TWI778959B - 半導體裝置及半導體裝置的製造方法 - Google Patents

半導體裝置及半導體裝置的製造方法 Download PDF

Info

Publication number
TWI778959B
TWI778959B TW106112076A TW106112076A TWI778959B TW I778959 B TWI778959 B TW I778959B TW 106112076 A TW106112076 A TW 106112076A TW 106112076 A TW106112076 A TW 106112076A TW I778959 B TWI778959 B TW I778959B
Authority
TW
Taiwan
Prior art keywords
metal oxide
layer
film
insulating layer
oxide layer
Prior art date
Application number
TW106112076A
Other languages
English (en)
Other versions
TW201838179A (zh
Inventor
肥塚純一
岡崎健一
島行德
中澤安孝
保坂泰靖
山崎舜平
Original Assignee
日商半導體能源硏究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源硏究所股份有限公司 filed Critical 日商半導體能源硏究所股份有限公司
Publication of TW201838179A publication Critical patent/TW201838179A/zh
Application granted granted Critical
Publication of TWI778959B publication Critical patent/TWI778959B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0296Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices involving a specific disposition of the protective devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • G02F1/13685Top gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs

Abstract

本發明提供一種電特性良好的半導體裝置、可靠性高的半導體裝置、功耗低的半導體裝置。本發明是一種半導體裝置,包括:閘極電極;閘極電極上的第一絕緣層;第一絕緣層上的金屬氧化物層;金屬氧化物層上的一對電極;以及一對電極上的第二絕緣層,其中,第一絕緣層包括第一區域及第二區域,第一區域與金屬氧化物層接觸,且包括其氧含量比第二區域多的區域,第二區域包括其氮含量比第一區域多的區域,金屬氧化物層在膜厚度方向上至少具有氧的濃度梯度,並且,氧濃度在第一區域一側及第二絕緣層一側較高。

Description

半導體裝置及半導體裝置的製造方法
本發明的一個實施方式係關於一種半導體裝置及半導體裝置的製造方法。本發明的一個實施方式係關於一種電晶體及電晶體的製造方法。本發明的一個實施方式係關於一種顯示裝置及顯示裝置的製造方法。
注意,在本說明書等中,半導體裝置是指能夠藉由利用半導體特性而工作的所有裝置。顯示裝置、發光裝置、照明設備、電光裝置、半導體電路以及電子裝置有時包括半導體裝置。
本發明的一個實施方式不侷限於上述技術領域。作為本說明書等所公開的本發明的一個實施方式的技術領域的一個例子,可以舉出半導體裝置、顯示裝置、發光裝置、照明設備、蓄電裝置、記憶體裝置、其驅動方法或者其製造方法。
作為可用於電晶體的半導體材料,氧化物半導體受到矚目。例如,專利文獻1公開了如下半導體裝置:層疊有多個氧化物半導體層,在該多個氧化物半導體層中,被用作通道的氧化物半導體層包含銦及鎵,並且使銦的比率比鎵的比率高,而場效移動率(有時,簡單地稱為移動率或μFE)得到提高的半導體裝置。
由於能夠用於半導體層的氧化物半導體可以利用濺射法等形成,所以可以被用於構成大型顯示裝置的電晶體的半導體層。此外,因為可以將使用非晶矽的電晶體的生產設備的一部分改良而利用,所以還可以抑制設備投資。另外,使用氧化物半導體的電晶體具有高場效移動率,所以可以實現一起形成有驅動電路的高功能的顯示裝置。
[專利文獻1]日本專利申請公開第2014-7399號公報
隨著顯示裝置的高清晰化或半導體裝置的高積體化,電晶體被要求微型化。作為電晶體的微型化,具體可以舉出使通道長度縮短。然而,在通道長度短的電晶體中,通道區域的載子密度及缺陷能階顯著影響到電特性及可靠性。
鑒於上述課題,本發明的一個實施方式的目的之一是提供一種電特性良好的半導體裝置。本發明的一個實施方式的目的之一是提供一種可靠性高的半導體裝置。本發明的一個實施方式的目的之一是提供一種功耗低的半導體裝置。本發明的一個實施方式的目的之一是提供一種新穎的半導體裝置。本發明的一個實施方式的目的之一是提供一種生產率高的半導體裝置的製造方法。本發明的一個實施方式的目的之一是提供一種良率高的半導體裝置的製造方法。本發明的一個實施方式的目的之一是提供一種新穎的半導體裝置的製造方法。
注意,這些目的的記載並不妨礙其他目的的存在。本發明的一個實施方式並不需要實現所有上述目的。另外,可以從說明書、圖式、申請專利範圍等的記載衍生上述以外的目的。
本發明的一個實施方式是一種半導體裝置,包括:閘極電極;閘極電極上的第一絕緣層;第一絕緣層上的金屬氧化物層;金屬氧化物層上的一對電極;以及一對電極上的第二絕緣層,其中,金屬氧化物層包含銦、元素M(M為鎵、鋁、矽、硼、釔、錫、銅、釩、鈹、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂中的一個以上)及鋅,第一絕緣層包括第一區域及第二區域,第一區域與金屬氧化物層接觸,且包括其氧含量比第二區域多的區域,第二區域包括其氮含量比第一區域多的區域,金屬氧化物層在膜厚度方向上至少具有氧的濃度梯度,並且,濃度梯度在第一區域一側及第二絕緣層一側較高。
在上述半導體裝置中,較佳的是第一區域包括在膜厚度方向1nm以上且10nm以下的區域。
在上述半導體裝置中,較佳的是,在金屬氧化物層中的對於In、M及Zn的原子個數的總和的In的原子個數比為1時,對於In、M及Zn的原子個數的總和的M的原子個數比為0.5以上且1.5以下,且Zn的原子個數比為0.1以上且2以下。
在上述半導體裝置中,較佳的是在金屬氧化物層中的對於In、M及Zn的原子個數的總和的In的原子個數比為4時,對於In、M及Zn的原子個數的總和的M的原子個數比為1.5以上且2.5以下,且Zn的原子個數比為2以上且4以下。
在上述半導體裝置中,較佳的是在金屬氧化物層中的對於In、M及Zn的原子個數的總和的In的原子個數比為5時,對於In、M及Zn的原子個數的總和的M的原子個數比為0.5以上且1.5以下,且Zn的原子個數比為5以上且7以下。
在上述半導體裝置中,較佳的是金屬氧化物層包括第一金屬氧化 物層及第一金屬氧化物層上的第二金屬氧化物層,並且第一金屬氧化物層包括其結晶性比第二金屬氧化物層低的區域。
在上述半導體裝置中,較佳的是金屬氧化物層包括第一金屬氧化物層、第一金屬氧化物層上的第二金屬氧化物層以及與第一金屬氧化物層的下側接觸的第三金屬氧化物層,並且第一金屬氧化物層包括其結晶性比第二金屬氧化物層和第三金屬氧化物層中的一個或兩個低的區域。
在上述半導體裝置中,較佳的是在第二絕緣層上還包括第三絕緣層,並且第三絕緣層包含矽及氮。
在上述半導體裝置中,較佳的是在第二絕緣層上還包括第三絕緣層,並且第三絕緣層包含元素X(X為鋁、銦、鎵和鋅中的一個以上)及氧。
本發明的一個實施方式是一種半導體裝置的製造方法,包括:形成閘極電極的製程;在閘極電極上形成第一絕緣層的製程;對第一絕緣層的表面附近添加氧的製程;在第一絕緣層上形成金屬氧化物層的製程;在金屬氧化物層上形成一對電極的製程;以及在一對電極上形成第二絕緣層的製程,其中,在形成金屬氧化物層的製程中,製程分為第一製程及第二製程,在真空中連續進行成膜,第一製程在第二製程之前進行,並且,在第二製程中沉積氣體整體中的氧流量比高於第一製程。
本發明的一個實施方式是一種半導體裝置的製造方法,包括:形成閘極電極的製程;在閘極電極上形成第一絕緣層的製程;對第一絕緣層的表面附近添加氧的製程;在第一絕緣層上形成金屬氧化物層的製程;在金屬氧化物層上形成一對電極的製程;以及在一對電極上形 成第二絕緣層的製程,其中,在形成金屬氧化物層的製程中,製程分為第一製程至第三製程,在真空中連續進行成膜,第一製程在第二製程之前進行,在第二製程中沉積氣體整體中的氧流量比高於第一製程,並且,第三製程在第一製程之前進行,且沉積氣體整體中的氧流量比高於第一製程。
根據本發明的一個實施方式,可以提供一種電特性良好的半導體裝置。根據本發明的一個實施方式,可以提供一種可靠性高的半導體裝置。根據本發明的一個實施方式,可以提供一種功耗低的半導體裝置。根據本發明的一個實施方式,可以提供一種新穎的半導體裝置。根據本發明的一個實施方式,可以提供一種生產率高的半導體裝置的製造方法。根據本發明的一個實施方式,可以提供一種良率高的半導體裝置的製造方法。根據本發明的一個實施方式,可以提供一種新穎的半導體裝置的製造方法。
注意,這些效果的記載不妨礙其他效果的存在。注意,本發明的一個實施方式並不需要具有所有上述效果。另外,可以從說明書、圖式、申請專利範圍等的記載衍生上述以外的效果。
100A‧‧‧電晶體
100B‧‧‧電晶體
100C‧‧‧電晶體
100D‧‧‧電晶體
100E‧‧‧電晶體
100F‧‧‧電晶體
100G‧‧‧電晶體
102‧‧‧基板
104‧‧‧導電層
106‧‧‧絕緣層
106a‧‧‧區域
108‧‧‧金屬氧化物層
108a‧‧‧金屬氧化物層
108b‧‧‧金屬氧化物層
108c‧‧‧金屬氧化物層
112a‧‧‧導電層
112b‧‧‧導電層
112c‧‧‧導電層
114‧‧‧絕緣層
114a‧‧‧絕緣層
114b‧‧‧絕緣層
116‧‧‧絕緣層
120a‧‧‧導電層
120b‧‧‧導電層
121‧‧‧導電膜
121a‧‧‧導電層
121b‧‧‧導電層
121c‧‧‧導電層
122‧‧‧導電膜
122a‧‧‧導電層
122b‧‧‧導電層
122c‧‧‧導電層
123‧‧‧導電膜
123a‧‧‧導電層
123b‧‧‧導電層
123c‧‧‧導電層
128a‧‧‧金屬氧化物膜
128b‧‧‧金屬氧化物膜
130a‧‧‧氧
130b‧‧‧氧
130c‧‧‧氧
131‧‧‧光阻遮罩
132‧‧‧光阻遮罩
134‧‧‧導電膜
142a‧‧‧連接部
142b‧‧‧連接部
150‧‧‧絕緣層
152a‧‧‧連接部
152b‧‧‧連接部
180‧‧‧空隙部
501‧‧‧像素電路
502‧‧‧像素部
504‧‧‧驅動電路部
504a‧‧‧閘極驅動器
504b‧‧‧源極驅動器
506‧‧‧保護電路
507‧‧‧端子部
550‧‧‧電晶體
552‧‧‧電晶體
554‧‧‧電晶體
560‧‧‧電容元件
562‧‧‧電容元件
570‧‧‧液晶元件
572‧‧‧發光元件
600‧‧‧電視機
601‧‧‧控制部
602‧‧‧記憶部
603‧‧‧通訊控制部
604‧‧‧影像處理電路
605‧‧‧解碼器電路
606‧‧‧影像信號接收部
607‧‧‧時序控制器
608‧‧‧源極驅動器
609‧‧‧閘極驅動器
610‧‧‧神經網路
611‧‧‧輸入層
612‧‧‧中間層
613‧‧‧輸出層
615‧‧‧神經元
620‧‧‧顯示面板
621‧‧‧像素
630‧‧‧系統匯流排
664‧‧‧電極
665‧‧‧電極
667‧‧‧電極
700‧‧‧顯示裝置
700A‧‧‧顯示裝置
701‧‧‧基板
702‧‧‧像素部
704‧‧‧源極驅動電路部
705‧‧‧基板
706‧‧‧閘極驅動電路部
708‧‧‧FPC端子部
710‧‧‧信號線
711‧‧‧佈線部
712‧‧‧密封劑
716‧‧‧FPC
721‧‧‧源極驅動器IC
722‧‧‧閘極驅動器電路
723‧‧‧FPC
724‧‧‧印刷電路板
730‧‧‧絕緣膜
732‧‧‧密封膜
734‧‧‧絕緣膜
736‧‧‧彩色膜
738‧‧‧遮光膜
750‧‧‧電晶體
752‧‧‧電晶體
760‧‧‧連接電極
770‧‧‧平坦化絕緣膜
772‧‧‧導電膜
773‧‧‧絕緣膜
774‧‧‧導電膜
775‧‧‧液晶元件
776‧‧‧液晶層
778‧‧‧結構體
780‧‧‧異方性導電膜
782‧‧‧發光元件
786‧‧‧EL層
788‧‧‧導電膜
790‧‧‧電容元件
791‧‧‧觸控面板
792‧‧‧絕緣膜
793‧‧‧電極
794‧‧‧電極
795‧‧‧絕緣膜
796‧‧‧電極
797‧‧‧絕緣膜
7000‧‧‧顯示部
7100‧‧‧電視機
7101‧‧‧外殼
7103‧‧‧支架
7111‧‧‧遙控器
7200‧‧‧筆記型個人電腦
7211‧‧‧外殼
7212‧‧‧鍵盤
7213‧‧‧指向裝置
7214‧‧‧外部連接埠
7300‧‧‧數位看板
7301‧‧‧外殼
7303‧‧‧揚聲器
7311‧‧‧資訊終端設備
7400‧‧‧數位看板
7401‧‧‧柱子
7411‧‧‧資訊終端設備
在圖式中:圖1A至圖1C是半導體裝置的結構實例;圖2A至圖2C是示出擴散在半導體層中的氧的路徑的示意圖;圖3A及圖3B是示出空隙部的一個例子的剖面圖;圖4A至圖4C是半導體裝置的結構實例;圖5A至圖5C是半導體裝置的結構實例;圖6A至圖6C是半導體裝置的結構實例;圖7A至圖7C是半導體裝置的結構實例; 圖8A至圖8C是半導體裝置的結構實例;圖9A至圖9C是半導體裝置的結構實例;圖10A至圖10C是說明半導體裝置的製造方法的圖;圖11A至圖11C是說明半導體裝置的製造方法的圖;圖12A及圖12B是說明半導體裝置的製造方法的圖;圖13A及圖13B是說明半導體裝置的製造方法的圖;圖14A至圖14C是說明半導體裝置的製造方法的圖;圖15A及圖15B是顯示裝置的結構實例;圖16是顯示裝置的結構實例;圖17是顯示裝置的結構實例;圖18是顯示裝置的結構實例;圖19是顯示裝置的結構實例;圖20是顯示裝置的結構實例;圖21A至圖21C是顯示裝置的方塊圖及電路圖;圖22是顯示裝置的方塊圖;圖23A至圖23D是電子裝置的結構實例;圖24A及圖24B是電視機的結構實例;圖25是根據實施例1的XPS光譜;圖26A至圖26C是根據實施例1的剖面TEM影像;圖27A及圖27B是根據實施例1的剖面TEM影像;圖28是說明根據實施例2的樣本的測定座標的圖;圖29是根據實施例2的XPS光譜;圖30是根據實施例2的XPS光譜;圖31是根據實施例2的XPS光譜;圖32是根據實施例2的XPS光譜;圖33A及圖33B是根據實施例3的電晶體的Id-Vg特性;圖34A及圖34B是根據實施例3的電晶體的Id-Vg特性;圖35A及圖35B是根據實施例3的電晶體的Id-Vg特性;圖36A及圖36B是根據實施例3的電晶體的Id-Vg特性; 圖37是根據實施例3的電晶體的GBT測試結果。
下面,參照圖式對實施方式進行說明。但是,所屬技術領域的通常知識者可以很容易地理解一個事實,就是實施方式可以以多個不同形式來實施,其方式和詳細內容可以在不脫離本發明的精神及其範圍的條件下被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限定在以下所示的實施方式所記載的內容中。
在圖式中,為便於清楚地說明,有時誇大表示大小、層的厚度或區域。因此,本發明並不一定限定於上述尺寸。此外,在圖式中,示意性地示出理想的例子,因此本發明不侷限於圖式所示的形狀或數值等。
本說明書所使用的“第一”、“第二”、“第三”等序數詞是為了避免組件的混淆而附加的,而不是為了在數目方面上進行限定的。
在本說明書中,為方便起見,使用了“上”、“下”等表示配置的詞句,以參照圖式說明組件的位置關係。另外,組件的位置關係根據描述各組件的方向適當地改變。因此,不侷限於本說明書中所說明的詞句,可以根據情況適當地更換。
在本說明書等中,電晶體是指至少包括閘極、汲極以及源極這三個端子的元件。電晶體在汲極(汲極端子、汲極區域或汲極電極)與源極(源極端子、源極區域或源極電極)之間具有通道區域,並且電流能夠藉由通道區域流過源極與汲極之間。注意,在本說明書等中,通道區域是指電流主要流過的區域。
另外,在使用極性不同的電晶體的情況或電路工作中的電流方向變化的情況等下,源極及汲極的功能有時相互調換。因此,在本說明書等中,源極和汲極可以互相調換。
在本說明書等中,“電連接”包括藉由“具有某種電作用的元件”連接的情況。在此,“具有某種電作用的元件”只要可以進行連接目標間的電信號的授受,就對其沒有特別的限制。例如,“具有某種電作用的元件”不僅包括電極和佈線,而且還包括電晶體等的切換元件、電阻元件、電感器、電容器、其他具有各種功能的元件等。
在本說明書等中,“平行”是指兩條直線形成的角度為-10°以上且10°以下的狀態。因此,也包括該角度為-5°以上且5°以下的狀態。另外,“垂直”是指兩條直線形成的角度為80°以上且100°以下的狀態。因此也包括85°以上且95°以下的角度的狀態。
另外,在本說明書等中,可以將“膜”和“層”相互調換。例如,有時可以將“導電層”變換為“導電膜”。此外,例如,有時可以將“絕緣膜”變換為“絕緣層”。
在本說明書等中,在沒有特別的說明的情況下,關態電流(off-state current)是指電晶體處於關閉狀態(也稱為非導通狀態、遮斷狀態)的汲極電流。在沒有特別的說明的情況下,在n通道電晶體中,關閉狀態是指閘極與源極間的電壓Vgs低於臨界電壓Vth的狀態,在p通道電晶體中,關閉狀態是指閘極與源極間的電壓Vgs高於臨界電壓Vth的狀態。例如,n通道電晶體的關態電流有時是指閘極與源極間的電壓Vgs低於臨界電壓Vth時的汲極電流。
電晶體的關態電流有時取決於Vgs。因此,“電晶體的關態電流為I以下”有時是指存在使電晶體的關態電流成為I以下的Vgs的值。電 晶體的關態電流有時是指:當Vgs為預定的值時的關閉狀態;當Vgs為預定的範圍內的值時的關閉狀態;或者當Vgs為能夠獲得充分低的關態電流的值時的關閉狀態等。
作為一個例子,設想一種n通道電晶體,該n通道電晶體的臨界電壓Vth為0.5V,Vgs為0.5V時的汲極電流為1×10-9A,Vgs為0.1V時的汲極電流為1×10-13A,Vgs為-0.5V時的汲極電流為1×10-19A,Vgs為-0.8V時的汲極電流為1×10-22A。在Vgs為-0.5V時或在Vgs為-0.5V至-0.8V的範圍內,該電晶體的汲極電流為1×10-19A以下,所以有時稱該電晶體的關態電流為1×10-19A以下。由於存在使該電晶體的汲極電流成為1×10-22A以下的Vgs,因此有時稱該電晶體的關態電流為1×10-22A以下。
在本說明書等中,有時以每通道寬度W的電流值表示具有通道寬度W的電晶體的關態電流。另外,有時以每預定的通道寬度(例如1μm)的電流值表示具有通道寬度W的電晶體的關態電流。在為後者時,關態電流的單位有時以具有電流/長度的次元的單位(例如,A/μm)表示。
電晶體的關態電流有時取決於溫度。在本說明書中,在沒有特別的說明的情況下,關態電流有時表示在室溫、60℃、85℃、95℃或125℃下的關態電流。或者,有時表示在保證包括該電晶體的半導體裝置等的可靠性的溫度下或者在包括該電晶體的半導體裝置等被使用的溫度(例如,5℃至35℃中的任一溫度)下的關態電流。“電晶體的關態電流為I以下”有時是指在室溫、60℃、85℃、95℃、125℃、保證包括該電晶體的半導體裝置的可靠性的溫度下或者在包括該電晶體的半導體裝置等被使用的溫度(例如,5℃至35℃中的任一溫度)下存在使電晶體的關態電流成為I以下的Vgs的值。
電晶體的關態電流有時取決於汲極與源極間的電壓Vds。在本說明 書中,在沒有特別的說明的情況下,關態電流有時表示Vds為0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V或20V時的關態電流。或者,有時表示保證包括該電晶體的半導體裝置等的可靠性的Vds時或者包括該電晶體的半導體裝置等所使用的Vds時的關態電流。“電晶體的關態電流為I以下”有時是指:在Vds為0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V、20V、保證包括該電晶體的半導體裝置的可靠性的Vds或包括該電晶體的半導體裝置等被使用的Vds下存在使電晶體的關態電流成為I以下的Vgs的值。
在上述關態電流的說明中,可以將汲極換稱為源極。也就是說,關態電流有時指電晶體處於關閉狀態時流過源極的電流。
在本說明書等中,有時將關態電流記作洩漏電流。在本說明書等中,關態電流例如有時指在電晶體處於關閉狀態時流在源極與汲極間的電流。
在本說明書等中,電晶體的臨界電壓是指在電晶體中形成通道時的閘極電壓(Vg)。明確而言,電晶體的臨界電壓有時是指:在以橫軸表示閘極電壓(Vg)且以縱軸表示汲極電流(Id)的平方根,而標繪出的曲線(Vg-
Figure 106112076-A0202-12-0010-83
Id特性)中,在將具有最大傾斜度的切線外推時的直線與汲極電流(Id)的平方根為0(Id為0A)處的交叉點的閘極電壓(Vg)。或者,電晶體的臨界電壓有時是指在以L為通道長度且以W為通道寬度,Id[A]×L[μm]/W[μm]的值為1×10-9[A]時的閘極電壓(Vg)。
注意,在本說明書等中,例如在導電性充分低時,有時即便在表示為“半導體”時也具有“絕緣體”的特性。此外,“半導體”與“絕緣體”的境界不清楚,因此有時不能精確地區別。由此,有時可以將本說明書等所記載的“半導體”換稱為“絕緣體”。
另外,在本說明書等中,例如在導電性充分高時,有時即便在表示為“半導體”時也具有“導電體”的特性。此外,“半導體”和“導電體”的境界不清楚,因此有時不能精確地區別。由此,有時可以將本說明書所記載的“半導體”換稱為“導電體”。
在本說明書等中,金屬氧化物(metal oxide)是指廣義上的金屬的氧化物。金屬氧化物被分類為氧化物絕緣體、氧化物導電體(包括透明氧化物導電體)和氧化物半導體(Oxide Semiconductor,也可以簡稱為OS)等。例如,在將金屬氧化物用於電晶體的活性層的情況下,有時將該金屬氧化物稱為氧化物半導體。換言之,在金屬氧化物具有放大作用、整流作用及開關作用中的至少一個時,該金屬氧化物稱為金屬氧化物半導體(metal oxide semiconductor),簡稱為OS。此外,可以將OS FET換稱為包含金屬氧化物或氧化物半導體的電晶體。
此外,在本說明書等中,有時將包含氮的金屬氧化物也稱為金屬氧化物(metal oxide)。此外,也可以將包含氮的金屬氧化物稱為金屬氧氮化物(metal oxynitride)。
此外,在本說明書等中,有時記載CAAC(c-axis aligned crystal)或CAC(Cloud-Aligned Composite)。注意,CAAC是指結晶結構的一個例子,CAC是指功能或材料構成的一個例子。
此外,在本說明書等中,CAC-OS或CAC-metal oxide在材料的一部分中具有導電性的功能,在材料的另一部分中具有絕緣性的功能,作為材料的整體具有半導體的功能。此外,在將CAC-OS或CAC-metal oxide用於電晶體的活性層的情況下,導電性的功能是使被用作載子的電子(或電洞)流過的功能,絕緣性的功能是不使被用作載子的電子流過的功能。藉由導電性的功能和絕緣性的功能的互補作用,可以使CAC-OS或CAC-metal oxide具有開關功能(開啟/關閉的功能)。藉由 在CAC-OS或CAC-metal oxide中使各功能分離,可以最大限度地提高各功能。
此外,在本說明書等中,CAC-OS或CAC-metal oxide包括導電性區域及絕緣性區域。導電性區域具有上述導電性的功能,絕緣性區域具有上述絕緣性的功能。此外,在材料中,導電性區域和絕緣性區域有時以奈米粒子級分離。另外,導電性區域和絕緣性區域有時在材料中不均勻地分佈。此外,有時導電性區域被觀察為其邊緣模糊且以雲狀連接。
在CAC-OS或CAC-metal oxide中,有時導電性區域及絕緣性區域分別分散在材料中,其尺寸為0.5nm以上且10nm以下,較佳為0.5nm以上且3nm以下。
此外,CAC-OS或CAC-metal oxide由具有不同能帶間隙的成分構成。例如,CAC-OS或CAC-metal oxide由具有起因於絕緣性區域的寬隙的成分及具有起因於導電性區域的窄隙的成分構成。在該結構中,當使載子流過時,載子主要在具有窄隙的成分中流過。此外,具有窄隙的成分與具有寬隙的成分互補作用,與具有窄隙的成分聯動地在具有寬隙的成分中載子流過。因此,在將上述CAC-OS或CAC-metal oxide用於電晶體的通道區域時,在電晶體的導通狀態中可以得到高電流驅動力,亦即大通態電流(on-state current)及高場效移動率。
就是說,也可以將CAC-OS或CAC-metal oxide稱為基質複合材料(matrix composite)或金屬基質複合材料(metal matrix composite)。
下面,對金屬氧化物的結晶結構的一個例子進行說明。注意,以使用In-Ga-Zn氧化物靶材(In:Ga:Zn=4:2:4.1[原子個數比])且藉由 濺射法形成的金屬氧化物為一個例子進行說明。將使用上述靶材在100℃以上且130℃以下的基板溫度下藉由濺射法形成的金屬氧化物稱為sIGZO,將使用上述靶材在室溫(R.T.)的基板溫度下藉由濺射法形成的金屬氧化物稱為tIGZO。例如,sIGZO具有nc(nano crystal)和CAAC中的一者或兩者的結晶結構。此外,tIGZO具有nc的結晶結構。注意,在此指的室溫(R.T.)包括對基板不進行意圖性的加熱時的溫度。CAAC結構是多個IGZO的奈米晶具有c軸配向性且在a-b面上以不配向的方式連接的結晶結構。
在本說明書等中,顯示裝置的一個實施方式的顯示面板是指能夠在顯示面顯示(輸出)影像等的面板。因此,顯示面板是輸出裝置的一個實施方式。
另外,在本說明書等中,有時將在顯示面板的基板上安裝有例如FPC(Flexible printed circuit:軟性印刷電路板)或TCP(Tape Carrier Package:捲帶式封裝)等連接器的結構或在基板上以COG(Chip On Glass:晶粒玻璃接合)方式等直接安裝IC(積體電路)的結構稱為顯示面板模組或顯示模組,或者也簡單地稱為顯示面板等。
另外,在本說明書等中,觸控感測器是指能夠檢測出手指或觸控筆等被檢測體的接觸、推壓或靠近等的感測器。另外,也可以具有檢測其位置資訊的功能。因此,觸控感測器是輸入裝置的一個實施方式。例如,觸控感測器可以採用具有一個以上的感測器元件的結構。
另外,在本說明書等中,有時將包括觸控感測器的基板稱為觸控感測器面板,或者簡單地稱為觸控感測器等。另外,在本說明書等中,有時將在觸控感測器面板的基板上安裝有例如FPC或TCP等連接器的結構或者在基板上以COG方式等安裝有IC的結構稱為觸控感測器面板模組、觸控感測器模組、感測器模組,或者簡單地稱為觸控感測器等。
注意,在本說明書等中,顯示裝置的一個實施方式的觸控面板具有如下功能:在顯示面顯示(輸出)影像等的功能;以及檢測出手指或觸控筆等被檢測體接觸、被壓或靠近顯示面的作為觸控感測器的功能。因此,觸控面板是輸入輸出裝置的一個實施方式。
觸控面板例如也可以稱為具有觸控感測器的顯示面板(或顯示裝置)、具有觸控感測器功能的顯示面板(或顯示裝置)。
觸控面板也可以包括顯示面板及觸控感測器面板。或者,也可以具有在顯示面板內部或表面具有觸控感測器的功能的結構。
另外,在本說明書等中,有時將在觸控面板的基板上安裝有例如FPC或TCP等連接器的結構或者在基板上以COG方式等安裝有IC的結構稱為觸控面板模組、顯示模組,或者簡單地稱為觸控面板等。
實施方式1
在本實施方式中,對本發明的一個實施方式的半導體裝置及其製造方法進行說明。這裡,對半導體裝置的一個實施方式的電晶體進行說明。
本發明的一個實施方式的電晶體包括被用作閘極電極的第一導電層、被用作閘極絕緣層的第一絕緣層、半導體層、被用作源極電極或汲極電極的第二導電層及第三導電層、被用作保護層的第二絕緣層及第三絕緣層。
作為半導體層較佳為使用金屬氧化物膜。尤其是,較佳為包含銦、元素M(M為鎵、鋁、矽、硼、釔、錫、銅、釩、鈹、鈦、鐵、鎳、鍺、 鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂中的一個以上)、鋅。尤其是,元素M較佳為鋁、鎵、釔或錫。
藉由作為半導體層使用雜質濃度低且缺陷態密度低的金屬氧化物膜,可以製造具有良好的電特性的電晶體,所以是較佳的。這裡,將雜質濃度低且缺陷態密度低的狀態稱為“高純度本質”或“實質上高純度本質”。因為高純度本質或實質上高純度本質的半導體層的載子發生源少,所以有時可以降低載子密度。因此,可以抑制在該半導體層中形成有通道區域的電晶體具有負臨界電壓的電特性(也稱為常開啟特性)。因為高純度本質或實質上高純度本質的半導體層具有較低的缺陷態密度,所以有可能具有較低的陷阱態密度。此外,高純度本質或實質上高純度本質的半導體層的關態電流顯著小。
電晶體的通道區域的載子密度及缺陷能階影響到電晶體的電特性及可靠性。尤其是,在通道長度短的電晶體中,通道區域的載子密度及缺陷能階顯著影響到電特性及可靠性。因此,藉由降低通道區域的載子密度及缺陷能階,即使是通道長度短的電晶體也可以得到良好的電特性及可靠性。
有時氧從半導體層所包括的金屬氧化物膜脫離,由此形成氧空位(以下,有時記作Vo)。若半導體層中的氧空位較多時,半導體層中的缺陷態密度增大,由此對電晶體的電特性及可靠性造成負面影響。因此,在電晶體製程中,在半導體層中引入充分量的氧,降低氧空位,由此可以製造電特性良好且可靠性高的電晶體。此外,除了氧空位的降低以外,在電晶體製程中氧空位的發生的抑制也很重要。
當在半導體層中存在氧空位及氫時,有時在氧空位中引入氫(以下,有時記為VoH)。VoH成為載子發生源,有時對電晶體的電特性及可靠性造成負面影響。因此,藉由降低半導體層中的氫及VoH,可以降 低載子密度,由此可以製造電特性良好且可靠性高的電晶體。此外,除了氫及VoH的降低以外,包含氫的雜質從外部向半導體層中擴散的抑制也很重要。作為包含氫的雜質,例如有氫、水等。
作為降低半導體層中的氧空位的方法之一,可以使用如下方法:將藉由加熱有可能釋放氧的層配置在半導體層附近且進行加熱處理,由此從該層向半導體層供應氧。
被用作保護層的第二絕緣膜與半導體層的頂面接觸。第二絕緣層較佳為包含氧。第二絕緣層更佳為氧含量超過化學計量組成的絕緣膜。例如,較佳為使用包含矽及氧的絕緣膜或者包含矽、氧、氮的絕緣膜等。
在本說明書等中,有時將包含超過化學計量組成的氧稱為過量氧(exO)。或者,過量氧是指例如藉由加熱從包含氧的膜或層釋放的氧。過量氧例如移動在膜或層的內部。過量氧的移動包括在膜或層的原子之間移動的情況以及以與構成膜或層的氧置換的方式一個接一個移動的情況等。此外,在本說明書等中,有時將過量氧(exO)簡稱為氧。
藉由在半導體層上設置第二絕緣膜之後進行加熱處理,氧從第二絕緣層擴散至半導體層,在半導體層中供應氧。供應給半導體層中的氧接近半導體層中的氧空位,氧被氧空位俘獲而填補氧空位。此外,氧接近半導體層所包含的氫,氧與氫起作用而成為水(H2O),從半導體層作為水分子脫離。此外,氧接近半導體層所包含的VoH,氧填補VoH的氧空位。此外,該VoH所包含的氫與其他氧起作用而成為水,從半導體層作為水脫離。如此,第二絕緣層所包含的氧可以降低半導體層中的氧空位、氫及VoH。
被用作保護層的第三絕緣層與第二絕緣層的頂面接觸。第三絕緣 層較佳為使用氮濃度比第二絕緣層高的材料。例如,較佳為包括以矽及氮為主要成分的絕緣膜。以矽及氮為主要成分的絕緣膜具有水、氫及氧等不容易擴散的特徵。因此,藉由在第二絕緣層上設置第三絕緣層,可以抑制氧從半導體層及第二絕緣層向外部擴散(脫離)。因此,可以抑制半導體層中的氧空位的增大。
作為第三絕緣層例如可以使用包含元素X(X為鋁、銦、鎵和鋅中的一個以上)的氧化物。尤其是,較佳為使用包含金屬及氧作為主要成分的絕緣膜。例如,作為第三絕緣層可以使用氧化鋁或In-Ga-Zn氧化物。
有時在上述第二絕緣層中產生空隙部。若存在空隙部,則有時水、氫等雜質經過空隙部從外部擴散至半導體層,半導體層中的氫增加。藉由在第二絕緣層上設置第三絕緣層,覆蓋空隙部,可以抑制雜質經過空隙部從外部擴散至半導體層,由此可以抑制半導體層中的氫的增加。
藉由在第二絕緣膜上設置第三絕緣層,可以降低半導體層中的氧空位、氫及VoH。因此,可以製造電特性良好且可靠性高的電晶體。
下面,參照圖式說明本發明的一個實施方式的更具體的例子。以下,作為半導體裝置的一個例子,以電晶體為例進行說明。
〈結構實例1〉
圖1A示出本發明的一個實施方式的半導體裝置的電晶體100A的俯視圖,圖1B及圖1C示出其剖面圖。圖1B相當於沿著圖1A所示的點劃線X1-X2切斷的剖面圖,圖1C相當於沿著圖1A所示的點劃線Y1-Y2切斷的剖面圖。此外,在圖1A中,為了方便起見,省略電晶體100A的組件的一部分(閘極絕緣層等)。此外,有時將點劃線X1-X2 方向稱為通道長度方向,將點劃線Y1-Y2方向稱為通道寬度方向。此外,有時在後面的電晶體的俯視圖中也與圖1A同樣地省略組件的一部分。
電晶體100A包括基板102上的導電層104、基板102及導電層104上的絕緣層106、絕緣層106上的金屬氧化物層108、與金屬氧化物層108的頂面接觸且在金屬氧化物層108上有間隔地設置的導電層112a及導電層112b。此外,包括導電層112a、導電層112b及金屬氧化物層108上的絕緣層114、絕緣層114上的絕緣層116。
導電層104的一部分被用作閘極電極。絕緣層106的一部分被用作閘極絕緣層。導電層112a被用作源極電極和汲極電極中的一個,導電層112b被用作源極電極和汲極電極中的另一個。絕緣層114及絕緣層116被用作保護層。
電晶體100A是所謂通道蝕刻型單閘極結構的電晶體。
如圖1A、圖1B及圖1C所示,金屬氧化物層108較佳為具有第一金屬氧化物層108a、第一金屬氧化物層108a上的第二金屬氧化物層108b的層疊結構。
第一金屬氧化物層108a及第二金屬氧化物層108b都較佳為包含金屬氧化物。作為第一金屬氧化物層108a及第二金屬氧化物層108b都可以使用上述材料。
當第一金屬氧化物層108a及第二金屬氧化物層108b分別包括In的原子個數比大於M的原子個數比的區域時,可以提高電晶體的場效移動率,所以是較佳的。作為一個例子,第一金屬氧化物層108a及第二金屬氧化物層108b的In、M及Zn的原子個數比較佳為分別為In:M: Zn=4:2:3或其附近、或者In:M:Zn=5:1:7或其附近。這裡,“附近”包括如下情況:在In為4時,M為1.5以上且2.5以下,Zn為2以上且4以下的情況;以及在In為5時,M為0.5以上且1.5以下,Zn為5以上且7以下的情況。藉由使第一金屬氧化物層108a及第二金屬氧化物層108b具有大致相同的組成,可以使用相同的濺射靶材,所以可以抑制製造成本。
第一金屬氧化物層108a及第二金屬氧化物層108b作為In、M及Zn的原子個數比分別可以採用In:M:Zn=1:1:1或其附近。這裡,“附近”包括如下情況:在In為1時,M為0.5以上且1.5以下,Zn為0.1以上且2以下。藉由使In及M的原子個數比大致相同,可以抑制在第一金屬氧化物層108a及第二金屬氧化物層108b中產生氧空位,所以是較佳的。由於可以抑制氧空位的發生,所以可以製造電特性良好且可靠性高的電晶體。
第一金屬氧化物層108a及第二金屬氧化物層108b也可以利用使用組成不同的靶材形成的膜,但是尤其是較佳為使用以不暴露於大氣的方式使用相同的組成的靶材連續形成的疊層膜。藉由連續形成,除了可以在一個成膜裝置中進行處理以外,還可以抑制在第一金屬氧化物層108a與第二金屬氧化物層108b之間殘留雜質。由於金屬氧化物層的雜質有可能成為載子源,所以藉由抑制雜質的增加,可以製造電特性良好且可靠性高的電晶體。
第二金屬氧化物層108b較佳為包括其結晶性比第一金屬氧化物層108a高的區域。當第二金屬氧化物層108b包括結晶性高的區域時,可以使第二金屬氧化物層108b為其蝕刻耐性比第一金屬氧化物層108a高的膜。因此,可以防止在形成導電層112a及導電層112b時因蝕刻而第二金屬氧化物層108b消失。因此,可以實現如圖1A、圖1B及圖1C所示的通道蝕刻結構的電晶體。再者,藉由作為電晶體的背後通道 一側的第二金屬氧化物層108b使用結晶性高的膜,可以降低向導電層104一側的第一金屬氧化物層108a有可能擴散的雜質,所以可以製造電特性良好且可靠性高的電晶體。
藉由作為第一金屬氧化物層108a使用包括其結晶性比第二金屬氧化物層108b低的區域的膜,氧可以容易在第一金屬氧化物層108a中擴散,因此可以使第一金屬氧化物層108a中的氧空位的比率降低。尤其是,第一金屬氧化物層108a近於導電層104一側,是主要容易形成通道的層。因此,藉由作為第一金屬氧化物層108a使用氧空位少的膜,可以製造電特性良好且可靠性高的電晶體。
第一金屬氧化物層108a及第二金屬氧化物層108b例如藉由使成膜條件不同可以分別形成。例如,第一金屬氧化物層108a及第二金屬氧化物層108b可以使其沉積氣體中的氧氣體的流量不同。
此時,作為第一金屬氧化物層108a的成膜條件,將氣體流量的總量中的氧氣體流量的比率(也稱為氧流量比或氧分壓)設定為0%以上且30%以下,較佳為5%以上且15%以下。藉由採用上述範圍內的氧流量比,可以降低第一金屬氧化物層108a的結晶性。
另一方面,作為第二金屬氧化物層108b的成膜條件,將氧流量比設定大於30%且100%以下,較佳為50%以上且100%以下,更佳為70%以上且100%以下。藉由採用上述範圍內的氧流量比,可以提高第二金屬氧化物層108b的結晶性。
當氧流量比較高時,有時在金屬氧化物層中產生具有尖晶石型結晶結構的區域。當包括具有尖晶石型結晶結構的區域時,有時該區域及/或該區域與其他區域的介面氧空位密度增高。因此,可以採用不產生具有尖晶石型結晶結構的區域的氧流量比,例如是大於30%且50% 以下的氧流量比。
形成第一金屬氧化物層108a及第二金屬氧化物層108b時的基板溫度較佳為室溫(25℃)以上且200℃以下,更佳為室溫以上且130℃以下。藉由採用上述範圍的基板溫度,在使用大面積玻璃基板時,可以抑制基板的彎曲或歪曲。這裡,藉由使第一金屬氧化物層108a及第二金屬氧化物層108b的基板溫度相同,可以提高生產率。此外,例如在使第一金屬氧化物層108a及第二金屬氧化物層108b的基板溫度不同時,藉由增高形成第二金屬氧化物層108b時的基板溫度,可以進一步提高第二金屬氧化物層108b的結晶性。
例如,較佳的是,作為第一金屬氧化物層108a使用CAC-OS(Cloud-Aligned Composite oxide semiconductor)膜,作為第二金屬氧化物層108b使用CAAC-OS(c-axis-aligned crystalline oxide semiconductor:c軸配向結晶氧化物半導體)膜。
第一金屬氧化物層108a及第二金屬氧化物層108b的結晶性例如可以藉由X射線繞射(XRD:X-Ray Diffraction)、穿透式電子顯微鏡(TEM:Transmission Electron Microscope)、電子繞射(Electron Diffraction)等分析。
第一金屬氧化物層108a的厚度為1nm以上且50nm以下,較佳為5nm以上且30nm以下。此外,第二金屬氧化物層108b的厚度大於10nm且100nm以下,較佳為20nm以上且50nm以下。
有時無法明確地確認到第一金屬氧化物層108a與第二金屬氧化物層108b的邊界(介面)。於是,在說明本發明的一個實施方式的圖式中,以虛線示出這些邊界。
在金屬氧化物層108中,在金屬氧化物層108中的氧空位與氫起作用而形成VoH時,有時增加載子密度。因此,較佳為金屬氧化物層108中的氧空位少。此外,較佳為金屬氧化物層108中的雜質少。尤其是,較佳為金屬氧化物層108中的包含氫的雜質少。藉由氧空位及雜質少,可以抑制在金屬氧化物層108中形成VoH。因此,載子密度可以得到降低,由此可以得到電特性良好且可靠性高的電晶體。
金屬氧化物層108也可以具有單層結構。藉由金屬氧化物層108採用與金屬氧化物層108a相同的結構,可以提高電晶體的通態電流。此外,藉由金屬氧化物層108採用與金屬氧化物層108b相同的結構,可以提高電晶體的可靠性。
作為絕緣層114可以使用在含氧的氛圍下形成的包含氧的絕緣膜。在含氧的氛圍下形成的絕緣膜可以是藉由加熱容易釋放多量的氧的膜。此外,絕緣層114較佳為使用其氮濃度比絕緣層116低的材料。例如,較佳為使用包含矽及氧的絕緣膜、包含矽、氧及氮的絕緣膜等。尤其是,更佳為使用氧化矽膜或氧氮化矽膜。
在本說明書等中,氧氮化矽是指包含矽、氧及氮且在其組成中氧含量比氮含量多的膜。氮氧化矽是指包含矽、氧及氮且在其組成中氮含量比氧含量多的膜。可以使用拉塞福背散射光譜學法(RBS:Rutherford Backscattering Spectrometry)等來測定組成。
當作為絕緣層114使用氧化矽膜、氧氮化矽膜等時,較佳為利用電漿增強化學氣相沉積(PECVD:Plasma Enhanced Chemical Vapor Deposition)裝置形成。PECVD設備可以形成被形成面的步階覆蓋性高且緻密的缺陷少的絕緣膜,所以是較佳的。
絕緣層114也可以具有絕緣層114a、絕緣層114a上的絕緣層114b 的疊層結構。絕緣層114a及絕緣層114b較佳為分別包括過量氧區域。藉由絕緣層114a及絕緣層114b包括過量氧區域,可以使氧供應給金屬氧化物層108中。由於可以使用氧而填補有可能形成在金屬氧化物層108中的氧空位,可以提供電特性良好且可靠性高的電晶體。
與金屬氧化物層108的背後通道一側接觸的絕緣層114a可以使用其氮含量比絕緣層114b少的氧化物膜。藉由作為絕緣層114a使用氮含量少的氧化物膜,在與金屬氧化物層108接觸的絕緣層114a中,可以不容易形成有可能形成能階的氮氧化物(NOx,x大於0且2以下,較佳為1以上且2以下。典型為NO2或NO)。絕緣層114a可以使用PECVD設備形成。絕緣層114a可以在其功率及其腔室壓力比形成絕緣層114b時的功率及腔室壓力低的成膜條件下形成。
絕緣層114a是能夠使氧透過的絕緣膜。此外,絕緣層114a也被用作形成後面形成的絕緣層114b時的對金屬氧化物層108的損傷的緩和膜。
設置於絕緣層114a上的絕緣層114b可以具有使用包含多於絕緣層114a的過量氧(exO)的氧化物膜的結構。絕緣層114b可以使用PECVD設備形成。絕緣層114b可以在其功率及其腔室壓力比形成絕緣層114a時的功率及腔室壓力高的成膜條件下形成。此外,形成絕緣層114b時的基板溫度較佳為180℃以上且280℃以下。以上述基板溫度形成的膜由於矽與氧的鍵合力較弱,因此,藉由後面製程的加熱處理而使膜中的氧的一部分脫離。其結果,可以形成氧含量超過化學計量組成且由於被加熱而其一部分的氧脫離的絕緣膜,因此是較佳的。
當絕緣層114a及絕緣層114b使用相同種類的材料時,有時無法明確地確認到絕緣層114a及絕緣層114b的介面。因此,在本實施方式中,以虛線示出絕緣層114a與絕緣層114b的介面。此外,在本實 施方式中,說明絕緣層114a及絕緣層114b的兩層結構,但是本發明的一個實施方式不侷限於此,例如,也可以採用絕緣層114a或絕緣層114b的單層結構或者三層以上的疊層結構。
將參照圖2A及圖2B對從絕緣層114擴散至金屬氧化物層108中的氧的路徑進行說明。圖2A及圖2B是示出擴散至金屬氧化物層108中的氧的路徑的示意圖,圖2A是通道長度方向的示意圖,圖2B是通道寬度方向的示意圖。
絕緣層114a及絕緣層114b所包含的氧從上方一側,亦即經過第二金屬氧化物層108b擴散至第一金屬氧化物層108a(圖2A及圖2B所示的Route 1)。
或者,絕緣層114a及絕緣層114b所包含的氧從第一金屬氧化物層108a及第二金屬氧化物層108b的每個側面擴散至金屬氧化物層108中(圖2B所示的Route 2)。
例如,在圖2A及圖2B所示的Route 1中,在第二金屬氧化物層108b的結晶性高時,有時妨礙氧的擴散。另一方面,在圖2B所示的Route 2中,可以使氧從第一金屬氧化物層108a及第二金屬氧化物層108b的每個側面擴散至第一金屬氧化物層108a及第二金屬氧化物層108b。
在圖2B所示的Route 2中,在第一金屬氧化物層108a包括其結晶性比第二金屬氧化物層108b的結晶性低的區域時,該區域成為氧的擴散路徑,可以使氧擴散至其結晶性比第一金屬氧化物層108a高的第二金屬氧化物層108b。此外,在圖2A及圖2B中未圖示,但是在絕緣層106、區域106a包含氧時,氧從絕緣層106、區域106a會擴散至金屬氧化物層108中。
如上所述,藉由使金屬氧化物層108具有結晶結構不同的膜的疊層結構,且使結晶性低的區域為氧的擴散路徑,可以提供電特性良好且可靠性高的電晶體。
藉由採用在金屬氧化物層108上設置絕緣層114的結構,金屬氧化物層108在膜厚度方向上具有氧的濃度梯度,有時在絕緣層114一側氧濃度較高。作為元素分析的方法,例如有能量色散型X射線分析法(EDX:Energy Dispersive X-ray spectroscopy)、二次離子質譜分析法(SIMS:Secondary Ion Mass Spectrometry)、X射線光電子能譜(XPS:X-ray Photoelectron Spectroscopy)、俄歇電子能譜(AES:Auger Electron Spectroscopy)等。
將參照圖2C對從絕緣層114a及絕緣層114b擴散至第一金屬氧化物層108a及第二金屬氧化物層108b的氧進行說明。如圖2C所示,在第一金屬氧化物層108a及第二金屬氧化物層108b中有可能存在有氧空位(Vo)、氫(H)及氧空位與氫鍵合的狀態(VoH)。當絕緣層114a及絕緣層114b所包含的氧接近第一金屬氧化物層108a及第二金屬氧化物層108b中的氧空位時,氧被氧空位俘獲,填補氧空位。此外,在氧接近氫時,氧與氫起作用而成為水(H2O),從第一金屬氧化物層108a及第二金屬氧化物層108b作為水分子脫離。此外,在氧接近VoH時,氧填補氧空位。此外,該VoH所包含的氫與其他氧起作用而成為水,從第一金屬氧化物層108a及第二金屬氧化物層108b作為水脫離。如此,由於絕緣層114a及絕緣層114b所包含的氧,可以降低第一金屬氧化物層108a及第二金屬氧化物層108b中的氧空位、氫及VoH。因此,可以製造電特性良好且可靠性高的電晶體。
這裡,考慮在不設置包含過量氧的絕緣層114的狀態下氫從第一金屬氧化物層108a及第二金屬氧化物層108b脫離的情況。有時第一 金屬氧化物層108a及第二金屬氧化物層108b所包含的氫與第一金屬氧化物層108a及第二金屬氧化物層108b所包含的氧鍵合,作為水分子脫離。此時,因第一金屬氧化物層108a及第二金屬氧化物層108b所包含的氧脫離而產生氧空位,所以不是較佳的。
另一方面,在如本實施方式所示設置包含過量氧的絕緣層114的狀態下氫從第一金屬氧化物層108a及第二金屬氧化物層108b脫離的情況。第一金屬氧化物層108a及第二金屬氧化物層108b所包含的氫與從絕緣層114供應的氧起作用而作為水分子脫離。藉由氫與從絕緣層114供應的氧起作用,可以抑制在第一金屬氧化物層108a及第二金屬氧化物層108b中產生新的氧空位,所以是較佳的。
藉由使氧從絕緣層114a及絕緣層114b供應給第一金屬氧化物層108a及第二金屬氧化物層108b,可以降低第一金屬氧化物層108a及第二金屬氧化物層108b中的氧空位、氫及VoH。此外,可以抑制在第一金屬氧化物層108a及第二金屬氧化物層108b中產生氧空位及VoH。藉由抑制氧空位及VoH的產生,可以製造電特性良好且可靠性高的電晶體。
較佳為在形成絕緣層114a之後,以不使絕緣層114a的表面暴露於大氣的方式在真空中連續形成絕緣層114b。藉由連續形成,可以抑制在絕緣層114a的表面附著來源於大氣成分的雜質。
形成於絕緣層114b上的絕緣層116較佳為使用不容易擴散、透過氧的絕緣膜。此外,絕緣層116較佳為使用雜質的釋放少且不容易擴散、透過雜質的絕緣膜。尤其是,絕緣層116較佳為包含氫的雜質的釋放少且不容易擴散、透過雜質。藉由設置絕緣層116,降低金屬氧化物層108的載子密度,由此可以得到電特性良好且可靠性高的電晶體。
作為絕緣層116,可以使用包含矽及氮的絕緣膜。尤其是,較佳為使用包含矽及氮作為主要成分的絕緣膜。例如,可以使用氮化矽、氮氧化矽等的單層或疊層。
或者,作為絕緣層116可以使用包含元素X(X為鋁、銦、鎵和鋅中的一個以上)的氧化物。尤其是,較佳為使用包含金屬及氧作為主要成分的絕緣膜。例如,作為絕緣層116可以使用氧化鋁或In-Ga-Zn氧化物。更佳為使用包含氧的氣體形成絕緣層116。藉由使用包含氧的氣體,可以使氧供應給絕緣層116的被形成層的絕緣層114b,所以是較佳的。供應給絕緣層114b的氧如上所述可以降低金屬氧化物層108中的氧空位、氫及VoH。因此,可以提供電特性良好且可靠性高的電晶體。
藉由層疊作為絕緣層114a及絕緣層114b的釋放氧的絕緣膜及作為絕緣層116的不容易擴散、透過氧的絕緣膜的狀態下進行加熱處理,可以高效地使氧供應給金屬氧化物層108。其結果,可以填補金屬氧化物層108中的氧空位及金屬氧化物層108與絕緣層114的介面的缺陷,由此可以降低缺陷能階。因此,可以製造電特性良好且可靠性高的顯示裝置。
上述絕緣層114a及絕緣層114b有時在絕緣層114a及絕緣層114b中產生空隙部180。如圖3A所示,尤其是在由導電層112a及導電層112b形成的絕緣層114a及絕緣層114b的步階部分容易產生空隙部180。當在絕緣層114a及絕緣層114b中存在有空隙部180時,有時雜質從外部或後面形成的層擴散至金屬氧化物層108。如圖3B所示,藉由在絕緣層114a及絕緣層114b上設置絕緣層116,可以抑制雜質擴散至金屬氧化物層108。此外,可以抑制氧從金屬氧化物層108脫離而擴散至外方。藉由抑制氧擴散至外方,可以抑制金屬氧化物層108中的氧空位、氫及VoH的增加,由此可以製造電特性良好且可靠性高的電晶體。
較佳為在形成絕緣層114b之後,以不使絕緣層114b的表面暴露於大氣的方式在真空中連續形成絕緣層116。藉由連續形成,可以抑制在絕緣層114b的表面附著來源於大氣成分的雜質。此外,藉由在真空中連續形成絕緣層114a、絕緣層114b及絕緣層116,可以抑制來源於大氣成分的雜質附著絕緣層114a及絕緣層114b的表面,所以是更佳的。
作為絕緣層106可以使用不容易擴散氫或氧等雜質的絕緣膜。例如,可以使用氮化絕緣膜等阻擋性高的絕緣膜。尤其是,較佳為使用包含矽及氮作為主要成分的絕緣膜。
絕緣層106在其頂面附近包括區域106a。在圖1B及圖1C中,以虛線示出區域106a的介面。區域106a是其氧濃度比絕緣層106中的其他區域高的區域。此外,區域106a以外的絕緣層106的區域較佳為作為主要成分不包含氧。此外,區域106a較佳為其氫濃度比絕緣層106中的其他區域低的區域。金屬氧化物層108以與區域106a接觸的方式設置。
區域106a的厚度可以為1nm以上且10nm以下。
藉由採用包含多量的氧的區域106a與金屬氧化物層108接觸的結構,可以抑制在這些介面形成缺陷能階。因此,藉由具有區域106a及金屬氧化物層108的疊層結構,可以使電晶體100A的電特性良好。
藉由採用在區域106a上設置金屬氧化物層108的結構,金屬氧化物層108在膜厚度方向上具有氧的濃度梯度,有時在區域106a一側氧濃度較高。此外,如上所述,有時金屬氧化物層108的絕緣層114一側氧濃度較高。也就是說,有時金屬氧化物層108在膜厚度方向上具 有氧的濃度梯度,在區域106a一側及絕緣層114一側氧濃度較高。作為元素分析的方法,例如有能量色散型X射線分析法(EDX)、二次離子質譜分析法(SIMS)、X射線光電子能譜(XPS)、俄歇電子能譜(AES)等。
再者,電晶體100A具有將區域106a、金屬氧化物層108及絕緣層114的疊層結構由絕緣層106及絕緣層116夾住的結構。絕緣層106及絕緣層116由於是不容易擴散水、氫及氧等的層,所以可以防止水或氫從外部擴散至金屬氧化物層108且氧從金屬氧化物層108擴散(脫離)至外部。其結果,不僅使電晶體100A的電特性良好,而可以提高可靠性。
例如可以藉由進行絕緣層106中的包括與金屬氧化物層108的介面的區域的元素分析確認到區域106a的存在。此時,在絕緣層106的近於金屬氧化物層108的區域有可能檢測出多量的氧。此外,有時在絕緣層106與金屬氧化物層108的介面附近觀察到氧濃度高的區域。此外,在絕緣層106的近於金屬氧化物層108的區域有可能觀察到其氫濃度比其他部分低的區域。作為元素分析的方法,例如有能量色散型X射線分析法(EDX)、二次離子質譜分析法(SIMS)、X射線光電子能譜(XPS)、俄歇電子能譜(AES)等。此外,區域106a的存在有時可以在剖面的穿透式電子顯微鏡(TEM:Transmission Electron Microscopy)影像等中作為與其他部分不同的對比的區域被觀察。
以上是結構實例1的說明。
以下,對其一部分的結構與上述結構實例1不同的電晶體的結構實例進行說明。此外,以下有時省略與上述結構實例1重複的部分的說明。此外,在以下所示的圖式中,關於具有與上述結構實例1相同的功能的部分使用相同的陰影線,而有時不附加元件符號。
〈結構實例2〉
圖4A示出本發明的一個實施方式的半導體裝置的電晶體100B的俯視圖,圖4B及圖4C示出其剖面圖。圖4B相當於沿著圖4A所示的點劃線X1-X2切斷的剖面圖,圖4C相當於沿著圖4A所示的點劃線Y1-Y2切斷的剖面圖。
電晶體100B與結構實例1所示的電晶體100A的不同之處在於金屬氧化物層108包括第一金屬氧化物層108a、第二金屬氧化物層108b及第三金屬氧化物層108c。
如圖4A、圖4B及圖4C所示,金屬氧化物層108較佳為具有第三金屬氧化物層108c、第三金屬氧化物層108c上的第一金屬氧化物層108a、第一金屬氧化物層108a上的第二金屬氧化物層108b的疊層結構。
第一金屬氧化物層108a、第二金屬氧化物層108b及第三金屬氧化物層108c較佳為分別包含金屬氧化物。作為第三金屬氧化物層108c可以應用能夠用於第一金屬氧化物層108a及第二金屬氧化物層108b的材料。
第一金屬氧化物層108a、第二金屬氧化物層108b及第三金屬氧化物層108c也可以利用使用組成不同的靶材形成的膜,但是尤其是較佳為使用以不暴露於大氣的方式使用相同的組成的靶材連續形成的疊層膜。藉由連續形成,除了可以在一個成膜裝置中進行處理以外,還可以抑制在第三金屬氧化物層108c與第一金屬氧化物層108a之間以及第一金屬氧化物層108a與第二金屬氧化物層108b之間殘留雜質。由於金屬氧化物層的雜質有可能成為載子源,所以藉由抑制雜質的增加,可以製造電特性良好且可靠性高的電晶體。
第三金屬氧化物層108c及第二金屬氧化物層108b較佳為包括其結晶性比第一金屬氧化物層108a高的區域。藉由第三金屬氧化物層108c包括結晶性高的區域,可以抑制雜質從第三金屬氧化物層108c的下方的層(例如絕緣層106、導電層104、基板102)擴散至第一金屬氧化物層108a。
第一金屬氧化物層108a、第二金屬氧化物層108b及第三金屬氧化物層108c例如藉由使成膜條件不同可以分別形成。例如,第一金屬氧化物層108a、第二金屬氧化物層108b及第三金屬氧化物層108c可以使其沉積氣體中的氧氣體的流量不同。
此時,作為第一金屬氧化物層108a的成膜條件,將氣體流量的總量中的氧氣體流量的比率(也稱為氧流量比或氧分壓)設定為0%以上且30%以下,較佳為5%以上且15%以下。藉由採用上述範圍內的氧流量比,可以降低第一金屬氧化物層108a的結晶性。
另一方面,作為第二金屬氧化物層108b及第三金屬氧化物層108c的成膜條件,將氧流量比設定大於30%且100%以下,較佳為50%以上且100%以下,更佳為70%以上且100%以下。藉由採用上述範圍內的氧流量比,可以提高第二金屬氧化物層108b及第三金屬氧化物層108c的結晶性。此外,第二金屬氧化物層108b及第三金屬氧化物層108c的氧流量比既可以相同又可以不同。
此外,藉由採用上述範圍內的氧流量比,在形成第三金屬氧化物層108c時,向第三金屬氧化物層108c的被形成面的絕緣層106中添加氧。添加到絕緣層106中的氧作為過量氧擴散至金屬氧化物層108中。因此,可以降低金屬氧化物層中的氧空位、氫及VoH。
形成第一金屬氧化物層108a、第二金屬氧化物層108b及第三金屬氧化物層108c時的基板溫度較佳為室溫(25℃)以上且200℃以下,更佳為室溫以上且130℃以下。藉由採用上述範圍的基板溫度,在使用大面積玻璃基板時,可以抑制基板的彎曲或歪曲。這裡,藉由使第一金屬氧化物層108a、第二金屬氧化物層108b及第三金屬氧化物層108c的基板溫度相同,可以提高生產率。此外,例如在使第一金屬氧化物層108a、第二金屬氧化物層108b及第三金屬氧化物層108c的基板溫度不同時,藉由增高形成第二金屬氧化物層108b及第三金屬氧化物層108c時的基板溫度,可以進一步提高第二金屬氧化物層108b及第三金屬氧化物層108c的結晶性。
例如,較佳的是,作為第一金屬氧化物層108a使用CAC-OS膜,作為第二金屬氧化物層108b及第三金屬氧化物層108c使用CAAC-OS膜。
第三金屬氧化物層108c的厚度為1nm以上且50nm以下,較佳為1nm以上且10nm以下。此外,第一金屬氧化物層108a的厚度為1nm以上且50nm以下,較佳為5nm以上且20nm以下。另外,第二金屬氧化物層108b的厚度大於5nm且100nm以下,較佳為5nm以上且30nm以下。
有時無法明確地確認到第一金屬氧化物層108a、第二金屬氧化物層108b、第三金屬氧化物層108c的邊界(介面)。於是,在說明本發明的一個實施方式的圖式中,以虛線示出這些邊界。
〈結構實例3〉
圖5A示出本發明的一個實施方式的半導體裝置的電晶體100C的俯視圖,圖5B及圖5C示出其剖面圖。圖5B相當於沿著圖5A所示的點劃線X1-X2切斷的剖面圖,圖5C相當於沿著圖5A所示的點劃線 Y1-Y2切斷的剖面圖。
電晶體100C與結構實例1所示的電晶體100A的不同之處在於導電層112a及導電層112b具有疊層結構。
導電層112a具有依次層疊導電層121a、導電層122a、導電層123a的疊層結構。導電層112b具有依次層疊導電層121b、導電層122b、導電層123b的疊層結構。
導電層121a及導電層121b以覆蓋第一金屬氧化物層108a的頂面及側面以及金屬氧化物層108b的側面的方式設置。此外,導電層121a及導電層121b在絕緣層106的區域106a上且與其接觸地設置。導電層122a及導電層122b分別設置在導電層121a及導電層121b上。導電層122a及導電層122b在平面中位於導電層121a及導電層121b的內側。導電層123a及導電層123b分別設置在導電層122a及導電層122b上。導電層123a及導電層123b分別以覆蓋導電層122a及導電層122b的頂面及側面的方式設置。此外,導電層123a及導電層123b的一部分分別以與導電層121a及導電層121b的頂面接觸的方式設置。導電層121a及導電層123a的端部在平面中被加工為大致一致。導電層121b及導電層123b的端部在平面中被加工為大致一致。
藉由採用上述結構,導電層122a可以被導電層121a及導電層123a圍繞。導電層122b可以被導電層121b及導電層123b圍繞。換言之,可以具有不使導電層122a及導電層122b的表面露出的結構。由此,可以作為導電層122a及導電層122b使用導電層122a及導電層122b所包含的成分容易擴散至金屬氧化物層108中的材料。
導電層122a及導電層122b較佳為使用其電阻比導電層121a、導電層121b、導電層123a及導電層123b低的材料。此外,導電層121a、 導電層121b、導電層123a及導電層123b可以使用與導電層122a及導電層122b相比導電層121a、導電層121b、導電層123a及導電層123b所包含的成分不容易擴散至金屬氧化物層108的材料。
導電層122a及導電層122b可以使用其導電性至少與導電層121a、導電層121b、導電層123a及導電層123b不同的材料。此外,導電層121a、導電層121b、導電層123a及導電層123b也可以使用不同的導電性材料。尤其是,藉由導電層121a、導電層121b、導電層123a及導電層123b使用相同的導電性材料,可以共同使用製造裝置,還可以降低這些的端部的接觸電阻,所以是較佳的。
例如,導電層121a、導電層121b、導電層123a及導電層123b較佳為使用鈦膜或鉬膜。此外,導電層122a及導電層122b較佳為使用鋁膜或銅膜。藉由採用上述結構,可以在降低導電層112a及導電層112b的佈線電阻的同時,實現電特性良好的電晶體。
以上是結構實例3的說明。
〈結構實例4〉
圖6A示出本發明的一個實施方式的半導體裝置的電晶體100D的俯視圖,圖6B及圖6C示出其剖面圖。圖6B相當於沿著圖6A所示的點劃線X1-X2切斷的剖面圖,圖6C相當於沿著圖6A所示的點劃線Y1-Y2切斷的剖面圖。
電晶體100D與上述結構實例3所示的電晶體100C的不同之處在於包括導電層120a、導電層120b及導電層112c。
導電層120a設置在絕緣層116上且包括與金屬氧化物層108重疊的部分。此時,導電層104被用作第一閘極,導電層120a被用作第二 閘極。絕緣層106的一部分被用作第一閘極絕緣層,絕緣層114及絕緣層116的一部分被用作第二閘極絕緣層。電晶體100D是包括一對閘極電極的電晶體。
電晶體100D是所謂通道蝕刻型雙閘極結構的電晶體。
導電層120b藉由連接部142b與導電層112b的導電層123b電連接。在連接部142b中,導電層120b藉由設置在絕緣層116及絕緣層114中的開口部與導電層112b的導電層123b電連接。
如圖6C所示,較佳為導電層120a與導電層104藉由連接部142a電連接。在連接部142a中設置有導電層121c、導電層122c及導電層123c。在連接部142a中,導電層120a藉由設置在絕緣層114及絕緣層116中的開口與導電層123c電連接,導電層121c藉由設置在絕緣層106中的開口與導電層104電連接。
電晶體100D中的金屬氧化物層108夾在導電層104與導電層120a之間。導電層104及導電層120a的通道長度方向的長度及通道寬度方向的長度比金屬氧化物層108的通道長度方向的長度及通道寬度方向的長度長。因此,金屬氧化物層108以夾著絕緣層106、絕緣層114及絕緣層116被導電層104及導電層120a覆蓋。換言之,在電晶體100D的通道寬度方向上導電層104及導電層120a圍繞金屬氧化物層108。
藉由採用這種結構,可以利用導電層104及導電層120a的電場電圍繞電晶體100D所包括的金屬氧化物層108。可以將如電晶體100C那樣利用導電層104及導電層120a的電場電圍繞形成有通道區域的金屬氧化物層的電晶體的裝置結構稱為Surrounded channel(S-channel:圍繞通道)結構。
因為電晶體100D具有S-channel結構,所以可以使用導電層104及導電層120a對金屬氧化物層108有效地施加用來引起通道的電場。由此,電晶體100D的驅動能力得到提高,從而可以得到高的通態電流特性。此外,由於可以增加通態電流,所以可以使電晶體100D微型化。另外,由於電晶體100D具有金屬氧化物層108被導電層104及導電層120a圍繞的結構,所以可以提高電晶體100D的機械強度。
藉由採用上述結構,在金屬氧化物層108中,載子流過的區域形成在金屬氧化物層108的導電層104一側及金屬氧化物層108的導電層120a一側的兩者,載子流過廣泛的區域,因此電晶體100D的載子遷移量得到增加。其結果,與對導電層104和導電層120a中的任一個供應規定的電位的情況相比,可以增加電晶體100D的通態電流。
如圖7A、圖7B及圖7C所示的電晶體100E,金屬氧化物層108也可以具有第三金屬氧化物層108c、第三金屬氧化物層108c上的第一金屬氧化物層108a、第一金屬氧化物層108a上的第二金屬氧化物層108b的疊層結構。
如圖8A、圖8B及圖8C所示的電晶體100F,也可以不設置導電層112c。在連接部142a中,導電層120a藉由設置在絕緣層106、絕緣層114及絕緣層116中的開口部與導電層104電連接。
以上是結構實例4的說明。
〈結構實例5〉
圖9A示出本發明的一個實施方式的半導體裝置的電晶體100G的俯視圖,圖9B及圖9C示出其剖面圖。圖9B相當於沿著圖9A所示的點劃線X1-X2切斷的剖面圖,圖9C相當於沿著圖9A所示的點劃線Y1-Y2切斷的剖面圖。
電晶體100G與上述結構實例4所示的電晶體100F的不同之處在於在金屬氧化物層108與導電層120a及導電層120b之間包括絕緣層150。
絕緣層150以覆蓋金屬氧化物層108的頂面及側面以及絕緣層106的方式設置。絕緣層150被用作在對導電層112a及導電層112b進行加工時用來保護金屬氧化物層108的通道保護層。
電晶體100G是所謂通道保護型雙閘極結構的電晶體。
絕緣層150可以使用與上述絕緣層114a相同的材料。
導電層112a及導電層112b分別設置在絕緣層150上。導電層112a藉由連接部152a與金屬氧化物層108電連接。在連接部152a中導電層112a藉由設置在絕緣層150中的開口部與金屬氧化物層108電連接。導電層112b藉由連接部152b與金屬氧化物層108電連接。在連接部152b中,導電層112b藉由設置在絕緣層150中的開口部與金屬氧化物層108電連接。
藉由採用上述結構,在金屬氧化物層108被絕緣層150覆蓋的狀態下進行用來加工導電層112a及導電層112b的蝕刻製程,因此可以具有金屬氧化物層108不容易受到蝕刻的損傷的結構。此外,藉由採用上述結構,可以擴大導電層112a及導電層112b的材料選擇範圍,所以是較佳的。
注意,這裡絕緣層150不僅覆蓋金屬氧化物層108的頂面而且覆蓋側面,不侷限於此。例如,也可以採用絕緣層150被加工為島狀,且位於金屬氧化物層108的通道形成區域上的結構。
以上是結構實例5的說明。
〈半導體裝置的組件〉
下面,對本實施方式的半導體裝置所包括的組件進行詳細說明。
[基板]
雖然對基板102的材料等沒有特別的限制,但是至少需要能夠承受後續的加熱處理的耐熱性。例如,作為基板102,可以使用玻璃基板、陶瓷基板、石英基板、藍寶石基板等。另外,還可以使用以矽或碳化矽為材料的單晶半導體基板或多晶半導體基板、以矽鍺等為材料的化合物半導體基板、SOI(Silicon On Insulator:絕緣層上覆矽)基板等,並且也可以將在這些基板上設置有半導體元件的基板用作基板102。當作為基板102使用玻璃基板時,藉由使用第6代(1500mm×1850mm)、第7代(1870mm×2200mm)、第8代(2200mm×2400mm)、第9代(2400mm×2800mm)、第10代(2950mm×3400mm)等的大面積基板,可以製造大型顯示裝置。
作為基板102,也可以使用撓性基板,並且在撓性基板上直接形成電晶體。或者,也可以在基板102與電晶體之間設置剝離層。剝離層可以在如下情況下使用,亦即在剝離層上製造半導體裝置的一部分或全部,然後將其從基板102分離並轉置到其他基板上的情況。此時,也可以將電晶體轉置到耐熱性低的基板或撓性基板上。
[導電層]
導電層104、導電層112a、導電層112b、導電層120a、導電層120b可以使用選自鉻、銅、鋁、金、銀、鋅、鉬、鉭、鈦、鎢、錳、鎳、鐵、鈷中的金屬元素、以上述金屬元素為成分的合金或者組合上述金屬元素的合金等形成。
另外,作為導電層104、導電層112a、導電層112b、導電層120a、導電層120b,也可以使用包含銦和錫的氧化物(In-Sn氧化物)、包含銦和鎢的氧化物(In-W氧化物)、包含銦、鎢及鋅的氧化物(In-W-Zn氧化物)、包含銦和鈦的氧化物(In-Ti氧化物)、包含銦、鈦及錫的氧化物(In-Ti-Sn氧化物)、包含銦和鋅的氧化物(In-Zn氧化物)、包含銦、錫及矽的氧化物(In-Sn-Si氧化物)、包含銦、鎵及鋅的氧化物(In-Ga-Zn氧化物)等氧化物導電體或氧化物半導體。
在此,說明氧化物導電體。在本說明書等中,也可以將氧化物導電體稱為OC(Oxide Conductor)。例如,氧化物導電體是藉由如下步驟而得到的:在具有半導體特性的金屬氧化物中形成氧空位,對該氧空位添加氫而在導帶附近形成施體能階。其結果,金屬氧化物的導電性增高,而成為導電體。可以將成為導電體的金屬氧化物稱為氧化物導電體。一般而言,由於具有半導體特性的金屬氧化物的能隙大,因此對可見光具有透光性。另一方面,氧化物導電體是在導帶附近具有施體能階的金屬氧化物。因此,在氧化物導電體中,起因於施體能階的吸收的影響小,而對可見光具有與具有半導體特性的金屬氧化物大致相同的透光性。
另外,作為導電層104、導電層112a、導電層112b,也可以應用Cu-X合金膜(X為Mn、Ni、Cr、Fe、Co、Mo、Ta或Ti)。藉由使用Cu-X合金膜,可以藉由濕蝕刻製程進行加工,從而可以抑制製造成本。
此外,導電層112a、導電層112b尤其較佳為包含上述金屬元素中的銅、鈦、鎢、鉭和鉬中的一個或多個。此外,當作為導電層112a、導電層112b使用銅膜或鋁膜時,可以降低導電層112a、112b的電阻,所以是較佳的。
[絕緣層]
作為被用作閘極絕緣層的絕緣層106可以使用包括利用電漿增強化學氣相沉積(PECVD:Plasma Enhanced Chemical Vapor Deposition)法、濺射法等形成的氮氧化矽膜、氮化矽膜、氮化鋁膜、氮化氧化鋁膜等中的一種以上的絕緣層。此外,絕緣層106也可以具有兩層以上的疊層結構。
作為設置在金屬氧化物層108上的絕緣層114a及絕緣層114b可以使用包括使用PECVD法、濺射法、ALD(Atomic Layer Deposition)法等形成的氧化矽膜、氧氮化矽膜、氧化鋁膜、氧化鉿膜、氧化釔膜、氧化鋯膜、氧化鎵膜、氧化鉭膜、氧化鎂膜、氧化鑭膜、氧化鈰膜和氧化釹膜等中的一種以上的絕緣層。尤其是,較佳為使用利用PECVD法形成的氧化矽膜或氧氮化矽膜。
作為絕緣層114a可以適當地使用厚度為5nm以上且150nm以下、較佳為5nm以上且50nm以下的絕緣膜。
此外,較佳為使絕緣層114a中的缺陷量較少,典型的是,藉由ESR(Electron Spin Resonance:電子自旋共振)測得的起因於矽的懸空鍵的g=2.001處呈現的信號的自旋密度較佳為3×1017spins/cm3以下。這是因為若絕緣層114a的缺陷密度高,氧則與該缺陷鍵合,而使絕緣層114a中的氧透過性減少。
在絕緣層114a中,有時從外部進入絕緣層114a的氧不是全部移動到絕緣層114a的外部,而是其一部分殘留在絕緣層114a的內部。另外,有時在氧進入絕緣層114a的同時,絕緣層114a中含有的氧移動到絕緣層114a的外部,而在絕緣層114a中發生氧的移動。在形成能夠使氧透過的絕緣膜作為絕緣層114a時,可以使從設置在絕緣層114a上的絕緣層114b脫離的氧經由絕緣層114a移動到金屬氧化物層 108a及金屬氧化物層108b中。
此外,絕緣層114a可以使用起因於氮氧化物的態密度低的絕緣膜形成。注意,該起因於氮氧化物的態密度有時會形成在金屬氧化物膜的價帶頂的能量(Ev_os)與金屬氧化物的導帶底的能量(Ec_os)之間。作為上述絕緣膜,可以使用氮氧化物的釋放量少的氧氮化矽膜或氮氧化物的釋放量少的氧氮化鋁膜等。
此外,在熱脫附譜分析(TDS:Thermal Desorption Spectroscopy)中,氮氧化物的釋放量少的氧氮化矽膜是氨釋放量比氮氧化物的釋放量多的膜,典型的是氨釋放量為1×1018cm/3以上且5×1019cm/3以下。注意,該氨釋放量為在進行膜表面溫度為50℃以上且650℃以下,較佳為50℃以上且550℃以下的加熱處理時的釋放量。
氮氧化物(NOx,x大於0且為2以下,較佳為1以上且2以下),典型的是NO2或NO,在絕緣層114a等中形成能階。該能階位於金屬氧化物層108a及金屬氧化物層108b的能隙中。由此,當氮氧化物擴散到絕緣層114a與金屬氧化物層108b的介面時,有時該能階在絕緣層114a一側俘獲電子。其結果是,被俘獲的電子留在絕緣層114a與金屬氧化物層108b的介面附近,由此使電晶體的臨界電壓向正方向漂移。
另外,當進行加熱處理時,氮氧化物與氨及氧起反應。當進行加熱處理時,絕緣層114a所包含的氮氧化物與絕緣層114b所包含的氨起反應,由此絕緣層114a所包含的氮氧化物減少。因此,在絕緣層114a與金屬氧化物層108b的介面中不容易俘獲電子。
藉由作為絕緣層114a使用上述絕緣膜,可以降低電晶體的臨界電壓的漂移,從而可以降低電晶體的電特性的變動。
另外,上述絕緣膜的利用SIMS測得的氮濃度為6×1020atoms/cm3以下。
藉由在基板溫度為220℃以上且350℃以下的情況下利用使用矽烷及一氧化二氮的PECVD法形成上述絕緣膜,可以形成緻密且硬度高的膜。
絕緣層114b為包含超過化學計量組成的氧的絕緣膜。該絕緣膜由於被加熱而其一部分的氧脫離。上述絕緣膜包括藉由TDS分析測得的氧釋放量為1.0×1019atoms/cm3以上,較佳為3.0×1020atoms/cm3以上的區域。上述氧釋放量為TDS分析中的加熱處理溫度為50℃以上且650℃以下或50℃以上且550℃以下的範圍的總量。此外,上述氧釋放量為在TDS中換算為氧原子的總量。
作為絕緣層114b可以使用厚度為30nm以上且500nm以下,較佳為50nm以上且400nm以下的氧化矽膜、氧氮化矽膜等。
此外,較佳為使絕緣層114b中的缺陷量較少,典型的是,藉由ESR測得的起因於矽的懸空鍵的g=2.001處呈現的信號的自旋密度低於1.5×1018spins/cm3,更佳為1×1018spins/cm3以下。由於絕緣層114b與絕緣層114a相比離金屬氧化物層108a及金屬氧化物層108b更遠,所以絕緣層114b的缺陷密度也可以高於絕緣層114a。
被用作保護層的絕緣層116可以使用上述材料。絕緣層116也可以具有兩層以上的疊層結構。絕緣層116較佳為使用不容易擴散、透過氧的絕緣膜。此外,絕緣層116較佳為使用雜質的釋放少且不容易擴散、透過雜質的絕緣膜。尤其是,絕緣層116較佳為包含氫的雜質的釋放少且不容易擴散、透過雜質。
作為絕緣層116可以適當地使用厚度為5nm以上且200nm以下、較佳為10nm以上150nm以下的絕緣膜。
[半導體層]
第一金屬氧化物層108a、第二金屬氧化物層108b及第三金屬氧化物層108c可以使用上述材料。
當第一金屬氧化物層108a、第二金屬氧化物層108b及第三金屬氧化物層108c為In-M-Zn氧化物時,用來形成In-M-Zn氧化物的濺射靶材的金屬元素的原子個數比較佳為滿足In>M。作為這種濺射靶材的金屬元素的原子個數比,可以舉出In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8、In:M:Zn=6:1:6、In:M:Zn=5:2:5等。
此外,當第一金屬氧化物層108a、第二金屬氧化物層108b及第三金屬氧化物層108c為In-M-Zn氧化物時,作為濺射靶材較佳為使用包含多晶In-M-Zn氧化物的靶材。藉由使用包含多晶In-M-Zn氧化物的靶材,容易形成具有結晶性的金屬氧化物層108。注意,所形成的金屬氧化物層108的原子個數比包含在上述濺射靶材中的金屬元素的原子個數比的±40%的範圍內的變動。例如,在用於金屬氧化物層108的濺射靶材的組成為In:Ga:Zn=4:2:4.1[原子個數比]時,有時所形成的金屬氧化物層108的組成為In:Ga:Zn=4:2:3[原子個數比]的附近。
第一金屬氧化物層108a、第二金屬氧化物層108b及第三金屬氧化物層108c的能隙為2eV以上,較佳為2.5eV以上。如此,藉由使用能隙較寬的金屬氧化物,可以降低電晶體的關態電流。
第一金屬氧化物層108a、第二金屬氧化物層108b及第三金屬氧化物層108c較佳為具有非單晶結構。非單晶結構例如包括CAAC-OS(C Axis Aligned Crystalline Oxide Semiconductor:c軸配向結晶氧化物半導體)、多晶結構、微晶結構或非晶結構。在非單晶結構中,非晶結構的缺陷態密度最高,而CAAC-OS的缺陷態密度最低。
〈電晶體的製造方法1〉
下面,對本發明的一個實施方式的電晶體的製造方法實例進行說明。這裡,以上述結構實例3所示的電晶體100C為例進行說明。
構成半導體裝置的薄膜(絕緣膜、半導體膜、導電膜等)可以利用濺射法、化學氣相沉積(CVD:Chemical Vapor Deposition)法、真空蒸鍍法、脈衝雷射沉積(PLD:Pulse Laser Deposition)法、原子層沉積(ALD:Atomic Layer Deposition)法等形成。作為CVD法有電漿增強化學氣相沉積(PECVD:Plasma Enhanced CVD)法、熱CVD法等。此外,作為熱CVD法之一,有有機金屬化學氣相沉積(MOCVD:Metal Organic CVD)法。
當形成構成半導體裝置的薄膜(絕緣膜、半導體膜、導電膜等)時可以使用旋塗法、浸漬法、噴塗法、液滴噴射法(噴墨法等)、印刷法(網版印刷、平板印刷等)的方法以及刮刀、輥塗機、幕式塗佈機、刮刀式塗佈機等的器具。
當對構成半導體裝置的薄膜進行加工時,可以利用光微影法等進行加工。除了上述方法以外,還可以利用奈米壓印法、噴砂法、剝離法等對薄膜進行加工。此外,可以利用金屬遮罩等陰影遮罩的成膜方法直接形成島狀的薄膜。
光微影法典型地有如下兩種方法。一個是在要進行加工的薄膜上 形成光阻遮罩,藉由蝕刻等對該薄膜進行加工,並去除光阻遮罩的方法。另一個是在形成感光性薄膜之後,進行曝光及顯影來將該薄膜加工為所希望的形狀的方法。
在光微影法中,作為用於曝光的光,例如可以使用i線(波長為365nm)、g線(波長為436nm)、h線(波長為405nm)或將這些光混合而成的光。另外,還可以使用紫外光、KrF雷射或ArF雷射等。另外,也可以利用液浸曝光技術進行曝光。作為用於曝光的光,也可以使用極紫外光(EUV:Extreme Ultra-Violet light)或X射線。另外,也可以使用電子束代替用於曝光的光。當使用極紫外光、X射線或電子束時,可以進行極其微細的加工,所以是較佳的。另外,在藉由電子束等光束的掃描進行曝光時,不需要光罩。
作為薄膜的蝕刻方法,可以利用乾蝕刻法、濕蝕刻法及噴砂法等。
圖10A至圖13B所示的各圖式是說明電晶體100C的製造方法的圖。在各圖式中,左側示出通道長度方向的剖面,右側示出通道寬度方向的剖面。
[導電層104的形成]
在基板102上形成導電膜,藉由光微影製程及蝕刻製程對該導電膜進行加工,來形成被用作閘極電極的導電層104。
[絕緣層106的形成]
接著,形成覆蓋導電層104及基板102的絕緣層106(圖10A)。絕緣層106例如可以使用PECVD法等形成。
在本實施方式中,作為絕緣層106可以使用厚度為400nm的氮化矽膜。上述氮化矽膜具有包括第一氮化矽膜、第二氮化矽膜及第三氮 化矽膜的三層疊層結構。該三層疊層結構的一個例子為如下。
可以在如下條件下形成厚度為50nm的第一氮化矽膜:例如,作為源氣體使用流量為200sccm的矽烷、流量為2000sccm的氮以及流量為100sccm的氨氣體,向PECVD設備的反應室內供應該源氣體,將反應室內的壓力控制為100Pa,使用27.12MHz的高頻電源供應2000W的功率。
可以在如下條件下形成厚度為300nm的第二氮化矽膜:作為源氣體使用流量為200sccm的矽烷、流量為2000sccm的氮以及流量為2000sccm的氨氣體,向PECVD設備的反應室內供應該源氣體,將反應室內的壓力控制為100Pa,使用27.12MHz的高頻電源供應2000W的功率。
第三氮化矽膜使用與第一氮化矽膜相同的成膜條件,以50nm的厚度形成即可。
另外,可以將形成上述第一氮化矽膜、第二氮化矽膜及第三氮化矽膜時的基板溫度設定為350℃以下。
藉由作為氮化矽膜採用上述三層疊層結構,例如在作為導電層104使用包含銅的導電膜的情況下,能夠發揮如下效果。第一氮化矽膜可以抑制銅元素從導電層104擴散。第二氮化矽膜具有釋放氫的功能,可以提高用作閘極絕緣膜的絕緣膜的耐壓。第三氮化矽膜是氫的釋放量少且可以抑制從第二氮化矽膜釋放的氫擴散的膜。
[區域106a的形成]
接著,較佳為對絕緣層106添加氧130a,在表面附近形成包含氧的區域106a(圖10B)。
作為對絕緣層106添加的氧130a,有氧自由基、氧原子、氧原子離子、氧分子離子等。此外,作為添加方法,有離子摻雜法、離子植入法、電漿處理等。另外,也可以在絕緣層106上形成抑制氧的脫離的膜之後,經過該膜對絕緣層106添加氧130a。該膜較佳為在添加氧130a之後去除。
上述抑制氧脫離的膜可以使用具有銦、鋅、鎵、錫、鋁、鉻、鉭、鈦、鉬、鎳、鐵、鈷和鎢中的一種以上的導電膜或半導體膜。
當利用電漿處理添加氧130a時,藉由利用微波使氧激發而產生高密度的氧電漿,可以增加對絕緣層106添加的氧量。此外,藉由在含氧的氛圍下進行電漿處理,可以去除附著在絕緣層106的表面的水或氫等。由此,可以降低有可能存在於後面形成的金屬氧化物層108中或金屬氧化物層108與絕緣層106的介面的水或氫。
當作為絕緣層106使用氮化矽或氮氧化矽等時,有時在絕緣層106中包含氫。此時,藉由進行上述電漿處理等,至少可以減低與金屬氧化物層108接觸的區域106a的氫濃度。
此外,在添加氧130a之前,也可以進行用來從絕緣層106的表面及膜中脫離水或氫的加熱處理。例如,在氮氛圍下以300℃以上且低於導電層104的耐熱溫度,較佳為300℃以上且450℃以下的溫度進行加熱處理。
[金屬氧化物層108的形成]
接著,在絕緣層106上形成金屬氧化物膜128a及金屬氧化物膜128b(圖10C)。
金屬氧化物膜128a及金屬氧化物膜128b較佳為利用使用金屬氧 化物靶材的濺射法形成。
當形成金屬氧化物膜128a及金屬氧化物膜128b時,除了氧氣體以外還可以混合惰性氣體(例如,氦氣體、氬氣體、氙氣體等)。此外,在形成金屬氧化物膜時的沉積氣體整體中氧氣體所佔的比率(以下,也稱為氧流量比)為0%以上且100%以下,較佳為5%以上且20%以下。
藉由降低氧流量比形成結晶性較低的金屬氧化物膜,可以得到導電性高的金屬氧化物膜。另一方面,藉由增高氧流量比形成結晶性較高的金屬氧化物膜,可以得到蝕刻耐性高且電穩定的金屬氧化物膜。
例如,金屬氧化物膜128a及金屬氧化物膜128b的形成條件為如下:將基板溫度設定為室溫以上且180℃以下,較佳為將基板溫度設定為室溫以上且140℃以下。在將形成金屬氧化物膜時的基板溫度例如設定為室溫以上且低於140℃時生產率得到提高,所以是較佳的。
更明確而言,形成金屬氧化物膜128a時的氧流量比為0%以上且低於50%,較佳為0%以上且30%以下,更佳為0%以上且20%以下,典型為10%。金屬氧化物膜128a的厚度為1nm以上且50nm以下,較佳為5nm以上且30nm以下。
形成金屬氧化物膜128b時的氧流量比為50%以上且100%以下,較佳為60%以上且100%以下,更佳為80%以上且100%以下,進一步較佳為90%以上且100%以下,典型為100%。此外,也可以使金屬氧化物膜128a與金屬氧化物膜128b的成膜時的壓力、溫度、功率等的條件不同,藉由使氧流量比以外的條件相同,可以縮短成膜製程所需要的時間,所以是較佳的。金屬氧化物膜128b的厚度大於10nm且100nm以下,較佳為20nm以上且50nm以下。
金屬氧化物膜128a及金屬氧化物膜128b的組成也可以互不相同。此時,當金屬氧化物膜128a及金屬氧化物膜128b都使用In-Ga-Zn氧化物時,金屬氧化物膜128a較佳為使用其In的組成比金屬氧化物膜128b高的氧化物靶材。
接著,藉由在金屬氧化物膜128b上形成光阻遮罩,利用蝕刻對金屬氧化物膜128a及金屬氧化物膜128b進行加工之後,去除光阻遮罩,來形成金屬氧化物層108a及金屬氧化物層108b(圖11A)。
在形成金屬氧化物層108a及金屬氧化物層108b之後,也可以進行加熱處理(以下稱為第一加熱處理)。藉由進行第一加熱處理,可以降低包含在金屬氧化物層108a及金屬氧化物層108b中的氫、水等。此外,以氫、水等的降低為目的的加熱處理也可以在將金屬氧化物膜128a及金屬氧化物膜128b加工為島狀之前進行。注意,第一加熱處理是金屬氧化物層的高度純化處理之一。
第一加熱處理的溫度例如為150℃以上且低於基板的應變點,較佳為200℃以上且450℃以下,更佳為250℃以上且350℃以下。
此外,第一加熱處理可以使用電爐、RTA裝置等。藉由使用RTA裝置,可只在短時間內以基板的應變點以上的溫度進行加熱處理。由此,可以縮短加熱時間。第一加熱處理可以在氮、氧、超乾燥空氣(含水量為20ppm以下,較佳為1ppm以下,更佳為10ppb以下的空氣)或稀有氣體(氬、氦等)的氛圍下進行。上述氮、氧、超乾燥空氣或稀有氣體較佳為不含有氫、水等。此外,在氮或稀有氣體氛圍下進行加熱處理之後,也可以在氧或超乾燥空氣氛圍下進行加熱。其結果是,在可以使金屬氧化物層中的氫、水等脫離的同時,可以將氧供應到金屬氧化物層中。其結果是,可以降低金屬氧化物層中的氧空位。
[導電層112a、導電層112b的形成]
接著,層疊將後面成為導電層121a及導電層121b的導電膜121以及將後面成為導電層122a及導電層122b的導電膜122形成。
接著,在導電膜122上形成光阻遮罩131(圖11B)。光阻遮罩131在有可能形成金屬氧化物層108的通道的區域上有間隔地設置。
然後,藉由利用蝕刻對導電膜122進行加工,形成導電層122a及導電層122b(圖11C)。此時,如圖11C所示,較佳為以導電層122a及導電層122b的端部位於光阻遮罩131的端部的內側的方式進行加工。
作為導電膜122的蝕刻較佳為使用各向同性蝕刻。較佳的是,可以使用濕蝕刻法。由此,可以以導電層122a及導電層122b的端部縮退的方式進行蝕刻。
在形成導電層122a及導電層122b之後去除光阻遮罩131。
接著,以覆蓋導電層121a、導電層122a及導電層122b的方式形成導電膜123。導電膜123是將後面成為導電層123a及導電層123b的導電膜。
接著,在導電膜123上形成光阻遮罩132(圖12A)。此時,光阻遮罩132可以使用與光阻遮罩131相同的光罩形成。由此,由於可以使用相同的光罩,所以可以抑制製造成本。
接著,藉由利用蝕刻對導電膜121及導電膜123進行加工,形成導電層121a、導電層121b、導電層123a及導電層123b。此時,較佳為以導電層121a與導電層123a的端部接觸且不使導電層122a露出的 方式進行加工。此時,較佳為以導電層121b與導電層123b的端部接觸且不使導電層122b露出的方式進行加工。
作為導電膜121及導電膜123的蝕刻較佳為使用各向異性蝕刻法。較佳的是,使用乾蝕刻法。由此,可以以不使導電層121a、導電層121b、導電層123a及導電層123b的端部縮退的方式進行加工。由此,可以以圍繞導電層122a的方式形成導電層121a及導電層123a。可以以圍繞導電層122b的方式形成導電層121b及導電層123b。此外,可以抑制電晶體的通道長度的偏差。
藉由作為導電層121a、導電層121b、導電層123a及導電層123b使用相同的導電膜,可以容易進行蝕刻。此外,由於不容易在導電層121a、導電層121b、導電層123a及導電層123b的端部形成凹凸,所以是較佳的。
然後,去除光阻遮罩132。藉由上述製程,可以形成導電層112a及導電層112b(圖12B)。
[絕緣層114、絕緣層116的形成]
接著,以覆蓋導電層112a、導電層112b及金屬氧化物層108等的方式形成絕緣層114及絕緣層116。
絕緣層114例如較佳為在含氧的氛圍下形成。尤其是,較佳為使用PECVD法形成。
作為絕緣層114例如較佳為在含氧的氛圍下使用PECVD設備形成氧化矽膜或氧氮化矽膜等氧化物膜。由此,可以形成缺陷少的絕緣層114。此時,作為源氣體,較佳為使用含矽的沉積氣體及氧化性氣體。作為含矽的沉積氣體的典型例子,有矽烷、乙矽烷、丙矽烷、氟化矽 烷等。作為氧化性氣體,有氧、臭氧、一氧化二氮、二氧化氮等。
絕緣層114可以使用絕緣層114a及絕緣層114a上的絕緣層114b的疊層結構。
在形成絕緣層114a時,相對於上述沉積氣體的氧化性氣體的流量大於20倍且小於100倍,較佳為40倍以上且80倍以下,處理室內的壓力小於100Pa,較佳為50Pa以下。
在本實施方式中,作為絕緣層114a,在如下條件下使用PECVD法形成氧氮化矽膜:保持基板102的溫度為220℃,作為源氣體使用流量為50sccm的矽烷及流量為2000sccm的一氧化二氮,處理室內的壓力為20Pa,並且,供應到平行板電極的高頻功率為13.56MHz、100W(功率密度為1.6×10-2W/cm2)。
作為絕緣層114b,在如下條件下形成氧化矽膜或氧氮化矽膜:將設置於進行了真空抽氣的PECVD設備的處理室內的基板溫度保持為180℃以上且280℃以下,較佳為200℃以上且240℃以下,將源氣體引入處理室中並將處理室內的壓力設定為100Pa以上且250Pa以下,較佳為100Pa以上且200Pa以下,並且,對設置於處理室內的電極供應0.17W/cm2以上且0.5W/cm2以下,較佳為0.25W/cm2以上且0.35W/cm2以下的高頻功率。
在絕緣層114b的成膜條件中,對具有上述壓力的反應室中供應具有上述功率密度的高頻功率,由此在電漿中源氣體的分解效率得到提高,氧自由基增加,且促進源氣體的氧化,使得絕緣層114b中的氧含量超過化學計量組成。另一方面,在以上述溫度範圍內的基板溫度形成的膜中,由於矽與氧的鍵合力較弱,因此,藉由後面製程的加熱處理而使膜中的氧的一部分脫離。其結果,可以形成氧含量超過化學計 量組成且由於被加熱而其一部分的氧脫離的絕緣膜。
在絕緣層114b的形成製程中,絕緣層114a被用作金屬氧化物層108的保護膜。因此,可以在減少對金屬氧化物層108造成的損傷的同時使用功率密度高的高頻功率形成絕緣層114b。
另外,在絕緣層114b的成膜條件中,藉由增加相對於氧化性氣體的含矽的沉積氣體的流量,可以減少絕緣層114b中的缺陷量。其結果,可以提高電晶體的可靠性。
上述說明絕緣層114具有絕緣層114a及絕緣層114b的兩層結構,但是本發明的一個實施方式不侷限於此,例如絕緣層114也可以具有絕緣層114a和絕緣層114b中的一個的單層結構。藉由使絕緣層114具有單層結構,可以提高生產率,所以是較佳的。此外,絕緣層114也可以具有三層以上的疊層結構。
接著,以覆蓋絕緣層114b的方式形成絕緣層116。絕緣層116可以藉由與絕緣層106相同的方法形成。
作為絕緣層116,例如較佳為使用氮化矽膜。絕緣層116例如可以藉由濺射法或PECVD法形成。例如,當藉由PECVD法形成絕緣層116時,使基板溫度低於400℃,較佳為低於375℃,進一步較佳為180℃以上且350℃以下。藉由將絕緣層116的成膜時的基板溫度設定為上述範圍,可以形成緻密的膜,所以是較佳的。另外,藉由將絕緣層116的成膜時的基板溫度設定為上述範圍,可以將絕緣層114a及絕緣層114b中的氧或者過量氧移動到金屬氧化物層108。
當作為絕緣層116使用PECVD法形成氮化矽膜時,作為源氣體較佳為使用含矽的沉積氣體、氮及氨。藉由使用少於氮的氨,在電漿中 氨離解而產生活性種。該活性種將包括在含矽的沉積氣體中的矽與氫之間的鍵合及氮分子之間的三鍵切斷。其結果,可以促進矽與氮的鍵合,而可以形成矽與氫的鍵合少、缺陷少且緻密的氮化矽膜。另一方面,在氨量比氮量多時,含矽的沉積氣體及氮的分解不進展,矽與氫的鍵合會殘留下來,而導致形成氫及缺陷較多且不緻密的氮化矽膜。由此,在源氣體中,將相對於氨的氮流量比設定為5倍以上且50倍以下,較佳為10倍以上且50倍以下。藉由採用上述流量比,可以形成氫及缺陷少且緻密的氮化矽。
在本實施方式中,作為絕緣層116,藉由使用PECVD設備並使用矽烷、氮及氨作為源氣體,形成厚度為100nm的氮化矽膜。矽烷的流量為50sccm,氮的流量為5000sccm,氨的流量為100sccm。將處理室的壓力設定為100Pa,將基板溫度設定為350℃,用27.12MHz的高頻電源對平行板電極供應1000W的高頻功率。PECVD設備是電極面積為6000cm2的平行板型PECVD設備,並且,將所供應的功率的換算為每單位面積的功率(功率密度)為1.7×10-1W/cm2
可以使絕緣層116的成膜溫度比絕緣層114a及絕緣層114b的成膜溫度高。藉由設定為高溫度,可以減少絕緣層116中的氫等雜質。此外,可以將形成絕緣層116時的基板溫度設定為與絕緣層114a及絕緣層114b相同的溫度。藉由採用相同的溫度,可以提高生產率。
較佳為在形成絕緣層114a之後,以不使絕緣層114a的表面暴露於大氣的方式在真空中連續形成絕緣層114b。藉由連續形成,可以抑制在絕緣層114a的表面附著來源於大氣成分的雜質。較佳為在形成絕緣層114b之後,以不使絕緣層114b的表面暴露於大氣的方式在真空中連續形成絕緣層116。藉由連續形成,可以抑制在絕緣層114b的表面附著來源於大氣成分的雜質。更佳為連續形成絕緣層114a、絕緣層114b及絕緣層116。藉由連續形成,可以抑制在絕緣層114a及絕緣層 114b的表面附著來源於大氣成分的雜質。
在形成絕緣層114a、絕緣層114b及絕緣層116之後,較佳為進行加熱處理(以下稱為第二加熱處理)。藉由第二加熱處理,可以降低包含在絕緣層114a、絕緣層114b及絕緣層116中的氮氧化物。或者,藉由第二加熱處理,可以將絕緣層114a及絕緣層114b中的氧的一部分移動到金屬氧化物層108以降低金屬氧化物層108中的氧空位及VoH。
例如將第二加熱處理的溫度典型地設定為低於400℃,較佳為低於375℃,進一步較佳為150℃以上且350℃以下。
第二加熱處理可以在氮、氧、超乾燥空氣(含水量為20ppm以下,較佳為1ppm以下,較佳為10ppb以下的空氣)或稀有氣體(氬、氦等)的氛圍下進行。上述氮、氧、超乾燥空氣或稀有氣體較佳為不含有氫、水等。該加熱處理可以使用電爐、RTA等來進行。
藉由上述製程,可以製造電晶體100C。
〈電晶體的製造方法2〉
以下,對與電晶體的製造方法1所示的製造方法不同的電晶體100C的製造方法進行說明。此外,直到形成導電層112a及導電層112b的步驟與上述電晶體的製造方法1相同(參照圖12B)。
[絕緣層114的形成]
接著,以覆蓋導電層112a、導電層112b及金屬氧化物層108等的方式形成絕緣層114(圖13A)。關於絕緣層114的形成方法,可以參照電晶體的製造方法1的記載,因此可以省略其詳細說明。此外,絕緣層114也可以具有絕緣層114a及絕緣層114b的兩層結構。本發明的一個實施方式不侷限於此,例如也可以具有絕緣層114a和絕緣層 114b中的一個的單層結構。藉由使絕緣層114具有單層結構,可以提高生產率,所以是較佳的。此外,絕緣層114也可以具有三層以上的疊層結構。
[加熱處理]
在形成絕緣層114之後進行加熱處理。藉由在形成絕緣層114之後進行加熱處理,可以降低包含在絕緣層114中的氮氧化物。此外,藉由加熱處理,可以將絕緣層114中的氧的一部分移動到金屬氧化物層108以降低金屬氧化物層108中的氧空位及VoH。
例如將加熱處理的溫度典型地設定為低於400℃,較佳為低於375℃,進一步較佳為150℃以上且350℃以下。
加熱處理可以在氮、氧、超乾燥空氣(含水量為20ppm以下,較佳為1ppm以下,較佳為10ppb以下的空氣)或稀有氣體(氬、氦等)的氛圍下進行。上述氮、氧、超乾燥空氣或稀有氣體較佳為不含有氫、水等。該加熱處理可以使用電爐、RTA等來進行。
[絕緣層116的形成]
接著,以覆蓋絕緣層114的方式形成絕緣層116。關於絕緣層116的形成方法可以參照電晶體的製造方法1的記載,因此省略其詳細說明。
關於形成絕緣層116之後的加熱處理可以參照電晶體的製造方法1的記載,因此省略其詳細說明。
藉由上述製程,可以製造電晶體100C。
〈電晶體的製造方法3〉
以下,對與電晶體的製造方法1所示的製造方法不同的電晶體100C的製造方法進行說明。此外,直到形成導電層112a及導電層112b的步驟上述電晶體的製造方法1相同(參照圖12B)。
[絕緣層114的形成]
接著,以覆蓋導電層112a、導電層112b及金屬氧化物層108等的方式形成絕緣層114a及絕緣層114b(圖13A)。關於絕緣層114a及絕緣層114b的形成方法,可以參照電晶體的製造方法1的記載,因此可以省略其詳細說明。
較佳為在形成絕緣層114a之後,以不使絕緣層114a的表面暴露於大氣的方式在真空中連續形成絕緣層114b。藉由連續形成,可以抑制在絕緣層114a的表面附著來源於大氣成分的雜質。
[絕緣層116的形成]
接著,以覆蓋絕緣層114的方式形成絕緣層116。
絕緣層116可以使用上述材料。例如,絕緣層116可以使用氧化鋁。此外,例如絕緣層116可以使用In-Ga-Zn氧化物。In-Ga-Zn氧化物在其組成中鎵的比例比銦的比例大(例如原子個數比為In:Ga:Zn=1:3:2)時,絕緣層116的能帶間隙大,所以是較佳的。絕緣層116可以使用濺射裝置形成。圖13B示出在絕緣層114b上形成絕緣層116時的成膜裝置內部的剖面示意圖。圖13B示意性地示出設置在濺射裝置內部的靶材191及產生在靶材191的下方的電漿192。
首先,在形成絕緣層116時,在含氧氣體的氛圍下進行電漿放電。此時,氧130b添加到成為絕緣層116的被形成面的絕緣層114b中。此外,在形成絕緣層116時,除了氧氣體以外還可以混合惰性氣體(例如,氦氣體、氬氣體、氙氣體等)。氧130b有時供應給絕緣層114a及 絕緣層114b。
形成絕緣層116時的沉積氣體整體中所佔的氧氣體的比率大於0%且100%以下,較佳為10%以上且100%以下,更佳為30%以上且100%以下。
較佳為在形成絕緣層114a之後,以不使絕緣層114a的表面暴露於大氣的方式在真空中連續形成絕緣層114b。藉由連續形成,可以抑制在絕緣層114a的表面附著來源於大氣成分的雜質。較佳為在形成絕緣層114b之後,以不使絕緣層114b的表面暴露於大氣的方式在真空中連續形成絕緣層116。藉由連續形成,可以抑制在絕緣層114b的表面附著來源於大氣成分的雜質。更佳為連續形成絕緣層114a、絕緣層114b及絕緣層116。藉由連續形成,可以抑制在絕緣層114a及絕緣層114b的表面附著來源於大氣成分的雜質。
在形成絕緣層114a、絕緣層114b及絕緣層116之後,較佳為進行加熱處理。藉由該加熱處理,可以降低包含在絕緣層114a、絕緣層114b及絕緣層116中的氮氧化物。或者,藉由該加熱處理,可以將絕緣層114a及絕緣層114b中的氧的一部分移動到金屬氧化物層108以降低金屬氧化物層108中的氧空位及VoH。
關於形成絕緣層116之後的加熱處理可以參照電晶體的製造方法1的記載,因此省略其詳細說明。
藉由上述製程,可以製造電晶體100C。
〈電晶體的製造方法4〉
以下,對與電晶體的製造方法1及電晶體的製造方法3所示的製造方法不同的電晶體100C的製造方法進行說明。此外,直到形成導電 層112a及導電層112b的步驟與上述電晶體的製造方法1相同(參照圖12B)。
[絕緣層114的形成]
接著,以覆蓋導電層112a、導電層112b及金屬氧化物層108等的方式形成絕緣層114a及絕緣層114b(圖13A)。關於絕緣層114a及絕緣層114b的形成方法,可以參照電晶體的製造方法1的記載,因此可以省略其詳細說明。
較佳為在形成絕緣層114a之後,以不使絕緣層114a的表面暴露於大氣的方式在真空中連續形成絕緣層114b。藉由連續形成,可以抑制在絕緣層114a的表面附著來源於大氣成分的雜質。
也可以在形成絕緣層114b之後進行加熱處理。藉由該加熱處理,可以降低包含在絕緣層114a及絕緣層114b中的氮氧化物。此外,藉由該加熱處理,可以將包含在絕緣層114a、絕緣層114b中的氧的一部分移動到金屬氧化物層108以降低包含在金屬氧化物層108中的氧空位、VoH。
將該加熱處理的溫度典型地設定為150℃以上且400℃以下,較佳為300℃以上且400℃以下,更佳為320℃以上且370℃以下。該加熱處理可以在氮、氧、超乾燥空氣(水含量為20ppm以下,較佳為1ppm以下,更佳為10ppb以下的空氣)或稀有氣體(氬、氦等)的氛圍下進行。上述氮、氧、超乾燥空氣或稀有氣體較佳為不含有氫、水等。該加熱處理可以使用電爐、RTA裝置等來進行。
[氧供應處理]
接著,以覆蓋絕緣層114b的方式形成導電膜134(圖14A)。
作為導電膜134可以使用金屬氧化物膜、金屬膜或合金膜。導電膜134的厚度較佳為極薄,例如為1nm以上且20nm以下,較佳為2nm以上且15nm以下,更佳為3nm以上且10nm以下,典型為5nm左右。
作為能夠用於導電膜134的金屬氧化物,例如可以舉出In-Sn氧化物、In-W氧化物、In-W-Zn氧化物、In-Ti氧化物、In-Ti-Sn氧化物、In-Zn氧化物、In-Sn-Si氧化物、In-Ga-Zn氧化物等。
作為導電膜134,可以使用包含鋁、鈦、鉻、鐵、鈷、鎳、銅、鋅、鎵、鉬、銀、銦、錫、鉭、鎢等的金屬膜或合金膜。
此外,作為導電膜134也可以使用除了矽或鍺等以外還包含這些的化合物半導體、氧化物半導體等的半導體膜。
這裡,使用金屬氧化物,在含氧的氛圍下利用濺射法等形成導電膜134,在形成時也可以向絕緣層114a及絕緣層114b中供應氧,所以是較佳的。
導電膜134的形成製程中的最高溫度為350℃以下,較佳為340℃以下,更佳為330℃以下,進一步較佳為300℃以下。
接著,進行經過導電膜134向絕緣層114a及絕緣層114b供應氧130c的處理(以下,也稱為氧供應處理)(圖14B)。
作為氧供應處理,較佳為利用氧氛圍下的電漿處理(也稱為氧電漿處理)。藉由使氧電漿化,可以將氧自由基、氧原子或氧離子經過導電膜134添加到絕緣層114a及絕緣層114b。引入到裝置的氣體中的氧流量比越高越好,氧流量比為50%以上且100%以下,較佳為60%以上且100%以下,更佳為80%以上且100%以下,進一步較佳為100%。
尤其是,作為處理裝置較佳為使用包括平行板型的一對電極的處理裝置。此時,藉由在一對電極之間施加偏置電壓的狀態下進行電漿處理,可以將更多的氧供應給絕緣層114a及絕緣層114b。偏置電壓例如以氧電漿中的氧離子容易移動到基板一側的方式施加。氧電漿中的氧離子例如由於帶O+或O2+等正電荷,所以以位於基板一側的電極成為負電位的方式施加偏置電壓,氧離子容易移動在基板一側。
這裡,在對絕緣層114a及絕緣層114b直接進行氧供應處理而不設置導電膜134時,有時供應給絕緣層114a及絕緣層114b的氧的一部分再次脫離到外部。但是,在本製造方法實例中,藉由在絕緣層114a及絕緣層114b上設置導電膜134,可以防止供應給絕緣層114a及絕緣層114b的氧再次脫離到外部。此外,藉由具有導電膜134,可以緩和對絕緣層114a及絕緣層114b的損傷。
此外,絕緣層114a及絕緣層114b上的導電膜134在氧供應處理中對一對電極之間施加偏置電壓時,具有容易吸引離子化了的氧的效果。因此,藉由設置導電膜134,可以相乘提高偏置電壓的施加所帶來的效果。
此外,當作為處理裝置使用乾蝕刻裝置、灰化裝置、PECVD設備等時,可以使用與其他處理相同的裝置,所以是較佳的。尤其是,較佳為使用灰化裝置。
氧供應處理例如較佳為在室溫以上且350℃以下,較佳為150℃以上且低於350℃,更佳為200℃以上且340℃以下的溫度下進行。
在處理裝置所包括的一對電極之間施加偏置電壓時,例如將偏置電壓設定為10V以上且1kV以下即可。或者,例如將偏置電壓的功率 密度設定為1W/cm2以上且5W/cm2以下即可。
氧供應處理不侷限於上述處理,可以使用經過導電膜134向絕緣層114a及絕緣層114b能夠供應氧的方法。例如也可以利用離子植入法、離子摻雜法或電漿浸沒離子佈植技術等經過導電膜將氧供應給絕緣膜。或者,也可以在氧氛圍下進行加熱處理。當使用這種處理時,導電膜134也可以被用作防止供應給絕緣層114a及絕緣層114b的氧脫離的覆蓋膜以及緩和對絕緣層114a及絕緣層114b的損傷的緩和層。
因進行氧供應處理而有時導電膜134變脆。此外,尤其是在作為導電膜134使用金屬或合金時,導電膜134有時因氧供應處理被氧化而電阻值變高或其一部分被蝕刻而薄膜化。在這種情況下,較佳為利用蝕刻去除導電膜134。
圖14C示出對導電膜134進行蝕刻之後的剖面圖。
導電膜134的蝕刻製程中的最高溫度為350℃以下,較佳為340℃以下,更佳為330℃以下,進一步較佳為300℃以下。
作為氧供應處理也可以進行含氧的氛圍下的電漿處理而不設置導電膜134。藉由不設置導電膜134,可以提高生產率。
[絕緣層116的形成]
接著,以覆蓋絕緣層114的方式形成絕緣層116。關於絕緣層116的形成方法可以參照電晶體的製造方法1的記載,因此省略其詳細說明。
藉由上述製程,可以製造電晶體100C。
以上是電晶體的製造方法實例的說明。
本實施方式所示的結構實例、製造方法實例及對應於這些實例的圖式等的至少一部分可以與其他結構實例、製造方法實例或圖式等適當地組合而實施。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當地組合而實施。
實施方式2
在本實施方式中,對包括在上述實施方式中例示的電晶體的顯示裝置的一個例子進行說明。
〈結構實例〉
圖15A是示出顯示裝置的一個例子的俯視圖。圖15A所示的顯示裝置700包括:設置在第一基板701上的像素部702;設置在第一基板701上的源極驅動電路部704及閘極驅動電路部706;以圍繞像素部702、源極驅動電路部704及閘極驅動電路部706的方式設置的密封劑712;以及以與第一基板701對置的方式設置的第二基板705。注意,由密封劑712密封第一基板701及第二基板705。也就是說,像素部702、源極驅動電路部704及閘極驅動電路部706被第一基板701、密封劑712及第二基板705密封。注意,雖然在圖15A中未圖示,但是在第一基板701與第二基板705之間設置有顯示元件。
另外,在顯示裝置700中,在第一基板701上的不由密封劑712圍繞的區域中設置有分別電連接於像素部702、源極驅動電路部704、閘極驅動電路部706及閘極驅動電路部706的FPC(Flexible printed circuit:軟性印刷電路板)端子部708。另外,FPC端子部708連接於FPC716,並且藉由FPC716對像素部702、源極驅動電路部704及閘極驅動電路部706供應各種信號等。另外,像素部702、源極驅動電路部704、閘極驅動電路部706以及FPC端子部708各與信號線710連接。由FPC716供應的各種信號等是藉由信號線710供應到像素部702、源極驅動電路部704、閘極驅動電路部706以及FPC端子部708的。
另外,也可以在顯示裝置700中設置多個閘極驅動電路部706。另外,作為顯示裝置700,雖然示出將源極驅動電路部704及閘極驅動電路部706形成在與像素部702相同的第一基板701上的例子,但是並不侷限於該結構。例如,可以只將閘極驅動電路部706形成在第一基板701上,或者可以只將源極驅動電路部704形成在第一基板701上。此時,也可以採用將形成有源極驅動電路或閘極驅動電路等的基板(例如,由單晶半導體膜、多晶半導體膜形成的驅動電路基板)形成於第一基板701的結構。另外,對另行形成的驅動電路基板的連接方法沒有特別的限制,而可以採用COG(Chip On Glass:晶粒玻璃接合)方法、打線接合方法等。
另外,顯示裝置700所包括的像素部702、源極驅動電路部704及閘極驅動電路部706包括多個電晶體,作為該電晶體可以適用本發明的一個實施方式的半導體裝置的電晶體。
另外,顯示裝置700可以包括各種元件。作為該元件,例如可以舉出電致發光(EL)元件(包含有機物及無機物的EL元件、有機EL元件、無機EL元件、LED等)、發光電晶體元件(根據電流發光的電晶體)、電子發射元件、液晶元件、電子墨水元件、電泳元件、電濕潤(electrowetting)元件、電漿顯示面板(PDP)、MEMS(微機電系統)、顯示器(例如柵光閥(GLV)、數位微鏡裝置(DMD)、數位微快門(DMS)元件、干涉調變(IMOD)元件等)、壓電陶瓷顯示器等。
此外,作為使用EL元件的顯示裝置的一個例子,有EL顯示器等。作為使用電子發射元件的顯示裝置的一個例子,有場致發射顯示器(FED)或SED方式平面型顯示器(SED:Surface-conduction Electron-emitter Display:表面傳導電子發射顯示器)等。作為使用液晶元件的顯示裝置的一個例子,有液晶顯示器(透射式液晶顯示器、半透射式液晶顯示器、反射式液晶顯示器、直觀式液晶顯示器、投射式液晶顯示器)等。作為使用電子墨水元件或電泳元件的顯示裝置的一個例子,有電子紙等。注意,當實現半透射式液晶顯示器或反射式液晶顯示器時,使像素電極的一部分或全部具有反射電極的功能,即可。例如,使像素電極的一部分或全部包含鋁、銀等,即可。並且,此時也可以將SRAM等記憶體電路設置在反射電極下。由此,可以進一步降低功耗。
作為顯示裝置700的顯示方式,可以採用逐行掃描方式或隔行掃描方式等。另外,作為當進行彩色顯示時在像素中控制的顏色要素,不侷限於RGB(R表示紅色,G表示綠色,B表示藍色)這三種顏色。例如,可以由R像素、G像素、B像素及W(白色)像素的四個像素構成。或者,如PenTile排列,也可以由RGB中的兩個顏色構成一個顏色要素,並根據顏色要素選擇不同的兩個顏色來構成。或者可以對RGB追加黃色(yellow)、青色(cyan)、洋紅色(magenta)等中的一種以上的顏色。另外,各個顏色要素的點的顯示區域的大小可以不同。但是,所公開的發明不侷限於彩色顯示的顯示裝置,而也可以應用於黑白顯示的顯示裝置。
另外,為了將白色光(W)用於背光(有機EL元件、無機EL元件、LED、螢光燈等)使顯示裝置進行全彩色顯示,也可以使用彩色層(也稱為濾光片)。作為彩色層,例如可以適當地組合紅色(R)、綠色(G)、藍色(B)、黃色(Y)等而使用。藉由使用彩色層,可以與不使用彩色 層的情況相比進一步提高顏色再現性。此時,也可以藉由設置包括彩色層的區域和不包括彩色層的區域,將不包括彩色層的區域中的白色光直接用於顯示。藉由部分地設置不包括彩色層的區域,在顯示明亮的影像時,有時可以減少彩色層所引起的亮度降低而減少功耗兩成至三成左右。但是,在使用有機EL元件或無機EL元件等自發光元件進行全彩色顯示時,也可以從具有各發光顏色的元件發射R、G、B、Y、W。藉由使用自發光元件,有時與使用彩色層的情況相比進一步減少功耗。
此外,作為彩色化的方式,除了經過濾色片將來自上述白色光的發光的一部分轉換為紅色、綠色及藍色的方式(濾色片方式)之外,還可以使用分別使用紅色、綠色及藍色的發光的方式(三色方式)以及將來自藍色光的發光的一部分轉換為紅色或綠色的方式(顏色轉換方式或量子點方式)。
圖15B所示的顯示裝置700A是能夠適當地用於具有大型螢幕的電子裝置的顯示裝置。例如,能夠適當地用於電視機、顯示器裝置、數位看板等。
顯示裝置700A包括多個源極驅動器IC721、一對閘極驅動器電路722。
多個源極驅動器IC721分別安裝在FPC723上。此外,多個FPC723的一個端子與基板701連接,另一個端子與印刷電路板724連接。藉由使FPC723彎曲,將印刷電路板724配置在像素部702的背面,安裝在電器設備中。
另一方面,閘極驅動器電路722形成在基板701上。由此,可以實現窄邊框的電子裝置。
藉由採用上述結構,可以實現大型且高清晰顯示裝置。例如,可以應用於螢幕尺寸為對角線30英寸以上、40英寸以上、50英寸以上或60英寸以上的顯示裝置。此外,可以實現分別率為全高清、4K2K、8K4K等極為高清晰的顯示裝置。
〈剖面結構實例〉
下面,使用圖16至圖18說明作為顯示元件使用液晶元件及EL元件的結構。圖16及圖17是沿著圖15A所示的點劃線Q-R的剖面圖,作為顯示元件使用液晶元件的結構。另外,圖18是沿著圖15A所示的點劃線Q-R的剖面圖,作為顯示元件使用EL元件的結構。
下面,首先說明圖16至圖18所示的共同部分,接著說明不同的部分。
[顯示裝置的共同部分的說明]
圖16至圖18所示的顯示裝置700包括:引線配線部711;像素部702;源極驅動電路部704;以及FPC端子部708。另外,引線配線部711包括信號線710。另外,像素部702包括電晶體750及電容器790。另外,源極驅動電路部704包括電晶體752。
作為電晶體750及電晶體752也可以使用實施方式1所示的電晶體。
在本實施方式中使用的電晶體包括高度純化且氧空位的形成被抑制的氧化物半導體膜。該電晶體可以降低關態電流。因此,可以延長影像信號等電信號的保持時間,在開啟電源的狀態下也可以延長寫入間隔。因此,可以降低更新工作的頻率,由此可以發揮抑制功耗的效果。
另外,在本實施方式中使用的電晶體能夠得到較高的場效移動率,因此能夠進行高速驅動。例如,藉由將這種能夠進行高速驅動的電晶體用於顯示裝置,可以在同一基板上形成像素部的切換電晶體及用於驅動電路部的驅動電晶體。也就是說,因為作為驅動電路不需要另行使用由矽晶圓等形成的半導體裝置,所以可以縮減半導體裝置的構件數。另外,在像素部中也可以藉由使用能夠進行高速驅動的電晶體提供高品質的影像。
電容器790包括:藉由對與電晶體750所包括的被用作第一閘極電極的導電膜相同的導電膜進行加工而形成的下部電極;以及藉由對與電晶體750所包括的被用作第二閘極電極的導電膜相同的導電膜進行加工而形成的上部電極。另外,在下部電極與上部電極之間設置有:藉由形成與電晶體750所包括的被用作第一閘極絕緣膜的絕緣膜相同的絕緣膜而形成的絕緣膜;以及藉由形成與電晶體750上的被用作保護絕緣膜的絕緣膜相同的絕緣膜而形成的絕緣膜。就是說,電容器790具有將用作電介質膜的絕緣膜夾在一對電極之間的疊層型結構。
另外,在圖16至圖18中,在電晶體750、電晶體752及電容器790上設置有平坦化絕緣膜770。
在圖16至圖18中示出像素部702所包括的電晶體750及源極驅動電路部704所包括的電晶體752使用相同的結構的電晶體的結構,但是不侷限於此。例如,像素部702及源極驅動電路部704也可以使用不同電晶體。明確而言,可以舉出像素部702使用頂閘極型電晶體,且源極驅動電路部704使用底閘極型電晶體的結構,或者像素部702使用底閘極型電晶體,且源極驅動電路部704使用頂閘極型電晶體的結構等。此外,也可以將上述源極驅動電路部704換稱為閘極驅動電路部。
信號線710與被用作電晶體750、752的源極電極及汲極電極的導電膜在同一製程中形成。作為信號線710,例如,當使用包含銅元素的材料時,起因於佈線電阻的信號延遲等較少,而可以實現大螢幕的顯示。
另外,FPC端子部708包括連接電極760、異方性導電膜780及FPC716。連接電極760與被用作電晶體750、752的源極電極及汲極電極的導電膜在同一製程中形成。另外,連接電極760與FPC716所包括的端子藉由異方性導電膜780電連接。
另外,作為第一基板701及第二基板705,例如可以使用玻璃基板。另外,作為第一基板701及第二基板705,也可以使用具有撓性的基板。作為該具有撓性的基板,例如可以舉出塑膠基板等。
另外,在第一基板701與第二基板705之間設置有結構體778。結構體778是柱狀的間隔物,用來控制第一基板701與第二基板705之間的距離(液晶盒厚(cell gap))。另外,作為結構體778,也可以使用球狀的間隔物。
另外,在第二基板705一側,設置有被用作黑矩陣的遮光膜738、被用作濾色片的彩色膜736、與遮光膜738及彩色膜736接觸的絕緣膜734。
[使用液晶元件的顯示裝置的結構實例]
圖16所示的顯示裝置700包括液晶元件775。液晶元件775包括導電膜772、導電膜774及液晶層776。導電膜774設置在第二基板705一側並被用作相對電極。圖16所示的顯示裝置700可以藉由由施加到導電膜772與導電膜774之間的電壓改變液晶層776的配向狀態,由 此控制光的透過及非透過而顯示影像。
導電膜772電連接到電晶體750所具有的被用作源極電極或汲極電極的導電膜。導電膜772形成在平坦化絕緣膜770上並被用作像素電極,亦即顯示元件的一個電極。
作為導電膜772,可以使用對可見光具有透光性的導電膜或對可見光具有反射性的導電膜。作為對可見光具有透光性的導電膜,例如,較佳為使用包含選自銦(In)、鋅(Zn)、錫(Sn)中的一種的材料。作為對可見光具有反射性的導電膜,例如,較佳為使用包含鋁或銀的材料。
在導電膜772使用對於可見光具有反射性的導電膜時,顯示裝置700為反射式液晶顯示裝置。此外,在導電膜772使用對於可見光具有透光性的導電膜時,顯示裝置700為透射式液晶顯示裝置。當採用反射式液晶顯示裝置時,在可見一側設置偏光板。另一方面,當採用透射式液晶顯示裝置時,設置夾住液晶元件的一對偏光板。
藉由改變導電膜772上的結構,可以改變液晶元件的驅動方式。圖17示出此時的一個例子。此外,圖17所示的顯示裝置700是作為液晶元件的驅動方式使用水平電場方式(例如,FFS模式)的結構的一個例子。在圖17所示的結構的情況下,導電膜772上設置有絕緣膜773,絕緣膜773上設置有導電膜774。此時,導電膜774具有共用電極的功能,可以由隔著絕緣膜773在導電膜772與導電膜774之間產生的電場控制液晶層776的配向狀態。
注意,雖然在圖16及圖17中未圖示,但是也可以分別在導電膜772和導電膜774中的一個或兩個與液晶層776接觸的一側設置配向膜。此外,雖然在圖16及圖17中未圖示,但是也可以適當地設置偏振構 件、相位差構件、抗反射構件等光學構件(光學基板)等。例如,也可以使用利用偏振基板及相位差基板的圓偏振。此外,作為光源,也可以使用背光、側光等。
在作為顯示元件使用液晶元件的情況下,可以使用熱致液晶、低分子液晶、高分子液晶、高分子分散型液晶、鐵電液晶、反鐵電液晶等。這些液晶材料根據條件呈現出膽固醇相、層列相、立方相、手性向列相、均質相等。
此外,在採用橫向電場方式的情況下,也可以使用不使用配向膜的呈現藍相的液晶。藍相是液晶相的一種,是指當使膽固醇型液晶的溫度上升時即將從膽固醇相轉變到均質相之前出現的相。因為藍相只在較窄的溫度範圍內出現,所以將其中混合了幾wt%以上的手性試劑的液晶組合物用於液晶層,以擴大溫度範圍。由於包含呈現藍相的液晶和手性試劑的液晶組成物的回應速度快,並且其具有光學各向同性。由此,包含呈現藍相的液晶和手性試劑的液晶組成物不需要配向處理。另外,因不需要設置配向膜而不需要摩擦處理,因此可以防止由於摩擦處理而引起的靜電破壞,由此可以降低製程中的液晶顯示裝置的不良和破損。此外,呈現藍相的液晶材料的視角依賴性小。
另外,當作為顯示元件使用液晶元件時,可以使用:TN(Twisted Nematic:扭曲向列)模式、IPS(In-Plane-Switching:平面內切換)模式、FFS(Fringe Field Switching:邊緣電場切換)模式、ASM(Axially Symmetric aligned Micro-cell:軸對稱排列微單元)模式、OCB(Optical Compensated Birefringence:光學補償彎曲)模式、FLC(Ferroelectric Liquid Crystal:鐵電性液晶)模式以及AFLC(AntiFerroelectric Liquid Crystal:反鐵電性液晶)模式等。
另外,顯示裝置700也可以使用常黑型液晶顯示裝置,例如採用 垂直配向(VA)模式的透過式液晶顯示裝置。作為垂直配向模式,可以舉出幾個例子,例如可以使用MVA(Multi-Domain Vertical Alignment:多域垂直配向)模式、PVA(Patterned Vertical Alignment:垂直配向構型)模式、ASV(Advanced Super View:超視覺)模式等。
[使用發光元件的顯示裝置]
圖18所示的顯示裝置700包括發光元件782。發光元件782包括導電膜772、EL層786及導電膜788。圖18所示的顯示裝置700藉由設置在每個像素中的發光元件782所包括的EL層786發光,可以顯示影像。此外,EL層786具有有機化合物或量子點等無機化合物。
作為可以用於有機化合物的材料,可以舉出螢光性材料或磷光性材料等。此外,作為可以用於量子點的材料,可以舉出膠狀量子點材料、合金型量子點材料、核殼(Core Shell)型量子點材料、核型量子點材料等。另外,也可以使用包含第12族與第16族、第13族與第15族或第14族與第16族的元素群的材料。或者,可以使用包含鎘(Cd)、硒(Se)、鋅(Zn)、硫(S)、磷(P)、銦(In)、碲(Te)、鉛(Pb)、鎵(Ga)、砷(As)、鋁(Al)等元素的量子點材料。
在圖18所示的顯示裝置700中,在平坦化絕緣膜770及導電膜772上設置有絕緣膜730。絕緣膜730覆蓋導電膜772的一部分。發光元件782採用頂部發射結構。因此,導電膜788具有透光性且使EL層786發射的光透過。注意,雖然在本實施方式中例示出頂部發射結構,但是不侷限於此。例如,也可以應用於向導電膜772一側發射光的底部發射結構或向導電膜772一側及導電膜788一側的兩者發射光的雙面發射結構。
另外,在與發光元件782重疊的位置上設置有彩色膜736,並在與絕緣膜730重疊的位置、引線配線部711及源極驅動電路部704中設 置有遮光膜738。彩色膜736及遮光膜738被絕緣膜734覆蓋。由密封膜732填充發光元件782與絕緣膜734之間。注意,雖然例示出在圖18所示的顯示裝置700中設置彩色膜736的結構,但是並不侷限於此。例如,在藉由在每個像素中將EL層786形成為島狀,亦即分別塗佈來形成EL層786時,也可以採用不設置彩色膜736的結構。
[在顯示裝置中設置輸入輸出裝置的結構實例]
也可以在圖16至圖18所示的顯示裝置700中設置輸入輸出裝置。作為該輸入輸出裝置例如可以舉出觸控面板等。
圖19示出對圖17所示的顯示裝置700設置觸控面板791的結構,圖20示出對圖18所示的顯示裝置700設置觸控面板791的結構。
圖19是在圖17所示的顯示裝置700中設置觸控面板791的剖面圖,圖20是在圖18所示的顯示裝置700中設置觸控面板791的剖面圖。
首先,以下說明圖19及圖20所示的觸控面板791。
圖19及圖20所示的觸控面板791是設置在基板705與彩色膜736之間的所謂In-Cell型觸控面板。觸控面板791在形成遮光膜738及彩色膜736之前形成在基板705一側即可。
觸控面板791包括遮光膜738、絕緣膜792、電極793、電極794、絕緣膜795、電極796、絕緣膜797。例如,可以檢測出藉由接近手指或觸控筆等被檢測體而產生的電極793與電極794之間的電容的變化。
此外,在圖19及圖20所示的電晶體750的上方示出電極793、電 極794的交叉部。電極796藉由設置在絕緣膜795中的開口部與夾住電極794的兩個電極793電連接。此外,在圖19及圖20中示出設置有電極796的區域設置在像素部702中的結構,但是不侷限於此,例如也可以形成在源極驅動電路部704中。
電極793及電極794設置在與遮光膜738重疊的區域。此外,如圖19所示,電極793較佳為以不與發光元件775重疊的方式設置。此外,如圖20所示,電極793較佳為以不與液晶元件782重疊的方式設置。換言之,電極793在與發光元件782及液晶元件775重疊的區域具有開口部。也就是說,電極793具有網格形狀。藉由採用這種結構,電極793可以具有不遮斷發光元件782所發射的光的結構。或者,電極793也可以具有不遮斷透過液晶元件775的光的結構。因此,由於因配置觸控面板791而導致的亮度下降極少,所以可以實現可見度高且功耗得到降低的顯示裝置。此外,電極794也可以具有相同的結構。
電極793及電極794由於不與發光元件782重疊,所以電極793及電極794可以使用可見光的穿透率低的金屬材料。或者,電極793及電極794由於不與液晶元件775重疊,所以電極793及電極794可以使用可見光的穿透率低的金屬材料。
因此,與使用可見光的穿透率高的氧化物材料的電極相比,可以降低電極793及電極794的電阻,由此可以提高觸控面板的感測器靈敏度。
例如,電極793、794、796也可以使用導電奈米線。該奈米線的直徑平均值可以為1nm以上且100nm以下,較佳為5nm以上且50nm以下,更佳為5nm以上且25nm以下。此外,作為上述奈米線可以使用Ag奈米線、Cu奈米線、Al奈米線等金屬奈米線或碳奈米管等。例如,在作為電極664、665、667中的任一個或全部使用Ag奈米線的情況下, 能夠實現89%以上的可見光穿透率及40Ω/平方以上且100Ω/平方以下的片電阻值。
雖然在圖19及圖20中示出In-Cell型觸控面板的結構,但是不侷限於此。例如,也可以採用形成在顯示裝置700上的所謂On-Cell型觸控面板或貼合於顯示裝置700而使用的所謂Out-Cell型觸控面板。
如此,本發明的一個實施方式的顯示裝置可以與各種方式的觸控面板組合而使用。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當地組合而實施。
實施方式3
在本實施方式中,參照圖21A至圖21C說明具有本發明的一個實施方式的半導體裝置的顯示裝置。
〈顯示裝置的電路結構〉
圖21A所示的顯示裝置包括:具有顯示元件的像素的區域(以下稱為像素部502);配置在像素部502外側並具有用來驅動像素的電路的電路部(以下稱為驅動電路部504);具有保護元件的功能的電路(以下稱為保護電路506);以及端子部507。此外,也可以採用不設置保護電路506的結構。
驅動電路部504的一部分或全部較佳為形成在與像素部502同一的基板上。由此,可以減少構件的數量或端子的數量。當驅動電路部504的一部分或全部與像素部502不形成在同一基板上時,驅動電路部 504的一部分或全部可以藉由COG或TAB(Tape Automated Bonding:捲帶自動接合)安裝。
像素部502包括用來驅動配置為X行(X為2以上的自然數)Y列(Y為2以上的自然數)的多個顯示元件的電路(以下稱為像素電路501),驅動電路部504包括輸出選擇像素的信號(掃描信號)的電路(以下稱為閘極驅動器504a)、用來供應用來驅動像素的顯示元件的信號(資料信號)的電路(以下稱為源極驅動器504b)等的驅動電路。
閘極驅動器504a具有移位暫存器等。閘極驅動器504a藉由端子部507被輸入用來驅動移位暫存器的信號並將該信號輸出。例如,閘極驅動器504a被輸入啟動脈衝信號、時脈信號等並輸出脈衝信號。閘極驅動器504a具有控制被供應掃描信號的佈線(以下稱為掃描線GL_1至GL_X)的電位的功能。另外,也可以設置多個閘極驅動器504a,並藉由多個閘極驅動器504a分別控制掃描線GL_1至GL_X。或者,閘極驅動器504a具有能夠供應初始化信號的功能。但是,不侷限於此,閘極驅動器504a可以供應其他信號。
源極驅動器504b具有移位暫存器等。除了用來驅動移位暫存器的信號之外,作為資料信號的基礎的信號(影像信號)也藉由端子部507被輸入到源極驅動器504b。源極驅動器504b具有以影像信號為基礎生成寫入到像素電路501的資料信號的功能。另外,源極驅動器504b具有依照輸入啟動脈衝信號、時脈信號等而得到的脈衝信號來控制資料信號的輸出的功能。另外,源極驅動器504b具有控制被供應資料信號的佈線(以下稱為資料線DL_1至DL_Y)的電位的功能。或者,源極驅動器504b具有能夠供應初始化信號的功能。但是,不侷限於此,源極驅動器504b也可以供應其他信號。
源極驅動器504b例如使用多個類比開關等來構成。藉由依次使多 個類比開關成為導通狀態,源極驅動器504b可以輸出對影像信號進行時間分割而成的信號作為資料信號。此外,也可以使用移位暫存器等構成源極驅動器504b。
多個像素電路501的每一個分別藉由被供應掃描信號的多個掃描線GL之一而被輸入脈衝信號,並藉由被供應資料信號的多個資料線DL之一而被輸入資料信號。另外,多個像素電路501的每一個藉由閘極驅動器504a來控制資料信號的資料的寫入及保持。例如,藉由掃描線GL_m(m是X以下的自然數)從閘極驅動器504a對第m行第n列的像素電路501輸入脈衝信號,並根據掃描線GL_m的電位而藉由資料線DL_n(n是Y以下的自然數)從源極驅動器504b對第m行第n列的像素電路501輸入資料信號。
圖21A所示的保護電路506例如與作為閘極驅動器504a和像素電路501之間的佈線的掃描線GL連接。或者,保護電路506與作為源極驅動器504b和像素電路501之間的佈線的資料線DL連接。或者,保護電路506可以與閘極驅動器504a和端子部507之間的佈線連接。或者,保護電路506可以與源極驅動器504b和端子部507之間的佈線連接。此外,端子部507是指設置有用來從外部的電路對顯示裝置輸入電源、控制信號及影像信號的端子的部分。
保護電路506是在自身所連接的佈線被供應一定範圍之外的電位時使該佈線和其他佈線導通的電路。
如圖21A所示,藉由對各像素部502和驅動電路部504設置保護電路506,可以提高顯示裝置對因ESD(Electro Static Discharge:靜電放電)等而產生的過電流的電阻。但是,保護電路506的結構不侷限於此,例如,也可以採用將閘極驅動器504a與保護電路506連接的結構或將源極驅動器504b與保護電路506連接的結構。或者,也可 以採用將端子部507與保護電路506連接的結構。
另外,雖然在圖21A中示出由閘極驅動器504a和源極驅動器504b形成驅動電路部504的例子,但是不侷限於此結構。例如,也可以採用只形成閘極驅動器504a並安裝另外準備的形成有源極驅動電路的基板(例如,使用單晶半導體膜、多晶半導體膜形成的驅動電路基板)的結構。
這裡,圖22示出與圖21A不同的結構。在圖22中,以圍繞排列在源極線方向上的多個像素的方式配置有一對源極線(例如,源極線DLa1及源極線DLb1)。此外,相鄰的兩個閘極線(例如,閘極線GL_1及閘極線GL_2)彼此電連接。
此外,與閘極線GL_1連接的像素與一個源極線(源極線DLa1、源極線DLa2等)連接,與閘極線GL_2連接的像素與另一個源極線(源極線DLb1、源極線DLb2等)連接。
藉由採用上述結構,可以同時選擇兩個閘極線。由此,可以使一水平期間的長度為圖21A所示的結構的2倍。由此,容易實現顯示裝置的高清晰化及大螢幕化。
此外,圖21A所示的多個像素電路501例如可以採用圖21B所示的結構。
圖21B所示的像素電路501包括液晶元件570、電晶體550以及電容元件560。作為電晶體550,可以應用上述實施方式所示的電晶體。
根據像素電路501的規格適當地設定液晶元件570的一對電極中的一個的電位。根據被寫入的資料設定液晶元件570的配向狀態。此 外,也可以對多個像素電路501的每一個所具有的液晶元件570的一對電極中的一個供應共用電位。此外,也可以對各行的像素電路501的每一個所具有的液晶元件570的一對電極中的一個供應不同電位。
例如,作為具備液晶元件570的顯示裝置的驅動方法也可以使用如下模式:TN模式;STN模式;VA模式;ASM(Axially Symmetric Aligned Micro-cell:軸對稱排列微單元)模式;OCB(Optically Compensated Birefringence:光學補償彎曲)模式;FLC(Ferroelectric Liquid Crystal:鐵電性液晶)模式;AFLC(AntiFerroelectric Liquid Crystal:反鐵電液晶)模式;MVA模式;PVA(Patterned Vertical Alignment:垂直配向構型)模式;IPS模式;FFS模式;或TBA(Transverse Bend Alignment:橫向彎曲配向)模式等。另外,作為顯示裝置的驅動方法,除了上述驅動方法之外,還有ECB(Electrically Controlled Birefringence:電控雙折射)模式、PDLC(Polymer Dispersed Liquid Crystal:聚合物分散型液晶)模式、PNLC(Polymer Network Liquid Crystal:聚合物網路型液晶)模式、賓主模式等。但是,不侷限於此,作為液晶元件及其驅動方式可以使用各種液晶元件及驅動方式。
在第m行第n列的像素電路501中,電晶體550的源極電極和汲極電極中的一個與資料線DL_n電連接,源極和汲極中的另一個與液晶元件570的一對電極中的另一個電連接。此外,電晶體550的閘極電極與掃描線GL_m電連接。電晶體550具有藉由成為導通狀態或關閉狀態而對資料信號的資料的寫入進行控制的功能。
電容元件560的一對電極中的一個與被供應電位的佈線(以下,稱為電位供應線VL)電連接,另一個與液晶元件570的一對電極中的另一個電連接。此外,根據像素電路501的規格適當地設定電位供應線VL的電位的值。電容元件560被用作儲存被寫入的資料的儲存電容器。
例如,在具有圖21B的像素電路501的顯示裝置中,例如,藉由圖21A所示的閘極驅動器504a依次選擇各行的像素電路501,並使電晶體550成為導通狀態而寫入資料信號的資料。
當電晶體550成為關閉狀態時,被寫入資料的像素電路501成為保持狀態。藉由按行依次進行上述步驟,可以顯示影像。
圖21A所示的多個像素電路501例如可以採用圖21C所示的結構。
另外,圖21C所示的像素電路501包括電晶體552及554、電容元件562以及發光元件572。可以將上述實施方式所示的電晶體應用於電晶體552和電晶體554中的一個或兩個。
電晶體552的源極電極和汲極電極中的一個電連接於被供應資料信號的佈線(以下,稱為信號線DL_n)。並且,電晶體552的閘極電極電連接於被供應閘極信號的佈線(以下,稱為掃描線GL_m)。
電晶體552具有藉由成為開啟狀態或關閉狀態而對資料信號的寫入進行控制的功能。
電容元件562的一對電極中的一個與被供應電位的佈線(以下,稱為電位供應線VL_a)電連接,另一個與電晶體552的源極電極和汲極電極中的另一個電連接。
電容元件562被用作儲存被寫入的資料的儲存電容器。
電晶體554的源極電極和汲極電極中的一個與電位供應線VL_a電連接。並且,電晶體554的閘極電極與電晶體552的源極電極和汲極 電極中的另一個電連接。
發光元件572的陽極和陰極中的一個與電位供應線VL_b電連接,另一個與電晶體554的源極電極和汲極電極中的另一個電連接。
作為發光元件572,可以使用例如有機電致發光元件(也稱為有機EL元件)等。注意,發光元件572並不侷限於有機EL元件,也可以為由無機材料構成的無機EL元件。
此外,高電源電位VDD施加到電位供應線VL_a和電位供應線VL_b中的一個,低電源電位VSS施加到另一個。
例如,在具有圖21C的像素電路501的顯示裝置中,例如,藉由圖21A所示的閘極驅動器504a依次選擇各行的像素電路501,並使電晶體552成為導通狀態而寫入資料信號的資料。
當電晶體552成為關閉狀態時,被寫入資料的像素電路501成為保持狀態。並且,流在電晶體554的源極電極與汲極電極之間的電流量根據被寫入的資料信號的電位被控制,發光元件572以對應於流動的電流量的亮度發光。藉由按行依次進行上述步驟,可以顯示影像。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當地組合而實施。
實施方式4
在本實施方式中,參照圖式對本發明的一個實施方式的電子裝置進行說明。
以下所例示的電子裝置是在顯示部中包括本發明的一個實施方式的顯示裝置的電子裝置,因此是可以實現高清晰的電子裝置。此外,可以同時實現高清晰及大螢幕的電子裝置。
在本發明的一個實施方式的電子裝置的顯示部上例如可以顯示具有全高清、4K2K、8K4K、16K8K或更高的解析度的影像。此外,顯示部的螢幕尺寸可以為對角線20英寸以上、對角線30英寸以上、對角線50英寸以上、對角線60英寸以上或對角線70英寸以上。
作為電子裝置,例如除了電視機、桌上型或膝上型個人電腦、用於電腦等的顯示器、數位看板(Digital Signage)、彈珠機等大型遊戲機等具有較大的螢幕的電子裝置以外,還可以舉出數位相機、數位攝影機、數位相框、行動電話機、可攜式遊戲機、可攜式資訊終端、音頻再生裝置等。
可以將本發明的一個實施方式的電子裝置或照明設備沿著房屋或高樓的內壁或外壁、汽車的內部裝飾或外部裝飾的曲面組裝。
本發明的一個實施方式的電子裝置也可以包括天線。藉由由天線接收信號,可以在顯示部上顯示影像或資料等。另外,在電子裝置包括天線及二次電池時,可以將天線用於非接觸電力傳送。
本發明的一個實施方式的電子裝置也可以包括感測器(該感測器具有測定如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)。
本發明的一個實施方式的電子裝置可以具有各種功能。例如,可 以具有如下功能:將各種資訊(靜態影像、動態圖片、文字影像等)顯示在顯示部上的功能;觸控面板的功能;顯示日曆、日期或時間等的功能;執行各種軟體(程式)的功能;進行無線通訊的功能;讀出儲存在存儲介質中的程式或資料的功能;等。
圖23A示出電視機的一個例子。在電視機7100中,外殼7101中組裝有顯示部7000。在此示出利用支架7103支撐外殼7101的結構。
可以對顯示部7000適用本發明的一個實施方式的顯示裝置。
可以藉由利用外殼7101所具備的操作開關、另外提供的遙控器7111進行圖23A所示的電視機7100的操作。另外,也可以在顯示部7000中具備觸控感測器,藉由用手指等觸摸顯示部7000可以進行顯示部7000的操作。另外,也可以在遙控器7111中具備顯示從該遙控器7111輸出的資料的顯示部。藉由利用遙控器7111所具備的操作鍵或觸控面板,可以進行頻道及音量的操作,並可以對顯示在顯示部7000上的影像進行操作。
另外,電視機7100採用具備接收機及數據機等的結構。可以藉由利用接收機接收一般的電視廣播。再者,藉由數據機將電視機連接到有線或無線方式的通訊網路,從而進行單向(從發送者到接收者)或雙向(發送者和接收者之間或接收者之間等)的資訊通訊。
圖23B示出筆記型個人電腦7200。筆記型個人電腦7200包括外殼7211、鍵盤7212、指向裝置7213、外部連接埠7214等。在外殼7211中組裝有顯示部7000。
可以對顯示部7000適用本發明的一個實施方式的顯示裝置。
圖23C、圖23D示出數位看板(Digital Signage)的例子。
圖23C所示的數位看板7300包括外殼7301、顯示部7000及揚聲器7303等。此外,還可以包括LED燈、操作鍵(包括電源開關或操作開關)、連接端子、各種感測器、麥克風等。
圖23D示出設置於圓柱狀柱子7401上的數位看板7400。數位看板7400包括沿著柱子7401的曲面設置的顯示部7000。
在圖23C、圖23D中,可以對顯示部7000適用本發明的一個實施方式的顯示裝置。
顯示部7000越大,顯示裝置一次能夠提供的資訊量越多。顯示部7000越大,容易吸引人的注意,例如可以提高廣告宣傳效果。
藉由將觸控面板用於顯示部7000,不僅可以在顯示部7000上顯示靜態影像或動態影像,使用者還能夠直覺性地進行操作,所以是較佳的。另外,在用於提供路線資訊或交通資訊等資訊的用途時,可以藉由直覺性的操作提高易用性。
如圖23C、圖23D所示,數位看板7300或數位看板7400較佳為藉由無線通訊可以與使用者所攜帶的智慧手機等資訊終端設備7311或資訊終端設備7411聯動。例如,顯示在顯示部7000上的廣告的資訊可以顯示在資訊終端設備7311或資訊終端設備7411的螢幕。此外,藉由操作資訊終端設備7311或資訊終端設備7411,可以切換顯示部7000的顯示。
此外,可以在數位看板7300或數位看板7400上以資訊終端設備7311或資訊終端設備7411的螢幕為操作單元(控制器)執行遊戲。由 此,非特定多數的使用者可以同時參加遊戲,享受遊戲的樂趣。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當地組合而實施。
實施方式5
在本實施方式中,將參照圖式對能夠適用本發明的一個實施方式的顯示裝置的電視機的實例進行說明。
圖24A示出電視機600的方塊圖。
本說明書的方塊圖示出在獨立的方塊中根據其功能進行分類的組件,但是,實際的組件難以根據功能被清楚地劃分,一個組件有時具有多個功能。
電視機600包括控制部601、記憶部602、通訊控制部603、影像處理電路604、解碼器電路605、影像信號接收部606、時序控制器607、源極驅動器608、閘極驅動器609、顯示面板620等。
上述實施方式所示的顯示裝置可以適用於圖24A中的顯示面板620。由此,可以實現大型、高解析度且可見度優異的電視機600。
控制部601例如可以被用作中央處理器(CPU:Central Processing Unit)。例如控制部601具有藉由系統匯流排630控制記憶部602、通訊控制部603、影像處理電路604、解碼器電路605及影像信號接收部606等的元件的功能。
在控制部601與各元件之間藉由系統匯流排630傳輸信號。此外, 控制部601具有對從藉由系統匯流排630連接的各元件輸入的信號進行處理的功能、生成向各元件輸出的信號的功能等,由此可以總體控制連接於系統匯流排630的各元件。
記憶部602被用作控制部601及影像處理電路604能夠訪問的暫存器、快取記憶體、主記憶體、二次記憶體等。
作為能夠用作二次記憶體的記憶體裝置例如可以使用應用可重寫的非揮發性記憶元件的記憶體裝置。例如,可以使用快閃記憶體、MRAM(Magnetoresistive Random Access Memory:磁阻隨機存取記憶體)、PRAM(Phase change RAM:相變隨機存取記憶體)、ReRAM(Resistive RAM:電阻隨機存取記憶體)、FeRAM(Ferroelectric RAM:鐵電隨機存取記憶體)等。
作為能夠被用作暫存器、快取記憶體、主記憶體等暫時記憶體的記憶體裝置,也可以使用DRAM(Dynamic RAM:動態隨機存取記憶體)、SRAM(Static Random Access Memory:靜態隨機存取記憶體)等非揮發性記憶元件。
例如,設置在主記憶體中的RAM,例如可以使用DRAM,虛擬地分配並使用作為控制部601的工作空間的記憶體空間。儲存在記憶部602中的作業系統、應用程式、程式模組、程式資料等在執行時被載入於RAM中。被載入於RAM中的這些資料、程式或程式模組被控制部601直接訪問並操作。
另一方面,可以在ROM中容納不需要改寫的BIOS(Basic Input/Output System:基本輸入/輸出系統)或韌體等。作為ROM,可以使用遮罩式ROM、OTPROM(One Time Programmable Read Only Memory:一次可程式唯讀記憶體)、EPROM(Erasable Programmable Read Only Memory:可擦除可程式唯讀記憶體)等。作為EPROM,可以舉出藉由紫外線照射可以消除存儲資料的UV-EPROM(Ultra-Violet Erasable Programmable Read Only Memory:紫外線-可擦除可程式唯讀記憶體)、EEPROM(Electrically Erasable Programmable Read Only Memory:電子式可抹除可程式唯讀記憶體)以及快閃記憶體等。
此外,可以採用除了記憶部602以外還能夠連接可拆卸記憶體裝置的結構。例如,較佳為包括被用作儲存裝置(storage device)的硬式磁碟機(Hard Disk Drive:HDD)或固體狀態驅動機(Solid State Drive:SSD)等儲存媒體驅動器、與快閃記憶體、藍光光碟、DVD等記錄介質連接的端子。由此,可以記錄影像。
通訊控制部603具有控制藉由電腦網路進行的通訊的功能。例如,控制部601根據來自控制部601的指令控制用來連接到電腦網路的控制信號,而向電腦網路發出該信號。由此,可以連接於World Wide Web(WWW:環球網)的基礎的網際網路、內聯網、外聯網、PAN(Personal Area Network:個人網)、LAN(Local Area Network:局域網)、CAN(Campus Area Network:校園網)、MAN(Metropolitan Area Network:都會區網路)、WAN(Wide Area Network:廣域網路)、GAN(Global Area Network:全球網)等電腦網路,來進行通訊。
通訊控制部603具有使用Wi-Fi(註冊商標)、Bluetooth(註冊商標)、ZigBee(註冊商標)等通訊標準與電腦網路或其他電子裝置進行通訊的功能。
通訊控制部603也可以具有以無線方式通訊的功能。例如可以設置天線及高頻電路(RF電路),進行RF信號的發送和接收。高頻電路是用來將各國法制所規定的頻帶的電磁信號與電信號彼此變換且使用該電磁信號以無線方式與其他通訊設備進行通訊的電路。作為實用性 的頻帶,一般使用幾十kHz至幾十GHz的頻帶。連接於天線的高頻電路具有對應於多個頻帶的高頻電路部,該高頻電路部可以具有放大器、混頻器、濾波器、DSP、RF收發器等。
影像信號接收部606例如包括天線、解調變電路及A-D轉換電路(類比-數位轉換電路)等。解調變電路具有解調從天線輸入的信號的功能。此外,A-D轉換電路具有將被解調的類比信號轉換為數位信號的功能。將由影像信號接收部606處理的信號發送到解碼器電路605。
解碼器電路605具有如下功能:對從影像信號接收部606輸入的數位信號所包括的影像資料根據被發送的廣播規格進行解碼,生成發送到影像處理電路的信號。例如,作為8K廣播的廣播規格,有H.265 | MPEG-H High Efficiency Video Coding(高效率視頻編碼)(簡稱:HEVC)等。
作為影像信號接收部606所包括的天線能夠接收的廣播電波,可以舉出地面廣播或從衛星發送的電波等。此外,作為天線能夠接收的廣播電波,有類比廣播、數位廣播等,還有影像及聲音的廣播或只有聲音的廣播等。例如,可以接收以UHF頻帶(大約300MHz至3GHz)或VHF頻帶(30MHz至300MHz)中的指定的頻帶發送的廣播電波。例如,藉由使用在多個頻帶中接收的多個資料,可以提高傳輸率,從而可以獲得更多的資訊。由此,可以將具有超過全高清的解析度的影像顯示在顯示面板620上。例如,可以顯示具有4K2K、8K4K、16K8K或更高的解析度的影像。
另外,影像信號接收部606及解碼器電路605也可以具有如下結構:利用藉由電腦網路的資料傳送技術發送的廣播資料而生成發送到影像處理電路604的信號。此時,在接收的信號為數位信號的情況下,影像信號接收部606也可以不包括解調變電路及A-D轉換電路等。
影像處理電路604具有根據從解碼器電路605輸入的影像信號生成輸入到時序控制器607的影像信號的功能。
時序控制器607具有如下功能:基於被影像處理電路604處理的影像信號等中的同步信號生成對閘極驅動器609及源極驅動器608輸出的信號(時脈信號、啟動脈衝信號等信號),並將其輸出。此外,時序控制器607具有除了上述信號以外生成輸出到源極驅動器608的視訊信號的功能。
顯示面板620包括多個像素621。各像素621利用從閘極驅動器609及源極驅動器608供應的信號驅動。這裡示出像素數為7680×4320的具有對應於8K4K規格的解析度的顯示面板的例子。此外,顯示面板620的解析度不侷限於此,也可以為對應於全高清(像素數為1920×1080)或4K2K(像素數為3840×2160)等的規格的解析度。
作為圖24A所示的控制部601或影像處理電路604的結構,例如可以採用包括處理器的結構。例如,控制部601可以使用被用作中央處理器(CPU:Central Processing Unit)的處理器。此外,作為影像處理電路604例如可以使用DSP(Digital Signal Processor:數位信號處理器)、GPU(Graphics Processing Unit:圖形處理器)等其他處理器。此外,控制部601或影像處理電路604也可以具有由FPGA(Field Programmable Gate Array:現場可程式邏輯閘陣列)或FPAA(Field Programmable Analog Array:現場可程式類比陣列)等PLD(Programmable Logic Device:可程式邏輯裝置)實現這種處理器的結構。
處理器藉由解釋且執行來自各種程式的指令,進行各種資料處理或程式控制。有可能由處理器執行的程式可以被儲存在處理器中的記 憶體區域,也可以被儲存在另外設置的記憶體裝置中。
也可以將控制部601、記憶部602、通訊控制部603、影像處理電路604、解碼器電路605、影像信號接收部606及時序控制器607的各個具有的功能中的兩個以上的功能集中於一個IC晶片上,構成系統LSI。例如,也可以採用包括處理器、解碼器電路、調諧器電路、A-D轉換電路、DRAM及SRAM等的系統LSI。
此外,也可以將在通道形成區域中使用氧化物半導體而實現了極小的關態電流的電晶體用於控制部601或其他組件所包括的IC等。由於該電晶體的關態電流極小,所以藉由將該電晶體用作保持流入被用作記憶元件的電容器的電荷(資料)的開關,可以確保較長的資料保持期間。藉由將該特性用於控制部601等暫存器或快取記憶體,可以僅在必要時使控制部601工作,而在其他情況下使之前的處理資訊儲存在該記憶元件中,從而可以實現常閉運算(normally off computing)。由此,可以實現電視機600的低功耗化。
注意,圖24A所示的電視機600的結構是一個例子,並不需要包括所有組件。電視機600包括在圖24A所示的組件中需要的組件即可。此外,電視機600也可以包括圖24A所示的組件以外的組件。
例如,電視機600也可以具有對圖24A所示的結構追加外部介面、聲音輸出部、觸控面板單元、傳感單元、照相單元等的結構。例如,作為外部介面,有USB(Universal Serial Bus:通用序列匯流排)端子、LAN(Local Area Network:局域網)連接用端子、電源接收用端子、聲音輸出用端子、聲音輸入用端子、影像輸出用端子、影像輸入用端子等外部連接端子、使用紅外線、可見光、紫外線等的光通訊用收發機、設置在外殼中的物理按鈕等。此外,例如作為聲音輸入輸出部,有音響控制器、麥克風、揚聲器等。
下面,對影像處理電路604進行更詳細的說明。
影像處理電路604較佳為具有根據從解碼器電路605輸入的影像信號執行影像處理的功能。
作為影像處理,例如可以舉出雜訊去除處理、灰階轉換處理、色調校正處理、亮度校正處理等。作為色調校正處理或亮度校正處理,例如有伽瑪校正等。
此外,影像處理電路604較佳為具有執行如下處理的功能:隨著解析度的上變頻(up-conversion)的像素間補充處理;以及隨著圖框頻率的上變頻的圖框間補充等的處理。
例如,在雜訊去除處理中,去除各種雜訊諸如產生在文字等的輪廓附近的蚊狀雜訊、產生在高速的動態影像中的塊狀雜訊、產生閃爍的隨機雜訊、解析度的上變頻所引起的點狀雜訊等。
灰階轉換處理是指將影像的灰階轉換為對應於顯示面板620的輸出特性的灰階的處理。例如,在使灰階數增大時,藉由對以較小的灰階數輸入的影像補充且分配對應於各像素的灰階值,可以進行使長條圖平滑化的處理。此外,擴大動態範圍的高動態範圍(HDR)處理也包括在灰階變化處理中。
像素間補充處理在使解析度上變頻時補充本來不存在的資料。例如,參照目標像素附近的像素藉由補充資料以顯示該像素的中間顏色。
色調校正處理是指校正影像的色調的處理。此外,亮度校正處理 是指校正影像的亮度(亮度對比)的處理。例如,檢測設置有電視機600的空間的照明的種類、亮度或顏色純度等,根據這種資訊將顯示在顯示面板620的影像的亮度或色調校正為最適合的亮度或色調。或者,也可以具有對照所顯示的影像和預先儲存的影像一覽表中的各種場景的影像,而將顯示的影像校正為適合於最接近的場景的影像的亮度或色調的功能。
在圖框間補充中,當增大顯示的影像的圖框頻率時,生成本來不存在的圖框(補充圖框)的影像。例如,利用某兩個影像的差異生成插入在兩個影像之間的補充圖框的影像。或者,也可以在兩個影像之間生成多個補充圖框的影像。例如,當從解碼器電路605輸入的影像信號的圖框頻率為60Hz時,藉由生成多個補充圖框,可以將輸入到時序控制器607的影像信號的圖框頻率增大為兩倍的120Hz、四倍的240Hz或八倍的480Hz等。
影像處理電路604較佳為具有利用神經網路執行影像處理的功能。在圖24A中示出影像處理電路604包括神經網路610的例子。
例如,藉由利用神經網路610,例如可以從包括在影像中的影像資料提取特徵。此外,影像處理電路604可以根據被提取的特徵選擇最適合的校正方法或選擇用來校正的參數。
或者,神經網路610本身也可以具有進行影像處理的功能。換言之,也可以採用藉由將進行影像處理之前的影像資料輸入到神經網路610,輸出進行了影像處理的影像資料的結構。
此外,用於神經網路610的權係數的資料作為資料表儲存在記憶部602中。包括該權係數的資料表例如藉由利用通訊控制部603經過電腦網路更新為最新的資料表。或者,影像處理電路604具有學習功 能,能夠更新包括權係數的資料表。
圖24B示出影像處理電路604所包括的神經網路610的示意圖。
在本說明書等中,神經網路是指類比生物的神經回路網,藉由學習決定神經元之間的結合強度,由此具有問題解決能力的所有模型。神經網路包括輸入層、中間層(也稱為隱藏層)、輸出層。將神經網路中的包括兩層以上的中間層的神經網路稱為深度學習(或深度神經網路(DNN))。
此外,在本說明書等中,在說明神經網路時,有時將根據已經有的資訊決定神經元與神經元的結合強度(也稱為權係數)稱為“學習”。另外,在本說明書等中,有時將使用藉由學習得到的結合強度構成神經網路,從該結構導出新的結論稱為“推論”。
神經網路610包括輸入層611、一個以上的中間層612及輸出層613。對輸入層611輸入輸入資料。從輸出層613輸出輸出資料。
輸入層611、中間層612及輸出層613分別包括神經元615。這裡,神經元615是指能夠實現積和運算的電路元件(積和運算元件)。在圖24B中以箭頭示出兩個層所包括的兩個神經元615間的資料輸入輸出方向。
各層的運算處理藉由前層所包括的神經元615的輸出與權係數的積和運算執行。例如,在輸入層的第i個神經元的輸出為xi,且輸出xi與下一個中間層612的第j神經元的結合強度(權係數)為wji時,該中間層的第j神經元的輸出為yj=f(Σwji.xi)。注意,i、j是1以上的整數。這裡,f(x)為啟動函數,作為啟動函數可以使用sigmoid函數、臨界值函數等。以下,同樣地,對各層的神經元615的輸出為 前一段層的神經元615的輸出與權係數的積和運算結果利用啟動函數進行運算而得到的值。此外,層與層的結合既可以是所有神經元彼此結合的全結合,又可以是一部分的神經元彼此結合的部分結合。
圖24B示出包括三個中間層612的例子。此外,中間層612的個數不侷限於此,也可以包括一個以上的中間層。此外,一個中間層612所包括的神經元的個數根據規格適當地改變即可。例如,一個中間層612所包括的神經元615的個數既可以多於輸入層611或輸出層613所包括的神經元615的個數,又可以少於輸入層611或輸出層613所包括的神經元615的個數。
神經元615彼此的結合強度的指標的權係數根據學習決定。學習可以由電視機600所包括的處理器執行,較佳為由專用伺服器或雲等運算處理能力高的電腦執行。根據學習決定的權係數作為表格儲存在上述記憶部602中,由影像處理電路604讀出而使用。此外,該表格可以根據需要經過電腦網路更新。
以上是神經網路的說明。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當地組合而實施。
實施例1
在本實施例中,對本發明的一個實施方式的絕緣層進行評價。在本實施例中,製造樣本A1、樣本A2及樣本A3。樣本A1及樣本A2是本發明的一個實施方式的絕緣層,相當於實施方式所示的絕緣層106及區域106a。樣本A3是用於比較的絕緣層。
〈樣本A1、樣本A2、樣本A3〉
首先,在本實施例中製造的各樣本進行說明。
樣本A1、樣本A2及樣本A3在玻璃基板上使用PECVD設備形成厚度為400nm的氮化矽膜。氮化矽膜的成膜條件為如下:基板溫度為350℃;將流量為200sccm的矽烷氣體、流量為2000sccm的氮氣體及流量為100sccm的氨氣體引入到腔室內;壓力為100Pa;以及對設置在PECVD設備內的平行板電極之間供應2000W的RF功率,形成厚度為50nm的氮化矽膜,接著,將氨氣體流量改變為2000sccm形成厚度為300nm的氮化矽膜,接著,將氨氣體流量改變為100sccm形成厚度為50nm的氮化矽膜。
接著,在含氧的氛圍下進行電漿處理。對樣本A1進行的電漿處理的條件為如下:溫度為350℃;壓力為40Pa;電源功率為3000W;氧流量為3000sccm;處理時間為300秒。對樣本A2進行的電漿處理的條件為如下:溫度為350℃;壓力為40Pa;電源功率為3000W;一氧化二氮流量為3000sccm;處理時間為300秒。對樣本A3不進行電漿處理。此外,對樣本A1及樣本A2分別在形成氮化矽膜之後在真空中連續進行電漿處理。
作為用於上述各樣本的玻璃基板的尺寸為600mm×720mm。
〈X射線光電子能譜〉
接著,對比較正極1及正極1進行X射線光電子能譜(XPS)。
圖25示出藉由XPS測定得到的Si2p、O1s及N1s的光譜。在圖25中,橫軸示出鍵合能量(Binding Energy)[eV],縱軸示出光電子的強度(Intensity)(任意單位)。
在XPS測定中,使用ULVAC-PHI公司製造的Quantera SXM。作為X射線源使用單色的Al Kα線(1486.6eV)。檢測區域為100μm Φ。提取角為45°。檢測深度可認為大約4nm至5nm。
如圖25所示,可知與樣本A3相比,樣本A1及樣本A2的來源於Si-N鍵合的峰值大,來源於Si-O鍵合的峰值小。因此,可確認到樣本A1及樣本A2藉由上述電漿處理氮化矽膜表面附近被氧化,形成其氧含量比氮化矽多的區域。
〈TEM觀察〉
接著,利用聚焦離子束(FIB:Focused Ion Beam)對樣本A1至樣本A3進行薄片化,利用TEM觀察樣本的剖面。TEM觀察使用日立高新技術公司製造的穿透式電子顯微鏡H-9500,加速電壓為300kV。
圖26A示出樣本A1的剖面TEM影像,圖26B示出樣本A2的剖面TEM影像,圖26C示出樣本A3的剖面TEM影像。圖26A至圖26C是倍率200萬倍的透射電子影像(TE影像:Transmission Electron Image)。
如圖26A及圖26B所示,在樣本A1及樣本A2的表面附近可確認到TEM影像的濃度(亮度)不同的區域。鑒於上述XPS測定結果可認為在樣本A1及樣本A2中氮化矽的表面被氧化,形成其氧含量比氮化矽多的區域(以下稱為氧化區域)。此外,在樣本A3的表面附近確認不到TEM影像的濃度(亮度)不同的層。
對樣本A1及樣本A2的氧化區域的厚度進行測長。圖27A示出樣本A1的測長部分,圖27B示出樣本A2的測長部分。在圖27A及圖27B中,以箭頭示出測長的部分。對樣本A1及樣本A2的三個區域進行測長。表X示出測長結果。在表X中,記載為“氧化區域”的列示出每 個測長部分的值。記載為“平均”的列示出每個樣本的平均值。此外,可知樣本A1、樣本A2的氧化區域的厚度都是6nm左右。
Figure 106112076-A0202-12-0097-1
本實施例所示的結構可以與其他實施方式或其他實施例所示的結構適當地組合而實施。
實施例2
在本實施例中,對本發明的一個實施方式的金屬氧化物膜的結晶性進行評價。此外,在本實施例中,製造樣本B1至樣本B29、樣本C1至樣本C25。另外,樣本B1至樣本B29及樣本C1至樣本C25是本發明的一個實施方式的金屬氧化物膜。
〈樣本B1至樣本B29、樣本C1至樣本C25〉
首先,對在本實施例中製造的各樣本進行說明。
樣本B1至樣本B29具有在玻璃基板上形成有厚度為100nm的金屬氧化物膜的結構。使用濺射裝置形成金屬氧化物膜,作為濺射靶材使用In-Ga-Zn氧化物(In:Ga:Zn=4:2:3[原子個數比])。在濺射處理中,壓力控制為0.6Pa,施加2500W的AC功率。樣本B1至樣本B29的成膜時的基板溫度(Tsub.)、Ar流量及O2流量不同。表2示出成膜條件的主要內容。
樣本C1至樣本C25具有在玻璃基板上形成有厚度為100nm的金屬氧化物膜的結構。使用濺射裝置形成金屬氧化物膜,作為濺射靶材使用In-Ga-Zn氧化物(In:Ga:Zn=1:1:1.2[原子個數比])。在濺射處理中,壓力控制為0.6Pa,施加2500W的AC功率。樣本C1至樣本C25的成膜時的基板溫度(Tsub.)、Ar流量及O2流量不同。表3示出成膜條件的主要內容。
在表2及表3中,基板溫度(Tsub.)的項目中的室溫(R.T.)的記載意味著在成膜時不對基板進行加熱。此外,記載有氧流量比的列示出對於氣體總流量(Ar流量及O2流量的總和)的O2流量的比率。
樣本B1至樣本B29、樣本C1至樣本C25都利用平行板型濺射裝置形成。作為在上述各樣本的成膜中施加到靶材的電源,使用AC電源。另外,作為用於上述各樣本的玻璃基板的尺寸為600mm×720mm。
[表2]
Figure 106112076-A0202-12-0099-2
Figure 106112076-A0202-12-0100-3
〈利用XRD測定的結晶性評價〉
接著,對樣本B1至樣本B29及樣本C1至樣本C25進行X射線分析(XRD)測定。圖28示出進行XRD的玻璃基板的座標。圖28示出600mm×720mm尺寸的玻璃基板中的進行XRD的部分的座標。在圖28中,由白色圓圈表示的B、E、H示出進行XRD分析的座標。
圖29示出樣本B1至樣本B17的XRD光譜,圖30示出樣本B18至樣本B29。圖31示出樣本C1至樣本C15的XRD光譜,圖32示出樣本C16至樣本C25的XRD光譜。
圖29至圖32示出利用out-of-plane法的一種的θ-2θ掃描法得到的光譜,橫軸示出繞射強度2θ[deg.],縱軸示出繞射X射線強度(任意單位)。θ-2θ掃描法是如下方法:在改變X射線的入射角的同時,使與X射線源對置地設置的檢測器的角度與入射角相同,來測定出X射線繞射強度的方法。θ-2θ掃描法有時稱為粉末法。
在XRD測定中,使用Bruker AXS公司製造的X射線繞射裝置D8 ADVANCE。作為X射線源使用波長為0.15418nm的CuKα線,掃描範圍為2θ=15deg.至50deg.,步進寬度為0.01deg.,掃描速度為6.0deg./分鐘。
如圖29及圖30所示,在樣本B2至樣本B29中確認到示出CAAC-OS的2θ=31°附近的峰值。由此可知樣本B2至樣本B29具有良好的結晶性。在樣本B1中確認不到2θ=31°附近的明確的峰值。由此可知樣本B1的結晶性比樣本B2至樣本B29低。
如圖29及圖30所示,成膜時的基板溫度或氧氣體流量比越高,2θ=31°附近的峰值強度則越大。此外,在樣本B1至樣本B29中確認不 到可認為來源於尖晶石相的2θ=36°附近的峰值。
如圖31及圖32所示,在樣本C3至樣本C5、樣本C7至樣本C10、樣本C12至樣本C25中確認到示出CAAC-OS的2θ=31°附近的峰值。由此可知樣本C3至樣本C5、樣本C7至樣本C10、樣本C12至樣本C25具有良好的結晶性。此外,在樣本C2及樣本C11中確認到示出CAAC-OS的2θ=31°附近的微小的峰值。由此可知樣本C2及樣本C11也具有結晶性。在樣本C1及樣本C6中確認不到2θ=31°附近的明確的峰值。由此可知樣本C1及樣本C6的結晶性比樣本C2至樣本C5、樣本C7至樣本C25低。
如圖29及圖30所示,成膜時的基板溫度或氧氣體流量比越高,2θ=31°附近的峰值強度則越大。此外,在樣本C3至樣本C5、樣本C8至樣本C10、樣本C12至樣本C15、樣本C17至樣本C20、樣本C22至樣本C25中確認到可認為來源於尖晶石相的2θ=36°附近的峰值。
本實施例所示的結構可以與其他實施方式或其他實施例所示的結構適當地組合而實施。
實施例3
在本實施例中,製造電晶體並進行該電晶體的電特性的評價。在本實施例中,製造下面所示的樣本D1至樣本D4進行評價。樣本D1至樣本D4的金屬氧化物層108的結構不同。此外,在樣本D1至樣本D4中,電晶體的通道寬度W為50μm,通道長度L為2μm及3μm。在樣本D1至樣本D4中,作為每個通道寬度L的電晶體分別形成10個電晶體。
〈樣本D1的製造方法〉
首先,在基板102上形成導電層104。作為基板102使用玻璃基板。 此外,使用濺射裝置形成厚度為100nm的鎢膜,對其進行加工來形成導電層104。
接著,在基板102及導電層104上形成絕緣層106。作為絕緣層106,使用PECVD設備形成厚度為400nm的氮化矽膜及該氮化矽上的厚度為5nm的氧氮化矽膜。
絕緣層106的成膜條件為如下:基板溫度為350℃;將流量為200sccm的矽烷氣體、流量為2000sccm的氮氣體及流量為100sccm的氨氣體引入到腔室內;壓力為100Pa;以及對設置在PECVD設備內的平行板電極之間供應2000W的RF功率,形成厚度為50nm的氮化矽膜,接著,將氨氣體流量改變為2000sccm形成厚度為300nm的氮化矽膜,接著,將氨氣體流量改變為100sccm形成厚度為50nm的氮化矽膜。在形成氮化矽膜之後,在PECVD設備的腔室內連續形成氧氮化矽膜。該氧氮化矽膜的成膜條件為如下:基板溫度為350℃;將流量為20sccm的矽烷氣體、流量為3000sccm的一氧化二氮氣體引入到腔室內;壓力為40Pa;以及對設置在PECVD設備內的平行板電極供應500W的RF功率。
接著,在絕緣層106上形成金屬氧化物層108。此外,樣本D1的金屬氧化物層108具有第一金屬氧化物層IGZOa1及第一金屬氧化物層IGZOa1上的第二金屬氧化物層IGZOb1的疊層結構。第一金屬氧化物層IGZOa1及第二金屬氧化物層IGZOb1使用濺射裝置在真空中連續形成。對該層疊的金屬氧化物層進行加工來得到金屬氧化物層108。
作為IGZOa1,形成厚度為20nm的In-Ga-Zn氧化物膜。此外,IGZOa1的成膜條件為如下:基板溫度為室溫;將流量為180sccm的氬氣體及流量為20sccm的氧氣體(氧流量比為10%)引入到腔室內;壓力為0.6Pa;以及對多晶金屬氧化物濺射靶材(In:Ga:Zn=1:1:1.2[原子個數比]) 施加2500W的AC功率。
作為IGZOb1,形成厚度為30nm的IGZO膜。此外,IGZOb1的成膜條件為如下:基板溫度為室溫;將流量為100sccm的氬氣體及流量為100sccm的氧氣體(氧流量比為50%)引入到腔室內;壓力為0.6Pa;以及對多晶金屬氧化物濺射靶材(In:Ga:Zn=1:1:1.2[原子個數比])施加2500W的AC功率。
接著,在氮氛圍下以350℃進行一個小時的加熱處理之後,在氮及氧的混合氣體氛圍下以350℃進行一個小時的加熱處理。
接著,在絕緣層106及金屬氧化物層108上形成導電膜,對該導電膜進行加工,形成導電層112a、導電層112b。這裡,作為導電膜,使用濺射裝置依次形成厚度為30nm的第一鈦膜及厚度為200nm的銅膜。接著,藉由光微影法對銅膜進行蝕刻,然後使用濺射裝置形成厚度為100nm的第二鈦膜。接著,藉由光微影法,對第一鈦膜及第二鈦膜進行蝕刻,由此形成導電層112a、導電層112b。
接著,使用磷酸對露出的金屬氧化物層108的表面(背後通道一側)進行洗滌。在磷酸洗滌中,使用將濃度為85weight%的磷酸稀釋為100分之1的水溶液,在室溫下進行15秒鐘的處理。
接著,在含氧氣體的氛圍下進行第一電漿處理。在第一電漿處理中使用PECVD設備。第一電漿處理的條件為如下:溫度為350℃;壓力為40Pa;電源功率為3000W;氧流量為3000sccm(氧流量比為100%);以及處理時間為300秒。
接著,在絕緣層106、金屬氧化物層108、導電層112a及導電層112b上形成絕緣層114。作為絕緣層114使用PECVD設備形成厚度為 50nm的氧氮化矽膜。
絕緣層114的成膜條件為如下:基板溫度為350℃;將流量為100sccm的矽烷氣體、流量為2500sccm的一氧化二氮氣體引入到腔室內;壓力為400Pa;以及對設置在PECVD設備內的平行板電極之間供應500W的RF功率。
在形成絕緣層114之後在PECVD設備的腔室內連續進行第二電漿處理。第二電漿處理的條件為如下:溫度為350℃;壓力為40Pa;電源功率為3000W;氧流量為3000sccm(氧流量比為100%);以及處理時間為600秒鐘。
接著,在含氧氣體的氛圍下進行第三電漿處理。在第三電漿處理中使用PECVD設備。第三電漿處理的條件為如下:溫度為220℃;壓力為40Pa;電源功率為3000W;氧流量為3000sccm(氧流量比為100%);以及處理時間為600秒鐘。
接著,在絕緣層114上形成絕緣層116。作為絕緣層116,使用PECVD設備形成厚度為100nm的氮化矽膜。
此外,絕緣層116的成膜條件為如下:基板溫度為350℃;將流量為50sccm的矽烷氣體、流量為5000sccm的氮氣體、流量為100sccm的氨氣體引入到腔室內;壓力為100Pa;以及對設置在PECVD設備內的平行板電極之間供應1000W的RF功率。
然後,在絕緣層116上形成厚度大約為1.5μm的丙烯酸樹脂膜,對該膜進行加工得到平坦化膜。丙烯酸樹脂膜使用丙烯酸類感光性樹脂,在氮氛圍下以250℃進行一個小時的燒成來形成。然後,在氮氛圍下,以250℃進行一個小時的加熱處理。
藉由上述製程製造本實施例的樣本D1。
〈樣本D2的製造方法〉
樣本D2與上述樣本D1的不同之處在於金屬氧化物層108的成膜條件。其他製程與樣本D1相同。
樣本D2的金屬氧化物層108具有第三金屬氧化物層IGZOc2、第三金屬氧化物層IGZOc2上的第一金屬氧化物層IGZOa2、第一金屬氧化物層IGZOa2上的第二金屬氧化物層IGZOb2的疊層結構。第三金屬氧化物層IGZOc2、第一金屬氧化物層IGZOa2及第二金屬氧化物層IGZOb2使用濺射裝置在真空中連續形成。對該層疊的金屬氧化物層進行加工來得到金屬氧化物層108。
作為IGZOc2,形成厚度為5nm的IGZO膜。此外,IGZOc2的成膜條件為如下:基板溫度為室溫;將流量為100sccm的氬氣體及流量為100sccm的氧氣體(氧流量比為50%)引入到腔室內;壓力為0.6Pa;以及對多晶金屬氧化物濺射靶材(In:Ga:Zn=1:1:1.2[原子個數比])施加2500W的AC功率。
作為IGZOa2,形成厚度為20nm的In-Ga-Zn氧化物膜。此外,IGZOa2的成膜條件為如下:基板溫度為室溫;將流量為180sccm的氬氣體及流量為20sccm的氧氣體(氧流量比為10%)引入到腔室內;壓力為0.6Pa;以及對多晶金屬氧化物濺射靶材(In:Ga:Zn=1:1:1.2[原子個數比])施加2500W的AC功率。
作為IGZOb2,形成厚度為30nm的IGZO膜。此外,IGZOb2的成膜條件為如下:基板溫度為室溫;將流量為100sccm的氬氣體及流量為100sccm的氧氣體(氧流量比為50%)引入到腔室內;壓力為0.6Pa; 以及對多晶金屬氧化物濺射靶材(In:Ga:Zn=1:1:1.2[原子個數比])施加2500W的AC功率。
藉由上述製程製造本實施例的樣本D2。
〈樣本D3的製造方法〉
樣本D3與上述樣本D1的不同之處在於金屬氧化物層108的成膜條件。其他製程與樣本D1相同。
樣本D3的金屬氧化物層108具有第一金屬氧化物層IGZOa3、第一金屬氧化物層IGZOa3上的第二金屬氧化物層IGZOb3的疊層結構。第一金屬氧化物層IGZOa3及第二金屬氧化物層IGZOb3使用濺射裝置在真空中連續形成。對該層疊的金屬氧化物層進行加工來得到金屬氧化物層108。
作為IGZOa3,形成厚度為20nm的In-Ga-Zn氧化物膜。此外,IGZOa3的成膜條件為如下:基板溫度為70℃;將流量為180sccm的氬氣體及流量為20sccm的氧氣體(氧流量比為10%)引入到腔室內;壓力為0.6Pa;以及對多晶金屬氧化物濺射靶材(In:Ga:Zn=1:1:1.2[原子個數比])施加2500W的AC功率。
作為IGZOb3,形成厚度為30nm的IGZO膜。此外,IGZOb3的成膜條件為如下:基板溫度為70℃;將流量為100sccm的氬氣體及流量為100sccm的氧氣體(氧流量比為50%)引入到腔室內;壓力為0.6Pa;以及對多晶金屬氧化物濺射靶材(In:Ga:Zn=1:1:1.2[原子個數比])施加2500W的AC功率。
藉由上述製程製造本實施例的樣本D3。
〈樣本D4的製造方法〉
樣本D4與上述樣本D1的不同之處在於金屬氧化物層108的成膜條件。其他製程與樣本D1相同。
樣本D4的金屬氧化物層108具有第三金屬氧化物層IGZOc4、第三金屬氧化物層IGZOc4上的第一金屬氧化物層IGZOa4、第一金屬氧化物層IGZOa4上的第二金屬氧化物層IGZOb4的疊層結構。第三金屬氧化物層IGZOc4、第一金屬氧化物層IGZOa4及第二金屬氧化物層IGZOb4使用濺射裝置在真空中連續形成。對該層疊的金屬氧化物層進行加工來得到金屬氧化物層108。
作為IGZOc4,形成厚度為5nm的IGZO膜。此外,IGZOc4的成膜條件為如下:基板溫度為70℃;將流量為100sccm的氬氣體及流量為100sccm的氧氣體(氧流量比為50%)引入到腔室內;壓力為0.6Pa;以及對多晶金屬氧化物濺射靶材(In:Ga:Zn=1:1:1.2[原子個數比])施加2500W的AC功率。
作為IGZOa4,形成厚度為20nm的In-Ga-Zn氧化物膜。此外,IGZOa4的成膜條件為如下:基板溫度為70℃;將流量為180sccm的氬氣體及流量為20sccm的氧氣體(氧流量比為10%)引入到腔室內;壓力為0.6Pa;以及對多晶金屬氧化物濺射靶材(In:Ga:Zn=1:1:1.2[原子個數比])施加2500W的AC功率。
作為IGZOb4,形成厚度為30nm的IGZO膜。此外,IGZOb4的成膜條件為如下:基板溫度為70℃;將流量為100sccm的氬氣體及流量為100sccm的氧氣體(氧流量比為50%)引入到腔室內;壓力為0.6Pa;以及對多晶金屬氧化物濺射靶材(In:Ga:Zn=1:1:1.2[原子個數比])施加2500W的AC功率。
藉由上述製程製造本實施例的樣本D4。
〈電晶體的電特性〉
下面,對上述製造的樣本的電晶體的Id-Vg特性進行測定。作為電晶體的Id-Vg特性的測定條件,閘極電壓(Vg)從-15V每隔0.25V變化到+20V。此外,將源極電壓(Vs)設定為0V,將汲極電壓(Vd)設定為0.1V及15V。另外,各樣本的測定個數為10個。
接著,對上述製造的樣本D1至樣本D4的Id-Vg特性進行測定。圖33A及圖33B示出樣本D1的Id-Vg特性結果,圖34A及圖34B示出樣本D2的Id-Vg特性結果,圖35A及圖35B示出樣本D3的Id-Vg特性結果,圖36A及圖36B示出樣本D4的Id-Vg特性結果。圖33A、圖34A、圖35A及圖36A示出通道長度L為2μm、通道寬度W為50μm的電晶體的測定結果,圖33B、圖34B、圖35B及圖36B示出通道長度L為3μm、通道寬度W為50μm的電晶體的測定結果。此外,在圖33A、圖33B、圖34A、圖34B、圖35A、圖35B、圖36A及圖36B中,第一縱軸表示Id[A],第二縱軸表示μFE[cm2/Vs],橫軸表示Vg[V]。
如圖33A、圖33B、圖34A、圖34B、圖35A、圖35B、圖36A及圖36B所示,在樣本D1至樣本D4的通道長度L為3μm時,確認到偏差少的良好的電特性。此外,在樣本D2及樣本D4的通道長度L為2μm時,也確認到偏差少的良好的電特性。
接著,對上述製造的樣本D1至樣本D4進行可靠性評價。作為可靠性評價,利用偏壓-熱應力測試(以下,稱為GBT測試)。
本實施例的GBT測試的條件為如下:閘極電壓(Vg)為±30V;汲極電壓(Vd)及源極電壓(Vs)都為0V(comm);應力溫度為70℃;以及應力施加時間為一個小時;測定條件為黑暗環境及光照射環境(使 用白色LED照射10000 lx左右的光)的兩種環境。就是說,將電晶體的源極電極和汲極電極的電位設定為相同的電位,並且在一定的時間(在此為一個小時)內對閘極電極施加與源極電極及汲極電極不同的電位。用於GBT測試的電晶體的通道長度L為3μm,通道寬度W為50μm。
另外,將施加到閘極電極的電位比源極電極及汲極電極的電位高的情況稱為正應力,而將施加到閘極電極的電位比源極電極及汲極電極的電位低的情況稱為負應力。因此,根據應力的情況及測定環境,在正GBT(黑暗)、負GBT(黑暗)、正GBT(光照射)以及負GBT(光照射)的四種條件下進行可靠性評價。另外,下面有時將正GBT(黑暗)表示為PBTS(Positive Bias Temperature Stress),將負GBT(黑暗)表示為NBTS(Negative Bias Temperature Stress),將正GBT(光照射)表示為PBITS(Positive Bias Illumination Temperature Stress),將負GBT(光照射)表示為NBITS(Negative Bias Illumination Temperature Stress)。
圖37示出樣本D1至樣本D4的GBT測試結果。此外,在圖37中,縱軸表示電晶體的臨界電壓的變化量(△Vth),橫軸表示樣本名稱。
如圖37所示,樣本D1至樣本D4的各GBT測試下的臨界電壓的變化量(△Vth)都為±2V以內。因此,確認到包括本發明的一個實施方式的金屬氧化物膜的電晶體具有高可靠性。
本實施例所示的結構可以與其他實施方式或其他實施例所示的結構適當地組合而實施。
100A‧‧‧電晶體
102‧‧‧基板
104‧‧‧導電層
106‧‧‧絕緣層
106a‧‧‧區域
108‧‧‧金屬氧化物層
108a‧‧‧金屬氧化物層
108b‧‧‧金屬氧化物層
112a‧‧‧導電層
112b‧‧‧導電層
114‧‧‧絕緣層
114a‧‧‧絕緣層
114b‧‧‧絕緣層
116‧‧‧絕緣層

Claims (11)

  1. 一種半導體裝置,包括:閘極電極;該閘極電極上的第一絕緣層;該第一絕緣層上的第一金屬氧化物層;該第一金屬氧化物層上的第二金屬氧化物層;該第二金屬氧化物層上的第一至第三膜;以及該第三膜上的第二絕緣層,其中,該第一金屬氧化物層及該第二金屬氧化物層包含In、元素M(M為鎵、鋁、矽、硼、釔、錫、銅、釩、鈹、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂中的至少一個)及Zn,該第一絕緣層包括第一區域及第二區域,該第一區域包括與該第一金屬氧化物層接觸的區域,且其氧含量比該第二區域多,該第二區域包括其氮含量比該第一區域多的區域,該第一金屬氧化物層包括複數個導電區域及複數個絕緣區域,該些導電區域與該些絕緣區域彼此分開,該第二金屬氧化物層包含c軸配向結晶,該第一金屬氧化物層及該第二金屬氧化物層在膜厚度方向上至少具有氧的濃度梯度,該濃度梯度在該第一區域一側及該第二絕緣層一側較高,該第一膜及該第三膜包含金屬,該第二膜包含鋁或銅,該第二絕緣層包含氧化矽,該第一膜與該第二膜接觸,該第三膜與該第一膜及該第二膜接觸,並且,該第二絕緣層與該第三膜接觸。
  2. 根據申請專利範圍第1項之半導體裝置,其中該第一區域包括厚度為1nm以上且10nm以下的區域。
  3. 根據申請專利範圍第1項之半導體裝置,其中在該第一金屬氧化物層中的該In的原子個數比為1時,該元素M的原子個數比為0.5以上且1.5以下,且該Zn的原子個數比為0.1以上且2以下。
  4. 根據申請專利範圍第1項之半導體裝置,其中在該第一金屬氧化物層中的該In的原子個數比為4時,該元素M的原子個數比為1.5以上且2.5以下,且該Zn的原子個數比為2以上且4以下。
  5. 根據申請專利範圍第1項之半導體裝置,其中在該第一金屬氧化物層中的該In的原子個數比為5時,該元素M的原子個數比為0.5以上且1.5以下,且該Zn的原子個數比為5以上且7以下。
  6. 根據申請專利範圍第1項之半導體裝置,其中該第一金屬氧化物層包括其結晶性比該第二金屬氧化物層低的區域。
  7. 根據申請專利範圍第1項之半導體裝置,還包括與該第一金屬氧化物層的下側接觸的第三金屬氧化物層,其中該第一金屬氧化物層包括其結晶性比該第二金屬氧化物層和該第三金屬氧化物層中的一個或兩個低的區域。
  8. 根據申請專利範圍第1項之半導體裝置,其中在該第二絕緣層上還包括第三絕緣層,並且該第三絕緣層包含矽及氮。
  9. 根據申請專利範圍第1項之半導體裝置,其中在該第二絕緣層上還包括第三絕緣層,該第三絕緣層包含元素X及氧,並且元素X為鋁、銦、鎵、Zn中的至少一個。
  10. 一種半導體裝置,包括: 閘極電極;該閘極電極上的第一絕緣層;該第一絕緣層上的第一氧化物半導體層;該第一氧化物半導體層上的第二氧化物半導體層;該第二氧化物半導體層上的第一至第三膜;以及該第二氧化物半導體層上的第二絕緣層;其中,該第一絕緣層包括第一區域及第二區域,該第一區域與該第一氧化物半導體層接觸,且其氧含量比該第二區域多,該第二區域的氮含量比該第一區域多,該第一氧化物半導體層包括複數個導電區域及複數個絕緣區域,該些導電區域與該些絕緣區域彼此分開,該第一氧化物半導體層及該第二氧化物半導體層在膜厚度方向上至少具有氧的濃度梯度,該濃度梯度在該第一區域一側及該第二絕緣層一側較高,該第一膜及該第三膜包含金屬,該第二膜包含鋁或銅,該第一膜與該第二膜接觸,該第三膜與該第一膜及該第二膜接觸,並且,該第二絕緣層與該第三膜接觸。
  11. 一種半導體裝置的製造方法,包括:形成閘極電極的製程;在該閘極電極上形成第一絕緣層的製程;對該第一絕緣層的表面附近添加氧的製程;在該第一絕緣層上形成第一金屬氧化物層的製程;在該第一金屬氧化物層上形成第二金屬氧化物層的製程;在該第二金屬氧化物層上形成第一膜的製程,該第一膜包含金屬;在該第一膜上形成第二膜的製程,該第二膜包含鋁或銅; 在該第一膜及該第二膜上形成與該第一膜及該第二膜接觸的第三膜的製程,該第三膜包含金屬;以及在該第三膜上形成與該第三膜接觸的第二絕緣層的製程,其中,該第一金屬氧化物層包括複數個導電區域及複數個絕緣區域,該些導電區域與該些絕緣區域彼此分開,該第一金屬氧化物層及該第二金屬氧化物層係在真空中連續地形成,並且,形成該第二金屬氧化物層時的沉積氣體整體中的氧流量比高於該第一金屬氧化物層。
TW106112076A 2017-03-03 2017-04-11 半導體裝置及半導體裝置的製造方法 TWI778959B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017041019 2017-03-03
JP2017-041019 2017-03-03
JP2017047019 2017-03-13
JP2017-047019 2017-03-13

Publications (2)

Publication Number Publication Date
TW201838179A TW201838179A (zh) 2018-10-16
TWI778959B true TWI778959B (zh) 2022-10-01

Family

ID=63355313

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106112076A TWI778959B (zh) 2017-03-03 2017-04-11 半導體裝置及半導體裝置的製造方法

Country Status (5)

Country Link
US (3) US10985283B2 (zh)
JP (2) JP7138451B2 (zh)
KR (3) KR20180101148A (zh)
CN (1) CN108538916A (zh)
TW (1) TWI778959B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210080432A (ko) * 2018-10-26 2021-06-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 금속 산화물의 제작 방법, 반도체 장치의 제작 방법
JP7101608B2 (ja) * 2018-12-21 2022-07-15 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100283049A1 (en) * 2007-12-04 2010-11-11 Canon Kabushiki Kaisha Oxide semiconductor device including insulating layer and display apparatus using the same
US20110140100A1 (en) * 2009-12-10 2011-06-16 Masahiro Takata Thin-film transistor, method of producing the same, and devices provided with the same
US20150340505A1 (en) * 2014-05-23 2015-11-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450399B (zh) 2008-07-31 2014-08-21 Semiconductor Energy Lab 半導體裝置及其製造方法
TWI500159B (zh) 2008-07-31 2015-09-11 Semiconductor Energy Lab 半導體裝置和其製造方法
JP5442234B2 (ja) 2008-10-24 2014-03-12 株式会社半導体エネルギー研究所 半導体装置及び表示装置
KR101402294B1 (ko) 2009-10-21 2014-06-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작방법
WO2011070892A1 (en) 2009-12-08 2011-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20130207111A1 (en) 2012-02-09 2013-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including semiconductor device, electronic device including semiconductor device, and method for manufacturing semiconductor device
KR102071545B1 (ko) 2012-05-31 2020-01-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US8901557B2 (en) 2012-06-15 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9190525B2 (en) * 2012-07-06 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor layer
KR102343715B1 (ko) 2012-07-20 2021-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제조 방법
JP6134598B2 (ja) * 2012-08-02 2017-05-24 株式会社半導体エネルギー研究所 半導体装置
JP6300489B2 (ja) * 2012-10-24 2018-03-28 株式会社半導体エネルギー研究所 半導体装置の作製方法
TWI614813B (zh) * 2013-01-21 2018-02-11 半導體能源研究所股份有限公司 半導體裝置的製造方法
US10304859B2 (en) * 2013-04-12 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide film on an oxide semiconductor film
DE102014208859B4 (de) 2013-05-20 2021-03-11 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung
JP6426379B2 (ja) 2013-06-19 2018-11-21 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR102516162B1 (ko) 2013-12-02 2023-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 제조방법
KR102333604B1 (ko) * 2014-05-15 2021-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 이 반도체 장치를 포함하는 표시 장치
US9704704B2 (en) * 2014-10-28 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the same
US20160155759A1 (en) * 2014-11-28 2016-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the same
US10396210B2 (en) * 2014-12-26 2019-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with stacked metal oxide and oxide semiconductor layers and display device including the semiconductor device
KR20170109237A (ko) * 2015-02-04 2017-09-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 반도체 장치의 제조 방법, 또는 반도체 장치를 포함하는 표시 장치
KR20230141954A (ko) * 2015-02-12 2023-10-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
KR102653836B1 (ko) * 2015-03-03 2024-04-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 그 제작 방법, 또는 그를 포함하는 표시 장치
US10008609B2 (en) * 2015-03-17 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, or display device including the same
US9842938B2 (en) * 2015-03-24 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including semiconductor device
US10372274B2 (en) * 2015-04-13 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and touch panel
US10139663B2 (en) 2015-05-29 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Input/output device and electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100283049A1 (en) * 2007-12-04 2010-11-11 Canon Kabushiki Kaisha Oxide semiconductor device including insulating layer and display apparatus using the same
US20110140100A1 (en) * 2009-12-10 2011-06-16 Masahiro Takata Thin-film transistor, method of producing the same, and devices provided with the same
US20150340505A1 (en) * 2014-05-23 2015-11-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
US11817508B2 (en) 2023-11-14
JP2018148211A (ja) 2018-09-20
KR20240028381A (ko) 2024-03-05
KR20180101148A (ko) 2018-09-12
US20210167223A1 (en) 2021-06-03
JP2022180417A (ja) 2022-12-06
US20180254352A1 (en) 2018-09-06
US10985283B2 (en) 2021-04-20
JP7138451B2 (ja) 2022-09-16
CN108538916A (zh) 2018-09-14
US20240079502A1 (en) 2024-03-07
KR102639848B1 (ko) 2024-02-27
TW201838179A (zh) 2018-10-16
KR20220123199A (ko) 2022-09-06

Similar Documents

Publication Publication Date Title
TWI743187B (zh) 顯示裝置及電子裝置
JP7126823B2 (ja) 半導体装置の作製方法
JP7155128B2 (ja) 半導体装置、及び表示装置
TW202347616A (zh) 半導體裝置、顯示裝置以及半導體裝置的製造方法
JP2022126666A (ja) 表示装置
JP2022164678A (ja) 半導体装置
TW201807817A (zh) 半導體裝置及包括該半導體裝置的顯示裝置
KR102639848B1 (ko) 반도체 장치 및 반도체 장치의 제작 방법
JP2023011576A (ja) 半導体装置
JP2023016820A (ja) 半導体装置
JP6925819B2 (ja) 半導体装置の作製方法
JP2018148051A (ja) 成膜装置、成膜方法、及び半導体装置の作製方法
JP2019125789A (ja) 半導体装置
JP2018163949A (ja) 半導体装置、及び半導体装置の作製方法
TWI831743B (zh) 半導體裝置、顯示裝置以及半導體裝置的製造方法
TWI832145B (zh) 半導體裝置及包括該半導體裝置的顯示裝置
JP2019071400A (ja) 半導体装置、表示装置、および半導体装置の作製方法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent