, 미결정 또는 다결정이 상기 산화물 반도체층(106a)에 형성될 수 있도록 몇몇 경우들에서 상기 산화물 반도체층(106a)의 일부가 결정화할 수 있다는 것을 주의하자. 상기 산화물 반도체층(106a)이, 결정 영역이 비정질 영역에 포함되는 구조를 가질 때, 높은 전계-효과 이동도 및 큰 온-상태 전류를 가진 트랜지스터가 획득될 수 있다. 상기 산화물 반도체층(106a)이 비정질 구조를 갖는 경우에, 복수의 소자들 가운데 특징적인 변화가 감소될 수 있다.
이 실시형태에 설명된 상기 구조들, 방법들 등은 다른 실시형태들에 설명된 상기 구조들, 방법들 등 중 임의의 것과 적절하게 조합될 수 있다.
(실시형태 4)
이 실시형태에서, 상기 실시형태의 반도체 장치의 또 다른 구조 및 또 다른 제작 방법이 설명될 것이다.
<반도체 장치의 구조>
먼저, 이 실시형태의 반도체 장치의 구조의 일 예인 상기 트랜지스터(150)가 설명될 것이다. 도 7d에 도시된 상기 트랜지스터(150)에서, 상기 게이트 전극층(101a)은 상기 기판(100) 위에 형성되며 상기 게이트 절연층(102)은 상기 게이트 전극층(101a) 위에 형성된다. 채널 형성 영역으로서, 상기 산화물 반도체층(106a)은 상기 게이트 절연층(102) 위에 형성되며, 상기 소스 또는 드레인 전극층(108a) 및 상기 소스 또는 드레인 전극층(108b)은 상기 산화물 반도체층(106a) 위에 형성된다. 상기 산소를 포함한 절연층(112)은 상기 소스 및 드레인 전극층들(108a, 108b)과 상기 산화물 반도체층(106a) 위에 형성된다. 상기 산소를 포함한 절연층(112)은 상기 산화물 반도체층(106a)의 백 채널과 접한다. 상기 게이트 전극층(114)은 상기 산화물 반도체층(106a)과 중첩하도록 상기 산소를 포함한 절연층(112) 위에 형성된다. 상기 수소를 포함한 절연층(116)은 상기 게이트 전극층(114)을 커버하도록 형성된다. 평탄화 막으로서 기능하는 상기 절연층(118)은 상기 수소를 포함한 절연층(116) 위에 형성될 수 있다. 이 실시형태에 설명된 상기 트랜지스터(150)는 상기 산화물 반도체층(106a)과 접하는 상기 산소를 포함한 절연층(112) 및 상기 산소를 포함한 절연층(112)과 접하는 상기 수소를 포함한 절연층(116)을 포함하는 특징을 가진다.
이 실시형태에서, 상기 게이트 전극층(114)은 소위 백 게이트로서 기능한다. 상기 게이트 전극층(114)의 존재에 의해, 상기 산화물 반도체층(106a)에서의 전기장이 제어될 수 있으며, 그에 의해 상기 트랜지스터(150)의 전기적 특성들이 제어될 수 있다. 상기 게이트 전극층(114)은 전위가 상기 게이트 전극층(114)에 인가되도록 또 다른 배선, 전극 등에 전기적으로 접속될 수 있거나, 또는 플로팅 상태에 있도록 절연될 수 있다는 것을 주의하자.
"게이트 전극"은 공통적으로 전위가 의도적으로 제어될 수 있는 게이트 전극을 의미하지만, 본 명세서에서 "게이트 전극"은 또한 전위가 의도적으로 제어되지 않는 게이트 전극을 의미한다는 것을 주의하자. 예를 들면, 상술된 바와 같이 절연되고 플로팅 상태에 있는 상기 도전층은 몇몇 경우들에서 "게이트 전극층"으로 불리운다.
<반도체 장치의 제작 방법>
다음으로, 상기 반도체 장치의 구조의 일 예인 상기 트랜지스터(150)의 제작 방법이 도 7a 내지 도 7d를 참조하여 설명될 것이다.
먼저, 상기 게이트 전극층(101a)은 상기 기판(100) 위에 형성되며, 상기 게이트 절연층(102)은 상기 게이트 전극층(101a)을 커버하도록 형성된다. 다음으로, 상기 산화물 반도체층(106a)은 상기 게이트 전극층(101a)과 중첩하도록 상기 게이트 절연층(102) 위에 형성되며, 그 후 상기 소스 또는 드레인 전극층(108a) 및 상기 소스 또는 드레인 전극층(108b)이 형성된다(도 7a 참조). 이때까지의 처리를 위해, 도 2a 내지 도 2c 및 도 3a 내지 도 3c의 설명이 참조될 수 있으며, 그러므로 상세한 설명은 생략될 것이다.
그 후, 상기 산소를 포함한 절연층(112)은 상기 산화물 반도체층(106a) 및 상기 소스 및 드레인 전극층들(108a, 108b)을 커버하도록 형성된다(도 7b 참조). 상기 산소를 포함한 절연층(112)의 재료 및 형성 방법에 대해, 도 4a의 설명이 참조될 수 있으며, 그러므로 그 상세한 설명은 생략될 것이다.
다음으로, 상기 제 2 열 처리가 바람직하게는 상기 산화물 반도체층(106a) 상에서 수행된다. 상기 제 2 열 처리에 의해, 상기 산소를 포함한 절연층(112)의 산소는 상기 산화물 반도체층(106a)에 공급되며, 따라서 상기 산화물 반도체층(106a)의 산소 결손 부분이 산화되고, 그에 의해 상기 i-형(진성) 또는 실질적으로 i-형 산화물 반도체층(106a)이 형성될 수 있다. 상기 제 2 열 처리는 상기 트랜지스터의 전기적 특성들에서의 변화를 감소시킬 수 있다. 상기 제 2 열 처리의 조건들에 대해, 실시형태 2에서의 설명이 참조될 수 있으며, 그러므로, 상세한 설명은 생략될 것이다.
다음으로, 상기 게이트 전극층(114)이 상기 산화물 반도체층(106a)과 중첩하도록 상기 산소를 포함한 절연층(112) 위에 형성된다(도 7c 참조). 상기 게이트 전극층(114)의 재료 및 형성 방법에 대해, 도 6c의 상기 게이트 전극층의 설명이 참조될 수 있으며; 그러므로, 상세한 설명은 생략될 것이다. 이 실시형태에서, 상기 게이트 전극층(114)은 소위 백 게이트로서 기능한다.
그 후, 상기 수소를 포함한 절연층(116)이 상기 게이트 전극층(114)을 커버하도록 형성되며, 상기 절연층(118)이 형성된다(도 7d 참조).
상기 수소를 포함한 절연층(116)의 재료 및 형성 방법에 대해, 도 4b의 상기 절연층(116)의 설명이 참조될 수 있으며; 그러므로, 상세한 설명은 생략될 것이다.
다음으로, 상기 제 3 열 처리가 상기 산화물 반도체층(106a) 상에서 수행된다. 상기 제 3 열 처리의 조건들에 대해, 실시형태 2에서의 설명이 참조될 수 있으며; 그러므로, 상세한 설명은 생략될 것이다. 상기 제 3 열 처리에 의해, 상기 수소를 포함한 절연층(116)의 수소가 적어도 상기 산화물 반도체층(106a)으로 확산되거나 또는 공급되며 상기 산화물 반도체층(106a), 상기 산화물 반도체층(106a)과 상기 산소를 포함한 절연층(112) 사이의 계면, 및 상기 산화물 반도체층(106a)과 상기 절연층(102) 사이의 계면 중 적어도 하나에 포함된 결함 또는 미결합수를 종단시킨다. 따라서, 상기 산화물 반도체층(106a)에서의 결함들이 감소된다. 그 결과, 상기 트랜지스터의 온-상태 전류 및 전계-효과 이동도가 증가된다.
상기 절연층(118)의 재료 및 형성 방법에 대해, 도 4c의 상기 절연층(118)의 설명이 참조될 수 있으며; 그러므로, 상세한 설명은 생략될 것이다.
상술된 공정을 통해, 상기 산화물 반도체층(106a)을 포함한 상기 트랜지스터(150)가 완성된다.
이 실시형태의 상기 트랜지스터(150) 상에서, 상기 제 1 열 처리는 400℃ 이상 750℃ 이하, 바람직하게는 400℃ 이상 상기 기판의 변형점 이하의 온도로 수소 및 수분을 거의 포함하지 않는 분위기(질소 분위기, 산소 분위기, 건조-대기 분위기(예로서, 수분에 대해, 이슬점은 -40℃ 이하, 바람직하게는 -50℃ 이하이다) 등)에서 수행되며, 따라서 상기 산화물 반도체층(106a)의 수소 농도가 감소된다. 다음으로, 상기 산화물 반도체층(106a)과 접하는 상기 산소를 포함한 절연층(112)이 형성되며, 그 후 상기 제 2 열 처리가 불활성 가스 분위기 또는 산소 가스 분위기(바람직하게는, 200℃ 이상 450℃ 이하의 온도에서, 및 예를 들면 250℃ 이상 350℃ 이하의 온도에서)에서 수행되어, 상기 산화물 반도체층(106a)에서의 상기 산소 결손 부분이 산화되도록 한다. 따라서, 상기 i-형(진성) 또는 실질적으로 i-형 산화물 반도체층(106a)이 형성된다. 다음으로, 상기 수소를 포함한 절연층(116)이 상기 산소를 포함한 절연층(112) 위에 형성된다. 그 후, 상기 제 3 열 처리가 150℃ 이상 450℃ 이하, 바람직하게는 250℃ 이상 440℃ 이하의 온도에서 수행되며, 그에 의해 상기 수소를 포함한 절연층(116)의 수소가 상기 게이트 절연층(102)과 상기 산화물 반도체층(106a) 사이의 계면, 상기 산화물 반도체층(106a), 및 상기 산화물 반도체층(106a)과 상기 산소를 포함한 절연층(112) 사이의 계면 중 적어도 하나에 공급된다. 상기 수소는 상기 산화물 반도체층(106a)에 포함된 결함 또는 미결합수를 종단시킨다. 이러한 방식으로, 트랜지스터 특성들이 개선될 수 있다.
상기 제 1 열 처리, 상기 제 2 열 처리, 및 상기 제 3 열 처리의 조건들 또는 상기 산화물 반도체층(106a)의 재료에 의존하여, 상기 산화물 반도체층(106a)의 일부가 미결정 또는 다결정이 상기 산화물 반도체층(106a)에 형성될 수 있도록 몇몇 경우들에서 결정화할 수 있다는 것을 주의하자. 상기 산화물 반도체층(106a)이, 결정 영역이 비정질 영역에 포함되는 구조를 가질 때, 높은 전계-효과 이동도 및 큰 온-상태 전류를 가진 트랜지스터가 획득될 수 있다. 상기 산화물 반도체층(106a)이 비정질 구조를 갖는 경우에, 복수의 소자들 가운데 특징적인 변화가 감소될 수 있다.
이 실시형태에 설명된 상기 구조들, 방법들 등은 다른 실시형태들에 설명된 상기 구조들, 방법들 등 중 임의의 것과 적절하게 조합될 수 있다.
(실시형태 5)
이 실시형태에서, 상기 실시형태의 반도체 장치의 제작 방법의 또 다른 예가 설명될 것이다.
먼저, 도전층이 절연 표면을 가진 기판 위에 형성되며, 상기 도전층은 상기 게이트 전극층을 형성하기 위해 선택적으로 에칭된다. 그 후, 게이트 절연층이 상기 게이트 전극층을 커버하도록 형성된다. 이러한 처리는 실시형태 2와 유사한 방식으로 행해질 수 있으며, 실시형태 2의 대응하는 설명이 참조될 수 있다.
다음으로, 비정질 산화물 반도체층이 상기 게이트 절연층 위에 형성되며, 에칭과 같은 방법에 의해 섬-형상 산화물 반도체층으로 가공된다. 이러한 공정은 상기 산화물 반도체층의 열 처리를 제외하고 실시형태 2에 설명된 방법을 사용하여 행해진다. 이 실시형태에서, 상기 산화물 반도체층의 열 처리는 수행되지 않는다.
그 후, 도전층이 상기 산화물 반도체층과 접하여 형성되며, 상기 도전층은 소스 전극층 및 드레인 전극층을 형성하기 위해 선택적으로 에칭된다. 이러한 처리는 실시형태 2와 유사한 방식으로 행해질 수 있으며, 실시형태 2의 대응하는 설명이 참조될 수 있다.
다음으로, 상기 산화물 반도체층의 일부와 접하는 절연층이 형성된다. 상기 절연층은 나중 단계에서 상기 수소를 포함한 절연층으로부터 수소가 확산되거나 상기 산화물 반도체층으로 공급될 수 있는 한 임의의 구조를 가질 수 있다. 상기 절연층은 CVD 법, 스퍼터링 법 등에 의해 형성될 수 있다. 실시형태 2에 설명된 바와 같기 다음 방법이 이용될 수 있다: 산소를 포함한 절연층이 형성되고 열 처리가 상기 산화물 반도체층에 산소를 공급하기 위해 수행되며; 이러한 경우에, 실시형태 2에 설명된 것과 유사한 방법이 이용될 수 있다.
그 후, 수소를 포함한 절연층이 상기 절연층 위에 형성되며, 열 처리가 수행된다. 상기 수소를 포함한 절연층은 CVD 법, 스퍼터링 법 등에 의해 형성될 수 있다. 상기 수소를 포함한 절연층은 바람직하게는, 질화 실리콘층, 질화 산화 실리콘층, 질화 알루미늄층, 질화 산화 알루미늄층 등과 같이, 수소를 포함한 절연층을 사용하여 형성된다. 특히, 원료 가스로서 적어도 실란 및 질소를 포함한 가스(대표적으로, 질소 가스, 암모니아 가스 등)를 사용한 CVD 법에 의해 형성된 질화 실리콘층 또는 질화 산화 실리콘층, 또는 원료 가스로서 적어도 수소화 알루미늄 및 질소를 포함한 가스(대표적으로, 질소 가스, 암모니아 가스 등)를 사용한 CVD 법에 의해 형성된 질화 알루미늄층 또는 질화 산화 알루미늄층이 그것들이 비교적 많은 수의 수소 원자들을 포함하기 때문에 바람직하다.
상기 열 처리가 150℃ 이상 450℃ 이하, 바람직하게는 250℃ 이상 440℃ 이하의 온도로 질소 분위기에서 수행된다. 상기 열 처리의 분위기는 상기 질소 분위기에 한정되지 않으며, 산소 분위기, 희가스 분위기, 또는 건조-대기 분위기일 수 있다.
상기 열 처리에 의해, 상기 수소를 포함한 절연층의 수소는 적어도 상기 산화물 반도체층으로 확산되거나 또는 공급되며 상기 산화물 반도체층, 상기 게이트 절연층과 상기 산화물 반도체층 사이의 계면, 및 상기 산화물 반도체층과 상기 산소를 포함한 절연층 사이의 계면 중 적어도 하나에 남아있는 결함 또는 미결합수를 종단시킨다. 따라서, 상기 산화물 반도체층에서의 결함들이 감소되며, 트랜지스터 특성들이 개선된다. 그 결과, 상기 트랜지스터의 온-상태 전류 및 전계-효과 이동도가 증가된다.
상술된 처리를 통해, 결함들이 상기 수소를 포함한 절연층에 포함되는 수소의 확산에 의해 종단되는 트랜지스터가 완성된다.
보텀-게이트형 트랜지스터가 이 실시형태에 설명되었지만, 본 발명은 이러한 구조에 한정되지 않으며, 톱-게이트형 트랜지스터 또는 소위 백 게이트를 포함한 트랜지스터가 이용될 수 있다.
이 실시형태에 설명된 방법을 사용하여, 높은 전계-효과 이동도 및 큰 온-상태 전류를 가진 트랜지스터가 실현될 수 있다.
이 실시형태에 설명된 상기 구조들, 방법들 등은 다른 실시형태들에 설명된 상기 구조들, 방법들 등 중 임의의 것과 적절하게 조합될 수 있다.
(실시형태 6)
이 실시형태에서, 온-상태 전류 및 전계-효과 이동도가 수소의 공급에 의해 증가되는 박막 트랜지스터들이 제작되고 상기 박막 트랜지스터들이 화소부 및 구동 회로를 위해 사용되는 표시 기능을 가진 반도체 장치(또한 표시 장치로서 불리우는)가 제작되는 경우가 설명될 것이다. 더욱이, 구동 회로의 일부 또는 전체가 화소부와 동일한 기판 위에 형성될 때, 시스템-온-패널이 획득될 수 있다.
이 실시형태에서, 액정 표시 장치의 일 예가 본 발명의 일 실시형태인 반도체 장치로서 설명된다. 먼저, 반도체 장치의 일 실시형태인 액정 표시 패널의 외관 및 단면이 도 8a 및 도 8b를 참조하여 설명될 것이다. 도 8a는 수소가 공급되는 산화물 재료의 반도체층을 포함하는 트랜지스터들(4010, 4011), 및 액정 소자(4013)가 씰재(4005)로 제 1 기판(4001) 및 제 2 기판(4006) 사이에서 밀봉되는 패널의 상면도이다. 도 8b는 선(M-N)에 따른 도 8a의 단면도에 대응한다.
상기 씰재(4005)는 상기 제 1 기판(4001) 위에 제공되는 화소부(4002), 신호선 구동 회로(4003), 및 주사선 구동 회로(4004)를 둘러싸도록 제공된다. 상기 제 2 기판(4006)은 상기 화소부(4002), 상기 신호선 구동 회로(4003), 및 상기 주사선 구동 회로(4004) 위에 제공된다. 따라서, 상기 화소부(4002), 상기 신호선 구동 회로(4003), 및 상기 주사선 구동 회로(4004)는 상기 제 1 기판(4001), 상기 씰재(4005), 및 상기 제 2 기판(4006)에 의해 액정층(4008)과 함께 밀봉된다.
또한, 상기 제 1 기판(4001) 위에 제공되는 상기 화소부(4002), 상기 신호선 구동 회로(4003), 및 상기 주사선 구동 회로(4004)는 복수의 트랜지스터들을 포함한다. 도 8b는 일 예로서, 상기 화소부(4002)에 포함된 트랜지스터(4010) 및 상기 주사선 구동 회로(4004)에 포함된 트랜지스터(4011)를 도시한다. 절연층들(4020, 4021)은 상기 트랜지스터(4010), 및 상기 트랜지스터(4011) 위에 제공된다.
상기 실시형태들에 설명되는 수소가 공급되는 상기 산화물 반도체층을 포함한 상기 트랜지스터들 중 임의의 것이 상기 트랜지스터들(4010, 4011)로서 사용될 수 있다. 이 실시형태에서, 상기 트랜지스터들(4010, 4011)은 n-채널 트랜지스터들이다.
도전층(4040)은 상기 구동 회로를 위한 상기 트랜지스터(4011)에서 산화물 반도체층의 채널 형성 영역과 중첩하는 위치에서 상기 절연층(4021) 위에 제공된다. 상기 도전층(4040)은 상기 산화물 반도체층의 상기 채널 형성 영역과 중첩하는 위치에 제공되며, 그에 의해 상기 BT 시험에서 상기 트랜지스터(4011)의 임계 전압에서의 변화의 양이 감소될 수 있다. 상기 도전층(4040)의 전위는 상기 트랜지스터(4011)의 게이트 전극층과 동일하거나 또는 상이할 수 있다. 상기 도전층(4040)은 또한 제 2 게이트 전극층으로서 기능할 수 있다. 또한, 상기 도전층(4040)의 전위는 GND 또는 0V일 수 있거나, 또는 상기 도전층(4040)은 플로팅 상태에 있을 수 있다.
상기 액정 소자(4013)에 포함된 화소 전극층(4030)은 상기 트랜지스터(4010)에 전기적으로 접속된다. 상기 액정 소자(4013)의 대향 전극층(4031)은 상기 제 2 기판(4006) 상에 형성된다. 상기 화소 전극층(4030), 상기 대향 전극층(4031), 및 상기 액정층(4008)이 서로 중첩하는 부분은 상기 액정 소자(4013)에 대응한다. 상기 화소 전극층(4030) 및 상기 대향 전극층(4031)은 각각 배향막들로서 기능하는 절연층(4032) 및 절연층(4033)을 제공받으며, 상기 액정층(4008)은 상기 절연층들(4032, 4033)이 사이에 배열된 상기 전극층들 사이에 끼여진다는 것을 주의하자.
상기 제 2 기판(4006)으로서, 유리 또는 플라스틱들이 사용될 수 있다.
스페이서(4035)는 절연층의 선택적 에칭에 의해 획득된 주상 스페이서이며 상기 화소 전극층(4030) 및 상기 대향 전극층(4031) 사이의 거리(셀 갭)를 제어하기 위해 제공된다. 대안적으로, 구상 스페이서가 사용될 수 있다. 상기 대향 전극층(4031)은 상기 트랜지스터(4010)가 형성되는 기판 위에 형성된 공통 전위선에 전기적으로 접속된다. 상기 대향 전극층(4031) 및 상기 공통 전위선은 상기 공통 접속부를 사용하여 기판들의 쌍 간에 제공된 도전성 입자들을 통해 서로 전기적으로 접속될 수 있다. 상기 도전성 입자들은 상기 씰재(4005)에 포함된다는 것을 주의하자.
배향막이 불필요한 블루상(blue phase)을 보여주는 액정이 사용될 수 있다. 블루상은 액정상들 중 하나이며 콜레스테릭상이 콜레스테릭 액정(cholesteric liquid crystal)의 온도가 증가되는 동안 등방성 상으로 변화하기 직전에 생성된다. 상기 블루상은 좁은 온도 범위 내에서만 생성되기 때문에, 5 wt% 이상의 키랄제를 포함한 액정 조성물이 상기 온도 범위를 개선하기 위해 상기 액정층(4008)을 위해 사용된다. 블루상 및 키랄제를 보여주는 액정을 포함한 상기 액정 조성물은 1msec 이하의 짧은 응답 시간을 갖고 광학적으로 등방성이며; 그러므로, 배향 처리가 필요하지 않고 시야각 의존성이 작다.
또한, 블루상을 나타내는 액정을 사용하는 경우에 러빙 처리(rubbing treatment)는 불필요하기 때문에, 상기 러빙 처리에 의해 야기된 정전 방전 손상이 방지될 수 있고 상기 액정 표시 장치의 결함들 및 손상이 제작 공정에서 감소될 수 있다. 따라서, 상기 액정 표시 장치의 생산성이 증가될 수 있다. 산화물 반도체층을 사용하는 트랜지스터는 특히 상기 트랜지스터의 전기적 특성들이 정전기의 영향에 의해 상당히 변동할 수 있고 설계된 범위로부터 벗어날 가능성을 가진다. 그러므로, 산화물 반도체층을 사용하는 트랜지스터를 포함한 액정 표시 장치를 위해 블루상 액정 재료를 사용하는 것이 보다 효과적이다. 블루상이 사용되는 경우에, 본 발명의 일 실시형태는 도 8a 및 도 8b의 구조에 한정되지 않으며, 상기 대향 전극층(4031)에 대응하는 전극층이 상기 화소 전극층(4030)을 제공받는 상기 기판 측상에 형성되는 소위 횡 전계 모드가 이용될 수 있다는 것을 주의하자.
투과형 액정 표시 장치가 이 실시형태에 설명되지만, 본 발명의 일 실시형태는 또한 반사형 액정 표시 장치 또는 반투과형 액정 표시 장치에 적용될 수 있다.
편광판이 상기 기판의 외부 표면상(뷰어측)에 제공되고, 표시 소자를 위해 사용된 착색층(컬러 필터) 및 전극층이 이 실시형태에 설명된 상기 액정 표시 장치에서의 상기 기판의 내부 표면상에 순차적으로 제공되지만, 상기 편광판은 상기 기판의 내부 표면상에 제공될 수 있다. 상기 편광판 및 상기 착색층의 적층 구조는 이 실시형태에 한정되지 않으며 상기 편광판 및 상기 착색층의 재료들 또는 상기 제작 공정의 조건들에 의존하여 적절하게 설정될 수 있다. 더욱이, 블랙 매트릭스로서 작용하는 차광층이 필요에 따라 제공될 수 있다.
이 실시형태에서, 상기 트랜지스터로 인한 표면 거칠기를 감소시키고 상기 트랜지스터의 신뢰성을 개선하기 위해, 상기 트랜지스터들은 보호층 또는 평탄화 절연층으로서 기능하는 절연층들(절연층들(4020, 4014, 4021))로 커버된다. 상기 보호층은 유기 물질, 금속, 및 대기에 존재하는 수분과 같은 오염 불순물들의 진입을 방지하기 위해 제공되며 바람직하게는 치밀한 막임을 주의하자. 상기 보호층은 산화 실리콘 막, 질화 실리콘 막, 산화 질화 실리콘 막, 질화 산화 실리콘 막, 산화 알루미늄 막, 질화 알루미늄 막, 산화 질화 알루미늄 막, 및 질화 산화 알루미늄 막 중 임의의 것을 포함한 단층 구조 또는 적층 구조를 갖도록 스퍼터링 법에 의해 형성될 수 있다.
이 실시형태에서, 적층 구조를 가진 절연층이 보호층으로서 형성된다. 여기에서는, 산화 실리콘층이 상기 제 1 층 절연층(4020)으로서 스퍼터링 법을 사용하여 형성된다. 산화 실리콘층이 보호층으로서 사용될 때, 산소가 상기 보호층과 접하는 상기 산화물 반도체층에 첨가되며, 따라서 산소 결손이 감소될 수 있다.
상기 보호층의 제 2 층으로서, 상기 절연층(4014)이 형성된다. 여기에서, 상기 제 2 층 절연층(4014)으로서, 수소를 포함한 질화 실리콘층이 플라즈마 CVD 법을 사용하여 형성되며 열 처리되어, 수소가 상기 산화물 반도체층으로 확산되도록 한다. 상기 보호층으로서 질화 실리콘층의 사용은 나트륨 등의 이온들이 반도체 영역에 들어가는 것을 방지할 수 있고, 따라서 상기 트랜지스터의 전기적 특성들에서의 변화가 억제될 수 있다.
상기 절연층(4021)은 평탄화 절연층으로서 형성된다. 상기 절연층(4021)은 폴리이미드, 아크릴 수지, 벤조사이클로부텐, 폴리아미드, 또는 에폭시 수지와 같은 내열성 유기 재료를 사용하여 형성될 수 있다. 이러한 유기 재료들 외에, 저-유전 상수 재료(low-k 재료), 실록산-계 수지, 포스포실리케이트 유리(PSG), 보로포스포실리케이트 유리(BPSG) 등을 사용하는 것이 또한 가능하다. 상기 절연층(4021)은 이들 재료들 중 임의의 것을 사용하여 형성된 복수의 절연막들을 적층함으로써 형성될 수 있다는 것을 주의하자.
상기 화소 전극층(4030) 및 상기 대향 전극층(4031)은 산화 텅스텐을 포함한 인듐 산화물, 산화 텅스텐을 포함한 인듐 아연 산화물, 산화 티타늄을 포함한 인듐 산화물, 산화 티타늄을 포함한 인듐 주석 산화물, 인듐 주석 산화물(이후, ITO로서 불리우는), 인듐 아연 산화물, 또는 산화 실리콘이 첨가되는 인듐 주석 산화물과 같은 투광성 도전성 재료를 사용하여 형성될 수 있다.
또한, 다양한 신호들 및 전위들이 FPC(4018)로부터, 동일한 기판 위에 형성되는, 상기 신호선 구동 회로(4003), 상기 주사선 구동 회로(4004), 및 상기 화소부(4002)에 공급된다.
이 실시형태에서, 접속 단자 전극(4015)이 상기 액정 소자(4013)에 포함된 상기 화소 전극층(4030)과 동일한 도전층을 사용하여 형성된다. 단자 전극(4016)은 상기 트랜지스터들(4010, 4011)의 소스 전극 및 드레인 전극층들과 동일한 도전층을 사용하여 형성된다.
상기 접속 단자 전극(4015)은 이방성 도전막(4019)을 통해 상기 FPC(4018)에 포함된 단자에 전기적으로 접속된다.
또한, 필요하다면, 컬러 필터가 각각의 화소에 제공된다. 또한, 편광판 및 확산판이 상기 제 1 기판(4001) 및 상기 제 2 기판(4006)의 외부 측들 상에 제공된다. 또한, 백라이트의 광원이 냉-음극관 또는 LED를 사용하여 형성된다. 따라서, 액정 표시 모듈이 획득된다.
상기 액정 표시 모듈을 위해, TN(twisted nematic) 모드, IPS(in-plane-switching) 모드, FFS(fringe field switching) 모드, MVA(multi-domain vertical alignment) 모드, PVA(patterned vertical alignment) 모드, ASM(axially symmetric aligned micro-cell) 모드, OCB(optically compensated birefringence) 모드, FLC(ferroelectric liquid crystal) 모드, AFLC(antiferroelectric liquid crystal) 모드 등이 이용될 수 있다.
상술된 공정을 통해, 액정 표시 장치가 제작될 수 있다.
상기 실시형태들에 설명되는, 수소가 공급되는 산화물 반도체층을 포함한 트랜지스터는 높은 전계-효과 이동도를 가진다. 액정 표시 장치가 이 실시형태에서처럼 이러한 트랜지스터를 사용하여 제조될 때, 우수한 표시 특성들을 가진 액정 표시 장치가 실현된다.
이 실시형태는 다른 실시형태들에 설명된 구조들 중 임의의 것과 적절하게 조합하여 실시될 수 있다.
(실시형태 7)
반도체 장치의 일 실시형태인 발광 표시 패널(또한 발광 패널로서 불리우는)의 외관 및 단면이 도 9a 및 도 9b를 참조하여 설명될 것이다. 도 9a는 수소가 공급되는 산화물 반도체층을 포함한 트랜지스터 및 발광 소자가 씰재로 제 1 기판 및 제 2 기판 사이에서 밀봉되는 패널의 평면도이다. 도 9b는 선(H-I)에 따른 도 9a의 단면도에 대응한다.
씰재(4505)는 제 1 기판(4501) 위에 제공되는, 화소부(4502), 신호선 구동 회로(4503a), 신호선 구동 회로(4503b), 주사선 구동 회로(4504a), 및 주사선 구동 회로(4504b)를 둘러싸도록 제공된다. 또한, 제 2 기판(4506)은 상기 화소부(4502), 상기 신호선 구동 회로(4503a), 상기 신호선 구동 회로(4503b), 상기 주사선 구동 회로(4504a), 및 상기 주사선 구동 회로(4504b) 위에 제공된다. 따라서, 상기 화소부(4502), 상기 신호선 구동 회로(4503a), 상기 신호선 구동 회로(4503b), 상기 주사선 구동 회로(4504a), 및 상기 주사선 구동 회로(4504b)는 상기 제 1 기판(4501), 상기 씰재(4505), 및 상기 제 2 기판(4506)에 의해, 충전재(4507)와 함께 밀봉된다. 따라서 표시 장치는 상기 표시 장치가 외부 대기에 노출되지 않도록 높은 기밀성 및 작은 탈가스를 갖는 보호막 또는 커버 재료로 패키징(밀봉)되는 것이 바람직하다.
상기 제 1 기판(4501) 위에 형성된 상기 화소부(4502), 상기 신호선 구동 회로(4503a), 상기 신호선 구동 회로(4503b), 상기 주사선 구동 회로(4504a), 및 상기 주사선 구동 회로(4504b)는 복수의 트랜지스터들을 포함하며, 상기 화소부(4502)에 포함된 트랜지스터(4510) 및 상기 신호선 구동 회로(4503a)에 포함된 트랜지스터(4509)가 도 9b에서 일 예로서 도시된다.
상기 트랜지스터들(4509, 4510)을 위해, 수소가 공급되는 산화물 반도체층을 포함하는 높은 이동도를 가진 상기 트랜지스터들 중 임의의 것이 사용될 수 있다. 이 실시형태에서, 상기 트랜지스터들(4509, 4510)은 n-채널 트랜지스터들이다.
도전층(4540)이 상기 구동 회로의 상기 트랜지스터(4509)의 산화물 반도체층의 채널 형성 영역과 중첩하는 위치에서 절연층(4544) 위에 제공된다. 상기 도전층(4540)은 상기 트랜지스터(4509)의 게이트 전극층과 동일하거나 또는 상이한 전위를 가질 수 있으며, 제 2 게이트 전극층으로서 기능할 수 있다. 상기 도전층(4540)의 전위는 GND, 0V일 수 있거나 플로팅 상태에 있을 수 있다.
상기 트랜지스터(4509)에서, 절연층(4541)이 채널 형성 영역을 포함한 반도체층과 접하도록 보호 절연층으로서 형성된다. 상기 절연층(4541)은 상기 실시형태에 설명된 상기 절연층(112)과 유사한 재료 및 방법을 사용하여 형성될 수 있다. 또한, 보호 절연층(4514)은 상기 절연층(4541) 위에 형성된다. 상기 절연층(4514)은 상기 실시형태에 설명된 상기 절연층(116)과 유사한 재료 및 방법을 사용하여 형성될 수 있다. 여기에서, 질화 실리콘층이 PCVD 법에 의해 상기 보호 절연층(4514)으로서 형성된다.
또한, 상기 트랜지스터의 표면 거칠기가 감소되는, 평탄화 절연층으로서 기능하는 절연층(4544)이 상기 보호 절연층(4514) 위에 형성된다. 상기 절연층(4544)은 실시형태 6에 설명된 상기 절연층(4021)과 유사한 재료 및 방법을 사용하여 형성될 수 있다. 여기에서, 아크릴 수지가 상기 평탄화 절연층(4544)을 위해 사용된다.
게다가, 참조 부호(4511)는 발광 소자를 나타낸다. 상기 발광 소자(4511)에 포함된 화소 전극인 제 1 전극층(4517)은 상기 트랜지스터(4510)의 소스 또는 드레인 전극층에 전기적으로 접속된다. 상기 발광 소자(4511)의 구조는 이에 한정되지는 않지만, 상기 제 1 전극층(4517), 전계발광층(4512), 및 상기 제 2 전극층(4513)의 적층 구조임을 주의하자. 상기 발광 소자(4511)의 구조는 광이 상기 발광 소자(4511) 등으로부터 추출되는 방향에 의존하여 적절하게 변경될 수 있다.
격벽(4520)이 유기 수지층, 무기 절연층, 또는 유기 폴리실록산을 사용하여 형성된다. 상기 격벽(4520)은 상기 개구의 측벽이 연속 곡률을 갖는 경사면으로서 형성되도록 상기 제 1 전극층(4517) 위에 개구를 갖기 위해 감광성 재료로 형성되는 것이 특히 바람직하다.
상기 전계발광층(4512)은 단층 또는 적층된 복수의 층들을 사용하여 형성될 수 있다.
보호층은 산소, 수소, 수분, 이산화탄소 등이 상기 발광 소자(4511)로 들어가는 것을 방지하기 위해 상기 제 2 전극층(4513) 및 격벽(4520) 위에 형성될 수 있다. 상기 보호층으로서, 질화 실리콘층, 질화 산화 실리콘층, DLC층 등이 형성될 수 있다.
또한, 다양한 신호들 및 전위들이 FPC(4518a) 및 FPC(4518b)로부터 상기 신호선 구동 회로들(4503a, 4503b), 상기 주사선 구동 회로들(4504a, 4504b), 또는 화소부(4502)에 공급된다.
접속 단자 전극(4515)이 상기 발광 소자(4511)에 포함된 상기 제 1 전극층(4517)과 동일한 도전막으로부터 형성되며, 단자 전극(4516)이 상기 트랜지스터들(4509, 4510)에 포함된 상기 소스 및 드레인 전극층들과 동일한 도전막으로부터 형성된다.
상기 접속 단자 전극(4515)은 이방성 도전층(4519)을 통해 상기 FPC(4518a)에 포함된 단자에 전기적으로 접속된다.
광이 상기 발광 소자(4511)로부터 추출되는 방향에 위치된 상기 기판은 투광성 특성을 가질 필요가 있다. 상기 경우에, 유리판, 플라스틱판, 폴리에스테르 막, 또는 아크릴 수지막과 같은 투광성 재료가 사용된다.
상기 충전재(4507)로서, 질소 또는 아르곤과 같은 불활성 가스 외에, 자외선 경화 수지 또는 열경화 수지가 사용될 수 있다. 예를 들면, PVC(폴리 염화 비닐), 아크릴 수지, 폴리이미드, 에폭시 수지, 실리콘 수지, PVB(폴리비닐 부티랄), 또는 EVA(에틸렌 비닐 아세테이트)가 사용될 수 있다. 예를 들면, 질소가 상기 충전재로서 사용될 수 있다.
또한, 필요하다면, 편팡판, 원형 편광판(타원 편광판을 포함하는), 위상차판(λ/4 판 또는 λ/2 판), 또는 컬러 필터와 같은 광학막이 상기 발광 소자의 발광 표면상에 적절하게 제공될 수 있다. 또한, 상기 편광판 또는 상기 원형 편광판에 반사 방지막이 제공될 수 있다. 예를 들면, 눈부심을 감소시키도록 상기 표면상의 요철들에 의해 반사광이 확산될 수 있는 안티글레어 처리가 수행될 수 있다.
상술된 공정을 통해, 발광 표시 장치(표시 패널)가 제작될 수 있다.
상기 실시형태들에 설명되는, 수소가 공급되는 산화물 반도체층을 포함한 상기 트랜지스터들은 높은 전계-효과 이동도를 가진다. 발광 표시 장치가 이 실시형태에서와 같이 이러한 트랜지스터를 사용하여 제조될 때, 우수한 표시 특성들을 가진 발광 표시 장치가 실현된다.
이 실시형태는 다른 실시형태들에 설명된 구조들 중 임의의 것과 적절하게 조합하여 실시될 수 있다.
(실시형태 8)
전자 페이퍼의 일 예가 반도체 장치의 일 실시형태로서 설명될 것이다.
수소의 공급에 의해 온-상태 전류 및 전계-효과 이동도가 증가되는 박막 트랜지스터들이 전자 잉크가 스위칭 소자에 전기적으로 접속된 소자에 의해 구동되는 전자 페이퍼를 위해 사용될 수 있다. 상기 전자 페이퍼는 또한 전기영동 표시 장치(전기영동 디스플레이)로서 불리우며 그것이 평범한 종이와 동일한 가독성 레벨을 갖고, 다른 표시 장치들보다 낮은 전력 소비를 가지며, 얇고 가볍게 만들어질 수 있다는 점에서 유리하다.
전기영동 디스플레이들은 다양한 모드들을 가질 수 있다. 예를 들면, 전기영동 디스플레이들은 용매 또는 용질에 분산된 복수의 마이크로캡슐들을 포함하며, 각각의 마이크로캡슐은 양으로 대전된 제 1 입자들 및 음으로 대전된 제 2 입자들을 포함한다. 상기 마이크로캡슐들로의 전계의 인가에 의해, 상기 마이크로캡슐들에서의 입자들은 서로 반대 방향들로 이동하며 하나의 측상에서 모이는 입자들의 컬러만이 표시된다. 상기 제 1 입자들 및 상기 제 2 입자들 각각은 안료를 포함하며 전계 없이 이동하지 않는다는 것을 주의하자. 게다가, 상기 제 1 입자들 및 제 2 입자들은 상이한 색들을 가진다(색이 없을 수 있다).
따라서 전기영동 디스플레이는 고 유전 상수를 가진 물질이 고-전계 영역으로 이동하는 소위 유전 영동 효과를 이용하는 디스플레이이다.
상기 마이크로캡슐들이 용매에 분산된 용액은 전자 잉크라고 한다. 이러한 전자 잉크는 유리, 플라스틱, 천, 종이 등의 표면상에 인쇄될 수 있다. 더욱이, 컬러 필터 또는 색소를 가진 입자들을 사용함으로써, 컬러 디스플레이가 또한 달성될 수 있다.
또한, 복수의 상기 마이크로캡슐들이 두 개의 전극들 사이에 개재되도록 활성 매트릭스 기판 위에 적절하게 배열될 때, 액티브 매트릭스 표시 장치가 완성될 수 있으며, 따라서 표시가 상기 마이크로캡슐들로의 전계의 인가에 의해 수행될 수 있다. 상기 액티브 매트릭스 기판으로서, 예를 들면, 상기 실시형태들에 설명되는, 수소가 공급되는 산화물 반도체층을 포함한 상기 트랜지스터들 중 임의의 것을 사용한 액티브 매트릭스 기판이 사용될 수 있다.
상기 마이크로캡슐들에서 상기 제 1 입자들 및 상기 제 2 입자들은 도전성 재료, 절연 재료, 반도체 재료, 자성 재료, 액정 재료, 강유전성 재료, 전계발광 재료, 전기영동 재료, 및 자기영동 재료로부터 선택된 단일 재료를 사용하여 형성되거나 또는 이러한 재료의 합성 재료를 사용하여 형성될 수 있다.
도 10은 상기 반도체 장치의 일 예로서 액티브 매트릭스 전자 페이퍼를 도시한다. 상기 반도체 장치에 사용된 트랜지스터(581)가 상기 실시형태들의 트랜지스터들과 유사한 방식으로 제작될 수 있으며 수소가 공급되는 산화물 반도체층을 포함하는 높은 이동도를 가진 트랜지스터이다. 또한, 절연층(584)은 수소를 포함한 절연막이며 산화물 반도체 재료에 수소를 공급하기 위해 제공된다.
도 10에서의 상기 전자 페이퍼는 트위스팅 볼 표시 시스템을 사용한 표시 장치의 일 예이다. 상기 트위스팅 볼 표시 시스템은 각각 흑색 및 백색으로 컬러링된 구형 입자들이 표시 소자를 위해 사용된 전극층들인 제 1 전극층 및 제 2 전극층 사이에 배열되는 방식을 나타내며, 전위차가 상기 구형 입자들의 배향을 제어하도록 상기 제 1 전극층 및 상기 제 2 전극층 사이에 생성되어, 표시가 수행되도록 한다.
기판(580) 위에 형성된 상기 트랜지스터(581)는 보텀 게이트 구조를 가진 트랜지스터이며 상기 반도체층과 접하는 절연층(583)으로 커버된다. 상기 트랜지스터(581)의 소스 또는 드레인 전극층은 상기 절연층(583), 상기 절연층(584), 및 절연층(585)에 형성된 개구에서 제 1 전극층(587)과 접하며, 그에 의해 상기 트랜지스터(581)는 상기 제 1 전극층(587)에 전기적으로 접속된다. 구형 입자들은 기판(596) 위에 제공된 상기 제 1 전극층(587) 및 제 2 전극층(588) 사이에 존재한다. 상기 구형 입자들 각각은 흑색 영역(590a), 백색 영역(590b), 및 상기 영역들 주변의 액체로 채워진 캐비티(594)를 포함한다. 상기 캐비티(594) 주변의 공간은 수지와 같은 충전재(595)로 채워진다(도 10 참조).
상기 제 1 전극층(587) 및 상기 제 2 전극층(588)은 각각 화소 전극 및 공통 전극에 대응한다. 상기 제 2 전극층(588)은 상기 트랜지스터(581)와 동일한 절연 기판 위에 제공된 공통 전위선에 전기적으로 접속된다. 공통 접속부의 사용으로, 상기 제 2 전극층(588) 및 상기 공통 전위선은 상기 기판들의 쌍 사이에 제공된 도전성 입자들을 통해 서로 전기적으로 접속될 수 있다.
또한, 상기 트위스팅 볼 대신에, 전기영동 소자가 사용될 수 있다. 투명 액체인, 양으로 대전된 백색 미립자들 및 음으로 대전된 흑색 미립자들이 캡슐화되는 대략 10㎛ 내지 200㎛의 직경을 가진 마이크로캡슐이 사용된다. 상기 제 1 전극층 및 상기 제 2 전극층 사이에 제공되는 상기 마이크로캡슐에서, 전계가 상기 제 1 전극층 및 상기 제 2 전극층에 의해 인가될 때, 상기 백색 미립자들 및 흑색 미립자들은 서로 반대 측들로 이동하여, 백색 또는 흑색이 표시될 수 있도록 한다. 이러한 원리를 사용한 표시 소자는 전기영동 표시 소자이며 일반적으로 전자 페이퍼로 불리운다. 상기 전기영동 표시 소자는 액정 표시 소자보다 높은 반사율을 가지며, 따라서 보조광이 불필요하고, 전력 소비가 낮으며, 표시부가 어두운 곳에서 인지될 수 있다. 또한, 전력이 상기 표시부에 공급되지 않을 때조차, 한번 표시된 이미지가 유지될 수 있다. 따라서, 표시된 이미지가 표시 기능을 가진 반도체 장치(간단히 표시 장치 또는 표시 장치를 갖춘 반도체 장치라고 하는)가 전파 발신원으로부터 떨어져 있는 경우조차 저장될 수 있다.
상술된 공정을 통해, 전자 페이퍼가 제작될 수 있다.
이 실시형태에서, 소위 전자 페이퍼가 상기 실시형태들 중 임의의 것에 설명된 트랜지스터를 사용하여 제작된다. 상기 트랜지스터는 높은 전계-효과 이동도를 가지며, 전자 페이퍼가 상기 트랜지스터를 사용하여 제조될 때, 상기 전자 페이퍼는 우수한 표시 특성들을 가질 수 있다.
이 실시형태는 다른 실시형태들에 설명된 상기 구조들 중 임의의 것과 적절하게 조합하여 실시될 수 있다.
(실시형태 9)
본 명세서에 개시된 반도체 장치는 다양한 전자 기기들(게임 머신들을 포함한)에 응용될 수 있다. 이러한 전자 기기들의 예들은 텔레비전 장치(또한 텔레비전 또는 텔레비전 수신기로서 불리우는), 컴퓨터 등의 모니터, 디지털 카메라 또는 디지털 비디오 카메라와 같은 카메라, 디지털 포토 프레임, 휴대 전화기(또한 휴대 전화 또는 휴대 전화 장치로서 불리우는), 휴대형 게임기, 휴대 정보 단말, 음향 재생 장치, 핀볼 머신과 같은 대형 게임 머신 등이다.
이 실시형태에서, 실시형태 6 내지 실시형태 8 중 임의의 것에서 획득된 표시 장치가 탑재되는 전자 기긱의 예들이 도 11a 내지 도 11e 및 도 12를 참조하여 설명될 것이다.
도 11a는 본체(3001), 하우징(3002), 표시부(3003), 키보드(3004) 등을 포함하는, 구성요소로서 적어도 표시 장치를 탑재함으로써 제작된 랩탑 퍼스널 컴퓨터를 도시한다. 상기 랩탑 퍼스널 컴퓨터는 실시형태 6에 설명된 상기 액정 표시 장치를 포함한다는 것을 주의하자.
도 11b는 구성요소로서 적어도 표시 장치를 탑재함으로써 제작된 휴대 정보 단말(PDA)이다. 본체(3021)는 표시부(3023), 외부 인터페이스(3025), 조작 버틀(3024) 등을 갖춘다. 스타일러스(3022)가 조작을 위한 액세서리로서 포함된다. 상기 휴대 정보 단말은 실시형태 7에 설명된 상기 발광 표시 장치를 포함한다는 것을 주의하자.
도 11c는 실시형태 8에 설명된 상기 전자 페이퍼가 구성요소로서 탑재되는 전자 서적 판독기를 도시한다. 도 11c는 전자 서적 판독기(2700)를 도시한다. 예를 들면, 상기 전자 서적 판독기(2700)는 두 개의 하우징들, 즉 하우징(2701) 및 하우징(2703)을 포함한다. 상기 하우징(2701) 및 상기 하우징(2703)은 상기 전자 서적 판독기(2700)가 축으로서 축부(hinge)(2711)로 개폐될 수 있도록 상기 축부(2711)와 결합된다. 이러한 구조를 갖고, 상기 전자 서적 판독기(2700)는 종이 서적과 같이 동작할 수 있다.
표시부(2705) 및 표시부(2707)가 각각 상기 하우징(2701) 및 상기 하우징(2703)에 내장된다. 상기 표시부(2705) 및 상기 표시부(2707)는 하나의 화면 또는 상이한 화면들을 표시할 수 있다. 예를 들면, 상이한 화면들이 상이한 표시 부분들 상에 표시되는 구조에서, 우측 표시부(도 11c에서 상기 표시부(2705))는 텍스트를 표시할 수 있고 좌측 표시부(도 11c에서 표시부(2707))는 그래픽들을 표시할 수 있다.
도 11c는 상기 하우징(2701)에 조작부 등이 설치된 일 예를 도시한다. 예를 들면, 상기 하우징(2701)에 전원 스위치(2721), 조작키(2723), 스피커(2725) 등이 설치된다. 상기 조작키(2723)로 페이지들이 넘겨질 수 있다. 키보드, 포인팅 디바이스 등이 또한 상기 표시부가 제공되는 상기 하우징의 표면상에 제공될 수 있다는 것을 주의하자. 더욱이, 외부 접속 단자(이어폰 단자, USB 단자, AC 어댑터 및 USB 케이블과 같이 다양한 케이블들에 접속될 수 있는 단자 등), 기록 매체 삽입부 등이 상기 하우징의 이면 또는 측면 상에 제공될 수 있다. 게다가, 상기 전자 서적 판독기(2700)는 전자 사전의 기능을 가질 수 있다.
상기 전자 서적 판독기(2700)는 데이터를 무선으로 송신 및 수신할 수 있는 구성을 가질 수 있다. 무선 통신을 통해, 원하는 서적 데이터 등이 전자 서적 서버로부터 구입되고 다운로드될 수 있다.
도 11d는 두 개의 하우징들, 즉 하우징(2800) 및 하우징(2801)을 포함하는, 구성요소로서 적어도 표시 장치를 탑재함으로써 제작된 휴대 전화기이다. 상기 하우징(2801)은 표시 패널(2802), 스피커(2803), 마이크로폰(2804), 포인팅 디바이스(2806), 카메라 렌즈(2807), 외부 접속 단자(2808) 등을 포함한다. 상기 하우징(2800)은 상기 휴대 정보 단말을 충전하기 위한 태양 전지(2810), 외부 메모리 슬롯(2811) 등을 제공받는다. 또한, 안테나가 상기 하우징(2801)에 내장된다.
상기 표시 패널(2802)에 터치 패널이 설치된다. 화상들로서 표시되는 복수의 조작키들(2805)이 도 11d에 점선들로 도시된다. 상기 표시 패널(2802)은 또한 상기 태양 전지(2810)로부터 각각의 회로를 위해 요구된 전압으로 전압 출력을 올리기 위한 승압 회로가 실장된다.
상기 표시 패널(2802)에서, 상기 표시 방향은 사용 패턴에 의존하여 적절히 변경될 수 있다. 또한, 상기 표시 장치는 상기 표시 패널(2802)과 동일한 표면상에 카메라 렌즈(2807)를 갖추고 있으며, 따라서 그것은 화상 전화로서 사용될 수 있다. 상기 스피커(2803) 및 상기 마이크로폰(2804)은 음성 통화들뿐만 아니라 화상 통화들, 녹음 및 사운드 재생 등을 위해 사용될 수 있다. 게다가, 도 11d에 도시된 바와 같이 전개되는 상태에서 상기 하우징들(2800, 2801)은 서로 겹쳐지도록 슬라이딩에 의해 시프트할 수 있으며; 그러므로, 상기 휴대 전화기의 크기는 감소될 수 있고, 이것은 상기 휴대 전화기가 운반되기에 적합하게 한다.
상기 외부 접속 단자(2808)는 AC 어댑터 및 USB 케이블과 같은 다양한 유형들의 케이블들에 접속될 수 있으며, 충전 및 퍼스널 컴퓨터와의 데이터 통신이 가능하다. 게다가, 대량의 데이터가 저장 매체를 상기 외부 메모리 슬롯(2811)에 삽입함으로써 저장될 수 있으며, 이동될 수 있다.
또한, 상기 기능들 외에, 적외선 통신 기능, 텔레비전 수신 기능 등이 제공될 수 있다.
도 11e는 본체(3051), 표시부(A)(3057), 접안부(3053), 조작 스위치들(3054), 표시부(B)(3055), 배터리(3056) 등을 포함하는, 구성요소로서 적어도 표시 장치를 탑재함으로써 제작된 디지털 카메라이다.
도 12는 텔레비전 장치(9600)를 도시한다. 상기 텔레비전 장치(9600)에서, 표시부(9603)가 하우징(9601)에 내장된다. 상기 표시부(9603)는 화상들을 표시할 수 있다. 여기에서, 상기 하우징(9601)은 스탠드(9605)에 의해 지지된다.
상기 텔레비전 장치(9600)는 상기 하우징(9601)의 조작 스위치 또는 별개의 원격 제어기(9610)로 동작될 수 있다. 상기 표시부(9603) 상에 표시된 화상이 제어될 수 있도록 채널들 및 볼륨은 상기 원격 제어기(9610)의 조작키(9609)로 스위칭되고 제어될 수 있다. 더욱이, 상기 원격 제어기(9610)는 상기 원격 제어기(9610)로부터 출력된 데이터를 표시하기 위한 표시부(9607)를 갖출 수 있다.
상기 텔레비전 장치(9600)는 수신기, 모뎀 등을 갖추고 있다는 것을 주의하자. 상기 수신기의 사용으로, 일반적인 텔레비전 방송이 수신될 수 있다. 게다가, 상기 표시 장치가 상기 모뎀을 통해 유선 또는 무선으로 통신 네트워크에 접속될 때, 일-방향(송신기로부터 수신기로) 또는 양-방향(송신기 및 수신기 사이 또는 수신기들 사이) 정보 통신이 수행될 수 있다.
상기 실시형태들 중 임의의 것에 설명된 복수의 트랜지스터들이 상기 표시부(9603)에서의 화소 스위칭 소자들로서 제공되며, 상기 실시형태들 중 임의의 것에 설명된 높은 이동도를 가진 트랜지스터가 상기 화소부(9603)와 동일한 절연 기판 위에 형성되는 구동 회로에 배치된다.
이 실시형태는 실시형태 1 내지 실시형태 8 중 임의의 것과 자유롭게 조합될 수 있다.
본 출원은 그 전체 내용들이 참조로서 포함되는, 2009년 12월 8일에 일본 특허청에 출원된 일본 특허 출원 번호 제2009-279002호에 기초한다.
100: 기판 101: 도전층
102: 절연층 106 : 산화물 반도체층
108: 도전층 112, 113, 116: 절연층
114: 게이트 전극층 118: 절연층
150: 트랜지스터 101a: 게이트 전극층
106a: 산화물 반도체층 108a: 드레인 전극층
580: 기판 581: 트랜지스터
583, 584: 절연층 587, 588: 전극층
594: 캐비티 595: 충전재
596: 기판 2700: 전자 서적 판독기
2701, 2703: 하우징 2705, 2707: 표시부
2711: 축부 2721: 전원 스위치
2723: 조작키 2725: 스피커
2800, 2801: 하우징 2802: 표시 패널
2803: 스피커 2804: 마이크로폰
2805: 조작키들 2806: 포인팅 디바이스
2807: 카메라 렌즈 2808: 외부 접속 단자
2810: 태양 전지 2811: 외부 메모리 슬롯
3001: 본체 3002: 하우징
3003: 표시부 3004: 키보드
3021: 본체 3022: 스타일러스
3023: 표시부 3024: 조작 버튼
3025: 외부 인터페이스 3051: 본체
3053: 접안부 3054: 조작 스위치들
3055: 표시부(B) 3056: 배터리
3057: 표시부(A) 4001: 기판
4002: 화소부 4003: 신호선 구동 회로
4004: 주사선 구동 회로 4005: 씰재
4006: 기판 4008: 액정층
4010, 4011: 트랜지스터 4013: 액정 소자
4014: 절연층 4015: 접속 단자 전극
4016: 단자 전극 4018: FPC
4019: 이방성 도전층 4020, 4021: 절연층
4030: 화소 전극층 4031: 대향 전극층
4032: 절연층 4040: 도전층
4501: 기판 4502: 화소부
4505: 씰재 4506: 기판
4507: 충전재 4509, 4510: 트랜지스터
4511: 발광 소자 4512: 전계발광층
4513: 전극층 4514: 보호 절연층
4515: 접속 단자 전극 4516: 단자 전극
4517: 전극층 4519: 이방성 도전층
4520: 격벽 4540: 도전층
4541, 4544: 절연층 590a: 흑색 영역
590b: 백색 영역 9600: 텔레비전 장치
9601: 하우징 9603: 표시부
9605: 스탠드 9607: 표시부
9609: 조작키 9610: 원격 제어기
4503a: 신호선 구동 회로 4504a: 주사선 구동 회로
4518a: FPC

Claims (25)

  1. 반도체 장치의 제작 방법에 있어서,
    기판 위에 제 1 절연층을 형성하는 단계;
    상기 제 1 절연층 위에 산화물 반도체층을 형성하는 단계;
    상기 산화물 반도체층 위에 제 2 절연층을 형성하는 단계;
    상기 제 2 절연층 위에 수소를 포함한 절연층을 형성하는 단계; 및
    상기 수소를 포함한 절연층을 형성한 후, 상기 수소를 포함한 절연층의 수소가 적어도 상기 산화물 반도체층에 공급되도록 열 처리를 수행하는 단계를 포함하는, 반도체 장치 제작 방법.
  2. 제 1 항에 있어서,
    상기 열 처리는 150℃ 이상 450℃ 이하의 온도로 수행되는, 반도체 장치 제작 방법.
  3. 제 1 항에 있어서,
    상기 수소를 포함한 절연층은 실란 및 질소를 포함한 가스를 사용하여 CVD 법에 의해 형성되는, 반도체 장치 제작 방법.
  4. 반도체 장치의 제작 방법에 있어서,
    절연 표면을 가진 기판 위에 제 1 게이트 전극층을 형성하는 단계;
    상기 제 1 게이트 전극층 위에 게이트 절연층을 형성하는 단계;
    상기 게이트 절연층 위에 산화물 반도체층을 형성하는 단계;
    상기 산화물 반도체층 위에 소스 전극층 및 드레인 전극층을 형성하는 단계;
    상기 산화물 반도체층, 상기 소스 전극층, 및 상기 드레인 전극층 위에 절연층을 형성하는 단계;
    상기 절연층 위에 수소를 포함한 절연층을 형성하는 단계; 및
    상기 수소를 포함한 절연층을 형성한 후, 상기 수소를 포함한 절연층의 수소가 적어도 상기 산화물 반도체층에 공급되도록 열 처리를 수행하는 단계를 포함하는, 반도체 장치 제작 방법.
  5. 제 4 항에 있어서,
    상기 절연층을 형성한 후, 상기 절연층 위에 및 상기 제 1 게이트 전극층과 중첩하는 영역에 제 2 게이트 전극층을 형성하는 단계를 더 포함하는, 반도체 장치 제작 방법.
  6. 제 4 항에 있어서,
    상기 열 처리는 150℃ 이상 450℃ 이하의 온도로 수행되는, 반도체 장치 제작 방법.
  7. 제 4 항에 있어서,
    상기 수소를 포함한 절연층은 실란 및 질소를 포함한 가스를 사용하여 CVD 법에 의해 형성되는, 반도체 장치 제작 방법.
  8. 반도체 장치의 제작 방법에 있어서,
    절연 표면을 가진 기판 위에 게이트 전극층을 형성하는 단계;
    상기 게이트 전극층 위에 게이트 절연층을 형성하는 단계;
    상기 게이트 절연층 위에 산화물 반도체층을 형성하는 단계;
    상기 산화물 반도체층의 일부 위에 채널 보호층으로서 기능하는 절연층을 형성하는 단계;
    상기 산화물 반도체층 및 상기 절연층 위에 소스 전극층 및 드레인 전극층을 형성하는 단계;
    상기 절연층, 상기 소스 전극층, 및 상기 드레인 전극층 위에 수소를 포함한 절연층을 형성하는 단계; 및
    상기 수소를 포함한 절연층을 형성한 후, 상기 수소를 포함한 절연층의 수소가 적어도 상기 산화물 반도체층에 공급되도록 열 처리를 수행하는 단계를 포함하는, 반도체 장치의 제작 방법.
  9. 제 8 항에 있어서,
    상기 열 처리는 150℃ 이상 450℃ 이하의 온도에서 수행되는, 반도체 장치의 제작 방법.
  10. 제 8 항에 있어서,
    상기 수소를 포함한 절연층은 실란 및 질소를 포함한 가스를 사용하여 CVD 법에 의해 형성되는, 반도체 장치의 제작 방법.
  11. 반도체 장치의 제작 방법에 있어서,
    절연 표면을 가진 기판 위에 산화물 반도체층을 형성하는 단계;
    상기 산화물 반도체층 위에 소스 전극층 및 드레인 전극층을 형성하는 단계;
    상기 산화물 반도체층, 상기 소스 전극층, 및 상기 드레인 전극층 위에 게이트 절연층으로서 기능하는 절연층을 형성하는 단계;
    상기 절연층 위에 게이트 전극층을 형성하는 단계;
    상기 절연층 및 상기 게이트 전극층 위에 수소를 포함한 절연층을 형성하는 단계; 및
    상기 수소를 포함한 절연층을 형성한 후, 상기 수소를 포함한 절연층의 수소가 적어도 상기 산화물 반도체층에 공급되도록 열 처리를 수행하는 단계를 포함하는, 반도체 장치의 제작 방법.
  12. 제 11 항에 있어서,
    상기 열 처리는 150℃ 이상 450℃ 이하의 온도에서 수행되는, 반도체 장치의 제작 방법.
  13. 제 11 항에 있어서,
    상기 수소를 포함한 절연층은 실란 및 질소를 포함한 가스를 사용하여 CVD 법에 의해 형성되는, 반도체 장치의 제작 방법.
  14. 반도체 장치의 제작 방법에 있어서,
    절연 표면을 가진 기판 위에 제 1 게이트 전극층을 형성하는 단계;
    상기 제 1 게이트 전극층 위에 게이트 절연층을 형성하는 단계;
    상기 게이트 절연층 위에 산화물 반도체층을 형성하는 단계;
    상기 산화물 반도체층을 형성한 후, 상기 산화물 반도체층의 수소 농도가 감소되도록 제 1 열 처리를 수행하는 단계;
    상기 산화물 반도체층 위에 소스 전극층 및 드레인 전극층을 형성하는 단계;
    상기 산화물 반도체층, 상기 소스 전극층, 및 상기 드레인 전극층 위에 산소를 포함한 절연층을 형성하는 단계;
    상기 산소를 포함한 절연층을 형성한 후, 산소가 상기 산화물 반도체층에 공급되도록 제 2 열 처리를 수행하는 단계;
    상기 산소를 포함한 절연층 위에 수소를 포함한 절연층을 형성하는 단계; 및
    상기 수소를 포함한 절연층을 형성한 후, 상기 수소를 포함한 절연층의 수소가 적어도 상기 산화물 반도체층에 공급되도록 제 3 열 처리를 수행하는 단계를 포함하는, 반도체 장치의 제작 방법.
  15. 제 14 항에 있어서,
    상기 산소를 포함한 절연층을 형성한 후, 상기 산소를 포함한 절연층 위 및 상기 제 1 게이트 전극층과 중첩하는 영역에 제 2 게이트 전극층을 형성하는 단계를 더 포함하는, 반도체 장치의 제작 방법.
  16. 제 14 항에 있어서,
    상기 수소를 포함한 절연층은 실란 및 질소를 포함한 가스를 사용하여 CVD 법에 의해 형성되는, 반도체 장치의 제작 방법.
  17. 제 14 항에 있어서,
    상기 제 1 열 처리는 400℃ 이상 750℃ 이하의 온도에서 수행되고,
    상기 제 2 열 처리는 200℃ 이상 450℃ 이하의 온도에서 수행되며,
    상기 제 3 열 처리는 150℃ 이상 450℃ 이하의 온도에서 수행되는, 반도체 장치의 제작 방법.
  18. 반도체 장치의 제작 방법에 있어서,
    절연 표면을 가진 기판 위에 게이트 전극층을 형성하는 단계;
    상기 게이트 전극층 위에 게이트 절연층을 형성하는 단계;
    상기 게이트 절연층 위에 산화물 반도체층을 형성하는 단계;
    상기 산화물 반도체층을 형성한 후, 상기 산화물 반도체층의 수소 농도가 감소되도록 제 1 열 처리를 수행하는 단계;
    상기 산화물 반도체층의 일부 위에 채널 보호층으로서 기능하는 산소를 포함한 절연층을 형성하는 단계;
    상기 산소를 포함한 절연층을 형성한 후, 산소가 상기 산화물 반도체층에 공급되도록 제 2 열 처리를 수행하는 단계;
    상기 산화물 반도체층 및 상기 산소를 포함한 절연층 위에 소스 전극층 및 드레인 전극층을 형성하는 단계;
    상기 산소를 포함한 절연층, 상기 소스 전극층, 및 상기 드레인 전극층 위에 수소를 포함한 절연층을 형성하는 단계; 및
    상기 수소를 포함한 절연층을 형성한 후, 상기 수소를 포함한 절연층의 수소가 적어도 상기 산화물 반도체층에 공급되도록 제 3 열 처리를 수행하는 단계를 포함하는, 반도체 장치의 제작 방법.
  19. 제 18 항에 있어서,
    상기 수소를 포함한 절연층은 실란 및 질소를 포함한 가스를 사용하여 CVD 법에 의해 형성되는, 반도체 장치의 제작 방법.
  20. 제 18 항에 있어서,
    상기 제 1 열 처리는 400℃ 이상 750℃ 이하의 온도에서 수행되고,
    상기 제 2 열 처리는 200℃ 이상 450℃ 이하의 온도에서 수행되며,
    상기 제 3 열 처리는 150℃ 이상 450℃ 이하의 온도에서 수행되는, 반도체 장치의 제작 방법.
  21. 반도체 장치의 제작 방법에 있어서,
    절연 표면을 가진 기판 위에 산화물 반도체층을 형성하는 단계;
    상기 산화물 반도체층을 형성한 후, 상기 산화물 반도체층의 수소 농도가 감소되도록 제 1 열 처리를 수행하는 단계;
    상기 산화물 반도체층 위에 소스 전극층 및 드레인 전극층을 형성하는 단계;
    상기 산화물 반도체층, 상기 소스 전극층, 및 상기 드레인 전극층 위에 게이트 절연층으로서 기능하는 산소를 포함한 절연층을 형성하는 단계;
    상기 산소를 포함한 절연층을 형성한 후, 산소가 상기 산화물 반도체층에 공급되도록 제 2 열 처리를 수행하는 단계;
    상기 산소를 포함한 절연층 위에 게이트 전극층을 형성하는 단계;
    상기 산소를 포함한 절연층 및 상기 게이트 전극층 위에 수소를 포함한 절연층을 형성하는 단계; 및
    상기 수소를 포함한 절연층을 형성한 후, 상기 수소를 포함한 절연층의 수소가 적어도 상기 산화물 반도체층에 공급되도록 제 3 열 처리를 수행하는 단계를 포함하는, 반도체 장치의 제작 방법.
  22. 제 21 항에 있어서,
    상기 제 1 열 처리는 400℃ 이상 750℃ 이하의 온도에서 수행되고,
    상기 제 2 열 처리는 200℃ 이상 450℃ 이하의 온도에서 수행되며,
    상기 제 3 열 처리는 150℃ 이상 450℃ 이하의 온도에서 수행되는, 반도체 장치의 제작 방법.
  23. 제 21 항에 있어서,
    상기 수소를 포함한 절연층은 실란 및 질소를 포함한 가스를 사용하여 CVD 법에 의해 형성되는, 반도체 장치의 제작 방법.
  24. 반도체 장치에 있어서,
    절연 표면을 가진 기판 위의 게이트 전극층;
    상기 게이트 전극층 위의 게이트 절연층;
    상기 게이트 절연층 위의 산화물 반도체층;
    상기 산화물 반도체층 위의 소스 전극층 및 드레인 전극층;
    상기 산화물 반도체층과 접하는 산소를 포함한 절연층; 및
    상기 산소를 포함한 절연층과 접하는 수소를 포함한 절연층을 포함하는, 반도체 장치.
  25. 제 24 항에 있어서,
    상기 수소를 포함한 절연층은 질화 실리콘층 또는 질화 산화 실리콘층인, 반도체 장치.
KR1020127017530A 2009-12-08 2010-11-09 반도체 장치 및 그 제작 방법 KR20120106786A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2009-279002 2009-12-08
JP2009279002 2009-12-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020137020034A Division KR101511076B1 (ko) 2009-12-08 2010-11-09 반도체 장치 및 그 제작 방법

Publications (1)

Publication Number Publication Date
KR20120106786A true KR20120106786A (ko) 2012-09-26

Family

ID=44081147

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020127017530A KR20120106786A (ko) 2009-12-08 2010-11-09 반도체 장치 및 그 제작 방법
KR1020137020034A KR101511076B1 (ko) 2009-12-08 2010-11-09 반도체 장치 및 그 제작 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020137020034A KR101511076B1 (ko) 2009-12-08 2010-11-09 반도체 장치 및 그 제작 방법

Country Status (5)

Country Link
US (2) US8420553B2 (ko)
JP (10) JP5731180B2 (ko)
KR (2) KR20120106786A (ko)
TW (2) TWI529811B (ko)
WO (1) WO2011070892A1 (ko)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070892A1 (en) * 2009-12-08 2011-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101470303B1 (ko) * 2009-12-08 2014-12-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
EP2513893A4 (en) * 2009-12-18 2016-09-07 Semiconductor Energy Lab Liquid crystal display device and electronic device
JP2012033836A (ja) * 2010-08-03 2012-02-16 Canon Inc トップゲート型薄膜トランジスタ及びこれを備えた表示装置
US20120032172A1 (en) * 2010-08-06 2012-02-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9646829B2 (en) * 2011-03-04 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP4982619B1 (ja) * 2011-07-29 2012-07-25 富士フイルム株式会社 半導体素子の製造方法及び電界効果型トランジスタの製造方法
KR102108572B1 (ko) 2011-09-26 2020-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
JP5740270B2 (ja) 2011-09-27 2015-06-24 株式会社東芝 薄膜トランジスタ、その製造方法、および表示装置
TWI483344B (zh) * 2011-11-28 2015-05-01 Au Optronics Corp 陣列基板及其製作方法
KR102072244B1 (ko) 2011-11-30 2020-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
WO2013084846A1 (ja) * 2011-12-05 2013-06-13 シャープ株式会社 半導体装置
JP6194140B2 (ja) * 2012-02-23 2017-09-06 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2013168687A1 (en) * 2012-05-10 2013-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102099445B1 (ko) * 2012-06-29 2020-04-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
JP5779161B2 (ja) * 2012-09-26 2015-09-16 株式会社東芝 薄膜トランジスタおよび表示装置
KR102241249B1 (ko) * 2012-12-25 2021-04-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 저항 소자, 표시 장치, 및 전자기기
TWI515912B (zh) * 2013-05-08 2016-01-01 友達光電股份有限公司 半導體元件
US9419181B2 (en) * 2013-05-13 2016-08-16 Infineon Technologies Dresden Gmbh Electrode, an electronic device, and a method for manufacturing an optoelectronic device
US9929279B2 (en) 2014-02-05 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2015132697A1 (en) * 2014-03-07 2015-09-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102418666B1 (ko) * 2014-05-29 2022-07-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 촬상 소자, 전자 기기, 촬상 소자의 구동 방법, 및 전자 기기의 구동 방법
KR101561924B1 (ko) * 2014-06-12 2015-10-22 연세대학교 산학협력단 산화물 박막 후처리 방법, 및 그를 이용한 반도체 소자 제조 방법
JP6659255B2 (ja) * 2014-09-02 2020-03-04 株式会社神戸製鋼所 薄膜トランジスタ
WO2016035503A1 (ja) * 2014-09-02 2016-03-10 株式会社神戸製鋼所 薄膜トランジスタ
KR102279884B1 (ko) 2014-12-05 2021-07-22 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 그 제조 방법
JP6801969B2 (ja) * 2015-03-03 2020-12-16 株式会社半導体エネルギー研究所 半導体装置、表示装置、および電子機器
KR102653836B1 (ko) * 2015-03-03 2024-04-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 그 제작 방법, 또는 그를 포함하는 표시 장치
JP2017003976A (ja) * 2015-06-15 2017-01-05 株式会社半導体エネルギー研究所 表示装置
JP2017041536A (ja) * 2015-08-20 2017-02-23 株式会社ジャパンディスプレイ 半導体装置及び半導体装置の製造方法
US10103276B2 (en) 2015-10-29 2018-10-16 Mitsubishi Electric Corporation Thin film transistor substrate
US10062626B2 (en) * 2016-07-26 2018-08-28 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof
CN106298880B (zh) * 2016-10-13 2019-08-27 中山大学 氧化物薄膜及制备方法、晶体管及制备方法、显示背板
CN106531782A (zh) * 2016-11-21 2017-03-22 陕西师范大学 一种金属氧化物薄膜晶体管及其制备方法
TWI778959B (zh) 2017-03-03 2022-10-01 日商半導體能源硏究所股份有限公司 半導體裝置及半導體裝置的製造方法
CN108766972B (zh) * 2018-05-11 2021-10-22 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、显示基板
CN110911382B (zh) * 2018-09-14 2021-06-25 群创光电股份有限公司 天线装置
CN110630731A (zh) 2019-09-03 2019-12-31 精进电动科技股份有限公司 一种减速器水冷结构和减速器总成
US11444025B2 (en) * 2020-06-18 2022-09-13 Taiwan Semiconductor Manufacturing Company, Ltd. Transistor and fabrication method thereof
US20230378368A1 (en) * 2022-05-20 2023-11-23 Applied Materials, Inc. Regeneration anneal of metal oxide thin-film transistors

Family Cites Families (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
DE69635107D1 (de) 1995-08-03 2005-09-29 Koninkl Philips Electronics Nv Halbleiteranordnung mit einem transparenten schaltungselement
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
TW577128B (en) * 1997-03-05 2004-02-21 Hitachi Ltd Method for fabricating semiconductor integrated circuit device
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) * 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP2004311702A (ja) * 2003-04-07 2004-11-04 Sumitomo Heavy Ind Ltd 薄膜トランジスタの製造方法および薄膜トランジスタ
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
DE102004038800A1 (de) * 2003-08-13 2005-03-31 Dsm Ip Assets B.V. Herstellung von Tocol, Tocolderivaten und Tocopherolen
DE10349749B3 (de) * 2003-10-23 2005-05-25 Infineon Technologies Ag Anti-Fuse-Verbindung für integrierte Schaltungen sowie Verfahren zur Herstellung von Anti-Fuse-Verbindungen
JP2005228819A (ja) 2004-02-10 2005-08-25 Mitsubishi Electric Corp 半導体装置
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
CN102856390B (zh) 2004-03-12 2015-11-25 独立行政法人科学技术振兴机构 包含薄膜晶体管的lcd或有机el显示器的转换组件
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
JP4754798B2 (ja) * 2004-09-30 2011-08-24 株式会社半導体エネルギー研究所 表示装置の作製方法
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
WO2006051994A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Light-emitting device
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
JP5126730B2 (ja) * 2004-11-10 2013-01-23 キヤノン株式会社 電界効果型トランジスタの製造方法
EP1812969B1 (en) 2004-11-10 2015-05-06 Canon Kabushiki Kaisha Field effect transistor comprising an amorphous oxide
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
BRPI0517560B8 (pt) 2004-11-10 2018-12-11 Canon Kk transistor de efeito de campo
US7180066B2 (en) * 2004-11-24 2007-02-20 Chang-Hua Qiu Infrared detector composed of group III-V nitrides
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI472037B (zh) 2005-01-28 2015-02-01 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) * 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
WO2007011061A1 (en) * 2005-07-22 2007-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4560502B2 (ja) 2005-09-06 2010-10-13 キヤノン株式会社 電界効果型トランジスタ
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
EP1770788A3 (en) 2005-09-29 2011-09-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
US7524713B2 (en) 2005-11-09 2009-04-28 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
KR101112655B1 (ko) 2005-11-15 2012-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액티브 매트릭스 디스플레이 장치 및 텔레비전 수신기
JP5099740B2 (ja) * 2005-12-19 2012-12-19 財団法人高知県産業振興センター 薄膜トランジスタ
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
JP5015471B2 (ja) * 2006-02-15 2012-08-29 財団法人高知県産業振興センター 薄膜トランジスタ及びその製法
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP5127183B2 (ja) * 2006-08-23 2013-01-23 キヤノン株式会社 アモルファス酸化物半導体膜を用いた薄膜トランジスタの製造方法
JP5128792B2 (ja) * 2006-08-31 2013-01-23 財団法人高知県産業振興センター 薄膜トランジスタの製法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
US8058675B2 (en) * 2006-12-27 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device using the same
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR101410926B1 (ko) * 2007-02-16 2014-06-24 삼성전자주식회사 박막 트랜지스터 및 그 제조방법
JP2008235871A (ja) * 2007-02-20 2008-10-02 Canon Inc 薄膜トランジスタの形成方法及び表示装置
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
CN101680081B (zh) * 2007-03-20 2012-10-31 出光兴产株式会社 溅射靶、氧化物半导体膜及半导体器件
CN101632179B (zh) 2007-04-06 2012-05-30 夏普株式会社 半导体元件及其制造方法、以及包括该半导体元件的电子器件
JP5197058B2 (ja) 2007-04-09 2013-05-15 キヤノン株式会社 発光装置とその作製方法
WO2008126879A1 (en) 2007-04-09 2008-10-23 Canon Kabushiki Kaisha Light-emitting apparatus and production method thereof
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) * 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP2009031750A (ja) * 2007-06-28 2009-02-12 Fujifilm Corp 有機el表示装置およびその製造方法
JP5354999B2 (ja) * 2007-09-26 2013-11-27 キヤノン株式会社 電界効果型トランジスタの製造方法
JP4759598B2 (ja) * 2007-09-28 2011-08-31 キヤノン株式会社 薄膜トランジスタ、その製造方法及びそれを用いた表示装置
JP2009135430A (ja) * 2007-10-10 2009-06-18 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP5430846B2 (ja) * 2007-12-03 2014-03-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5366517B2 (ja) * 2007-12-03 2013-12-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR101270174B1 (ko) * 2007-12-03 2013-05-31 삼성전자주식회사 산화물 반도체 박막 트랜지스터의 제조방법
JP5213422B2 (ja) * 2007-12-04 2013-06-19 キヤノン株式会社 絶縁層を有する酸化物半導体素子およびそれを用いた表示装置
US8384077B2 (en) * 2007-12-13 2013-02-26 Idemitsu Kosan Co., Ltd Field effect transistor using oxide semicondutor and method for manufacturing the same
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
US8461583B2 (en) * 2007-12-25 2013-06-11 Idemitsu Kosan Co., Ltd. Oxide semiconductor field effect transistor and method for manufacturing the same
CN101911247B (zh) * 2007-12-27 2013-03-27 夏普株式会社 半导体装置及其制造方法
US8119490B2 (en) * 2008-02-04 2012-02-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
JP2009224357A (ja) * 2008-03-13 2009-10-01 Rohm Co Ltd ZnO系トランジスタ
JP5291972B2 (ja) * 2008-04-09 2013-09-18 シャープ株式会社 半導体記憶装置、表示装置及び機器
US8017045B2 (en) * 2008-04-16 2011-09-13 Electronics And Telecommunications Research Institute Composition for oxide semiconductor thin film and field effect transistor using the composition
US8106474B2 (en) 2008-04-18 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5704790B2 (ja) * 2008-05-07 2015-04-22 キヤノン株式会社 薄膜トランジスタ、および、表示装置
US9041202B2 (en) * 2008-05-16 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
JP5288141B2 (ja) 2008-05-22 2013-09-11 出光興産株式会社 スパッタリングターゲット、それを用いたアモルファス酸化物薄膜の形成方法、及び薄膜トランジスタの製造方法
WO2009142309A1 (en) * 2008-05-23 2009-11-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8314765B2 (en) 2008-06-17 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device, and electronic device
US8129718B2 (en) 2008-08-28 2012-03-06 Canon Kabushiki Kaisha Amorphous oxide semiconductor and thin film transistor using the same
JP5627071B2 (ja) 2008-09-01 2014-11-19 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
US8445903B2 (en) * 2008-10-23 2013-05-21 Idemitsu Kosan Co., Ltd. Thin film transistor having a crystalline semiconductor film including indium oxide which contains a hydrogen element and method for manufacturing same
JP5616012B2 (ja) 2008-10-24 2014-10-29 株式会社半導体エネルギー研究所 半導体装置の作製方法
EP2202802B1 (en) 2008-12-24 2012-09-26 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and semiconductor device
WO2011002046A1 (en) 2009-06-30 2011-01-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR102011616B1 (ko) 2009-06-30 2019-08-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제조 방법
KR101895561B1 (ko) 2009-11-13 2018-09-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
WO2011058913A1 (en) 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101995704B1 (ko) 2009-11-20 2019-07-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
KR102250803B1 (ko) 2009-12-04 2021-05-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2011070892A1 (en) * 2009-12-08 2011-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012248858A (ja) 2012-12-13
TWI529811B (zh) 2016-04-11
WO2011070892A1 (en) 2011-06-16
JP7004471B2 (ja) 2022-01-21
JP6309125B2 (ja) 2018-04-11
JP2024019219A (ja) 2024-02-08
US8420553B2 (en) 2013-04-16
TW201137986A (en) 2011-11-01
JP2015164207A (ja) 2015-09-10
JP2011142309A (ja) 2011-07-21
JP5100906B2 (ja) 2012-12-19
US8946097B2 (en) 2015-02-03
JP6805305B2 (ja) 2020-12-23
US20110133179A1 (en) 2011-06-09
TWI532102B (zh) 2016-05-01
JP5938118B2 (ja) 2016-06-22
JP2018078307A (ja) 2018-05-17
JP2021040161A (ja) 2021-03-11
TW201347050A (zh) 2013-11-16
JP5731180B2 (ja) 2015-06-10
JP2022031573A (ja) 2022-02-18
JP2019220705A (ja) 2019-12-26
KR101511076B1 (ko) 2015-04-10
JP6606160B2 (ja) 2019-11-13
US20130237013A1 (en) 2013-09-12
JP6106312B2 (ja) 2017-03-29
JP2016178324A (ja) 2016-10-06
KR20130092631A (ko) 2013-08-20
JP2017135394A (ja) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6606160B2 (ja) 半導体装置の作製方法
CN109390215B (zh) 制造半导体装置的方法
TWI509703B (zh) 半導體裝置及其製造方法
US8558233B2 (en) Semiconductor device and manufacturing method thereof
KR102462239B1 (ko) 반도체 장치
WO2011074506A1 (en) Semiconductor device and method for manufacturing the same
EP2494601A1 (en) Semiconductor device and method for manufacturing the same
WO2011158703A1 (en) Semiconductor device
WO2012014952A1 (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application