KR20100054756A - 반도체 발광소자 - Google Patents

반도체 발광소자 Download PDF

Info

Publication number
KR20100054756A
KR20100054756A KR1020090110307A KR20090110307A KR20100054756A KR 20100054756 A KR20100054756 A KR 20100054756A KR 1020090110307 A KR1020090110307 A KR 1020090110307A KR 20090110307 A KR20090110307 A KR 20090110307A KR 20100054756 A KR20100054756 A KR 20100054756A
Authority
KR
South Korea
Prior art keywords
layer
light emitting
conductive
semiconductor layer
type semiconductor
Prior art date
Application number
KR1020090110307A
Other languages
English (en)
Other versions
KR101601621B1 (ko
Inventor
최번재
이상범
이진복
김유승
송상엽
Original Assignee
삼성엘이디 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성엘이디 주식회사 filed Critical 삼성엘이디 주식회사
Priority to CN200980145944.5A priority Critical patent/CN102217102B/zh
Priority to PCT/KR2009/006731 priority patent/WO2010056083A2/ko
Priority to EP09826315.5A priority patent/EP2357679B1/en
Priority to US13/127,847 priority patent/US8809893B2/en
Publication of KR20100054756A publication Critical patent/KR20100054756A/ko
Priority to US14/336,973 priority patent/US9305906B2/en
Priority to US14/338,225 priority patent/US9312249B2/en
Application granted granted Critical
Publication of KR101601621B1 publication Critical patent/KR101601621B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/13Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0029Devices characterised by their operation having heterojunctions or graded gap comprising only AIIBVI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

본 발명은 수직수평구조 반도체 발광소자에 관한 것으로서, 본 발명의 일 실시 형태는, 도전성 기판과, 상기 도전성 기판 상에 순차적으로 형성된 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 구비하는 발광구조물과, 상기 제1 도전형 반도체층 및 활성층을 관통하여 상기 제2 도전형 반도체층과 그 내부에서 접속된 도전성 비아 및 상기 도전성 비아로부터 연장되어 상기 발광구조물의 외부로 노출된 전기 연결부를 구비하는 제2 도전형 전극과, 상기 제2 도전형 전극을 상기 도전성 기판, 제1 도전형 반도체층 및 활성층과 전기적으로 분리시키기 위한 절연체 및 적어도 상기 발광구조물 중 상기 활성층의 측면을 덮도록 형성된 패시베이션층과, 상기 활성층에서 방출된 빛의 경로 상에 형성된 요철 구조를 구비하는 반도체 발광소자를 제공한다.
본 발명에 따르면, 외부 광 추출효율, 특히, 소자의 측 방향 광 추출효율이 향상될 수 있는 반도체 발광소자를 얻을 수 있다.
발광소자, 수직수평구조, LED, 패시베이션, 요철

Description

반도체 발광소자 {Semiconductor Light Emitting Device}
본 발명은 반도체 발광소자에 관한 것으로서, 특히, 외부 광 추출효율이 향상된 반도체 발광소자에 관한 것이다.
반도체 발광소자는 전류가 가해지면 p, n형 반도체의 접합 부분에서 전자와 정공의 재결합에 기하여, 다양한 색상의 빛을 발생시킬 수 있는 반도체 장치이다. 이러한 반도체 발광소자는 필라멘트에 기초한 발광소자에 비해 긴 수명, 낮은 전원, 우수한 초기 구동 특성, 높은 진동 저항 등의 여러 장점을 갖기 때문에 그 수요가 지속적으로 증가하고 있다. 특히, 최근에는, 청색 계열의 단파장 영역의 빛을 발광할 수 있는 III족 질화물 반도체가 각광을 받고 있다.
이러한 III족 질화물 반도체를 이용한 발광소자를 구성하는 질화물 단결정은 사파이어 또는 SiC 기판과 같이 특정의 단결정 성장용 기판 상에서 형성된다. 하지만, 사파이어와 같이 절연성 기판을 사용하는 경우에는 전극의 배열에 큰 제약을 받게 된다. 즉, 종래의 질화물 반도체 발광소자는 전극이 수평방향으로 배열되는 것이 일반적이므로, 전류흐름이 협소 해지게 된다. 이러한 협소한 전류 흐름으로 인해, 발광소자의 동작 전압(Vf)이 증가하여 전류효율이 저하되며, 이와 더불어 정전기 방전(Electrostatic discharge)에 취약해지는 문제가 있다. 이러한 문제를 해결하기 위해서, 최적화된 칩 구조 및 전극 구조를 갖는 질화물 반도체 발광소자가 요구된다.
본 발명의 일 목적은 발광소자의 내외부 광 효율, 특히, 전극 구조 및 소자의 구조 최적화를 통한 외부 광 추출효율이 향상될 수 있는 수직수평구조 반도체 발광소자를 제공하는 것에 있다.
상기한 목적을 달성하기 위해서, 본 발명의 일 실시 형태는,
도전성 기판과, 상기 도전성 기판 상에 순차적으로 형성된 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 구비하는 발광구조물과, 상기 제1 도전형 반도체층 및 활성층을 관통하여 상기 제2 도전형 반도체층과 그 내부에서 접속된 도전성 비아 및 상기 도전성 비아로부터 연장되어 상기 발광구조물의 외부로 노출된 전기 연결부를 구비하는 제2 도전형 전극과, 상기 제2 도전형 전극을 상기 도전성 기판, 제1 도전형 반도체층 및 활성층과 전기적으로 분리시키기 위한 절연체 및 적어도 상기 발광구조물 중 상기 활성층의 측면을 덮도록 형성된 패시베이션층과, 상기 활성층에서 방출된 빛의 경로 상에 형성된 요철 구조를 구비하는 반도체 발광소자를 제공한다.
또한, 본 발명의 다른 측면의 경우,
도전성 기판과, 상기 도전성 기판 상에 순차적으로 형성된 제1 도전형 반도 체층, 활성층 및 제2 도전형 반도체층을 구비하는 발광구조물과, 상기 도전성 기판과 상기 제1 도전형 반도체층 사이에 상기 제1 도전형 반도체층과 전기적으로 연결되도록 형성되며, 상기 발광구조물의 외부로 노출된 전기 연결부를 구비하는 제1 컨택층과, 상기 도전성 기판으로부터 연장되어 형성되며, 상기 제1 컨택층, 제1 도전형 반도체층 및 활성층을 관통하여 상기 제2 도전형 반도체층과 그 내부에서 접속된 도전성 비아와, 상기 도전성 기판을 상기 제1 컨택층, 제1 도전형 반도체층 및 활성층과 전기적으로 분리시키기 위한 절연체 및 적어도 상기 발광구조물 중 상기 활성층의 측면을 덮도록 형성된 패시베이션층과, 상기 활성층에서 방출된 빛의 경로 상에 형성된 요철 구조를 구비하는 반도체 발광소자를 제공한다.
본 발명의 일 실시 예에서, 상기 제1 도전형 반도체층과 상기 도전성 기판 사이에 형성되며, 상기 절연체에 의하여 상기 제2 도전형 전극과 전기적으로 분리된 제1 컨택층을 더 포함할 수 있다.
본 발명의 일 실시 예에서, 상기 발광구조물은 상기 도전성 기판 상면 중 일부 위에만 형성되고, 적어도 상기 도전성 기판 상면 중 상기 발광구조물이 형성되지 않은 영역 위에는 상기 발광구조물을 이루는 반도체 물질과 식각 특성이 상이한 식각저지층이 형성될 수 있다.
본 발명의 일 실시 예에서, 상기 제2 도전형 반도체층의 상면에는 요철 구조가 형성될 수 있다.
본 발명의 일 실시 예에서, 상기 제1 및 제2 도전형 반도체층은 각각 p형 및 n형 반도체층일 수 있다.
본 발명에 따르면, 외부 광 추출효율, 특히, 소자의 측 방향 광 추출효율이 향상될 수 있는 수직구조 반도체 발광소자를 얻을 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태들을 설명한다.
그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다.
우선, 본 발명에 따른 반도체 발광소자에 대해 다양한 실시형태를 통해 구체적으로 설명하고, 이러한 반도체 발광소자를 사용한 발광소자 패키지와 백라이트장치등에 대해 설명한다.
< 반도체 발광소자 >
도 1 및 도 2는 본 발명의 일 실시형태에 따른 반도체 발광소자를 도시한 평 면도 및 단면도이다. 이때, 상기 도 2는 상기 도 1의 I-I'선을 따라 절취한 단면도이다.
도 1 및 도 2를 참조하여 설명하면, 본 발명의 일 실시형태에 따른 반도체 발광소자(100)는 도전성 기판(110), 제1전극층(120), 절연층(130), 제2전극층(140), 제2반도체층(150), 활성층(160) 및 제1반도체층(170)을 포함하며, 상기 각 층들은 순차적으로 적층되어 구비되어 있다.
상기 도전성 기판(110)은 전기가 흐를 수 있는 물질로 구성될 수 있다. 상기 도전성 기판(110)은 Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질, 예컨대, Si와 Al의 결합 형태인 SiAl 물질로 이루어질 수 있다.
상기 도전성 기판(110) 상에는 상기 제1전극층(120)이 적층되어 구비되어 있는데, 상기 제1전극층(120)은 상기 도전성 기판(110) 및 활성층(160)과 전기적으로 연결됨으로 상기 도전성 기판(110) 및 활성층(160)과 접촉 저항이 최소화되는 물질로 구성되는 것이 바람직하다.
상기 제1전극층(120)은 상기 도전성 기판(110) 상에 적층되어 구비되어 있을 뿐만 아니라, 도 2에 도시하고 있는 바와 같이, 그 일부 영역이 상기 절연층(130), 제2전극층(140), 제2반도체층(150) 및 활성층(160)을 관통하고, 상기 제1반도체층(170)의 일정 영역까지 관통한 콘택홀(180)을 통해 연장되어 상기 제1반도체층(170)과 접촉하여 상기 도전성 기판(110)과 제1반도체층(170)은 전기적으로 연결되도록 구비되어 있다.
즉, 상기 제1전극층(120)은 상기 도전성 기판(110)과 제1반도체층(170)을 전 기적으로 연결하되, 상기 콘택홀(180)을 통해 전기적으로 연결하므로써, 상기 콘택홀(180)의 크기, 더 정확하게는 상기 콘택홀(180)에 동해 상기 제1전극층(120)과 제1반도체층(170)이 접촉하는 면적인 접촉 영역(190)을 통해 전기적으로 연결된다.
한편, 상기 제1전극층(120) 상에는 상기 제1전극층(120)이 상기 도전성 기판(110) 및 제1반도체층(170)을 제외한 다른 층과는 전기적으로 절연시키기 위한 절연층(120)이 구비된다. 즉, 상기 절연층(120)은 상기 제1전극층(120)과 제2전극층(140)의 사이뿐만 아니라 상기 콘택홀(180)에 의해 노출되는 상기 제2전극층(140), 제2반도체층(150) 및 활성층(160)의 측면들과 상기 제1전극층(120) 사이에도 구비된다. 또한, 상기 콘택홀(180)이 관통한 상기 제1반도체층(180)의 일정 영역의 측면에도 상기 절연층(120)을 구비하여 절연하는 것이 바람직하다.
상기 제2전극층(140)은 상기 절연층(120)상에 구비된다. 물론, 상기에서도 상술하고 있는 바와 같이 상기 콘택홀(180)이 관통하는 일정 영역들에는 상기 제2전극층(140)이 존재하지 않는다.
이때, 상기 제2전극층(140)은 도면에서 도시하고 있는 바와 같이 상기 제2반도체층(150)과 접촉하는 계면 중 일부가 노출된 영역, 즉 노출 영역(145)을 적어도 하나 이상 구비하고 있다. 상기 노출 영역(145) 상에는 외부 전원을 상기 제2전극층(140)에 연결하기 위한 전극패드부(147)를 구비할 수 있다. 한편, 상기 노출 영역(145) 상에는 이후 설명될 상기 제2반도체층(150), 활성층(160) 및 제1반도체층(170)이 구비되어 있지 않다. 또한, 상기 노출 영역(145)은 도 1에 도시하고 있는 바와 같이 상기 반도체 발광 소자(100)의 모서리에 형성하는 것이 바람직한데, 이는 상기 반도체 발광 소자(100)의 발광 면적을 최대화하기 위해서이다.
한편, 상기 제2전극층(140)은 Ag, Al, Pt, Ni, Pt, Pd, Au, Ir, 투명전도성 산화물을 포함하는 물질로 이루어지는 것이 바람직한데, 이는 상기 제2전극층(140)이 상기 제2반도체층(150)과 전기적으로 접촉하기 때문에 상기 제2반도체층(150)의 접촉 저항을 최소화하는 특성을 가지는 동시에 상기 활성층(160)에서 생성된 빛을 반사시켜 외부로 향하게 하여 발광 효율을 높일 수 있는 기능을 갖는 층으로 구비되는 것이 바람직하기 때문이다.
상기 제2반도체층(150)은 상기 제2전극층(140) 상에 구비되고, 상기 활성층(160)은 상기 제2반도체층(150) 상에 구비되고, 상기 제1반도체층(170)은 상기 활성층(160) 상에 구비된다.
이때, 상기 제1반도체층(170)은 n형 질화물 반도체이고, 상기 제2반도체층(150)은 p형 질화물 반도체인 것이 바람하다.
한편, 상기 활성층(160)은 상기 제1반도체층(170) 및 제2반도체층(150)을 이루는 물질에 따라 다른 물질을 선택하여 형성할 수 있다. 즉, 상기 활성층(160)은 전자/전공이 재결합에 따른 에너지를 빛으로 변화하여 방출하는 층이므로 상기 제1반도체층(170) 및 제2반도체층(150)의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 물질로 형성하는 것이 바람직하다.
도 6은 도 2의 실시형태에서 변형된 실시형태에 따른 반도체 발광소자를 나타낸다. 도 6의 반도체 발광소자(100')의 경우, 발광구조물, 즉, 제2반도체층(150), 활성층(160) 및 제1반도체층(170)을 구비하는 구조물의 측면에 패시베이 션층(191)이 형성되며, 제1반도체층(170) 상면에 요철이 형성된 점에서, 이전 실시 형태와 차이가 있으며, 나머지 구조는 동일한다. 패시베이션층(191)은 발광구조물, 특히, 활성층(160)을 외부로부터 보호하는 것으로서, SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물 또는 기타 절연성 물질로 이루어질 수 있으며, 그 두께는 0.1 ~ 2㎛ 정도가 바람직하다. 외부로 노출된 활성층(160)은 반도체 발광소자(100')의 작동 중에 전류 누설 경로로 작용할 수 있으며, 패시베이션층(191)을 발광구조물의 측면에 형성함으로써 이러한 문제를 방지할 수 있다. 이 경우, 도 6에 도시된 것과 같이, 패시베이션층(191)에 요철을 형성할 경우, 광 추출 효율의 향상을 기대할 수 있다. 이와 마찬가지로, 제1반도체층(170) 상면에 요철 구조가 형성될 수 있으며, 이에 의하여, 활성층(160) 방향에서 입사된 빛이 외부로 방출될 확률이 증가될 수 있다. 한편, 따로 도시하지는 않았으나, 제조 공정에서 제2전극층(140)을 노출시키기 위하여 발광구조물을 식각할 경우, 제2전극층(140)을 이루는 물질이 활성층(160) 측면에 달라붙는 문제를 방지하기 위하여 제2전극층(140) 상에는 식각저지층이 추가로 형성될 수 있다. 상기와 같이 설명한 도 6의 변형예는 도 7의 실시 형태에도 적용될 수 있을 것이다.
한편, 본 발명에서 제안하는 반도체 발광소자는 상기와 같은 구조에서 변형되어 콘택홀과 연결된 제1전극층이 외부로 노출될 수도 있다. 도 7은 본 발명의 다른 실시예에 따른 반도체 발광소자를 도시한 단면도이다. 본 실시형태에 따른 반도체 발광소자(200)는 도전성 기판(210) 상에 제2반도체층(250), 활성층(260) 및 제1 반도체층(260)이 형성된다. 이 경우, 제2반도체층(250)과 도전성 기판(210) 사이에는 제2전극층(240)이 배치될 수 있으며, 앞선 실시형태와 달리 제2전극층(240)은 반드시 요구되는 것은 아니다. 본 실시형태의 경우, 제1반도체층(270)과 접촉되는 접촉 영역(290)을 갖는 컨택홀(280)은 제1전극층(220)과 연결되며, 제1전극층(220)은 외부로 노출되어 전기연결부(245)를 갖는다. 전기연결부(245)에는 전극패드부(247)가 형성될 수 있다. 제1전극층(220)은 절연층(230)에 의하여 활성층(260), 제2반도체층(250), 제2전극층(240), 도전성 기판(210)과 전기적으로 분리될 수 있다. 앞선 실시 형태에서, 콘택홀이 도전성 기판과 연결되었던 것과 달리 본 실시 형태의 경우, 콘택홀(280)은 도전성 기판(210)과 전기적으로 분리되며, 콘택홀(280)과 연결된 제1전극층(220)이 외부로 노출된다. 이에 따라, 도전성 기판(210)은 제2반도체층(240)과 전기적으로 연결되어 앞선 실시 형태에서와 극성이 달라진다.
이하, 본 발명에서 제안한 반도체 발광소자에서 제1전극층과 제1반도체층의 접촉 면적에 따른 전기적 특성의 변화를 시뮬레이션하여 콘택홀의 크기 및 형상에 있어서 최적의 상태를 찾고자 한다. 이 경우, 아래의 시뮬레이션 결과는 도 1 및 도 6의 구조에 모두 적용될 수 있다. 또한, 제1 및 제2반도체층을 각각 n형 및 p형 반도체층으로 구성하였다.
도 3은 면적이 1000×1000㎛2인 반도체 발광 소자의 n형 오믹접촉 저항 및 p형 오믹접촉 저항을 보여주는 그래프이다.
도 3의 시뮬레이션에서, n형 고유 접촉 저항(specific contact resistance),즉, 제1전극층과 콘택홀의 고유 접촉 저항은 10-4ohm/㎠이며, p형 고유 접촉 저항, 즉, 제2반도체층과 제2전극층에서의 고유 접촉 저항은 10-2ohm/㎠이다.
도 3을 참조하여 설명하면, 본 발명의 일 실시형태에 따른 반도체 발광소자(100)가 1000000㎛2의 크기, 즉 가로 1000㎛, 세로 1000㎛의 크기를 갖는 직사각형의 칩이라고 가정한다면, 상기 반도체 발광소자(100)의 저항은 상기 제1전극층(120), 제2전극층(140), 제1반도체층(170), 제2반도체층(150), 상기 제2반도체층(150)과 제2전극층(140)의 접촉 저항(이하, 제2접촉 저항이라고 함) 및 상기 제1반도체층(170)과 제1전극층(120)의 접촉 저항(이하, 제1접촉 저항이라고 함)이 있을 수 있는데, 상기 제1접촉 저항(R1) 및 제2접촉 저항(R2)이 접촉 면적에 따라 가장 많은 변화를 보이는 저항들이다.
특히, 도 3에서 도시하고 있는 바와 같이 상기 제2접촉 저항(R2) 보다는 상기 제1접촉 저항(R1)이 접촉 면적이 증가함에 따라 가장 많은 변화를 보인다. 이때, 도 3의 X축은 상기 제1반도체층(170)과 제1전극층(120)이 접촉하는 접촉 면적의 크기를 의미하고, Y축은 접촉 저항의 크기를 의미하므로 상기 X축의 숫자는 상기 제1반도체층(170)과 제1전극층(120)이 접촉하는 접촉 면적을 의미하고, 상기 제2반도체층(150)과 제2전극층(140)이 접촉하는 접촉 면적은 상기 반도체 발광 소자(100)의 총면적(1000000㎛2)에서 상기 X축의 값을 뺀 값이 제2접촉 저항(R2)에 대 응하는 상기 제2반도체층(150)과 제2전극층(140)의 접촉 면적이 된다.
이때, 상기 제1반도체층(170)과 제1전극층(120)이 접촉하는 접촉 면적은 상기 도 1 및 도 2를 참조하여 설명한 바와 같이 상기 콘택홀(180)을 통해 상기 제1전극층(120)과 제1반도체층(170)이 접촉하는 영역인 접촉 영역(190)의 총 면적, 즉, 상기 콘택홀(180)이 복수 개이므로 상기 접촉 영역(190)들 각각의 면적들의 합을 의미한다.
도 4는 제1반도체층과 제1전극층이 접촉하는 접촉 면적에 따른 제1접촉 저항과 제2접촉 저항의 총저항을 보여주는 그래프이다.
도 4를 참조하여 설명하면, 본 발명의 일 실시예에 따른 반도체 발광소자(100)의 제1접촉 저항(R1) 및 제2접촉 저항(R2)은 서로 직렬로 연결됨으로, 상기 제1접촉 저항(R1)과 제2접촉 저항(R2)을 더한 총저항(R3)이 상기 반도체 발광 소자(100)의 저항들 중 접촉 면적에 따라 가장 많은 영향을 주는 저항이 된다.
이때, 도 4에서 보여 주는 바와 같이 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적(X축의 값을 참조)이 증가함에 따라 총저항(R3)의 값(Y축의 값을 참조)은 초기에는 급속한 감소를 하다가 상기 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적이 커짐에 따라 총저항(R3)이 증가하는 경향을 보이는 것을 알 수 있다.
한편, n형 및 p형 접촉 저항은, 상기 반도체 발광 소자(100)의 크기가 1000000μ㎡ 인 경우, 약 1.6ohm 이하인 것이 바람직하므로 상기 제1반도체층(170) 과 제1전극층(120)의 접촉 면적은 약 30000 내지 250000㎛2인 것이 바람직하다.
반도체 발광소자의 통상적인 동작 전압은 3.0~3.2V이며, 동작 전류는 약 0.35A이다. 만약, 반도체 발광소자의 총 저항이 약 2ohm일 경우, 전압은 0.35A * 2ohm = 0.70V가 되어 상용 스펙 범위라 볼 수 있는 2.8~3.8V를 벗어나게 된다. 이와 같이, 전압 범위를 넘어설 경우, 기존 회로 구성의 변경이 필요할 뿐만 아니라, 입력 전력의 증가로 인한 발열이나 광 출력 저하 등의 문제 등이 야기될 수 있다. 따라서, 반도체 발광소자의 총 저항은 2ohm 이하인 것이 바람직하며, 본 발명에서 제안하는 구조의 반도체 발광소자에서 n형 및 p형 접촉 저항의 합은 총 저항의 약 80%에 해당하므로, 기준 접촉 저항으로 2ohm * 0.8 = 1.6ohm이 도출될 수 있다.
즉, 상기 도 1 및 도 2를 참조하여 설명한 본 발명의 반도체 발광소자(100)는 상기 콘택홀(180)을 통해 상기 제1전극층(120)과 제1반도체층(170)이 접촉하는 영역인 접촉 영역(190)들의 총 접촉 면적이 약 30000 내지 250000㎛2인 것이 접촉 저항 측면에서는 가장 바람직하다.
도 5는 제1반도체층과 제1전극층의 접촉 면적에 따른 발광 효율을 보여주는 그래프이다.
상기 도 4를 참조하여 설명한 바에 의하면 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적이 30000 내지 250000㎛2인 것이 총저항이 낮아 반도체 발광 소자(100)의 발광 효율이 높을 것으로 보이나 이는 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적이 증가함에 따라 상기 반도체 발광 소자(100)의 실제 발광 면 적이 줄어드는 것을 감안하지 않고 있다.
즉, 도 5에서 도시하고 있는 바와 같이 반도체 발광소자(100)의 발광 효율은 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적이 70000㎛2이 될 때까지는 총저항을 낮추어 발광 효율을 높이지만, 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적이 70000㎛2이상으로 계속 증가하게 되면 발광 효율이 낮아 지게 되는데, 이는 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적의 증가는 상기 제2반도체층(150)과 제2전극층(140)의 접촉 면적의 감소를 의미하여 상기 반도체 발광 소자(100)의 발광량을 낮추게 된다.
따라서 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적이 적절하게 결정되는 것이 바람직한데, 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적은 도 5에 도시된 바와 같이 발광효율이 90% 이상이 되도록 하는 130000㎛2이하가 되는 것이 바람직하다.
결론적으로 본 발명의 일 실시예에 따른 반도체 발광소자(100)는 상기 콘택홀(180)을 통해 상기 제1반도체층(170)과 제1전극층(120)의 접촉 면적이 30000 내지 130000㎛2이 되는 것이 가장 바람직하며, 상기 반도체 발광소자(100)의 칩 크기가 1000000㎛2인 경우이므로 상기 제1전극층(170)과 반도체층(120)이 접촉하는 면적이 상기 반도체 발광소자(100)의 면적의 3 내지 13%인 경우가 가장 적절한 접촉 면적임을 나타낸다.
한편, 상기 콘택홀(180)의 갯수가 너무 작은 경우, 상기 제1반도체층(170)과 제1전극층(120)의 접촉 영역(190) 하나 당 제1반도체층(170)과 제1전극층(120)의 접촉 면적은 증가하나, 그에 따라 전류를 공급해야 하는 제1반도체층(170)의 면적이 증가하게 되어 상기 접촉 영역(190)에서 공급해야 하는 전류량이 증가하게 되고, 이로 인해 상기 제1반도체층(170)과 제1전극층(120)의 접촉 영역(190)에 전류가 집중되는 문제가 발생한다.
또한, 상기 콘택홀(180)의 갯수가 너무 많은 경우에는 상기 콘택홀(180)의 크기가 너무 작어지게 되어 제조 공정상에 어려움이 따르게 되는 문제가 발생한다.
따라서, 상기 콘택홀(180)의 갯수는 상기 반도체 발광 소자(100)의 크기, 즉 칩 크기에 따라 적절하게 선택되는 것이 바람직한데, 상기 반도체 발광 소자(100)의 크기가 1000000㎛2인 경우에는 상기 콘택홀(180)의 갯수는 5 내지 50개인 것이 바람직하다.
한편, 상기 반도체 발광소자(100)의 콘택홀(180)들은 복수 개 구비되는데, 상기 콘택홀(180)들은 균일하게 배치되는 것이 바람직하다. 이는 상기 콘택홀(180)들을 통해 상기 제1반도체층(170)과 제1전극층(120)이 접촉하게 됨으로 전류가 균일하게 분산되기 위해서는 상기 콘택홀(180)들이 균일하게 배치, 즉, 상기 제1반도체층(170)과 제1전극층(120)의 접촉 영역(190)들이 균일하게 배치되는 것이 바람직하다.
여기서, 상기 반도체 발광소자(100)의 크기가 1000000㎛2인 경우에 상기 콘 택홀(180)의 갯수는 5 내지 50개일 경우, 상기 반도체 발광 소자(100)가 균일하게 배치되기 위해서는 복수개의 콘택홀들 중 이웃한 콘택홀들간의 이격 거리는 100㎛ 내지 400㎛일 수 있다. 이때, 상기 이격 거리는 이웃한 콘택홀들의 중심점을 연결하여 측정된 값이다.
한편, 상기 반도체 발광소자(100)는 상기 콘택홀(180)들이 상기에서 상술한 바와 같이 복수 개가 균일하게 배치됨으로써 고른 전류 분산을 이룰 수 있어 크기가 1000000㎛2 반도체 발광 소자의 경우, 종래에는 약 350mA에서 동작하였으나 본 발명의 일 실시 예에 따른 반도체 발광소자(100)의 경우에는 2A 정도의 높은 전류를 인가하여도 매우 안정적인 동작하고 전류 집중(current crowding) 현상이 완화되어 신뢰성 특성이 향상된 반도체 발광소자를 제공하고 있다.
도 8 및 도 9는 n형 고유 접촉 저항을 달리하여 시뮬레이션을 수행한 결과를 나타낸다. 본 시뮬레이션의 경우, n형 고유 접촉 저항은 10-6ohm/㎠이며, p형 고유 접촉 저항은 10-2ohm/㎠이다. n형 고유 접촉 저항은 n형 반도체층의 도핑 수준, n형 전극 물질, 이들의 열처리 방식 등에 영향을 받는다. 따라서, n형 반도체층의 도핑 농도를 높이거나 n형 전극 물질로서 Al, Ti, Cr 등과 같이 금속 에너지 장벽이 낮은 물질을 채용하는 등의 방법으로 n형 고유 접촉 저항은 10-6ohm/㎠ 수준까지 낮아질 수 있다. 즉, 통상적으로 사용되는 n형 고유 접촉 저항은 10-4 ~ 10-6ohm/㎠이라 할 수 있다.
우선, 도 8을 참조하면, n형 및 p형 고유 접촉 저항의 총합, 즉, 총 접촉 저항(R4)은 도 4의 결과와 비교하였을 때, 작은 접촉면적에서도 매우 낮은 수준을 유지할 수 있다. 또한, 도 8을 참조하여 접촉면적에 따른 광 효율을 살펴보면, 도 5의 결과와 비교하였을 때, 작은 접촉면적에서도 높은 수준을 유지할 수 있으며, 이 경우, 광 효율이 100%보다 큰 것은 도 5의 결과에 대한 상대 값을 나타낸 것이다. 도 8 및 도 9의 시뮬레이션 결과를 참조하면, 총 접촉 저항이 1.6ohm 이하가 되며, 광 효율이 90% 이상이 되는 조건은 반도체 발광 소자의 면적 1000000㎛2당 제1전극층과 반도체층이 접촉하는 면적이 6150 내지 156800㎛2인 경우임을 알 수 있다.
이러한 결과를 토대로 콘택홀의 개수를 결정할 경우, 앞선 시뮬레이션 결과에서 설명한 내용을 적용할 수 있다. 구체적으로, 반지름이 약 1~50㎛인 원형 콘택홀의 경우, 상기와 같은 면적 조건을 충족하기 위해서는 약 1 ~ 48000개가 요구된다. 나아가, 콘택홀이 균일하게 배치되어 있다고 가정하였을 때, 서로 인접한 2개의 콘택홀 간 거리는 약 5 ~ 500㎛을 충족할 필요가 있다.
이하에서는 본 발명의 다른 실시형태에 따른 반도체 발광소자의 구조를 다양한 실시예를 통해 설명한다.
우선, 도 10 내지 도 14를 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광소자에 대해 설명한다.
본 발명의 또 다른 실시예에 따른 반도체 발광소자(300)는 도전성 기 판(340), 제1도전형 반도체층(330), 활성층(320) 및 제2도전형 반도체층(310)이 순서대로 적층되어 형성된다. 특히, 본 실시예에 따른 반도체 발광소자(300)는 도전성 기판(340) 및 제1도전형 반도체층(330) 사이에 형성된 제1전극층(360); 및 전극패드부(350-b), 전극연장부(350-a), 및 전극연결부(350-c)를 포함하는 제2전극부를 포함한다.
전극패드부(350-b)는 제1전극층(360)으로부터 제2도전형 반도체층(310)의 표면까지 연장되고, 제1전극층(360), 제1도전형 반도체층(330), 및 활성층(320)과 전기적으로 분리되어 있다. 전극연장부(350-a)는 제1전극층(360)으로부터 제2도전형 반도체층(310) 내부까지 연장되고, 제1전극층(360), 제1도전형 반도체층(330), 및 활성층(320)과 전기적으로 분리되어 있다. 그리고, 전극연결부(350-c)는 제1전극층과 동일층 상에 형성되나 제1전극층(360)과는 전기적으로 분리되어 있는데, 전극패드부(350-b) 및 전극연장부(350-a)를 연결하는 기능을 수행한다.
도전성 기판(340)은 금속성 기판이거나 반도체 기판 또는 이들의 조합일 수 있다. 도전성 기판(340)이 금속인 경우, Au, Ni, Cu, Al 및 W 중 어느 하나의 금속으로 구성될 수 있다. 또한, 도전성 기판(340)이 반도체 기판인 경우, Si, Ge, 및 GaAs 중 어느 하나의 반도체 기판일 수 있다. 또는 도전성 기판(340)은 Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질, 예컨데, Si와 Al의 결합 형태인 SiAl 물질로 이루어진 기판일 수 있다. 도전성 기판을 반도체 발광소자에 형성하는 방법으로는 도금씨드층을 형성하여 기판을 형성하는 도금법이나, 도전성 기판(340)을 별도로 준비하여 Au, Sn, Ni, Au-Sn, Ni-Sn, Ni-Au-Sn 또는 Pb-Sr과 같은 도전성 접착제를 이용하여 접합시키는 기판접합법이 이용될 수 있다.
각각의 반도체층(330, 310)은, 예를 들면, GaN계 반도체, SiC계 반도체, ZnO계반도체, GaAs계 반도체, GaP계 반도체, 및 GaAsP계 반도체와 같은 무기반도체로 구성될 수 있다. 반도체층의 형성은 예를 들면, 유기금속기상증착법(Metal Organic Chemical Vapor Deposition, MOCVD), 분자선 에피택시(Molecular beam epitaxy, MBE)방법을 이용하여 수행될 수 있다. 이외에도, 반도체층들은 III-V 족 반도체, Ⅳ-Ⅳ 족 반도체, II-VI 족 반도체, 및 Si과 같은 Ⅳ족 반도체 또는 이들의 조합으로 구성된 군으로부터 적절히 선택되어 구현될 수 있다.
활성층(320)은 발광을 활성화시키는 층으로서, 제1도전형 반도체층(330) 및 제2도전형 반도체층(310)의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 물질을 이용하여 형성한다. 예를 들어 제1도전형 반도체층(330) 및 제2도전형 반도체층(310)이 GaN계 화합물 반도체인 경우, GaN의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 InAlGaN계 화합물 반도체를 이용하여 활성층(320)을 형성할 수 있다. 즉, 활성층(320)은 InxAlyGa(1-x-y)N(0≤x≤1, 0≤y≤1, 0≤x+y≤1)일 수 있다.
이때, 활성층(320)의 구성물질의 몰비를 조절하여 발광하는 빛의 파장을 조절할 수도 있다. 따라서, 반도체 발광소자(300)는 활성층(320)의 특성에 따라 적외선, 가시광선, 및 자외선 중 어느 하나의 빛을 발광할 수 있다.
활성층(320)에 따라 반도체 발광소자(300)의 전체 에너지 밴드 다이어그램에는 에너지 우물 구조가 나타나게 되고, 각각의 반도체층(330, 310)으로부터의 전자 및 정공은 이동하다 에너지 우물 구조 갇히게 되고, 발광이 더욱 효율적으로 발생하게 된다.
제1전극층(360)은 제1도전형 반도체층(330)을 외부전원(미도시)과 전기적으로 연결하는 전극이다. 제1전극층(360)은 금속으로 구성될 수 있다. 제1전극층(360)은 예를 들면, n형 전극으로는 Ti, Al, Cr 또는 Au를, p형 전극으로는 Ni, Pd, Ag, Al, Pt 또는 Au로 구성된 물질로 부터 선택 사용할 수 있다.
제1전극층(360)은 활성층으로부터 발생한 빛을 반사시키는 것이 바람직하다. 반사된 빛은 발광면으로 향하게 되고, 반도체 발광소자의 발광효율이 증가된다. 활성층으로부터 발생한 빛을 반사시키기 위하여 제1전극층(360)은 가시광선영역에서 백색계열인 금속인 것이 바람직한데, 예를 들면, Ag, Al, 및 Pt 중 어느 하나일 수 있다. 제1전극층(360)에 대하여는, 도 12a 내지 도 12c를 참조하여 이하 더 설명하기로 한다.
제2전극부(350)는 제2도전형 반도체층(310)을 외부전원(미도시)과 전기적으로 연결하는 전극이다. 제2전극부(350)는 금속으로 구성될 수 있다. 제2전극부(350)는 예를 들면, n형 전극으로는 Ti를, p형 전극으로는 Pd 또는 Au로 구성될 수 있다. 특히, 본 발명에 따른 제2전극부(350)는 전극패드부(350-b), 전극연장부(350-a), 및 전극연결부(350-c)를 포함한다.
도 11a를 참조하면, 제2도전형 반도체층(310)상에 표면에는 전극패드부(350-b)가 형성되어 있고, 점선으로 표시된 복수의 전극연장부(350-a)는 제2도전형 반도체층(310)의 내부에 위치하고 있음이 나타나 있다.
도 11b는 도 11a에 나타난 제2도전형 반도체층(310)의 상면을 A-A', B-B', 및 C-C'로 절단한 것이 나타나 있다. A-A'는 전극연장부(350-a)만을 포함하는 단면을 B-B'는 전극패드부(350-b) 및 전극연장부(350-a)를 포함하는 단면을, 그리고, C-C'는 전극연장부(350-a) 및 전극패드부(350-b)를 포함하지 않는 단면을 취하기 위하여 선택되었다.
도 12a 내지 도 12c는 각각 도 11b에 도시된 반도체 발광소자의 A-A', B-B', 및 C-C'에서의 단면도이다. 이하, 도 10, 도 11a, 도 11b, 도 12a 내지 도12c를 참조하여 설명하기로 한다.
도 12a에서, 전극연장부(350-a)는 제1전극층(360)으로부터 제2도전형 반도체층(310) 내부까지 연장된다. 전극연장부(350-a)는 제1도전형 반도체층(330) 및 활성층(320)을 통과하여 제2도전형 반도체층(310)까지 연장되고, 적어도 제2도전형 반도체층(310)의 일부까지 연장되나, 전극패드부(350-b)와 같이 제2도전형 반도체층(310)의 표면까지 연장될 필요는 없다. 전극연장부(350-a)는 제2도전형 반도체층(310)에 전류를 분산시키기 위한 것이기 때문이다.
전극연장부(350-a)는 제2도전형 반도체층(310)에 전류를 분산시키기 위한 것이므로 소정면적을 가져야 한다. 그러나, 전극패드부(350-b)와 같이 전기적 연결을 위한 것이 아니므로 제2도전형 반도체층(310)상에 전류가 균일하게 분포될 수 있는 가능한 적은 면적으로 소정개수 형성되는 것이 바람직하다. 전극연장부(350-a)가 너무 적은 개수로 형성되면 전류분산이 어려워져 전기적 특성이 악화될 수 있고, 너무 많은 개수로 형성되면 형성을 위한 공정의 어려움 및 활성층의 감소로 인한 발광면적의 감소가 초래되므로 이러한 조건을 고려하여 적절히 선택될 수 있다. 따라서, 전극연장부(350-a)는 가능한 한 적은 면적을 차지하면서 전류분산이 효과적인 형상으로 구현된다.
전극연장부(350-a)는 전류분산을 위하여 복수개인 것이 바람직하다. 또한, 전극연장부(350-a)는 원통형의 형상일 수 있는데, 그 면적은 전극패드부(350-b)의 면적보다 작은 것이 바람직하다. 그리고 전극패드부(350-b)와 소정거리 이격되어 형성되는 것이 바람직한데, 후술하는 전극연결부(350-c)에 의하여 제1전극층(360)상에서 서로 연결될 수 있으므로 소정거리 이격되어 균일한 전류분산을 유도하여야 하기 때문이다.
전극연장부(350-a)는 제1전극층(360)으로부터 제2도전형 반도체층(310) 내부까지 형성되는데, 제2도전형 반도체층의 전류분산을 위한 것이므로 다른 층과는 전기적으로 분리될 필요가 있다. 따라서, 제1전극층(360), 제1도전형 반도체층(330), 및 활성층(320)과 전기적으로 분리되는 것이 바람직하다. 전기적 분리는 유전체와 같은 절연물질을 이용하여 수행할 수 있다.
도 12b에서, 전극패드부(350-b)는 제1전극층(360)으로부터 제2도전형 반도체층(310)의 표면까지 연장된다. 전극패드부(350-b)는 제1전극층(360)에서부터 시작하여, 제1도전형 반도체층(330), 활성층(320) 및 제2도전형 반도체층(310)을 통과하여 제2도전형 반도체층(310)의 표면까지 연장된다. 전극패드부(350-b)는 특히 제2전극부(350)의 외부전원(미도시)과의 연결을 위한 것이므로, 제2전극부(350)는 적어도 하나의 전극패드부(350-b)를 구비하는 것이 바람직하다.
전극패드부(350-b)는 제1전극층(360)으로부터 제2도전형 반도체층(310)의 표면까지 연장되어 있다. 전극패드부(350-b)는 제2도전형 반도체층(310)의 표면에서 외부전원과 전기적으로 연결되어 전극연장부에 전류를 공급하게 되므로 제1전극층(360), 제1도전형 반도체층(330), 및 활성층(320)과 전기적으로 분리되는 것이 바람직하다. 전기적 분리는 유전체와 같은 절연물질을 이용하여 절연층을 형성하여 수행할 수 있다.
전극패드부(350-b)는 전극연장부(350-a)에 전류를 공급하는 기능을 수행하나, 이외에도 제2도전형 반도체층(310)과 전기적으로 분리되지 않아 직접 전류를 분산시킬 수 있다. 전극패드부(350-b)는 전극연장부(350-a)에 전류를 공급하는 기능과 제2도전형 반도체층(310)에 전류를 분산시키는 기능 중 요구되는 기능을 고려하여 제2도전형 반도체층(310)과 적절히 전기적으로 분리시킬 수 있다.
전극패드부(350-b)는 특히, 활성층(320)에서의 단면의 면적이 제2도전형 반도체층(310)의 표면에서의 단면의 면적보다 작은 것이 바람직한데, 이는 활성층(320)을 보다 최대한 확보하여 발광효율을 증가시키기 위해서이다. 그러나, 제2도전형 반도체층(310)의 표면에서는 외부전원(미도시)과의 연결을 위하여 소정면적을 가질 필요가 있다.
전극패드부(350-b)는 반도체 발광소자(300)의 중앙에 위치할 수 있는데, 이 경우 전극연장부(350-a)는 가능한한 전극패드부(350-b)와 소정거리 이격되어 골고루 분산되어 위치하는 것이 바람직하다. 도 11a를 참조하면, 전극패드부(350-b)와 전극연장부(350-a)가 제2도전형 반도체층(310)상에 골고루 분산되어 위치하여 전류 분산을 최적화하고 있다. 도 11a에서는 전극패드부(350-b)가 1개이고, 전극연장부(350-a)가 12개인 경우를 상정하여 도시하였으나, 각각의 개수는 전기적 연결 상황(예를 들면, 외부전원의 위치) 및 제2도전형 반도체층(310)의 두께 등과 같은 전류분산 상황을 고려하여 적절히 선택될 수 있다.
전극연장부(350-a)가 복수개인 경우, 전극패드부(350-b)와 복수개의 전극연장부(350-a) 모두는 직접적으로 연결될 수 있다. 이 경우, 반도체 발광소자(300) 중심부에 전극 패드부(350-2)가 형성되고, 전극연장부(350-a)가 그 둘레에 위치하고 전극연결부(350-c)는 방사형으로 전극패드부(350-b) 및 전극연장부(350-a)를 직접 연결시킬 수 있다.
또는 복수의 전극연장부(350-a) 중 몇몇의 전극연장부(350-a)는 전극패드부(350-b)에 직접 연결되어 있고, 나머지 전극연장부(350-a)는 전극패드부(350-b)에 직접 연결된 전극연장부(350-a)와 연결되어 전극패드부(350-b)와는 간접적으로 연결될 수 있다. 이 경우에는 더욱 많은 수의 전극연장부(350-a)를 형성할 수 있어서, 전류분산의 효율화를 향상시키게 된다.
도 12a 내지 도 12c에서, 전극연결부(350-c)는 제1전극층(360) 상에 형성되어 전극패드부(350-b) 및 전극연장부(350-a)를 연결한다. 따라서, 제2전극부(350)의 상당부분이 빛을 발광하는 활성층(320)의 빛의 진행방향의 반대쪽 후면에 위치하게 되어 발광효율을 증가시키게 된다. 특히, 도 12c에서, 전극연결부(350-c)만이 제1전극층(360)상에 위치하여 제2전극부(350)가 제1도전형 반도체층(330), 활성층(320), 및 제2도전형 반도체층(310)상에 위치하지 않는 상태를 나타낸다. 따라 서, 도 12c와 같은 경우, 전극패드부(350-b) 및 전극연장부(350-a)가 발광에 영향을 미치지 않아 발광효율이 높이지는 영역이 된다. 도 12c에는 특히 도시되어 있지 않으나 제1전극층(360)은 도전성 기판(340)과 접촉되어 외부전원(미도시)과 연결될 수 있다.
그리고, 전극연결부(350-c)는 제1전극층(360)과 전기적으로 분리되어 있다. 제1전극층(360)과 제2전극부(350)는 서로 반대극성을 나타내는 전극들이어서, 외부전원을 제1도전형 반도체층(330) 및 제2도전형 반도체층(310)에 각각 공급하므로 양 전극은 반드시 전기적으로 분리되어야 한다. 전기적 분리는 유전체와 같은 절연물질을 이용하여 수행할 수 있다.
도 12b에서 전극패드부(350-b)가 제2도전형 반도체층(310)의 표면에 위치함으로써, 수직형 반도체 발광소자의 특성을 나타낼 수 있고, 도 12c에서는 전극연결부(350-c)가 제1전극층(360)과 같은 평면에 위치하므로 수평형 반도체 발광소자의 특성을 나타낼 수 있다. 따라서 반도체 발광소자(300)는 수평형 및 수직형을 통합한 형태의 구조를 나타내게 된다.
도 12a 내지 도 12c에서, 제2도전형 반도체층은 n형 반도체층이고, 제2전극부는 n형 전극부일 수 있다. 이 경우, 제1도전형 반도체층(330)은 p형 반도체층이고, 제1전극층(360)은 p형 전극일 수 있다. 전극패드부(350-b), 전극연장부(350-a) 및 전극연결부(350-c)는 서로 연결되어 있는 제2전극부(350)인데, 제2전극부(350)가 n형 전극인 경우, 절연물질을 이용하여 절연부(370)를 형성하여 p형 전극인 제1전극층(360)과 전기적으로 분리될 수 있다.
도 13a는 본 실시예의 변형예에 따라 표면에 요철패턴(380)이 형성된 반도체 발광소자의 발광을 나타내는 도면이고, 도 13b는 본 실시예의 다른 변형예에 따라 표면에 요철패턴(380)이 형성된 반도체 발광소자에서의 전류분산을 나타내는 도면이다.
본 실시예에 따른 반도체 발광소자(300)는 발광된 빛의 진행방향의 최외곽 표면이 제2도전형 반도체층(310)으로 구성되어 있다. 따라서, 포토리소그래피 방법과 같은 공지의 방법을 이용하여 표면에 요철 패턴을 형성하는 것이 용이하다. 이 경우, 활성층(320)으로부터 발광된 빛은 제2도전형 반도체층(310)의 표면에 형성된 요철패턴(380)을 통과하여 추출되고 요철패턴(380)에 의해 광추출효율이 증가된다.
요철패턴(380)은 광결정(photonic crystal) 구조일 수 있다. 광결정은 굴절률이 서로 다른 매질이 결정처럼 규칙적으로 배열된 것을 나타내는데, 이러한 광결정은 빛의 파장의 배수의 길이 단위의 빛 조절이 가능하여 광추출효과를 더욱 높일 수 있다. 광결정 구조는 제2도전형 반도체층(310)을 형성하고 제2전극부(350)까지 제조한 후에, 소정의 적절한 공정을 통하여 수행될 수 있다. 예를 들면, 식각 공정에 의하여 형성될 수 있다.
제2도전형 반도체층(310)에 요철패턴(380)이 형성되어 있다고 하여도 전류분산에는 영향이 없다. 도 13b를 참조하면, 전극연장부(350-a)에서의 전류분산은 요철패턴(380)에 영향을 받지 않기 때문이다. 각각의 전극연장부(350-a)는 요철패턴 아래에서 전류를 분산시키고 요철패턴은 발광된 빛을 추출하여 발광효율이 높아지게 된다.
도 14는 발광면의 전류밀도와 발광효율의 관계를 도시하는 그래프를 나타내는 도면이다. 그래프에서 전류밀도가 약 10A/cm2이상인 경우, 전류밀도가 작은 경우에는 발광효율이 높고, 전류밀도가 큰 경우에는 발광효율이 낮은 경향을 나타낸다.
이러한 수치를 이하의 표1에 나타내었다.
[표 1]
발광면적(cm2) 전류밀도(A/cm2) 발광효율(lm/W) 향상율(%)
0.0056 62.5 46.9 100
0.0070 50.0 51.5 110
0.0075 46.7 52.9 113
0.0080 43.8 54.1 115
발광면적이 높을수록 발광효율이 높아지나, 발광면적을 확보하기 위하여는 분포된 전극의 면적이 감소되어야 하므로 발광면의 전류밀도는 감소하는 경향을 나타낸다. 그러나 이러한 발광면에서의 전류밀도의 감소는 반도체 발광소자의 전기적 특성을 해칠 수 있다는 문제점이 있다.
그러나, 이러한 문제점은 본 발명에서의 전극연장부를 이용한 전류분산의 확보를 통하여 해소가 가능하다. 따라서, 전류밀도가 감소하여 발생할 수 있는 전기적 특성상의 문제점은 발광표면까지 형성되지 않고 그 내부에 형성되어 전류분산을 담당하는 전극연장부를 형성시키는 방법을 통하여 극복될 수 있다. 따라서, 본 발명에 따른 반도체 발광소자는 원하는 전류분산정도를 획득하면서 최대의 발광면적을 확보하여 바람직한 발광효율을 얻을 수 있다.
도 15 내지 도 18을 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광 소자에 대해 설명한다.
도 15는 본 발명의 또 다른 실시예에 따른 발광소자의 단면도이고, 도 16a 및 도 16b는 도 15의 발광소자의 상면도이며, 도 17a 내지 도 17c는 각각 도 16b에 도시된 발광소자의 A-A', B-B', 및 C-C'에서의 단면도이다.
본 발명의 또 다른 실시예에 따른 발광소자(400)는 제1 및 제2도전형 반도체층(430, 410)과 그 사이에 형성된 활성층(420)을 포함하며, 제1 및 제2도전형 반도체층(430, 410)으로 제공되며 서로 반대되는 제1면 및 제2면을 갖는 발광 적층체(430, 420, 410); 발광 적층체(430, 420, 410)가 복수의 발광영역으로 분리되도록 발광 적층체(430, 420, 410)의 제2면으로부터 적어도 제2도전형 반도체층(410)의 일부 영역까지 연장된 적어도 하나의 전기적 절연성의 격벽부(470); 복수의 발광영역에 위치한 제2도전형 반도체층(410)에 각각 접속되도록 형성된 제2전극구조(460); 제1도전형 반도체층(430)에 접속되도록 발광 적층체(430, 420, 410)의 제2면에 형성된 제1전극구조(440); 및 제1전극구조(440)에 전기적으로 연결되도록 발광 적층체(430, 420, 410)의 제2면에 형성된 도전성 기판(450)을 포함한다.
발광 적층체(430, 420, 410)는 제1 및 제2도전형 반도체층(430, 410)과 그 사이에 형성된 활성층(420)을 포함한다. 발광 적층체(4430, 420, 410)는 제2도전형 반도체층(410)의 외부면을 제1면으로, 제1도전형 반도체층(430)의 외부면을 제2면으로 갖는다.
각각의 반도체층(430, 410)은, 예를 들면, GaN계반도체, SiC계반도체, ZnO계반도체, GaAs계반도체, GaP계반도체, 및 GaAsP계반도체와 같은 반도체로 구성될 수 있다. 반도체층의 형성은 예를 들면, 유기금속기상증착법(MOCVD), 분자선 에피택시(Molecular beam epitaxy, MBE)방법을 이용하여 수행될 수 있다. 이외에도, 반도체층들은 III-V 족 반도체, Ⅳ-Ⅳ족 반도체, II-VI 족 반도체, 및 Si과 같은 Ⅳ족 반도체 또는 이들의 조합으로 구성된 군으로부터 적절히 선택되어 구현될 수 있다. 발광적층체는 사파이어, SiC, Si, GaAs과 같은 기판(미도시)상에서 성장할 수 있다. 상기 기판(미도시)은 추후 도전성 기판 접합 전에 제거된다.
활성층(420)은 발광을 활성화시키는 층으로서, 제2도전형 반도체층(410) 및 제1도전형 반도체층(430)의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 물질을 이용하여 형성한다. 예를 들어 제2도전형 반도체층(410) 및 제1도전형 반도체층(430)이 GaN계 화합물 반도체인 경우, GaN의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 InAlGaN계 화합물 반도체를 이용하여 활성층(420)을 형성할 수 있다. 즉, 활성층(420)은 InxAlyGa(1-x-y)N(0≤x≤1, 0≤y≤1, 0≤x+y≤1)을 포함할 수 있다.
이때, 활성층(420)의 구성물질의 몰비를 조절하여 발광하는 빛의 파장을 조절할 수도 있다. 따라서, 발광소자(400)는 활성층(420)의 특성에 따라 적외선, 가시광선, 및 자외선 중 어느 하나의 빛을 발광할 수 있다.
활성층(420)에 따라 발광소자(400)의 전체 에너지 밴드 다이어그램에는 에너지 우물 구조가 나타나게 되고, 각각의 반도체층(430, 410)으로부터의 전자 및 정공은 이동하다 에너지 우물 구조 갇히게 되고, 발광이 더욱 효율적으로 발생하게 된다.
격벽부(470)는 발광 적층체(430, 420, 410)가 복수의 발광영역으로 분리되도록 발광 적층체(430, 420, 410)의 제2면으로부터 적어도 제2도전형 반도체층(410)의 일부 영역까지 연장되어 형성된다. 격벽부(470)는 제2도전형 반도체층(410)을 복수의 영역으로 분리시켜 제2도전형 반도체층(410)과 제2도전형 반도체층(410)상에 형성된 성장용 기판(미도시)과의 사이에 레이저 등의 분리수단을 적용할 경우, 계면에 인가되는 열에너지로 인한 응력을 감소시킨다.
예를 들어, 성장용 기판과의 분리수단으로서 레이저를 이용하는 경우 계면에서의 온도는 약 1000℃이다. 따라서, 그에 따른 열에너지로 분리시키지만 이러한 열은 추후 반도체층 및 접합될 도전성 기판(450)에 수축 및 팽창을 유도하는 응력을 발생시킨다. 일반적으로 응력의 크기는 면적에 비례하므로 대면적 발광소자에서는 이러한 응력이 특히 불리한 영향을 미칠 수 있다.
그러나, 본 실시예에 따른 발광소자(400)는 격벽부(470)를 구비하고 있으므로 제2도전형 반도체층(410)의 면적은 복수개의 발광영역의 면적으로 작아지므로 응력을 감소시킬 수 있다. 즉, 각각의 복수개의 발광영역별로 보다 용이하게 팽창 및 수축이 진행되어 발광적층체(430, 420, 410)의 발광을 안정화시킬 수 있다.
바람직하게, 격벽부(470)는 반도체층(430, 410) 및 활성층(420)을 전기적으로 절연시키는데, 이를 위하여 격벽부는 공기로 충전될 수 있다. 또는 격벽부(470)는 내면에 절연층을 형성하고, 절연층 내부는 공기로 충전될 수 있다. 이외에도 내부 전체를 유전체와 같은 절연물질로 충전하여 전기적 절연을 수행할 수 있다.
격벽부(470)는 발광적층체(430, 410)를 전기적으로 절연하기 위하여 제2면으 로부터 제2도전형 반도체층(410)의 상면까지 연장되어 형성될 수 있으나, 반드시 제2도전형 반도체층(410)의 상면까지 연장될 필요는 없고, 제2도전형 반도체층(410)의 내부까지 연장될 수 있다.
또한, 격벽부(470)는 하나의 구조로 구성될 수 있으나, 이와 달리 서로 분리된 복수의 격벽을 포함하여 구성될 수 있다. 이 경우, 복수의 격벽은 필요한 전기적 절연특성을 부여할 수 있도록 각각 다르게 형성할 수 있는데, 예를 들면, 본딩부(461)를 둘러싸는 격벽부 및 콘택홀(462)을 둘러싸는 격벽부는 서로 다른 높이나 형상을 갖을 수 있다.
제2전극구조(460)는 격벽부(470)로 분리된 복수의 발광영역에 위치한 제2도전형 반도체층(410)에 각각 접속되도록 형성된다. 제2전극구조(460)는 콘택홀(462), 본딩부(461) 및 배선부(463)를 포함한다.
콘택홀(462)은 복수개 구비될 수 있는데, 복수의 콘택홀(462) 각각은 복수의 발광영역에 각각 제공될 수 있다. 콘택홀(462)은 단일발광영역에 단일콘택홀이 제공되거나 또는 단일발광영역에 복수의 콘택홀이 제공될 수 있다. 콘택홀(462)은 제2도전형 반도체층(410)에 전기적으로 접속되고 제1도전형 반도체층(430) 및 활성층(420)과는 전기적으로 절연되도록 형성되는데, 이를 위하여 발광 적층체(430, 420, 410)의 제2면으로부터 제2도전형 반도체층(410)의 적어도 일부 영역까지 연장된다. 콘택홀(462)은 제2도전형 반도체층(410)상에 전류를 분산시키기 위하여 형성된다.
본딩부(461)는 발광 적층체(430, 420, 410)의 제1면으로부터 복수의 콘택 홀(462) 중 적어도 하나에 연결되도록 형성되며, 제1면에 노출된 영역이 본딩영역으로 제공된다.
배선부(463)는 발광 적층체(430, 420, 410)의 제2면에 제공되며, 적어도 제1도전형 반도체층(430)과 전기적으로 절연되면서 본딩부(461)에 연결된 콘택홀(462)과 다른 콘택홀(462)을 서로 전기적으로 연결하도록 형성된다. 배선부(463)는 콘택홀(462)과 다른 콘택홀(462)을 전기적으로 연결하고, 또한, 콘택홀(462) 및 본딩부(461)를 연결할 수 있다. 제2도전형 반도체층(410) 및 활성층 아래에 배선부(463)가 위치하여 발광효율을 향상시킬 수 있다.
이하, 도 16a 내지 도 17c를 참조하여, 콘택홀(462), 본딩부(461) 및 배선부(463)를 더욱 상세히 설명하기로 한다.
제1전극구조(440)는 제1도전형 반도체층(430)에 전기적으로 접속되도록 발광 적층체(430, 420, 410)의 제2면에 형성된다. 즉, 제1전극구조(440)는 제1도전형 반도체층(430)을 외부전원(미도시)과 전기적으로 연결하는 전극이다. 제1전극구조(440)는 금속으로 구성될 수 있다. 제1전극구조(440)는 예를 들면, n형 전극으로는 Ti, Al, Cr, 또는 Au를, p형 전극으로는 Ni, Pd, Ag, Al, Pt 또는 Au로 구성된 물질로부터 선택 사용할 수 있다.
제1전극구조(440)는 활성층(420)으로부터 발생한 빛을 반사시키는 것이 바람직하다. 제1전극구조(440)는 활성층(420)의 하측에 위치하므로 활성층(420)을 기준으로 하여 발광소자의 발광방향과 반대면에 위치한다. 따라서, 활성층(420)으로부터 제1전극구조(440)로 진행하는 빛은 발광방향과 반대방향이고, 따라서 이러한 빛 은 반사되어야 발광효율이 증가된다. 따라서, 제1전극구조(440)에서 반사된 빛은 발광면으로 향하게 되고, 발광소자의 발광효율이 증가된다.
활성층(420)으로부터 발생한 빛을 반사시키기 위하여 제1전극구조(440)는 가시광선영역에서 백색계열인 금속인 것이 바람직한데, 예를 들면, Ag, Al, 및 Pt 중 어느 하나일 수 있다. 제1전극구조(440)에 대하여는, 도 17a 내지 도 17c를 참조하여 이하 더 설명하기로 한다.
도전성 기판(450)은 제1전극구조(440)에 전기적으로 연결되도록 발광 적층체(430, 420, 410)의 제2면에 형성된다. 도전성 기판(450)은 금속성 기판이거나 반도체 기판일 수 있다. 도전성 기판(450)이 금속인 경우, Au, Ni, Cu, 및 W 중 어느 하나의 금속으로 구성될 수 있다. 또한, 도전성 기판(450)이 반도체 기판인 경우, Si, Ge, 및 GaAs 중 어느 하나의 반도체 기판일 수 있다. 또는 도전성 기판(450)은 Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질, 예컨데, Si와 Al의 결합형태인 SiAl 물질로 이루어진 기판일 수 있다. 도전성 기판을 발광소자에 형성하는 방법으로는 도금씨드층을 형성하여 기판을 형성하는 도금법이나, 도전성 기판(450)을 별도로 준비하여 Au, Sn, Ni, Au-Sn, Ni-Sn, Ni-Au-Sn 또는 Pb-Sr과 같은 도전성 접착제를 이용하여 접합시키는 기판접합법이 이용될 수 있다.
도 16a를 참조하면, 제2도전형 반도체층(410)상에 표면에는 본딩부(461)가 형성되어 있고, 점선으로 표시된 복수의 콘택홀(462)은 제2도전형 반도체층(410)의 내부에 위치하고 있음이 나타나 있다. 제2도전형 반도체층(410)은 격벽부(470)로 서로 분리된 복수의 발광영역을 포함한다. 도 16a 및 도 16b에서 본딩부(461)는 하 나만이 도시되어 있으나, 동일 발광영역에 복수개 형성되거나 또는 복수개의 발광영역 각각에 복수개 형성될 수 있다. 또한, 콘택홀(462)은 각각의 발광영역에 하나씩 형성되어 있으나, 단일 발광영역에 복수개 형성되어 전류분산을 더욱 향상시킬 수 있다.
도 16b는 도 16a에 나타난 제2도전형 반도체층(410)의 상면을 A-A', B-B', 및 C-C'로 절단한 것을 도시한다. A-A'는 콘택홀(462)만을 포함하는 단면을, B-B'는 본딩부(461) 및 콘택홀(462)을 포함하는 단면을, 그리고, C-C'는 콘택홀(462) 및 본딩부(461)를 포함하지 않고, 배선부(463)만을 포함하는 단면을 취하기 위하여 선택되었다.
도 17a 내지 도 17c는 각각 도 16b에 도시된 발광소자의 A-A', B-B', 및 C-C'에서의 단면도이다. 이하, 도 15, 도 16a, 도 16b, 도 17a 내지 도 17c를 참조하여 설명하기로 한다.
도 17a에서, 콘택홀(462)은 제1전극구조(440)으로부터 제2도전형 반도체층(410) 내부까지 연장된다. 콘택홀(462)은 제1도전형 반도체층(430) 및 활성층(420)을 통과하여 제2도전형 반도체층(410)까지 연장되고, 적어도 제2도전형 반도체층(410)의 일부까지 연장되나, 본딩부(461)와 같이 제2도전형 반도체층(410)의 표면까지 연장될 필요는 없다. 그러나, 콘택홀(462)은 제2도전형 반도체층(410)에 전류분산을 위한 것이므로 제2도전형 반도체층(410)까지는 연장되어야 한다.
콘택홀(462)은 제2도전형 반도체층(410)에 전류를 분산시키기 위한 것이므로 소정면적을 가져야 한다. 그러나, 본딩부(461)와 같이 전기적 연결을 위한 것이 아 니므로 제2도전형 반도체층(410)상에 전류가 균일하게 분포될 수 있는 가능한 적은 면적으로 소정개수 형성되는 것이 바람직하다. 콘택홀(462)이 너무 적은 개수로 형성되면 전류분산이 어려워져 전기적 특성이 악화될 수 있고, 너무 많은 개수로 형성되면 형성을 위한 공정의 어려움 및 활성층의 감소로 인한 발광면적의 감소가 초래되므로 이러한 조건을 고려하여 적절히 선택될 수 있다. 따라서, 콘택홀(462)은 가능한 한 적은 면적을 차지하면서 전류분산이 효과적인 형상으로 구현된다.
콘택홀(462)은 전류분산을 위하여 복수개인 것이 바람직하다. 또한, 콘택홀(462)은 원통형의 형상일 수 있는데, 그 단면의 면적은 본딩부(461)의 단면의 면적보다 작을 수 있다. 그리고 본딩부(461)와 소정거리 이격되어 형성되는 것이 바람직한데, 후술하는 배선부(463)에 의하여 제1전극구조(440)상에서 서로 연결될 수 있으므로 소정거리 이격되어 가능한한 제1도전형 반도체층(410)내에서 균일한 전류분산을 유도하여야 하기 때문이다.
콘택홀(462)은 제1전극구조(440)으로부터 제2도전형 반도체층(410) 내부까지 형성되는데, 제2도전형 반도체층의 전류분산을 위한 것이므로 제1도전형 반도체층(430) 및 활성층(420)과는 전기적으로 분리될 필요가 있다. 따라서, 제1전극구조(440), 제1도전형 반도체층(430) 및 활성층(420)과 전기적으로 분리되는 것이 바람직하다. 전기적 분리는 유전체와 같은 절연물질을 이용하여 수행할 수 있다.
도 17b에서, 본딩부(461)는 제1전극구조(440)에서부터 시작하여, 제1도전형 반도체층(430), 활성층(420) 및 제2도전형 반도체층(410)을 통과하여 제2도전형 반도체층(410)의 표면까지 연장된다. 발광 적층체(430, 420, 410)의 제1면으로부터 복수의 콘택홀(462) 중 적어도 하나에 연결되도록 형성되며, 제1면에 노출된 영역이 본딩영역으로 제공된다.
본딩부(461)는 특히 제2전극구조(460)의 외부전원(미도시)과의 연결을 위한 것이므로, 제2전극구조(460)는 적어도 하나의 본딩부(461)를 구비하는 것이 바람직하다.
본딩부(461)는 제2도전형 반도체층(410)의 표면에서 외부전원과 전기적으로 연결되어 콘택홀에 전류를 공급하게 되므로 제1전극구조(440), 제2도전형 반도체층(410), 및 활성층(420)과 전기적으로 분리되는 것이 바람직하다. 전기적 분리는 유전체와 같은 절연물질을 이용하여 절연층을 형성하여 수행할 수 있다.
본딩부(461)는 콘택홀(462)에 전류를 공급하는 기능을 수행하나, 이외에도 제2도전형 반도체층(410)과 전기적으로 분리되지 않도록 구성되어 직접 전류를 분산시킬 수 있다. 본딩부(461)는 콘택홀(462)에 전류를 공급하는 기능과 제2도전형 반도체층(410)에 전류를 분산시키는 기능 중 요구되는 기능을 고려하여 제2도전형 반도체층(410)과 적절히 전기적으로 분리시킬 수 있다.
본딩부(461)는 특히, 활성층(420)에서의 단면의 면적이 제2도전형 반도체층(410)의 표면에서의 단면의 면적보다 작은 것이 바람직한데, 이는 활성층(420)을 보다 최대한 확보하여 발광효율을 증가시키기 위해서이다. 그러나, 본딩부(461)는 제2도전형 반도체층(410)의 표면에서는 외부전원(미도시)과의 연결을 위하여 소정면적을 가지는 것이 바람직하다.
본딩부(461)는 발광소자(400)의 중앙에 위치할 수 있는데, 이 경우 콘택 홀(462)은 가능한한 본딩부(461)와 소정거리 이격되어 골고루 분산되어 위치하는 것이 바람직하다. 다시 도 16a를 참조하면, 본딩부(461)와 콘택홀(462)이 제2도전형 반도체층(410)상에 골고루 분산되어 위치하여 전류분산을 최적화하고 있다. 도 16a에서는 본딩부(461)가 1개이고, 콘택홀(462)이 8개인 경우를 상정하여 도시하였으나, 각각의 개수는 전기적 연결 상황(예를 들면, 외부전원의 위치) 및 제2도전형 반도체층(410)의 두께 등과 같은 전류분산 상황을 고려하여 적절히 선택될 수 있다.
콘택홀(462)이 복수개인 경우, 본딩부(461)와 복수개의 콘택홀(462) 모두는 직접적으로 연결될 수 있다. 이 경우, 발광소자(400) 중심부에 본딩부(461)가 형성되고, 콘택홀(462)이 그 둘레에 위치하고 배선부(463)는 방사형으로 본딩부(461) 및 콘택홀(462)을 직접 연결시킬 수 있다.
또는 복수의 콘택홀(462) 중 몇몇의 콘택홀(462)은 본딩부(461)에 직접 연결되어 있고, 나머지 콘택홀(462)은 본딩부(461)에 직접 연결된 콘택홀(462)과 연결되어 본딩부(461)와는 간접적으로 연결될 수 있다. 이 경우에는 더욱 많은 수의 콘택홀(462)을 형성할 수 있어서, 전류분산의 효율화를 향상시키게 된다.
도 17a 내지 도 17c에서, 배선부(463)는 제1전극구조(440)상에 형성되어 본딩부(461) 및 콘택홀(462)을 연결한다. 따라서, 제1전극구조(440)의 상당부분이 빛을 발광하는 활성층(420)의 빛의 진행방향의 반대쪽 후면에 위치하게 되어 발광효율을 증가시키게 된다. 특히, 도 17c에서, 배선부(463)만이 제1전극구조(440)상에 위치하고 제2전극구조(460)가 제2도전형 반도체층(410), 활성층(420), 및 제2도전 형 반도체층(410)상에 위치하지 않는 상태를 나타낸다. 따라서, 도 17c와 같은 경우, 본딩부(461) 및 콘택홀(462)이 발광에 영향을 미치지 않아 발광효율이 높이지는 영역이 된다.
그리고, 배선부(463)는 제1전극구조(440)와 전기적으로 분리되어 있다. 제2전극구조(460)와 제1전극구조(440)는 서로 반대극성을 나타내는 전극들이어서, 외부전원을 제2도전형 반도체층(410) 및 제1도전형 반도체층(430)에 각각 공급하므로 양 전극은 반드시 전기적으로 분리되어야 한다. 전기적 분리는 유전체와 같은 절연물질을 이용하여 절연층(480)을 형성하여 수행할 수 있다.
도 17b에서 본딩부(461)가 제2도전형 반도체층(410)의 표면에 위치함으로써, 수직형 발광소자의 특성을 나타낼 수 있고, 도 17c에서는 배선부(463)가 제1전극구조(440)과 같은 평면에 위치하므로 수평형 발광소자의 특성을 나타낼 수 있다. 따라서 발광소자(400)는 수평형 및 수직형을 통합한 형태의 구조를 나타내게 된다.
도 17a 내지 도 17c에서, 제1도전형 반도체층은 p형 반도체층이고, 제1전극구조는 p형 전극부일 수 있다. 이 경우, 제2도전형 반도체층(410)은 n형 반도체층이고, 제2전극구조(460)는 n형 전극일 수 있다. 본딩부(461), 콘택홀(462) 및 배선부(463)는 서로 연결되어 있는 제2전극구조(460)인데, 제2전극구조(460)가 n형 전극인 경우, 절연물질을 이용하여 절연층(480)를 형성하여 p형 전극인 제1전극구조(440)와 전기적으로 분리될 수 있다.
도 18은 본 발명의 따라 표면에 요철패턴이 형성된 발광소자에서의 발광을 도시하는 도면이다. 본 실시예에 따른 발광소자는 발광된 빛의 진행방향의 최외곽 표면이 제2도전형 반도체층(410)으로 구성되어 있다. 따라서, 포토리소그래피 방법과 같은 공지의 방법을 이용하여 표면에 요철 패턴을 형성하는 것이 용이하다. 이 경우, 활성층(420)으로부터 발광된 빛은 제2도전형 반도체층(410)의 표면에 형성된 요철패턴(490)을 통과하여 추출되고 요철패턴(490)에 의해 광추출효율이 증가된다.
요철패턴(490)은 광결정(photonic crystal) 구조일 수 있다. 광결정은 굴절률이 서로 다른 매질이 결정처럼 규칙적으로 배열된 것을 나타내는데, 이러한 광결정은 빛의 파장의 배수의 길이 단위의 빛 조절이 가능하여 광추출효과를 더욱 높일 수 있다. 광결정 구조는 제2도전형 반도체층(410)을 형성하고 제1전극구조(460)까지 제조한 후에, 소정의 적절한 공정을 통하여 수행될 수 있다. 예를 들면, 식각 공정에 의하여 형성될 수 있다.
요철패턴(490)이 제2도전형 반도체층(410)에 형성된 경우, 격벽부(470)는 제2도전형 반도체층(410)의 표면까지 형성되지 않고 그 내부까지만 형성되는 것이 바람직하다. 격벽부(470)는 요철패턴(490)의 광추출효율향상성능에 불리한 영향을 미치지 않으면서, 발광영역을 복수개로 분리하는 역할을 수행한다.
도 19 내지 도 23을 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광소자에 대해 설명한다.
도 19는 본 발명의 또 다른 실시예에 따른 반도체 발광소자의 사시도이고, 도 20은 도 19의 반도체 발광소자의 평면도이다. 이하, 도 19 및 도 20을 참조하여 설명한다.
본 실시예에 따른 반도체 발광소자(500)는 제1도전형 반도체층(511), 활성층(512), 제2도전형 반도체층(513), 제2전극층(520), 제1절연층(530), 제1전극층(540) 및 도전성 기판(550)이 순차 적층되어 형성된다. 이 때, 제2전극층(520)은 제2도전형 반도체층(513)의 계면 중 일부가 노출된 영역을 포함하고, 제1전극층(540)은, 제1도전형 반도체층(511)에 전기적으로 접속되고 제2도전형 반도체층(513) 및 활성층(512)과는 전기적으로 절연되어 제1전극층(540)의 일면으로부터 제1도전형 반도체층(513)의 적어도 일부 영역까지 연장된 하나 또는 그 이상의 콘택홀(541)을 포함한다.
반도체 발광소자(500)의 발광은 제1도전형 반도체층(511), 활성층(512), 및 제2도전형 반도체층(513)에서 수행되므로, 이들을 이하, 발광적층체(510)라 한다. 즉, 반도체 발광소자(500)는 발광적층체(510) 및 제1도전형 반도체층(511)과 전기적으로 접속되는 제1전극층(540), 제2도전형 반도체층(513)과 전기적으로 접속되는 제2전극층(520), 및 전극층들(520, 540)을 전기적으로 절연시키기 위한 제1절연층(530)을 포함한다. 또한, 반도체 발광소자(500)의 성장 또는 지지를 위한 기판으로서, 도전성 기판(550)을 포함한다.
반도체층들(511, 513)은, 예를 들면, GaN계반도체, SiC계반도체, ZnO계반도체, GaAs계반도체, GaP계반도체, 및 GaAsP계반도체와 같은 반도체로 구성될 수 있다. 반도체층의 형성은 예를 들면, 유기금속기상증착법(MOCVD), 분자선 에피택시(Molecular beam epitaxy, MBE)방법을 이용하여 수행될 수 있다. 이외에도, 반도체층들은 III-V 족 반도체, Ⅳ-Ⅳ족 반도체, II-VI 족 반도체, 및 Si과 같은 Ⅳ족 반도체 또는 이들의 조합으로 구성된 군으로부터 적절히 선택되어 구현될 수 있다. 반도체층들(511, 513)은 전술한 반도체에 각각의 도전형을 고려하여 적절한 불순물로 도핑된다.
활성층(512)은 발광을 활성화시키는 층으로서, 제1도전형 반도체층(511) 및 제2도전형 반도체층(513)의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 물질을 이용하여 형성한다. 예를 들어, 제1도전형 반도체층(511) 및 제2도전형 반도체층(513)이 GaN계 화합물 반도체인 경우, GaN의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 InAlGaN계 화합물 반도체를 이용하여 활성층(512)을 형성할 수 있다. 즉, 활성층(512)은 InxAlyGa(1-x-y)N(0≤x≤1, 0≤y≤1, 0≤x+y≤1)을 포함할 수 있다.
이때, 활성층(512)의 구성물질의 몰비를 조절하여 발광하는 빛의 파장을 조절할 수도 있다. 따라서, 반도체 발광소자(500)는 활성층(512)의 특성에 따라 적외선, 가시광선, 및 자외선 중 어느 하나의 빛을 발광할 수 있다.
전극층들(520, 540)은 각각 동일한 도전형의 반도체층에 전압을 인가하기 위한 층들이므로 전기전도성을 고려하여 금속을 포함할 수 있다. 즉, 전극층들(520, 540)은 반도체층들(511, 513)을 외부전원(미도시)과 전기적으로 연결하는 전극이다. 전극층들(520, 540)은 예를 들면, n형 전극으로는 Ti, Al, Cr, 또는 Au를, p형 전극으로는 Ni, Pd, Ag, Al, Pt 또는 Au로 구성된 물질로부터 선택 사용할 수 있다.
제1전극층(540)은 제1도전형 반도체층(511)에, 제2전극층(520)은 제2도전형 반도체층(513)에 각각 접속되므로 서로 다른 도전형에 접속되는 특성상, 제1절연층(530)을 통하여 서로 전기적으로 분리된다. 제1절연층(530)은 전기전도성이 낮은 물질로 구성되는 것이 바람직하므로 예를 들어, SiO2와 같은 산화물을 포함할 수 있다.
제2전극층(520)은 활성층(512)으로부터 발생한 빛을 반사시키는 것이 바람직하다. 제2전극층(520)은 활성층(512)의 하측에 위치하므로 활성층(512)을 기준으로 하여 반도체 발광소자(500)의 발광방향과 반대면에 위치한다. 활성층(512)으로부터 제2전극층(520)로 진행하는 반도체 발광소자(500)의 발광방향과 반대방향이고, 제2전극층(520)을 향하여 진행하는 빛은 반사되어야 발광효율이 증가된다. 따라서, 제2전극층(520)이 광반사성을 나타낸다면 반사된 빛은 발광면으로 향하게 되고, 반도체 발광소자(500)의 발광효율이 증가된다.
활성층(512)으로부터 발생한 빛을 반사시키기 위하여 제2전극층(520)은 가시광선영역에서 백색계열인 금속인 것이 바람직한데, 예를 들면, Ag, Al, 및 Pt 중 어느 하나일 수 있다.
제2전극층(520)은 제2도전형 반도체층(513)과의 계면 중 일부가 노출된 영역을 포함한다. 제1전극층(540)의 경우, 하면에 도전성 기판(550)과 접촉되어 있고, 도전성 기판(550)을 통하여 외부전원(미도시)과 전기적으로 연결된다. 그러나, 제2전극층(520)은 외부전원(미도시)과 연결되기 위하여 별도의 연결영역이 필요하다. 따라서, 제2전극층(520)은 발광적층체(510) 중 일부가 에칭등이 되어 노출된 영역 을 갖는다.
도 19에서는 제2전극층(520)의 노출 영역을 위하여 발광적층체(510)의 중앙이 에칭되어 형성된 비아홀(514)의 실시예가 도시되어 있다. 제2전극층(520)의 노출된 영역상에는 전극패드부(560)가 더 형성될 수 있다. 제2전극층(520)은 노출된 영역을 통하여 외부전원(미도시)과 전기적으로 연결될 수 있는데, 이 때 전극패드부(560)를 이용하여 연결된다. 외부전원(미도시)과의 연결은 예를 들면 와이어를 이용할 수 있으므로 연결의 편의 상 비아홀의 직경은 제2전극층에서 제1도전형 반도체층 방향으로 증가하는 것이 바람직하다.
비아홀(514)은 반도체를 포함하는 발광적층체(510)만을 에칭하고, 통상 금속을 포함하는 제2전극층(520)은 에칭하지 않도록 선택적 에칭을 통하여 수행한다. 비아홀(514)의 직경은 발광면적, 전기적 연결효율 및 제2전극층(520)에서의 전류분산을 고려하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의하여 적절히 선택될 수 있다.
제1전극층(540)은, 제1도전형 반도체층(511)에 전기적으로 접속되고, 제2도전형 반도체층(513) 및 활성층(512)과는 전기적으로 절연되어 제1도전형 반도체층(511)의 적어도 일부 영역까지 연장된 하나 또는 그 이상의 콘택홀(541)을 포함한다. 제1전극층(540)은 제1도전형 반도체층(511)의 외부전원(미도시)과의 연결을 위하여, 제1전극층(540) 및 제2도전형 반도체층(513) 사이의 제2전극층(520), 제2도전형 반도체층(513), 및 활성층(512)을 관통하여 제1도전형 반도체층(511)까지 연장되고 전극물질을 포함하는 콘택홀(541)을 적어도 하나 이상 포함하는 것이다.
콘택홀(541)이 단지 전기적 연결만을 위한 것이라면, 제1전극층(540)은 콘택홀(541)을 하나만 포함하는 것이 가능하다. 다만, 제1도전형 반도체층(511)에 전달되는 전류의 균일한 분산을 위하여 제1전극층(540)은 콘택홀(541)을 소정위치에 복수개 구비할 수 있다.
도전성 기판(550)은 제2전극층(520)과 접촉하여 형성되어 전기적으로 연결된다. 도전성 기판(550)은 금속성 기판이거나 반도체 기판일 수 있다. 도전성 기판(550)이 금속인 경우, Au, Ni, Cu, 및 W 중 어느 하나의 금속으로 구성될 수 있다. 또한, 도전성 기판(550)이 반도체 기판인 경우, Si, Ge, 및 GaAs 중 어느 하나의 반도체 기판일 수 있다. 또는 도전성 기판(550)은 Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질, 예컨데, Si와 Al의 결합형태인 SiAl 물질로 이루어진 기판일 수 있다. 이들 도전성 기판(550)은 성장기판일 수 있고, 사파이어 기판과 같은 부도전성 기판을 성장기판으로 사용한 후, 부도전성 기판을 제거하고 접합된 지지기판일 수 있다.
도전성 기판(550)이 지지기판일 때, 도금법 또는 기판접합법을 이용하여 형성될 수 있다. 상술하면, 도전성 기판(550)을 반도체 발광소자(500)에 형성하는 방법으로는 도금씨드층을 형성하여 기판을 형성하는 도금법이나, 도전성 기판(550)을 별도로 준비하여 Au, Sn, Ni, Au-Sn, Ni-Sn, Ni-Au-Sn 또는 Pb-Sr과 같은 도전성 접착제를 이용하여 접합시키는 기판접합법이 이용될 수 있다.
도 20을 참조하면, 반도체 발광소자(500)의 평면도가 도시되어 있다. 반도체 발광소자(500)의 상면에는 비아홀(514)이 형성되고, 제2전극층(520)에 형성된 노출 된 영역에는 전극패드부(560)가 위치한다. 이외에도, 실제 반도체 발광소자(500)의 상면에는 나타나지 않지만 콘택홀(541)의 위치를 표시하기 위하여 콘택홀(541)을 점선으로 도시하였다. 콘택홀(541)은 제2전극층(520), 제2도전형 반도체층(513) 및 활성층(512)과 전기적으로 분리되기 위하여 그 둘레에 제1절연층(530)이 연장될 수 있다. 이에 대하여는 이하, 도 21b 및 도 21c를 참조하여 더 설명하기로 한다.
도 21a 내지 도 21c는 각각 도 20에 도시된 반도체 발광소자의 A-A', B-B' 및 C-C'선에서의 단면도이다. A-A'는 반도체 발광소자(500)의 단면을, B-B'는 콘택홀(541) 및 비아홀(514)을 포함하는 단면을, C-C'는 콘택홀(541)만을 포함하는 단면을 취하기 위하여 선택되었다. 이하, 도 19 내지 21c를 참조하여 설명하기로 한다.
도 21a를 참조하면, 콘택홀(541) 또는 비아홀(514)이 나타나지 않는다. 콘택홀(541)은 별도의 연결선을 통하여 연결되어 있는 것이 아니라 제1전극층(540)을 통하여 전기적으로 연결되므로 도 21에서 A-A 단면에는 도시되지 않는다.
도 21b 및 도 21c를 참조하면, 콘택홀(541)은 제1전극층(540) 및 제2전극층(520)의 계면에서부터 제1도전형 반도체층(511) 내부까지 연장된다. 콘택홀(541)은 제2도전형 반도체층(513) 및 활성층(512)을 통과하여 제1도전형 반도체층(511)까지 연장되고, 적어도 활성층(512) 및 제1도전형 반도체층(511)의 계면까지는 연장된다. 바람직하게는 제1도전형 반도체층(511)의 일부까지 연장된다. 다만, 콘택홀(530)은 전기적 연결 및 전류분산을 위한 것이므로 제1도전형 반도체층(5111)과 접촉하면 목적을 달성하므로 제1도전형 반도체층(511)의 외부표면까지 연장될 필요 는 없다.
콘택홀(541)은 제1도전형 반도체층(511)에 전류를 분산시키기 위한 것이므로 소정면적을 가져야 한다. 콘택홀(530)은 제1도전형 반도체층(511)상에 전류가 균일하게 분포될 수 있는 가능한 작은 면적으로 소정개수 형성되는 것이 바람직하다. 콘택홀(541)이 너무 적은 개수로 형성되면 전류분산이 어려워져 전기적 특성이 악화될 수 있고, 너무 많은 개수로 형성되면 형성을 위한 공정의 어려움 및 활성층의 감소로 인한 발광면적의 감소가 초래되므로 이러한 조건을 고려하여 그 개수는 적절히 선택될 수 있다. 따라서, 콘택홀(541)은 가능한 한 적은 면적을 차지하면서 전류분산이 효과적인 형상으로 구현된다.
콘택홀(541)은 제2전극층(520)으로부터 제1도전형 반도체층(511) 내부까지 형성되는데, 제1도전형 반도체층의 전류분산을 위한 것이므로 제2도전형 반도체층(513) 및 활성층(512)과는 전기적으로 분리될 필요가 있다. 따라서, 제2전극층(520), 제2도전형 반도체층(513) 및 활성층(512)과 전기적으로 분리되는 것이 바람직하다. 따라서, 제1절연층(530)은 콘택홀(530)의 둘레를 감싸면서 연장될 수 있다. 전기적 분리는 유전체와 같은 절연물질을 이용하여 수행할 수 있다.
도 21b에서, 제2전극층(520)의 노출된 영역은 제2전극층(520)의 외부전원(미도시)과의 전기적 연결을 위한 영역이다. 노출영역에는 전극패드부(560)가 위치할 수 있다. 이 때, 비아홀(514) 내측면에는 제2절연층(570)이 형성되어 발광적층체(510) 및 전극패드부(560)를 전기적으로 분리할 수 있다.
도 21a에서 제1전극층(540) 및 제2전극층(520)은 같은 평면상에 위치하므로 반도체 발광소자(500)는 수평형 반도체 발광소자(500)의 특성을 나타내고, 도 21b에서 전극패드부(560)가 제1도전형 반도체층(511)의 표면에 위치하므로, 반도체 발광소자(500)는 수직형 반도체 발광소자의 특성을 나타낼 수 있다. 따라서 반도체 발광소자(500)는 수평형 및 수직형을 통합한 형태의 구조를 나타내게 된다.
도 21a내지 도 21c에서, 제1도전형 반도체층(511)은 n형 반도체층이고, 제1전극층(540)는 n형 전극일 수 있다. 이 경우, 제2도전형 반도체층(513)은 p형 반도체층이고, 제2전극층(520)는 p형 전극일 수 있다. 따라서, n형 전극인 제1전극층(540) 및 p형 전극인 제2전극층(520)은 제1절연층(530)을 그 사이에 구비하여 전기적으로 절연될 수 있다.
도 22는 본 실시예에 따라 표면에 요철패턴이 형성된 반도체 발광소자에서의 발광을 도시하는 도면이다. 이미 설명한 동일한 구성요소에 대하여는 설명을 생략하기로 한다.
본 발명에 따른 반도체 발광소자(500)는 발광된 빛의 진행방향의 최외곽 표면이 제1도전형 반도체층(511)으로 구성되어 있다. 따라서, 포토리소그래피 방법과 같은 공지의 방법을 이용하여 표면에 요철 패턴(580)을 형성하는 것이 용이하다. 이 경우, 활성층(512)으로부터 발광된 빛은 제1도전형 반도체층(511)의 표면에 형성된 요철패턴(580)을 통과하여 추출되고 요철패턴(580)에 의해 광추출효율이 증가된다.
요철패턴(580)은 광결정(photonic crystal) 구조일 수 있다. 광결정은 굴절률이 서로 다른 매질이 결정처럼 규칙적으로 배열된 것을 나타내는데, 이러한 광결 정은 빛의 파장의 배수의 길이 단위의 빛 조절이 가능하여 광추출효과를 더욱 높일 수 있다.
도 23은 본 실시예에 따른 반도체 발광소자에서, 모서리에 제2전극층이 노출된 것을 나타낸 도면이다.
본 발명의 다른 측면에 따르면, 제1도전형 반도체층(511'), 활성층(512'), 제2도전형 반도체층(513'), 제2전극층(520'), 절연층(530'), 제1전극층(540') 및 도전성 기판(550')을 순차 적층하는 단계; 제2전극층(520')의 제2도전형 반도체층(513')과의 계면 중 일부가 노출된 영역을 형성하는 단계; 및 제1전극층(540')이 제1도전형 반도체층(511')에 전기적으로 접속되고, 제2도전형 반도체층(513') 및 활성층(512')과는 전기적으로 절연되어 제1전극층(540')의 일면으로부터 제1도전형 반도체층(511')의 적어도 일부 영역까지 연장된 하나 또는 그 이상의 콘택홀(541')을 포함하도록 형성하는 단계;를 포함하는 반도체 발광소자 제조방법이 제공된다.
이 때, 제2전극층(520')의 노출된 영역은 발광적층체(510')에 비아홀(514')을 형성하여 마련하거나(도 19 참조), 도 23에서와 같이, 발광적층체(510')를 메사식각하여 형성할 수 있다. 본 실시예에서 도 19를 참조하여 설명한 실시예와 동일한 구성요소에 대하여는 그 설명을 생략하기로 한다.
도 23을 참조하면, 반도체 발광소자(500')의 일모서리가 메사식각되어 있다. 식각은 발광적층체(510')에 수행되어 제2전극층(520')이 제2도전형 반도체층(513')과의 계면측에서 노출되어 있다. 따라서, 제2전극층(520')의 노출된 영역은, 반도체 발광소자(500')의 모서리에 형성된다. 모서리에 형성되는 경우는 전술한 실시예 에서와 같이 비아홀을 형성하는 경우보다 간단한 공정이면서, 추후 전기적 연결공정 또한 용이하게 수행될 수 있다.
도 24 내지 도 34를 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광소자에 대해 설명한다.
도 24는 본 실시예에 따른 반도체 발광소자의 사시도이고, 도 25는 도 24의 반도체 발광소자의 상부평면도이며, 도 26은 도 25에 도시된 반도체 발광소자의 A-A'선에서의 단면도이다. 이하, 도 24 내지 도 26을 참조하여 설명한다.
본 실시예에 따른 반도체 발광소자(600)는 순차적으로 적층된 제1 도전형 반도체층(611), 활성층(612), 제2 도전형 반도체층(613), 제2 전극층(620), 절연층(630), 제1 전극층(640) 및 도전성 기판(650)을 포함한다. 이 때 제1 전극층(640)은 제1 도전형 반도체층(611)에 전기적으로 접속하기 위하여 제2 도전형 반도체층(613) 및 활성층(612)과는 전기적으로 절연되어 제1 전극층(640)의 일면으로부터 제1 도전형 반도체층(611)의 적어도 일부 영역까지 연장된 하나이상의 콘택 홀(641)을 포함한다. 상기 제1 전극층(640)은 본 실시예에서 필수적인 구성요소는 아니다. 도시되지 않았지만, 제1 전극층을 포함하지 않을 수 있고, 콘택 홀(641)은 도전성 기판의 일면으로부터 형성될 수 있다. 즉, 도전선 기판(650)은 제1 도전형 반도체층(611)에 전기적으로 접속하기 위하여 제2 도전형 반도체층(613) 및 활성층(612)과는 전기적으로 절연되어 제1 전극층(640)의 일면으로부터 제1 도전형 반도체층(611)의 적어도 일부 영역까지 연장된 하나이상의 콘택 홀(641)을 포함할 수 있다. 이때, 도전성 기판은 외부 전원(미도시)과 전기적으로 연결되고, 제1 도전형 반도체층은 도전성 기판을 통하여 전압이 인가된다.
제2 전극층(620)은 제1 도전형 반도체층(611), 활성층(612) 및 제2 도전형 반도체층(613)의 식각에 의하여, 제2 도전형 반도체층(613)과의 계면 중 일부가 노출된 영역(614)을 포함하고, 상기 노출 영역(614)에는 식각 저지층(621)이 형성된다.
반도체 발광소자(600)의 발광은 제1 도전형 반도체층(611), 활성층(612), 및 제2 도전형 반도체층(613)에서 수행되므로, 이들을 이하, 발광적층체(610)라 한다. 즉, 반도체 발광소자(600)는 발광적층체(610) 및 제1 도전형 반도체층(611)과 콘택 홀(641)에 의하여 전기적으로 접속되는 제1 전극층(640), 제2 도전형 반도체층(613)과 전기적으로 접속되는 제2 전극층(620), 및 전극층들(620, 640)을 전기적으로 절연시키기 위한 절연층(630)을 포함한다. 또한, 반도체 발광소자(600)의 지지를 위하여 도전성 기판(650)을 포함한다.
상기 제1 도전형 및 제2 도전형 반도체층(611, 613)은 이에 제한되는 것은 아니나, 예를 들면 GaN계 반도체, SiC계 반도체, ZnO계 반도체, GaAs계 반도체, GaP계 반도체, 또는 GaAsP계 반도체와 같은 반도체 물질을 포함할 수 있다. 이외에도, 상기 반도체층(611, 613)은 III-V족 반도체, Ⅳ-Ⅳ족 반도체, II-VI족 반도체 및 Si과 같은 Ⅳ족 반도체 또는 이들의 조합으로 구성된 군으로부터 적절히 선택될 수 있다. 또한 상기 반도체층(611, 613)은 상술한 반도체에 각각의 도전형을 고려하여 n형 불순물 또는 p형 불순물로 도핑될 수 있다.
상기 활성층(612)은 발광을 활성화시키는 층으로서, 제1 도전형 반도체층(611) 및 제2 도전형 반도체층(613)의 에너지 밴드 갭보다 작은 에너지 밴드 갭을 갖는 물질을 이용하여 형성한다. 예를 들어, 제1 도전형 반도체층(611) 및 제2 도전형 반도체층(613)이 GaN계 화합물 반도체인 경우, GaN의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 InAlGaN계 화합물 반도체를 이용하여 활성층(612)을 형성할 수 있다. 즉, 활성층(612)은 InxAlyGa(1-x-y)N(0≤x≤1, 0≤y≤1, 0≤x+y≤1)을 포함할 수 있다.
이때, 활성층(612)의 특성상 불순물은 도핑되지 않는 것이 바람직하며, 구성물질의 몰비를 조절하여 발광하는 빛의 파장을 조절할 수도 있다. 따라서, 반도체 발광소자(600)는 활성층(612)의 특성에 따라 적외선, 가시광선, 및 자외선 중 어느 하나의 빛을 발광할 수 있다.
상기 제1 전극층(640) 및 제2 전극층(620)은 각각 동일한 도전형의 반도체층에 전압을 인가하기 위한 층들로써, 상기 전극층(620, 640)에 의하여 상기 반도체층(611, 613)은 외부전원(미도시)과 전기적으로 연결된다.
제1 전극층(640)은 제1 도전형 반도체층(611)에, 제2 전극층(620)은 제2 도전형 반도체층(613)에 각각 접속되므로 제1 절연층(630)을 통하여 서로 전기적으로 분리된다. 상기 절연층(630)은 전기 전도성이 낮은 물질로 구성되는 것이 바람직한데, 예를 들면, SiO2와 같은 산화물을 포함할 수 있다.
제1 전극층(640)은 제1 도전형 반도체층(611)에 전기적으로 접속하기 위하 여, 제2 도전형 반도체층(613) 및 활성층(612)과는 전기적으로 절연되어(제1 전극층 및 제2 전극층 사이에 위치하는 절연층(630)이 연장되어 형성될 수 있음) 제1 도전형 반도체층(611)의 일부 영역까지 연장된 하나 이상의 콘택 홀(641)을 포함한다. 상기 콘택 홀(641)은 제2 전극층(620), 절연층(630) 및 활성층(612)을 관통하여 제1 도전형 반도체층(611)까지 연장되고 전극물질을 포함한다. 상기 콘택 홀(641)에 의하여 제1 전극층(640) 및 제1 도전형 반도체층(611)이 전기적으로 접속되어, 제1 도전형 반도체층(611)은 외부전원(미도시)과 연결된다.
상기 콘택 홀(641)이 단지 제1 도전형 반도체층(611)의 전기적 연결만을 위한 것이라면, 제1 전극층(640)은 하나의 콘택 홀(641)을 포함할 수 있다. 다만, 제1 도전형 반도체층(611)에 전달되는 전류의 균일한 분산을 위하여 제1 전극층(640)은 콘택 홀(641)을 소정 위치에 하나 이상 구비할 수 있다.
제2 전극층(620)은 활성층(612)의 하측에 위치하여 활성층(612)을 기준으로 하여 반도체 발광소자(600)의 발광방향과 반대 면에 위치한다. 따라서, 제2 전극층(620)을 향하여 진행하는 빛은 반사되어야 발광효율이 증가한다.
제2 전극층(620)은 활성층(612)으로부터 발생한 빛을 반사시키기 위하여 가시광선영역에서 백색계열 금속인 것이 바람직한데, 예를 들면, Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등의 물질 중 하나 이상을 포함할 수 있다.
제2 전극층(620)은 제1 도전형 반도체층(611), 활성층(612) 및 제2 도전형 반도체층(613)의 식각에 의하여, 제2 도전형 반도체층(613)과의 계면 중 일부가 노출된다. 상기 노출 영역(614)에는 식각 저지층(621)이 형성된다. 제1 전극층(640) 은 하면에 위치한 도전성 기판(650)과 접촉되어 있어 외부 전원과 연결될 수 있는 반면에, 제2 전극층(620)은 외부 전원(미도시)과의 연결을 위하여 별도의 연결영역이 필요하다. 따라서, 제2 전극층(620)은 발광적층체(610)의 일 영역을 식각하여 제2 도전형 반도체층(613)과의 계면 중 일부에 노출 영역(614)을 갖는다. 이로써, 제2 도전형 반도체층(613)은 제2 전극층(620)에 의하여 외부 전원(미도시)과 연결된다.
상기 노출 영역(614)의 면적은 발광면적, 전기적 연결효율 및 제2 전극층(620)에서의 전류분산을 고려하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의하여 적절히 선택될 수 있다. 도 24 내지 도 26은 발광 적층체(610)의 모서리가 식각되어, 제2 전극층(620)의노출 영역(614)이 모서리에 위치한 실시예가 도시되어 있다.
상기 노출영역(614)은 발광적층체(610)의 일부만을 식각하고, 통상 금속을 포함하는 제2 전극층(620)은 식각하지 않도록 선택적 식각을 통하여 수행한다. 그러나, 발광적층체(610)의 일 영역을 식각하기 위한 선택적 식각은 완벽하게 제어하기 어려워 발광적층체(610) 하면에 위치하고 있는 제2 전극층도 일부 식각이 진행될 수 있다. 이와 같이 제2 전극층(620)의 일부가 식각되는 경우 제2 전극층(620)을 이루는 금속 물질이 제2 도전형 반도체층(613)에 접합되어 누설전류가 발생된다. 따라서, 제2 전극층(620)은 발광적층체(610)의 식각이 진행되는 영역(제 2 전극층의 노출영역)에 식각 저지층(621)이 형성된다.
상기 식각 저지층(621)에 의하여 제2 전극층(620)을 이루는 금속이 발광 적 층체(610)의 측면에 접합하는 것을 방지하여 누설전류를 감소시킬 수 있고, 식각이 용이하게 진행될 수 있다. 상기 식각 저지층(621)은 발광 적층체(600)의 식각을 억제하기 위한 물질로써, 이에 제한되는 것은 아니나, SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물과 같은 절연 물질일 수 있다. 다만, 식각 저지층(621)은 반드시 절연 물질일 필요는 없으며, 도전성 물질이더라도 소자의 작동에 영향을 미치지 않는다. 따라서, 식각 저지층(621)은 식각 저지 기능만 수행할 수 있다면 도전성 물질 중에서 적절히 선택될 수도 있을 것이다.
또한, 상기 노출 영역(614)에는 식각 저지층(621)을 관통하여 전극 패드부(660)가 형성될 수 있다. 전극 패드부는 식각 저지층(621)을 관통하여 제2 전극층과 전기적으로 연결된다. 이 경우 제2 전극층(620)과 외부전원(미도시)의 전기적 연결은 보다 용이해 진다.
도전성 기판(650)은 제1 전극층(640)의 하면에 위치하는 것으로, 제1 전극층(640) 접촉되어 전기적으로 연결된다. 도전성 기판(650)은 금속성 기판이거나 반도체 기판일 수 있다. 도전성 기판(650)은 Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질, 예컨대, Cu 단독 또는 Si와 Al의 결합형태의 물질로 이루어질 수 있다. 이 경우, 선택된 물질에 따라, 도전성 기판(650)은 도금 또는 본딩 접합 등의 방법으로 형성될 수 있을 것이다. 이들 도전성 기판(650)은 사파이어 기판을 성장기판으로 사용한 후, 사파이어 기판을 제거하고 접합된 지지기판일 수 있다.
도 25를 참조하면, 반도체 발광소자(600)의 상부평면도가 도시되어 있다. 반도체 발광소자(600)의 상면에는 나타나지 않지만 콘택 홀(641)의 위치를 표시하기 위하여 콘택 홀(641)을 점선으로 도시하였다. 콘택 홀(641)은 제2 전극층(620), 제2 도전형 반도체층(613) 및 활성층(612)과 전기적으로 분리되기 위하여 그 둘레에 절연층(630)이 연장될 수 있다. 이에 대하여는 이하, 도 26을 참조하여 자세히 설명하기로 한다.
도 26은 도 25에 도시된 반도체 발광소자의 A-A'선에서의 단면도이다. A-A'는 콘택 홀(641) 및 노출 영역(614)을 포함하는 단면을 취하기 위하여 선택되었다.
도 26을 참조하면, 콘택 홀(641)은 제1 전극층(640)의 계면에서부터 제2 전극층(620), 제2 도전형 반도체층(613) 및 활성층(612)을 통과하여 제1 도전형 반도체층(611) 내부까지 연장된다. 적어도 활성층(612) 및 제1 도전형 반도체층(611)의 계면까지는 연장되고, 바람직하게는 제1 도전형 반도체층(611)의 일부까지 연장된다. 다만, 콘택 홀(641)은 제1 도전형 반도체층(611)의 전기적 연결 및 전류분산을 위한 것이므로 제1 도전형 반도체층(611)과 접촉하면 목적을 달성하므로 제1 도전형 반도체층(611)의 외부표면까지 연장될 필요는 없다.
또한 콘택 홀(641)은 제1 도전형 반도체층(611)에 전류를 분산시키기 위한 것이므로 소정면적을 가지는 것이 바람직하다. 콘택 홀(641)은 제1 도전형 반도체층(611)상에 전류가 균일하게 분포될 수 있는 가능한 작은 면적으로 소정개수가 형성되는 것이 바람직하다. 콘택 홀(641)이 너무 적은 개수로 형성되면 전류분산이 어려워져 전기적 특성이 악화될 수 있고, 너무 많은 개수로 형성되면 형성을 위한 공정의 어려움 및 활성층의 감소로 인한 발광면적의 감소가 초래되므로 그 개수는 적절히 선택될 수 있다. 따라서, 콘택 홀(641)은 가능한 한 적은 면적을 차지하면서 전류분산이 효과적인 형상으로 구현된다.
콘택 홀(641)은 제1 전극층(640)으로부터 제1 도전형 반도체층(611) 내부까지 형성되는데, 제1 도전형 반도체층의 전류분산을 위한 것이므로 제2 도전형 반도체층(613) 및 활성층(612)과는 전기적으로 분리될 필요가 있다. 따라서, 절연층(630)은 콘택 홀(641)의 둘레를 감싸면서 연장될 수 있다.
도 26에서, 제2 전극층(620)은 제2 도전형 반도체층(613)과의 계면 중 일부가 노출된 영역(614)을 포함하는데, 이는 제2 전극층(620)의 외부전원(미도시)과의 전기적 연결을 위한 영역이다. 노출 영역(614)에는 식각 저지층(621)이 형성된다. 상기 식각 저지층(621)을 관통하여 상기 제2 전극층(620)과 전기적으로 연결된 전극 패드부(660)를 포함할 수 있다. 이 때, 노출 영역(614)의 내측면에는 발광적층체(610) 및 전극패드부(660)를 전기적으로 분리하기 위해 절연층(670)이 형성될 수 있다.
도 26에서 제1 전극층(640) 및 제2 전극층(620)은 같은 평면상에 위치하므로 반도체 발광소자(600)는 수평형 반도체 발광소자의 특성을 나타내고, 전극 패드부(660)가 제1 도전형 반도체층(611)의 표면에 위치하므로, 반도체 발광소자(600)는 수직형 반도체 발광소자의 특성을 나타낼 수 있다. 따라서 반도체 발광소자(600)는 수평형 및 수직형을 통합한 형태의 구조를 나타내게 된다.
도 27 내지 도 29는 다른 실시형태에 따른 반도체 발광소자를 도시한 것으로 도 27은 반도체 발광소자의 사시고이고, 도 28은 상부 평면도이며, 도 29는 도 28에 도시된 반도체 발광소자의 A-A'선에서의 단면도이다.
도 27 내지 도 29는 발광적층체(710)의 중앙이 식각되어, 제2 전극층(720)의 제2 도전형 반도체층과의 계면 중 일부 노출된 영역(714)이 중앙에 위치한다. 이미 설명한 동일한 구성요소에 대하여는 설명을 생략하기로 한다. 이 경우 노출 영역에 형성되는 식각 저지층(721)의 일부를 제거하여 외부 전원(미도시)과 전기적으로 연결될 수 있고, 식각 저지층(721)을 관통하여 제2 전극층(720)과 전기적으로 연결된 전극 패드부(760)를 포함할 수 있다. 외부전원(미도시)과의 연결은 와이어를 이용할 수 있으므로 연결의 편의상 노출 영역(714)은 제2 전극층에서 제1 도전형 반도체층 방향으로 증가하도록 형성되는 것이 바람직하다.
도 30 및 도 31은 본 실시예에 따른 반도체 발광소자의 변형예를 도시한 것으로, 도 30은 반도체 발광소자의 사시도이고, 도 31은 반도체 발광소자의 측단면도이다. 이 경우 반도체 발광소자의 상부 평면도는 도 25와 유사하고, 도 31은 도 26과 유사하게 A-A'선에서의 단면도이다. 이미 설명한 동일한 구성요소에 대하여는 설명을 생략하기로 한다.
도 30 및 도 31을 참조하면, 발광 적층체(610')의 식각에 제2 전극층이 노출되고, 노출된 영역에 형성되는 식각 저지층(621')이 제2 도전형 반도체층(613') 및 활성층(612')의 측면으로 확장된다. 이러한 경우, 상술한 바와 같이 제1 도전형 반도체층(611')의 식각을 수행하는 동안 제2 전극층의 금속 물질이 반도체측에 접합되는 것을 방지할 수 있을 뿐만 아니라, 활성층(612')을 보호하는 효과를 얻을 수 있다.
이하, 상기에서 설명한 반도체 발광수조를 제조하는 방법을 설명한다.
도 32는 본 실시예에 따른 반도체 발광소자의 제조방법을 나타내는 단면도로써, 보다 구체적으로는 도 24 내지 도 26 도시된 반도체 발광소자의 제조방법을 나타낸다.
우선, 도 32a에 도시되 바와 같이 부도전성 기판(680)상에 제1 도전형 반도체층(611), 활성층(612), 제2 도전형 반도체층(613), 제2 전극층(620)을 순차적으로 적층한다.
이 경우 반도체층 및 활성층의 적층은 공지된 공정을 이용할 수 있는데, 예를 들면, 유기금속 기상증착법(MOCVD), 분자빔성장법(MBE), 또는 하이브리드 기상증착법(HVPE)을 이용할 수 있다. 상기 부도전성 기판(680)은 질화물 반도체층의 성장이 용이한 사파이어 기판을 이용할 수 있다.
상기 제2 전극층(620)의 형성시, 상기 제1 도전형 반도체층(611), 활성층(612) 및 제2 도전형 반도체층(613)의 식각에 의하여 노출될 영역에 식각 저지층(621)을 형성하면서 적층된다.
다음으로, 제2 전극층(620) 상에 절연층(630) 및 도전성 기판(650)을 형성한다. 이때, 도 32b에 도시된 바와 같이 상기 절연층(630) 및 도전성 기판(650) 사이에 제1 전극층(640)을 형성할 수 있다.
상기 도전성 기판(650)은 상기 제1 도전형 반도체층(611)에 전기적으로 접속하기 위하여, 상기 제2 도전형 반도체층(613) 및 활성층(612)과는 전기적으로 절연 되어 도전성 기판(650)의 일면으로부터 제1 도전형 반도체층(611)의 일부 영역까지 연장된 하나 이상의 콘택 홀(641)을 포함하도록 형성한다.
도 32a에 도시된 바와 같이, 상기 절연층(630) 및 도전성 기판(650) 사이에 제1 전극층(640)이 형성되는 경우, 상기 콘택 홀(641)은 제1 전극층(640)의 일면으로부터 형성된다. 즉, 상기 제1 전극층(640)은 상기 제1 도전형 반도체층(611)에 전기적으로 접속하기 위하여, 상기 제2 도전형 반도체층(613) 및 활성층(612)과는 전기적으로 절연되어 제1 전극층(640)의 일면으로부터 제1 도전형 반도체층(611)의 일부 영역까지 연장된 하나 이상의 콘택 홀(641)을 포함하도록 형성한다.
이 때, 콘택 홀(641)은 제1 도전형 반도체층(611)의 전류분산을 위한 것이므로 제2 도전형 반도체층(613) 및 활성층(612)과는 전기적으로 분리될 필요가 있다. 따라서, 절연층(630)은 콘택 홀(641)의 둘레를 감싸면서 연장될 수 있다.
다음으로, 도 32c에 도시된 바와 같이(도 32b를 뒤집어 도시) 부도전성 기판(680)을 제거하고, 제1 도전형 반도체층(611), 활성층(612) 및 제2 도전형 반도체층(613)의 일 영역을 식각하여 제2 전극층(620)과 제2 도전형 반도체층(613)의 계면 중 일부에 노출 영역(614)을 형성한다.
상기 노출 영역(614)은 발광 적층체(610)의 일부만을 식각하고, 통상 금속을 포함하는 제2 전극층(620)은 식각하지 않도록 선택적 식각을 통하여 수행한다.
상술한 바와 같이 발광적층체(610)의 일 영역을 식각하기 위한 선택적 식각은 완벽하게 제어하기 어려워 발광적층체(610) 하면에 위치하고 있는 제2 전극층(620)도 일부 식각이 진행될 수 있으나, 본 발명은 식각이 진행되는 영역에 식각 저치층(621)을 형성하여 식각이 용이하게 진행될 수 있다. 이에 의하여 제2 전극층(620)의 금속이 발광 적층체(610)의 측면에 접합하는 것을 방지하여 누설전류를 감소시킬 수 있다.
다음으로, 도 32d에 도시된 바와 같이 제2 전극층(620)과 외부전원과의 연결을 위하여 상기 식각 저지층(621)의 일 영역을 제거할 수 있다. 이때, 식각 저지층(621)이 제거된 영역에는 전극 패드부(660)를 형성할 수 있다. 또한 발광적층체(610) 및 전극패드부(660)를 전기적으로 분리하기 위하여 식각이 진행된 발광적층의 내측면에 절연층(670)을 형성할 수 있다.
도 32는 발광 적층체(610)의 일 모서리를 식각하여 제2 전극층(620)의 노출 영역(614)이 모서리에 형성되는 예를 도시한 것이다. 발광 적층체(610)의 중앙부를 식각하는 경우 도 27에 도시된 바와 같은 형태의 반도체 발광소자를 제조할 수 있다.
도 33은 본 실시예의 변형예에 따른 반도체 발광소자의 제조방법을 나타내는 단면도로써, 보다 구체적으로는 도 30 및 도 31에 도시된 반도체 발광소자의 제조방법을 나타낸다. 상기 도 32를 참조하여 설명한 실시예와 동일한 구성요소에 대하여는 그 설명을 생략하기로 한다.
우선, 도 33a에 도시되 바와 같이 부도전성 기판(680')상에 제1 도전형 반도체층(611'), 활성층(612'), 제2 도전형 반도체층(613'), 제2 전극층(620')을 순차적으로 적층한다.
상기 제2 전극층(620')은 상기 제1 도전형 반도체층(611'), 활성층(612') 및 제2 도전형 반도체층(613')의 식각에 의하여 노출될 영역에 식각 저지층(621')을 형성하면서 적층된다. 이때, 노출 영역(614')을 형성하기 위한 발광 적층체(610')의 식각 전에, 도 33a에서와 같이 제2 도전형 반도체층(621'), 활성층(612') 및 제1 도전형 반도체층(613')의 일 영역을 1차로 먼저 식각한다. 상기 1차로 식각되어 노출된 제2 도전형 반도체층(613'), 활성층(612') 및 제1 도전형 반도체층(611')에 식각 저지층(621')을 확장하여 형성한다.
이 경우, 도 33c에 도시된 바와 같이 제2 전극층(620')에 노출 영역(614')을 형성하기 위한 발광 적층체(610')의 식각시 제1 도전형 반도체층(611')만을 식각할 수 있게 되어, 활성층을 보호하는 추가적인 효과를 얻을 수 있다.
다음으로, 도 33b에 도시된 바와 같이 제2 전극층(620') 상에 절연층(630'), 제1 전극층(640') 및 도전성 기판(650')을 형성한다.
이 경우, 상기 제1 전극층(640')은 상기 제1 도전형 반도체층(611')에 전기적으로 접속하기 위하여, 상기 제2 도전형 반도체층(613') 및 활성층(612')과는 전기적으로 절연되어 제1 전극층(640')의 일면으로부터 제1 도전형 반도체층(611')의 일부 영역까지 연장된 하나 이상의 콘택 홀(641')을 포함하도록 형성한다. 이 때, 콘택 홀(641')은 제1 도전형 반도체층(611')의 전류분산을 위한 것이므로 제2 도전형 반도체층(613') 및 활성층(612')과는 전기적으로 분리될 필요가 있다. 따라서, 절연층(630')은 콘택 홀(641')의 둘레를 감싸면서 연장될 수 있다.
다음으로, 도 33c에 도시된 바와 같이(도 33b를 뒤집어 도시) 제2 전극층(610')상에 제2 도전형 반도체층과의 계면 중 일부가 노출되도록 노출 영 역(614')을 형성한다. 우선, 부도전성 기판(680')을 제거하고, 제1 도전형 반도체층(611')을 식각한다. 상술한 바와 같이 도 33a에서 활성층(612') 및 제2 도전형 반도체층(613')의 식각은 수행되었으므로, 제1 도전형 반도체층의 식각만으로 노출 영역(614')이 형성될 수 있다.
상술한 바와 같이, 발광 적층체(610')의 식각시 제2 전극층(620')의 노출 영역(614')에는 식각 저지층(621')이 형성되어, 식각이 용이하게 진행될 수 있다. 또한, 상기 도 33a에서 진행된 1차 식각으로 인하여 제1 도전형 반도체층(611')의 식각만 진행되어 활성층을 보호하는 효과가 있다.
다음으로, 도 33d에 도시된 바와 같이 제2 전극층(620')과 외부전원과의 연결을 위하여 노출 영역(614')상에 형성되는 식각 저지층(621')의 일 영역을 제거할 수 있다. 이때, 식각 저지층(621')이 제거된 영역에는 제2 전극층과 전기적으로 연결되도록 전극 패드부(660')를 형성할 수 있다. 이 경우, 도 32의 공정과는 달리 제1 도전형 반도체층(611')만 노출되므로, 전극패드부(660')와 전기적으로 분리하기 위한 절연층의 형성을 요하지 않는다.
본 실시예에 따른 반도체 발광소자(600, 600', 700)를 실장하는 경우, 도전성 기판(650, 650', 750)은 제1리드프레임과 전기적으로 연결되고, 전극 패드부(660, 660', 760)는 와이어 등을 통하여 제2리드프레임과 전기적으로 연결된다. 즉, 다이본딩 형식 및 와이어 본딩 형식을 혼용하여 실장될 수 있어 발광효율을 최대한 보장할 수 있으면서도 비교적 저비용으로 공정수행이 가능하다.
도 34는 본 발명의 또 다른 변형예에 따른 반도체 발광소자를 나타내는 개략 적인 단면도이다. 도 34를 참조하면, 본 변형예에 따른 반도체 발광소자(600'')는 이전 실시 형태와 마찬가지로 순차적으로 적층된 제1 도전형 반도체층(611''), 활성층(612''), 제2 도전형 반도체층(613''), 제2 전극층(620''), 절연층(630''), 제1 전극층(640''), 도전성 기판(650''), 식각저지층(620'') 및 전극 패드부(660'')를 포함하며, 제1 전극층(640'')은 제1 도전형 반도체층(611'')에 전기적으로 접속하기 위하여 제2 도전형 반도체층(613'') 및 활성층(612'')과는 전기적으로 절연되어 제1 전극층(640'')의 일면으로부터 제1 도전형 반도체층(611'')의 적어도 일부 영역까지 연장된 하나 이상의 콘택 홀(641'')을 포함한다. 본 변형예에서는 요철 구조를 갖는 패시베이션층(670'')이 추가되었으며, 동일한 용어로 기재된 요소는 이전 실시 형태에서 설명되었으므로 패시베이션층(670'')에 대해서만 설명한다.
패시베이션층(670'')은 제1 도전형 반도체층(611''), 활성층(612'') 및 제2 도전형 반도체층(613'')을 구비하는 구조를 발광구조물이라 정의할 때, 상기 발광구조물의 측면을 덮도록 형성되며, 이에 의해, 특히, 활성층(612'')을 보호하는 기능을 한다. 이 경우, 도 34에 도시된 것과 같이, 패시베이션층(670'')은 상기 발광구조물의 측면 외에 상면에도 형성될 수 있으며, 식각저지층(620'') 상부에도 형성될 수 있다.
패시베이션층(670'')은 발광구조물의 보호 기능을 수행하기 위해 SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물로 이루어질 수 있으며, 그 두께는 0.1 ~ 2㎛ 정도가 바람직하다. 이에 따라, 패시베이션층(670'')은 굴절률이 약 1.4 ~ 2.0 정도가 되며, 공기 또는 패키지의 몰드 구조와 굴절률 차이로 인해 상기 활성층(670'')에서 방출된 빛이 외부로 빠져나가기가 어려울 수 있다. 본 실시 형태의 경우, 패시베이션층(670'')에 요철 구조를 형성하여 외부 광 추출효율이 향상되도록 하였으며, 특히, 도 34에 도시된 바와 같이, 활성층(612'')의 측 방향으로 방출된 빛이 통과하는 영역에 요철 구조가 형성될 경우, 반도체 발광소자(600'')의 측면으로 방출되는 빛의 양이 증가될 수 있다. 구체적으로, 패시베이션층(670'')에 요철 구조를 채용한 구조를 다른 구성 요소가 모두 동일하되 요철 구조가 없는 구조와 광 추출효율을 비교한 시뮬레이션 결과, 본 실시 형태에서 약 5% 이상의 광 추출효율 향상 효과를 보였다. 한편, 본 실시 형태에서 반드시 요구되는 사항은 아니지만, 패시베이션층(670'')의 요철 구조는 제1 도전형 반도체층(611'')의 상면에 해당하는 영역에도 형성되어 수직 방향 광 추출효율을 향상시킬 수 있으며, 나아가, 패시베이션층(670'')의 측면에도 형성될 수 있다.
도 35 내지 도 55를 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광소자에 대해 설명한다.
도 35는 본 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 사시도이다. 도 36은 도 35를 기준으로 반도체 발광소자를 상부에서 바라본 개략적인 평면도이며, 도 37은 도 35의 반도체 발광소자를 도 36의 AA` 라인으로 자른 개략적인 단면도이다. 도 35 내지 37을 참조하면, 본 실시형태에 따른 반도체 발광소자(800)는 도전성 기판(807) 상에 제1 도전형 컨택층(804)이 형성되며, 제1 도전형 컨택층(804) 상에는 발광구조물, 즉, 제1 도전형 반도체층(803), 활성층(802) 및 제2 도전형 반도체층(801)을 구비하는 구조가 형성된다. 발광구조물의 측면에는 고저항부(808)가 형성되며, 후술할 바와 같이, 고저항부(808)는 발광구조물의 측면으로 이온을 주입하여 얻어질 수 있다. 제1 도전형 컨택층(804)은 전기적으로 도전성 기판(807)과 분리되어 있으며, 이를 위하여 제1 도전형 컨택층(804)과 도전성 기판(807) 사이에는 절연체(806)가 개재된다.
본 실시형태에서, 제1 및 제2 도전형 반도체층(803, 801)은 각각 p형 및 n형 반도체층이 될 수 있으며, 질화물 반도체로 이루어질 수 있다. 따라서, 이에 제한되는 것은 아니지만, 본 실시형태의 경우, 제1 및 제2 도전형은 각각 p형 및 n형 의미하는 것으로 이해될 수 있다. 제1 및 제2 도전형 반도체층(803, 801)은 AlxInyGa(1-x-y)N 조성식(여기서, 0≤x≤1, 0≤y≤1, 0≤x+y≤1임)을 가지며, 예컨대, GaN, AlGaN, InGaN 등의 물질이 이에 해당될 수 있다. 제1 및 제2 도전형 반도체층(803, 801) 사이에 형성되는 활성층(802)은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출하며, 양자우물층과 양자장벽층이 서로 교대로 적층된 다중 양자우물(MQW) 구조로 이루어질 수 있다. 다중 양자우물 구조의 경우, 예컨대, InGaN/GaN 구조가 사용될 수 있다.
제1 도전형 컨택층(804)은 활성층(802)에서 방출된 빛을 반도체 발광소자(800)의 상부, 즉, 제2 도전형 반도체층(801) 방향으로 반사하는 기능을 수행할 수 있으며, 나아가, 제1 도전형 반도체층(803)과 오믹 컨택을 이루는 것이 바람직 하다. 이러한 기능을 고려하여, 제1 도전형 컨택층(804)은 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등의 물질을 포함할 수 있다. 이 경우, 자세하게 도시하지는 않았으나, 제1 도전형 컨택층(804)은 반사 효율을 향상시킬 수 있는 구조로, 구체적인 예로서, Al, Ag, Ni/Ag, Zn/Ag, Ni/Al, Zn/Al, Pd/Ag, Pd/Al, Ir/Ag. Ir/Au, Pt/Ag, Pt/Al, Ni/Ag/Pt 또는 이들 중 적어도 하나를 포함하는 구조일 수 있다. 본 실시형태에서 제1 도전형 컨택층(104)은 일부가 외부로 노출될 수 있으며, 도시된 것과 같이, 상기 노출 영역은 상기 발광구조물이 형성되지 않은 영역이 될 수 있다. 제1 도전형 컨택층(804)의 상기 노출 영역은 전기 신호를 인가하기 위한 전기연결부에 해당하며, 그 위에는 전극 패드(805)가 형성될 수 있다.
도전성 기판(807)은 후술할 바와 같이, 레이저 리프트 오프 등의 공정에서 상기 발광구조물을 지지하는 지지체의 역할을 수행하며, Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질, 예컨대, Cu 또는 Si와 Al의 결합형태의 물질인 SiAl으로 이루어질 수 있다. 이 경우, 선택된 물질에 따라, 도전성 기판(807)은 도금 또는 본딩 접합 등의 방법으로 형성될 수 있을 것이다. 본 실시 형태의 경우, 도전성 기판(807)은 제2 도전형 반도체층(801)과 전기적으로 연결되며, 이에 따라, 도전성 기판(807)을 통하여 제2 도전형 반도체층(801)에 전기 신호가 인가될 수 있다. 이를 위하여, 도 37 및 도 38에 도시된 것과 같이, 도전성 기판(807)으로부터 연장되어 제2 도전형 반도체층(801)과 접속된 도전성 비아(v)가 구비될 필요가 있다.
도전성 비아(v)는 제2 도전형 반도체층(801)과 그 내부에서 접속되며, 접촉 저항이 낮아지도록 개수, 형상, 피치, 제2 도전형 반도체층(801)과의 접촉 면적 등이 적절히 조절될 수 있다. 이 경우, 도전성 비아(v)는 활성층(802), 제1 도전형 반도체층(803) 및 제1 도전형 컨택층(804)과는 전기적으로 분리될 필요가 있으므로, 도전성 비아(v)와 이들 사이에는 절연체(806)가 형성된다. 절연체(806)는 전기 절연성을 갖는 물체라면 어느 것이나 채용 가능하지만, 빛을 최소한으로 흡수하는 것이 바람직하므로, 예컨대, SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물 또는 다른 절연성 물질을 이용할 수 있을 것이다.
상술한 바와 같이, 본 실시형태의 경우, 도전성 기판(807)이 도전성 비아(v)에 의하여 제2 도전형 반도체층(801)과 연결되며, 제2 도전형 반도체층(801) 상면에 따로 전극을 형성할 필요가 없다. 이에 따라, 제2 도전형 반도체층(801) 상면으로 방출되는 빛의 양이 증가될 수 있다. 이 경우, 활성층(802)의 일부에 도전성 비아(v)가 형성되어 발광 영역이 줄어들기는 하지만, 제2 도전형 반도체층(801) 상면의 전극이 없어짐으로써 얻을 수 있는 광 추출 효율 향상 효과가 더 크다고 할 수 있다. 한편, 본 실시형태에 따른 반도체 발광소자(800)는 제2 도전형 반도체층(801) 상면에 전극이 배치되지 않음에 따라 전체적인 전극의 배치가 수직 전극 구조보다는 수평 전극 구조와 유사하다고 볼 수 있지만, 제2 도전형 반도체층(801) 내부에 형성된 도전성 비아(v)에 의하여 전류 분산 효과가 충분히 보장될 수 있다.
고저항부(808)는 발광구조물의 측면에 형성되며, 발광구조물, 특히, 활성층(802)을 외부로부터 보호하는 기능을 함으로써 소자의 전기적 신뢰성을 향상시킬 수 있다. 외부로 노출된 활성층(802)은 반도체 발광소자(800)의 작동 중에 전류 누설 경로로 작용할 수 있으므로, 발광구조물의 측면에 상대적으로 높은 전기저항을 갖는 고저항부(808)를 형성함으로써 전류 누설을 방지할 수 있다. 이 경우, 고저항부(808)는 이온 주입에 의하여 형성될 있다. 구체적으로, 입자 가속기 등에 의하여 가속된 상태의 이온을 발광구조물에 주입할 경우, 발광구조물을 이루는 반도체층은 결정 손상을 입게 되어 저항이 상승하는 원리를 이용한다. 이 경우, 주입된 이온은 열처리에 의하여 복구될 수 있으므로, 반도체층의 일반적인 열처리 온도에서는 복구되지 않도록 상대적으로 입자 크기가 큰 이온을 이용하는 것이 바람직하다. 예컨대, 발광구조물에 주입되는 이온으로서 Ar, C, N, Kr, Xe, Cr, O, Fe, Ti과 같은 원자의 이온을 이용할 수 있을 것이다.
도 38 및 도 39는 도 35의 실시형태에서 변형된 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 단면도이다. 우선, 도 38의 반도체 발광소자(800-1)의 경우, 발광구조물의 측면이 제1 도전형 컨택층(804)에 대하여 기울어지도록, 구체적으로, 발광구조물의 상부를 향하여 기울어지도록 형성된다. 발광구조물의 이러한 기울어진 형상은 후술할 바와 같이, 제1 도전형 컨택층(804)을 노출하기 위하여 발광구조물을 에칭하는 공정에 의하여 자연스럽게 형성될 수 있다. 도 39의 반도체 발광소자(800-2)는 도 38의 실시 형태에서 발광구조물의 상면, 구체적으로, 제2 도전형 반도체층(801)의 상면에 요철이 형성된 구조이며, 건식 식각, 습식 식각 공정에 의하여 적절히 요철을 형성할 수 있으나, 습식 식각을 이용하여 크기, 형상, 주기 등이 불규칙한 요철 구조를 형성하는 것이 바람직할 것이다. 이러한 요철 구조 에 의하여 활성층(802) 방향으로부터 입사된 빛이 외부로 방출된 확률이 증가될 수 있다. 한편, 상기와 같이 설명한 도 38 및 도 39의 변형예는 도 40 내지 도 42의 다른 실시형태에도 적용될 수 있을 것이다.
도 40은 다른 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 단면도이다. 도 40을 참조하면, 본 실시형태에 따른 반도체 발광소자(900)는 앞선 실시 형태와 같이, 도전성 기판(907) 상에 제1 도전형 컨택층(904)이 형성되며, 제1 도전형 컨택층(904) 상에는 발광구조물, 즉, 제1 도전형 반도체층(903), 활성층(902) 및 제1 도전형 반도체층(901)을 구비하는 구조가 형성된다. 발광구조물의 측면에는 이온 주입에 의하여 고저항부(908)가 형성된다. 앞선 실시 형태와의 구조적 차이는, 도전성 기판(907)이 제2 도전형 반도체층(901)이 아닌 제1 도전형 반도체층(903)과 전기적으로 연결된다는 것이다. 따라서, 제1 도전형 컨택층(904)이 반드시 요구되지 않으며, 이 경우, 제1 도전형 반도체층(903)과 도전성 기판(907)은 직접 접촉할 수 있을 것이다.
제2 도전형 반도체층(901)과 그 내부에서 접속된 도전성 비아(v)는 활성층(902), 제1 도전형 반도체층(903) 및 제1 도전형 컨택층(904)을 관통하여 제2 도전형 전극(909)과 연결된다. 제2 도전형 전극(909)은 도전성 비아(v)로부터 발광구조물의 측 방향으로 연장 형성되며 외부로 노출된 전기연결부를 갖고, 상기 전기연결부에는 전극 패드(905)가 형성될 수 있다. 이 경우, 제2 도전형 전극(909) 및 도전성 비아(v)을 활성층(902), 제1 도전형 반도체층(903), 제1 도전형 컨택층(904) 및 도전성 기판(907)과 전기적으로 분리되기 위한 절연체(906)가 형성된다.
도 41은 또 다른 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 평면도이며, 도 42는 도 41의 반도체 발광소자를 BB` 라인으로 자른 개략적인 단면도이다. 본 실시형태에 따른 반도체 발광소자(800')는 도 35 내지 도 37의 형태와 같이, 도전성 기판(807') 상에 제1 도전형 컨택층(804')이 형성되며, 제1 도전형 컨택층(804') 상에는 발광구조물, 즉, 제1 도전형 반도체층(803'), 활성층(802') 및 제1 도전형 반도체층(801')을 구비하는 구조가 형성된다. 발광구조물의 측면에는 이온 주입에 의하여 고저항부(808')가 형성된다. 또한, 제1 도전형 컨택층(804')은 전기적으로 도전성 기판(807')과 분리되어 있으며, 이를 위하여 제1 도전형 컨택층(804')과 도전성 기판(807') 사이에는 절연체(806')가 개재된다. 본 실시형태의 경우, 도전성 기판(807') 상에 발광구조물은 복수 개로 분할되어 있다. 이렇게 발광구조물이 분할된 구조에 의하여 빛의 산란 효과가 증가될 수 있으며, 이에 따라, 광 추출 효율의 향상을 기대할 수 있다. 이에 제한되는 것은 아니지만, 충분한 외부 면적을 확보하기 위한 측면에서, 발광구조물은 도 41에 도시된 것과 같이, 그 상부에서 보았을 때 육각형으로 구현될 수 있다. 이 경우, 발광구조물 간의 간격이 커진다면 활성층(802') 자체의 면적이 줄어들어 발광 효율이 저하될 수 있으므로, 분할된 발광구조물은 가급적 밀착 배치되는 것이 바람직하다. 앞서 설명한 바와 같이, 발광구조물을 분할하기 위하여 식각 공정을 거칠 경우, 발광구조물의 측면을 보호할 필요가 있으므로, 분할된 발광구조물 각각의 측면에 이온 주입에 의한 고저항부(808')를 형성하는 것이 바람직하다.
이하, 상기와 같은 구조를 갖는 반도체 발광소자를 제조하는 공정을 설명한 다.
도 43 내지 도 51은 본 실시형태에 따른 반도체 발광소자의 제조방법을 설명하기 위한 공정별 단면도이다. 구체적으로, 도 35 내지 도 37에서 설명한 구조를 갖는 반도체 발광소자의 제조방법에 해당한다.
우선, 도 43에 도시된 것과 같이, 반도체 성장용 기판(B) 위에 제2 도전형 반도체층(801), 활성층(802) 및 제1 도전형 반도체층(803)을 MOCVD, MBE, HVPE 등과 같은 반도체층 성장 공정을 이용하여 순차적으로 성장시켜 발광구조물을 형성한다. 반도체 성장용 기판(B)은 사파이어, SiC, MgAl2O4, MgO, LiAlO2, LiGaO2 , GaN 등의 물질로 이루어진 기판을 사용할 수 있다. 이 경우, 사파이어는 육각-롬보형(Hexa-Rhombo R3c) 대칭성을 갖는 결정체로서 c축 및 a측 방향의 격자상수가 각각 13.001Å과 4.758Å이며, C(0001)면, A(1120)면, R(1102)면 등을 갖는다. 이 경우, 상기 C면은 비교적 질화물 박막의 성장이 용이하며, 고온에서 안정하기 때문에 질화물 성장용 기판으로 주로 사용된다.
다음으로, 도 44에 도시된 바와 같이, 제1 도전형 반도체층(803) 상에 제1 도전형 컨택층(804)을 형성한다. 제1 도전형 컨택층(804)은 광 반사 기능과 제1 도전형 반도체층(803)과 오믹 컨택 기능을 고려하여 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등의 물질을 포함하도록 형성할 수 있으며, 당 기술 분야에서 공지된 스퍼터링이나 증착 등의 공정을 적절히 이용할 수 있다. 다음으로, 도 45에 도시된 바와 같이, 제1 도전형 컨택층(804) 및 상기 발광구조물에 홈을 형성한다. 구 체적으로, 상기 홈은 후속 공정에서 도전성 물질을 충진하여 제2 도전형 반도체층(801)과 연결되는 도전성 비아를 형성하기 위한 것으로서, 제1 도전형 컨택층(804), 제1 도전형 반도체층(803) 및 활성층(802)을 관통하며, 제2 도전형 반도체층(801)이 저면으로 노출되는 형상을 갖는다. 도 45의 흠 형성 공정 역시, 당 기술 분야에서 공지된 식각 공정, 예컨대, ICP-RIE 등을 이용하여 실행될 수 있다.
다음으로, 도 46에 도시된 바와 같이, SiO2, SiOxNy, SixNy 등과 같은 물질을 증착시켜 제1 도전형 컨택층(804)의 상부 및 상기 홈의 측벽을 덮도록 절연체(806)를 형성한다. 이 경우, 상기 홈의 저면에 해당하는 제2 도전형 반도체층(801)은 적어도 일부가 노출될 필요가 있으므로, 절연체(806)는 상기 홈의 저면 전체를 덮지 않는 범위에서 형성되는 것이 바람직하다.
다음으로, 도 47에 도시된 바와 같이, 상기 홈 내부와 절연체(806) 상에 도전 물질을 형성하여 도전성 비아(v) 및 도전성 기판(807)을 형성한다. 이에 따라, 도전성 기판(807)은 제2 도전형 반도체층(801)과 접속되는 도전성 비아(v)와 연결된 구조가 된다. 도전성 기판(807)은 Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질로 이루어질 수 있으며, 도금, 스퍼터링, 증착 또는 접착등의 공정으로 적절히 형성될 수 있다. 이 경우, 도전성 비아(v)와 도전성 기판(807)을 동일한 물질로 형성할 수 있으나, 경우에 따라, 도전성 비아(v)는 도전성 기판(807)과 다른 물질로 이루어져 서로 별도의 공정으로 형성될 수도 있다. 예컨대, 도전성 비아(v)를 증착 공정으로 형성한 후, 도전성 기판(807)은 미리 형성되어 발 광구조물에 본딩될 수 있을 것이다.
다음으로, 도 48에 도시된 바와 같이, 제2 도전형 반도체층(801)이 노출되도록 반도체 성장용 기판(B)을 제거한다. 이 경우, 반도체 성장용 기판(B)은 레이저 리프트 오프나 화학적 리프트 오프 등과 같은 공정을 이용하여 제거될 수 있다. 도 48은 반도체 성장용 기판(B)이 제거된 상태로서, 도 47과 비교하여 180°회전시켜 도시하였다.
다음으로, 도 49에 도시된 바와 같이, 상기 발광구조물, 즉, 제1 도전형 반도체층(803), 활성층(802) 및 제2 도전형 반도체층(801)을 일부 제거하여 제1 도전형 컨택층(804)을 노출시킨다. 이는 노출된 제1 도전형 컨택층(804)을 통하여 전기 신호를 인가하기 위한 것이다. 또한, 이러한 발광구조물의 제거 공정은 앞서 설명한 바와 같이 발광구조물을 복수 개로 분할하는 것에도 이용될 수 있을 것이다. 한편, 도시하지는 않았으나, 제1 도전형 컨택층(804)의 노출 영역 상에 전극 패드를 형성하는 공정이 부가될 수 있다. 제1 도전형 컨택층(804)을 노출시키기 위하여, 발광구조물을 ICP-RIE 등의 방법으로 식각할 수 있다. 이 경우, 식각 과정에서, 제1 도전형 컨택층(804)을 이루는 물질이 발광구조물의 측면으로 이동하여 붙는 것을 방지하기 위하여, 도 50에 도시된 바와 같이, 발광구조물 내에 식각저지층(809) 미리 형성하여 둘 수도 있을 것이다.
다음으로, 도 51에 도시된 바와 같이, 발광구조물의 측면에 전기절연성을 갖는 고저항부(808)를 형성한다. 고저항부(808)는 발광구조물을 이루는 반도체층에서 측면에 주입된 이온에 의해 결정이 손상된 영역에 해당하다. 이 경우, 주입된 이온 은 열처리에 의하여 복구될 수 있으므로, 반도체층의 일반적인 열처리 온도에서는 복구되지 않도록 상대적으로 입자 크기가 큰 이온을 이용하는 것이 바람직하다. 예컨대, 발광구조물에 주입되는 이온으로서 Ar, C, N, Kr, Xe, Cr, O, Fe, Ti과 같은 원자의 이온을 이용할 수 있을 것이다.
도 52 내지 55는 또 다른 실시형태에 따른 반도체 발광소자의 제조방법을 설명하기 위한 공정별 단면도이다. 구체적으로, 도 40에서 설명한 구조의 반도체 발광소자의 제조방법에 해당한다. 이 경우, 도 43 내지 도 45에서 설명한 공정은 본 실시형태에서도 그대로 채용될 수 있다. 이하에서는 제1 도전형 컨택층(904)과 발광구조물에 홈을 형성하는 단계의 후속 공정을 설명한다.
우선, 도 52에 도시된 바와 같이, SiO2, SiOxNy, SixNy 등과 같은 물질을 증착시켜 제1 도전형 컨택층(904)의 상부 및 상기 홈의 측벽을 덮도록 절연체(906)를 형성한다. 여기서, 절연체(906)는 후속 공정에서 제2 도전형 전극(909)을 덮도록 형성되는 절연체와 구별하기 위해 제1 절연체로 칭할 수 있다. 이전 실시 형태와 다른 점은 절연체(906)가 제1 도전형 컨택층(904)의 상면 전체에 형성되지 않으며, 이는 도전성 기판(907)과 제1 도전형 컨택층(904)이 접속되어야 하기 때문이다. 즉, 절연체(906)는 제1 도전형 컨택층(904)의 상면 중 일부, 구체적으로, 제2 도전형 반도체층(901)과 연결되는 제2 도전형 전극(909)이 형성될 영역을 미리 고려하여 형성될 수 있다.
다음으로, 도 53에 도시된 바와 같이, 홈 내부와 절연체(906) 상에 도전 물 질을 형성하여 제2 도전형 전극(909)을 형성한다. 이에 따라, 제2 도전형 전극(909)은 제2 도전형 반도체층(901)과 접속되는 도전성 비아(v)를 구비할 수 있다. 본 단계의 경우, 제2 도전형 전극(909)이 형성될 영역에 대응하여 미리 절연체(906)가 형성되어 있어 이를 따라 제2 도전형 전극(909)을 형성할 수 있으며, 특히, 외부로 노출되어 전기 연결부로 기능할 수 있도록 도전성 비아(v)로부터 수평 방향으로 연장되도록 형성하는 것이 바람직하다.
다음으로, 도 54에 도시된 바와 같이, 제2 도전형 전극(909)을 덮도록 절연체(906)를 형성하고 그 위에 제1 도전형 컨택층(904)과 전기적으로 연결되도록 도전성 기판(907)을 형성한다. 이 경우, 본 공정에서 형성되는 절연체(906)는 제2 절연체로 칭할 수 있으며, 앞서 형성된 절연체와 더불어 하나의 절연 구조를 이룰 수 있다. 본 공정에 의하여, 제2 도전형 전극(909)은 제1 도전형 컨택층(904), 도전성 기판(907) 등과 전기적으로 분리될 수 있다. 다음으로, 도 55에 도시된 바와 같이, 제2 도전형 반도체층(901)이 노출되도록 반도체 성장용 기판(B)을 제거한다. 이후, 따로 도시하지는 않았으나, 발광구조물을 일부 제거하여 제2 도전형 전극(909)을 노출시키는 공정과 발광구조물의 측면에 이온 주입에 의한 고저항부(908)를 형성하는 단계는 앞서 설명한 공정을 이용할 수 있을 것이다.
도 56 내지 도 75를 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광소자에 대해 설명한다.
도 56은 본 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 사시도 이다. 또한, 도 57은 도 56을 기준으로 반도체 발광소자의 제2 도전형 반도체층을 상부에서 바라본 개략적인 평면도이며, 도 58은 도 56의 반도체 발광소자를 도 57의 AA` 라인으로 자른 개략적인 단면도이다. 본 실시형태에 따른 반도체 발광소자(1000)는 도전성 기판(1007) 상에 제1 도전형 컨택층(1004)이 형성되며, 제1 도전형 컨택층(1004) 상에는 발광구조물, 즉, 제1 도전형 반도체층(1003), 활성층(1002) 및 제1 도전형 반도체층(1001)을 구비하는 구조가 형성된다. 제1 도전형 반도체층(1001) 상에는 언도프 반도체층(1008)이 형성되며, 언도프 반도체층(1008)은 그 상면에 요철이 구비되어 활성층(1002)에서 방출된 빛의 외부 추출 효율을 향상시킬 수 있다. 제1 도전형 컨택층(1004)은 전기적으로 도전성 기판(1007)과 분리되어 있으며, 이를 위하여 제1 도전형 컨택층(1004)과 도전성 기판(1007) 사이에는 절연체(1006)가 개재된다.
본 실시형태에서, 제1 및 제2 도전형 반도체층(1003, 1001)은 각각 p형 및 n형 반도체층이 될 수 있으며, 질화물 반도체로 이루어질 수 있다. 따라서, 이에 제한되는 것은 아니지만, 본 실시 형태의 경우, 제1 및 제2 도전형은 각각 p형 및 n형 의미하는 것으로 이해될 수 있다. 제1 및 제2 도전형 반도체층(1003, 1001)은 AlxInyGa(1-x-y)N 조성식(여기서, 0≤x≤1, 0≤y≤1, 0≤x+y≤1임)을 가지며, 예컨대, GaN, AlGaN, InGaN 등의 물질이 이에 해당될 수 있다. 제1 및 제2 도전형 반도체층(1003, 1001) 사이에 형성되는 활성층(1002)은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출하며, 양자우물층과 양자장벽층이 서로 교대로 적층 된 다중 양자우물(MQW) 구조로 이루어질 수 있다. 다중 양자우물 구조의 경우, 예컨대, InGaN/GaN 구조가 사용될 수 있다.
제1 도전형 컨택층(1004)은 활성층(1002)에서 방출된 빛을 반도체 발광소자(1000)의 상부, 즉, 제2 도전형 반도체층(1001) 방향으로 반사하는 기능을 수행할 수 있으며, 나아가, 제1 도전형 반도체층(1003)과 오믹 컨택을 이루는 것이 바람직하다. 이러한 기능을 고려하여, 제1 도전형 컨택층(1004)은 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등의 물질을 포함할 수 있다. 이 경우, 자세하게 도시하지는 않았으나, 제1 도전형 컨택층(1004)은 반사 효율을 향상시킬 수 있는 구조로, 구체적인 예로서, Ag, Al, Ni/Ag, Zn/Ag, Ni/Al, Zn/Al, Pd/Ag, Pd/Al, Ir/Ag. Ir/Au, Pt/Ag, Pt/Al, Ni/Ag/Pt 또는 이들 중 적어도 하나를 포함하는 구조로 이루어진 것일 수 있다. 본 실시 형태에서 제1 도전형 컨택층(1004)은 일부가 외부로 노출될 수 있으며, 도시된 것과 같이, 상기 노출 영역은 상기 발광구조물이 형성되지 않은 영역이 될 수 있다. 제1 도전형 컨택층(1004)의 상기 노출 영역은 전기 신호를 인가하기 위한 전기연결부에 해당하며, 그 위에는 전극 패드(1005)가 형성될 수 있다.
도전성 기판(1007)은 후술할 바와 같이, 레이저 리프트 오프 등의 공정에서 상기 발광구조물을 지지하는 지지체의 역할을 수행하며, Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질, 예컨대, Cu 또는 Si와 Al의 결합 형태인 SiAl 물질로 이루어질 수 있다. 이 경우, 선택된 물질에 따라, 도전성 기판(1007)은 도금, 증착 또는 본딩 접합 등의 방법으로 형성될 수 있을 것이다. 본 실시 형 태의 경우, 도전성 기판(1007)은 제2 도전형 반도체층(1001)과 전기적으로 연결되며, 이에 따라, 도전성 기판(1007)을 통하여 제2 도전형 반도체층(1001)에 전기 신호가 인가될 수 있다. 이를 위하여, 도 57 및 도 58에 도시된 것과 같이, 도전성 기판(1007)으로부터 연장되어 제2 도전형 반도체층(1001)과 접속된 도전성 비아(v)가 구비될 필요가 있다.
도전성 비아(v)는 제2 도전형 반도체층(1001)과 그 내부에서 접속되며, 접촉 저항이 낮아지도록 개수, 형상, 피치, 제2 도전형 반도체층(1001)과의 접촉 면적 등이 적절히 조절될 수 있다. 이 경우, 도전성 비아(v)는 활성층(1002), 제1 도전형 반도체층(1003) 및 제1 도전형 컨택층(1004)과는 전기적으로 분리될 필요가 있으므로, 도전성 비아(v)과 이들 사이에는 절연체(1006)가 형성된다. 절연체(1006)는 전기 절연성을 갖는 물체라면 어느 것이나 채용 가능하지만, 빛을 최소한으로 흡수하는 것이 바람직하므로, 예컨대, SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물을 이용할 수 있을 것이다.
상술한 바와 같이, 본 실시형태의 경우, 도전성 기판(1007)이 도전성 비아(v)에 의하여 제2 도전형 반도체층(1001)과 연결되며, 제2 도전형 반도체층(1001) 상면에 따로 전극을 형성할 필요가 없다. 이에 따라, 제2 도전형 반도체층(1001) 상면으로 방출되는 빛의 양이 증가될 수 있다. 이 경우, 활성층(1002)의 일부에 도전성 비아(v)가 형성되어 발광 영역이 줄어들기는 하지만, 제2 도전형 반도체층(1001) 상면의 전극이 없어짐으로써 얻을 수 있는 광 추출 효율 향상 효과가 더 크다고 할 수 있다. 한편, 본 실시 형태에 따른 반도체 발광소자(1000)는 제2 도전형 반도체층(1001) 상면에 전극이 배치되지 않음에 따라 전체적인 전극의 배치가 수직 전극 구조보다는 수평 전극 구조와 유사하다고 볼 수 있지만, 제2 도전형 반도체층(1001) 내부에 형성된 도전성 비아(v)에 의하여 전류 분산 효과가 충분히 보장될 수 있다.
제2 도전형 반도체층(1001) 상면에는 언도프 반도체층(1008)이 형성되며, 후술할 바와 같이, 언도프 반도체층(1008)은 상기 발광구조물을 이루는 반도체층의 성장 전에 버퍼층으로 채용된 것이다. 이 경우, 언도프라 함은 반도체층에 불순물 도핑 공정을 따로 거치지 않은 것을 의미하며, 반도체층에 본래 존재하던 수준의 불순물 농도, 예컨대, 질화갈륨 반도체를 MOCVD를 이용하여 성장시킬 경우, 도펀트로 사용되는 Si 등이 의도하지 않더라도 약 1016~ 1018/㎤인 수준으로 포함될 수 있다. 본 실시형태에서는 제2 도전형 반도체층(1001) 상면에 전극을 형성할 필요가 없으므로, 언도프 반도체층(1008)을 제거하지 않았으며, 이에 따라, 언도프 반도체층(1008)은 제2 도전형 반도체층(1001) 상면 전체를 덮도록 형성될 수 있다. 나아가, 언도프 반도체층(1008)에 요철 구조를 형성함으로써 활성층(1002) 방향에서 입사된 빛이 외부로 방출될 수 있는 확률이 증가되도록 하였다. 다만, 본 실시형태에서는 요철이 언도프 반도체(1008)에만 형성된 구조를 설명하였으나, 식각 조건에 따라, 제2 도전형 반도체층(1001)의 일부 영역까지 요철이 형성되는 경우가 생길 수 있을 것이다.
만약, 언도프 반도체층(1008)을 제거하고 제2 도전형 반도체층(1001) 요철 구조를 형성할 경우에는 제2 도전형 반도체층(1001)의 일부가 손실되는 문제가 있으며, 특히, 요철 형성 공정이 정밀하게 제어되지 않는다면 제품에 따라 제2 도전형 반도체층(1001)의 두께가 일정하게 유지되지 않을 수 있다. 따라서, 본 실시형태와 같이, 제2 도전형 반도체층(1001)의 전극 연결 구조를 제2 도전형 반도체층(1001)의 내부를 통하여 하부에 형성한다면, 제거되지 않은 상태의 언도프 반도체층(1008)에 요철을 형성함으로써 이러한 문제를 해결할 수 있다.
도 59 및 도 60은 도 56의 실시형태에서 변형된 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 단면도이다. 우선, 도 59의 발광소자(1000-1)의 경우, 발광구조물의 측면이 제1 도전형 컨택층(1004)에 대하여 기울어지도록, 구체적으로, 발광구조물의 상부를 향하여 기울어지도록 형성된다. 발광구조물의 이러한 기울어진 형상은 후술할 바와 같이, 제1 도전형 컨택층(1004)을 노출하기 위하여 발광구조물을 에칭하는 공정에 의하여 자연스럽게 형성될 수 있다. 도 60의 반도체 발광소자(1000-2)는 도 59의 실시형태에서 발광구조물의 측면을 덮도록 패시베이션층(1009)이 형성된 구조이다. 패시베이션층(1009)은 발광구조물, 특히, 활성층(1002)을 외부로부터 보호하는 것으로서, SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물로 이루어질 수 있으며, 그 두께는 0.1 ~ 2㎛ 정도가 바람직하다.
외부로 노출된 활성층(1002)은 반도체 발광소자(1000)의 작동 중에 전류 누 설 경로로 작용할 수 있으며, 패시베이션층(1009)을 발광구조물의 측면에 형성함으로써 이러한 문제를 방지할 수 있다. 이러한 점을 고려하여, 도 60에 도시된 것과 같이, 패시베이션층(1009)은 제1 도전형 컨택층(1004)의 노출된 상면에도 연장되어 형성될 수 있다. 한편, 상기와 같이 설명한 도 59 및 도 60의 변형예는 도 61 및 도 62의 다른 실시형태에도 적용될 수 있을 것이다.
도 61은 본 실시예의 다른 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 단면도이다. 도 61을 참조하면, 본 실시형태에 따른 반도체 발광소자(1100)는 앞선 실시형태와 같이, 도전성 기판(1107) 상에 제1 도전형 컨택층(1104)이 형성되며, 제1 도전형 컨택층(1104) 상에는 발광구조물, 즉, 제1 도전형 반도체층(1103), 활성층(1102) 및 제1 도전형 반도체층(1101)을 구비하는 구조가 형성된다. 제1 도전형 반도체층(1101) 상에는 언도프 반도체층(1108)이 형성되며, 언도프 반도체층(1108)은 그 상면에는 요철이 구비된다. 또한, 제1 도전형 컨택층(1104)은 전기적으로 도전성 기판(1107)과 분리되어 있으며, 이를 위하여 제1 도전형 컨택층(1104)과 도전성 기판(1107) 사이에는 절연체(1106)가 개재된다.
앞선 실시형태의 경우, 제1 도전형 컨택층(1004)의 전기연결부가 발광구조물의 상부에서 보았을 때 발광구조물의 모서리에 대응는 영역에 형성된 것과 달리, 본 실시형태의 경우, 제1 도전형 컨택층(1104)의 전기연결부가 상기 발광구조물의 상부에서 보았을 때 상기 발광구조물의 중앙에 대응는 영역에 형성된다. 이와 같이, 본 발명에서는 필요에 따라 제1 도전형 컨택층(1104)이 노출되는 영역의 위치가 변경될 수 있다. 제1 도전형 컨택층(1104)의 상기 전기연결부에는 전극 패 드(1105)가 형성될 수 있다.
도 62는 또 다른 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 단면도이다. 도 62를 참조하면, 본 실시형태에 따른 반도체 발광소자(1200)는 도전성 기판(1207) 상에 제1 도전형 컨택층(1204)이 형성되며, 제1 도전형 컨택층(1204) 상에는 발광구조물, 즉, 제1 도전형 반도체층(1203), 활성층(1202) 및 제1 도전형 반도체층(1201)을 구비하는 구조가 형성된다. 발광구조물 상, 즉, 제1 도전형 반도체층(1201) 상에는 언도프 반도체층(1208)이 형성되며, 언도프 반도체층(1208)은 그 상면에는 형성된 요철 구조를 구비한다. 앞선 실시 형태와의 구조적 차이는, 도전성 기판(1207)이 제2 도전형 반도체층(1201)이 아닌 제1 도전형 반도체층(1203)과 전기적으로 연결된다는 것이다. 따라서, 제1 도전형 컨택층(1204)이 반드시 요구되지 않으며, 이 경우, 제1 도전형 반도체층(1203)과 도전성 기판(1207)은 직접 접촉할 수 있을 것이다.
제2 도전형 반도체층(1201)과 그 내부에서 접속된 도전성 비아(v)는 활성층(1202), 제1 도전형 반도체층(1203) 및 제1 도전형 컨택층(1204)을 관통하여 제2 도전형 전극(1209)과 연결된다. 제2 도전형 전극(1209)은 도전성 비아(v)로부터 발광구조물의 측 방향으로 연장 형성되며 외부로 노출된 전기연결부를 갖고, 상기 전기연결부에는 전극 패드(1205)가 형성될 수 있다. 이 경우, 제2 도전형 전극(1209) 및 도전성 비아(v)을 활성층(1202), 제1 도전형 반도체층(1203), 제1 도전형 컨택층(1204) 및 도전성 기판(1207)과 전기적으로 분리되기 위한 절연체(1206)가 형성된다.
이하, 상기와 같은 구조를 갖는 반도체 발광소자를 제조하는 공정을 설명한다.
도 63 내지 도 71은 본 실시형태에 따른 반도체 발광소자의 제조방법을 설명하기 위한 공정별 단면도이다. 구체적으로, 도 56 내지 도 58에서 설명한 구조를 갖는 반도체 발광소자의 제조방법에 해당한다.
우선, 도 63에 도시된 것과 같이, 반도체 성장용 기판(B) 위에 버퍼층(1008), 제2 도전형 반도체층(1001), 활성층(1002) 및 제1 도전형 반도체층(1003)을 MOCVD, MBE, HVPE 등과 같은 반도체층 성장 공정을 이용하여 순차적으로 성장시켜 발광구조물을 형성한다. 이 경우, 상술한 바와 같이, 구조적인 면에서는 발광구조물을 제2 도전형 반도체층(1001), 활성층(1002) 및 제1 도전형 반도체층(1003)을 구비하는 구조로 정의하였으나, 성장 및 식각 공정 측면에서는, 버퍼층(1008)도 발광구조물을 구성하는 요소로 볼 수 있다. 따라서, 이하에서는 발광구조물을 버퍼층(1008), 제2 도전형 반도체층(1001), 활성층(1002) 및 제1 도전형 반도체층(1003)을 구비하는 구조로 정의하기로 한다.
반도체 성장용 기판(B)은 사파이어, SiC, MgAl2O4, MgO, LiAlO2, LiGaO2 , GaN 등의 물질로 이루어진 기판을 사용할 수 있다. 이 경우, 사파이어는 육각-롬보형(Hexa-Rhombo R3c) 대칭성을 갖는 결정체로서 c축 및 a측 방향의 격자상수가 각각 13.001Å과 4.758Å이며, C(0001)면, A(1120)면, R(1102)면 등을 갖는다. 이 경우, 상기 C면은 비교적 질화물 박막의 성장이 용이하며, 고온에서 안정하기 때문에 질화물 성장용 기판으로 주로 사용된다. 상술한 바와 같이, 버퍼층은(1008)은 질화물 등으로 이루어진 언도프 반도체층으로 채용될 수 있으며, 그 위에 성장되는 발광구조물의 격자 결함을 완화시킬 수 있다.
다음으로, 도 64에 도시된 바와 같이, 제1 도전형 반도체층(1003) 상에 제1 도전형 컨택층(1004)을 형성한다. 제1 도전형 컨택층(1004)은 광 반사 기능과 제1 도전형 반도체층(1003)과 오믹 컨택 기능을 고려하여 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등의 물질을 포함하도록 형성할 수 있으며, 당 기술 분야에서 공지된 스퍼터링이나 증착 등의 공정을 적절히 이용할 수 있다. 다음으로, 도 65에 도시된 바와 같이, 제1 도전형 컨택층(1004) 및 상기 발광구조물에 홈을 형성한다. 구체적으로, 상기 홈은 후속 공정에서 도전성 물질을 충진하여 제2 도전형 반도체층(1001)과 연결되는 도전성 비아를 형성하기 위한 것으로서, 제1 도전형 컨택층(1004), 제1 도전형 반도체층(1003) 및 활성층(1002)을 관통하며, 제1 도전형 반도체층(1001)이 저면으로 노출되는 형상을 갖는다. 도 65의 흠 형성 공정 역시, 당 기술 분야에서 공지된 식각 공정, 예컨대, ICP-RIE 등을 이용하여 실행될 수 있다.
다음으로, 도 66에 도시된 바와 같이, SiO2, SiOxNy, SixNy 등과 같은 물질을 증착시켜 제1 도전형 컨택층(1004)의 상부 및 상기 홈의 측벽을 덮도록 절연체(1006)를 형성한다. 이 경우, 상기 홈의 저면에 해당하는 제2 도전형 반도체층(1001)은 적어도 일부가 노출될 필요가 있으므로, 절연체(1006)는 상기 홈의 저면 전체를 덮지 않는 범위에서 형성되는 것이 바람직하다.
다음으로, 도 67에 도시된 바와 같이, 상기 홈 내부와 절연체(1006) 상에 도전 물질을 형성하여 도전성 비아(v) 및 도전성 기판(1007)을 형성한다. 이에 따라, 도전성 기판(1007)은 제2 도전형 반도체층(1001)과 접속되는 도전성 비아(v)와 연결된 구조가 된다. 도전성 기판(1007)은 Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질로 이루어질 수 있으며, 도금, 스퍼터링, 증착 등의 공정으로 적절히 형성될 수 있다. 이 경우, 도전성 비아(v)와 도전성 기판(1007)을 동일한 물질로 형성할 수 있으나, 경우에 따라, 도전성 비아(v)는 도전성 기판(1007)과 다른 물질로 이루어져 서로 별도의 공정으로 형성될 수도 있다. 예컨대, 도전성 비아(v)를 증착 공정으로 형성한 후, 도전성 기판(1007)은 미리 형성되어 발광구조물에 본딩될 수 있을 것이다.
다음으로, 도 68에 도시된 바와 같이, 버퍼층(1008)이 노출되도록 반도체 성장용 기판(B)을 제거한다. 이 경우, 반도체 성장용 기판(B)은 레이저 리프트 오프나 화학적 리프트 오프 등과 같은 공정을 이용하여 제거될 수 있다. 도 68은 반도체 성장용 기판(B)이 제거된 상태로서, 도 67과 비교하여 180°회전시켜 도시하였다.
다음으로, 도 69에 도시된 바와 같이, 상기 발광구조물, 즉, 버퍼층(1008), 제1 도전형 반도체층(1003), 활성층(1002) 및 제2 도전형 반도체층(1001)을 일부 제거하여 제1 도전형 컨택층(1004)을 노출시킨다. 이는 노출된 제1 도전형 컨택층(1004)을 통하여 전기 신호를 인가하기 위한 것이다. 도시하지는 않았으나, 제1 도전형 컨택층(1004)의 노출 영역 상에 전극 패드를 형성하는 공정이 부가될 수 있 다. 제1 도전형 컨택층(1004)을 노출시키기 위하여, 발광구조물을 ICP-RIE 등의 방법으로 식각할 수 있다. 이 경우, 식각 과정에서, 제1 도전형 컨택층(1004)을 이루는 물질이 발광구조물의 측면으로 이동하여 붙는 것을 방지하기 위하여 도 70에 도시된 바와 같이, 발광구조물 내에 식각저지층(1010) 미리 형성하여 둘 수도 있을 것이다. 또한, 더욱 확실한 절연 구조로서, 발광구조물을 식각한 후에, 도 60의 패시베이션층(1009)을 발광구조물의 측면에 형성할 수 있다.
다음으로, 도 71에 도시된 바와 같이, 버퍼층(1008)에 요철 구조를 형성한다. 이 경우, 주요하게 요철이 형성되는 영역은 반도체 성장용 기판(B)이 제거되어 노출된 버퍼층(1008)의 상면이며, 이렇게 형성된 요철 구조에 의하여 광 추출 효율이 향상될 수 있다. 이 경우, 요철 구조의 형성은 건식 또는 습식 식각 공정 등을 적절히 이용하여 실행될 수 있으나, 습식 식각을 이용하여 크기, 형상, 주기 등이 불규칙한 요철 구조를 형성하는 것이 바람직할 것이다. 본 실시 형태의 경우, 전기전도도가 낮은 버퍼층(1008)을 제거하지 않아도 제1 도전형 반도체층(1001)에 전기 신호를 인가하는 것에 문제가 없으며, 버퍼층(1008)에 요철을 형성함으로써 제1 도전형 반도체층(1001)의 균일한 두께를 보장할 수 있다.
도 72 내지 도 75는 또 다른 실시형태에 따른 반도체 발광소자의 제조방법을 설명하기 위한 공정별 단면도이다. 구체적으로, 도 62에서 설명한 구조의 반도체 발광소자의 제조방법에 해당한다. 이 경우, 도 63 내지 도 65에서 설명한 공정은 본 실시형태에서도 그대로 채용될 수 있다. 이하에서는 제1 도전형 컨택층(1204)과 발광구조물에 홈을 형성하는 단계의 후속 공정을 설명한다.
우선, 도 72에 도시된 바와 같이, SiO2, SiOxNy, SixNy 등과 같은 물질을 증착시켜 제1 도전형 컨택층(1204)의 상부 및 상기 홈의 측벽을 덮도록 절연체(1206)를 형성한다. 여기서, 절연체(1206)는 후속 공정에서 제2 도전형 전극(1209)을 덮도록 형성되는 절연체와 구별하기 위해 제1 절연체로 칭할 수 있다. 이전 실시 형태와 다른 점은 절연체(1206)가 제1 도전형 컨택층(1204)의 상면 전체에 형성되지 않으며, 이는 도전성 기판(1207)과 제1 도전형 컨택층(1204)이 접속되어야 하기 때문이다. 즉, 절연체(1206)는 제1 도전형 컨택층(1204)의 상면 중 일부, 구체적으로, 제2 도전형 반도체층(1201)과 연결되는 제2 도전형 전극(1209)이 형성될 영역을 미리 고려하여 형성될 수 있다.
다음으로, 도 73에 도시된 바와 같이, 홈 내부와 절연체(1206) 상에 도전 물질을 형성하여 제2 도전형 전극(1209)을 형성한다. 이에 따라, 제2 도전형 전극(1209)은 제2 도전형 반도체층(1201)과 접속되는 도전성 비아(v)를 구비할 수 있다. 본 단계의 경우, 제2 도전형 전극(1209)이 형성될 영역에 대응하여 미리 절연체(1206)가 형성되어 있어 이를 따라 제2 도전형 전극(1209)을 형성할 수 있으며, 특히, 외부로 노출되어 전기 연결부로 기능할 수 있도록 도전성 비아(v)로부터 수평 방향으로 연장되도록 형성하는 것이 바람직하다.
다음으로, 도 74에 도시된 바와 같이, 제2 도전형 전극(1209)을 덮도록 절연체(1206)를 형성하고 그 위에 제1 도전형 컨택층(1204)과 전기적으로 연결되도록 도전성 기판(1207)을 형성한다. 이 경우, 본 공정에서 형성되는 절연체(1206)는 제 2 절연체로 칭할 수 있으며, 앞서 형성된 절연체와 더불어 하나의 절연 구조를 이룰 수 있다. 본 공정에 의하여, 제2 도전형 전극(1209)은 제1 도전형 컨택층(1204), 도전성 기판(1207) 등과 전기적으로 분리될 수 있다. 다음으로, 도 75에 도시된 바와 같이, 버퍼층(1208)이 노출되도록 반도체 성장용 기판(B)을 제거한다. 이후, 따로 도시하지는 않았으나, 발광구조물을 일부 제거하여 제2 도전형 전극(1209)을 노출시키는 공정과 버퍼층(1208)에 요철 구조를 형성하는 단계는 앞서 설명한 공정을 이용할 수 있을 것이다.
도 76 내지 도 89를 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광소자에 대해 설명한다.
도 76은 본 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 단면도이며, 도 77은 도 76의 반도체 발광소자에 해당하는 회로도이다. 도 76을 참조하면, 본 실시형태에 따른 반도체 발광소자(1300)는 기판(1306) 상에 복수의 발광구조물(C1, C2)이 배치되며, 발광구조물(C1, C2)은 서로 전기적으로 연결된 구조를 갖는다. 이하, 2개의 발광구조물을 각각 제1 및 제2 발광구조물(C1, C2)로 칭한다. 제1 및 제2 발광구조물(C1, C2)은 제1 도전형 반도체층(1303), 활성층(1302) 및 제1 도전형 반도체층(1301)이 순차적으로 적층된 구조를 구비하며, 서로 간의 전기적 연결을 위하여 제1 및 제2 전기연결부(1304, 1307)를 갖는다.
제1 전기연결부(1304)는 제1 도전형 반도체층(1303) 하부에 형성되며, 전기 연결 기능 외에도 오믹 컨택 및 광 반사 기능을 수행할 수 있다. 제2 전기연결 부(1307)는 제2 도전형 반도체층(1301)과 전기적으로 연결되며, 제1 전기연결부(1304), 제1 도전형 반도체층(1303) 및 활성층(1302)을 관통하는 도전성 비아(v)를 구비하여 제2 도전형 반도체층(1301)과 접속될 수 있다. 제1 및 제2 발광구조물(C1, C2)은 제1 발광구조물(C1)의 제2 전기연결부, 즉, 도전성 비아(v)와 제2 발광구조물(C2)의 제1 전기연결부(1304)가 기판(1306)을 통하여 서로 전기적으로 연결된다. 이를 위하여, 기판(1306)은 전기전도성을 갖는 물질로 형성된다. 이러한 전기 연결 구조를 가짐에 따라, 외부에서 교류 전원이 인가되더라도 반도체 발광소자(1300)의 동작이 가능하다.
본 실시형태에서, 제1 및 제2 도전형 반도체층(1303, 1301)은 각각 p형 및 n형 반도체층이 될 수 있으며, 질화물 반도체로 이루어질 수 있다. 따라서, 이에 제한되는 것은 아니지만, 본 실시 형태의 경우, 제1 및 제2 도전형은 각각 p형 및 n형 의미하는 것으로 이해될 수 있다. 제1 및 제2 도전형 반도체층(1303, 1301)은 AlxInyGa(1-x-y)N 조성식(여기서, 0≤x≤1, 0≤y≤1, 0≤x+y≤1임)을 가지며, 예컨대, GaN, AlGaN, InGaN 등의 물질이 이에 해당될 수 있다. 제1 및 제2 도전형 반도체층(1303, 1301) 사이에 형성되는 활성층(1302)은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출하며, 양자우물층과 양자장벽층이 서로 교대로 적층된 다중 양자우물(MQW) 구조로 이루어질 수 있다. 다중 양자우물 구조의 경우, 예컨대, InGaN/GaN 구조가 사용될 수 있다.
상술한 바와 같이, 제1 전기 연결부(1304)는 활성층(102)에서 방출된 빛을 반도체 발광소자(1300)의 상부, 즉, 제2 도전형 반도체층(1301) 방향으로 반사하는 기능을 수행할 수 있으며, 나아가, 제1 도전형 반도체층(1303)과 오믹 컨택을 이루는 것이 바람직하다. 이러한 기능을 고려하여, 제1 전기연결부(1304)는 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등의 물질을 포함할 수 있다. 이 경우, 자세하게 도시하지는 않았으나, 제1 전기연결부(104)는 반사 효율을 향상시킬 수 있는 구조로, 구체적인 예로서, Ag, Al, Ni/Ag, Zn/Ag, Ni/Al, Zn/Al, Pd/Ag, Pd/Al, Ir/Ag. Ir/Au, Pt/Ag, Pt/Al, Ni/Ag/Pt 또는 이를 포함하는 적어도 하나의 물질로 구성된 것일 수 있다.
기판(1306)은 반도체 발광소자(1300)를 제조함에 있어서, 레이저 리프트 오프 등의 공정에서 제1 및 제2 발광구조물(C1, C2)을 지지하는 지지체의 역할을 수행하며, 또한, 제1 및 제2 발광구조물(C1, C2)을 전기적으로 연결하기 위하여 도전성 기판이 채용될 수 있다. 도전성 물질의 경우, Au, Ni, Al, Cu, W, Si, Se, GaAs 중 어느 하나를 포함하는 물질, 예컨대, Cu 또는 Si와 Al의 결합 형태의 SiAl 물질을 이용하여 기판(1306)을 형성할 수 있다. 이 경우, 선택된 물질에 따라, 기판(1306)은 도금, 증착 또는 본딩 접합 등의 방법으로 형성될 수 있을 것이다.
제2 전기연결부(1307)에 구비되는 도전성 비아(v)는 제2 도전형 반도체층(1301)과 그 내부에서 접속되며, 접촉 저항이 낮아지도록 개수, 형상, 피치, 제2 도전형 반도체층(1301)과의 접촉 면적 등이 적절히 조절될 수 있다. 이 경우, 도전성 비아(v)는 활성층(1302), 제1 도전형 반도체층(1303) 및 제1 전기연결부(1304)와는 전기적으로 분리될 필요가 있으므로, 도전성 비아(v)와 이들 사이에는 절연 체(1305)가 형성된다. 절연체(1305)는 전기 절연성을 갖는 물체라면 어느 것이나 채용 가능하지만, 빛을 최소한으로 흡수하는 것이 바람직하므로, 예컨대, SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물을 이용할 수 있을 것이다.
본 실시형태와 같이, 제2 전기연결부(1307)를 제2 도전형 반도체층(1301)을 통하여 그 하부에 형성할 경우, 제2 도전형 반도체층(1301) 상면에 따로 전극을 형성할 필요가 없다. 이에 따라, 제2 도전형 반도체층(1301) 상면으로 방출되는 빛의 양이 증가될 수 있다. 이 경우, 활성층(1302)의 일부에 도전성 비아(v)가 형성되어 발광 영역이 줄어들기는 하지만, 제2 도전형 반도체층(1301) 상면의 전극이 없어짐으로써 얻을 수 있는 광 추출 효율 향상 효과가 더 크다고 할 수 있다. 한편, 본 실시 형태에 따른 반도체 발광소자(1300)는 제2 도전형 반도체층(1301) 상면에 전극이 배치되지 않음에 따라 전체적인 전극의 배치가 수직 전극 구조보다는 수평 전극 구조와 유사하다고 볼 수 있지만, 제2 도전형 반도체층(1301) 내부에 형성된 도전성 비아(v)에 의하여 전류 분산 효과가 충분히 보장될 수 있다. 또한, 본 발명에서 부가될 수 있는 구조로서, 제2 도전형 반도체층(1301) 상면에는 요철 구조가 형성될 수 있으며, 이러한 요철 구조에 의하여, 활성층(1302) 방향으로부터 입사된 빛이 외부로 방출될 확률이 증가될 수 있다.
앞서 설명한 바와 같이, 반도체 발광소자(1300)는 교류 전원에서 구동이 가능하며, 이를 위해, 도 77에 도시된 바와 같이, 제1 및 제2 발광구조물(C1, C2)이 n-p 접합을 이루도록 하였다. 이러한 n-p 접합은 예컨대, 제1 발광구조물(C1)의 제 2 전기연결부(v)와 제2 발광구조물(C2)의 제1 전기연결부(1304)를 연결하고, 제1 발광구조물(C1)의 제1 전기연결부(1304)와 제2 발광구조물(C1)의 제2 전기연결부(1307)에 외부 전원을 인가함으로써 구현될 수 있다. 구체적으로, 도 77a에서, A 및 B 단자는 각각 제1 발광구조물(C1)의 제1 전기연결부(1304) 및 제2 발광구조물(C1)의 제2 전기연결부(1307)에 해당하며, C 단자는 기판(1306)에 해당한다. 이 경우, 도 77b와 같이, A 및 B 단자를 연결하고, 이렇게 연결된 단자와 C 단자에 교류 신호를 인가할 경우, 교류 발광 소자가 구현될 수 있다.
도 78 내지 도 80은 도 76의 실시형태에서 변형된 실시형태에 따른 반도체 발광소자를 개략적으로 나타내는 단면도이다. 도 78 내지 도 80의 변형된 실시형태의 경우, 발광구조물들 간의 전기 연결 구조에서 이전 실시 형태와 차이가 있으며, 구현된 소자의 회로도는 도 77과 동일하다. 우선, 도 78의 반도체 발광소자(1400)는 기판(1406) 상에 제1 및 제2 발광구조물(C1, C2)이 배치되며, 여기서, 제1 발광구조물(C1)은 도 76의 제1 발광구조물과 같은 구조를 갖는다. 본 실시형태에서는 이전 실시형태와 달리, 발광구조물 중 일부를 수직 전극 구조로 채용이 가능하다. 구체적으로, 제2 발광구조물(C2)은 수직 전극 구조에 해당하는 것으로서, 구체적으로, 기판(1406)과 연결된 제1 전기연결부(1404) 상에 제1 도전형 반도체층(1403), 활성층(1402) 및 제2 도전형 반도체층(1401)이 순차적으로 형성되며, 제2 전기연결부(1407)는 제2 도전형 반도체(1401) 상에 형성된다.
다음으로, 도 79 및 도 80의 실시형태는 각각, 도 76 및 도 78에서 기판을 전기절연성 물질로 형성한 구조를 나타낸다. 도 79의 반도체 발광소자(1500)는 전 기절연성을 갖는 기판(1506) 상에 제1 및 제2 발광구조물(C1, C2)이 배치된다. 이 경우, 도 76의 실시 형태와 마찬가지로, 제1 및 제2 발광구조물(C1, C2)은 제1 전기연결부(1504) 상에 제1 도전형 반도체층(1503), 활성층(1502) 및 제2 도전형 반도체층(1501)이 적층되며, 제2 전기연결부(1507a, 1507b)는 제2 도전형 반도체층(1501)과 접속된 도전성 비아(v)를 갖는다. 또한, 제2 전기연결부(1507a, 1507b)를 제1 전기연결부(1504), 제1 도전형 반도체층(1503) 및 활성층(1502)과 전기적으로 분리하기 위하여 절연체(1505)가 형성된다. 전기절연성 기판(1506)이 사용됨에 따라, 제1 발광구조물(C1)의 제2 전기연결부(1507a)는 도전성 비아(v)로부터 기판(1506)에 평행한 방향으로 연장된 부분에 의하여 제2 발광구조물(C2)의 제1 전기연결부(1504)와 연결된다.
마찬가지로, 도 80의 반도체 발광소자(1600)의 경우, 도 78의 실시형태와 마찬가지로, 제2 발광구조물(C2)은 제1 전기연결부(1604) 상에 제1 도전형 반도체층(1603), 활성층(1602) 및 제2 도전형 반도체층(1601)이 순차적으로 형성되며, 제2 전기연결부(1607)는 제2 도전형 반도체(1601) 상에 형성된다. 전기절연성 기판(1606)이 사용됨에 따라, 제1 발광구조물(C1)의 제2 전기연결부(1607a)는 제2 도전형 반도체층(1601)과 접속된 도전성 비아(v)로부터 기판(1606)에 평행한 방향으로 제2 발광구조물(C2)까지 연장된다. 이에 따라, 제1 및 제2 발광구조물(C1, C2)은 서로 제2 전기연결부(1607a)를 공유하게 될 수 있다.
한편, 상술한 실시 형태들의 경우에는 2개의 발광구조물을 이용하여 교류 구동 발광소자를 구현하였으나, 발광구조물, 즉, 발광다이오드의 개수와 연결 구조는 다양하게 변형될 수 있다. 도 81은 본 실시형태에 따른 반도체 발광소자에 해당하는 회로도를 나타낸다. 도 81에서, 하나의 다이오드는 발광 다이오드로서, 발광구조물에 대응한다. 도 81에 도시된 회로도는 소위 사다리망 회로에 해당하며, 총 14개의 발광구조물을 구비하는 구조이다. 이 경우, 순 방향 전압이 인가될 경우 9개의 발광구조물이 작동되며, 역 방향 전압이 인가될 경우에도 9개의 발광구조물이 작동될 수 있는 구조이다. 이러한 구조를 갖기 위한 기본적인 전기 연결구조는 3가지로서, 도 81에 도시된 바와 같이, n-p 접합, n-n 접합 및 p-p 접합이 이에 해당한다. 아래와 같이, n-p 접합, n-n 접합 및 p-p 접합의 예를 설명하며, 이러한 기본 접합들을 이용하여 다양한 개수의 발광다이오드와 회로 구조를 갖는 교류 구동 발광소자를 얻을 수 있을 것이다.
우선, 도 82 및 도 83은 n-p 접합의 구현 예를 개략적으로 나타내는 단면도이다. 도 82 및 도 83을 참조하면, 기판(1706, 1706') 상에 서로 n-p 접합을 형성하는 제1 및 제2 발광구조물(C1, C2)이 배치된다. 제1 및 제2 발광구조물(C1, C2)은 제1 전기연결부(1704) 상에 제1 도전형 반도체층(1703), 활성층(1702) 및 제2 도전형 반도체층(1701)이 순차적으로 적층되며, 제2 도전형 반도체층(1701)과 내부에서 접속되는 도전성 비아(v)를 제1 전기연결부(1704), 제1 도전형 반도체층(1703) 및 활성층(1702)과 전기적으로 분리시키기 위하여 절연체(1705)가 형성된다. 제1 발광구조물(C1)의 제2 전기연결부(1707)는 제2 발광구조물(C2)의 제1 전기연결부(1704)와 연결된다. 이 경우, 도전성 기판(1706)을 사용한 도 82의 구조와 전기절연성 기판(1706')을 사용한 도 83의 구조에서 제2 전기연결부(1707)의 형태 가 다소 상이하게 되며, 각각, 도 76 및 도 79에서 설명한 구조와 유사하다. 다만, n-p 접합의 경우는 단독으로 교류 구동에 사용되기보다는 다른 발광구조물과 연결되어 전체 소자를 구성하므로, 제2 발광구조물(C2)에 구비된 제2 전기연결부, 즉, 도전성 비아(v)는 외부 전기 신호를 인가하기 위한 구조가 아닌 다른 발광구조물과 전기적으로 연결된 상태로 이해할 수 있다.
다음으로, 도 84 내지 도 86은 n-n 접합의 구현 예를 개략적으로 나타내는 단면도이다. 도 84 내지 도 86을 참조하면, 기판(1806, 1806') 상에 서로 n-n 접합을 형성하는 제1 및 제2 발광구조물(C1, C2)이 배치된다. 제1 및 제2 발광구조물(C1, C2)은 제1 전기연결부(1804) 상에 제1 도전형 반도체층(1803), 활성층(1802) 및 제2 도전형 반도체층(1801)이 순차적으로 적층된 구조를 갖는다. 이 경우, 제2 도전형 반도체층(1801)과 내부에서 접속되는 도전성 비아(v)를 제1 전기연결부(1804), 제1 도전형 반도체층(1803) 및 활성층(1802)과 전기적으로 분리시키기 위하여 절연체(1805)가 형성된다. n-n 접합을 형성하기 위하여, 제1 및 제2 발광구조물(C1, C2)의 제2 전기연결부(1807)가 서로 연결될 필요가 있다. 이러한 예로서, 도 84와 같이, 도전성 기판(1806)을 통하여 제1 및 제2 발광구조물(C1, C2)에 각각 구비된 도전성 비아(v)를 연결할 수 있다. 또한, 도 85와 같이, 전기절연성 기판(1806')을 사용할 경우에는 제2 전기연결부(1807)는 기판(1806')에 평행한 방향으로 연장된 부분에 의하여 제1 및 제2 발광구조물(C1, C2)에 각각 구비된 도전성 비아(v)를 연결할 수 있다. 전기연결부를 통한 접속 방식 외에도, 도 86에 도시된 방법과 같이, 제2 도전형 반도체층(1801')을 이용할 수도 있다. 제1 및 제2 발광구조물(C1, C2)은 제2 도전형 반도체층(1801')을 서로 공유할 수 있으며, 이 경우, 각각에 구비된 도전성 비아(v)를 따로 연결하지 않더라도 n-n 접합을 구현할 수 있다.
마지막으로, 도 87 내지 도 89는 p-p 접합의 구현 예를 개략적으로 나타내는 단면도이다. 도 87 내지 89를 참조하면, 기판(1906, 1906') 상에 서로 p-p 접합을 형성하는 제1 및 제2 발광구조물(C1, C2)이 배치된다. 제1 및 제2 발광구조물(C1, C2)은 제1 전기연결부(1904) 상에 제1 도전형 반도체층(1903), 활성층(1902) 및 제2 도전형 반도체층(1901)이 순차적으로 적층된 구조를 갖는다. 이 경우, 제2 도전형 반도체층(1901)과 내부에서 접속되는 도전성 비아(v)를 제1 전기연결부(1904), 제1 도전형 반도체층(1903) 및 활성층(1902)과 전기적으로 분리시키기 위하여 절연체(1905)가 형성된다. p-p 접합을 형성하기 위하여, 제1 및 제2 발광구조물(C1, C2)의 제1 전기연결부(1904)가 서로 연결될 필요가 있다. 이 경우, 도전성 비아(v)는 전체 교류 발광소자를 함께 구성하는 다른 발광구조물(도시하지 않음)과 연결될 수 있을 것이다. p-p 접합의 예로서, 도 87과 같이, 도전성 기판(1906)을 통하여 제1 및 제2 발광구조물(C1, C2)에 각각 구비된 제1 전기연결부(1904)를 연결할 수 있다. 이 경우, 도 88과 같이, 전기절연성 기판(1906')을 사용할 경우에는 연결금속층(1908)을 따로 배치하여 제1 및 제2 발광구조물(C1, C2)에 각각 구비된 제1 전기연결부(1904)를 연결할 수 있다. 또한, 연결금속층을 따로 채용하지 않고, 도 89와 같이, 제1 및 제2 발광구조물(C1, C2)에 대하여 제1 전기연결부(1904)를 공통으로 사용한 구조도 채용이 가능할 것이다.
도 90 내지 도 100을 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광소자에 대해 설명한다.
도 90은 본 실시형태에 따른 수직구조 반도체 발광소자를 나타내는 단면도이며, 도 91 및 도 92는 도 90의 실시형태로부터 변형된 실시형태에 따른 수직구조 반도체 발광소자를 나타낸다.
도 90을 참조하면, 본 실시형태에 따른 수직구조 반도체 발광소자(2000)는 n형 및 p형 반도체층(2001, 2003)과 그 사이에 형성된 활성층(2002)을 구비하여 발광구조물을 이루며, 상기 발광구조물 하부에는 반사금속층(2004) 및 도전성 기판(2005)이 형성된다. 또한, 상기 n형 반도체층(2001) 위에는 n형 전극(2006)이 형성되며, 상기 발광구조물의 측면을 덮도록 요철 구조를 갖는 패시베이션층(2007)이 형성된다.
상기 n형 반도체층(2001) 및 p형 반도체층(2003)은 대표적으로 질화물 반도체로 이루어질 수 있다. 즉, 상기 n형 반도체층(2001) 및 p형 반도체층(2003)은 AlxInyGa(1-x-y)N 조성식(여기서, 0≤x≤1, 0≤y≤1, 0≤x+y≤1임)을 갖는 n형 불순물 및 p형 불순물이 도핑 된 반도체 물질로 이루어질 수 있으며, 대표적으로, GaN, AlGaN, InGaN이 있다. 또한, 상기 n형 불순물로 Si, Ge, Se, Te 등이 사용될 수 있으며, 상기 p형 불순물로는 Mg, Zn, Be 등이 대표적이다. 한편, 수직 방향으로 방출되는 빛의 효율을 향상시키기 위하여 상기 n형 반도체층(101) 상면에는 요철 구 조가 형성될 수 있다.
상기 n형 및 p형 질화물 반도체층(2001, 2003) 사이에 형성되는 활성층(2002)은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출하며, 양자우물층과 양자장벽층이 서로 교대로 적층 된 다중 양자우물(MQW) 구조로 이루어질 수 있다. 다중 양자우물 구조의 경우, 일반적으로, InGaN/GaN 구조가 사용될 수 있다.
상기 반사금속층(2004)은 상기 활성층(2002)에서 발광 된 빛을 상기 n형 질화물 반도체층(2001) 방향으로 반사하는 기능을 수행할 수 있으며, Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등으로 이루어진다. 이 경우, 자세하게 도시하지는 않았으나, 반사금속층(2004)은 반사 효율을 향상시킬 수 있는 구조로, 구체적인 예로서, Ag, Al, Ni/Ag, Zn/Ag, Ni/Al, Zn/Al, Pd/Ag, Pd/Al, Ir/Ag. Ir/Au, Pt/Ag, Pt/Al, Ni/Ag/Pt 또는 이들 중 적어도 하나를 포함하는 것일 수 있다. 다만, 본 실시 형태에서 상기 반사금속층(2004)은 필수적인 요소는 아니며, 경우에 따라 상기 반사금속층(2004)이 생략된 구조도 가능하다.
상기 도전성 기판(2005)은 p형 전극 역할과 함께 후술할 레이저 리프트 오프 공정에서 발광구조물, 즉, n형 반도체층(2001), 활성층(2002) 및 p형 반도체층(2003)을 지지하는 지지체의 역할을 수행한다. 이 경우, 상기 도전성 기판(2005)은 Si, Cu, Ni, Au, W, Ti 등의 물질로 이루어질 수 있으며, 선택된 물질에 따라, 도금, 증착 또는 본딩 접합 등의 방법으로 형성될 수 있다.
상기 패시베이션층(2007)은 발광구조물, 특히, 상기 활성층(2002)을 보호하 기 위한 절연층으로서, 상기 발광구조물이 일부 제거된 영역에 형성되며, 구체적으로, 상기 발광구조물의 측면 외에 도 90에 도시된 바와 같이, 상기 n형 반도체층(2001)의 상면 중 일부 영역 및 상기 반사금속층(2004)의 상면에까지 형성될 수 있다. 이 경우, 상기 반사금속층(2004)이 채용되지 않은 경우에는 상기 패시베이션층(2007)은 상기 도전성 기판(2005) 상면에 형성된다. 상기 발광구조물이 일부 제거되어 노출된 측면의 경우, 도 90에 도시된 바와 같이, 상부를 향하여 기울어질 수 있으며, 이러한 구조에 의해 발광 면적의 향상을 가져올 수 있으며, 나아가, 패시베이션층(2007) 형성이 보다 용이할 수 있다.
상기 패시베이션층(2007)은 보호 기능을 수행하기 위해 SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물로 이루어질 수 있으며, 그 두께는 0.01 ~ 2㎛ 정도가 바람직하다. 이에 따라, 상기 패시베이션층(2007)은 굴절률이 약 1.4 ~ 2.0 정도가 되며, 공기 또는 패키지의 몰드 구조와 굴절률 차이로 인해 상기 활성층(2002)에서 방출된 빛이 외부로 빠져나가기가 어렵다. 특히, 본 실시 형태와 같은 수직구조 반도체 발광소자(2000)의 경우, p형 반도체층(2003)의 두께가 상대적으로 얇아 활성층(2002)의 측 방향으로 방출된 빛은 패시베이션층(2007)을 통과하여야 외부로 방출될 수 있으나, 상기 활성층(2002)으로부터 상기 패시베이션층(2007)을 향하여 측 방향으로 방출된 빛은 상기 패시베이션층(2007)의 외부 면에 대한 입사각이 매우 작아 외부로 빠져나가기는 더욱 어렵게 된다.
본 실시형태의 경우, 상기 패시베이션층(2007)에 요철 구조를 형성하여 외부 광 추출효율이 향상되도록 하였으며, 특히, 도 90에 도시된 바와 같이, 상기 활성층(2002)의 측 방향으로 방출된 빛이 통과하는 영역에 요철 구조가 형성될 경우, 수직구조 반도체 발광소자(2000)의 측면으로 방출되는 빛의 양이 증가될 수 있다. 여기서, 상기 활성층(2002)의 측 방향으로 방출된 빛이 통과하는 영역은 상기 반사금속층(2004)의 상면 중 발광구조물이 형성되지 않은 영역으로 볼 수 있다. 패시베이션층(2007)에 요철 구조를 채용한 구조를 다른 구성 요소가 모두 동일하되 요철 구조가 없는 구조와 광 추출효율을 비교한 시뮬레이션 결과, 본 실시형태에서 약 5% 이상의 광 추출효율 향상 효과를 보였다. 한편, 본 실시형태에서 반드시 요구되는 사항은 아니지만, 상기 패시베이션층(2007)의 요철 구조는 상기 n형 반도체층(2001)의 상면에 해당하는 영역에도 형성되어 수직 방향 광 추출효율을 향상시킬 수 있다.
도 91 및 도 92에 도시된 바와 같이, 패시베이션층의 요철 구조 형성 영역은 외부 광 추출효율의 극대화를 위하여 다양하게 변화될 수 있다. 도 91과 같이, 요철 구조는 패시베이션층(2007')의 측면에까지 형성될 수 있다. 또한, 도 92와 같이, 패시베이션층(2007'')의 하면, 즉, 반사금속층(2004)을 향하는 면에도 요철 구조가 형성됨이 바람직하며, 이 경우, 이에 대응하는 형상의 패턴이 반사금속층(2004)에 형성될 수 있다.
도 93 내지 도 96은 도 90에서 설명한 구조를 갖는 수직구조 반도체 발광소자의 제조방법을 설명하기 위한 공정별 단면도이다.
우선, 도 93에 도시된 바와 같이, 반도체 단결정 성장용 기판(2008) 위에 n 형 반도체층(2001), 활성층(2002) 및 p형 반도체층(2003)을 MOCVD, MBE, HVPE 등과 같은 공정을 이용하여 순차적으로 성장시킴으로써 발광구조물을 형성한다. 상기 반도체 단결정 성장용 기판(2008)은 사파이어, SiC, MgAl2O4, MgO, LiAlO2, LiGaO2 , GaN 등의 물질로 이루어진 기판을 사용할 수 있다. 이 경우, 사파이어는 육각-롬보형(Hexa-Rhombo R3c) 대칭성을 갖는 결정체로서 c축 및 a측 방향의 격자상수가 각각 13.001Å과 4.758Å이며, C(0001)면, A(1120)면, R(1102)면 등을 갖는다. 이 경우, 상기 C면은 비교적 질화물 박막의 성장이 용이하며, 고온에서 안정하기 때문에 질화물 성장용 기판으로 주로 사용된다.
다음으로, 도 94에 도시된 바와 같이, 상기 p형 반도체층(2003) 상에 반사금속층(2004)과 도전성 기판(2005)을 도금 또는 서브마운트 본딩 등의 방법으로 형성한다. 이후, 구체적으로 도시하지는 않았으나, 레이저 리프트 오프 또는 화학적 리프트 오프 등의 적절한 리프트 오프 공정에 의해 상기 반도체 단결정 성장용 기판(2008)을 제거한다.
다음으로, 도 95에 도시된 바와 같이, 소자 단위의 다이싱 및 패시베이션층 형성을 위해 상기 발광구조물을 일부 제거하며, 이 경우, 제거되어 노출된 측면이 상부를 향하여 기울어지도록 할 수 있다. 또한, 수직 방향으로 광 추출효율을 향상시키기 위해 n형 반도체층(2001)의 상면, 즉, 반도체 단결정 성장용 기판이 제거되어 노출된 면에 습식 식각 등의 공정으로 요철 구조를 형성할 수 있다.
다음으로, 도 96에 도시된 바와 같이, 발광구조물을 보호하기 위한 패시베이 션층(2007)을 형성한다. 본 단계의 경우, 예컨대, 실리콘 산화물 또는 실리콘 질화물을 적절히 증착하여 실행될 수 있으며, 상기 패시베이션층(2007)의 광 방출면에는 요철 구조를 형성하여 측 방향 광방출효율을 향상시킬 수 있다. 이 경우, 요철 구조 형성은 당해 기술분야에서 공지된 건식 또는 습식 식각 공정을 적절히 이용하여 실행될 수 있다. 또한, 필요에 따라, 상기 패시베이션층(2007)의 다른 광 방출면에도 요철 구조를 형성할 수 있다. 패시베이션층(2007)을 형성한 후에는 상기 n형 반도체층(2001) 상면에 n형 전극 형성하여 도 92에 도시된 완성된 구조를 얻을 수 있다.
본 발명에서는 전기적 특성과 광학적 특성이 더욱 향상될 수 있도록 상술한 수직구조에서 변형된 구조를 갖는 반도체 발광소자를 제공한다.
도 97은 다른 실시형태에 따른 반도체 발광소자를 나타내는 개략적인 단면도이다. 도 97을 참조하면, 본 실시형태에 따른 반도체 발광소자(2100)는 도전성 기판(2105), 도전성 기판(2105) 위에 순차적으로 형성된 제1 도전형 반도체층(2103), 활성층(2102) 및 제2 도전형 반도체층(2101)을 구비하는 발광구조물, 제2 도전형 반도체층(2101)에 전기적 신호를 인가하기 위한 제2 도전형 전극(2106) 및 상기 발광구조물의 측면에 형성된 요철 구조의 패시베이션층(2107)을 구비하는 구조이다. 도 97의 경우, 활성층(2102)이 도 90 등에 도시된 구조와 비교하여 상대적으로 상부에 위치하게 도시되어 있으나, 활성층(2102)의 위치는 다양하게 변경될 수 있으며, 예컨대, 패시베이션(2107)의 하부와 비슷한 높이로 형성될 수도 있을 것이다.
이전 실시형태, 즉, 수직구조 반도체 발광소자의 경우, 사파이어 기판이 제 거된 n형 반도체층 노출면에 n형 전극을 형성하지만, 본 실시 형태에서는 도전성 비아를 이용하여 n형 반도체층 하부 방향을 통해 외부로 노출된다. 구체적으로, 제2 도전형 전극(2106)은 제1 도전형 반도체층(2104) 및 활성층(2102)을 관통하여 제2 도전형 반도체층(2101)과 그 내부에서 접속된 도전성 비아(v) 및 이로부터 연장되어 상기 발광구조물의 외부로 노출된 전기 연결부(P)를 구비한다. 이 경우, 제2 도전형 전극(2106)이 도전성 기판(2105), 제1 도전형 반도체층(2103) 및 활성층(2102)과 전기적으로 분리될 필요가 있으므로, 절연체(2108)가 제2 도전형 전극(2106) 주변에 적절히 형성된다. 절연체(2108)는 전기 전도도가 낮은 물질이면 어느 것이 사용 가능하지만, 광 흡수력이 낮은 것이 바람직하며, 예컨대, 패시베이션층(2107)과 같은 물질로 형성할 수 있다.
제2 도전형 전극(2106)의 경우, 제2 도전형 반도체층(2101)과 오믹 컨택을 이룰 수 있는 금속 물질로 이루어질 수 있다. 또한, 제2 도전형 전극(2106)은 전체를 동일한 물질로 형성할 수도 있겠으나, 전기 연결부(P)가 본딩 패드부로 사용될 수 있는 점을 고려하여 전기 연결부(P)를 다른 부분과 상이한 물질로 형성할 수 있을 것이다. 한편, 반드시 이에 제한되는 것은 아니지만, 이전에서 설명한 제조 공정을 감안하였을 때, 통상적으로 제1 및 제2 도전형 반도체층(2101, 2103)은 각각 p형 및 n형 반도체층이 될 수 있다. 부가적인 요소로서, 도 97에 도시된 것과 같이, 제1 도전형 반도체층(2103)과 도전성 기판(2105) 사이에는 제1 컨택층(2104)이 형성될 수 있으며, Ag, Al 등과 같이 반사도가 높은 금속이 채용될 수 있다. 이 경우, 제1 컨택층(2104)과 제2 도전형 전극(2106)은 절연체(2108)에 의하여 서로 전 기적으로 분리된다.
상술한 내용의 전기 연결 구조에 의하여 제2 도전형 반도체층(2101)은 그 상부가 아닌 내부로부터 전기 신호가 인가될 수 있다. 특히, 제2 도전형 반도체층(2101)의 상면에 전극이 형성되지 않아 발광 면적이 증가될 수 있으며, 내부에 형성된 도전성 비아(v)에 의하여 전류 분산 효과가 향상될 수 있다. 이 경우, 도전성 비아(v)의 개수, 면적, 형상 등을 적절히 조절하여 원하는 전기적 특성을 얻을 수 있을 것이다. 본 실시형태의 경우, 도전성 기판을 형성하는 것이나 사파이어 기판을 제거하는 등의 주요 공정은 수직구조 반도체 발광소자의 제조 공정을 이용하지만, 공정에 의하여 얻어진 소자의 형상은 수평 구조에 보다 가까운 것으로 볼 수 있는 점에서, 수직구조와 수평구조의 혼합 구조로 수직수평구조로 칭할 수 있을 것이다.
이전 실시형태와 마찬가지로, 상기 발광구조물의 측면 등에는 패시베이션층(2107)이 형성되며, 활성층(2102)에서 방출된 광의 경로 상에 요철 구조가 형성되며, 이에 의하여 활성층(2102)으로부터 패시베이션층(2107)을 향하여 측 방향으로 방출된 빛의 추출 효율을 향상시킬 수 있다. 이와 더불어, 도 97에 도시된 것과 같이, 제2 도전형 반도체층(2101) 상면에도 요철 구조가 형성될 수 있으며, 따로 도시하지는 않았으나, 패시베이션층(2107)의 경사진 측면에도 요철이 형성될 수 있을 것이다.
도 98은 도 97에서 변형된 구조를 갖는 반도체 발광소자를 나타내는 개략적인 단면도이다. 도 98에 도시된 실시형태의 경우, 도 97에서 설명한 구조에서 식각 저지층(2109)이 추가된 구조로서 이하에서는 식각저지층(2109)에 대해서만 설명한다. 식각저지층(2109)은 적어도 도전성 기판(2105) 상면 중 상기 발광구조물이 형성되지 않은 영역 위에 형성되며, 특정 식각 방식에 대하여 발광구조물을 이루는 반도체 물질, 예컨대, 질화물 반도체와 다른 식각 특성을 갖는 물질(SiO2 등의 산화물)로 이루어진다. 발광구조물이 식각될 경우 식각저지층(2109)이 위치한 영역까지만 식각될 수 있으므로, 식각저지층(2109)에 의해 식각 깊이가 제어될 수 있다. 이 경우, 공정의 용이성을 위하여 식각저지층(2109)과 절연체(2108)를 동일한 물질로 형성할 수 있을 것이다. 제2 도전형 전극(2106)이 외부로 노출될 필요성 등으로 상기 발광구조물을 식각할 경우, 도전성 기판(2105)이나 제1 컨택층(2104)을 이루는 물질이 발광구조물의 측면으로 퇴적되어 누설 전류가 발생할 수 있으므로, 식각에 의해 제거될 발광구조물 하부에 미리 식각저지층(2109)을 형성하여 둠으로써 이러한 문제를 최소화할 수 있다.
도 99는 또 다른 실시형태에 따른 반도체 발광소자를 나타내는 개략적인 단면도이며, 도 100은 도 99의 구조에서 식각저지층이 추가된 구조를 나타낸다. 도 99를 참조하면, 본 실시형태에 따른 반도체 발광소자(2200)는 도전성 기판(2205), 도전성 기판(2205) 위에 순차적으로 형성된 제1 도전형 반도체층(2203), 활성층(2202) 및 제2 도전형 반도체층(2201)을 구비하는 발광구조물, 제1 도전형 반도체층(2203)에 전기 신호를 인가하기 위한 제2 컨택층(2204), 도전성 기판(2205)으로부터 제2 도전형 반도체층(2201)의 내부까지 연장된 도전성 비아(v) 및 상기 발 광구조물의 측면에 형성된 요철 구조의 패시베이션층(2207)을 구비하는 구조이다.
도 97에서 설명한 구조와 다른 사항을 중심으로 설명하면, 우선, 도전성 기판(2205)은 제2 도전형 반도체층(2201)과 전기적으로 연결되며, 제1 도전형 반도체층(2203)과 연결되는 제1 컨택층(2204)이 전기 연결부(P)를 구비하여 외부로 노출된다. 도전성 기판(2205)은 절연체(2208)에 의하여 제1 컨택층(2204), 제1 도전형 반도체층(2203) 및 활성층(2202)과 전기적으로 분리될 수 있다. 즉, 도 97의 실시 형태에서는 제2 도전형 반도체층(2101)과 연결된 제2 도전형 전극(2106)이 외부로 노출되어 전기 연결부(P)를 제공하며, 본 실시형태에서는 제1 도전형 반도체층(2203)과 연결된 제1 컨택층(2204)이 외부로 노출되어 전기 연결부(P)를 제공하는 점에서 구조적인 차이가 있다. 이러한 전기 연결 방식의 차이 외에 다른 구조와 이로부터 얻어지는 효과는 도 97에서 설명한 내용과 같으며, 도 100에 도시된 것과 같이 식각저지층(2209)도 채용될 수 있다. 다만, 도 99의 실시형태, 즉, 제1 컨택층(2204)이 외부로 노출된 구조가 도 97의 실시 형태와 비교하여 절연체(2208)의 형성 공정이 다소 용이한 면이 있다.
도 101 내지 도 119를 참조하여 본 발명의 또 다른 실시예에 따른 반도체 발광소자에 대해 설명한다.
도 101에 도시된 바와 같이, 본 실시예에 따른 반도체 발광소자(2300)의 반도체 적층구조는 하기와 같은 구조를 가질 수 있다. Si-Al 합금으로 이루어진 기판(이하, 'Si-Al 합금 기판'이라 함)(2301) 및 Si-Al 합금 기판(2301)의 상면 및 하면에 형성된 보호층(2320), 보호층(2320) 상에 접합금속층(2302), 반사 금속층(2303), p형 반도체층(2304), 활성층(2305) 및 n형 반도체층(2306)이 순차적으로 적층되어 있다. p형 및 n형 반도체층(2304, 2306)과 활성층(2305)은 GaN계 반도체, 즉 AlxGayIn(1-x-y)N(0≤x≤1, 0≤y≤1, 0≤x+y≤1) 반도체 재료 등으로 이루어질 수 있으며, 발광구조물을 형성한다.
그리고, n형 반도체층(2306) 상에는 n측 전극(2307)이 형성되어 있다. 접합 금속층(2302)과 p형 반도체층(2304) 사이에 개재된 반사 금속층(2303)은 반도체층으로부터 입사된 빛을 상방향으로 반사시킴으로써 발광소자의 휘도를 더욱 증가시킨다. 반사금속층(2303)은 고반사율의 금소, 예를 들어 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Ni/Ag, Zn/Ag, Ni/Al, Zn/Al, Pd/Ag, Pd/Al, Ir/Ag, Ir/Au, Pt/Ag, Pt/Al, Ni/Ag/Pt 또는 이를 포함하는 적어도 하나의 물질로 구성된 것일 수 있다. 그러나, 이러한 반사 금속층(2303)은 필요에 따라 형성되지 않을 수도 있다. 접합금속층(2302)은 Si-Al 합금 기판(2301)을 발광 구조물에 접합시키는 역할을 하며, Au, Sn, Ni, Au-Sn, Ni-Sn, Ni-Au-Sn 또는 Pb-Sr 과 같은 도전성 접착제가 사용될 수 있다. 여기서, 본 발명의 반도체 발광소자(2300)가 접합금속층(2302)을 포함하고 있지만, 이러한 접합 금속층(2302) 없이 Si-Al 합금 기판(2301)이 p형 반도체층(2304) 상에 직접 접합될 수도 있다. 따라서, 본 발명의 발광소자(2300)는 Si-Al 합금기판(2301)을 도전성 기판으로 사용한다.
이러한 Si-Al 합금은 열팽창 계수, 열전도도, 기계적 가공성 및 가격의 측면에서 유리한 장점이다. 즉, Si-Al 합금 기판(2301)의 열팽창 계수는 사파이어 기판 의 열팽창 계수와 유사하다. 따라서, Si-Al 합금 기판(2301)을 사용하여 발광소자(2300)을 제조하는 경우, 기존의 Si로 이루어진 도전성 기판의 접합 공정과 레이저 조사에 의한 사파이어 기판의 분리 공정시 발생하였던 기판의 휨 현상과 발광구조물에서의 크랙 발생 현상을 크게 감소시켜 결함이 적은 고품질의 발광소자(2300)를 얻을 수 있다.
또한, Si-Al 합금 기판(2301)의 열전도도는 약 120 내지 180 W/mㆍK로서 열방출 특성이 우수하다. 뿐만 아니라, 고압에서 Si와 Al을 용융시킴으로써 Si-Al 합금기판(2301)을 용이하게 제조할 수 있기 때문에, Si-Al 합금 기판을 낮은 비용으로 손쉽게 얻을 수 있다.
특히, 본 발명의 발광소자(2300)는 Si-Al 합금 기판(2301)의 상하면에 Si-Al 합금 기판(2301)으로의 클리닝(cleaning)공정시 케미칼 침투를 막아주는 보호층(2320)이 추가로 형성되어 있다. 여기서, 보호층(2320)은 금속 또는 전도성 유전체 등으로 이루어질 수 있다. 이때, 보호층(2320)이 금속으로 이루어지는 경우, Ni, Au, Cu, W, Cr, Mo,Pt, Ru, Rh, Ti 및 Ta 중 어느 하나, 또는 금속군 중 적어도 둘 이상의 합금으로 이루어질 수 있다. 이 경우, 보호층(2320)은 무전해 도금 방식, 금속 증착, 스프터(sputter) 또는 CVD 등에 의해 형성된 것일 수 있으며, 이때, Si-Al 합금 기판(2301)과 금속 재질의 보호층(2320) 사이에는 보호층(2320)의 도금 공정에서 씨드(seed) 역할을 하는 씨드 금속층(2310)이 더 형성될 수 있다. 씨드 금속층(2310)은 Ti/Au 등으로 이루어질 수 있다. 또한, 보호층(2320)이 전도성 유전체로 이루어지는 경우, 상기 전도성 유전체는 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide) 또는 CIO(Copper Indium Oxide) 등으로 이루어질 수 있다. 이 경우, 보호층(2320)은 증착 또는 스퍼터 방식 등에 의해 형성된 것일 수 있다. 이러한 보호층(2320)은 0.01㎛ 이상 20㎛ 이하의 두께로 형성되는 것이 바람직하며, 1㎛ 이상 10㎛ 이하의 두께로 형성되는 것이 바람직하다.
이하, 본 실시예에 따른 발광소자의 제조방법에 대하여 도 102 내지 도 109를 참조하여 상세히 설명한다. 도 102 내지 도 109는 본 실시예에 따른 발광소자의 제조방법을 설명하기 위해 순차적으로 나타낸 공정 단면도이다.
먼저, 도 102에 도시된 바와 같이, 성장용 기판으로서 사파이어 기판(2350)을 준비한 다음, 도 103에 도시된 바와 같이, 상기 사파이어 기판(2350) 상에 n형 반도체층(2306), 활성층(2305) 및 p형 반도체층(2304)을 순차적으로 형성한다. 다음으로, 도 104에 도시된 바와 같이, 상기 p형 반도체층(2304) 상에 고 반사율의 금속재료, 예컨대 Au, Al, Ag 또는 Rh 등을 이용하여 반사 금속층(2303)을 형성한다. 여기서, 상기 반사 금속층(2303)은 필요에 따라 형성되지 않을 수도 있다. 그런 다음, 도 105에 도시된 바와 같이, Si-Al 합금 기판(2301)의 표면에 보호층(2320)을 형성한다. 상기 보호층(2320)은 금속 또는 전도성 유전체를 이용하여 형성할 수 있다.
여기서, 상기 보호층(2320)이 금속으로 형성되는 경우, 상기 보호층(2320)은 Ni, Au, Cu, W, Cr, Mo, Pt, Ru, Rh, Ti 및 Ta 중 어느 하나, 또는 상기 금속군 중 적어도 둘 이상의 금속으로 이루어질 수 있으며, 무전해 도금, 금속 증착, 스퍼터(sputter) 또는 CVD 등의 방식으로 형성할 수 있다. 이때, 상기 금속 재질의 보 호층(2320)을 무전해 도금 방식으로 형성할 경우, 상기 Si-Al 합금 기판(2301)의 표면에 보호층(2320)을 형성하기 전에 상기 보호층(2320)의 도금 공정에서 씨드 역할을 하는 씨드(seed) 금속층(2310)을 추가로 형성할 수도 있다.
또한, 상기 보호층(2320)이 전도성 유전체로 형성되는 경우에는, 상기 보호층(2320)은 ITO, IZO, 또는 CIO 등으로 이루어질 수 있으며, 증착 또는 스퍼터 방식 등으로 형성할 수 있다. 상기 보호층(2320)은 상기 Si-Al 합금 기판(2301)의 표면 전체에 걸쳐 0.01㎛ 이상 20㎛ 이하의 두께로 형성하는 것이 바람직하며, 1㎛ 이상 10㎛ 이하의 두께로 형성하는 것이 보다 바람직하다. 상기 보호층(2320)이 0.01㎛ 보다 얇은 두께로 형성되는 경우 상기 보호층(2320)이 후술하는 HCl, HF, KOH 등의 케미칼 침투를 막는 역할을 제대로 하기 어렵고, 20㎛ 보다 두껍게 형성되는 경우 상기 Si-Al 합금 기판(2301)의 열팽창 계수가 변할 수 있으므로, 상기 보호층(2320)은 상기한 범위의 두께로 형성하는 것이 바람직하다.
이때, 도면에 도시하지는 않았으나, 상기 보호층(2320)을 형성한 다음, 상기 보호층(2320)의 표면을 CMP(Chemical Mechanical Polishing) 처리하여 표면 조도를 개선시킬 수도 있다.
상술한 바와 같이 보호층(2320)이 표면에 형성된 Si-Al 합금 기판(2301)을 준비한 후, 도 106에 도시된 바와 같이 접합 금속층(2302)을 이용하여 상기 반사 금속층(2303) 상에, 상기 보호층(2320)이 표면에 형성된 상기 Si-Al 합금 기판(2301)을 접합한다. 여기서, 상술한 바와 같이 상기 접합 금속층(2302)을 이용하여 Si-Al 합금 기판(2301)을 접합할 수도 있으나, 상기 접합 금속층(2302)을 이용 하지 않고 상기 보호층(2320)이 표면에 형성된 Si-Al 합금 기판(2301)을 상기 반사 금속층(2303) 상에 직접 접합할 수도 있다.
그런 다음, 도 107에 도시된 바와 같이, 레이저 리프트 오프(Laser Lift Off; LLO) 공정으로 상기 사파이어 기판(2350)을 상기 n형 반도체층(2306)으로부터 분리한다. 상기 사파이어 기판(2350)의 분리 후에는 HCl, HF 및 KOH 등의 케미칼을 사용한 클리닝(cleaning) 공정이 진행될 수 있다.
그 후에, 도 108에 도시된 바와 같이, 상기 사파이어 기판(2350)의 분리에 의해 노출된 상기 n형 반도체층(2306) 상에 복수개의 n측 전극(2307)을 형성한다. 여기서, 상기 n측 전극(2307)을 형성하기 전에, 소자의 광추출 효율을 향상시키기 위해 상기 n형 반도체층(2306)의 표면에 KOH 등을 사용한 텍스처링(texturing) 공정을 수행할 수도 있다.
그 다음에, 도 109에 도시된 바와 같이, 상기 n측 전극(2307) 사이의 n형 반도체층(2306), 활성층(2305), p형 반도체층(2304), 반사 금속층(2303), 접합 금속층(2302), 보호층(2320), 씨드 금속층(2310) 및 Si-Al 합금 기판(2301)을 다이싱(dicing)하여 칩단위로 분리한다. 이에 따라, 본 실시예에 따른 발광 소자(2300)를 얻게 된다.
이와 같이, 본 실시예에 따른 발광소자는 상기 Si-Al 합금 기판(2301)의 표면에 Ni과 같은 보호층(2320)을 추가로 형성함으로써, 상기 사파이어 기판(2350)의 분리 후에 진행되는 클리닝 공정에서 사용되는 HCl, HF, KOH 등의 케미칼이나, n형반도체층(2306)의 표면 텍스처링(texturing) 공정에서 사용되는 KOH 등에 의해, 상 기 Si-Al 합금 기판(2301)의 Al 금속이 에칭되는 것을 방지할 수 있는 효과가 있다. 따라서, 본 실시예에 따른 발광소자는 상기 Si-Al 합금 기판(2301)의 표면에 요철이 형성되는 것을 막아, 상기 Si-Al 합금 기판(2301) 상에 접합되는 발광 구조물이 벗겨지는 불량 발생을 방지할 수 있는 효과가 있다.
또한, 상기 보호층(2320)으로서 Ni 등과 같은 금속을 사용하는 경우, Si-Al 합금 기판(2301)의 표면 조도를 개선하여 상기 Si-Al 합금 기판(2301)과 발광 구조물간의 접합을 견고하게 할 수 있는 이점이 있다. 즉, 종래에는 Si-Al 합금 기판(2301)이 접합 금속층(2302) 형성 전에 자연산화막 제거를 위한 산(acid) 등의 화학물질을 이용한 클리닝 공정을 거치면서, Si-Al 합금 기판(2301) 표면의 Al 금속이 에칭되면서 평균 200 내지 500㎚의 표면 요철이 형성되었으나, 본 실시예에서와 같이 Si-Al 합금 기판(2301)의 표면에 보호층(2320)으로서 Ni 등의 금속을 형성한 후, Ni CMP(Chemical Mechanical Polishing) 처리를 하면 표면 요철이 5㎚ 이하로 줄어들어 거울면과 같이 표면 조도가 개선될 수가 있다.
이와 같이, Si-Al 합금 기판(2301)의 표면 조도가 개선됨으로써, 상기 Si-Al 합금 기판과 발광 구조물 간의 접합을 견고하게 하고, 접합 수율을 향상시킬 수 있는 효과가 있다.
다음으로, 변형예에 따른 발광소자로서, 도 110에 도시된 바와 같이, 본 발광소자(2300')는 앞선 실시예에 따른 발광소자와 대부분의 구성이 동일하고, 다만, 보호층(2320)이 Si-Al 합금 기판(2301)의 상면 및 하면 전체에 형성되지 않고, Si-Al 합금 기판(2301)의 상면에 Si-Al 합금 기판(2301)의 일부를 드러내도록 형성되 어 있으며, 보호층(2320) 및 보호층에 의해 드러난 Si-Al 합금 기판(2301)의 상면에는 도전층(2322)이 더 형성되어 있고, Si-Al 합금 기판(2301)의 하면에는 콘택 금속층(2323)이 형성되어 있는 점에서만 다르다. 특히, 상기 보호층(2320)은 금속이나 전도성 유전체가 아닌 절연재로 이루어지는 것이 바람직하다. 즉, 본 변형예에 따른 발광소자는, 상기 보호층(2320)이 금속이나 전도성 유전체가 아닌 절연재로 이루어지는 대신에, 상기 보호층(2320)이 형성된 Si-Al 합금 기판(2301)과 상기 보호층(2320) 상부의 발광 구조물간의 통전을 위하여, 상기 보호층(2320)이 상기 Si-Al 합금 기판(2301)의 상면 일부를 드러내도록 형성되고, 상기 보호층(2320)을 포함한 상기 Si-Al 합금 기판(2301)의 상면에 도전층(2322)이 추가로 형성되는 것이다. 여기서, 상기 도전층(2322)은 금속 등으로 이루어질 수 있다.
이하, 본 변형예에 따른 화합물 반도체 발광소자의 제조방법에 대하여 상세히 설명한다. 다만, 변형예에의 구성 중 앞선 실시예와 동일한 부분에 대한 설명은 생략하고, 변형예에서 달라지는 구성에 대해서만 상술하기로 한다.
먼저, 앞서의 도 102 내지 도 104에 도시된 바와 같이, 사파이어 기판(2350) 상에 n형 반도체층(2306), 활성층(2305), p형 반도체층(2304) 및 반사 금속층(2303)을 순차로 형성한다. 여기서, 상기 반사 금속층(2303)은 필요에 따라 형성되지 않을 수도 있다.
그런 다음, 도 111에 도시된 바와 같이, Si-Al 합금 기판(2301)의 표면 전체에 보호층(2320)을 형성한다. 여기서, 상기 보호층(2320)은 절연재로 이루어질 수 있다. 상기 절연재로 이루어지는 보호층(2320)은 CVD 또는 코팅 방식 등에 의해 0.01㎛ 이상 1㎛ 이하의 두께로 형성할 수 있다.이때, 도면에 도시하지는 않았으나, 상기 보호층(2320)을 형성한 다음, 상기 보호층(2320)의 표면을 CMP(Chemical Mechanical Polishing) 처리할 수도 있다.
다음으로, 도 112에 도시된 바와 같이, 상기 보호층(2320)의 일부를 식각 방식 등에 의해 제거하여 상기 Si-Al 합금 기판(2301)의 상면 일부를 드러낸다. 그 다음에, 도 113에 도시된 바와 같이, 상기 보호층(2320)을 포함한 상기 Si-Al 합금 기판(2301)의 상면에 도전층(2322)을 형성한다. 그런 다음, 도 114에 도시된 바와 같이, 접합 금속층(2302)을 이용하여 상기 반사 금속층(2303) 상에, 상기 Si-Al 합금 기판(2301) 상면에 형성된 상기 도전층(2322)을 접합한다.
그런 후에, 도 115에 도시된 바와 같이, 레이저 리프트 오프 공정으로 상기 사파이어 기판(2350)을 상기 n형 반도체층(2306)으로부터 분리한다. 여기서, 상기 사파이어 기판(2350)의 분리 후에는 HCl, HF 및 KOH 등의 케미칼을 사용한 클리닝 공정이 진행될 수 있다. 이때, 본 변형예에 따른 발광소자는, 상기 Si-Al 합금 기판(2301)의 표면에 상기 보호층(2320) 및 상기 도전층(2322)이 형성되어 있으므로, 상기 클리닝 공정에서 사용되는 케미칼에 의해 상기 Si-Al 합금 기판(2301)의 Al 금속이 에칭되는 것을 방지할 수 있다.
그 후에, 도 116에 도시된 바와 같이, 상기 사파이어 기판(2350)의 분리에 의해 노출된 상기 n형 반도체층(2306) 상에 복수개의 n측 전극(2307)을 형성한다. 여기서, 상기 n측 전극(2307)을 형성하기 전에, 소자의 광추출 효율을 향상시키기 위해 상기 n형 반도체층(2306)의 표면에 KOH 등을 사용한 텍스처링(texturing) 공 정을 수행할 수도 있다. 이 때, 본 변형예에 따르면, 상기 Si-Al 합금 기판(2301)의 표면에 보호층(2320) 및 도전층(2322)이 형성되어 있으므로, 상기 텍스처링 공정에서 사용되는 케미칼에 의해 상기 Si-Al 합금 기판(2301)의 Al 금속이 에칭되는 것을 방지할 수 있다.
그 다음에, 도 117에 도시된 바와 같이, 래핑(lapping) 공정을 수행하여 상기 보호층(2320)을 포함한 상기 Si-Al 합금 기판(2301)의 하면을 일정 두께만큼 제거한다. 그런 다음, 도 118에 도시된 바와 같이, 상기 래핑 공정에 의해 드러난 상기 Si-Al 합금 기판(2301)의 하면에 콘택 금속층(2323)을 형성한다.
그런 후에, 도 119에 도시된 바와 같이, 상기 n측 전극(2307) 사이의 n형 반도체층(2306), 활성층(2305), p형 반도체층(2304), 반사 금속층(2303), 접합 금속층(2302), 도전층(2322), 보호층(2320), Si-Al 합금 기판(2301) 및 콘택 금속층(2323)을 다이싱(dicing)하여 칩단위로 분리한다. 이에 따라, 본 변형예에 따른발광소자(2300')를 얻게 된다.
< 발광소자 패키지 및 광원 모듈 >
본 발명에 따른 발광소자 패키지는 상술한 반도체 발광소자를 구비할 수 있다.
이하에서는 다양한 실시형태를 통해 본 발명에 따른 반도체 발광소자를 구비하는 발광소자 패키지에 대해 설명한다.
도 120은 본 발명의 일 실시형태에 따른 백색 발광소자 패키지를 나타내는 개략도이다.
도 120에 도시된 바와 같이, 본 실시형태에 따른 백색 발광소자 패키지(3010)는, 청색 발광소자(3015)와 이를 포장하며 상부로 볼록한 렌즈 형상을 갖는 수지 포장부(3019)를 포함한다.
본 실시형태에 채용된 수지포장부(3019)는, 넓은 지향을 확보할 수 있도록 반구 형상의 렌즈 형상을 갖는 형태로 예시되어 있다. 상기 청색 발광소자(3015)는 별도의 회로기판에 직접 실장될 수 있다. 상기 수지 포장부(3019)는 상기 실리콘 수지나 에폭시 수지 또는 기타 투명 재질의 수지로 이루어질 수 있다. 상기 수지포장부(3019)의 내부 또는 외부에는 황색 형광체, 녹색 형광체(3012), 적색 형광체(3014), QD(Quantum Dot)형광체 또는 이들 중 적어도 1종류 이상의 형광체를 포함하는 혼합물질이 분산 또는 층구조로 적층된다.
본 실시형태에 채용가능한 녹색 형광체(3012)는, M2SiO4:Re인 규산염계 형광체, MA2D4:Re인 황화물계 형광체, β-SiAlON:Re인 형광체 및 MA'2O4:Re'인 산화물계 형광체로 구성된 그룹으로부터 선택된 적어도 하나의 형광체일 수 있다.
여기서, M은 Ba, Sr, Ca, Mg 중 선택된 적어도 하나의 원소이고, A는 Ga, Al 및 In 중 선택된 적어도 하나이고, D는 S, Se 및 Te 중 선택된 적어도 하나이며, A'은 Sc, Y, Gd, La, Lu, Al 및 In 중 선택된 적어도 하나이며, Re는 Eu, Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나이고, Re'는 Ce, Nd, Pm, Sm, Tb, Dy, Ho, Er, Tm, Yb, F, Cl, Br 및 I 중 선택된 적어도 하나이다.
한편, 본 실시형태에 채용가능한 적색 형광체(3014)는, MAlSiNx:Re(1≤x≤5)인 질화물계 형광체 및 MD:Re인 황화물계 형광체 중 선택된 적어도 하나이다.
여기서, M는 Ba, Sr, Ca, Mg 중 선택된 적어도 하나이고, D는 S, Se 및 Te 중 선택된 적어도 하나이며, Re는 Eu, Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나이다.
상기 QD 형광체는 코어(core)와 셸(shell)로 이루어진 나노 크리스탈 입자로, 코어의 사이즈가 2~100nm 범위에 있다. QD 형광체는 코어의 사이즈를 조절함으로 청색(B), 황색(Y), 녹색(G), 적색(R)과 같은 다양한 색깔을 발광하는 형광 물질로 사용될수 있으며, II-VI족의 화합물반도체(ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, MgTe등), III-V족의 화합물반도체 (GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlAs, AlP, AlSb, AlS등) 또는 Ⅳ족 반도체(Ge, Si, Pb 등) 중 적어도 두 종류의 반도체를 이종접합 함으로 QD형광체의 코어(core) 와 셸(shell)구조를 형성 할 수 있다. 상기 QD형광체의 셸(shell) 외각에 셸 표면의 분자 결합을 종료 시키거나 QD 입자간 응집을 억제하고 실리콘 수지나 에폭시 수지등 수지내에 분산성을 향상시키거나 또는 형광체 기능을 향상시키기 위해 올레인산(Oleic acid)과 같은 물질을 이용한 유기 리간드 (Organic ligand)를 형성 할 수도 있다.
이와 같이, 본 발명에서 반치폭, 피크파장 및/또는 변환효율 등을 고려하여 특정한 녹색, 적색, 황색 또는 QD 형광체를 조합한 형태로 제공함으로써 70 이상의 높은 연색지수를 갖는 백색광을 제공할 수 있다. 또한, 복수의 형광체를 통해 여러 파장대역의 광이 얻어지므로, 색재현성을 향상시킬 수 있다.
상기 발광소자의 주파장은 360~460nm 범위일 수 있다. 이 경우에, 가시광선대역에서 넓은 스펙트럼을 확보하여 보다 큰 연색지수의 향상을 위해서, 상기 녹색 형광체(3012)의 발광파장 피크는 500∼550nm 범위이며, 상기 적색 형광체(3014)의 발광파장 피크는 610∼660nm 범위일 수 있다.
바람직하게, 발광소자는 주파장 범위가 430nm~460nm인 청색 발광소자로 10~30nm의 반치폭을 가지며, 상기 녹색 형광체는 30~100nm의 반치폭을 갖고, 상기 적색 형광체는 50~150nm의 반치폭을 가질 수 있다.
본 발명의 다른 실시형태에서는, 상술된 적색 형광체(3012)와 녹색 형광체(3014) 외에 추가적으로 황등색 형광체를 포함할 수 있다. 이 경우에 보다 향상된 연색지수를 확보할 수 있다. 이러한 실시형태는 도 102에 도시되어 있다.
도 121을 참조하면, 본 실시형태에 따른 백색 발광소자 패키지(3020)는, 중앙에 반사컵이 형성된 패키지 본체(3021)와, 반사컵 바닥부에 실장된 청색 발광소자(3025)와, 반사컵 내에는 청색 발광소자(3025)를 봉지하는 투명 수지 포장부(3029)를 포함한다.
상기 수지 포장부(3029)는 예를 들어, 실리콘 수지나 에폭시 수지 또는 그 조합을 사용하여 형성될 수 있다. 본 실시형태에서는, 상기 수지 포장부(3029)에 도 101에서 설명된 녹색 형광체(3012) 및 적색 형광체(3014)와 함께 추가적으로 황등색 형광체(3026)를 포함한다.
즉, 녹색 형광체(3022)는, M2SiO4:Re인 규산염계 형광체, MA2D4:Re인 황화물계 형광체, β-SiAlON:Re인 질화물계 형광체 및 MA'2O4:Re'인 산화물계 형광체로 구성된 그룹으로부터 선택된 적어도 하나의 형광체일 수 있으며, 적색 형광체(3024)는, 질화물계 형광체로 구성된 MAlSiNx:Re(1≤x≤5), Sr2-a-xBaaSi4-yO4-2yN4:Eux2+(상기에서, 0.001< x <0.2이고, 0≤ y <2, 0≤ a ≤1.3이다.), M2Si3-XAlXO2+XN4-X:Re(0 ≤ X ≤0.5), M2Si5N8-XOX:Re(0 ≤ X ≤0.5) 및 MD:Re인 황화물계 형광체 중 선택된 적어도 하나이다.
상기 β-SiAlON:Re 형광체는 Si6-zAlzOzN8-z : Euy, Srx(0 ≤ x < 0.011, 0.018 < y < 0.025, 0.23 < z < 0.35)일 수 있으며 β형 Si3N4 결정 구조를 가지는 질화물 또는 산 질화물의 결정상을 포함하고, 주파장 범위가 360~460nm인 자외선에서 청색 영역의 여기원을 조사하는 것에 따라 파장 500nm으로부터 670nm의 범위의 녹색에서 적색파장에 피크를 가지는 형광을 발광하는 것을 특징으로 하는 형광체 일 수 있다. 또한, 질하물 형광체인 MxSiyNz:Eu, (1 ≤x ≤ 2, 5 ≤y ≤7, z=2x/3+4y/3)도 녹색 ~ 적색범위의 발광 형광체로 사용 할 수 있다.
추가적으로, 본 실시형태에서는 제3 형광체(3026)를 더 포함한다. 상기 제3 형광체는 녹색과 적색 파장대역의 중간에 위치한 파장대역의 광을 방출할 수 있는 황등색 형광체일 수 있다. 상기 황등색 형광체는 규산염계 형광체 또는 질화물계 형광체인 α-SiAlON:Re 형광체일 수 있다.
상기 α-SiAlON:Re인 형광체는 일반식 : MeXSi12-(m+2)Al(m+n)OnN16-n : Re (x,y,m 및 n은 계수)으로 표현되는 알파 사이알론에 고용하는 금속 Me (Me은,Ca,또는 Y의 일종 혹은 2종)의 일부 혹은 전부가, 발광의 중심이 되는 란타니드 금속 Re로 치환되는 형광체인 것을 특징으로 하는 희토류 원소를 활성화시킨 산 질화물 형광체 일 수 있다.
또한, 상기 질하물 형광체 MxSiyNz:Eu, (1 ≤x ≤ 2, 5 ≤y ≤7, z=2x/3+4y/3)도 황등색 형광체로도 사용 할 수도 있다.
상술된 실시형태에서는, 2종 이상의 형광체 분말을 단일한 수지포장부영역에 혼합분산시킨 형태를 예시하였으나, 다른 구조를 다양하게 변경되어 실시될 수 있다. 보다 구체적으로, 상기한 2종 또는 3종의 형광체는 서로 다른 층구조로 제공될 수 있다. 일 예에서, 상기 녹색 형광체, 상기 적색 형광체 및 상기 황색 또는 황등색 형광체는 그 형광체 분말을 고압으로 분산시켜 복층 구조의 형광체막으로 제공될 수도 있다.
이와 달리, 도 122에 도시된 바와 같이, 복수의 형광체 함유 수지층 구조로 구현될 수 있다.
도 122를 참조하면, 본 실시형태에 따른 백색 발광소자 패키지(3030)는, 앞선 실시형태와 유사하게, 중앙에 반사컵이 형성된 패키지 본체(3031)와, 반사컵 바닥부에 실장된 청색 발광소자(3035)와, 반사컵 내에는 청색 발광소자(3035)를 봉지하는 투명 수지 포장부(3039)를 포함한다.
상기 수지 포장부(3039) 상에는 각각 다른 형광체가 함유된 수지층이 제공된 다. 즉, 상기 녹색 형광체가 함유된 제1 수지층(3032), 상기 적색 형광체가 함유된 제2 수지층(3034) 및 상기 황색 또는 황등색 형광체가 함유된 제3 수지층(3036)로 파장변환부가 구성될 수 있다.
본 실시형태에서 사용되는 형광체는 도 121에서 도시되어 설명된 형광체와 동일하거나 유사한 형광체가 채택되어 사용될 수 있다.
본 발명에서 제안된 형광체의 조합을 통해 얻어지는 백색광은 높은 연색지수를 얻을 수 있다. 보다 구체적으로, 이에 대해서 도 123을 참조하여 설명한다.
도 123에 도시된 바와 같이, 기존예의 경우에는 청색 발광소자에 황색 형광체를 결합할 경우에, 청색 파장광과 함께 변환된 황색광을 얻을 수 있다. 전체 가시광선 스펙트럼에서 볼 때에 녹색 및 적색 대역의 파장광이 거의 없으므로, 자연광에 가까운 연색지수를 확보하기 어렵다. 특히, 변환된 황색광은 높은 변환효율을 얻기 위해서 좁은 반치폭을 갖게 되므로, 이 경우 연색지수는 더욱 낮아질 것이다. 또한, 기존예에서는, 단일한 황색 변환정도에 따라 발현되는 백색광의 특성이 쉽게 변경되므로, 우수한 색재현성을 보장하기 어렵다.
이에 반하여, 청색 발광소자와 녹색 형광체(G)와 적색 형광체(R)를 조합하는 발명예에는, 기존예에 비해 녹색 및 적색 대역에서 발광되므로, 가시광선 대역에서 보다 넓은 스펙트럼을 얻을 수 있으며, 결과적으로 연색지수를 크게 향상시킬 수 있다. 추가적으로, 녹색 및 적색 대역 사이에 중간파장대역을 제공할 수 있는 황색 또는 황등색 형광체를 더 포함함으로써 연색지수를 더욱 크게 향상시킬 수 있다.
본 발명에 채용되는 녹색 형광체, 적색 형광체 및 선택적으로 추가될 수 있 는 황색 또는 황등색 형광체에 관련하여 도 124 내지 도 126을 참조하여 설명한다.
도 124 내지 도 126은 본 발명에서 제안된 형광체의 파장스펙트럼으로서 청색 발광소자(약 440㎚)로부터 발생되는 광에 대한 결과이다.
도 124a 내지 도 124d에는 본 발명에 채용되는 녹색 형광체에 대한 스펙트럼이 도시되어 있다.
우선, 도 124a를 참조하면, M2SiO4:Re인 규산염계 형광체(여기서, M는 Ba, Sr, Ca, Mg 중 선택된 적어도 2종의 원소이고, Re는 Eu, Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나의 스펙트럼이 도시되어 있다. 변환된 녹색광은 약 530㎚의 피크파장과 약 65㎚의 반치폭을 나타낸다.
도 124b를 참조하면, M'A'2O4:Re'인 산화물계 형광체(여기서, M'는 Ba, Sr, Ca, Mg 중 선택된 적어도 하나이고, A'은 Sc, Y, Gd, La, Lu, Al 및 In 중 선택된 적어도 하나이며, Re'는 Ce, Nd, Pm, Sm, Tb, Dy, Ho, Er, Tm, Yb, F, Cl, Br 및 I 중 선택된 적어도 하나의 스펙트럼이 도시되어 있다. 변환된 녹색광은 약 515㎚의 피크파장과 약 100㎚의 반치폭을 나타낸다.
도 124c를 참조하면, MA2D4:Re인 황화물계 형광체(여기서, M는 Ba, Sr, Ca, Mg 중 선택된 적어도 2종의 원소이고, A은 Ga, Al 및 In 중 선택된 적어도 하나이고, D는 S, Se 및 Te 중 선택된 적어도 하나이며, Re는 Eu, Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나의 스펙트럼이 도시되어 있다. 변환된 녹색광은 약 535㎚의 피크파장과 약 60㎚의 반치폭을 나타낸다.
도 124d를 참조하면, β-SiAlON:Re인 형광체(여기서, Re는 Eu, Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나의 스펙트럼이 도시되어 있다. 변환된 녹색광은 약 540㎚의 피크파장과 약 45㎚의 반치폭을 나타낸다.
도 125a 및 도 125b에는 본 발명에 채용되는 적색 형광체에 대한 스펙트럼이 도시되어 있다.
도 125a를 참조하면, M'AlSiNx:Re(1≤x≤5)인 질화물계 형광체(여기서, M'는 Ba, Sr, Ca, Mg 중 선택된 적어도 하나이고, Re는 Eu, Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나의 스펙트럼이 도시되어 있다. 변환된 적색광은 약 640㎚의 피크파장과 약 85㎚의 반치폭을 나타낸다.
도 125b를 참조하면, M'D:Re인 황화물계 형광체(여기서, M'는 Ba, Sr, Ca, Mg 중 선택된 적어도 하나이고, D는 S, Se 및 Te 중 선택된 적어도 하나이며, Re는 Eu, Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나의 스펙트럼이 도시되어 있다. 변환된 적색광은 약 655㎚의 피크파장과 약 55㎚의 반치폭을 나타낸다.
도 126a 및 도 126b에는 본 발명에 선택적으로 채용될 수 있는 황등색 형광체에 대한 스펙트럼이 도시되어 있다.
도 126a를 참조하면, 규산염계 형광체의 스펙트럼이 도시되어 있다. 변환된 황색광은 약 555㎚의 피크파장과 약 90㎚의 반치폭을 나타낸다.
도 126b를 참조하면, α-SiAlON:Re인 형광체의 스펙트럼(여기서, Re는 Eu, Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나가 도시되어 있다. 변환된 황색광은 약 580㎚의 피크파장과 약 35㎚의 반치폭을 나타낸다.
이와 같이, 본 발명에서 반치폭, 피크파장 및/또는 변환효율 등을 고려하여 특정한 녹색 형광체와 특정한 적색 형광체를 조합한 형태 또는 이 조합형태에서 황색 또는 황등색 형광체를 추가함로으로써 70 이상의 높은 연색지수를 갖는 백색광을 제공할 수 있다.
청색 발광소자의 주파장이 430~460nm 범위일 경우에, 녹색 형광체의 발광파장 피크는 500∼550nm 범위이며, 적색 형광체의 발광파장 피크는 610∼660nm 범위일 수 있다. 황등색 형광체의 발광파장 피크는 550∼600nm 범위일 수 있다.
또한, 청색 발광소자가 10~30nm의 반치폭을 갖는 경우에, 상기 녹색 형광체는 30~100nm의 반치폭을 갖고, 상기 적색 형광체는 50~150nm의 반치폭을 가질 수 있다. 황색 또는 황등색 형광체는 20~100nm의 반치폭을 가질 수 있다.
이러한 조건을 갖는 각 형광체의 선택과 조합을 통해서 본 발명에서는, 가시광선대역에서 넓은 스펙트럼을 확보할 수 있으며, 보다 큰 연색지수를 갖는 우수한 백색광을 제공할 수 있다.
한편, 상기 형광체 중 본 발명의 다른 실시형태에 따른 적색 형광체는 (Sr, M)2SiO4-xNy의 조성식을 갖는 무기결정을 모체로 하여, 적색에너지 준위를 만드는 활성제로서 Eu를 사용함으로써 600nm 이상 700nm 이하 범위의 발광피크를 갖는 장파장의 적색광을 발광할 수 있다. 여기서, 모체를 구성하는 주된 금속원소는 스트론튬(Sr)이며, 스트론튬을 대체할 수 있는 금속원소 M은 1가 및 2가 원소 중에서 적어도 하나 이상의 원소이다. 그리고, 발광중심원소 Eu 주위의 전자상태에 따라 발광색과 휘도가 변화되므로, 무기결정 모체의 조성을 변화시킴으로써 적색 형광체의 발광 특성 및 물리적인 특성들에 변화를 줄 수 있다.
이러한 적색 형광체는 (Sr, M)2SiO4-xNy:Eu의 조성식으로 표현되는 무기화합물을 포함하며, 상기 M은 적어도 하나의 금속 원소이고, x는 0<x<4의 조건을 만족하는 범위에서 선택되며, Sr2SiO4-xNy의 총전하가 0이 되어야 하므로, y는 y=2x/3을 만족해야 함을 알 수 있다. 바람직하게는, 고휘도의 적색광을 얻기 위해서 x는 0.15≤x≤3을 만족하는 것일 수 있으며, x가 0.15 이하이거나, 3이상일 경우 원하는 휘도와 발광피크를 갖는 적색광을 얻기 어렵다.
여기서, M은 Li, Na, K, Rb 및 Cs로 구성되는 제1족 원소 그룹 또는 Mg, Ca, Sr 및 Ba으로 구성되는 제2족 원소 그룹으로부터 선택된 적어도 1종의 원소를 포함함으로써 적색 형광체의 발광피크를 조절할 수 있다. 그리고, 상기 조성식에서 Si 중 일부는 B, Al, Ga 및 In으로 구성된 그룹 또는 Ti, Zr, Gf, Sn 및 Pb로 구성된 그룹으로부터 선택된 적어도 1종의 원소로 치환함으로써 적색 형광체의 발광피크를 조절할 수 있으며, 상기 Si가 상기 원소로 치환되는 비는 1/10일 수 있다.
즉, 본 발명에서는 종래 알려진 산화규소, 질화규소, 산질화물과 다른 결정을 모체로 하고 있으며, 이러한 결정을 모체로 하여 적색파장, 예컨대 600nm ~ 700nm 파장범위의 발광 피크를 가지는 장파장의 적색 형광체를 얻을 수 있다. 바람직하게는, 상기 조성식에서 적절한 범위로 산소를 질소로 치환함으로써 600 ~ 620nm 파장범위의 발광 피크를 갖는 고휘도의 적색 형광체를 얻을 수 있다.
또한, 본 실시형태에 따른 적색 형광체는 종래 산화물 형광물질과 비교하여 높은 발광특성과 우수한 열적, 화학적 안정성을 가지며, 이는 산소에 비해 질소의 높은 공유결합성에 기인한 것으로 보다 강한(stiff) 결정구조를 통해 우수한 열적 안정성을 가질 수 있다. 이러한 질소에 의한 강한 결정구조를 통하여 란탄원소들의 결정내 에너지 준위의 분열(splitting)을 증가시켜 산화물 형광물질보다 장파장의 빛을 발산할 수 있다. 즉, 본 발명에 따른 적색 형광체는 높은 발광특성과 우수한 열적, 화학적 안정성을 가짐으로써, 고출력/고신뢰성의 백색 발광소자 패키지를 제조할 수 있다.
한편, 상술한 적색 형광체의 제조방법은 원료물질로서 Sr-함유 화합물 및 M-함유 화합물 중 적어도 하나의 화합물과, Eu-함유 화합물, Si-함유 산화물, Si-함유 질화물을 준비하고, 각 원료물질들을 원하는 화학양론에 맞게 칭량하여 혼합할 원료물질들을 준비한다. 원료물질들의 혼합은 건식과 습식 두 가지 방법 중 하나를 사용할 수 있다.
먼저, 습식혼합 방식에 따르면, 상기 칭량된 혼합물과, 원료물질의 혼합과정 및 분쇄를 도와주는 볼(ball)과 용매를 삽입하여 혼합한다. 이때 볼은 산화규소(Si3N4) 혹은 지르코니아 (ZrO2) 재질 혹은 일반적으로 원료혼합시에 사용되는 볼을 사용한다. 용매는 D.I.Water, 에탄올 등의 알코올류 혹은 n-Hexane 등의 유기용매 모두 사용 가능하다. 즉, 원료물질과 용매 및 볼을 삽입한 후 용기를 밀폐시키고, 밀러(miller) 등의 장치를 이용하여 1-24 시간 정도 원료물질을 균질하게 혼합시킨다. 혼합과정이 완료된 후, 혼합된 원료물질과 볼을 분리시키고, 건조로(oven)에서 1 - 48 시간 정도의 건조과정을 통하여 용매를 대부분 건조시킨다. 건조가 완료된 분말을 금속 혹은 폴리머 재질의 체(sieve)를 이용하여 100 마이크로미터 사이즈 이하로 균일하게 분급한다.
한편, 건식혼합 방식에 따르면, 용매를 사용하지 않고 용기에 원료물질들의 삽입하고 밀링 머신(milling machine)을 이용하여 상기 원료물질들을 균질하게 혼합한다. 혼합시간은 1 ~ 24 시간 정도이며 이때 볼을 원료물질과 같이 삽입하여, 혼합을 좀더 용이하게 하여 혼합시간을 단축시킬 수 있다. 이러한 건식혼합 방식은 습식에 비해 용매의 건조과정이 필요없는 관계로 전체 공정시간을 줄일 수 있는 장점이 있다. 원료물질의 혼합이 완료되면, 습식혼합과 마찬가지로 혼합과정이 완료된 분말을 금속 혹은 폴리머 재질의 체(sieve)를 이용하여 100 마이크로미터 사이즈 이하로 균일하게 분급한다.
최종적으로 분급된 혼합분말을 질화붕소(BN) 도가니에 충진시키고 소성공정을 진행한다. 이때 소성공정은 가열로를 이용하여 1000 ~ 1800℃ 의 온도에서 1~ 24 시간 정도 이루어진다. 소성과정 중의 분위기는 질소(N2) 100% 혹은 수소를 1~ 10 % 포함된 혼합 질소 가스를 이용한다. 합성된 형광체 분말을 유발 혹은 분쇄기를 이용하여 균질하게 분쇄한 후 상기에 설명한 합성공정과 유사하게 후열처리 공정을 1회 내지 3회 반복 실시하여 형광체의 휘도를 향상시킬 수 있다.
이러한 공정을 통하여 (Sr, M)2SiO4-xNy의 조성식으로 표현되는 무기화합물을 함유하는 최종 적색 형광체가 제조된다. 여기서, M은 적어도 하나의 1가 및 2가 원소이며, 0<x<4, y=2x/3 조건을 만족한다.
최종적으로 소성된 형광체 분말을 유발 혹은 분쇄기를 통하여 분쇄하고 최적의 입도를 구현하기 위해 분급공정을 통하여 입도를 제어한다. 이때 대표적으로 16 마이크로미터 사이즈의 체를 이용하여 16 마이크로미터 이하의 균질한 크기의 적색형광체를 얻는다. 여기서 얻어진 형광체 분말을 D.I. Water, 무기산, 유기산, 염기를 이용하여 후처리하는 것에 의해, 형광체에 포함되어 있는 여분의 유리상, 미반응 금속물질 등의 불순물을 제거할 수 있다. 예를 들면, O.1 ~ 60 % 농도의 질산을 가하여, 1 ~ 10시간 교반하는 것에 의해 여분의 불순물을 용출 및 제거할 수 있다. 무기산으로는, 질산 이외에, 황산, 염산, 불소산, 또는 이들 무기산의 혼합 용액을 사용한다. 한편, 산처리를 통해 제거하지 못한 불순물은 염기를 이용하여 제거할 수 있다. 염기로는 수산화 나트륨, 수산화 칼륨 등의 무기 염기 혹은 이들 무기염 기들의 혼합 용액을 사용할 수 있다. 이러한 산처리 및 염처리 후의 형광체 슬러리는, 잔존하는 산 혹은 염을 D.I. water를 이용하여 세척하고, 습식 분급, 여과, 건조를 실시하여 최종의 소망하는 형광체 분말을 얻는다. 이때 건조는 50 ~ 150℃ 에서 충분히 실시한다.
본 발명의 일실시 예에서 Sr-함유 화합물은 SrCO3이며, Eu-함유 화합물은 산화유로피움(Eu2O3)일 수 있으며, Si-함유 산화물은 산화규소(SiO2)일 수 있으며, Si-함유 질화물은 질화규소(Si3N4)일 수 있다. 이 경우, 본 발명의 적색형광체는 SrCO3-SiO2-Si3N4의 조성에 Eu2O3을 첨가하여 EuzSr2-zSiO4-xNy의 조성식으로 표현되는 무기화합물을 얻는다. 이때, z는 0.01≤z≤0.2의 조건을 만족하는 값으로부터 선택된다. z값이 0.2 이상의 농도에서는 농도 소광현상에 의해, 0.01 이하의 농도에서는 발광중심원소로 작용하는 활성제의 농도부족으로 인해 발광세기가 감소한다.
이하, 다양한 실시예를 통해서 본 발명을 더욱 상세히 설명하나 본 발명의 기술적 사상이 이러한 실시예에 의해 제한되는 것은 아니다.
(실시예1)
원료물질로 SrCO3, SiO2, Eu2O3, Si3N4를 화학양론비로 볼밀을 이용하여 에탄올 용매와 혼합한다. 원료혼합물을 건조기를 사용하여 에탄올 용매를 휘발시키고, 질화붕소 도가니에 건조된 원료혼합물을 충진한다. 원료혼합물이 충진된 질화붕소 도가니를 가열로에 삽입하고, N2 분위기의 가스상태에서 1600℃로 10시간 동안 소성 하여 (Sr, M)2SiO4-xNy:Eu의 형광체를 제조하였다. 이때, (Sr, M)2SiO4-xNy:Eu의 형광체의 베이스 결정구조는 스트론튬실리케이트(Sr2SiO4)이며, 스트론튬을 금속원소 M으로 대체하여 모체의 조성을 변화시킬 수 있다. 이와 같이 제조된 본 발명의 (Sr, M)2SiO4-xNy:Eu의 형광체의 발광 스펙트럼, XRD 스펙트럼 및 EDX 성분분석 결과를 도 127 내지 도 129에 각각 나타내었다. 본 발명의 적색 형광체는 200nm 이상 500nm 이하의 파장영역을 여기원으로 하여 613nm의 발광 피크를 갖는 적색 발광 특성(①)을 보이며, 종래 스트론튬실리케이트(Sr2SiO4) 형광체와 동일한 사방정계(Orthorhombic) 결정구조를 가진다. 그리고, EDX 성분분석 결과, 산소원자와 질소원자가 44.91At%:04.58At%의 비로 함유되어 있으며, 산소 원자가 질소 원자로 일부 치환되어 있음을 확인할 수 있다.
(실시예2 및 3)
질소의 첨가량을 변화시킨 것을 제외하고는 실시예1과 동일한 방법으로 (Sr, M)2SiO4-xNy:Eu의 형광체를 제조하였다. 이와 같이 제조된 (Sr, M)2SiO4-xNy:Eu 형광체에 대해 200nm 내지 500nm 이하의 파장영역의 여기광원을 이용하여 측정한 발광 스펙트럼 및 EDX 성분분석 결과를 도 130 및 도 131에 나타내었다. 도 130 및 도 131에서 알 수 있듯이, ②는 산소:질소의 At%가 56.82:4.58(x=0.43)인 경우(실시예2), ③은 산소:질소의 At%가 42.91:25(x=1.86)인 경우(실시예2)의 발광스펙트럼을 나타낸 것으로, 산소가 질소로 치환되는 값이 x=0.43인 경우인 실시예2의 발광 피크는 610nm 이며, 산소가 질소로 치환되는 값이 x=1.86인 실시예3의 발광 피크는 620nm 이다. 즉, 본 발명에 따라 제조된 (Sr, M)2SiO4-xNy:Eu 형광체는 질소의 첨가량이 증가할수록 발광 피크가 더욱 장파장화됨을 알 수 있다.
(실시예4 내지 6)
유로피움의 첨가량(z)을 0.04에서 0.06까지 0.01 단위로 증가시키면서 변화시킨 것을 제외하고 실시예1과 동일한 방법으로 (Sr, M)2SiO4-xNy:Eu 형광체를 제조하였다. 이때, 본 발명의 적색형광체는 EuzSr2-zSiO4-xNy의 조성식으로 표현되며, 유로피움이 스트론튬을 대체하여 치환되어, 발광중심원소로 작용한다. 이와 같이 제조된 (Sr, M)2-zSiO4-xNy:Euz 형광체에 대해 200nm 내지 500nm 이하의 파장영역을 여기광원으로 하여 측정한 발광 스펙트럼을 도 132에 나타내었다. 도 132에서 알 수 있듯이, ④는 z=0.04(실시예4), ⑤는 z=0.05(실시예5), ⑥은 z=0.06(실시예6)인 경우의 발광 스펙트럼을 나타내며, 실시예4의 발광 피크는 610nm 이며, 실시예5의 발광 피크는 612nm 이고, 실시예6의 발광 피크는 614nm 이다. 즉, 본 발명의 적색형광체는 유로피움의 첨가량이 증가할수록 장파장화됨을 알 수 있다.
(실시예7 및 8)
Ba, Ca 등의 2가 금속원소를 함유하는 화합물 중 적어도 하나를 선택하여 더 첨가한 것을 제외하고 실시예1과 동일한 방법으로 (Sr, M)2SiO4-xNy:Eu 형광체를 제조하였다. 이로써 Sr을 Ba, Ca의 2가 금속원소로 일부 치환시킬 수 있으며, 그 치 환 정도를 Sr: (Ba, Ca) 의 첨가비가 9:1의 비율이 되도록 한다.
이와 같이 제조된 (Sr, M)2SiO4-xNy:Eu 형광체에 대해 200nm 내지 500nm 이하의 파장영역의 여기광원을 이용하여 측정한 발광 스펙트럼을 도 133a에 나타내었다. 도 133a에서 알 수 있듯이, Sr이 100%인 경우(①) 613nm의 발광 피크를 가지며, Sr:Ba이 각각 90%:10%로 첨가된 경우(⑦), 610nm의 발광 피크를 가지며, Si:Ca가 90%:10%로 첨가된 경우(⑧) 615nm의 발광 피크를 가지는 것을 알 수 있다.
(실시예9 및 10)
Al, Ga 등의 3가 금속원소를 함유하는 화합물 중 적어도 하나를 선택하여 더 첨가한 것을 제외하고, 실시예1과 동일한 방법으로 (Sr, M)2SiO4-xNy:Eu 형광체를 제조하였다. 이로써 Si을 Al, Ga의 3가 금속 원소로 일부 치환시킬 수 있으며, 그 치환 정도를 Si: (Ba, Ca) 의 첨가비가 9:1의 비율이 되도록 한다.
이와 같이 제조된 (Sr, M)2SiO4-xNy:Eu 형광체에 대해 200nm 내지 500nm 이하의 파장영역의 여기광원을 이용하여 측정한 발광 스펙트럼을 도 133b에 나타내었다. 도 133b에서 알 수 있듯이, Si:Ga이 각각 90%:10%로 첨가된 경우(⑨) 610nm의 발광 피크를 가지며, Si:Al가 90%:10%로 첨가된 경우(⑩) 615nm의 발광 피크를 가지는 것을 알 수 있다.
따라서, 실시예7 내지 10에서 알 수 있듯이, 유로피움 원소 주위에 원자반경이 작은 원소인 Ca 및 Al이 치환되면 장파장화가 되고, 원자반경이 큰 원소인 Ba 및 Ga가 치환되면 단파장화됨을 알 수 있다.
(실시예11)
유로피움과 함께 망간(Mn)을 더 첨가한 것을 제외하고 실시예1과 동일한 방법으로 (Sr, M)2SiO4-xNy:Eu 형광체를 제조하였다. 이때, 유로피움의 첨가량(z)은 0.05로 고정되며, Mn의 첨가량은 0.1로 한다. 이렇게 제조된 (Sr, M)2SiO4-xNy:Eu 형광체에 대해 200nm 내지 500nm 이하의 파장대역의 여기광원을 이용하여 측정한 발광 스펙트럼을 도 134에 나타내었다. 도 134에서 알 수 있듯이, ⑤는 유로피움의 첨가량이 z=0.05이며, Mn이 첨가되지 않은 경우, ⑪은 유로피움의 첨가량에 대해 z=0.05, Mn 첨가량이 0.1인 경우 모두 613nm의 발광 피크를 가지나, Mn이 첨가된 경우(⑪) 발광 세기가 유로피움만을 첨가한 경우(⑤)보다 향상됨을 알 수 있다.
한편, 이하에서는 상술한 형광체 중에서 고휘도 및 원하는 입도특성을 갖도록 조절할 수 있는 β-사이알론 형광체의 제조방법에 대해 설명한다.
본 발명에 따른 β-사이알론 형광체 제조방법은, Si(6-x)AlxOyN(8-y):Lnz으로 표현되는 화학식을 갖고, 식 중, Ln은 희토류원소이고, 0<x≤4.2이고, 0<y≤4.2이며, 0<z≤1.0인 것을 특징으로 하는 β-사이알론 형광체 제조방법으로서, 규소를 포함하는 규소원료물질과 금속알루미늄 및 알루미늄 화합물 중 적어도 어느 하나를 포함하는 알루미늄 원료물질을 포함하는 모체 원료물질, 및 모체를 활성화시키는 활성체원료물질을 혼합하여 원료물질 혼합물을 제조하는 단계; 및 원료물질혼합물을 질소 함유 분위기 가스 중에서 가열하는 단계;를 포함한다.
본 발명에 따르면, 원료물질을 혼합하여 질소 함유 분위기 가스 중에서 가열하여 β-사이알론 형광체를 제조한다. 원료물질로는 규소, 알루미늄, 및 활성체인 희토류금속을 각각 포함하는 원료물질이 사용된다.
규소원료물질로는 규소를 포함하는 원료물질로서 금속 규소, 질화규소 또는 산화규소를 사용할 수 있다.
금속규소는 분말상이면서 Fe와 같은 불순물의 함유량이 적은 고순도 금속규소인 것이 바람직하다. 금속규소분말은, 입자 직경이나 분포가 직접 형광체의 입자계에 영향을 미치지는 않는다. 그러나, 소성조건이나 조합하는 원재료에 의해 규소분말의 입자 직경이나 분포가 형광체의 입경이나 형상 등의 입도 특성에 영향을 미치고, 아울러 형광체의 발광 특성에도 영향을 주기 때문에 금속규소분말의 입자 직경은 300㎛이하가 바람직하다.
반응성의 관점에서 보면, 금속규소의 입자직경은 작을 수록 반응성이 높기 때문에 보다 바람직하다. 다만, 배합되는 원료나 소성속도에도 영향을 받기 때문에 반드시 금속규소의 입자직경이 작을 필요는 없고 또한 금속규소의 형태가 분말상인 것에 한정되지 않는다.
알루미늄 원료물질로는 금속알루미늄 및 알루미늄을 포함하는 알루미늄 화합물 중 어느 하나를 사용할 수 있다. 또는 금속 알루미늄과 알루미늄 화합물을 함께 사용할 수 있다. 알루미늄을 포함하는 알루미늄 화합물로는 예를들면, 질화알루미늄, 산화알루미늄, 또는 수산화알루미늄을 사용할 수 있다. 규소 원료물질로 금속규소를 사용하는 경우에는, 알루미늄 원료물질로 반드시 금속 알루미늄을 사용할 필요는 없고, 알루미늄 화합물만을 사용할 수 있다.
금속알루미늄을 사용하는 경우, 분말상이면서 Fe와 같은 불순물의 함유량이 적은 고순도 금속알루미늄인 것이 바람직하다. 전술한 바와 같은 관점에서 보면, 금속알루미늄의 입자 직경은 300㎛ 이하가 바람직하다. 다만, 금속알루미늄의 경우에도 배합되는 원료나 소성속도에도 영향을 받기 때문에 반드시 금속알루미늄의 입자직경이 작을 필요는 없고 또한 그 형태가 분말상인 것에 한정되지 않는다.
활성체 원료물질로는 Eu, Ce, Sm, Yb, Dy, Pr, 및 Tb로 구성되는 군으로부터 선택되는 어느 하나의 희토류금속을 사용할 수 있다. 구체적인 예로는, Eu2O3, Sm2O3, Yb2O3, CeO, Pr7O11, 및 Tb3O4 와 같은 산화물이나, Eu(NO3)3, 또는 EuCl3 등을 사용할 수 있다. 바람직하게, 활성체 원료물질은 Eu 또는 Ce일 수 있다.
규소 원료물질 및 알루미늄 원료물질의 배합비를 조절하면, β-사이알론 형광체의 입자특성을 제어할 수 있다. 나아가, 규소원료물질 중 금속규소와 규소화합물인 질화규소 또는 산화규소의 배합비 또는 알루미늄 원료물질 중 금속알루미늄과 알루미늄 화합물의 배합비를 조절하면, 역시 β-사이알론 형광체의 입자특성을 제어할 수 있다. 이러한 규소 또는 알루미늄의 원료물질에 대한 효과는 이하 실시예에서 더욱 상세히 설명하기로 한다.
본 발명에 따라 제조되는 β-사이알론 형광체는 다음의 화학식 1을 갖는 형광체일 수 있다.
Si(6-x)AlxOyN(8-y):Lnz
상기 식 중, Ln은 희토류원소이고, 0<x≤4.2이고, 0<y≤4.2이며, 0<z≤1.0인 것이 바람직하다. 이러한 β-사이알론 형광체는 녹색발광형광체일 수 있고, 그 피크파장이 500nm 부터 570nm일 수 있다.
전술한 바와 같이 규소를 포함하는 규소원료물질과 금속 알루미늄 및 알루미늄 화합물 중 적어도 하나를 포함하는 알루미늄 원료물질에 활성체로서 Eu, Sm, Yb, Ce, Pr, 또는 Tb과 같은 희토류 원소를 포함하는 활성체 원료물질을 각각 계량해, 혼합하고, 질화 붕소제의 도가니에 충전하고, 원료물질 혼합물을 질소 함유 분위기 하에서 고온에서 소성하여 β-사이알론 형광체를 제조한다.
원료물질 혼합물은 고온의 질소분위기에서 소성하여 형광체로 제조된다. 여기서, 질소 함유 분위기 가스의 N2 농도가 90%이상인 것이 바람직하다. 또한, 질소 함유 분위기 가스압은 0.1Mpa 에서 20 Mpa일 수 있다. 질소분위기를 형성하기 위하여 진공상태로 만든 후 질소 함유 분위기 가스를 도입할 수 있는데, 이와 달리 진공상태로 만들지 않고 질소 함유 분위기 가스를 도입할 수 있고, 가스 도입은 불연속적으로 수행하는 것도 가능하다.
규소를 포함하는 원료물질 혼합물을 질소분위기에서 소성하면, 질소가 규소와 반응하여 규소를 질화하여 사이알론을 형성하게 되어 질소가스가 질소 공급원의 역할을 하게 된다. 이 때, 규소와 알루미늄 및 활성체 원료는 질화 전 또는 질화 중 함께 반응하므로 균일한 조성의 사이알론 제조가 가능하여 제조된 β-사이알론 형광체의 휘도가 향상된다.
소성하는 단계에서 가열은 1850℃ 에서 2150℃의 고온인 것이 바람직하다. 원료물질의 조성에 따라 달라질 수 있으나, 가스압이 0.8 Mpa 이상에서 1900℃ 에서 2100℃의 고온에서 소성하는 것이 고휘도의 형광체를 제조하기 위하여 바람직하다. 그리고, 가열한 후, 가열된 원료물질 혼합물을 입도 특성을 조절하기 위하여 분쇄처리 또는 분급처리할 수 있다. 분쇄처리 또는 분급처리된 원료물질 화합물은 고온에서 재소성할 수 있다.
이하, 본 발명의 β-사이알론 형광체 제조방법에 따라 β-사이알론 형광체를 제조한 실시예를 참조하여 본 발명을 더욱 상세히 설명하기로 한다.
이하의 실시예에서 각 원료물질들은 모체원료인 규소원료물질 및 알루미늄 원료물질과 활성체 원료물질을 소정량 계량해, 볼 밀이나 혼합기로 혼합하여 혼합물을 제조한다. 원료물질 혼합물은 BN도가니 등 고온 내열성의 용기에 넣고 가압소성과 진공소성이 생기는 전기로에 넣는다. 이를 질소 함유 분위기 중 가스압 0.2 Mpa 에서 2 Mpa의 가압하에서 20℃/분 이하의 온도상승 속도로 온도상승시켜 1800℃이상으로 가열하여 β-사이알론 형광체를 제조한다.
규소원료물질과 알루미늄 원료물질 및 그 배합비를 변화시켜 제조하는 실시예 12 에서 실시예 20과 금속규소를 포함하지 않는 규소원료물질을 사용하여 제조하는 비교예 1 에서 비교예 3의 형광체는 모두 Eu 활성화된 β-사이알론 형광체이고, 피크 파장이 520 부터 560 nm에 있는 녹색 발광의 형광체이다.
(실시예 12)
규소원료물질로서 질화 규소(Si3N4)와 금속규소(Si)를 사용하고, 알루미늄 원료물질로서 알루미나(Al2O3)를 사용하고, 활성체로서 산화유로퓸(Eu2O3)을 사용하였다. Si3N4를 4.047 g, Si를 5.671 g, Al2O3를 0.589 g, Eu2O3를 0.141 g계량하고, 혼합기와 체를 사용하여 혼합한 후, BN도가니에 충전해, 내압제 전기로에 넣어 세트하였다. 소성은 진공하에서 500℃까지 가열하고, 500℃에서 N2 가스를 도입하였다. N2가스 분위기하에서 500℃에서 1950℃까지 매분 5℃로 온도상승시키고, 가스압이 0.8 Mpa 이상이 되도록 하면서 1950℃의 온도에서 5시간 소성하였다.
소성 후 냉각시키고, 전기로로부터 도가니를 꺼내 고온에서 소성하여 생성한 형광체를 분쇄하고, 100 메쉬의 체를 사용하여 형광체를 얻었다. 제조된 형광체는 불화수소산 및 염산을 이용해 세척하고 분산한 후, 충분히 건조하고, 50 메쉬의 체를 이용하여 형광체를 분급하여 실시예 12의 형광체를 얻었다.
(실시예 13)
Si3N4를 1.349 g, Si를 7.291 g 사용하는 것을 제외하고는 실시예 12와 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
(실시예 14)
Si3N4를 6.744 g, Si를 4.051 g 사용하는 것을 제외하고는 실시예 12와 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
(실시예 15)
Si3N4를 9.442 g, Si를 2.430 g 사용하는 것을 제외하고는 실시예 12와 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
(실시예 16)
규소원료물질로 Si3N4를 사용하지 않고, Si만을 8.101 g 사용하는 것을 제외하고는 실시예 12와 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
(비교예 1)
규소원료물질로 Si를 사용하지 않고, Si3N4만을 13.488 g 사용하는 것을 제외하고는 실시예 12와 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
(실시예 17)
규소원료물질로서 질화 규소(Si3N4)와 금속규소(Si)를 사용하고, 알루미늄 원료물질로서 질화알루미늄(AlN)을 사용하고, 활성체로서 산화유로퓸(Eu2O3)을 사용 하였다. Si3N4를 5.395 g, Si를 3.241 g, AlN을 0.379 g, Eu2O3를 0.137 g 계량하고, 혼합기와 체를 사용하여 혼합한 후, BN도가니에 충전해, 내압제 전기로에 넣어 세트하였다. 소성은 질소분위기 하에서 1450℃로 5시간 이상으로 가열하고, 냉각한 후 소성물을 분쇄하였다. 분쇄된 소성물은 다시 BN도가니에 충전하고, 내압제 전기로에 넣어 세트하였다. 진공하에서 500℃까지 가열하고 500℃에서 N2 가스를 도입하였다. N2가스 분위기하에서 500℃에서 2000℃까지 매분 5℃로 온도상승시키고, 가스압이 0.8 Mpa 이상이 되도록 하면서 2000℃의 온도에서 5시간 소성하였다.
소성 후 냉각시키고, 전기로로부터 도가니를 꺼내 고온에서 소성하여 생성한 형광체를 분쇄하고, 100 메쉬의 체를 사용하여 형광체를 얻었다. 제조된 형광체는 불화수소산 및 염산을 이용해 세척하고 분산한 후, 충분히 건조하고, 50 메쉬의 체를 이용하여 형광체를 분급하여 실시예 17의 형광체를 얻었다.
(실시예 18)
Si3N4를 7.554 g, Si를 1.944 g 사용하는 것을 제외하고는 실시예 17과 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.  
(실시예 19)
규소원료물질로 Si3N4를 사용하지 않고, Si만을 6.481 g 사용하는 것을 제외 하고는 실시예 17과 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
(비교예 2)
규소원료물질로 Si를 사용하지 않고, Si3N4만을 10.791 g 사용하는 것을 제외하고는 실시예 17과 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
(실시예 20)
Si3N4를 6.744 g, Si를 4.051 g, 알루미늄 원료물질로 Al2O3 또는 AlN을 사용하지 않고 금속 알루미늄(Al)만을 0.312 g, Eu2O3를 0.172 g 사용하는 것을 제외하고는 실시예 17과 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
(비교예 3)
규소원료물질로 Si를 사용하지 않고, Si3N4만을 13.488 g 사용하고, Al을 0.473 g 사용하는 것을 제외하고는 실시예 20과 동일한 방법을 사용하여 β-사이알론 형광체를 제조하였다.
이하, 전술한 실시예들 및 비교예들에 사용된 원료물질의 배합비를 표 2에 나타낸다.
[표 2]
실시예번호 Si3N4(g) Si(g) Al2O3(g) AlN(g) Al(g) Eu2O3(g)
실시예 12 4.047 5.671 0.589 - - 0.141
실시예 13 1.349 7.291 0.589 - - 0.141
실시예 14 6.744 4.051 0.589 - - 0.141
실시예 15 9.442 2.430 0.589 - - 0.141
실시예 16 - 8.101 0.589 - - 0.141
비교예 1 13.488 - 0.589 - - 0.141
실시예 17 5.395 3.241 - 0.379 - 0.137
실시예 18 7.554 1.944 - 0.379 - 0.137
실시예 19 - 6.481 - 0.379 - 0.137
비교예 2 10.791 - - 0.379 - 0.137
실시예 20 6.744 4.051 -  - 0.312 0.172
비교예 3 13.488 - - - 0.473 0.172
실시예 12에 따라 제조된 형광체는 분말 X선회절(XRD)에 의한 분류를 실시하였는데 그 결과를 도 135에 나타내었다. 도 135를 참조하고 JCPDS 데이터를 이용하여, 제조된 형광체가 β-사이알론 형광체임을 확인하였다.
또, 발광 특성은 460 nm의 여기빛을 조사해 측정하였는데 실시예 12의 β-사이알론 형광체 및 비교예 1의 β-사이알론 형광체의 발광스펙트럼 결과를 도 136에 나타내었다. 실시예 12의 β-사이알론 형광체는 발광피크가 541 nm에 나타나고, 반치폭은 54.7 nm의 녹색 발광의 형광체이다. 그 휘도는 비교예 1의 β-사이알론 형광체와 비교하여 27% 높다.
실시예 12의 β-사이알론 형광체의 여기 스펙트럼을, 541 nm의 발광색을 검출빛으로서 측정했다. 그 결과는 도 137에 나타나있다. 자외선 및 500 nm부근의 가시광선 영역까지 여기대가 있는 것을 알 수 있다.
실시예 12에서 실시예 20 및 비교예 1에서 비교예 3의 β-사이알론 형광체를 각각 7 중량부, 적색의 CaAlSiN3:Eu형광체를 3 중량부, 그리고, 실리콘 수지 10 중 량부를 잘 혼합해 슬러리화하여, 이 슬러리를 청색 발광 LED 발광소자가 장비된 마운트 리드 상의 컵 내에 주입해, 주입 후 130℃로 1시간 경화해, 본 형광체를 이용한 백색 LED를 제조하였다. 제조된 백색 LED의 휘도를 측정하였다.
실시예 12에서 실시예 20 및 비교예 1에서 비교예 3의 β-사이알론 형광체의 발광피크파장 및 이를 사용하여 제조된 백색 LED의 휘도를 이하의 표 3에 나타냈다. (중량부)
[표 3]
실시예번호 규소원료물질 알루미늄원료물질 발광 피크 파장(nm) 휘도(sb)
종류 Si/Si3N4(중량부) 종류
실시예 12 Si/Si3N4 70/30 Al2O3 541 127
실시예 13 Si/Si3N4 90/10 Al2O3 541 124
실시예 14 Si/Si3N4 50/50 Al2O3 541 124
실시예 15 Si/Si3N4 30/70 Al2O3 541 107
실시예 16 Si - Al2O3 541 118
비교예 1 Si3N4 - Al2O3 541 100
실시예 17 Si/Si3N4 50/50 AlN 540 113
실시예 18 Si/Si3N4 30/70 AlN 538 115
실시예 19 Si - AlN 540 106
비교예 2 Si3N4 - AlN 540 100
실시예 20 Si/Si3N4 50/50 Al 540 119
비교예 3 Si3N4 - AlN 536 100
실시예 12에서 실시예 20 및 비교예 1에서 비교예 3의 발광피크파장은 약 540nm로서 녹색형광체임을 알 수 있다. 실시예 12에서 실시예 14의 형광체를 이용한 백색 LED는 휘도가 124 에서 127로서 비교적 높은 휘도를 나타내었다.
그러나, 금속규소의 비율이 질화규소의 비율보다 작은 실시예 15의 경우는 금속규소의 비율이 질화규소의 비율보다 큰 실시예 12에서 실시예 14의 경우보다 낮은 휘도를 나타내었다. 규소원료물질로 Si만 사용한 실시예 16 및 실시예 19의 경우, 실시예 12 에서 실시예 14 및 실시예 17의 경우보다는 낮은 휘도를 나타내었으나, 금속규소의 비율이 질화규소의 비율보다 작은 실시예 15 및 실시예 17보다 금속규소의 비율이 작은 실시예 18보다는 높은 휘도를 나타내어 적절한 배합의 규소원료물질을 사용하여 보다 고휘도의 β-사이알론 형광체를 제조할 수 있음을 확인할 수 있었다.
규소원료물질로 Si3N4만을 사용한 본 비교예 1 에서 비교예 3은 각각 모체원료물질로 금속규소를 사용하지 않은 경우에 해당된다.
아울러, 실시예 20에서와 같이 금속규소 및 금속알루미늄을 함께 사용한 경우에도 고휘도를 나타내었다.
상술된 β-사이알론 형광체는 다른 형광체 조합을 통해 백색광을 제공하는 발광장치 및 모듈에 유익하게 적용될 수 있다.
도 138a 및 도 138b는 본 발명의 다른 실시예 및 변형예에 따른 발광소자 패키지를 설명하기 위한 단면도이다.
우선, 도 138a를 참조하면, 발광소자(3110)의 상부면에는 본딩와이어(3125)와 전기적으로 연결되는 본딩패드(3102)를 구비하며, 이러한 본딩패드(3102)는 수평형 또는 수직형으로 구비되는 반도체 발광소자 즉, 칩다이(3101)의 구조에 따라 단독 또는 2개로 구비될 수 있다. 즉, 상기 본딩패드(3102)는 상기 칩다이(3101)의 구조에 따라 그 형성 개수가 변경되는데, 상기 칩다이(3101)가 P극과 N극이 상,하부면에 각각 형성된 수직형 구조 또는 수직수평 구조로 구비되는 경우, 상기 본딩패드(3102)는 상기 칩다이(3101)의 상부면에 형성된 P극과 전기적으로 연결되도록 단독으로 구비된다.
또한, 상기 칩다이(3101)가 P극과 N극이 상부면에 모두 형성되는 수평형 구조 또는 수직수평 구조로 구비되는 경우, 상기 본딩패드(3102)는 상기 칩다이(3101)의 상부면에 형성된 P극과 N극과 각각 전기적으로 연결되도록 2개로 구비되어야 하는 것이다. 또한, 상기 파장변환부(3103)는 상기 서브 마운트(3104)상에 다이 어태칭된 칩다이(3101)의 외부면을 일정하게 덮도록 에폭시, 실리콘 및 레진등과 같은 투명한 수지재에 형광체가 혼합되어 이루어진다. 이때, 파장변환부(3103)는 형광체가 혼합된 실리콘, 에폭시 등과 같은 투명성 수지를 일정 두께로 프린팅하는 방식으로 형성되며, 칩다이(3101) 전체를 덮도록 형성될 수도 있으며, 인위적으로 제공되는 열이나 UV광에 의해서 경화될 수도 있다.
여기서, 상기 파장변환부(3103)에는 상기 칩다이에서 발생된 빛을 백색광으로 변환시킬 수 있는 YAG 및 TAG계의 Garnet계, Silicate계, Sulfide계, Nitride계, QD 형광체 중 어느 하나의 파장변환수단인 형광물질이 포함되며, 특히, 적색 형광체는 상술한 실시예 1 내지 11에서 합성한 (Sr, M)2SiO4-xNy:Eu의 조성식으로 표현되는 무기화합물 또는 상기 실리게이트(Silicate)계, 황화물(Sulfide)계, 질화물(Nitride)계, QD 형광체 중 적어도 하나를 구비할 수 있으며, 상기 M은 적어도 하나의 1가 및 2가 원소이며, 0<x<4, y=2x/3인 형광체를 사용할 수 있다. 그리고, 상기 리드프레임(3120)은 상기 파장변환부(3103)의 상부면을 통해 외부로 노출되는 적어도 하나의 본딩패드(3102)와 본딩와이어(3125)를 매개로 하여 전기적으로 연결된다.
따라서, 도 138a와 같이, 본 실시예에 따른 발광소자 패키지는 수지물로서 사출성형되는 수지구조물인 패키지 본체(미도시)의 내부에 일체로 구비되는 리드프레임(3121)과, 발광소자(3110)의 본딩패드(3102)와 일단이 와이어 본딩되고, 상기 리드프레임(3121)과 타단이 와이어 본딩되는 본딩와이어(3125)로 구비될 수 있다.
다음으로, 도 138b를 참조하면, 변형예에 따른 발광소자 패키지는 칩다이(3101')의 상부면에만 파장변환부(3103')가 형성된다.
발광소자(3110')는 음극 리드와 양극리드를 갖는 리드 프레임(3121)의 상부면에 탑재되고, 상기 리드 프레임(3121)은 상부로 개방된 캐비티를 형성하도록 수지재로 사출성형되는 패키지 본체(미도시)에 일체로 구비되고, 상기 패키지 본체의 캐비티를 통해 외부로 노출되는 발광소자(3110')은 본딩패드(3102')에 일단이 본딩된 금속 와이어(3125)를 매개로 리드 프레임(3121)과 전기적으로 연결되어 발광소자 패키지를 구성하게 된다.
이와 같이, 수직구조 또는 수직수평구조의 발광소자는 고출력용 발광소자 패키지에 이용되는 경우, 수직구조 또는 수직수평구조의 발광소자는 광방출면에 직접 형광체층이 접촉되어 발광소자로부터 발생되는 열에 의해 상기 형과체가 열화된다. 하지만, 본 발명에 따른 질화물계 적색형광체 또는 QD 형광체는 황화물(Sulfide)계 형광체보다 화학적으로 안정하여 열, 수분 등의 외부 환경에 대한 신뢰성이 우수할 뿐만 아니라 변색 위험이 작다. 따라서, 본 발명에 따른 적색형광체는 발광소자의 광방출면에 직접 파장변환부를 형성할 수 있으며, 또한, 고출력/고신뢰성의 백색 발광소자 패키지를 제조할 수 있다.
도 139는 본 발명의 또 다른 실시예에 따른 발광소자 패키지를 개략적으로 나타낸 단면도이다. 도 139를 참조하면, 본 실시예에 따른 발광소자 패키지(3200)는 발광소자(3201)와 그 표면을 덮도록 형성되며 발광소자(3201)로부터 방출된 빛의 파장을 변환하는 파장변환부(3202)를 갖추어 구성된다. 이를 위하여, 파장변환부(3202)는 투명 수지부 내에 형광체(P)가 분산된 구조로 채용될 수 있다. 파장변환부(3202)에 의하여 변환된 빛과 발광소자(3201)로부터 방출된 빛이 혼합되어 발광소자 패키지(3200)는 백색 광을 방출할 수 있다. 발광(3201)는 n형 반도체층, 발광층 및 p형 반도체층이 적층된 구조일 수 있으며, 일면에는 제1 및 제2 전극(3203a, 3203b)이 형성되어 있다.
도 139에 도시된 것과 같이, 파장변환부(3202)는 발광소자(3201)에서 제1 및 제2 전극(3203a, 3203b)이 형성된 면을 제1 면이라 하고, 이에 대향하는 면을 제2 면이라 하며, 상기 제1 및 제2 면의 사이에 위치한 면을 측면으로 정의할 때, 발광소자(3201)의 제1 면(전극 형성 면) 및 측면을 덮도록 형성될 수 있다. 이는 발광소자(3201)의 빛이 도 139를 기준으로 상부 방향과 측 방향으로 방출되는 것을 의도한 것이다. 본 실시예의 경우, 파장변환부(3202)가 발광소자(3201)의 표면을 따 라 얇게 코팅되는 형상으로 제공되며, 패키지 본체의 컵 내부에 형광체를 주입하는 방식과 비교하여 전체적으로 균일한 빛을 얻을 수 있다. 또한, 발광소자(3201)의 표면에 바로 파장변환부(3202)를 적용하며 패키지 본체를 따로 구비하지 않는 점에서 소자의 사이즈를 줄일 수 있다.
발광소자(3201)의 전기 연결을 위한 구조로서, 본 실시 형태에서는 리드 프레임 대신 도금층을 구비하는 제1 및 제2 전기연결부(3204a, 3204b)를 사용한다. 구체적으로, 제1 및 제2 전극(3203a, 3203b)과 접속되도록 제1 및 제2 전기연결부(3204a, 3204b)가 형성되며, 제1 및 제2 전기연결부(3204a, 3204b)는 각각 도금층을 구비한다. 제1 및 제2 전기연결부(3204a, 3204b)는 파장변환부(3202)를 통하여 외부로 노출되며 와이어 본딩 등을 위한 영역으로 제공된다. 이와 같이, 발광소자 패키지(3200)는 종래의 통상적인 패키지에 비하여 간소화된 구조를 가지며, COB (Chip On Board)나 패키지 형태 등의 발광장치에서 다양하게 이용될 수 있다.
도 140 및 도 141은 각각 본 발명의 또 다른 실시예에 따른 발광소자 패키지를 개략적으로 나타낸 단면도이다. 우선, 도 140을 참조하면, 발광소자 패키지(3200')는 제1 및 제2 전극(3203a, 3203b)을 갖는 발광소자(3201), 파장변환부(3202), 제1 및 제2 전기연결부(3204a, 3204b)를 갖추어 구성된다. 도 139에 도시된 구조와 다른 점은 발광소자(3201)의 측면에 형성된 수지부(3207)는 형광체가 제외된 투명 수지로 이루어져 있다는 것이다. 이는 발광소자(3201)의 측면으로 방출되는 빛은 제1 면으로 방출되는 빛에 비해 강도가 낮은 것을 고려한 것이다.
다음으로, 도 141에 도시된 발광소자 패키지(3200'')는 제1 및 제2 전 극(3203a, 3203b)을 갖는 발광소자(3201), 파장변환부(3202), 제1 및 제2 전기연결부(3204a, 3204b)를 갖추어 구성된다. 도 139에 도시된 구조와 다른 점은 발광소자(3201)의 제1 면에 위치하여 제1 및 제2 전극(3203a, 3203b)의 측면을 감싸는 영역에 형성된 언더필 수지부(3206)는 형광체가 제외된 투명 수지로 이루어져 있다는 것이다.
한편, 도 142 내지 도 143을 참조하여 UV 발광소자 또는 청색 발광소자 상에 형광체층이 다층 형태로 적층되는 파장변환부의 구조에 대해 다양한 실시예를 통해 설명한다.
먼저, 도 142 및 도 143은 각각 램프 형태와 칩 형태로 구현된 본 발명의 또 따른 발광소자 패키지의 구조를 도시한 단면도이다.
도 142에서와 같이, 램프 형태로 구현된 본 실시형태에 따른 발광소자 패키지는, 대략 410㎚ 이하의 파장을 가진 UV 발광소자(3310)는 자외선에 의해 여기되어 서로 다른 색상의 광을 방출하는 세 종류의 형광체가 각각 함유된 제1, 제2 및 제3 형광층(3321, 3322, 3323)으로 이루어진 다층 형광층(3320)에 의해 덮여질 수 있다.
그리고, 도 143에서와 같이, 칩 형태로 구현된 본 실시형태에 따른 발광소자 패키지는, UV 발광소자(3310)가 기판(3305) 상에 케이싱(3306)의 홈 내부에 설치된다. 상기 케이싱(3306)의 홈 내부에는 세 종류의 형광물질이 각각 함유된 제1, 제2 및 제3 형광층(3321, 3322, 3323)이 형성되며, 이들은 상기 UV 발광소자(3310)를 덮는 다층 형광층(3320)을 이루게 된다. UV 발광소자(3310)의 n전극과 p전극은 와이어(3303)에 의해 기판(3305)에 형성된 금속도선(3307)에 전기적으로 연결된다.
구체적으로, 상기 제1 형광층은 UV 발광소자 위에 형성되며, 적색광(R)을 방출하는 형광체와 수지가 혼합되어 이루어질 수 있다. 상기 적색광(R)을 방출하는 형광체로는 자외선에 의해 여기되어 600㎚ ~ 700㎚ 범위의 발광피크를 가진 광을 방출하는 형광물질, 즉, 상술한 실시예 1 내지 실시예 11에 따라 합성한 (Sr, M)2SiO4-xNy:Eu의 조성식으로 표현되는 무기화합물 또는 상기 실리게이트(Silicate)계, 황화물(Sulfide)계, 질화물(Nitride)계, QD 형광체 중 적어도 하나를 구비하며, 상기 M은 적어도 하나의 1가 및 2가 원소이며, 0<x<4, y=2x/3인 형광체를 사용한다.
상기 제2 형광층은 상기 제1 형광층 위에 적층되며, 녹색광(G)을 방출하는 형광체와 수지가 혼합되어 이루어질 수 있다. 상기 녹색광을 방출하는 형광체로는 자외선에 의해 여기되어 500㎚ ~ 550㎚ 범위의 파장을 가진 광을 방출하는 형광물질이 사용될 수 있다. 상기 제3 형광층은 상기 제2 형광층 위에 적층되며, 청색광(B)을 방출하는 형광체와 수지가 혼합되어 이루어질 수 있다. 상기 청색광을 방출하는 형광체로는 자외선에 의해 여기되어 420㎚ ~ 480㎚ 범위의 파장을 가진 광을 방출하는 형광물질이 사용될 수 있다.
상기한 구성을 통해 UV 발광소자에서 방출된 자외선은 제1, 제2 및 제3 형광층 내에 함유된 서로 다른 종류의 형광체들을 여기시키게 된다. 이에 따라 제1, 제 2 및 제3 형광층으로부터 적색광(R), 녹색광(G) 및 청색광(B)이 각각 방출되고, 이러한 세 가지 색상의 광이 조합되어 백색광(W)을 형성하게 되는 것이다.
특히, 자외선을 형광 전환하기 위한 형광층을 다층, 즉 3층으로 형성하되, 가장 긴 파장의 광, 즉 적색광(R)을 방출하는 제1 형광층을 UV 발광소자 위에 먼저 적층하고, 그 위에 보다 짧은 파장의 광, 즉 녹색광(G)과 청색광(B)을 방출하는 제2 및 제3 형광층들을 순차적으로 적층한다. 이와 같이 광전환 효율이 가장 낮은 적색광(R)을 방출하는 형광체가 함유된 제1 형광층이 UV 발광소자에 가장 가까이 위치함으로써, 제1 형광층에서의 광전환 효율이 상대적으로 높아지게 되고, 이에 따라 발광소자의 전체적인 광전환 효율이 향상될 수 있다.
다음으로, 도 144 및 도 145에는 본 실시형태에 따른 발광소자 패키지의 부분적인 구조가 도시되어 있다. 이 도면들에는 발광소자와 다층 형광층의 구조만 도시되어 있으며, 다른 부분의 구성은 도 142 및 도 143과 동일하다.
도 144에 도시된 실시형태에 따른 발광소자 패키지는 410㎚ 이하의 파장을 가진 UV 발광소자(3410)를 덮도록 형성되는 다층 형광층(3420)을 구비하며, 이 경우 상기 다층 형광층(3420)은 2층의 형광층으로 구성된다. 구체적으로, 상기 UV 발광소자(3410) 위에 형성되는 제1 형광층(3421)은 적색광(R)을 방출하는 형광체와 수지가 혼합되어 이루어진다. 이때, 상기 적색광(R)을 방출하는 형광체로는 자외선에 의해 여기되어 600㎚ ~ 700㎚ 범위의 발광피크를 가진 광을 방출하는 형광물질, 즉, 상술한 실시예 1 내지 실시예 11에 따라 합성한 (Sr, M)2SiO4-xNy:Eu의 조성식으로 표현되는 무기화합물 또는 상기 실리게이트(Silicate)계, 황화물(Sulfide)계, 질화물(Nitride)계, QD형광체 중 적어도 하나를 구비하며, 상기 M은 적어도 하나의 1가 및 2가 원소이며, 0<x<4, y=2x/3인 형광체를 사용한다. 그리고, 상기 제1 형광층(3421) 위에 적층되는 제2 형광층(3422)은 수지에 녹색광(G)을 방출하는 형광체와 청색광(B)을 방출하는 형광체가 선택적으로 혼합되어 이루어질 수 있다.
이와 같은 구성을 통해 상기 UV 발광소자에서 방출된 자외선은 제1 형광층(3421) 내에 함유된 형광체를 여기시켜 적색광(R)을 방출시키고, 제2 형광층(3422) 내에 혼합된 두 종류의 형광체들을 여기시켜 녹색광(G) 및 청색광(B)을 방출시킨다. 이러한 세 가지 색상의 광이 조합됨으로써 인간의 눈에는 백색광(W)으로 보이게 되는 것이다. 상기한 바와 같이, 자외선을 형광 전환하기 위한 형광층을 2층으로 형성하되, 가장 긴 파장의 적색광(R)을 방출하는 제1 형광층(3421)을 UV 발광소자(3410) 위에 먼저 적층하고, 그 위에 보다 짧은 파장의 녹색광(G)과 청색광(B)을 함께 방출하는 제2 형광층(3422)을 적층한다. 이와 같은 다층 형광층의 적층 구조에 의해서도 전술한 실시예에서와 같이 광전환 효율이 높아지는 효과를 얻을 수 있다.
도 145에 도시된 실시형태에 따른 발광소자 패키지는 여기광으로서 420㎚ ~ 480㎚ 범위의 파장을 가진 청색광(B)을 방출하는 발광소자(3410')를 덮도록 형성되는 다층 형광층(3420')이 2층으로 구성되며, 이 경우 발광소자(3410') 위에 형성되 는 제1 형광층(3421')은 적색광(R)을 방출하는 형광체와 수지가 혼합되어 이루어진다. 이때, 상기 적색광(R)을 방출하는 형광체로는 청색광에 의해 여기되어 600㎚ ~ 700㎚ 범위의 발광피크를 가진 광을 방출하는 형광물질, 즉, 상술한 실시예 1 내지 실시예 11에 따라 합성한 (Sr, M)2SiO4-xNy:Eu의 조성식으로 표현되는 무기화합물 또는 상기 실리게이트(Silicate)계, 황화물(Sulfide)계, 질화물(Nitride)계, QD형광체 중 적어도 하나를 구비하며, 상기 M은 적어도 하나의 1가 및 2가 원소이며, 0<x<4, y=2x/3인 형광체를 사용한다. 그리고, 상기 제1 형광층(3421') 위에 적층되는 제2 형광층(3422')은 수지에 녹색광(G) 및/또는 황색광(Y)을 방출하는 형광체가 혼합되어 이루어질 수 있다.
이와 같은 구성을 통해 상기 발광소자에서 방출된 청색광(B)은 제1 형광층 내에 함유된 형광체를 여기시켜 적색광(R)을 방출시키고, 제2 형광층 내에 함유된 형광체를 여기시켜 녹색광(G) 또는 황색광(Y)을 방출시킨다. 이와 같이 다층 형광층으로부터 방출되는 적색광(R)과 녹색광(G)(또는 황색광(Y))과 발광소자에서 발생되는 청색광(B)이 조합되어 백색광(W)이 형성되는 것이다.
여기서, 도 145에 개시된 본 실시형태에 따른 발광소자 패키지의 백색 발광원리에 대해 더욱 상세하게 설명한다.
도 146은 도 145에 도시된 실시형태에 따른 발광소자 패키지를 개략적으로 나타낸 개념도이다. 도 146을 참조하면, 청색 광원으로부터 청색광이 방출된다. 상기 청색 광원은 420 내지 480nm의 피크 방출 파장을 가진다. 특히 상기 청색 광원 으로는, 420 내지 480nm의 피크 방출 파장을 갖는 청색 발광소자를 사용할 수 있다. 녹색 및 적색 형광체는 청색 광원으로부터 방출된 청색광에 의해 여기되어 각각 녹색 및 적색의 가시광을 방출한다. 방출된 녹색 및 적색의 가시광선은 상기 형광체를 투과한 청색광(상기 청색 광원의 방출광)과 혼색되어 백색광을 출력하게 된다.
녹색 형광체는 490 내지 550nm의 피크 방출 파장(peak emission wavelength)을 가지며, 적색 형광체는 청색광에 의해 여기되어 600㎚ ~ 700㎚ 범위의 발광피크를 가진 광을 방출하는 형광물질, 즉, 상술한 실시예 1 내지 실시예 11에 따라 합성한 (Sr, M)2SiO4-xNy:Eu의 조성식으로 표현되는 무기화합물 또는 상기 실리게이트(Silicate)계, 황화물(Sulfide)계, 질화물(Nitride)계, QD형광체 중 적어도 하나를 구비하며, 상기 M은 적어도 하나의 1가 및 2가 원소이며, 0<x<4, y=2x/3인 형광체를 사용한다. 바람직하게는, 상기 형광체들은 청색 광원의 특정 방출 파장에서 높은 광자 효율을 갖는다. 또한, 바람직하게는, 각 형광체들은 다른 형광체에 의해 방출된 가시광에 대해 상당한 투광성을 갖는다. 적색 형광체는 청색 광원에 의해 방출되는 청색광에 의해 여기될 뿐만 아니라 녹색 형광체의 방출광(녹색광)에 의해서도 여기되어 적색광을 방출한다. 바람직하게는, 청색광 및 녹색광에 의해 충분히 효율적으로 여기될 수 있도록 상기 적색 형광체는 420 내지 500nm의 범위에서 피크 여기 파장(peak excitation wavelength)을 갖는다. 또한, 적색 형광체는 청색 광원뿐만 아니라 녹색 형광체에 의해서도 여기되므로(즉, 적색 형광체는 2중 여기됨), 적색 형광체의 양자 수율이 향상된다. 이러한 적색 형광체의 양자 수율 향상에 의해 전체적인 발광 효율, 휘도 및 연색 지수도 개선된다. 더욱이, 종래에 쓸데없이 버려지는 녹색광(예컨대, 출사면의 후방으로 빠져 나가는 녹색 방출광)이 적색 형광체를 여기시키는 데에 사용된다면, 전체적인 발광 효율은 더욱더 커지게 된다. 이러한 양자 수율의 증가에 의하여, 백색 발광 장치의 전체 휘도 및 연색 지수가 향상될 수 있다.
도 147은 본 실시형태의 발광소자 패키지에 사용되는 녹색 형광체(제2 형광체)와 적색 형광체(제1 형광체) 간의 에너지 전이를 개략적으로 나타낸 모식도이다. 도 147을 참조하면, 제2 형광체는 460nm 정도의 청색광에 의해 여기되어 530nm 정도의 녹색광을 방출한다. 또한, 제1 형광체는 460nm 정도의 청색광뿐만 아니라 제1 형광체의 방출광(녹색광) 일부를 흡수하여 620nm 정도의 적색광을 방출한다. 이와 같이 제1 형광체는 2중 여기에 의해 적색광을 방출한다. 즉, 제1 형광체는 청색 발광소자 등의 청색 광원 위에 배치되고, 제2 형광체는 제1 형광체 위에 배치된다. 이렇게 함으로써, 제2 형광체로부터 후방으로 방출된 빛은 제1 형광체에 의해 용이하게 흡수되어 적색광을 방출한다. 이에 따라, 제1 형광체의 추가적인 방출광은 발광 장치의 전체 휘도를 더욱 높이고 연색 지수도 더욱 향상시키게 된다. 또한, 후방으로 방출되어 버려질 빛은 제1 형광체에 의해 효과적으로 이용된다. 이러한 층 구조의 형광체 배치는, 각각의 형광체가 분산되어 있는 몰딩 수지의 층을 형성함으로써 용이하게 구현될 수 있다.
도 148은 본 발명의 또 다른 실시형태에 따른 발광소자 패키지를 나타내는 단면도이다. 도 148을 참조하면, 상기 발광소자 패키지(3500)는 패키지기판(3531)과 상기 패키지기판(3531)에 실장된 발광다이오드 칩(3535)을 포함한다. 상기 패키지기판(3531)은 2개의 리드프레임(3532a,3532b)이 형성된 하부 패키지기판(3531a)과 상기 캐비티가 마련된 상부 패키지 기판(3531b)으로 이루어질 수 있다. 상기 캐비티영역 내에는 발광소자(3535)가 실장된다. 상기 발광소자(3535)의 양전극(미도시)은 각각 상기 리드프레임(3532a,3532b)의 상단에 와이어로 연결된다.
상기 발광소자(3535)를 둘러싸도록 저굴절률영역(3536)이 제공된다. 상기 저굴절률영역(3536)은 빈공간일 수 있으나, 비교적 낮은 굴절률을 갖는 투명수지로 충전된 영역일 수 있다. 저굴절률영역(3536)이 빈공간일 경우에는 대기와 유사한 굴절률(n=1)을 갖는다. 또한, 투명수지로 저굴절률영역(3536)을 형성할 경우에는 통상의 에폭시, 실리콘 또는 그 혼합수지를 사용할 수 있다. 이 경우에, 저굴절률영역(3536)의 굴절률은 대략 1.7정도일 수 있다.
상기 저굴절률영역(3536) 상에는 고굴절률층(3537)이 형성된다. 상기 고굴절률층(3537)은 적어도 상기 저굴절률영역(3536)보다 높은 굴절률을 가지며, 상면에는 요철패턴(3537a)이 형성된다. 또한, 상기 고굴절률층(3537) 상에는 상기 발광다이오드(3535)로부터 방출되는 광의 파장을 변환시키기 위한 형광체(3539)가 함유된 파장변환층(3538)이 형성된다. 상기 파장변환층(3538)은 형광체가 함유된 수지층으로, 적어도 상기 고굴절률층(3537)의 굴절률보다 낮은 굴절률을 갖는다.
상기 파장변환층(3538)은 본 발명의 실시예 1 내지 실시예 11에 따라 합성한 (Sr, M)2SiO4-xNy:Eu의 조성식으로 표현되는 무기화합물 또는 상기 실리게이트(Silicate)계, 가넷(Garnet)계, 황화물(Sulfide)계, 질화물(Nitride)계, QD형광체 중 적어도 하나를 구비하며, 상기 M은 적어도 하나의 1가 및 2가 원소이며, 0<x<4, y=2x/3을 만족하며, 발광소자에서 방출된 광을 흡수하여 600㎚ ~ 700㎚ 범위의 발광피크를 가진 광을 방출하는 적색형광체를 적어도 포함한다.
본 발명에서 채용된 고굴절률층(3537)은 자체가 높은 굴절률을 갖는 수지로 형성되거나, 높은 굴절률 입자가 함유된 통상의 투명수지층으로 구현될 수도 있다. 이 경우에, 상기 고굴절률 입자는 GaP, Si, TiO2, SrTiO3, SiC, 큐빅 또는 비정질 카본, 카본나노튜브, AlGaInP, AlGaAs, SiN, SiON, ITO, SiGe, AlN 및 GaN로 구성된 그룹으로부터 선택될 수 있다.
상기 고굴절률층(3537)은 형광체 입자(3539)에서 산란된 광자가 상기 저굴절률영역(3536)과의 계면에서 전반사될 수 있도록 높은 굴절률을 갖는다. 상기 고굴절률층(3537)은 1.8이상의 굴절률을 갖도록 형성하는 것이 바람직하지만, 저굴절률영역(3536)을 특정 굴절률을 갖는 수지로 형성할 경우에는, 상기 특정 수지와의 충분한 굴절률 차이를 갖도록 더욱 높은 굴절률을 갖는 물질로 고굴절률층(3537)을 형성할 수도 있다.
상기 파장변환층(3538)과의 계면에서 비교적 높은 광추출임계각을 갖더라도 상기 고굴절률층(3537) 상에 형성된 요철패턴(3537a)에 의해 파장변환층(3538)으로의 광추출이 보다 용이하게 실현한다. 바람직하게 상기 요철(3537a)의 형성주기는 약 0.001∼500㎛범위일 수 있다. 또한, 고굴절률층(1437)과 파장변환층(3538)의 굴절률 차이가 지나치게 클 경우에, 요철(3537a)에 의해서도 충분한 광추출을 기대하기 어려우므로, 상기 고굴절률층(3537)의 굴절률은 10이하인 것이 바람직하다.
도 149는 도 148에 도시된 발광소자 패키지에서 광추출메카니즘을 설명하기 위한 개략도이다. 도 148과 함께 도 149를 참조하면, 발광소자(3535)으로부터 방출되는 광(①)은 저굴절률영역(3536)과 고굴절률층(3537)를 지나 파장변환층(3538)으로 진행된다. 통상적으로, 저굴절률영역(3536)은 발광소자(3535)를 구성하는 질화물보다 낮은 굴절률을 갖지만, 발광소자 표면에 요철패턴(미도시)이 형성되므로, 발광소자(3535)로부터 발생된 광은 저굴절률영역(3536)으로 효과적으로 추출될 수 있다. 또한, 저굴절률영역(3536)에서 고굴절률층(3537)으로 향하는 광은 높은 굴절률 물질로 진행되므로, 효과적으로 추출될 수 있다. 파장변환층(3538)은 고굴절률층보다 낮은 굴절률이 가지므로, 제한된 광추출임계각을 갖지만, 고굴절률층의 상면에 형성된 요철에 의해 효과적으로 추출될 수 있다.
이어, LED의 방출광(①)은 형광체 입자(3539)에서 여기되고, 그 여기된 일부 광(②)은 원하는 방향, 즉 패키지 상부를 향해 추출될 수 있다. 반면에, 다른 일부의 여기광(③)은 패키지 내부로 향하여 파장변환층(3538)에서 고굴절률층(3537)으로 진행될 수 있다. 상기 파장변환층(3538)은 고굴절률층(3537)보다 낮은 굴절률을 가지므로, 패키지 내부로 향하는 광(③)은 거의 소실되지 않고 고굴절률층(3537)으로 진입될 수 있다. 고굴절률층에 진입된 광(③)은 저굴절영역(3536)과의 계면에서는 높은 굴절률차이에 의해 대부분 전반사된다. 전반사된 광(④)은 고굴절률 층(3537)의 상부로 진행되며, 고굴절률층(3537)과 파장변환층(3538)의 계면을 통과하여 원하는 방향으로 추출될 수 있다. 앞서 설명한 바와 같이, 고굴절률층(3537)과 파장변환층(3538)은 굴절률차이에 의해 그 계면에서 제한된 광추출임계각을 갖지만, 고굴절률층(3537)의 상면에 형성된 요철(3537a)에 의해 용이하게 추출될 수 있다.
이와 같이, 형광체 입자(3539)에 의해 산란되어 패키지 내부로 진행되는 광(③)은 상면에 요철(3537a)이 형성된 고굴절률층(3537)과 저굴절률영역(3536)에 의해 원하는 상부 방향으로 효과적으로 전반사시킬 수 있다.
본 발명은 형광체 입자를 함유한 파장변환층을 상부에 배치하고, 그 하부에 요철면을 갖는 고굴절률층과 저굴절률영역으로 이루어진 광학적 구조를 도입함으로써 형광체 입자에서 전반위로 산란된 광의 진행방향을 광추출효율이 개선되도록 상부 방향으로 재조정할 수 있다.
한편, 도 150 내지 도 152는 본 발명의 또 다른 실시형태에 따른 발광소자 패키지를 나타내는 단면도이다. 도 150은 도 148의 발광소자 패키지에서, 파장변환층을 개선한 구조이며, 도 151은 패키지기판의 구조를 개선한 구조이며, 도 152는 고굴절률층을 개선한 구조로 구체적으로 요철패턴을 형성하는 방식을 통상의 몰딩공정이나 에칭공정을 이용하지 않고, 고굴절률입자 자체의 형상만을 이용하여 형성한 구조이다.
우선, 도 150에 도시된 발광소자 패키지(3600)는 도 148과 유사하게 패키지 기판(3641)과 상기 패키지기판(3641)에 실장된 발광소자(3645)를 포함한다. 상기 패키지기판(3641)은 2개의 리드프레임(3642a,3642b)이 형성된 하부 패키지기판(3641a)과 상기 캐비티가 마련된 상부 패키지 기판(3641b)로 이루어질 수 있다. 상기 발광소자(3645)의 양전극(미도시)은 각각 상기 리드프레임(3642a,3642b)의 상단에 와이어로 연결된다.
저굴절률영역(3646)은 상기 발광소자(3645)를 둘러싸도록 제공된다. 상기 저굴절률영역(3646)은 빈공간 또는 에폭시 또는 실리콘 수지와 같은 비교적 낮은 굴절률을 갖는 투명수지로 충전된 영역일 수 있다. 또한, 저굴절률영역(3646)을 빈공간영역으로 형성하되, 그 빈공간영역에 낮은 굴절률을 갖는 수지로 형성된 렌즈(미도시)를 발광소자(3645)를 둘러싸도록 배치하는 방식으로 저굴절률영역(3646)을 제공할 수도 있다.
상기 저굴절률영역(3646) 상에는 고굴절률층(3647)이 형성된다. 상기 고굴절률층(3647)은 적어도 상기 저굴절률영역(3646)보다 높은 굴절률을 가지며, 상면에는 요철패턴(3647a)이 형성된다. 상기 고굴절률층(3647) 상에 형성된 요철패턴(3647a)은 비교적 낮은 파장변환층(3648)으로의 광추출을 보다 용이하게 할 수 있다. 바람직하게 상기 요철(3647a)의 형성주기는 약 0.001∼500㎛범위일 수 있다.
또한, 본 실시형태와 같이, 고굴절률층(3647)의 하면, 즉 고굴절률층(3647)과 저굴절률영역(3646) 계면에 무반사층(3647b)이 추가로 형성될 수 있다. 상기 무반사층(3647b)은 발광소자(3645)의 광파장대역에서 무반사성을 갖는 물질로 이루어지며, 발광소자(3645)로부터 생성된 광이 고굴절률층(3647)으로 보다 효과적으로 진행되는 것을 도모할 수 있다.
상기 고굴절률층(3647) 상에는 상기 발광소자(3645)로부터 방출되는 광의 파장을 변환시키기 위한 형광체(3649)가 함유된 파장변환층(3648)이 형성된다. 상기 파장변환층(3648)은 적어도 상기 고굴절률층(3647)의 굴절률보다 낮은 굴절률을 갖는다.
본 실시형태에서 파장변환층(3648)은 통상적인 투명수지영역을 형성한 후에 그 상면에 형광체(3649)를 도포하는 방식으로 형성된 예이다. 이러한 구조에서도 형광체 입자(3649)로 이루어진 층이 고굴절률층(3647) 및 저굴절률영역(3646)으로 이루어진 광학구조 상에 위치하므로, 본 발명에 따른 광추출효율의 개선효과를 충분히 기대할 수 있다.
또한, 상기 고굴절률층(3647)은 자체가 높은 굴절률을 갖는 수지로 형성되거나, 높은 굴절률 입자가 함유된 통상의 투명수지로 형성될 수도 있다. 상기 고굴절률층(3647)은 형광체 입자(3649)에서 산란된 광자가 상기 저굴절률영역(3646)과의 계면에서 전반사될 수 있도록 적어도 1.8이상의 굴절률을 가지며, 파장변환층(3648)으로의 광추출이 용이하도록 10이하의 굴절률을 갖는 것이 바람직하다.
본 실시형태에 따른 패키지의 제조공정은 이에 한정되지는 않으나, 저굴절률영역(3646)을 에폭시 또는 실리콘 수지와 같은 투명수지로 형성할 경우에는 고굴절률층(3647)과 파장변환층(3648)을 연속적인 도포 및 경화공정을 통해 형성될 수 있다. 다만, 상기 고굴절률층(3647) 상에 형성된 요철(3647a)은, 경화공정 후에 기계적 또는 화학적 식각을 적용하거나, 경화 전에 몰딩프레임을 이용하여 형성될 수 있다.
다음으로, 도 151에 도시된 발광소자 패키지(3600')는 패키지기판(3651)과 상기 패키지기판(3651) 상에 실장된 발광소자(3655)를 포함한다. 상기 패키지기판(3651)은 이에 한정되지는 않으나, 그 상면에 형성된 2개의 리드프레임(3652a,3652b)과, 그 하면에 형성된 2개의 접속패드(3654a,3654b)와, 각각을 연결하는 도전성 비아홀(3653a,3653b)을 포함한다.
상기 발광소자 패키지(3650)는 다른 실시형태와 유사하게, 상기 발광소자(3655)를 둘러싸는 반구형 저굴절률영역(3656)과, 상기 저굴절률영역(3656) 상에 형성된 고굴절률층(3657)과, 상기 고굴절률층(3657) 상에 형성된 파장변환층(3658)을 포함한다. 상기 고굴절률층(3657)은 적어도 상기 저굴절률영역(3656)보다 높은 굴절률을 가지며, 상면에는 요철패턴(3657a)이 형성된다. 상기 파장변환층(3658)은 적어도 상기 고굴절률층(3657)의 굴절률보다 낮은 굴절률을 갖는다.
본 실시형태에서, 반구형인 저굴절영역(3656)을 투명수지층으로 형성할 경우에는 트랜스퍼 몰딩공정과 같은 종래의 몰딩공정을 이용하여 용이하게 형성될 수 있다. 이 경우에, 다른 층(3657,3658)의 공정도 유사한 몰딩공정을 통해 형성될 수 있다. 또한, 상기 저굴절영역(3656)은 빈공간으로 제공할 경우에는, 고굴절률층(3657) 및/또는 파장변환층(3658)을 별도의 몰딩공정을 통해 원하는 형상으로 제조한 후에, 패키지기판(3651) 상에 부착시키는 방식으로 구현될 수도 있다. 고굴절률층(3657) 및 파장변환층(3658)은 반구형이 예시되어 있으나, 단면이 사각형 또는 삼각형 등 다양한 형상으로 제조될 수 있다.
이러한 형상의 다양성은 도 150의 구조에서도 유사하게 적용될 수 있다. 예를 들어, 도 150의 실시형태에서는 고굴절률층(3547)이 평탄한 형상을 갖는 것으로 도시되어 있으나, 도 151과 유사하게 반구형 또는 다른 형상을 갖도록 변형될 수 있다.
한편, 도 152를 참조하면, 상기 발광소자 패키지(3600'')는 도 148에 도시된 실시형태와 유사하게, 패키지기판(3661)과 상기 패키지기판(3661)에 실장된 발광다이오드칩(3665)을 포함하며, 상기 패키지기판(3661)은 2개의 리드프레임(3662a,3662b)이 형성된 하부 패키지기판(3661a)과 상기 캐비티가 마련된 상부 패키지 기판(1761b)로 이루어질 수 있다.
상기 캐비티영역 내에는 발광소자(3665)가 실장된다. 상기 발광소자(3665)의 양전극(미도시)은 각각 상기 리드프레임(3662a,3662b)의 상단에 와이어로 연결된다. 상기 발광소자(3665)를 둘러싸도록 저굴절률영역(3666)이 제공된다.
상기 저굴절률영역(3666)은 빈공간일 수 있거나, 비교적 낮은 굴절률을 갖는 투명수지로 충전된 영역일 수 있다. 저굴절률영역(3666)이 빈공간일 경우에는 대기와 유사한 굴절률(n=1)을 갖는다. 또한, 투명수지로 저굴절률영역(3666)을 형성할 경우에는 통상의 에폭시, 실리콘 또는 그 혼합수지를 사용할 수 있다. 이 경우에, 저굴절률영역(3666)의 굴절률은 대략 1.7정도일 수 있다.
상기 저굴절률영역(3666) 상에는 고굴절률층(3667)이 형성된다. 상기 고굴절률층(3667)은 적어도 상기 저굴절률영역(3666)보다 높은 굴절률을 갖는 고굴절률 입자로 형성되며, 그 상면의 요철패턴(3667a)은 상기 입자의 형상에 의해 형성된 다. 따라서, 본 실시형태에서 요철패턴(3667a)의 형상이나 주기는 상기 고굴절률 입자의 입경이나 형상에 의해 결정된다. 상기 고굴절률 입자는 GaP, Si, TiO2, SrTiO3, SiC, 큐빅 또는 비정질 카본, 카본나노튜브, AlGaInP, AlGaAs, SiN, SiON, ITO, SiGe, AlN 및 GaN로 구성된 그룹으로부터 선택될 수 있다.
본 실시형태에 채용된 고굴절률층(3667)은 별도의 공정에서 적어도 상부표면이 상기한 고굴절률입자로 배열된 막구조로 형성하여 상기 캐비티영역에 배치하는 방식으로 형성할 수 있다. 이와 달리, 저굴절률영역(3666)을 특정 수지로 형성하는 경우에는 그 수지 상부면에 상기한 고굴절률입자는 조밀하게 도포하여 형성할 수도 있다.
상기 고굴절률층(3667) 상에는 상기 발광소자(3665)로부터 방출되는 광의 파장을 변환시키기 위한 형광체(3669)가 함유된 파장변환층(3668)이 형성된다. 상기 파장변환층(3668)은 적어도 상기 고굴절률층(3667)의 굴절률보다 낮은 굴절률을 갖는다.
상기 고굴절률층(3667) 상에 형성된 요철패턴(3667a)은 비교적 낮은 굴절률을 갖는 파장변환층으로 광추출을 보다 용이하게 한다. 또한, 고굴절률층(3667)과 파장변환층(3668)의 굴절률 차이가 지나치게 클 경우에, 요철(3667a)에 의해서도 충분한 광추출을 기대하기 어려우므로, 상기 고굴절률층(3667)의 굴절률은 10이하인 것이 바람직하다.
도 153은 본 발명의 또 다른 실시형태에 따른 발광소자 패키지를 개략적으로 나타내는 단면도이고, 도 154은 도 153에 도시한 발광소자 패키지에서 파장변환부 및 제어부를 개략적으로 나타내는 사시도이다.
우선, 도 153 및 도 154를 참조하면, 본 실시형태에 따른 발광소자 패키지(3700)는 본체(3710), 발광소자(3720), 파장변환부(3730), 제어부(3740)를 포함하여 구성된다. 상기 본체(3710)는 플라스틱이나 수지 또는 세라믹 재질로 형성될 수 있으며, 전면이 개방된 캐비티(3711)를 구비하여 추후 설명하는 발광소자(3720)를 그 내부에 수용하여 구비한다. 상기 캐비티(3711)는 발광소자(3720)로부터 발생되는 광의 확산을 위해 내주면이 전방을 향해 경사진 구조를 형성하며, 내측보다 전면 외측으로 갈수록 내주면의 크기가 확장되도록 구성된다.
따라서, 도면과 같이 상기 캐비티(3711)가 원통형 구조로 형성되어 원형 또는 타원형의 수평단면을 가지는 경우, 상기 캐비티(3711)는 내측의 내경보다 외측의 내경이 더 넓은 원추 형상을 가진다. 하지만, 이에 한정하지 않고, 상기 캐비티(3711)가 사각형의 수평단면을 가지도록 하는 것도 가능하며, 이 경우 상기 캐비티(3711)는 내측의 단면보다 외측의 단면이 더 넓은 피라미드 형상의 구조로 형성될 수 있다.
상기 본체(3710)는 상기 캐비티(3711)가 개방되는 전면(상단)에 추후 설명하는 파장변환부(3730)를 장착하기 위한 단차구조를 가지는 장착부(3712)를 구비한다. 상기 장착부(3712)는 상기 본체(3710)의 전면인 상단으로부터 아래쪽으로 단차를 이루며 형성되어 상기 파장변환부(3730)가 안착될 수 있도록 마련된다. 상기 장 착부(3712)는 상기 캐비티(3711)의 외측 둘레를 따라 형성되는 것이 바람직하다.
그리고, 상기 본체(3710)는 일단이 상기 캐비티(3711) 저면으로 노출되어 상기 본체(3710)상에 실장되는 발광소자(3720)와 전기적으로 연결되고, 타단이 상기 본체의 외부로 노출되는 한 쌍의 메인 단자(3714, 3715)를 구비한다. 상기 발광소자(3720)는 외부에서 인가되는 전원에 의해 소정 파장의 광을 방사하는 반도체소자의 일종이며, 본 실시형태에 따른 발광소자 패키지는 색온도를 가변하는데 있어 복수개의 발광소자가 사용되는 종래와 달리 단일의 발광소자가 구비되는데 구조적 특징이 있다. 상기 발광소자(3720)는 상기 캐비티(3711) 내에 수용되어 상기 본체(3710)의 내부에 구비되는 상기 한 쌍의 메인 단자(3714, 3715)와 전기적으로 연결되도록 상기 본체(3710)상에 실장된다.
한편, 상기 파장변환부(3730)는 상기 캐비티(3711)를 덮도록 상기 본체(3710)의 장착부(3712)에 장착되어 상기 발광소자(3720)에서 방출되는 광의 파장을 변환시킨다. 상기 파장변환부(3730)는 상기 발광소자(3720)에서 방출되는 광의 경로 상에 배치되는 유체 수용부(3731)와, 상기 유체 수용부(3731) 내에 유입된 투명 유체(3732)와, 상기 투명 유체(3732) 내에 분산된 형광물질(3733)을 구비한다. 그리고, 상기 파장변환부(3730)는 형광물질(3733)을 함유하여 상기 유체 수용부(3731) 내에 유입된 투명 유체(3732)의 용량을 변화시킴으로써 상기 유체 수용부(3731)의 용적을 조절하여 색온도를 제어한다. 상기 파장변환부(3730)는 상술한 실시예 1 내지 실시예 11에 따라 합성한 (Sr, M)2SiO4-xNy:Eu의 조성식으로 표현되는 무기화합물 또는 상기 실리게이트(Silicate)계, 가넷(Garnet)계. 황화물(Sulfide)계, 질화물(Nitride)계, QD형광체 중 적어도 하나를 구비하며, 상기 M은 적어도 하나의 1가 및 2가 원소이며, 0<x<4, y=2x/3을 만족하며, 발광다이오드 칩에서 방출된 광을 흡수하여 600㎚ ~ 700㎚ 범위의 발광피크를 가진 광을 방출하는 적색형광체를 적어도 포함한다.
상기 유체 수용부(3731)는 수축 및 팽창 등의 변형과 이에 따른 복원력이 우수한 탄성을 가지는 실리콘이나 러버 재질로 형성될 수 있으며, 색온도에 대한 영향을 미치지 않도록 광 투과성을 가지는 것이 바람직하다. 또한, 상기 유체 수용부(3731)는 내부로 유입되는 상기 투명 유체(3732)를 수용하도록 소정 크기의 용적을 가지는 중공형 튜브구조로 형성될 수 있다. 도면에서는 상기 유체 수용부(3731)가 원반 형상의 구조를 가지는 것으로 도시하고 있으나 이에 한정하지 않고 상기 캐비티(3711)의 외측 단면 형상에 따라서 사각형 등의 다각형 구조를 가지는 것도 가능하다. 상기 유체 수용부(3731) 내에 유입되는 상기 투명 유체(3732)는 유동성을 가지도록 물, 오일 또는 수지 등이 포함될 수 있으며, 균일하게 분산된 형광물질(3733)을 내부에 함유한다.
한편, 상기 제어부(3740)는 상기 파장변환부(3730)와 연결되며, 상기 투명 유체의 용량을 변화시켜 상기 유체 수용부(3731)의 용적을 조절함으로써 상기 광의 색온도를 제어한다. 상기 제어부(3740)는 상기 유체 수용부(3731)와 연통하여 상기 투명 유체(3732)를 수용하는 리저버(3741)와, 상기 리저버(3741)와 연결되어 상기 유체 수용부(3731) 내의 상기 투명 유체(3732)의 용량을 조절하는 액추에이 터(3742)를 구비한다. 상기 리저버(3741)는 상기 유체 수용부(3731)와 연결되어 상기 유체 수용부(3731) 내에 채워지는 상기 투명 유체(3732)를 일부 수용한다. 따라서, 유동성을 가지는 상기 투명 유체(3732)는 상기 유체 수용부(3731) 내에 채워진 상태로 고정되는 것이 아니라 상기 유체 수용부(3731)와 상기 리저버(3741) 사이를 이동할 수 있으며, 이를 통해 상기 유체 수용부(3731) 내의 상기 투명 유체(3732)의 용량을 가변시킬 수 있는 것이다. 상기 리저버(3741)는 상기 유체 수용부(3731)와 동일한 재질로 이루어지며, 상기 유체 수용부(3731)와 일체로 형성되는 것이 바람직하다.
상기 액추에이터(3742)는 상기 리저버(3741)와 연결되어 상기 유체 수용부(3731) 내에 채워지는 상기 투명 유체(3732)의 용량을 조절한다. 즉, 상기 액추에이터(3742)의 팽창 또는 수축 작용을 통해 상기 액추에이터(3742)와 연결되는 상기 리저버(3741) 내의 투명 유체(3732)를 상기 유체 수용부(3731)측으로 이동시키거나 상기 유체 수용부(3731)로부터 상기 리저버(1841)측으로 이동시킴으로써 상기 유체 수용부(3731)내의 투명 유체(3732)의 용량을 조절하는 것이다. 상기 액추에이터(3742)로는 피에조 액추에이터(PZT), MEMS 소자 등이 포함될 수 있으나 이에 한정하는 것은 아니다. 상기 액추에이터(3742)는 외부로부터 인가되는 전원을 통해 구동하는데, 이를 위해 일단이 상기 액추에이터(3742)와 전기적으로 연결되고 타단이 상기 본체(3710)의 외부로 노출되는 한 쌍의 보조 단자(3744, 3745)를 구비한다.
그리고, 상기 액추에이터(3742)의 작동을 제어하는 전자장치(미도시)를 더 구비할 수 있다. 상기 액추에이터(3742)와 상기 보조 단자(3744,3745)와의 구체적인 연결구조는 생략하며, 도면에서는 상기 보조 단자(3744,3745)가 상기 본체(3710)의 하단으로 노출되는 것으로 도시하고 있으나 이에 한정하지 않고 상기 본체(3710)의 측면으로 노출되는 것도 가능하다. 상기 리저버(3741)와 상기 액추에이터(3742)는 상기 캐비티(3711)와 인접하여 상기 본체(3710)의 내부에 매립되어 구비될 수 있다. 이때, 상기 본체(3710)에는 상기 리저버(3741)와 상기 액추에이터(3742)를 내부에 수용할 수 있는 수용홈(미도시)을 함몰형성하여 구비하는 것이 바람직하다. 따라서 상기 리저버(3741)와 상기 액추에이터(3742)가 상기 수용홈에 삽입되어 장착될 수 있도록 한다.
그리고, 본 실시형태에 따른 발광소자 패키지에서는 상기 리저버(3741)와 상기 액추에이터(3742)가 상기 본체(3710)의 단축방향을 따라서 광축과 나란히 배치되는 것으로 도시하고 있다. 그러나 상기 본체(3710)의 장축방향을 따라서 광축과 수직을 이루도록 배치되는 것도 가능하며, 이 경우 상기 본체(3710)의 두께를 줄일 수 있을 뿐만 아니라 상기 리저버(3741)와 액추에이터(3742)를 보다 효율적으로 장착할 수 있다.
상기 유체 수용부(3731)는 상기 장착부(3712)의 단차면상에 안착되어 상기 캐비티(3711)를 덮도록 장착되는데, 이때 상기 본체(3710)의 상기 캐비티(3711)에는 투명 수지가 채워져 상기 캐비티(3711) 내에 배치되는 상기 발광소자(3720)를 밀봉하도록 할 수 있다. 또한, 상기 캐비티(3711)는 공기로 채워져 상기 캐비티(3711) 내에 배치되는 상기 발광소자(3720)를 에워싸도록 하는 것도 가능하며, 이 경우 상기 발광소자는 상기 캐비티(3711)를 덮도록 장착되는 상기 유체 수용부(3731)에 의해 밀봉되게 된다.
한편, 도 155 및 도 156을 참조하여 파장변환부(3730)와 제어부(3740)의 작동을 통한 색온도를 가변시키는 방법에 대해 설명한다. 먼저, 도 155에 도시된 바와 같이, 한 쌍의 보조 단자(3744,3745)를 통해 외부전원이 인가되어 상기 액추에이터(3742)가 팽창 작용을 하게 되면, 상기 액추에이터(3742)와 연결되는 상기 리저버(3741)는 상기 액추에이터(3742)에 의해 수축되어 상기 리저버(3741)의 용적은 작아지게 된다. 이때, 상기 리저버(3741) 내에 저장되어 있던 투명 유체(3732)는 상기 유체 수용부(3731)로 이동하여 상기 유체 수용부(3731)를 채우는 상기 투명 유체(3732)의 유량은 증가하게 된다. 따라서, 상기 유체 수용부(3731)는 유입된 투명 유체(3732)에 의해 팽창하여 용적이 증가하게 되며, 광축상에 배치되는 형광 유체층은 그만큼 두께가 증가하게 된다. 이 결과 상기 발광소자(3720)에서 발생되는 광은 두께가 두꺼워진 형광 유체층을 통과하게 되어 방출되는 광의 색온도는 낮아지게 된다.
다음으로, 도 156에 도시된 바와 같이 상기 액추에이터(3742)가 반대로 수축 작용을 하게 되면, 상기 액추에이터(3742)와 연결되는 상기 리저버(3741)는 상기 액추에이터(3742)에 의해 팽창되어 상기 리저버(3741)의 용적은 증가하게 된다. 이때, 상기 유체 수용부(3731) 내에 저장되어 있던 상기 투명 유체(3732)는 상기 리저버(3741)로 이동하여 상기 유체 수용부(3731)를 채우는 상기 투명 유체(3732)의 유량은 감소하게 된다. 따라서, 상기 유체 수용부(3731)는 상기 리저버(3741)로 이 동된 투명 유체(3732)에 의해 수축하여 용적이 감소하게 되며, 광축상에 배치되는 형광 유체층은 그만큼 두께가 감소하게 된다. 이 결과 상기 발광소자(3720)에서 발생되는 광은 두께가 얇아진 형광 유체층을 통과하게 되어 방출되는 광의 색온도는 높아지게 된다.
도면에서는 상기 유체 수용부(3731)의 전면(상면)이 평평한 상태로 팽창 및 수축하는 것으로 도시하고 있으나 이에 한정하지 않고 볼록한 돔 형상으로 중심부가 돌출된 상태로 변화할 수도 있다. 이러한 색온도의 가변은 상기 액추에이터(3742)를 제어하는 미도시된 전자장치를 통해 더욱 정밀하게 조절하는 것이 가능하다. 따라서, 기존과 달리 단일의 발광소자만으로도 효과적으로 용이하게 색온도를 조절할 수 있으며, 색 혼합을 위한 거리 확보가 필요 없어 광원의 소형화가 가능하다.
도 157은 본 발명의 또 다른 실시형태에 따른 발광소자 패키지의 단면도이다.
도 157에 도시된 바와 같이, 본 실시형태에 따른 발광소자 패키지(3800)는 발광소자(3811), 전극구조(3812,3813), 패키지 본체(3815), 투광성 투명수지(3816) 및 상기 발광소자(3811)가 탑재되는 함몰부(3818)를 구비하고 있다.
상기 발광소자(3811)는 한 쌍의 (금속)와이어(3814a, 3814b)의 각 일단부와 본딩되어 접속되고, 상기 전극구조(3812,3813)는 상기 한 쌍의 와이어(3814a, 3814b)의 각 타단부와 각각 본딩되어 접속되어 있다.
여기서, 상기 발광소자(3811)는 앞서 설명한 본 발명의 다양한 실시형태에 따른 발광소자가 사용될 수 있다.
상기 패키지 본체(3815)는 바닥면을 밀폐하고 상부는 개방된 캐비티(3817)를 형성하도록 수지물로 사출성형되는 성형 구조물이다.
여기서, 상기 캐비티(3817)는 일정 각도로 경사진 상부 경사면을 구비하고, 상기 상부 경사면에는 상기 발광소자(3811)에서 발생된 빛을 반사시킬 수 있도록 Al, Ag, Ni 등과 같이 반사율이 높은 금속소재로 이루어진 반사부재(3817a)를 구비할 수도 있다.
이러한 패키지 본체(3815)는 상기 한쌍의 전극구조(3812, 3813)가 일체로 성형되어 이를 고정하고, 상기 전극구조(3812, 3813)의 일단부 상부면 일부는 캐비티(3817)의 바닥면을 통해 외부로 노출되어 있다.
상기 전극 구조(3812, 3813)의 타단부는 외부전원과 연결될 수 있도록 상기 패키지 본체(3815)의 외부면에 노출되어 있다.
상기 함몰부(3818)는 상기 캐비티(3817)의 바닥면에 노출되는 전극구조(3812, 3813)의 상부면이 하부로 일정깊이 함몰되어 형성된다. 여기서, 상기 함몰부(3818)는 한쌍의 전극 구조(3812, 3813) 중 상기 발광소자(3811)가 탑재되는 전극 구조(3812)에 형성될 수 있다.
이러한 함몰부(3818)는 적어도 하나의 발광소자(3811)가 탑재되는 전극구조(3812)의 일단부에 하향 절곡되는 절곡부로 구비되며, 이러한 절곡부는 상기 발광소자(3811)가 탑재되는 평평한 탑재면과, 상기 탑재면으로부터 좌우양측으로 일 정각도 상향 경사지게 연장되어 상기 발광소자(3811)의 외부면과 마주하는 좌우 한쌍의 하부 경사면(3812a, 3813a)으로 구비된다.
이러한 하부 경사면(3812a, 3813a)에는 상기 발광소자(3811)의 발광시 발생된 빛을 반사시킬 수 있도록 반사부재가 구비될 수도 있다.
상기 함몰부(3818)의 형성깊이(H)는 이에 탑재되는 발광소자(3811)의 높이(h)를 고려하여 50㎛ ~ 400㎛정도 일 수 있다. 이렇게 함으로써, 패키지 본체의 캐비티의 높이(H)를 150㎛ ~ 500㎛로 낮출 수 있으며, 캐비티(3817) 내에 충진되는 투광성 투명수지의 충진 사용량을 줄여 제조원가를 절감하고, 또한 광휘도를 향상시킬 수 있는 한편, 제품의 소형화를 도모할 수 있는 것이다.
도 158은 도 157에 도시한 실시예의 변형예에 따른 발광소자 패키지의 단면도이다.
도 158에 도시된 바와 같이, 본 변형예에 따른 발광소자 패키지는 이전 실시예의 상기 함몰부(3818)와는 달리 서로 마주하는 한쌍의 전극구조(3812, 3813)의 단부 사이에 상기 패키지 본체(3815)의 성형시 캐비티(3817)의 바닥면으로부터 일정깊이 함몰되어 형성되는 요홈(3818a)을 구비하고 있다.
따라서, 이를 제외한 기타 구성요소와 관련해서는 도 157의 실시예에 따른 발광소자 패키지와 동일하므로 그 내용들로 대신하고자 한다.
그리고, 그 내용에 좀더 덧붙이면 상기 투광성 투명수지(3816)는 상기 발광소자(3811) 및 와이어(3814a, 3814b)를 덮어 외부 환경으로부터 보호하도록 상기 캐비티(3817)에 충진되는 에폭시, 실리콘 및 레진 등과 같은 투명한 수지 재료로 이루어진다.
여기서, 상기 투광성 투명수지(3816)에는 상기 발광소자(3811)에서 발생된 빛을 백색광으로 변환시킬 수 있는 YAG 및 TAG 형광체를 포함하는 가넷(Garnet)계, 실리게이트(Silicate)계, 황화물(Sulfide)계, 질화물(Nitride)계 또는 QD 형광체 중 어느 하나의 파장변환수단인 형광물질이 포함될 수 있다.
YAG 및 TAG를 포함하는 가넷계 형광물질에는 (Y, Tb, Lu, Sc ,La, Gd, Sm)3(Al, Ga, In, Si, Fe)5(O, S)12:Ce 중에서 선택하여 사용가능하며, Silicate계 형광물질에는 (Sr, Ba, Ca, Mg)2SiO4: (Eu, F, Cl) 중에서 선택 사용 가능하다. 또한 Sulfide계 형광물질에는 (Ca,Sr)S:Eu, (Sr,Ca,Ba)(Al,Ga)2S4:Eu 중에서 선택 하여 사용가능하며, Nitride계 형광체는 (Sr, Ca, Si, Al, O)N:Eu (예, CaAlSiN4:Eu, 또는 β-SiAlON:Eu) 또는 Ca-α SiAlON:Eu계인 일반식 : MeXSi12-(m+2)Al(m+n)OnN16-n : Re (x,y,m 및 n은 계수)으로 표현되는 알파 사이알론에 고용하는 금속 Me (Me은,Ca,또는 Y의 일종 혹은 2종)의 일부 혹은 전부가, 발광의 중심이 되는 란타니드 금속 Re로 치환되는 형광체인 것을 특징으로 하는 희토류 원소를 활성화시킨 산 질화물 형광체 일 수 있다.
알파 사이알론계의 또다른 형광체로 (Cax,My)(Si,Al)12(O,N)16, 여기서 M 은 Eu, Tb, Yb 또는 Er 중 적어도 하나의 물질이며 0.05<(x+y)<0.3, 0.02<x<0.27 and 0.03<y<0.3, 형광체 성분 중에서 선택하여 사용 할 수 있다.
상기 QD형광체는 코어(core) 와 셸(shell)로 이루어진 나노 크리스탈 입자로, 코어의 사이즈가 2 ~ 100nm범위에 있다. QD형광체는 코어의 사이즈를 조절함으 로 청색(B), 황색(Y), 녹색(G), 적색(R)과 같은 다양한 색깔을 발광하는 형광 물질로 사용될수 있으며, II-VI족의 화합물반도체(ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, MgTe등), III-V족의 화합물반도체 (GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlAs, AlP, AlSb, AlS등) 또는 Ⅳ족 반도체(Ge, Si, Pb 등) 중 적어도 두 종류의 반도체를 이종접합 함으로 QD형광체의 코어(core) 와 셸(shell)구조를 형성 할 수 있다. 상기 QD형광체의 셸(shell) 외각에 셸 표면의 분자 결합을 종료 시키거나 QD 입자간 응집을 억제하고 실리콘등 수지내에 분산성 향상을 향상시키기 위해 올레인산(Oleic acid)과 같은 물질을 이용한 유기 리간드 (Organic ligand)를 형성 할 수도 있다.
상기 백색광은 청색(B) 발광소자에 황색(Y) 형광체 또는 녹색(G) 및 적색(R) 형광체 또는 황색(Y), 녹색(G), 적색(R)을 포함 할 수 있다. 황색, 녹색 및 적색 형광체는 청색 발광소자에 의해 여기되어 각각 황색광, 녹색광 및 적색광을 발하며, 이 황색광, 녹색광 및 적색광은 청색 발광소자로부터 방출된 일부 청색광과 혼색되어 백색광을 출력한다.
이러한 백색광의 출력을 위한 각 형광체에 대한 구체적인 설명은 이미 전술한 실시예에서 상세히 설명하였으므로 본 변형예에서는 생략한다.
상기 요홈(3818a)에 탑재된 발광소자(3811)의 외부면과 마주하는 전극구조(3812, 3813) 단부에는 상기 발광소자(3811)의 발광시 발생된 빛을 반사시킬 수 있도록 반사부재가 구비되는 하부 경사면(3812b, 3813b)을 각각 구비하는 것이 바람직하다.
한편, 상기와 같은 구성을 갖는 LED 패키지(3800, 3800')는 캐비티(3817)의 정중앙에 배치되는 발광소자(3811)가 상기 전극 구조(3812)에 하향 절곡 형성되는 함몰부의 탑재면에 탑재되거나 서로 마주하는 전극 구조(3812, 3813)의 서로 마주하는 단부사이에 함몰형성되는 요홈(3818a)에 탑재됨으로써, 상기 전극 구조(3812, 3813)와 와이어(3814a, 3814b)를 매개로 하여 와이어 본딩되는 발광소자(3811)의 상부면은 상기 전극 구조(3812, 3813)의 상부면 높이와 대략적으로 동일하도록 배치할 수도 있다.
이러한 경우, 상기 발광소자(3811)와 와이어 본딩되는 와이어(3814a, 3814b)의 최대 높이는 상기 발광소자(3811)의 탑재 높이가 낮아진 만큼 낮출 수 있는 것이다.
이에 따라, 상기 발광소자(3811) 및 와이어(3814a, 3814b)를 보호하도록 상기 캐비티(3817)에 충진되는 투광성 투명수지(3816)의 충진량을 줄일 수 있는 한편, 상기 투광성 수지의 충진 높이(H)도 상기 발광소자(3811)의 탑재 높이가 낮아진 만큼 낮아질 수 있고, 이로 인하여 상기 발광소자(3811)의 발광시 발생된 빛의 광 휘도를 종래에 비하여 상대적으로 높일 수 있는 것이다.
그리고, 상기 캐비티(3817)에 충진되는 투광성 투명수지(3816)의 충진 높이(H)를 낮춤으로써 상기 패키지 본체(3815) 몸체의 상단 높이도 상기 충진 높이가 낮아진 만큼 낮아져 패키지의 전체 크기를 보다 소형화할 수 있는 것이다.
도 159a 내지 도 159c는 본 실시예에 따른 발광소자 패키지에서 외부의 리드 프레임을 형성하는 공정을 구체적으로 도시한 개략도이다.
도 159a에서와 같이, 우선 음 및 양극 전극구조(3812, 3813)는 몸체 대부분이 수지물로 사출성형되는 패키지 본체(3815)에 일체로 고정되지만 단부는 외부 전원과 연결될 수 있도록 상기 패키지 본체(3815)의 외부면으로 노출된다.
상기 패키지 본체(3815)의 외부로 하향 노출된 전극구조(3812, 3813)는 패키지의 측면 및/또는 하면을 통해 절곡되어 캐비티(3817)가 형성되어진 발광면과는 반대 방향으로 절곡되어 형성되어진다.
상기 전극구조(3812, 3813)는 패키지의 실장면(바닥면, 3819)의 측면 및/또는 뒷면(후방 또는 하부)으로 전극구조가 절곡 형성되어 있다.
형성 과정은 먼저 도 159b에서와 같이 패키지 바닥면으로 노출된 전극구조(3812)의 끝부분을 1차로 절곡하여 패키지(3800)의 측면쪽 형상에 맞추고, 그 다음 도 159c에 도시된 대로 패키지 바닥면(3819)의 후방으로 절곡하여 전체 전극구조(3812)의 형상을 완성한다.
이와 같은 발광소자 패키지는 LCD 백라이트 유닛의 광원으로 유익하게 사용될 수 있는 백색 광원 모듈을 제공할 수 있다. 즉, 본 발명에 따른 백색 광원 모듈은 LCD 백라이트 유닛의 광원으로서 여러가지 광학 부재(확산판, 도광판, 반사판, 프리즘 시트 등)와 결합되어 백라이트 어셈블리를 구성할 수 있다. 도 160 및 도 161은 이러한 백색 광원 모듈을 예시한다.
우선, 도 160을 참조하면, LCD 백라이트용 광원 모듈(3100)은, 회로 기판(3101)과 그 위에 실장된 복수의 백색 발광소자 패키지(3010)들의 배열을 포함한 다. 회로 기판(3101) 상면에는 LED 장치(3010)와 접속되는 도전패턴(미도시)이 형성될 수 있다.
각각의 백색 발광소자 패키지(3010)는, 도 120에서 도시되어 설명된 백색 발광소자 패키지로 이해할 수 있다. 즉, 청색 발광소자(3015)가 회로 기판(3101)에 COB(Chip On Board) 방식으로 직접 실장된다. 각각의 백색 발광소자 패키지(3010)의 구성은, 별도의 반사벽을 갖지 않고 렌즈 기능을 갖는 반구형상의 수지 포장부(3019)를 구비함으로써, 각각의 백색 발광소자 패키지(3100)는 넓은 지향각을 나타낼 수 있다. 각 백색 광원의 넓은 지향각은, LCD 디스플레이의 사이즈(두께 또는 폭)를 감소시키는데 기여할 수 있다.
도 161을 참조하면, LCD 백라이트용 광원 모듈(3200)은, 회로 기판(3201)과 그 위에 실장된 복수의 백색 발광소자 패키지(3020)들의 배열을 포함한다. 상기 백색 발광소자 패키지(3020)는 도 121에서 설명된 바와 같이 패키지 본체(3021)의 반사컵 내에 실장된 청색 발광소자(3025)와 이를 봉지하는 수지 포장부(3029)를 구비하고, 수지 포장부(3029) 내에는, 녹색 및 적색 형광체(3022,3024)와 함께 황색 또는 황등색 형광체(3026)가 분산되어 포함된다.
< 백라이트장치 >
본 발명에 따른 백라이트장치는 상술한 발광소자 패키지를 구비한다. 그리고, 본 발명에 따른 반도체 발광소자를 실장하는 발광소자 패키지는 백라이트장치와 같은 면광원장치 이외에 조명장치, 차량용 헤드라이트등 다른 다양한 장치의 광 원으로도 응용될 수 있다.
이하에서는 다양한 실시형태를 통해 본 발명에 따른 발광소자 패키지를 구비하는 백라이트장치에 대해 설명한다.
도 162는 본 발명의 일 실시형태에 따른 면광원장치에서 발광모듈들의 배열 구조를 개략적으로 나타낸 평면도이며, 도 163은 도 162에서 발광모듈들의 회전 배치 방식을 나타낸 것이다.
우선, 도 162를 참조하면, 본 실시형태에 따른 면광원장치(4000)는 제1 내지 제4 발광모듈(4001a ~ 4001d)을 구비한다. 상기 제1 내지 제4 발광모듈(4001a ~ 4001d)은 각각 복수의 발광소자(4003) 및 커넥터(4004a ~ 4004d)를 갖추어 구성된다. 상기 복수의 발광소자(4003)는 행과 열로 2차원 배열됨으로써 발광 영역을 이룰 수 있으며, 특히, 백색광을 발광할 수 있는 LED를 사용하는 경우, 상기 면광원장치(1900)는 백라이트 유닛, 조명 장치 등에 사용될 수 있다. 상기 제1 내지 제4 발광모듈(4001a ~ 4001d)은 정사각형 구조로서 서로 동일한 형상을 가질 수 있으며, 각각은 절연성 기판 상에 복수의 발광소자(4003) 및 커넥터(4004a ~ 4004d)가 배치된 구조에 해당한다.
상기 제1 발광모듈(4001a)에 포함된 커넥터(4004a)는 상기 제1 발광모듈(4001a)의 일 꼭지점에 인접하여 배치된다. 이 경우, 상기 제1 발광모듈(4001a)의 상기 꼭지점은 도 162에서 제1 내지 제4 발광모듈이 이루는 정사각형, 즉, 전체 면 광원 장치(4000)의 중심점(이하, 중심점이라 함)에 해당한다. 또한, '인접'이라 함은 상기 커넥터(4004a)가 상기 제1 발광모듈(4001a)을 이루는 4개의 꼭지점 중에서 특정 꼭지점에 가장 가깝게 배치되었음을 나타내는 것으로 이해할 수 있으며, 후술할 바와 같이, 상기 특정 꼭지점은 발광모듈의 회전 중심점이 된다.
제2 내지 제4 발광모듈(4001b ~ 4001d)은 상기 제1 발광모듈(4001a)이 회전 중심점을 축으로 하여 90°의 각도로 순차적으로 회전된 구조이다. 즉, 상기 제2 발광모듈(4001b)에 포함된 복수의 발광소자(4003) 및 커넥터(4004b)는 상기 제1 발광모듈(4001a)에 포함된 복수의 발광소자(4003) 및 커넥터(4004a)가 시계 방향으로 90° 회전된 배열 구조를 갖는다. 마찬가지로, 상기 제3 발광모듈(4001c)에 포함된 복수의 발광소자(4003) 및 커넥터(4004c)는 상기 제2 발광모듈(4001b)에 포함된 복수의 발광소자(4003) 및 커넥터(4004b)가 시계 방향으로 90° 회전된 배열 구조를 가지며, 상기 제4 발광모듈(40901d)도 같은 방식으로 배열될 수 있다. 이러한 회전 배치 방식은 도 163a에 도시된 것과 같다. 다만, 회전 방향은 시계 방향이 아닌 도 163b와 같이 반시계 방향일 수도 있다.
상기 제1 내지 제4 발광모듈(4001a ~ 4001d) 각각에 포함된 커넥터들(4004a ~ 4004d)은 도 162에 도시된 바와 같이, 상기 중심점에 인접하여 배치되며 서로 간의 거리도 매우 가깝게 된다. 이에 따라, 전원 연결을 위한 배선 구조가 간결해질 수 있다. 또한, 상기 제1 내지 제4 발광모듈(4001a ~ 4001d)이 순차적 90° 회전 배치 구조를 가짐에 따라, 본 실시 형태에 따른 면 광원 장치(4000)는 한 종류의 발광모듈만 가지고도 구성될 수 있다. 회전 배치 구조를 이용하지 않을 경우, 상기 커넥터들(4004a ~ 4004d)이 중심점에 인접하게 배치되도록 하기 위해서는 상 기 제1 내지 제4 발광모듈(4001a ~ 4001d)은 서로 다른 구조를 가져야 한다. 즉, 본 제1 실시형태와 달리, 4종류의 발광모듈이 요구된다. 이와 같이, 본 제1 실시형태의 면광원장치의 경우, 커넥터들(4004a ~ 4004d) 간의 거리가 짧아져 전기 배선 구조가 간결하게 되면서도 하나의 발광모듈만이 요구되어 발광모듈의 규격화 및 생산성 향상에 따른 비용 절감 효과를 가져올 수 있다.
도 164는 본 발명의 다른 실시형태에 따른 면광원장치에서 발광모듈들의 배열 구조를 개략적으로 나타낸 평면도이다.
도 164를 참조하면, 본 실시형태에 따른 면광원장치(4010)는 이전 실시 형태와 마찬가지로, 제1 내지 제4 발광모듈(4011a ~ 4011d)을 구비하며, 상기 제1 내지 제4 발광모듈(4011a ~ 4011d)은 각각 복수의 발광소자(4013) 및 커넥터(4014a ~ 401d)를 갖추어 구성된다. 본 제2 실시형태의 면광원장치의 경우, 도 162의 실시 형태와 달리, 상기 커넥터(4014a ~ 4014d)가 상기 발광소자(4013)와 별개의 영역에 형성된다. 즉, 도 164는 면광원장치(4010)를 커넥터(4014a ~ 4014d)가 배치된 방향에서 바라본 것으로서, 상기 커넥터(4014a ~ 4014d)는 상기 제1 내지 제4 발광모듈(4011a ~ 4011d)에서 상기 발광소자(4013)의 반대 편에 형성될 수 있으며, 이에 따라, 상기 발광소자(4013)를 커넥터(4014a ~ 4014d)에 제약을 받지 않고 배치할 수 있다.
도 165는 본 발명의 또 다른 실시형태에 따른 면광원장치에서 발광모듈들의 배열 구조를 개략적으로 나타낸 평면도이다.
도 165를 참조하면, 본 실시형태에 따른 면광원장치(4020)는 제1 내지 제3 발광모듈(4021a ~ 4021c)을 구비하며, 상기 제1 내지 제3 발광모듈(4021a ~ 4021c)의 외부 경계 선이 이루는 형상, 즉, 발광영역은 원형을 이룬다. 도 162의 실시형태와 마찬가지로, 상기 제1 내지 제3 발광모듈(4021a ~ 4021c)은 서로 동일한 형상을 가지며, 서로 공유하는 꼭지점, 즉, 회전 중심점과 이루는 각도가 120°(즉, 360°/3)인 부채꼴 형상을 갖는다. 상기 제1 발광모듈(4021a)에 포함된 복수의 발광소자(4023)는 제1 및 제2 방향으로 2차원 배열되며, 상기 제1 및 제2 방향은 120°를 이룬다. 이 경우, 상기 제1 방향은 상기 제1 발광모듈(4021a)과 상기 제2 발광모듈(4021b)의 경계 선과 같은 방향이며, 상기 제2 방향은 상기 제1 발광모듈(4021a)과 상기 제3 발광모듈(4021c)의 경계 선과 같은 방향에 해당한다.
상기 제2 발광모듈(4021b)에 포함된 복수의 발광소자(4023) 및 커넥터(4024b)는 상기 제1 발광모듈(4021a)에 포함된 복수의 발광소자(4023) 및 커넥터(4024a)가 상기 중심점을 축으로 시계 방향으로 120° 회전된 구조를 가지며, 상기 제3 발광모듈(4021c)에 포함된 복수의 발광소자(4023) 및 커넥터(4024c)는 상기 제2 발광모듈(4021b)에 포함된 복수의 발광소자(4023) 및 커넥터(4024b)가 상기 중심점을 축으로 시계 방향으로 120° 회전된 구조를 갖는다. 본 실시형태에서는 원형의 면광원장치(4020)의 3등분 된 구조를 설명하였으나, 실시 형태에 따라, 면 광원 장치의 형상은 정삼각형, 정오각형 등과 같은 정n각형(n은 3 이상의 자연수)일 수 있으며, 이 경우, n개의 발광모듈은 1/n×360°의 회전 각도로 배열될 수 있다.
도 166은 본 발명의 또 다른 실시형태에 따른 면광원장치에서 발광모듈들의 배열 구조를 개략적으로 나타낸 평면도이다.
도 166을 참조하면, 본 실시형태에 따른 면광원장치(4030)는 도 162에서 설명한 면광원장치(4000)와 유사한 구조로서, 제1 내지 제4 발광모듈(4031a ~ 4031d)을 구비한다. 상기 제1 내지 제4 발광모듈(4031a ~ 4031d)은 각각 복수의 발광소자(4033) 및 커넥터(4034a ~ 4034d)를 갖추어 구성되며, 상기 제2 내지 제4 발광모듈(4031b ~ 4031d)은 상기 제1 발광모듈(4031a)을 90°씩 순차적으로 회전하여 얻어질 수 있다.
본 실시형태의 경우, 상기 제1 발광모듈(4031a)에 포함된 복수의 발광소자(4033)는 행과 열, 즉, x 및 y 방향으로 배열되되, x방향의 피치(x)와 y방향의 피치(y)는 서로 상이하다. 본 실시 형태에서는 y방향의 피치(y)를 일반적으로 채용될 수 있는 크기에 해당하는 x방향의 피치(x)보다 크게 하였으며, 이에 따라, 전체 사용되는 발광소자(4033)의 수를 줄일 수 있다. 구체적으로, 상기 x방향의 피치(x)는 약 26 ~ 27㎜ 정도가 되며, 상기 y방향의 피치(y)는 약 29 ~ 37㎜ 정도가 된다. 다만, 본 실시 형태에서는 y방향의 피치(y)를 x방향의 피치(x)보다 크도록 하였으나, 실시 형태에 따라서는, x방향의 피치(x)가 y방향의 피치(y)보다 더 클 수도 있다. 즉, x방향의 피치(x)와 y방향의 피치(y)가 서로 다르기만 하면 되는 것이다. 한편, 본 명세서에서 사용되는 피치는 일 방향으로 이격 된 인접한 발광소자(4033)의 중심 간 거리에 해당한다.
본 실시 형태와 같이, x 및 y 방향 피치가 서로 상이한 발광소자 배열 구조의 경우, y 방향 피치가 커짐에 따라 휘도 불균일을 최소화할 수 있다. 제1 발광모 듈(4031a)에서는 y방향의 피치(y)가 x방향의 피치(x)보다 크지만, 제2 발광모듈(4031b)은 이와 반대가 되며, 제3 발광모듈(4031c)은 제2 발광모듈(4031b)과 반대가 된다. 또한, 제3 발광모듈(4031c)이 시계 방향으로 90° 회전되어 형성된 제4 발광모듈(4031d)은 제2 발광모듈(4031b)과 동일한 피치 구조를 갖는다. 이와 같이, 인접한 발광모듈과 반대되는 배열 구조를 가짐에 따라 x방향 및 y방향 피치가 상이함으로써 야기되는 휘도 불균일을 최소화할 수 있으며, 결국, 상기 면 광원 장치(4030)는 휘도 분포의 균일성을 유지하면서도 발광소자(4033)의 개수가 줄일 수 있다.
이 경우, 발광소자(4033)의 개수가 줄어들면서 생기는 휘도의 저하의 문제는 주입 전류를 증가시킴으로써 해결할 수 있을 것이다. 이와 같이, 제1 발광모듈(4031a)의 배치 방식과 전체 발광 영역에서 차지하는 영역이 결정된다면, 상기 제1 발광모듈(4031a)을 시계 또는 반시계 방향으로 회전하여 나머지 발광모듈들의 배치 방식을 결정할 수 있으며, 어느 방향으로 회전하더라도 휘도 균일도 및 발광소자 개수의 감소를 얻을 수 있을 것이다.
상기 실시형태들에서는 면광원장치의 전체 형상이 정사각형, 원형인 경우를 설명하였으나, 도 167에 도시된 바와 같이, 직사각형 면 광원 장치에도 응용이 가능하다.
도 167은 본 발명의 또 다른 실시형태에 따른 면광원장치를 나타내는 평면도이다. 본 실시형태의 경우, 면광원장치(4040)는 직사각형의 형상을 가지며, 도 162의 실시 형태의 면광원장치(4000)를 옆으로 4개 이어 붙여서 만들 수 있다. 이와 같이, 본 발명에 의해 제공되는 면 광원 장치는 300*300, 600*600의 사이즈 외에도 300*1200, 600*1200 등의 사이즈에도 적용할 수 있다. 나아가, 상술한 구조를 갖는 면 광원 장치는 LCD 패널의 후면에서 광을 조사하는 백라이트 유닛 등에 채용될 수 있다.
상술한 실시형태들에 따른 면광원장치는 본 발명의 다양한 실시형태에 따른 발광소자 패키지를 채용하고 있으며, 각 발광소자 패키지는 본 발명의 실시예 1 내지 실시예 11에 따라 합성한 (Sr, M)2SiO4-xNy:Eu의 조성식으로 표현되는 무기화합물 또는 상기 실리게이트(Silicate)계, 가넷(Garnet)계. 황화물(Sulfide)계, 질화물(Nitride)계, QD형광체 중 적어도 하나를 구비하며, 상기 M은 적어도 하나의 1가 및 2가 원소이며, 0<x<4, y=2x/3을 만족하며, 발광다이오드 칩에서 방출된 광을 흡수하여 600㎚ ~ 700㎚ 범위의 발광피크를 가진 광을 방출하는 적색형광체를 적어도 포함하는 파장변환부를 구비한다.
도 168은 상술한 본 발명의 다양한 실시형태에 따른 면광원장치를 채용한 일실시형태의 백라이트 유닛을 나타내는 단면도이다.
도 168을 참조하면, 본 실시형태에 따른 백라이트 유닛(5000)은 앞서 설명한 다양한 실시형태의 면광원장치를 구비할 수 있으며, 이 중 하나의 실시형태를 예를 들어 설명한다. 상기 면광원장치는 기판(5001) 상에 배치된 복수의 발광소자(5002)를 구비하며, 상기 발광소자(5002)는 서로 다른 피치(P1, P2)로 배열되어 있다. 또 한, 상세히 도시하지는 않았으나, 상기 면광원장치의 발광 영역은 n등분되어 형성된 제1 내지 제n 발광모듈을 구비하며, 상기 제1 발광모듈로부터 시계 또는 반시계 방향으로 360°/n의 각도로 순차적으로 회전되어 제2 내지 제n 발광모듈이 형성된다. 나아가, 도시하지는 않았으나, 상기 복수의 발광소자(5002)에 전원 공급을 하기 위한 커넥터는 상기 제1 내지 제n 발광모듈의 회전 중심에 인접하여 배치됨으로써 전원 배선의 효율성을 기할 수 있다.
상기 면광원장치의 상부에는 입사된 광을 균일하게 확산시키는 확산시트 또는 확산판과 상기 확산시트 또는 확산판 상부에 배치되어 입사된 광을 수직 방향으로 집광하는 집광 시트 등을 포함하는 광학 시트(5014)가 배치된다. 상기 광학 시트(5014)는 상기 집광 시트 상부에 배치되어 하부의 광학구조물을 보호하기 위한 보호 시트를 추가 포함할 수 있다. 상기 기판(5001) 상면의 가장자리에는 상기 발광소자(5002)를 둘러싸도록 형성되며, 상기 발광소자(5002)가 배치된 방향으로 경사면을 갖는 측벽(5013)이 형성된다. 또한, 상기 기판(5001) 상면에는 상기 발광소자(5002)에서 방출된 빛을 상부로 반사시킬 수 있는 반사층(5011)이 구비될 수 있다. 한편, 상기 발광소자(5002)들의 배열 간격인 피치(P1, P2)는 광학 거리(ℓ)보다 작은 것이 바람직하다. 본 조건을 충족하지 않는 경우, 면광원장치의 휘도 균일도가 저하될 수 있으며, 핫 스팟(hot spot)이 보일 수도 있다. 여기서, 상기 광학 거리(ℓ)는 발광소자(801)의 광 방출 면으로부터 상기 광학 시트(5014)까지의 거리, 즉, 수직방향으로 광이 진행한 거리로 이해할 수 있다.
도 169는 본 발명의 다른 실시형태에 따른 면광원장치를 나타낸 사시도이다. 도 169에 도시된 바와 같이, 면광원장치(5100)는 하부 프레임(5110), 발광소자 패키지(5120), 도광판(5130), 광학시트(5140)를 포함한다. 이때, 면광원장치(5100)는 광의 투과율을 조절하여 영상을 표시하는 액정 패널(5150)과 함께 액정표시장치에 사용될 수 있다. 그리고, 광학시트(5140)는 도광판(5130)의 상부에 장착되며, 확산판, 확산시트, 프리즘시트 및 보호시트를 포함할 수 있다.
도광판(5130)은 복수개로 분할되어 있으며, 복수개의 도광판이 하부 프레임(5110)의 수납 공간에 병렬적으로 배치되며, 발광소자 패키지(5120)는 도광판(5130)의 측면에 배치된다. 여기서, 도광판(5130)은 복수개가 개별적으로 배치되는 것도 가능하지만, 복수개가 일체화되도록 연결되어 배치될 수도 있다.
그리고, 발광소자 패키지(5130)는 본 발명의 실시예1 내지 실시예11에 따라 합성한 (Sr, M)2SiO4-xNy:Eu의 조성식으로 표현되는 무기화합물 또는 상기 실리게이트(Silicate)계, 가넷(Garnet)계. 황화물(Sulfide)계, 질화물(Nitride)계, QD형광체 중 적어도 하나를 구비하며, 상기 M은 적어도 하나의 1가 및 2가 원소이며, 0<x<4, y=2x/3인 적색형광체와, 청색형광체, 녹색형광체 및 황색형광체들이 수지재에 적절히 혼합된 파장변환부를 구비한다. 그리고, 도시하지는 않았지만, 도광판(5130)의 하부에 반사판을 더 구비할 수 있으며, 본 면광원장치는 하부 프레임(5110)의 내부 공간에 장착되어 고정될 수도 있다.
도 170은 본 발명의 또 다른 실시형태에 따른 평판형 도광판을 갖는 면광원 장치 즉, 백라이트장치를 설명하기 위한 개략적인 도면이다.
도 170a에 도시된 바와 같이, 본 발명에 따른 평판형 도광판을 갖는 백라이트장치(5200)는 탠덤(tandem)형 면광원장치이며, n개의 LED 광원 모듈(5210)과, n개의 평판형 도광판(5220)을 갖는다.
LED 광원 모듈(5210)은 기판(5211)위에 복수개의 발광소자 패키지(5212)가 일렬로 배열되고, 이렇게 구성된 n개의 LED 광원 모듈(5210)이 서로 평행하게 배열된다. 이들 n개의 LED 광원모듈(5210)을 따라 한 측에 각각 배열 설치되는 평판형 도광판(5220)을 구비한다.
또한, 평판형 도광판(5220)을 갖는 백라이트장치는 LED 광원 모듈(5210)의 하부 및 평판형 도광판(5220)의 하부에 배치되어 LED 광원 모듈(5210)에서 출광된 광을 반사시키는 반사부재(미도시)를 구비할 수 있다.
또한, 상기 평판형 도광판(5220)의 상부에는 반사부재에서 반사되고, 평판형 도광판에서 굴절되어 액정패널측으로 출사되는 광을 여러 방향으로 확산시키는 확산시트나 확산시트를 통과한 광을 정면 시야각 안으로 모아주는 역할을 하는 프리즘 시트와 같은 광학시트(미도시)를 구비할 수 있다.
구체적으로, LED 광원 모듈(5210)은 탑 뷰(Top View)방식으로 각각 실장된 복수개의 발광소자 패키지(5212)로 이루어질 수 있다. 그리고, 평판형 도광판(5220)은 평판형(plate-type)으로, LED 광원에서 광이 방출되는 방향으로 배치되며 광을 통과시킬 수 있도록 투명한 소재로 이루어진다. 평판형 도광판은 웨지형 도광판과 비교하여 그 형상이 간단하여 양산이 용이하며, LED 광원위에 도광판의 위치를 맞추는 것 또한 용이하다.
상기 평판형 도광판(5220)은 LED 광원(5210)으로부터 나온 광이 입사되는 입광부(5221), 균일한 두께를 갖는 평판형으로 형성되고, LED 광원으로부터 입사된 광을 조명광으로 액정패널측에 출사하는 출사면을 갖는 출사부(5224), 및 상기 출사부를 기준으로 입광부(5221)의 맞은 편에 돌출형성되고, 입광부의 두께보다 작은 두께를 가지는 선단부(5222)를 구비하며, 평판형 도광판(5220)의 선단부(5222)가 LED 광원(5210)의 위를 덮도록 배치된다. 즉, n번째 평판형 도광판(5220)의 선단부(5222)의 하부에 n+1번째 LED 광원(5210)이 위치한다. 그리고 평판형 도광판(5220)의 선단부(5222)는 하면에 프리즘 형상(5223)을 갖는다.
도 170b에서와 같이, LED 패키지(5212)로부터 나온 광은 도광판(5220)에 직접 출사되지 않고, 평판형 도광판(5220)의 선단부(5222)의 하면에 구비된 프리즘 형상(5223)에 의해 산란되어 분산된다. 이에 의해 LED 광원(5210) 위의 도광판에 생기는 핫 스팟을 제거할 수 있다.
도 171는 도 170에 도시된 평판형 도광판(5220)을 설명하기 위한 개략적인 사시도이다. 도 171에 도시된 바와 같이, 평판형 도광판(5220)은 복수개의 LED 패키지(5212)로 이루어진 LED 광원(5210)으로부터 나온 광이 입사되는 입광부(5221), 균일한 두께의 평판형으로 형성되고, 입광부(5221)로 입사된 광을 조명광으로 액정패널(미도시)측에 출사하는 출사면을 갖는 출사부(5224), 및 출사부(5224)를 기준으로 입광부(5221)의 맞은 편에 형성되고, 입광부(5221)의 입사단면보다 좁은 두께의 단면을 갖는 선단부(5222)를 구비한다.
선단부(5222)는 자신의 하부에 배열되는 LED 패키지(5212)로부터 나온 광의 일부를 분산하기 위해 프리즘 형상(5223)을 구비한다. 이러한 프리즘 형상(5223)은 입사된 광을 분산 및 산란시킬 수 있는 삼각형 프리즘, 원뿔형 프리즘 및 반구형 프리즘 중 적어도 어느 하나일 수 있다.
또한, 선단부(5222)의 프리즘 형상은 선단부(5222) 전체에 형성될 수 있으며, 또는 LED 패키지(5212) 상부에만 일부 형성될 수도 있다. 이러한 프리즘 형상에 의해 LED 패키지(5212) 위의 도광판(5020)에 발생 되는 핫 스팟의 제거가 가능하다.
따라서 본 발명은 평판형 도광판(5220)에 있어서, 선단부(5222)의 하면에 프리즘 형상(5223)을 가공함으로써 LED 패키지(5212)로부터 나온 광의 일부에 의해 LED 패키지(5212) 위의 도광판(5220)에 발생되는 핫 스팟을 분산시키기 위해, LED 패키지와 도광판 사이에 별도의 확산시트 및 프리즘시트를 가공하는 공정이 불필요하다.
한편, 도 172 내지 도 178을 참조하여 본 발명의 또 다른 실시형태에 따른 평판형 도광판을 갖는 백라이트장치를 설명한다.
도 172는 본 발명의 또 다른 실시예에 따른 백라이트장치의 분해사시도이고, 도 173은 도 172에 도시된 백라이트장치의 적층후 I-I'선을 따라 본 절단면도이다. 여기서, 백라이트장치는 다수의 도광판들을 구비할 수 있으나, 설명의 편의상 2개의 도광판을 도시하였다.
도 172 및 도 173을 참조하면, 백라이트장치(5300)는 하부커버(5310), 도광판(5320), 광원장치(5330) 및 고정수단(5340)을 포함한다.
상기 하부커버(5310)는 수납공간을 가진다. 예컨대, 상기 수납공간은 상기 하부커버(5310)의 바닥면을 이루는 플레이트(plate) 및 상기 플레이트의 가장자리에서 절곡된 측벽에 의해 형성될 수 있다.
상기 하부커버(5310)는 후술 될 고정수단(5340)이 체결되는 체결구 혹은 체결부(5311)를 구비할 수 있다. 여기서, 상기 체결구 혹은 체결부(5311)는 후술 될 고정수단(5340)이 관통되는 관통홀부 또는 상기 고정수단이 삽입되기 위한 홈부일 수 있다.
상기 도광판(5320)은 다수개로 분할되어 있다. 다수개로 분할된 상기 도광판(5320)은 상기 하부커버(5310)의 수납공간에 병렬적으로 배치되어 있다.
상기 각 도광판(5320)은 몸체를 관통하는 관통홀(5321)을 구비한다. 상기 관통홀(5321)은 상기 도광판(5320)의 에지에 배치되어 있다. 그러나, 본 발명의 실시예에서 상기 관통홀(5321)의 위치 및 개수에 대해 한정하는 것은 아니다. 상기 관통홀(5321)은 상기 체결부(5311)와 대응되도록 배치된다.
상기 도광판(5320)의 형태는 사각형 형상으로 도시하였으나, 이에 한정되지 않고 삼각형, 육각형등 여러 형태를 가질 수 있다.
상기 각 도광판(5320)의 일측에는 상기 도광판(5320)으로 광을 제공하는 복수의 광원장치(5330)가 배치되어 있다. 상기 각 광원장치(5330)는 광을 형성하는 광원, 즉 발광소자 패키지(5331) 및 상기 발광소자 패키지(5331)의 구동전압을 인 가하기 위한 다수의 회로패턴을 구비하는 기판(5332)을 포함할 수 있다.
예컨대, 상기 발광소자 패키지(5331)는 청색, 녹색 및 적색을 각각 구현하는 서브 발광소자를 포함할 수 있다. 이때, 청색, 녹색 및 적색을 각각 구현하는 서브 발광소자로부터 방출된 청색, 녹색 및 적색광은 서로 혼색되어 백색광을 구현할 수 있다. 또는, 상기 발광소자는 청색 발광소자 및 상기 청색 발광소자에서 방출된 청색광의 일부를 황색으로 변환시키는 형광체를 포함할 수 있다. 이때, 상기 청색과 상기 황색이 혼색되어 백색광을 구현할 수 있다.
상기 발광소자 패키지 및 상기 형광체에 대한 구체적인 설명은 이미 전술한 실시예에서 상세히 설명하였으므로 생략한다.
상기 광원장치(5330)에서 형성된 광은 상기 도광판(5320)의 측면에 입사되고, 상기 도광판(5320)의 내부 전반사에 의해 상부로 출사된다.
상기 고정수단(5340)은 상기 도광판(5320)의 유동을 방지하기 위하여 상기 도광판(5320)을 상기 하부커버(5310)에 고정하는 역할을 한다. 상기 고정수단(5340)은 상기 도광판(5320)의 관통홀(5321)에 삽입되어 상기 도광판(5320)을 상기 하부커버(5310)상에 고정시킨다. 이에 더하여, 상기 고정수단(5340)은 상기 도광판(5320)의 관통홀(5321)을 경유하여 상기 도광판(5320)의 체결부(5311), 예컨대 상기 관통홀부를 관통하거나 상기 삽입홈에 삽입될 수 있다.
상기 고정수단(5340)은 몸통부(5342) 및 상기 몸통부(5342)로부터 연장된 머리부(5341)를 포함한다.
상기 몸통부(5342)는 상기 도광판(5320)의 관통홀을 관통하며 상기 체결 부(5311)에 체결된다. 즉, 상기 몸통부(5342)는 상기 도광판(5320)과 상기 하부커버(5310)를 서로 결합시켜, 상기 도광판(5320)을 상기 하부커버(5310)상에 고정시키는 역할을 한다.
상기 머리부(5341)는 상기 몸통부(5342)보다 넓은 너비를 가짐에 따라, 상기 고정수단(5340)이 상기 도광판(5320)의 관통홀(5321)을 통해 완전히 빠져나가는 것을 방지한다.
상기 머리부(5341)는 여러 형태, 예컨대 반원형, 반타원형, 사각형 및 삼각형 중 어느 하나의 단면 형태를 가질 수 있다. 여기서, 상기 머리부(5341)가 삼각형의 단면 형태를 가질 경우, 상기 고정수단(5340)과 후술 될 광학부재(5360)간의 접촉을 최소화할 수 있어, 상기 고정수단(5340)으로 인한 흑점이 발생하는 것을 최소화할 수 있다.
상기 도광판(5320)과 상기 광학부재(5360)는 일정한 간격을 가짐에 따라, 상기 도광판(5320)으로부터 출사된 광은 상기 광학부재(5360)상에 균일하게 제공될 수 있다. 여기서, 상기 머리부(5341)는 상기 광학부재(5360)를 지지함에 따라, 상기 도광판(5320)과 후술 될 광학부재(5360)간의 간격을 유지하는 역할을 하게 된다. 여기서, 상기 도광판(5320)과 상기 광학부재(5360)의 간격은 상기 머리부(5341)의 높이를 조절함에 따라 조정될 수 있다.
상기 고정부재(5340)는 화질에 미치는 영향을 최소화하기 위해, 광을 투과하는 재질, 예컨대 투명한 플라스틱으로 이루어질 수 있다.
이에 더하여, 상기 각 도광판(5320)의 하부에 반사부재(5350)가 배치될 수 있다. 상기 반사부재(5350)는 상기 도광판(5320)의 하부로 출사되는 광을 반사하여 상기 도광판(5320)으로 재입사시킴으로써, 백라이트장치의 광효율을 향상시킨다.
상기 반사부재(5350)는 상기 관통홀(5321) 및 상기 체결부(5311)와 대응되는 관통부(5351)를 구비할 수 있다. 상기 고정수단(5340)은 상기 관통홀(5321) 및 상기 관통부(5351)를 경유하여 상기 체결부(5311)에 체결될 수 있다. 이로써, 상기 반사부재(5350)가 상기 도광판(5320)과 같이 다수개로 분할될 경우, 상기 고정수단(5340)에 의해 상기 하부커버(5310)상에 고정될 수 있다.
이에 더하여, 상기 백라이트장치는 상기 도광판(5320)상에 배치된 광학부재(5360)를 더 포함할 수 있다. 상기 광학부재(5360)의 예로서는 상기 도광판(5340)에 배치된 확산판, 확산시트, 프리즘시트 및 보호시트를 포함할 수 있다.
따라서, 본 발명의 실시예에서, 백라이트장치는 다수개로 분할된 도광판을 구비함에 따라, 부분 구동에 의한 로컬 디밍 효과를 더욱 향상시킬 수 있다.
또한, 다수개로 분할된 상기 도광판들은 고정수단을 이용하여 하부커버상에 고정시킴으로써, 상기 도광판의 유동에 의한 불량을 방지할 수 있다.
또한, 상기 고정수단에 의해 상기 도광판과 상기 광학부재간의 간격을 일정하게 유지할 수 있어, 균일한 광을 액정패널에 제공할 수 있다.
도 174는 본 발명의 또 다른 실시예에 따른 LED 백라이트장치를 나타내는 평면도이고, 도 175는 도 174에 나타낸 A영역의 기판 체결전의 단면사시도이며, 도 176은 도 174에 나타낸 A영역의 기판 체결후의 단면사시도이다. 또한, 도 177은 도 176의 절단선(II-II')을 따라 본 절단면도이다.
도 174 내지 도 177에 도시된 바와 같이, 본 발명에 따른 LED 백라이트장치는 제1관통홀(5410a) 혹은 홈 등으로 이루어진 체결구 혹은 체결부를 갖는 갖는 하부커버(5410)와, 상기 하부커버(5410)상에 배치되는 복수개의 도광판(5420)과, 상기 각 도광판(5420)의 일측에서 하부커버(5410)의 바닥면에 수평하게 구비되고 외부로부터 전압이 인가되는 배선이 형성되며 상기 하부커버(5410)의 제1관통홀(5410a)에 대응(혹은 대면)하는 제2관통홀(5431a)을 갖는 기판(5431)과, 상기 도광판(5420)의 일측에 구비되는 기판(5431)상에 실장되어 빛을 제공하는 다수의 LED 패키지(5432), 및 상기 기판(5431)의 제2관통홀(5431a) 및/혹은 상기 하부커버(5410)의 제1관통홀(5410a)에 체결되어 인접하는 도광판(5420)의 일측 가장자리영역을 압박하는 고정수단(5440)을 포함하고 있다.
여기서, 수납공간을 형성하여 바닥면을 이루는 플레이트를 관통하여 원형, 직사각형 혹은 타원형 등의 형태를 이루는 제1관통홀(5410a)(혹은 플레이트상에 오목하게 형성된 (체결)홈)을 갖는 하부커버(5410)는 철(Fe) 혹은 전기아연도금강판(EGI) 등을 재질로 하여 하부 프레임을 이루며, 더 나아가서 하부커버(5410)는 바닥면을 이루는 플레이트의 가장자리영역에서 상측방향으로 수직하게 연장되어 형성된 측벽, 즉 측면 프레임을 가질 수 있다. 이때, 하부 프레임의 바닥면은 분할형 백라이트장치의 구성을 위하여 일렬로 형성되는 복수의 영역으로 구분될 수 있는데, 이때 그 복수의 영역은 예를 들어 일측영역에 형성된 오목한 홈에 의해 경계를 이룰 수 있다. 물론, 여기서 복수의 영역을 구분짓는 오목한 홈은 이후 기술되는 기판(5431)의 수납 홈에 해당된다.
또한, 하부커버(5410)상의 제1관통홀(5410a)은 원형, 타원형 혹은 직사각형 이외에도 다양한 형태를 이룰 수 있지만, 긴 방향의 폭을 갖는 관통홀, 더 정확하게는 서로 나란한 두개의 장변과 그 두 장변의 양끝에서 소정의 곡률을 갖고 서로 연결되도록 형성된 두개의 단변을 가지는 관통홀의 형태를 띨 수 있으며, 이때 그 제1관통홀(5410a)의 장축방향(Y축)이 빛의 진행방향과 동일한 방향을 이루도록 하부커버(5410)상에 형성되는 것이 더욱 바람직하다. (체결)홈의 경우에도 위와 같은 동일한 구조적 특징을 갖는다.
그리고, 하부커버(5410)의 전체 바닥면, 혹은 기판(5431)이 수납되는 오목한 수납 홈이 형성되는 경우에는 그 오목한 홈을 제외한 복수의 바닥면상에 반사판(미도시)이 부착되어 있다. 이러한 반사판은 보통 백색 폴리에스테르 필름이나 금속(Ag, Al) 등이 코팅된 필름을 사용하게 되는데, 반사판에서의 가시광의 광 반사율은 90∼97%정도이며 코팅된 필름이 두꺼울수록 반사율이 높게 된다.
이때, 하부커버(5410)의 바닥면에서 복수개 구비되는 반사판은 각각 빛이 제공되는 LED 패키지(5432)와, 그 LED 패키지(5432)의 배면에 서로 인접하여 위치하는 도광판(6120) 사이에 위치하도록 연장되어 형성될 수도 있다. 이와 같은 경우, 도광판(5420) 일측으로부터 제공되어 유도된 빛이 도광판(5420) 타측에 배치된 LED 패키지(5432)의 간섭을 받지 않고 반사판에 의해 다시 반사된 후 상측에 구비되는 광학부재(미도시)의 방향으로 제공될 수 있어 광의 반사효율이 증대될 수 있을 것이다.
상기 하부커버(5410)의 오목한 수납 홈 혹은 도광판(5420)의 일측에는 LED 광원(5430)이 구비되어 있다. 이때, LED 광원(5430)은 예컨대 오목한 수납 홈에 구비되어 하부커버(5410)의 바닥면에 수평을 이루어 구비되고 외부로부터 전압이 인가될 수 있도록 배선이 형성되며 상기 하부커버(5410)의 제1관통홀(5410a)에 대응하는 제2관통홀(5431a)을 갖는 기판(6131), 즉 PCB와, 그 기판(5431)상에 실장된 LED 패키지(5432)로 구성되어 있다.
여기서, 기판(5431)은 LED 패키지(5432)와 LED 패키지(5432) 사이에 형성된 제2관통홀(5431a)을 가지게 되는데, 이와 같이 제2관통홀(5431a)을 갖는 기판(5431)은 하부커버(5410)의 제1관통홀(5410a)에 대응(혹은 대면)되도록 하여 그 하부커버(5410)의 바닥면에 구비되어 있고, 또 그 기판(5431)상에 형성된 제2관통홀(5431a)은 하부커버(5410)의 제1관통홀(5410a)과 마찬가지로 원형 혹은 타원형 등을 이룰 수 있지만, 본 발명에서는 긴 방향의 폭을 갖는 관통홀, 즉 서로 나란한 두개의 장변과, 그 두 장변의 양끝에서 소정의 곡률을 갖고 서로 연결되도록 형성된 두개의 단변을 갖는 관통홀의 형태를 띠되, 그 제2관통홀(5431a)의 장축방향(X축)이 빛의 진행방향과 수직을 이루도록 형성됨으로써 결국 기판(5431)의 제2관통홀(5431a)은 그 장축방향(X축)이 하부커버(5410)의 제1관통홀(5410a)의 장축방향(Y축)과 서로 교차되도록 형성되어 있다.
이때 기판(5431)상에 형성된 제2관통홀(5431a)의 크기, 더 정확히 말해서 두 장변간 간격(혹은 거리)은 나사산이 형성된 고정수단(5440)의 몸체의 지름에 관계될 수 있는데, 그 제2관통홀(5431a)의 크기는 빛을 제공하는 LED 패키지(5432)와 그 LED 패키지(5432)로부터 제공된 빛이 입사되어 유도되는 도광판(5420)과의 간격 에 영향을 미칠 수 있기 때문이다. 이와 관련해서는 이후에 좀더 살펴보기로 한다.
또한, LED 패키지(5432)는 다시 상기 기판(5431)상에 고정되어 외부 프레임을 형성하고 수납 홈을 갖는 패키지 본체(5433)와, 패키지 본체(5433)의 수납 홈에 실장되어 빛을 제공하는 발광소자(5435), 및 상기 수납 홈에 노출되도록 형성되어 발광소자(5435)가 탑재되고 기판(5431)상의 배선과 전기적으로 접속되는 한쌍의 제1 및 제2전극구조(미도시)로 이루어져 있다.
이때, LED 패키지(5432)는 발광소자(5435)가 청색 발광소자인 경우 백색광을 제공하기 위해 수납 홈에 형성된 수지포장부(5436)를 추가적으로 구비할 수 있는데, 이때 수지포장부(5436)는 황색 형광체를 포함할 수 있다. 예컨대 그 수지포장부(5436)는 YAG계의 황색 형광체를 함유하는 젤 형태의 에폭시 수지 혹은 YAG계의 황색 형광체를 함유하는 젤 형태의 실리콘 수지를 패키지 본체(5433)의 수납 홈에 주입 한 후, UV(ultraviolet) 경화나 열경화를 통해 형성될 수 있다.
물론 여기에서도 본 발명은 청색 발광소자와 황색 형광체로 이루어지는 LED 패키지(5432)에 대하여 한정하려는 것은 아니며, 가령 근자외선 칩과 그 근자외선 칩상에 구비되는 적색, 녹색, 청색의 형광체가 혼합된 수지포장부 혹은 적색, 녹색, 청색의 형광체가 각각 포함되어 순차적으로 적층하여 형성된 수지포장부로 이루어질 수도 있을 것이다. 또는 자외선 내지 청색광을 발광하는 발광칩에 본 발명의 실시예 1 내지 실시예 11에 따라 합성한 (Sr, M)2SiO4-xNy:Eu의 조성식으로 표현되는 무기화합물 또는 상기 실리게이트(Silicate)계, 가넷(Garnet)계. 황화 물(Sulfide)계, 질화물(Nitride)계, QD형광체 중 적어도 하나를 구비한 백색LED 패키지 일수도 있을 것이다.
복수의 영역으로 구분되는 하부커버(5410)의 바닥면에는 복수개의 도광판(5420)이 각각 구비되어 있다. 이때 도광판(5420)의 측면은 패키지 본체(5433)의 수납 홈 내에 실장된 발광소자(5435)로부터 제공된 빛이 손실없이 도광판(5420)으로 유입될 수 있도록 하기 위하여 패키지 본체(5433)와 밀착되도록 구비되는 것이 바람직할 수 있다.
이러한 도광판(5420)은 PMMA를 재질로 하여 형성되며, 가시광선영역에서 광에 대한 흡수성이 고분자 재료 중 가장 적어 투명성 및 광택이 매우 크다. 이는 기계적 강도가 높아 깨지거나 변형되지 않으며, 가볍고 내화학성이 강하다. 또한 가시광선의 투과율이 90∼91% 정도로 높고, 내부 손실이 대단히 적으며 인장 강도, 휨강도, 신장 강도 등의 기계적 성질과 화학성, 내성 등에도 강하다.
그리고, 도광판(5420)과 도광판(5420) 사이의 기판(5431)에는 고정수단(5440)이 체결되어 있다. 이러한 고정수단(5440)은 투명한 재질로 이루어진 나사와 같은 형태로서 LED 패키지(5432)의 양측, 즉 광이 출사되는 전면(前面)과 그 전면의 반대쪽에 위치하는 후면(後面)에 각각 구비되는 도광판(5420)들의 간격을 일정하게 유지시키면서 그 인접하는 도광판(5420)을 동시에 고정하기 위하여 기판(5431)의 제2관통홀(5431a) 및 그 제2관통홀(5431a)에 대응하는 하부커버(5410)의 제1관통홀(5410a)을 관통하여 체결되어 있다.
이때, 본 발명에서의 고정수단(5440)은 도광판(5420) 내에서 유도되는 빛이 간섭 없이 상측에 배치된 광학부재로 제공될 수 있도록 투명한 재질을 이루되, 도광판(5420)과 동일 재질로 이루어지는 것이 바람직해 보인다.
그리고, 본 발명의 고정수단(5440)은 실질적으로 원형 혹은 사각형상 등의 다양한 형상을 갖는 머리부와, 그 머리부에 연장되어 형성된 원통형 혹은 원기둥 형태의 몸체부로 이루어져 있으며, 그 고정수단(5440)의 몸체부 외부면에 형성된 나사산을 통해 기판(5431)의 제2관통홀(5431a) 및/혹은 하부커버(5410)의 제1관통홀(5410a)에 고정될 수 있다. 물론, 여기에서 고정수단(5440)의 몸체부는 사각기둥의 형태를 이룰 수도 있을 것이다.
이때, 머리부의 크기는 도광판(5420)과 도광판(5420) 사이의 간격과 도광판(5420)의 일측 가장자리영역을 일부 덮을 수 있도록 설계되므로 도광판(5420)과 도광판(5420) 사이의 간격에 따라 조금 변경될 수 있고, 또 몸체부의 지름은 기판(5431)의 제2관통홀(5431a) 및/혹은 하부커버(5410)의 제1관통홀(5410a)에서 서로 나란한 두 장변간 간격 혹은 거리와 동일하게 형성되는 것이 바람직할 것이다.
더 나아가서, 고정수단(5440)은 앞서 언급한 바 있는 기판(5431)의 제2관통홀(5431a)의 크기에 관계해서도 머리부의 크기나 몸체부의 지름의 길이가 조금 변경될 수 있는데, 가령 기판(5431)의 제2관통홀(5431a)의 크기가 작다는 것은 고정수단(5440)의 몸체부의 지름이 작아지는 것이며, 이는 결국 LED 패키지(5432)와 도광판(540)간 간격을 좁힐 수 있는 것을 의미할 수 있다.
이러한 고정수단(5440)은 기판(5431) 및/혹은 하부커버(5410)에 나사 방식으로 체결시 LED 패키지(5432)가 고정되어 있는 기판(5431)상에 인접하여 배치되어 있는 도광판(5420)의 상측 모서리 영역을 헤드 부위로 압박하게 됨으로써 외부 충격이 발생하더라도 도광판(5420)의 유동이 방지될 수 있을 것이다.
이때 더 나아가서 고정수단(5440)은 하부커버(5410)의 제1관통홀(5410a)을 관통하여 외부로 노출된 부위에는 추가적으로 너트가 체결됨으로써 그 힘의 강도가 보강될 수 있을 것이다.
결국, 기판(5431)상에 체결되는 고정수단(5440)은 LED 패키지(5432)와 도광판(5420)간 스페이서(spacer)의 역할을 할 수 있기 때문에 LED 패키지(54132)와 도광판(5420)간 간격을 일정하게 유지시켜 도광판(5420)의 수축 및/혹은 팽창에도 대응할 수 있게 된다.
물론, 상기의 고정수단(5440)이 반드시 나사산 형태를 이루어야 하는 것은 아니다. 예를 들어 앞서 언급했듯이 도 173에 도시된 바와 같이 나사의 머리부와 대응하는 끝 부위에 형성된 갈고리부를 통해 기판(5431)의 제2관통홀(5431a)과 하부커버(5410)의 제1관통홀(5410a)을 관통하여 체결된 후 하부커버(5410)에 의해 고정될 수 있다.
그리고, 복수의 도광판(5420) 상측에는 도광판(5420)을 통해 제공된 빛의 광학적 특성을 보완하기 위한 광학부재(미도시)가 구비되어 있다. 이때, 광학부재는 예를 들어 도광판(5420)을 투과하여 나온 빛의 불균일성을 완화시키기 위한 확산패턴이 형성된 확산판과, 빛의 정면 휘도를 높이기 위한 집광패턴이 형성된 프리즘 시트 등을 포함할 수 있다.
상기의 구성을 통해, 본 발명은 도광판(5420)과 도광판(5420) 사이에 구비된 고정수단(5440)에 의해 일정한 간격을 유지시켜 도광판(5420)을 고정함으로써 외부의 충격 등에 의한 도광판(5420)의 유동을 방지할 수 있고, 빛의 진행방향과 수직한 방향(X축)으로의 도광판(5420) 수축에 대응할 수 있게 된다.
또한, 장축방향과 단축방향을 갖도록 형성된 기판(5431)의 제2관통홀(5431a)에 의해 그 제2관통홀(5431a)의 장축방향(X축)으로 기판(5431)의 수축이 발생하더라도 이에 대응할 수 있다.
더 나아가서, 빛의 진행방향을 따라 형성된 장축방향(Y축)을 갖는 하부커버(5410)의 제1관통홀(5410a)과 그 제1관통홀(5410a)에 체결된 고정수단(5440)을 통해서는 도광판(5420)의 팽창 및/혹은 수축 발생시 하부커버(5410)의 제1관통홀(5410a)의 장축방향(Y축)을 따라 도광판(5420)과 고정수단(5440) 및/혹은 기판(5431)이 함께 이동할 수 있기 때문에, 결국 도광판(5420)과 LED 패키지(5432)간 일정 간격이 그대로 유지될 수 있어 (종래 대비) 휘점 및 휘선 현상이 개선될 수 있을 것이다.
한편, 본 발명에 따른 액정표시장치는 상기의 실시예들에 따른 LED 백라이트장치를 구비하고, 동시에 상기의 광학부재상에 구비된 액정패널(미도시)을 추가적으로 포함할 수 있다.
이때, 액정표시장치는 외부의 충격 등으로부터 표시장치의 뒤틀림을 방지하기 위하여 메인 서포트(main support)라는 몰드 구조물을 추가적으로 구비할 수 있는데, 그 메인 서포트의 하측에는 백라이트장치가 구비되고 상측에는 액정패널이 적재된다.
상기의 액정패널은 박막트랜지스터 어레이기판 및 컬러필터기판이 합착된 것으로서, 그 두 기판 사이에 주입된 액정층을 포함하여 구성되어 있다.
이때 박막트랜지스터 어레이기판상에는 게이트 라인과 데이터 라인 등의 신호배선이 서로 교차하여 형성되고, 데이터 라인과 게이트 라인의 교차부에 박막트랜지스터(TFT)가 형성되어 있다. 이러한 TFT는 게이트 라인을 통해 제공된 스캔 신호에 응답하여 데이터 라인으로부터 액정층의 액정셀에 전송될 비디오 신호, 즉 적색(R), 녹색(G), 및 청색(B)의 데이터 신호를 절환하도록 하고 있다. 또한, 데이터 라인과 게이트 라인 사이의 화소영역에는 화소전극이 형성되어 있다.
상기 컬러필터기판상에는 박막트랜지스터 어레이기판의 게이트 및 데이터 라인에 대응하여 형성된 블랙 매트릭스와, 블랙매트릭스에 의해 구획되는 영역에 형성되어 적색(R), 녹색(G), 청색(B)의 컬러를 제공하는 컬러필터, 그리고 상기 블랙매트릭스와 컬러필터상에 구비되어 있는 공통전극 등이 형성되어 있다.
이와 같은 컬러필터기판이 부착되어 있는 박막트랜지스터 어레이기판의 가장자리영역에는 데이터 라인으로부터 연장되어 형성된 데이터 패드와, 게이트 라인으로부터 연장되어 형성된 게이트 패드가 형성되어 있는데, 이러한 데이터 패드 및 게이트 패드에 각각 접속되어 신호를 인가하는 게이트 구동부 및 데이터 구동부가 구비되어 있다.
또 액정패널상에는 그 액정패널의 4면 가장자리영역을 덮는 동시에 하부커버(5410) 혹은 메인 서포트의 측벽에 고정되는 상부커버가 구비될 것이다. 물론 상부커버 또한 하부커버(5410)와 동일 재질로 이루어지게 된다.
도 178은 본 발명의 또 다른 실시형태에 따른 백라이트 유닛을 개략적으로 나타내는 평면도이고, 도 179는 도 178에 도시된 LED 모듈에 실장되는 LED의 조합을 실시예별로 나타내는 사시도이며, 도 180은 순방향 전압에 따른 LED의 분포를 나타내는 그래프이다.
도 178 내지 도 180을 참조하면, 본 실시형태에 따른 백라이트 유닛(5500)은 복수의 LED(5520)를 구비하는 복수의 LED 모듈(5510)과, 상기 복수의 LED 모듈(5510)에 구비되는 복수의 LED(5520)의 밝기를 조절하는 하나 이상의 구동 드라이버(5530)로 구성된다. 도면에서와 같이 본 실시예에서는 프레임(5540)의 내측면을 따라서 도광판(5550)의 일 측면 또는 복수의 측면과 마주하는 선광원으로 채용되는 LED 모듈(5510)을 배치시키는 에지(edge) 방식을 기준으로 설명한다. 그러나, 이에 한정하는 것은 아니며 직하(direct) 방식도 가능하지만 LED 모듈의 배치위치에서 차이가 있을 뿐이므로 이에 대한 구체적인 설명은 생략한다.
상기 LED 모듈(5510)은 복수의 LED(5520)를 포함하여 백색광을 방출함으로써 그 자체로서 일정면적을 갖는 면광원 또는 선광원으로 채용될 수 있는 단위가 되는 것으로, 기판과 같은 서브마운트와 그 위에 실장되는 복수의 LED(5520)를 포함할 수 있다. 여기서, 상기 복수의 LED(5520)는 백색 LED인 것이 바람직하나 반드시 이에 한정하는 것은 아니다.
도 179에서와 같이, 상기 LED 모듈(5510) 각각에 포함되는 상기 복수의 LED(5520)는 기판상에 실장되어 서로 전기적으로 연결되며, 이때 각 LED 모 듈(5510)에 구비되는 상기 복수의 LED(5520)는 서로 직렬연결된 LED 어레이(array)를 형성한다. 본 발명은 각 LED 모듈(5510)에 구비되는 LED 어레이를 형성하는데 있어 LED의 특성을 소정의 구간으로 세분화하여 이를 조합하는 방식을 통해 상기 LED 어레이를 형성하는데 특징이 있다. 일반적으로 LED 칩을 패키징하여 제조되는 LED 단품들은 특정 범위의 구간에 해당하는 색좌표, 휘도, 순방향 전압(Vf: Forward Voltage), 파장 등의 특성을 가지며, 각 특성이 가지는 값은 모든 LED 단품에 있어 일치하지 않고 약간의 차이를 가져 산포를 나타낸다. 즉, 각각의 LED 단품이 가지는 색좌표의 범위 구간과 순방향 전압의 범위 구간은 모든 LED 단품들에 있어 모두 일치하는 것이 아니라 상한 값 또는 하한 값에서 차이를 가질 수 있다. 따라서, LED(5520)를 복수개 실장하여 LED 어레이를 형성하는데 있어 특정 범위 구간에만 해당하는 특성을 갖는 LED 만을 실장하는 경우, 예를 들어 순방향 전압(Vf)이 높은 LED 만을 실장한 LED 모듈과 반대로 낮은 LED 만을 실장한 LED 모듈과의 사이에는 전압 차이(ΔV)가 크게 발생하여 휘도 균일도에 불량이 발생하여 화면상에 얼룩이 발생하는 문제를 일으킨다.
이에, 본 발명은 LED의 특성 중에서 복수의 LED가 가지는 순방향 전압(Vf)을 LED 분포에 따라 복수의 구간으로 세분화하여 각 구간에 해당하는 순방향 전압을 가진 LED를 구간별로 교대로 실장하여 LED 어레이를 형성한다. 여기서 순방향 전압(Vf)은 순방향으로 연결된 LED 단자 양단에 걸리는 전압을 지칭한다.
이에 대해 도 180을 참조하여 보다 상세히 설명한다. 도 180a 및 도 180b는 순방향 전압에 따른 LED의 분포를 나타내는 그래프이다. 도 180a에서와 같이, LED(5520)가 가지는 순방향 전압(Vf)의 범위가 좁은 경우에는 분포도의 중심을 기준으로 2개의 구간(A구간, B구간)으로 범위 구간을 세분화할 수 있다. 이 경우, 실장되는 LED(5520)의 종류는 A구간에 해당하는 순방향 전압을 갖는 종류와 B구간에 해당하는 순방향 전압을 갖는 종류인 2가지 종류로 분류되며, 각각 교대로 실장되어 LED 어레이를 형성한다. 도 179a에서는 ABAB...순서로 조합되는 어레이에 대해 도시하고 있으나 이에 한정하는 것은 아니며 AABB, ABBA 등 다양한 조합방법으로 실장되어 어레이를 형성할 수 있다.
한편, 도 180b에서와 같이 LED가 가지는 순방향 전압(Vf)의 범위가 넓은 경우에는 3개의 구간(A구간, B구간, C구간)으로 범위 구간을 세분화할 수 있다. 이 경우, 실장되는 LED(5520)의 종류는 A구간에 해당하는 순방향 전압을 갖는 종류와 B구간에 해당하는 순방향 전압을 갖는 종류 그리고 C구간에 해당하는 순방향 전압을 갖는 종류인 3가지 종류로 분류되며, 각각 교대로 실장되어 LED 어레이를 형성한다. 도 179b에서는 ABCABC...순서로 조합되는 어레이에 대해 도시하고 있으나 이에 한정하는 것은 아니며 ABAC, ABBC 등의 다양한 조합으로 실장되어 어레이를 형성할 수도 있다. 도 180에서는 순방향 전압(Vf)을 2개 또는 3개의 범위 구간으로 세분화하여 설명하고 있으나 이에 한정하는 것은 아니며 다양한 범위 구간으로 세분화하는 것도 가능하다.
이와 같이, 각 구간에 해당하는 순방향 전압(Vf)을 갖는 LED(5520)를 교대로 실장함으로써 이들을 포함하는 LED 모듈(5510)의 순방향 전압의 평균값을 예측할 수 있음은 물론 특정한 범위의 값을 가지도록 산포를 줄여 설정하는 것도 가능하다. 그리고, 모듈 내에서 직렬로 연결되는 LED(5520) 간의 순방향 전압(Vf)의 편차를 줄임으로써 각 LED 모듈(5510) 사이의 전압차(ΔV)가 줄어들게 되어 휘도가 전체적으로 균일해지도록 할 수 있다.
상기 구동 드라이버(5530)는 상기 복수의 LED 모듈(5510)에 각각 구비되는 복수의 LED(5520)의 밝기를 조절하기 위해 적어도 하나 이상 구비되며, 상기 복수의 LED 모듈(5510)과 전기적으로 연결된다. 그리고, 도면에는 도시되지 않았으나 LED로부터 발광된 빛을 감지하는 센서를 구비하여 미리 정해진 휘도 및 색감과 감지된 휘도 및 색감을 비교하여 보상을 해주도록 LED의 밝기를 조절한다. 또한, 상기 구동 드라이버(5530)와 연결되어 상기 구동 드라이버(5530)를 제어하는 제어부를 더 포함할 수 있다. 도면에서와 같이, 상기 구동 드라이버(5530)와 연결되는 상기 LED 모듈(5510)은 각각 하나의 구동 드라이버(5530)와 연결되고, 상기 구동 드라이버 각각은 적어도 2개 이상의 LED 모듈(5510)과 연결된다. 이때, 동일한 구동 드라이버(5530)와 연결되는 LED 모듈(5510)들은 서로간의 전압차가 작거나 실질적으로 동일한 범위의 순방향 전압을 갖도록 한다. 이는 앞서 설명한 각 LED 모듈(5510)에 실장되는 복수의 LED(5520)에 대한 순방향 전압의 세분화에 따른 LED(5520)의 조합을 통해 조절할 수 있다. 따라서, 상기 각 LED 모듈(5510)은 동일한 구동 드라이버(5530)와 연결되는 다른 LED 모듈(5510)과의 사이에 병렬연결을 이루는 연결구조를 갖는다.
도 178을 참조하면, 전압차가 작은 제1 LED 모듈(5510a)과 제2 LED 모듈(5510b)은 제1 구동 드라이버(5530a)와 연결되어 하나의 연결구조를 이루고, 제3 LED 모듈(5510c)과 제4 LED 모듈(5510d)은 제3 구동 드라이버(5530c)와 연결되어 하나의 연결구조를 이루며, 제5 LED 모듈(5510e)과 제6 LED 모듈(5510f)은 제2 구동 드라이버(5530b)와 연결되어 하나의 연결구조를 이룬다. 즉, 서로간의 전압차가 작은 적어도 2개 이상의 LED 모듈(5510)은 공통으로 하나의 구동 드라이버(5530)에 의해 일체로 구동될 수 있는 것이다. 이와 같이, 본 실시예에 따르면 각 LED 모듈별로 각각 구동 드라이버를 구비하여 LED를 구동하는 종래의 백라이트 유닛에 비하여 구동 드라이버의 전체 개수를 감소시킬 수 있어 전체적인 백라이트 유닛의 소형화 및 슬림화가 가능할 뿐만 아니라 백라이트 유닛에 소요되는 전기전자 부품수를 감소시키는 것이 가능하다. 아울러, 구동 드라이버의 개수가 감소됨에 따라 백라이트 유닛의 광특성을 보상하기 위한 전체 구동 드라이버의 제어가 보다 용이해져 화질이 개선되는 효과를 가진다.
한편, 도 181 및 도 182에서는 LED 모듈(5510)과 구동 드라이버(5530)의 다양한 연결구조에 대한 실시예를 도시하고 있다. 도 181에서와 같이 제1 구동 드라이버(5530a)는 제1 LED 모듈(5510a) 및 제5 LED 모듈(5510e)과 연결되어 하나의 연결구조를 이루고, 제2 구동 드라이버(5530b)는 제2 LED 모듈(5510b) 및 제6 LED 모듈(5510f)과 연결되어 하나의 연결구조를 이루며, 제3 구동 드라이버(5530c)는 제3 LED 모듈(5510c) 및 제4 LED 모듈(5510d)과 연결되어 하나의 연결구조를 이룬다.
도 182에서 도시하는 실시예에서는 제1 LED 모듈(5510a)과 제4 LED 모듈(5510d)이 제1 구동 드라이버(5530a)와 연결되어 하나의 연결구조를 이루고, 제5 LED 모듈(5510e)과 제6 LED 모듈(5510f)이 제2 구동 드라이버(5530b)와 연결되어 하나의 연결구조를 이루며, 제2 LED 모듈(5510b)과 제3 LED 모듈(5510c)이 제3 구동 드라이버(5530c)와 연결되어 하나의 연결구조를 이룬다. 각 구동 드라이버(5530)와 전기적으로 연결되는 LED 모듈(5510)은 이외에도 다양한 조합의 연결구조를 가질 수 있으며 반드시 이에 한정하는 것은 아니다. 그리고, 복수의 LED 모듈(5510)들은 구동 드라이버(5530)를 공통으로 하는 LED 모듈(5510) 사이에서만 전기적인 연결을 이루고, 다른 구동 드라이버(5530)와 연결되는 LED 모듈(5510)과는 전기적으로 연결을 이루지 않는다.
상술한 본 발명에 따른 면광원장치 및 백라이트유닛은 DC 전원으로 변환시키는 컨버젼 장치 없이 AC 전원에서 직접 사용가능한 LED 구동회로를 포함할 수 있으며, 이러한 LED 구동회로에 따라 구현된 LED 어레이 장치를 포함할 수 있다. 이러한 LED 구동회로 및 LED 어레이 장치에 대해 도 183 내지 도 187을 참조하여 상세하게 설명하도록 한다.
우선, 도 183는 본 발명의 일 실시형태에 따른 LED 구동회로를 나타낸다. 도 184에 도시된 LED 구동회로는 사다리망 LED 회로를 포함한다. 즉, 본 실시형태에 따른 사다리망 LED 회로는 제1 및 제2 접점(a,b) 사이에서 제1 중간접점(c1,c2)에 의해 연결된 3개의 제1 브랜치와, 제1 및 제2 접점(a,b) 사이에서 제2 중간접 점(d1,d2)에 의해 연결된 3개의 제2 브랜치를 포함하며, 상기 LED 구동회로는 순서대로 제1 및 제2 중간접점(c1와 d1, c2와 d2) 사이에 연결된 2개의 중간 브랜치를 갖는다. 여기서, 상기 제1 및 제2 브랜치와 중간 브랜치에는 각각 LED 소자(5608, 5609, 5610, 5611, 5612, 5613, 5614, 5615)가 배치된다.
상기 LED 구동회로는, 교류전압의 서로 다른 반주기에 구동되도록 2개의 전류 루프(L1,L2)를 갖는다. 제1 전류루프(L1)는 교류전압의 제1 반주기에서 구동되도록 직렬로 연결된 LED 소자(5608,5609,5610,5611,5612)를 포함한다. 제2 전류루프(L2)는 교류전압의 제2 반주기에서 구동되도록 직렬로 연결된 LED 소자(5613,5611,5614,5609,5615)를 포함한다. 이와 같이, AC 전압이 인가된 상태의 회로 동작은 LED소자(5609, 5611)가 양방향으로 모두 구동될 수 있다.
이러한 사다리망 회로에서의 LED 배열은 상기 제1 접점(a)으로부터 상기 제1 및 제2 브렌치와 상기 중간 브랜치의 순서를 m으로 정의할 때에 아래와 같이 설명될 수 있다. 상기 LED 소자(5608,5609,5610,5611,5612,5613,5614,5615)는 구동가능한 교류전압의 주기에 따라 제1 및 제2 LED 그룹으로 구분할 수 있다. 상기 제1 LED 그룹은 홀수인 (2m-1)번째의 제1 브렌치와 모든 중간 브렌치 및 짝수인 2m 번째의 제2 브랜치에 속하는 LED(5608,5609,5610,5611,5612)로 구성되며, 서로 직렬로 연결된다. 상기 제2 LED 그룹은 짝수인 2m 번째의 제1 브랜치와 모든 중간 브렌치와 홀수인 (2m-1) 번째의 제2 브랜치에 속하는 LED(5613,5611,5614,5609,5615)로 구성되며, 상기 제1 LED 그룹과 역극성 방향이 되도록 서로 직렬로 연결된다.
따라서, 상기 제1 LED 그룹은 교류전압의 제1 반주기에서 구동되는 제1 전류 루프(L1)를 형성하며, 상기 제2 LED 그룹은 교류전압의 제2 반주기에서 구동되는 제2 전류 루프(L2)를 형성할 수 있다. 이러한 구동에 따르면, 중간 브랜치에 위치하여 제1 및 제2 LED 그룹에 공통적으로 속하는 LED 소자(5609,5611)는 교류전압의 전체 주기에서 연속적으로 동작할 수 있다.
이와 같이, 8개의 LED 소자(5608,5609,5610,5611,5612,5613,5614,5615)로 구성된 LED 구동회로에서 2개의 LED 소자(5610,5614)가 교류전압의 전체주기에서 구동될 수 있으므로, 실제 사다리망 회로에서 연속적으로 발광되는 LED 소자를 5개(사용 LED 개수 대비 구동 LED 개수: 62.5%)로 확보할 수 있다. 이는 종래의 AC 구동형 LED 배열인 역극성 배열(50%) 또는 브리지 배열(통상 60%)보다 향상된 수치이다.
본 발명에 따른 LED 구동회로는, LED 소자(5609)와 LED 소자(5611)가 병렬 연결이 아닌 직렬 연결인 점에서 브리지 구조와 큰 차이가 있다. 즉, 본 발명에 따른 LED 구동회로에서는 LED 소자(5609)와 LED 소자(5611) 사이에 LED 소자(5610, 5614)를 삽입한 배열이므로, LED 소자(5609)와 LED 소자(5611)는 직렬 연결되고, 이러한 점에서 근본적으로 브리지 구조와는 다른 사다리망 구조가 된다.
본 발명에 따른 LED 구동회로에서는, 교류전압의 전체 주기, 즉 양방향에서 모두 구동되는 LED의 연결은 LED 소자(5610,5614)를 삽입하여 4개의 중간접점(c1,c2,d1,d2)을 연결하여 병렬이 아닌 직렬로 구성한다. 이러한 LED 배열 연결 구조상 하나의 루프를 형성하는데, 실제 구동에서는 앞서 설명한 바와 같이, 중간접점으로 구성된 루프 내에서는 LED 각각의 전위차가 다르기 때문에 전류 루프를 형성하지는 않고 하나의 직렬 형태로 동작하게 된다.
본 발명의 다른 실시형태에서는, 도 183에 도시된 사다리망 구조에서 제1 및 제2 중간접점을 연결하는 루프를 하나의 단(stack)이라 할 때에, 복수의 단으로 연속적으로 연결하여 다양한 LED 구동회로를 제공할 수 있다. 즉, 제1 및 제2 중간접점은 각각 3개 이상의 동일한 수로 구성될 수 있으며, 제1 및 제2 브랜치는 4개 이상의 동일한 수일 수 있다.
도 184a에는 본 발명의 다른 실시형태의 예로서, 제1 및 제2 중간접점(c1,c2,c3,c4와 d1,d2,d3,d4)이 각각 4개인 LED 구동회로가 도시되어 있다. 도 184a에 도시된 LED 구동회로는 상기 제1 및 제2 중간접점을 순서대로 연결하는 4개의 중간 브랜치를 포함한다. 이러한 구동회로는 3개의 단을 갖는 사다리망 회로로 이해할 수 있다. 도 184a에서는, 각 브랜치에는 한 개씩 LED 소자가 배치된다. 이러한 LED 소자의 배열은 교류전압의 다른 반주기에서 구동되는 제1 및 제2 전류루프를 갖도록 배열된다. 즉, 교류전압의 제1 반주기에서, A1-C1-B2-C2-A3-C3-B4-C4-A5를 따라 제1 전류루프를 갖도록 해당 LED 소자가 직렬로 배열되며, 교류전압의 제2 반주기에서, B1-C1-A2-C2-B3-C3-A4-C4-B5를 따라 제2 전류루프를 갖도록 해당 LED 소자가 직렬로 배열된다.
본 실시형태에 따른 LED 구동회로에서는, 중간 브랜치에 위치하여 제1 및 제2 전류루프에 공통적으로 가담하는 4개의 LED 소자(C1,C2,C3,C4)는 교류전압의 전체 주기에서 연속적으로 동작할 수 있다. 이와 같이, 총 14개의 LED 소자로 구성된 LED 구동회로에서 4개의 LED 소자(C1,C2,C3,C4)가 교류전압의 전체주기에서 구동될 수 있으므로, 실제 사다리망 회로에서 연속적으로 발광되는 LED 소자를 9개(LED 사용효율: 약 64%)로 확보할 수 있다. 본 실시형태에서는 앞선 실시형태보다 큰 LED 사용개수의 절감효과를 기대할 수 있다.
도 183 및 도 184a에 도시된 구동회로에서는, 상기 제1 및 제2 브랜치와 상기 중간 브랜치는 각각 1개의 LED 소자를 포함한 형태로 예시하였으나, 이와 달리, 상기 제1 및 제2 브랜치와 상기 중간 브랜치는 각각 복수의 LED 소자를 포함할 수 있다. 다만, 이 경우에도 동일한 브랜치에 속한 복수의 LED 소자는 서로 직렬로 연결되어야 할 것이다. 특히, 중간 브랜치의 LED 수를 증가시키는 경우에, 양방향에서 구동되는 LED 수가 상대적으로 증가되므로, 사용 LED 개수에 대한 발광효율을 크게 향상시킬 수 있으며, 결과적으로, 교류전압에서 원하는 발광수준을 얻는데 소모되는 LED 개수를 감소시킬 수 있다.
도 184b에 도시된 LED 구동회로는 도 184a에 도시된 LED 구동회로에서, 각 중간 브랜치에 직렬로 연결된 2개의 LED 소자를 배치한 형태이다. 교류전압의 제1 반주기에서, A1-C1-C1'-B2-C2-C2'-A3-C3-C3'-B4-C4-C4'-A5를 따라 제1 전류루프를 갖도록 해당 LED 소자가 직렬로 배열되며, 교류전압의 제2 반주기에서, B1-C1-C1'-A2-C2-C2'-B3-C3-C3'-A4-C4-C4'-B5를 따라 제2 전류루프를 갖도록 해당 LED 소자가 직렬로 배열된다. 본 실시형태에 따른 LED 구동회로에서는, 중간 브랜치에 속하는 LED 소자(C1,C1',C2,C2',C3,C3',C4,C4')는 8개이다. 즉, 교류전압의 전체 주기에서 연속적으로 동작하도록 제1 및 제2 전류루프에 공통적으로 가담하는 LED 소자(C1,C1',C2,C2',C3,C3',C4,C4')는 도 184a에 도시된 LED 구동회로보다 2배 증가 한다. 결과적으로, 총 18개의 LED 소자로 구성된 LED 구동회로에서 8개의 LED 소자(C1,C1',C2,C2',C3,C3',C4,C4')가 교류전압의 전체주기에서 구동될 수 있으므로, 실제 사다리망 회로에서 연속적으로 발광되는 LED 소자를 13개(LED 사용효율: 약 72%)로 확보할 수 있다. 본 실시형태에서는 앞선 실시형태들보다 훨씬 향상된 LED 사용개수의 절감효과를 기대할 수 있다.
도 184c에 도시된 LED 구동회로는 도 184a에 도시된 LED 구동회로에서, 첫번째 제1 브랜치와, 2번째 제2 브랜치와 3번째 중간 브랜치에 각각 병렬로 연결된 LED 소자(A1',B2',C3')를 배치한 형태이다. 교류전압의 제1 반주기에서, (A1,A1')-C1-(B2,B2')-C2-A3-(C3,C3')-B4-C4-A5를 따라 제1 전류루프를 갖도록 해당 LED 소자가 직렬로 배열되며, 교류전압의 제2 반주기에서, B1-C1--A2-C2--B3-(C3,C3')-A4-C4-C4'-B5를 따라 제2 전류루프를 갖도록 해당 LED 소자가 직렬로 배열된다(단, 괄호로 표시된 소자는 서로 병렬로 연결됨). 중간 브랜치에 위치한 LED 소자의 숫자가 증가하는 것은 양방향에서 구동되는 소자의 수를 증가시키므로, LED 사용효율의 향상측면에서 유리하다. 하지만, 중간 브랜치에 위치한 LED 소자의 숫자만을 증가시키는 경우에, 제1 및 제2 브랜치에 속하는 LED 소자에 인가되는 역방향 전압이 증가되므로, 각각의 LED 소자가 동일한 규격의 소자인 경우에, 중간 브랜치에 위치한 LED 수는 2개 또는 3개의 LED 소자로 택하는 것이 바람직할 것이다.
본 발명의 특정 실시형태에서는, 상기 사다리망 회로는 복수이며, 복수의 사다리망 회로는 일 사다리망 회로의 제2 접점과 다른 사다리망 회로의 제1 접점이 접속되어 직렬로 연결될 수 있다. 이러한 실시형태는 도 186에 도시되어 있다.
도 185을 참조하면, LED 구동회로는, 2개의 사다리망 회로가 직렬로 연결된 구조를 갖고 있다. 즉, 제1 사다리망 회로의 제2 접점(b1)과 제2 사다리망회로의 제1 접점(a2)이 연결되며, 제1 사다리망 회로의 제1 접점(a1)과 제2 사다리망 회로의 제2 접점은 AC 전원단에 연결되는 구조이다. 또한, 본 실시형태에서는, 제1 브랜치, 제2 브랜치 및 중간 브랜치에 각각 직렬로 연결된 2개의 LED 소자가 배치된 형태이다.
도 185에 도시된 LED 구동회로의 경우에, 교류전압의 제1 반주기에서, A1-A1'-C1-C1'-B2-B2'-C2-C2'-A3-A3'(이상, 제1 사다리망 회로)-B4-B4'-C3-C3'-A5-A5'-C4-C4'-B6-B6'(이상, 제2 사다리망 회로)를 따라 제1 전류루프를 갖도록 해당 LED 소자가 직렬로 배열되며, 교류전압의 제2 반주기에서, B1-B1'-C1-C1'-A2-A2'-C2-C2'-B3-B3'(이상, 제1 사다리망 회로)-A4-A4'-C3-C3'-B5-B5'-C4-C4'-A6-A6'(이상, 제2 사다리망 회로)를 따라 제2 전류루프를 갖도록 해당 LED 소자가 직렬로 배열된다.
본 실시형태에 따른 LED 구동회로에서는, 중간 브랜치에 속하는 LED 소자(C1,C1',C2,C2',C3,C3',C4,C4')는 8개이다. 즉, 교류전압의 전체 주기에서 연속적으로 동작하도록 제1 및 제2 전류루프에 공통적으로 가담하는 LED 소자(C1,C1',C2,C2',C3,C3',C4,C4')는 도 184a에 도시된 LED 구동회로보다 2배 증가한다. 이와 같이, 본 발명에 따른 사다리망 구조의 AC 구동을 위한 LED 배열은 다양한 형태로 응용될 수 있다.
본 발명의 다른 측면에서는, 상술된 다양한 사다리망 구조의 LED 구동회로가 구현된 복수의 LED 소자를 갖는 LED 어레이 장치로 실현될 수 있다. 즉, 본 발명의 LED 어레이 장치에서는, K(여기서, K은 K≥3인 정수임)개의 제1 LED 소자가 제1 접점과 제2 접점 사이에 동일 극성의 전극이 접속된 n(여기서, n은 n≥2인 정수임)개의 제1 중간접점을 갖도록 나란히 연결된다. L(여기서, L은 L≥3인 정수임)개의 제2 LED 소자는 상기 제1 및 제2 접점 사이에 동일 극성의 전극이 접속된 n개의 제2 중간접점을 갖도록 나란히 연결되며, 상기 제1 및 제2 접점에 연결된 제1 LED소자의 전극 극성과 반대되는 극성의 전극이 상기 제1 및 제2 접점에 연결된다.
또한, 상기한 회로의 중간 브랜치에 해당되는 M(여기서, M은 M≥n인 정수임)개의 제3 LED 소자는, 동일한 m 번째(여기서, m은 상기 제1 접점으로부터 상기 n개의 제1 및 제2 중간접점의 순서를 정의하는 양의 정수임)의 제1 및 제2 중간접점에 각각 상기 제1 및 제2 LED 소자의 전극과 반대되는 극성의 전극이 연결된다. 상기 제1 및 제2 LED 소자는 각각 중간접점 사이에 하나씩 위치할 수 있다. 이와 유사하게, 상기 제3 LED 소자는 상기 제1 및 제2 중간접점 사이에 각각 하나씩 연결될 수 있다.
필요한 경우에는, 상기 제3 LED 소자는 적어도 하나의 제1 및 제2 중간접점 사이에 각각 복수로 연결되며, 상기 적어도 하나의 제1 및 제2 중간접점 사이의 제3 LED 소자는 서로 직렬 또는 병렬로 연결될 수 있다(도 184b 또는 도 184c 참조).
본 발명에 따른 사다리망 LED 구동회로의 LED 사용개수 절감효과를 설명하기 위해서, 동일한 LED 소자를 이용하여 특정 출력 조건을 만족시키기 위해서 요구되는 LED 소자 개수의 차이를 다른 종래의 AC 구동형 LED 회로(양극성 회로, 브리지 망 회로)와 비교하였다.
도 186a는 종래의 일 예에 따른 LED 구동회로를, 도 186b 및 도 186c는 본 발명의 일 예에 따른 LED 구동회로를 나타낸다.
도 186a에 도시된 LED 구동회로는 통상적인 AC 구동을 위한 역병렬 회로로서, 역병렬로 배열된 LED 소자(5630A,5630B)를 복수의 단(S)을 갖도록 직렬로 연결한 구조이다. 표1에 나타난 바와 같이, 전체적으로 단수를 증가시키더라도, 사용개수 대비 연속적으로 구동되는 LED 수의 비율(LED 사용효율)은 50%이다.
도 186b에 도시된 LED 구동회로는 브리지 회로로서, 각 브랜치에 하나의 LED 소자를 배치한 구조이다. 하나의 단은 모두 5개의 LED 소자(5640A, 5640B, 5640C, 5640D, 5640E)로 구성되며, 원하는 출력을 갖도록 복수의 단으로 연결될 수 있다. 이러한 브리지망 LED 회로의 사용효율은 표1에 나타난 바와 같이, 단수에 관계없이 60%가 된다. 이는 도 186a의 역병렬 배열과 달리 중간 브랜치에 배치된 LED 소자(5640E)가 양방향에서 연속적으로 구동될 수 있기 때문이다.
도 186c에 도시된 사다리망 LED 구동회로의 경우에는, 도 184a에 설명된 바와 같이, 2개 단을 갖는 사다리망 회로에서는 총 사용 LED 개수가 8개이며, 연속적으로 구동되는 LED 개수는 5개로서 62.5%의 높은 사용효율을 갖는다. 또한, 표 2에 나타난 바와 같이, 사다리망 LED 구동회로는 단수의 증가에 따라 양방향에 구동되는 LED 수의 비율이 증가되는 구조이므로, LED 사용효율은 점차 증가된다.
단수 역병렬네트워크 브리지네트워크 사다리네트워크
Vf LED수 양방향턴온수 효율
(%)
Vf LED수 양방향턴온수 효율
(%)
Vf LED수 양방향턴온수 효율
(%)
1 ΔVf 2 0 50 3·ΔVf 5 1 60 5·ΔVf 8 2 62.5
2 2·ΔVf 4 0 50 6·ΔVf 10 2 60 7·ΔVf 11 3 63.6
3 3·ΔVf 6 0 50 9·ΔV f 15 3 60 9·ΔV f 14 4 64.3
4 5·ΔVf 8 0 50 12·ΔVf 20 4 60 11·ΔVf 17 5 64.7
5 5·ΔVf 10 0 50 15·ΔVf 25 5 60 13·ΔVf 20 6 65
6 6·ΔVf 12 0 50 18·ΔVf 30 6 60 15·ΔVf 23 7 65.2
7 7·ΔVf 14 0 50 21·ΔVf 35 7 60 17·ΔVf 26 8 65.4
8 8·ΔVf 16 0 50 24·ΔVf 40 8 60 19·ΔVf 29 9 65.5
9 9·ΔV f 18 0 50 27·ΔVf 45 9 60 21·ΔVf 32 10 65.6
10 10·ΔVf 20 0 50 30·ΔVf 50 10 60 23·ΔVf 35 11 65.7
21 21·ΔVf 42 0 50 63·ΔV f 105 21 60 45·ΔVf 68 22 66.2
30 30·ΔVf 60 0 50 90·ΔVf 150 30 60 63·ΔV f 95 31 66.3
63 63·ΔV f 126 0 50 - - - - - - - -
따라서, 9개의 LED 소자의 출력이 요구되는 경우에, 도 186a에 도시된 역병렬 LED 회로는 총 18개의 LED 소자가 요구되며, 브리지망 LED 회로는 3단을 연결하여 총 15개의 LED 소자가 요구된다. 이에 반해, 본 발명에 따른 사다리망 LED 회로에서는, 3단을 연결하여 총 14개의 LED로 원하는 광량(9개의 LED 소자)을 제공할 수 있으므로, 브리지 LED 회로보다도 LED 소자의 사용개수를 크게 절감시킬 수 있다.
이러한 향상효과는 큰 출력사양에서 더욱 증가한다. 즉, 63개의 LED 소자의 출력이 요구되는 경우에, 역병렬 회로와 브리지 회로는 그 AC 구동회로의 구성을 위해서, 각각 126개, 105개가 요구되지만, 사다리망 LED 회로는 95개만이 사용되므로, 종래에 대비하여 31개, 10개의 LED 소자를 절감시킬 수 있다.
이러한 이유는 브리지 LED 회로의 경우에는 양방향 공통으로 구동되는 LED 사이의 전류루프에서 최소 2개 이상의 LED 소자가 위치하는 반면에, 사다리망의 경우 공통으로 사용되는 LED 소자 사이에 최소 1개의 LED 소자로 충분하기 때문이다. 즉, 양방향 공통으로 사용되는 LED 사이에서 필요 LED의 최소 개수는 사다리망이 브리지망 회로에 비해 적은 개수가 필요하기 때문에 사다리망이 브리지 구조에 비해 전체적으로 더 많은 개수를 양방향 공통으로 사용할 수 있는 구조가 되기 때문이다.
도 187a는 종래의 다른 예에 따른 LED 구동회로를, 도 187b는 본 발명의 다른 예에 따른 LED 구동회로를 나타낸다.
도 187a 및 도 187b는 각각 도 186b 및 도 186c와 유사하지만, 중간 브랜치에 각각 서로 직렬로 연결된 2개의 LED 소자를 배치한 형태이다. 즉, 단일 단에서, 연속적으로 구동되는 LED 소자의 수를 동일한 수준으로 증가시킨 경우이다. 도 187b에 도시된 사다리망 LED 구동회로는 도 184b에 도시된 형태를 참조하여 이해할 수 있다.
단수 역병렬 네트워크 브리지 네트워크 사다리 네트워크
Vf LED수 양방향턴온수 효율
(%)
Vf LED수 양방향턴온수 효율
(%)
Vf LED수 양방향턴온수 효율
(%)
1 ΔVf 2 0 50 4·ΔVf 6 2 66.7 7·ΔVf 10 4 70
2 2·ΔVf 4 0 50 8·ΔVf 12 4 66.7 10·ΔVf 14 6 71.4
3 3·ΔVf 6 0 50 12·ΔVf 18 6 66.7 13·ΔVf 18 8 72
4 5·ΔVf 8 0 50 16·ΔV f 24 8 66.7 16·ΔV f 22 10 72.7
5 5·ΔVf 10 0 50 20·ΔVf 30 10 66.7 19·ΔVf 26 12 73.1
6 6·ΔVf 12 0 50 24·ΔVf 36 12 66.7 22·ΔVf 30 14 73.3
7 7·ΔVf 14 0 50 28·ΔVf 42 14 66.7 25·ΔVf 34 16 73.5
8 8·ΔVf 16 0 50 32·ΔVf 48 16 66.7 28·ΔVf 38 18 73.7
9 9·ΔVf 18 0 50 36·ΔVf 54 18 66.7 31·ΔVf 42 20 73.8
10 10·ΔVf 20 0 50 40·ΔVf 60 20 66.7 34·ΔVf 46 22 73.9
13 13·ΔVf 26 0 50 52·ΔV f 78 26 66.7 43·ΔVf 58 28 74
16 16·ΔV f 32 0 50 64·ΔVf 96 32 66.7 52·ΔV f 70 34 74.3
52 52·ΔV f 104 0 50 - - - - - - - -
따라서, 16개의 LED 소자의 출력이 요구되는 경우에, 도 186a에 도시된 역병렬 LED 회로는 총 32개의 LED 소자가 요구되며, 도 187a에 도시된 브리지망 LED 회로는 4단을 연결하여 총 24개의 LED 소자가 요구된다. 이에 반해, 본 발명에 따른 사다리망 LED 회로에서는, 총 22개의 LED 소자로 원하는 광량(16개의 LED 소자)을 제공할 수 있으므로, 브리지 LED 회로보다도 LED 소자의 사용개수를 크게 절감시킬 수 있다.
이러한 향상효과는 큰 출력사양에서 더욱 증가한다. 즉, 52개의 LED 소자의 출력이 요구되는 경우에, 역병렬 회로와 브리지 회로는 그 AC 구동회로의 구성을 위해서, 각각 104개, 78개가 요구되지만, 사다리망 LED 회로는 70개만이 사용되므로, 종래에 대비하여 34개, 8개의 LED 소자를 절감시킬 수 있다.
이와 같이, 사다리망 LED 구동회로에 따르면, AC 구동을 위한 조건에서 기존의 역병렬 구조뿐 아니라 브리지 구조보다도 동일한 출력에 대한 LED 사용개수를 크게 절감시킬 수 있다.
본 발명의 다양한 실시형태에 따른 발광소자 패키지가 채용된 면광원장치 및 백라이트유닛에서 LED의 밝기를 주변 밝기에 따라 자동적으로 조절함으로써, 소비전력을 낮출 수 있는 LED 자동 조광 장치에 대해 설명하도록 한다.
도 188는 본 발명에 따른 LED 자동 조광 장치의 구성도이다. 도 188를 참조하면, 본 발명에 따른 LED 자동 조광 장치는, 주변 밝기를 검출하는 주변밝기 검출부(5700)와, 상기 주변밝기 검출부(5700)의 검출에 의해 발생되는 검출전압(Vd)의 크기에 따라 구동을 제어하는 조광 제어부(5800)와, 상기 조광 제어부(5800)의 구동 제어에 따른 LED 구동전류를 생성하는 조광 구동부(5810)를 포함한다. 또한, 상기 LED 자동 조광 장치는, 복수의 LED를 포함하며, 상기 조광 구동부(5810)로부터의 구동전류에 따라 구동되는 LED부(5820)를 포함할 수 있다.
상기 주변밝기 검출부(5700)는, 주변 밝기 검출용 검출감도를 설정하기 위한 감도 설정부(5710)와, 상기 감도 설정부(5710)에 의해 설정된 검출감도로, 외부광을 수광하여 주변 밝기를 검출하는 포토 센서부(5720)를 포함할 수 있다. 상기 포토 센서부(5720)는, 상기 동작전원(Vcc)을 공급받는 전원단에 연결된 컬렉터와, 외부광을 수광받는 베이스와, 상기 감도 설정부(5710)에 연결된 에미터를 갖는 포토 트랜지스터(PT)를 포함할 수 있다. 상기 감도 설정부(5710)는, 상기 포토 트랜지스터(PT)의 에미터에 연결되고, 사용자가 조절 가능한 가변저항과, 가변저항과 직렬로 연결되는 저항을 포함할 수 있다.
구체적인 동작을 설명하면, 주변밝기 검출부(5700)는 주변 밝기를 검출하여 검출전압(Vd)을 조광 제어부(5800)로 출력한다. 예를 들어, 상기 주변밝기 검출부(5700)는, 감도 설정부(5710)와 포토 센서부(5720)를 포함하는 경우, 상기 감도 설정부(5710)는, 상기 포토 센서부(5720)에 대해 주변 밝기 검출용 검출감도를 설정할 수 있다. 상기 포토 센서부(5720)는, 상기 감도 설정부(5710)에 의해 설정된 검출감도로, 외부광을 수광하여 주변 밝기를 검출할 수 있다. 이때, 상기 포토 센서부(5720)는, 상기 동작전원(Vcc)을 공급받는 전원단에 연결된 컬렉터와, 외부광을 수광받는 베이스와, 상기 감도 설정부(5710)에 연결된 에미터를 갖는 포토 트랜지스터(PT)로 이루어질 수 있으며, 이 경우, 상기 포토 트랜지스터(PT)가 외부광을 받으면 도통되어 상기 동작전원(Vcc)에서 전류(I)가 상기 포토 트랜지스터(PT) 및 감도 설정부(5710)를 통해 흐르게 된다. 즉, 상기 감도 설정부(5710)에 의해 상기 전류(I)가 검출전압(Vd)으로 검출되는데, 이때, 상기 감도 설정부(5710)가 상기 포토 트랜지스터(PT)의 에미터에 연결되고, 사용자가 조절 가능한 가변저항 및 저항으로 이루어지는 경우, 가변저항의 저항값에 따라 흐르는 전류(I)에 의한 검출전압(Vd)의 기울기가 달라질 수 있다.
상기 조광 제어부(5800)는, 상기 주변밝기 검출부(5700)의 검출에 의해 발생되는 아날로그 형태의 검출전압(Vd)을 디지털 형태의 검출전압으로 변환하는 A/D 컨버터(5801)와, 상기 A/D 컨버터(5801)로부터의 디지털형태의 검출전압(Vd)의 크기에 따라 구동을 제어하는 마이컴(5802)을 포함할 수 있다. 상기 마이컴(5802)은, 상기 A/D 컨버터(5801)로부터의 디지털형태의 검출전압(Vd)이 기설정된 제1 기준전압보다 작을 경우에는 상기 제1 기준전압과 상기 디지털형태의 검출전압(Vd)의 차전압의 크기에 기설정된 구동전류를 생성하고, 상기 디지털형태의 검출전압(Vd)이 기설정된 제1 기준전압보다 작지 않을 경우에는 조명 구동을 정지시킬 수 있다.
구체적인 조광 제어부(5800)의 동작을 설명하면, 상기 조광 제어부(5800)는, 상기 주변밝기 검출부(5700)의 검출에 의해 발생되는 검출전압(Vd)의 크기에 따라 조광 구동부(5810)에 구동을 제어한다. 예를 들어, 상기 조광 제어부(5800)는, A/D 컨버터(5801)와 마이컴(5802)을 포함하는 경우, 상기 A/D 컨버터(5801)는, 상기 주변밝기 검출부(5700)의 검출에 의해 발생되는 아날로그 형태의 검출전압(Vd)을 디지털 형태의 검출전압으로 변환하여 마이컴(5802)으로 출력한다. 상기 마이컴(5802)은, 상기 A/D 컨버터(5801)로부터의 디지털형태의 검출전압(Vd)의 크기에 따라 구동을 제어할 수 있다.
상기 조광 구동부(5810)는, 상기 조광 제어부(5800)의 구동 제어에 따른 LED 구동전류를 생성하여 LED부(5820)에 공급한다. 결국, 상기 조광 구동부(5810)로부터의 구동전류는, 외부광량이 많을 경우에는 작은 구동전류가 생성되고, 이와 달리, 외부광량이 작을 경우에는 큰 구동전류가 생성된다. 이에 따라, 상기 LED부(5820)는, 복수의 LED를 포함할 수 있으며, 이 복수의 LED는 상기 조광 구동부(5810)로부터의 구동전류에 따라 구동된다. 전술한 바와 같은 본 발명에서, 외부광량에 따라 LED의 밝기를 자동적으로 조절할 수 있으며, 전력소비를 최소한으로 줄일 수 있다는 장점이 있다.
도 189은 본 발명의 LED 자동 조광 장치의 동작 흐름도이다. 도 1890에서, S1은 검출전압(Vd)을 입력받는 단계이다. S2은 디지털형태의 검출전압(Vd)과 기설정된 제1 기준전압을 비교하는 단계이다. S3은 디지털형태의 검출전압(Vd)이 기설정된 제1 기준전압보다 작을 경우에는 상기 제1 기준전압과 상기 디지털형태의 검출전압(Vd)의 차전압의 크기에 기설정된 구동전류를 생성하여 조명밝기를 제어하는 단계이다. S4은 상기 디지털형태의 검출전압(Vd)이 기설정된 제1 기준전압보다 작지 않을 경우에는 조명 구동을 정지시킬 수 있다. S5은 동작정지 여부를 판단하는 단계로서, 이 단계에서는 동작정지가 아닌 경우에는 상기 S1단계에서 S3단계까지의 과정을 반복적으로 수행하고 동작정지인 경우에는 전체 과정을 종료한다.
여기서, 도 188 및 도 189을 참조하면, 상기 마이컴(5802)은, 상기 A/D 컨버터(5801)로부터의 디지털형태의 검출전압(Vd)을 입력받아(S1), 상기 A/D 컨버터(5801)로부터의 디지털형태의 검출전압(Vd)이 기설정된 제1 기준전압을 비교하여(S2), 상기 A/D 컨버터(5801)로부터의 디지털형태의 검출전압(Vd)이 기설정된 제1 기준전압보다 작을 경우에는 상기 제1 기준전압과 상기 디지털형태의 검출전압(Vd)의 차전압의 크기에 기설정된 구동전류를 생성하여 조명밝기를 제어하고(S3), 상기 디지털형태의 검출전압(Vd)이 기설정된 제1 기준전압보다 작지 않을 경우에는 조명 구동을 정지시킬 수 있다(S4). 한편, 상기 마이컴(5802)은, 동작정지 여부를 판단하여, 동작정지가 아닌 경우에는 상기 S1단계에서 S3단계까지의 과정을 반복적으로 수행하고 동작정지인 경우에는 전체 과정을 종료한다(S5).
도 190은 본 발명에 따른 외부조도-검출전압 관계 그래프이다. 도 190에서는, 본 발명의 주변밝기 검출부(5700)에서의 동작 설명을 위한 외부조도-검출전압 관계 그래프를 보이고 있으며, 이 외부조도-검출전압 관계 그래프는 검출전압이 외부조도가 높을수록 높아지는 관계를 보이고 있다. 도 190에 도시된 외부조도-검출전압 관계 그래프를 참조하면, 상기 주변밝기 검출부(5700)에서의 검출전압은 외부조도가 높을수록 높게 검출되는 것을 알 수 있다.
도 191는 본 발명의 감도 설정에 따른 다양한 외부조도-검출전압 관계 그래프이다. 도 191에서는, 본 발명의 주변밝기 검출부(5700)의 감도 설정부(5710)에서의 감도 설정에 따라, 외부조도-검출전압 관계 그래프의 기울기가 서로 달라지는 예를 보여주고 있으며, 도 191에 도시된 3개의 그래프 중, G1은 중간 기울기를 갖는 외부조도-검출전압 관계 그래프이고, G2는 가장 큰 기울기를 갖는 외부조도-검출전압 관계 그래프이고, G3은 가장 작은 기울기를 갖는 외부조도-검출전압 관계 그래프이다.
도 191를 참조하면, 본 발명의 주변밝기 검출부(5700)의 감도 설정부(5710)에서 가변저항을 조절하여 감도를 서로 다르게 설정하면, 도 191에 도시한 G1,G2 및 G3와 같이, 외부조도-검출전압 관계 그래프의 기울기가 서로 달라진다. 예를 들어, 보통 일반적인 경우에는 G1의 그래프에 해당되는 감도로 설정하고, 외부광량이 많고 변화가 심한 경우에는 G2의 그래프에 해당되는 감도로 설정하며, 외부광량이 적고 변화가 덜한 경우에는 G3의 그래프에 해당되는 감도로 설정할 수 있다.
상술한 본 발명의 다양한 실시형태에 따른 발광소자 및 이를 구비한 발광소자 패키지를 광원으로 구비하는 차량용 헤드라이트를 도 192 내지 도 197을 참조하여 설명하도록 한다.
도 192은 본 발명의 일 실시형태에 따른 차량용 헤드라이트를 나타내는 분해사시도이며, 도 193는 도 192에 도시된 차량용 헤드라이트를 조립한 구조의 단면도이다.
도 192에 도시된 바와 같이 본 발명의 일 실시예에 따른 차량용 헤드라이트(6000)는 발광소자 패키지(6010,6010-1,6010-2,6010-3), 반사부(6020), 렌즈부(6030), 방열부(6040)를 포함하여 구성된다. 상기 발광소자 패키지(6010,6010-1,6010-2,6010-3)는 방열부(6040)의 상부에 장착되며, 외부전원(미도시)과 전기적으로 연결되어 전원공급시 빛을 발광하는 광원기능을 수행한다.
도 194 내지 도 197을 참조하여 상기 발광소자 패키지(6010,6010-1,6010-2,6010-3)의 다양한 구조에 대해 보다 자세히 설명한다. 우선, 도 194 및 도 196을 참조하여 수지층이 형광체를 함유하는 구조에 관한 발광소자 패키지에 대하여 설명한다.
도 194a는 발광소자 패키지의 일실시예를 나타내는 평면도이고, 도 194b는 도 194a의 발광소자 패키지를 나타내는 단면도이며, 도 194c과 도 194d는 도 194a의 발광소자 패키지에서 발광소자 칩이 실장된 상태의 변형예들을 나타내는 평면도이다.
그리고, 도 195a는 상기 발광소자 패키지의 다른 실시예를 나타내는 평면도이고, 도 195b는 도 195a의 발광소자 패키지를 나타내는 단면도이며, 도 195c와 도 195d는 도 195a의 발광소자 패키지에서 발광소자 칩이 실장된 상태의 변형예들을 나타내는 평면도이다.
도 194 및 도 195에서와 같이, 상기 발광소자 패키지(6010,6010-1)는 적어도 하나의 발광소자 칩(6012)과, 상기 발광소자 칩(6012)을 실장하며 전기적으로 연결되는 하나 이상의 연결단자(6013)를 구비하는 기판(6011)과, 형광체가 함유되어 있으며 상기 발광소자 칩(6012)과 상기 연결단자(6013)를 덮어 밀봉하는 수지층(6014)으로 이루어진다. 상기 발광소자 칩(6012)은 상기 기판(6011)의 상부면에 실장되어 외부에서 인가되는 전원에 의해 소정 파장의 빛을 출사하는 반도체소자의 일종이며, 도 194a와 도 194b 및 도 195a와 도 195b에서와 같이 복수개의 발광소자 칩(6012)이 상기 기판(6011)의 중심부에 구비될 수 있다. 이때, 발광소자 패키지(6010, 6010-1)는 발광소자 칩(6012)이 청색 발광소자인 경우 백색광을 제공하기 위해 형광체를 추가적으로 구비할 수 있는데, 이때 형광체는 황색 형광체를 포함할 수 있다. 예컨대 YAG계의 황색 형광체를 함유하는 젤 형태의 에폭시 수지 혹은 YAG계의 황색 형광체를 함유하는 젤 형태의 실리콘 수지를 패키지의 수납 홈에 주입 한 후, UV(ultraviolet) 경화나 열경화를 통해 형성하거나 또는 칩의 상면에 형광체층을 코팅 또는 적층하여 백색광을 얻을 수 있다..
물론 여기에서도 본 발명은 청색 발광소자와 황색 형광체로 이루어지는 발광소자(LED) 패키지에 대하여 한정하려는 것은 아니며, 가령 근자외선 칩과 그 근자외선 칩상에 구비되는 적색, 녹색, 청색의 형광체가 혼합된 수지포장부 혹은 적색, 녹색, 청색의 형광체가 각각 포함되어 순차적으로 적층하여 형성된 수지포장부로 이루어질 수도 있을 것이다. 또는 자외선 내지 청색광을 발광하는 발광칩에 본 발명의 실시예 1 내지 실시예 11에 따라 합성한 (Sr, M)2SiO4-xNy:Eu의 조성식으로 표현되는 무기화합물 또는 상기 실리게이트(Silicate)계, 가넷(Garnet)계. 황화물(Sulfide)계, 질화물(Nitride)계, QD형광체 중 적어도 하나를 구비한 백색 발광소자 패키지 일수도 있을 것이다.
혹은, 상기 발광소자 칩(6012)들은 청색 LED, 적색 LED 및 녹색 LED의 조합으로 이루어져 어레이됨으로써 백색광을 출사하도록 하는 것일 수도 있다. 그러나, 이에 한정하지 않고 도 194c 및 도 195c에서와 같이 단일의 백색 발광소자 칩(6012')이 상기 기판(6010)의 중심부에 구비되는 것 또한 가능하다. 이때, 상기 발광소자 칩(6012')은 청색 LED 또는 UV LED인 것이 바람직하며, 추후 설명하는 수지층(6014)의 형광체를 통해 백색광을 출사하도록 한다.
또한, 도 194d 및 도 195d에서와 같이 상기 기판(6011)의 중심부에 구비되는 긴 길이의 발광소자 칩(6012'')을 중심으로 그 양측에 보다 짧은 길이의 발광소자 칩(6012)들이 대칭구조로 구비되는 것도 가능하다. 이 경우 상기 중심부에 구비되는 발광소자 칩(6012'')은 그 양측에 구비되는 발광소자 칩(6012) 보다 1.5배 내지 2배 긴 길이를 가질 수 있으며, 녹색 LED인 것이 바람직하나 이에 한정하는 것은 아니다. 상기 발광소자 칩(6012)은 금속 와이어(6019)를 통해 와이어 본딩 방식으로 상기 기판(6011)의 상부면에 패터닝되는 상기 연결단자(6013)와 전기적으로 연결된다.
본 발명의 일실시예에 따른 발광소자 패키지(6000)를 도시하는 도 194a 및 도 194b에서와 같이, 상기 기판(6010)은 그 상부면에 상기 발광소자 칩(6012) 및 연결단자(6013)가 내부에 실장되며, 상기 발광소자 칩(6012) 및 연결단자(6013)를 향해 하향경사지는 내주면을 따라 반사면(6016)을 이루는 캐비티(6018)를 구비한다. 상기 캐비티(6018)는 레이저 혹은 에칭(etching)을 통해 상기 기판(6011)의 상부면을 소정 크기로 함몰형성하여 구비되거나, 상기 기판(6011)의 상부면 테두리를 따라서 수지(6017)를 소정 높이로 몰딩함으로써 상기 반사면(6016)을 돌출형성하여 구비될 수 있다. 바람직하게, 상기 반사면(6016)의 보다 효율적인 구현을 위해 상기 반사면(6016)의 표면에는 고반사율을 갖는 반사막이 더 구비될 수 있다.
그리고, 상기 캐비티(6018)는 형광체를 함유하는 수지층(6014)에 의해 충진되어 상기 발광소자 칩(6012), 금속 와이어(6019), 연결단자(6013)와 함께 상기 기판(6011)의 상부면을 일체로 덮어 밀봉함으로써 상기 캐비티(6018) 내에 배치되는 상기 발광소자 칩(6012) 등을 보호한다. 이때, 상기 발광소자 패키지(6000)는 상기 발광소자 칩(6012) 사이의 간격을 포함하여 상기 발광소자 칩(6012)의 상부면과 측면이 상기 수지층(6014)에 의해 밀봉되도록 한다.
따라서, 종래의 발광소자 패키지에서 연속적으로 배치되는 발광소자 칩의 상부면에만 형광체를 도포함으로써 칩들 사이의 간격에 의해 조사되는 광이 연속적이지 않고 불연속적으로 분리되어 보이는 문제를 해결할 수 있다.
한편, 본 발명의 다른 실시예에 따른 발광소자 패키지(6000-1)를 도시하는 도 195a 및 도 195b에서와 같이, 상기 기판(6011)의 편평한 상부면에는 상기 수지층(6014)이 소정 크기 및 높이로 몰딩되어 상기 발광소자 칩(6012)과 상기 연결단자(6013)를 일체로 덮어 밀봉한다. 이 경우에도 마찬가지로 상기 발광소자 패키지(6000-1)는 상기 발광소자 칩(6012) 사이의 간격을 포함하여 상기 발광소자 칩(6012)의 상부면과 측면이 상기 수지층(6014)에 의해 밀봉되도록 한다.
다음으로, 도 196 및 도 197을 참조하여 수지층 상부에 형성되며, 형광체를 함유하여 상기 발광소자 칩에서 방출된 빛의 파장을 변환하는 형광층을 구비하는 구조에 관한 발광소자 패키지에 대해 설명한다.도 196a는 도 194a에서 도시하는 발광소자 패키지의 다른 실시예를 나타내는 평면도이고, 도 196b는 도 196a의 발광소자 패키지를 나타내는 단면도이며, 도 196c는 도 196b의 변형예를 나타내는 단면도이다.
도 196에서 도시하는 발광소자 패키지(6000-2)는 그 구성이 도 194의 실시예와 실질적으로 동일하다. 다만, 형광체를 함유하는 형광층이 상기 수지층의 상부에 구비되는 점에서 차이가 있으므로, 도 194의 실시예와 동일한 부분에 대한 설명은 생략하고 도 196의 실시예에서 달라지는 구성에 대해서만 상술하기로 한다.
도 196에 도시된 바와 같이, 상기 캐비티(6018)에 충진되어 상기 발광소자 칩(6012), 금속 와이어(6019), 연결단자(6013)와 함께 상기 기판(6011)의 상부면을 일체로 덮어 밀봉하는 상기 수지층(6014)은 형광체를 함유하지 않는다. 다만, 상기 수지층(6014)은 도 194의 실시예에서와 마찬가지로 상기 발광소자 칩(6012) 사이의 간격을 포함하여 상기 발광소자 칩(6012)의 상부면과 측면을 상기 연결단자(6013)와 함께 일체로 밀봉하는 점에서는 동일하다. 상기 수지층(6014)은 상부에 형광체를 함유하여 상기 발광소자 칩(6012)에서 방출된 빛의 파장을 변환하는 형광층(6015)을 구비한다. 상기 형광층(6015)은 상기 수지층(6014)의 상부에 구비되는데, 상기 수지층(6014)의 외측면에 도포되어 구비될 수 있으며, 상기 수지층(6014)의 외측면에 레이어 형태로 부착되어 구비될 수도 있다. 이 경우 상기 형광층(6015)은 하나 이상이 레이어가 적층되어 구비는 것이 바람직하다.
도 196b에서와 같이, 상기 형광층(6015) 내에는 빛의 파장을 변환하기 위해 형광체가 분산되어 함유되는데, 상기 형광체는 청색, 녹색, 적색 및 황색 형광체 중 적어도 하나 이상의 형광체가 혼합되어 함유될 수 있다. 또한, 도 196c에서와 같이 다층 구조(도면에서는 3개의 층으로 적층되는 구조를 도시하고 있으나 이에 한정하는 것은 아님)로 적층되는 경우 상기 적층되는 형광층(6015)은 모두 동일한 형광체를 함유하거나 각 층별로 상이한 형광체를 함유할 수 있다. 그리고, 상기 적층되는 형광층(6015)은 짧은 파장의 형광층이 상부에 위치하고, 긴 파장의 형광층이 하부에 위치하도록 파장의 길이에 따라 순차적으로 적층되는 것이 바람직하다.
예를 들어, 상기 발광소자 칩(6012)이 UV 발광소자 칩인 경우 상기 발광소자 칩(6012)위에 형성되는 제1 형광층(6015'-1)은 적색광(R)을 방출하는 형광체와 수지가 혼합되어 이루어질 수 있다. 상기 적색광(R)을 방출하는 형광체로는 자외선에 의해 여기되어 600㎚ ~ 700㎚ 범위의 발광피크를 갖는 광을 방출하는 형광물질이 사용될 수 있다. 상기 제2 형광층(6015'-2)은 상기 제1 형광층(6015'-1) 위에 적층되며, 녹색광(G)을 방출하는 형광체와 수지가 혼합되어 이루어질 수 있다. 상기 녹색광을 방출하는 형광체로는 자외선에 의해 여기되어 500㎚ ~ 550㎚ 범위의 파장을 가진 광을 방출하는 형광물질이 사용될 수 있다. 상기 제3 형광층(6015'-3)은 상기 제2 형광층(6015'-2) 위에 적층되며, 청색광(B)을 방출하는 형광체와 수지가 혼합되어 이루어질 수 있다. 상기 청색광을 방출하는 형광체로는 자외선에 의해 여기되어 420㎚ ~ 480㎚ 범위의 파장을 가진 광을 방출하는 형광물질이 사용될 수 있다.
상기한 구성을 통해 UV 발광다이오드 칩에서 방출된 자외선은 제1 형광층(6015'-1), 제2 형광층(6015'-2) 및 제3 형광층(6015'-3) 내에 함유된 서로 다른 종류의 형광체들을 여기시키게 된다. 이에 따라 각 형광층으로부터 적색광(R), 녹색광(G) 및 청색광(B)이 각각 방출되고, 이러한 세 가지 색상의 광이 조합되어 백색광(W)을 형성하게 되는 것이다. 특히, 자외선을 형광 전환하기 위한 형광층을 다층, 즉 3층으로 형성하되, 가장 긴 파장의 광, 즉 적색광(R)을 방출하는 제1 형광층(6015'-1)을 UV 발광다이오드 칩(6012)위에 먼저 적층하고, 그 위에 보다 짧은 파장의 광, 즉 녹색광(G)과 청색광(B)을 방출하는 제2 형광층(6015'-2) 및 제3 형광층(6015'-3)들을 순차적으로 적층한다.
이와 같이 광전환 효율이 가장 낮은 적색광(R)을 방출하는 형광체가 함유된 제1 형광층(6015'-1)이 UV 발광다이오드 칩(6012)에 가장 가까이 위치함으로써, 제1 형광층에서의 광전환 효율이 상대적으로 높아지게 되고, 이에 따라 발광다이오드 칩(6012)의 전체적인 광전환 효율이 향상될 수 있다.
만일, 상기 발광소자 칩(6012)이 여기광으로서 420㎚ ~ 480㎚ 범위의 파장을 가진 청색광(B)을 방출하는 발광소자 칩인 경우, 상기 발광소자 칩(6012) 위에 형성되는 제1 형광층(6015'-1)은 적색광(R)을 방출하는 형광체와 수지가 혼합되어 이루어고, 상기 제1 형광층(6015'-1) 위에 적층되는 제2 형광층(6015'-2) 및 제3 형광층(6015'-3)은 수지에 녹색광(G) 또는 황색광(Y)을 방출하는 형광체가 혼합되어 이루어진다.
이와 같은 구성을 통해 상기 발광소자 칩(6012)에서 방출된 청색광(B)은 제1 형광층(6015'-1) 내에 함유된 형광체를 여기시켜 적색광(R)을 방출시키고, 제2 형광층(6015'-2)과 제3 형광층(6015'-3) 내에 함유된 형광체를 여기시켜 녹색광(G) 또는 황색광(Y)을 방출시킨다. 이와 같이 다층 형광층으로부터 방출되는 적색광(R)과 녹색광(G)(또는 황색광(Y))과 발광소자 칩(6012)에서 발생되는 청색광(B)이 조합되어 백색광(W)이 형성되는 것이다.
한편, 도 197a는 도 195a에서 도시하는 발광소자 패키지의 다른 실시예를 나타내는 평면도이고, 도 197b는 도 197a의 발광소자 패키지를 나타내는 단면도이며, 도 197c는 도 197b의 변형예를 나타내는 단면도이다.
도 197에서 도시하는 발광소자 패키지(6000-3)는 그 구성이 도 195의 실시예와 실질적으로 동일하다. 다만, 형광체를 함유하는 형광층이 상기 수지층의 외측면에 구비되는 점에서 차이가 있으므로, 도 195의 실시예와 동일한 부분에 대한 설명은 생략하고 도 197의 실시예에서 달라지는 구성에 대해서만 상술하기로 한다.
도 197에 도시된 바와 같이, 상기 기판(6010)의 편평한 상부면에 구비되어 상기 발광소자 칩(6012), 금속 와이어(6019), 연결단자(6013)와 함께 상기 기판(6011)의 상부면을 일체로 덮어 밀봉하는 상기 수지층(6014)은 형광체를 함유하지 않는다. 그리고, 이러한 수지층(3614)은 형광체를 함유하지 않고 상기 수지층(6014)의 상부에 구비되는 형광층(6015) 내에 상기 형광체가 함유되는 점에서 도 196의 실시예와 동일하다.
즉, 도 197b에서와 같이, 상기 형광층(6015) 내에 함유되는 형광체는 청색, 녹색, 적색 및 황색 형광체 중 적어도 하나 이상의 형광체가 혼합되어 함유될 수 있다. 또한, 도 197c에서와 같이 다층 구조(도면에서는 3개의 층으로 적층되는 구조를 도시하고 있으나 이에 한정하는 것은 아님)로 적층되는 경우 상기 적층되는 형광층(6015)은 모두 동일한 형광체를 함유하거나 각 층별로 상이한 형광체를 함유할 수 있다.
그리고, 상기 적층되는 형광층(6015)은 짧은 파장의 형광층이 상부에 위치하고, 긴 파장의 형광층이 하부에 위치하도록 파장의 길이에 따라 순차적으로 적층될 수 있다. 상기 형광층(6015)의 구체적인 구조는 도 196b 및 도 196c의 형광층(6015)과 실질적으로 동일하므로 이에 대한 구체적인 설명은 생략한다.
상기 방열부(6040)는 히트싱크(6041)와 냉각팬(6042)을 포함하며, 상기 발광소자 패키지(6010,6010-1,6010-2,6010-3)가 상부측에 구비되어 상기 발광소자 패키지(6010,6010-1,6010-2,6010-3)에서 발생되는 열을 외부로 방출한다.
구체적으로, 상기 히트싱크(6041)는 상기 발광소자 패키지(6010,6010-1,6010-2,6010-3)를 상부면에 실장하며, 상기 발광소자 패키지(6010,6010-1,6010-2,6010-3)에서 발생하는 고온의 열을 외부로 방출한다. 이때, 넓은 표면적을 가지도록 하부면에 복수개의 홈을 형성할 수 있다. 그리고, 상기 냉각팬(6042)은 상기 히트싱크(6041)의 하부측에 장착되어 상기 히트싱크(6041)의 열 방출 효율을 증가시킬 수 있다.
상기 반사부(6020)는 상기 발광소자 패키지(6010,6010-1,6010-2,6010-3) 및 방열부(6040)의 상부측에 구비되어 상기 발광소자 패키지(6010,6010-1,6010-2,6010-3)에서 출사되는 빛을 유도하여 반사시킨다. 도 192 및 도 193에서와 같이 상기 반사부(6020)는 단면이 돔 형상으로 형성되어 상기 발광소자 칩(6012)에서 발광되는 빛을 자동차의 전방을 향하도록 안내하며, 전방이 개방된 형상으로 형성되어 상기 반사된 빛이 외부로 출사되도록 한다.
본 발명의 실시예에 따른 차량용 헤드라이트(6000)는 상기 방열부(6040) 및 상기 반사부(6020)를 고정시켜 지지하는 하우징(6050)을 더 포함한다. 구체적으로 상기 하우징(6050)은 일면에 상기 방열부(6040)가 결합하여 장착되기 위한 중앙홀(6053)을 관통형성하며, 상기 면과 일체로 연결되어 직각방향으로 절곡되는 타면에 상기 반사부(6020)가 상기 발광소자 패키지(6010,6010-1,6010-2,6010-3)의 상부측에 위치하도록 고정시키는 전방홀(6052)을 관통형성한다.
따라서, 상기 반사부(6020)의 개방된 전방이 상기 전방홀(6052)과 대응되도록 상기 반사부(6020)가 상기 하우징(6050)에 고정되어 상기 반사부(6020)를 통해 반사된 빛이 상기 전방홀(6052)을 통과하여 외부로 출사되도록 한다.
상기 렌즈부(6030)는 상기 반사부(6020)를 통해 반사되어 출사되는 빛을 외부로 발산시키며, 중공형의 가이드(6032) 및 렌즈(6061)를 포함한다. 구체적으로 상기 가이드(6032)는 상기 하우징(6050)의 전방홀(6052)을 따라 장착되며, 상기 반사부(6020)를 통해 반사되어 상기 전방홀(6052)을 통과하는 빛을 전방으로 안내한다. 상기 가이드(6032)는 상기 렌즈(6031)를 내부에 수용하도록 중공형의 원통구조를 가지며 사출성형을 통해 형성되는 플라스틱 사출물이다.
그리고, 상기 렌즈(6031)는 상기 가이드(6032)의 전방에 장착되어 빛을 자동차의 전방을 향하도록 굴절시켜 분산시키며, 투명한 재질로 형성되는 것이 바람직하다.
상술한 본 발명의 다양한 실시형태의 백라이트 유닛, 차량용 헤드라이트와 같은 조명장치는 본 발명에서 설명한 다양한 발광소자 패키지를 채용할 수 있으며, 각 발광소자 패키지는 본 발명의 실시예 1 내지 실시예 11에 따라 합성한 (Sr, M)2SiO4-xNy:Eu의 조성식으로 표현되는 무기화합물 또는 상기 실리게이트(Silicate)계, 가넷(Garnet)계. 황화물(Sulfide)계, 질화물(Nitride)계, QD형광체 중 적어도 하나를 구비하며, 상기 M은 적어도 하나의 1가 및 2가 원소이며, 0<x<4, y=2x/3을 만족하며, 발광다이오드 칩에서 방출된 광을 흡수하여 파장 변환하는 파장변환부 또는 수지포장부를 구비한다.
본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니며, 첨부된 청구범위에 의해 한정된다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이며, 이 또한 첨부된 청구범위에 기재된 기술적 사상에 속한다 할 것이다.
도 1은 본 발명의 일실시형태에 따른 반도체 발광소자를 도시한 평면도이다.
도 2는 도 1의 반도체 발광소자를 도시한 단면도이다.
도 3은 면적이 1000×1000μ㎡인 반도체 발광소자의 n형 오믹접촉 저항 및 p형 오믹접촉 저항을 보여주는 그래프이다.
도 4는 제1반도체층과 제1전극층이 접촉하는 접촉 면적에 따른 제1접촉 저항과 제2접촉 저항의 총저항을 보여주는 그래프이다.
도 5는 제1반도체층과 제1전극층의 접촉 면적에 따른 발광 효율을 보여주는 그래프이다.
도 6은 도 2의 실시형태에서 변형된 실 형태에 따른 반도체 발광소자를 나타낸다.
도 7는 본 발명의 다른 실시형태에 따른 반도체 발광소자를 도시한 단면도이다.
도 8 및 도 9는 n형 고유 접촉 저항을 달리하여 시뮬레이션을 수행한 결과를 나타낸다.
도 10 내지 도 14는 본 발명의 또 다른 실시예에 따른 반도체 발광소자를 설명하는 도면들이다.
도 15 내지 도 18은 본 발명의 또 다른 실시예에 따른 반도체 발광소자를 설명하는 도면들이다.
도 19 내지 도 23은 본 발명의 또 다른 실시예에 따른 반도체 발광소자를 설 명하는 도면들이다.
도 24 내지 도 34는 본 발명의 또 다른 실시예에 따른 반도체 발광소자를 설명하는 도면들이다.
도 35 내지 도 55는 본 발명의 또 다른 실시예에 따른 반도체 발광소자를 설명하는 도면들이다.
도 56 내지 도 75는 본 발명의 또 다른 실시예에 따른 반도체 발광소자를 설명하는 도면들이다.
도 76 내지 도 89는 본 발명의 또 다른 실시예에 따른 반도체 발광소자를 설명하는 도면들이다.
도 90 내지 도 100은 본 발명의 또 다른 실시예에 따른 반도체 발광소자를 설명하는 도면들이다.
도 101 내지 도 119는 본 발명의 또 다른 실시형태에 따른 반도체 발광소자를 나타내는 도면들이다.
도 120 내지 도 122는 본 발명의 일 실시형태에 따른 백색 발광소자 패키지의 다양한 실시예를 나타내는 개략도이다.
도 123은 본 발명의 일 실시형태에 따른 백색 발광소자 패키지의 발광 스펙트럼을 나타낸다.
도 124a 내지 도 124d는 본 발명에 채용가능한 녹색 형광체의 발광특성을 나타내는 파장스펙트럼이다.
도 125a 및 도 125b는 본 발명에 채용가능한 적색 형광체의 발광특성을 나타 내는 파장스펙트럼이다.
도 126a 및 도 126b는 본 발명에 채용가능한 황색 형광체의 발광특성을 나타내는 파장스펙트럼이다.
도 127 내지 도 129는 본 발명의 실시예1에 따른 (Sr, M)2SiO4-xNy의 형광체의 발광 스펙트럼, XRD 스펙트럼 및 EDX 성분분석 결과를 각각 나타낸 도면이다.
도 130 및 도 131은 본 발명의 실시예2 및 3에 따른 (Sr, M)2SiO4-xNy 형광체의 발광 스펙트럼 및 EDX 성분분석 결과를 나타낸 도면이다.
도 132는 본 발명의 실시예4 내지 6에 따른 (Sr, M)2SiO4-xNy 형광체의 발광 스펙트럼을 나타낸 도면이다.
도 133은 본 발명의 실시예7 내지 10에 따른 (Sr, M)2SiO4-xNy 형광체의 발광 스펙트럼을 나타낸 도면이다.
도 134는 본 발명의 실시예11에 따른 (Sr, M)2SiO4-xNy 형광체의 발광 스펙트럼을 나타낸 도면이다.
도 135 내지 도 137은 실시예 12에 따라 제조된 β-사이알론 형광체의 X선 회절분석결과, 발광스펙트럼, 여기스펙트럼을 나타내는 그래프이다.
도 138a 및 도 138b는 본 발명의 다른 실시형태에 따른 발광소자 패키지를 나타내는 도면들이다.
도 139 내지 도 141은 본 발명의 또 다른 실시형태에 따른 발광소자 패키지 를 나타내는 도면들이다.
도 142 및 도 143은 각각 램프 형태와 칩 형태로 구현된 실시형태에 따른 발광소자 패키지의 구조를 도시한 단면도이다.
도 144 및 도 145는 본 발명의 또 다른 실시형태에 따른 발광소자 패키지의 부분적인 구조를 나타내는 도면이다.
도 146 및 도 147은 발광소자 패키지에 사용되는 녹색 형광체(제2 형광체)와 적색 형광체(제1 형광체) 간의 에너지 전이를 개략적으로 나타낸 모식도이다.
도 148 및 도 149는 본 발명의 또 다른 실시형태에 따른 발광소자 패키지를 나타내는 단면도 및 광추출메카니즘을 설명하기 위한 개략도이다.
도 150 내지 도 152는 본 발명의 또 다른 실시형태에 따른 발광소자 패키지를 나타내는 단면도이다.
도 153은 본 발명의 또 다른 실시형태에 따른 발광소자 패키지를 개략적으로 나타내는 단면도이고, 도 154는 도 153에 도시한 발광소자 패키지에서 파장변환부 및 제어부를 개략적으로 나타내는 사시도이다.
도 155 및 도156은 도 153에 도시된 파장변환부와 제어부의 작동을 통한 색온도를 가변시키는 방법을 설명하기 위한 단면도이다.
도 157 및 도 158은 본 발명의 또 다른 실시형태에 따른 발광소자 패키지의 다양한 실시예를 나타내는 개략도이다.
도 159는 도 157의 발광소자 패키지에서 외부의 리드 프레임을 형성하는 공정을 구체적으로 도시한 개략도이다.
도 160 및 도 161은 본 발명의 일 실시형태에 따른 백색 광원 모듈의 다양한 실시예를 개략적으로 나타내는 측단면도이다.
도 162는 본 발명의 일 실시형태에 따른 면광원장치에서 발광모듈들의 배열 구조를 개략적으로 나타낸 평면도이며, 도 163은 도 162에서 발광모듈들의 회전 배치 방식을 나타낸 것이다.
도 164 내지 도 167은 면광원장치에서 발광모듈들의 배열 구조를 다양한 실시형태에 따라 개략적으로 나타낸 평면도이다.
도 168은 상술한 다양한 실시형태에 따른 면광원장치를 채용한 백라이트 유닛을 나타내는 단면도이다.
도 169는 본 발명의 다른 실시형태에 따른 면광원장치를 나타낸 사시도이다.
도 170 및 도 171은 본 발명의 다른 실시형태에 따른 평판형 도광판을 갖는 면 광원장치 및 평판형 도광판을 나타내는 개략적인 도면이다.
도 172 내지 도 177은 본 발명의 다른 실시형태에 따른 평판형 도광판을 갖는 백라이트장치를 설명하는 도면들이다.
도 178 내지 도 182는 본 발명의 다른 실시형태에 따른 백라이트 유닛을 개략적으로 나타내는 도면들이다.
도 183 내지 도 187은 본 발명의 다양한 실시형태에 따른 LED 구동회로를 나타낸 개략도이다.
도 188은 본 발명에 따른 LED 자동 조광 장치의 구성도이며, 도 189는 도 188에 도시된 LED 자동 조광 장치의 동작 흐름도이고, 도 190은 도 188에 도시된 LED 자동 조광 장치의 외부조도-검출전압 관계 그래프이며, 도 191은 도 188에 도시된 LED 자동 조광 장치의 감도 설정에 따른 다양한 외부조도-검출전압 관계 그래프이다.
도 192는 본 발명의 일실시 형태에 따른 차량용 헤드라이트를 나타내는 분해사시도이며, 도 193은 도 192에 도시된 차량용 헤드라이트를 조립한 구조의 단면도이다.
도 194 내지 도 197은 도 192에 도시된 차량용 헤드라이트에 채용되는 발광소자 패키지의 다양한 실시형태를 개략적으로 나타내는 도면들이다.

Claims (6)

  1. 도전성 기판;
    상기 도전성 기판 상에 순차적으로 형성된 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 구비하는 발광구조물;
    상기 제1 도전형 반도체층 및 활성층을 관통하여 상기 제2 도전형 반도체층과 그 내부에서 접속된 도전성 비아 및 상기 도전성 비아로부터 연장되어 상기 발광구조물의 외부로 노출된 전기 연결부를 구비하는 제2 도전형 전극;
    상기 제2 도전형 전극을 상기 도전성 기판, 제1 도전형 반도체층 및 활성층과 전기적으로 분리시키기 위한 절연체; 및
    적어도 상기 발광구조물 중 상기 활성층의 측면을 덮도록 형성된 패시베이션층과, 상기 활성층에서 방출된 빛의 경로 상에 형성된 요철 구조를 구비하는 반도체 발광소자.
  2. 도전성 기판;
    상기 도전성 기판 상에 순차적으로 형성된 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 구비하는 발광구조물;
    상기 도전성 기판과 상기 제1 도전형 반도체층 사이에 상기 제1 도전형 반도체층과 전기적으로 연결되도록 형성되며, 상기 발광구조물의 외부로 노출된 전기 연결부를 구비하는 제1 컨택층;
    상기 도전성 기판으로부터 연장되어 형성되며, 상기 제1 컨택층, 제1 도전형 반도체층 및 활성층을 관통하여 상기 제2 도전형 반도체층과 그 내부에서 접속된 도전성 비아;
    상기 도전성 기판을 상기 제1 컨택층, 제1 도전형 반도체층 및 활성층과 전기적으로 분리시키기 위한 절연체; 및
    적어도 상기 발광구조물 중 상기 활성층의 측면을 덮도록 형성된 패시베이션층과, 상기 활성층에서 방출된 빛의 경로 상에 형성된 요철 구조를 구비하는 반도체 발광소자.
  3. 제1항에 있어서,
    상기 제1 도전형 반도체층과 상기 도전성 기판 사이에 형성되며, 상기 절연체에 의하여 상기 제2 도전형 전극과 전기적으로 분리된 제1 컨택층을 더 포함하는 것을 특징으로 하는 반도체 발광소자.
  4. 제1항 또는 제2항에 있어서,
    상기 발광구조물은 상기 도전성 기판 상면 중 일부 위에만 형성되고,
    적어도 상기 도전성 기판 상면 중 상기 발광구조물이 형성되지 않은 영역 위에는 상기 발광구조물을 이루는 반도체 물질과 식각 특성이 상이한 식각저지층이 형성된 것을 특징으로 하는 반도체 발광소자.
  5. 제1항 또는 제2항에 있어서,
    상기 제2 도전형 반도체층의 상면에는 요철 구조가 형성된 것을 특징으로 하는 반도체 발광소자.
  6. 제1항 또는 제2항에 있어서,
    상기 제1 및 제2 도전형 반도체층은 각각 p형 및 n형 반도체층인 것을 특징으로 하는 반도체 발광소자.
KR1020090110307A 2008-11-14 2009-11-16 반도체 발광소자 KR101601621B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200980145944.5A CN102217102B (zh) 2008-11-14 2009-11-16 半导体发光器件
PCT/KR2009/006731 WO2010056083A2 (ko) 2008-11-14 2009-11-16 반도체 발광소자
EP09826315.5A EP2357679B1 (en) 2008-11-14 2009-11-16 Vertical/horizontal light-emitting diode for semiconductor
US13/127,847 US8809893B2 (en) 2008-11-14 2009-11-16 Semiconductor light emitting device
US14/336,973 US9305906B2 (en) 2008-11-14 2014-07-21 Semiconductor light emitting device
US14/338,225 US9312249B2 (en) 2008-11-14 2014-07-22 Semiconductor light emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020080113568 2008-11-14
KR20080113568 2008-11-14
KR1020080122094 2008-12-03
KR1020080122094 2008-12-03

Publications (2)

Publication Number Publication Date
KR20100054756A true KR20100054756A (ko) 2010-05-25
KR101601621B1 KR101601621B1 (ko) 2016-03-17

Family

ID=42279416

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090110307A KR101601621B1 (ko) 2008-11-14 2009-11-16 반도체 발광소자

Country Status (6)

Country Link
US (3) US8809893B2 (ko)
EP (1) EP2357679B1 (ko)
KR (1) KR101601621B1 (ko)
CN (1) CN102217102B (ko)
TW (1) TWI422063B (ko)
WO (1) WO2010056083A2 (ko)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039610B1 (ko) * 2010-10-12 2011-06-09 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지
US20110155997A1 (en) * 2009-12-30 2011-06-30 Ung Lee Vertical Light emitting diode and manufacturing method of the same
WO2011157523A1 (de) * 2010-06-17 2011-12-22 Osram Opto Semiconductors Gmbh Verfahren zur herstellung eines optoelektronischen halbleiterchips und optoelektronischer halbleiterchip
KR20120006284A (ko) * 2010-07-12 2012-01-18 삼성엘이디 주식회사 발광 디바이스 및 그 제조방법
KR101114191B1 (ko) * 2010-09-17 2012-03-13 엘지이노텍 주식회사 발광소자
US20120086033A1 (en) * 2010-10-06 2012-04-12 Jae Wook Kim Light emitting device
KR20120040855A (ko) * 2010-10-20 2012-04-30 엘지이노텍 주식회사 발광 소자
KR20130030178A (ko) * 2011-09-16 2013-03-26 서울옵토디바이스주식회사 발광 다이오드 및 그것을 제조하는 방법
KR101252032B1 (ko) * 2010-07-08 2013-04-10 삼성전자주식회사 반도체 발광소자 및 이의 제조방법
US8643040B2 (en) 2010-10-12 2014-02-04 Lg Innotek Co., Ltd. Light emitting device and light emitting device package thereof
US8643042B2 (en) 2010-07-12 2014-02-04 Lg Innotek Co., Ltd. Light emitting device
KR20140039957A (ko) * 2012-09-24 2014-04-02 삼성전자주식회사 조명장치
US8698176B2 (en) 2010-07-12 2014-04-15 Lg Innotek Co., Ltd. Light emitting device and lighting system
KR20140060327A (ko) * 2011-08-31 2014-05-19 오스람 옵토 세미컨덕터스 게엠베하 발광 다이오드 칩
EP2469594A3 (en) * 2010-12-21 2014-10-01 Samsung Electronics Co., Ltd. Light emitting module and method of manufacturing the same
KR20150019366A (ko) * 2013-08-13 2015-02-25 삼성전자주식회사 조명 장치, 조명 제어 시스템 및 조명 장치의 제어 방법.
WO2015190865A1 (ko) * 2014-06-12 2015-12-17 엘지이노텍(주) 발광소자 및 이를 포함하는 발광소자 패키지
KR20150142739A (ko) * 2014-06-11 2015-12-23 엘지이노텍 주식회사 발광소자 및 조명시스템
KR20160075944A (ko) * 2014-12-19 2016-06-30 서울바이오시스 주식회사 질화물 반도체 발광소자 및 그 제조 방법
KR20160093789A (ko) * 2015-01-29 2016-08-09 서울바이오시스 주식회사 반도체 발광소자
KR20160110587A (ko) * 2015-03-09 2016-09-22 서울바이오시스 주식회사 반도체 발광소자
KR20170117282A (ko) * 2016-04-12 2017-10-23 삼성디스플레이 주식회사 디스플레이 장치
KR20180055971A (ko) * 2016-11-16 2018-05-28 삼성전자주식회사 다층 구조의 반사막을 구비한 반도체 발광 소자
US10115867B2 (en) 2011-05-25 2018-10-30 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
US10143057B2 (en) 2015-01-05 2018-11-27 Hung Lin Board-mounted parallel circuit structure with efficient power utilization

Families Citing this family (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI289365B (en) * 2005-09-29 2007-11-01 Visera Technologies Co Ltd Wafer scale image module
CN102484176B (zh) * 2009-09-30 2014-12-31 京瓷株式会社 发光元件及发光元件的制造方法
FR2953328B1 (fr) * 2009-12-01 2012-03-30 S O I Tec Silicon On Insulator Tech Heterostructure pour composants electroniques de puissance, composants optoelectroniques ou photovoltaiques
US8581269B2 (en) * 2010-02-10 2013-11-12 Lumen Dynamics Group Inc. Modular high density LED array light sources
US8319247B2 (en) * 2010-03-25 2012-11-27 Koninklijke Philips Electronics N.V. Carrier for a light emitting device
WO2011143127A2 (en) * 2010-05-13 2011-11-17 Sri International Cavity electroluminescent devices with integrated microlenses
KR101714039B1 (ko) * 2010-07-01 2017-03-08 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법, 발광 소자 패키지 및 조명 시스템
TWI495156B (zh) * 2010-07-30 2015-08-01 Epistar Corp 半導體發光元件及其製造方法
DE102010034665A1 (de) 2010-08-18 2012-02-23 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zur Herstellung von optoelektronischen Halbleiterchips
KR101769499B1 (ko) * 2010-08-24 2017-08-21 삼성디스플레이 주식회사 유기 전계 발광 표시 장치
US9070851B2 (en) 2010-09-24 2015-06-30 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
DE102010046792A1 (de) 2010-09-28 2012-03-29 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
TWI492423B (zh) * 2010-10-18 2015-07-11 Advanced Optoelectronic Tech 覆晶式led封裝結構
CN102142508A (zh) * 2010-12-16 2011-08-03 西安炬光科技有限公司 一种高功率高亮度led光源封装结构及其封装方法
US8476649B2 (en) 2010-12-16 2013-07-02 Micron Technology, Inc. Solid state lighting devices with accessible electrodes and methods of manufacturing
KR101154320B1 (ko) * 2010-12-20 2012-06-13 엘지이노텍 주식회사 발광소자, 발광소자 패키지 및 이를 포함하는 조명 장치
JP5777879B2 (ja) * 2010-12-27 2015-09-09 ローム株式会社 発光素子、発光素子ユニットおよび発光素子パッケージ
JP2012186195A (ja) * 2011-03-03 2012-09-27 Toshiba Corp 半導体発光素子及びその製造方法
JP2012186414A (ja) * 2011-03-08 2012-09-27 Toshiba Corp 発光装置
JPWO2012131792A1 (ja) * 2011-03-31 2014-07-24 パナソニック株式会社 半導体発光装置
KR20120115896A (ko) * 2011-04-11 2012-10-19 삼성디스플레이 주식회사 발광 유닛 및 이를 포함하는 표시 장치
TWI425666B (zh) * 2011-04-27 2014-02-01 Univ Nat Central Growth of semi - polarized nitrides
KR20140022032A (ko) * 2011-05-25 2014-02-21 도와 일렉트로닉스 가부시키가이샤 발광소자 칩 및 그 제조 방법
TW201248945A (en) * 2011-05-31 2012-12-01 Chi Mei Lighting Tech Corp Light-emitting diode device and method for manufacturing the same
KR101973608B1 (ko) * 2011-06-30 2019-04-29 엘지이노텍 주식회사 발광소자
TWI493759B (zh) * 2011-07-13 2015-07-21 Lextar Electronics Corp 發光二極體結構及其製造方法
WO2013020238A1 (en) * 2011-08-10 2013-02-14 Heptagon Micro Optics Pte. Ltd. Opto-electronic module and method for manufacturing the same
US9299742B2 (en) 2011-08-15 2016-03-29 Micron Technology, Inc. High-voltage solid-state transducers and associated systems and methods
TWI437737B (zh) * 2011-09-14 2014-05-11 Lextar Electronics Corp 發光二極體結構及其製造方法
TW201318147A (zh) * 2011-10-26 2013-05-01 Phostek Inc 發光二極體陣列
KR101868537B1 (ko) * 2011-11-07 2018-06-19 엘지이노텍 주식회사 발광소자 및 이를 포함하는 발광 소자 패키지
TWI479694B (zh) * 2012-01-11 2015-04-01 Formosa Epitaxy Inc Light emitting diode wafers
US9257617B2 (en) * 2012-02-10 2016-02-09 Koninklijke Philips N.V. Wavelength converted light emitting device
US20150084058A1 (en) * 2012-03-19 2015-03-26 Koninklijke Philips N.V. Light emitting device grown on a silicon substrate
KR101887942B1 (ko) * 2012-05-07 2018-08-14 삼성전자주식회사 발광소자
CN103515503B (zh) * 2012-06-28 2017-10-17 上海蓝光科技有限公司 一种垂直结构发光二极管及其制造方法
JP2014013818A (ja) * 2012-07-04 2014-01-23 Sony Corp デバイスおよび電子装置
JP2014022401A (ja) * 2012-07-12 2014-02-03 Toshiba Corp 窒化物半導体発光素子
US9239489B2 (en) 2012-07-31 2016-01-19 Apple Inc. Display backlight with closely spaced light-emitting diode packages
US10804316B2 (en) * 2012-08-07 2020-10-13 Seoul Viosys Co., Ltd. Wafer level light-emitting diode array
US10388690B2 (en) * 2012-08-07 2019-08-20 Seoul Viosys Co., Ltd. Wafer level light-emitting diode array
US9439250B2 (en) 2012-09-24 2016-09-06 Samsung Electronics Co., Ltd. Driving light emitting diode (LED) lamps using power received from ballast stabilizers
GB2506993B (en) * 2012-09-24 2016-03-23 Samsung Electronics Co Ltd Illuminating apparatus
US9196807B2 (en) * 2012-10-24 2015-11-24 Nichia Corporation Light emitting element
KR101977278B1 (ko) * 2012-10-29 2019-09-10 엘지이노텍 주식회사 발광 소자
TWI565094B (zh) * 2012-11-15 2017-01-01 財團法人工業技術研究院 氮化物半導體結構
EP2943986B1 (en) * 2013-01-10 2023-03-01 Lumileds LLC Led with shaped growth substrate for side emission and method of its fabrication
CN105264283B (zh) * 2013-01-10 2018-06-12 莫列斯公司 Led组件
US9470715B2 (en) 2013-01-11 2016-10-18 Mpi Corporation Probe head
TWI453420B (zh) * 2013-01-11 2014-09-21 Mpi Corp 孔板
KR102056618B1 (ko) 2013-02-01 2019-12-17 삼성전자주식회사 반도체 발광소자
JP6013931B2 (ja) * 2013-02-08 2016-10-25 株式会社東芝 半導体発光素子
JP6067400B2 (ja) * 2013-02-12 2017-01-25 株式会社東芝 半導体発光素子
KR102036347B1 (ko) * 2013-02-12 2019-10-24 삼성전자 주식회사 발광소자 어레이부 및 이를 포함하는 발광소자 모듈
DE102013101598B9 (de) * 2013-02-18 2023-10-19 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
DE102013103079A1 (de) * 2013-03-26 2014-10-02 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
US9219202B2 (en) * 2013-04-19 2015-12-22 Cree, Inc. Semiconductor light emitting devices including red phosphors that exhibit good color rendering properties and related red phosphors
TWI661578B (zh) * 2013-06-20 2019-06-01 晶元光電股份有限公司 發光裝置及發光陣列
DE102013107531A1 (de) * 2013-07-16 2015-01-22 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip
JP6153895B2 (ja) * 2013-07-22 2017-06-28 富士フイルム株式会社 液晶表示装置
JP2015028984A (ja) * 2013-07-30 2015-02-12 日亜化学工業株式会社 半導体発光素子
KR20150025231A (ko) * 2013-08-28 2015-03-10 서울반도체 주식회사 광원 모듈 및 그 제조 방법, 및 백라이트 유닛
DE102013111422A1 (de) * 2013-10-16 2015-04-30 Osram Oled Gmbh Optoelektronisches Bauelement, Kontaktiervorrichtung und optoelektronische Baugruppe
JP2016535436A (ja) * 2013-10-21 2016-11-10 センサー エレクトロニック テクノロジー インコーポレイテッド 複合半導体層を含むヘテロ構造
TWI597863B (zh) * 2013-10-22 2017-09-01 晶元光電股份有限公司 發光元件及其製造方法
JP2015082596A (ja) * 2013-10-23 2015-04-27 株式会社東芝 発光装置
CN103681992A (zh) * 2014-01-07 2014-03-26 苏州晶湛半导体有限公司 半导体衬底、半导体器件及半导体衬底制造方法
KR102087197B1 (ko) * 2014-01-13 2020-03-11 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
KR101552422B1 (ko) * 2014-01-14 2015-09-10 성균관대학교산학협력단 발광 다이오드용 기판 및 그 제조방법과 상기 기판을 포함하는 광원 장치
DE102014102029A1 (de) * 2014-02-18 2015-08-20 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von Halbleiterbauelementen und Halbleiterbauelement
US9412906B2 (en) 2014-02-20 2016-08-09 Epistar Corporation Light-emitting device
US9660004B2 (en) 2014-03-21 2017-05-23 Apple Inc. Flexible displays with strengthened pad area
DE102014107563A1 (de) * 2014-05-28 2015-12-03 Osram Opto Semiconductors Gmbh Halbleiterbauelement mit Kontaktstruktur
JP6425921B2 (ja) * 2014-06-12 2018-11-21 株式会社ジャパンディスプレイ 画像表示装置
DE102014108373A1 (de) * 2014-06-13 2015-12-17 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip
KR20160017849A (ko) * 2014-08-06 2016-02-17 서울바이오시스 주식회사 고출력 발광 장치 및 그 제조 방법
KR20160037060A (ko) * 2014-09-26 2016-04-05 서울바이오시스 주식회사 발광소자 및 그 제조 방법
JP6727483B2 (ja) 2014-10-08 2020-07-22 コンシューマー ライティング (ユー.エス.),エルエルシー 照明装置のカラーフィルター用材料および光学部品
TWI552394B (zh) * 2014-11-18 2016-10-01 隆達電子股份有限公司 發光二極體結構與發光二極體模組
JP6375890B2 (ja) * 2014-11-18 2018-08-22 日亜化学工業株式会社 窒化物半導体素子及びその製造方法
CN105633039B (zh) * 2014-11-26 2018-10-12 意法半导体股份有限公司 具有引线键合和烧结区域的半导体器件及其制造工艺
KR20160069724A (ko) * 2014-12-09 2016-06-17 엘지이노텍 주식회사 형광체 조성물, 이를 포함하는 발광 소자 패키지 및 조명 장치
KR102252994B1 (ko) * 2014-12-18 2021-05-20 삼성전자주식회사 발광소자 패키지 및 발광소자 패키지용 파장 변환 필름
DE112015005634T5 (de) * 2014-12-19 2017-09-07 Seoul Viosys Co., Ltd. Halbleiter-lichtemissionseinrichtung und verfahren zur herstellung von dieser
CN104683671B (zh) * 2015-02-04 2017-11-14 广东欧珀移动通信有限公司 电子装置
FR3032664B1 (fr) * 2015-02-13 2017-03-03 Valeo Vision Dispositif lumineux pour un vehicule automobile integrant des moyens de protection contre des decharges electrostatiques
JP6156402B2 (ja) 2015-02-13 2017-07-05 日亜化学工業株式会社 発光装置
KR101669122B1 (ko) * 2015-02-26 2016-10-25 엘지이노텍 주식회사 발광 소자 패키지
KR101614370B1 (ko) * 2015-04-07 2016-04-21 엘지전자 주식회사 반도체 발광소자, 반도체 발광소자의 이송 헤드, 및 반도체 발광소자를 이송하는 방법
JP6692155B2 (ja) * 2015-12-15 2020-05-13 スタンレー電気株式会社 半導体発光素子アレイおよび車両用灯具
JP2017112321A (ja) * 2015-12-18 2017-06-22 ソニー株式会社 発光ユニットおよび表示装置
JP6901862B2 (ja) * 2016-01-29 2021-07-14 コニカ ミノルタ ラボラトリー ユー.エス.エー.,インコーポレイテッド Rgb偏光光源
MX2018011248A (es) 2016-03-16 2019-03-07 Ge Lighting Solutions Llc Aparato led que emplea materiales a base de neodimio con contenido variable de fluor y oxigeno.
EP3435429B1 (en) * 2016-03-24 2022-10-26 Sony Group Corporation Light emitting device, display apparatus, and illumination apparatus
CN205944139U (zh) 2016-03-30 2017-02-08 首尔伟傲世有限公司 紫外线发光二极管封装件以及包含此的发光二极管模块
TWI685961B (zh) * 2016-06-17 2020-02-21 優顯科技股份有限公司 光電半導體裝置
JP7114489B2 (ja) * 2016-06-22 2022-08-08 ルミレッズ ホールディング ベーフェー 光変換パッケージ
CN106129094B (zh) * 2016-07-29 2019-01-25 京东方科技集团股份有限公司 一种显示面板、其驱动方法及防偷窥系统
KR20180015848A (ko) * 2016-08-04 2018-02-14 삼성전자주식회사 반도체 발광소자 및 반도체 발광소자의 제조 방법
US10565917B2 (en) * 2016-12-23 2020-02-18 Intel Corporation Monolithic micro LED display
US10546842B2 (en) * 2017-05-31 2020-01-28 Innolux Corporation Display device and method for forming the same
FR3068173B1 (fr) * 2017-06-27 2020-05-15 Aledia Dispositif optoelectronique
DE102017117650A1 (de) * 2017-08-03 2019-02-07 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement mit einer Kontaktstruktur und Verfahren zur Herstellung einer Kontaktstruktur für ein optoelektronisches Halbleiterbauelement
KR20190019539A (ko) * 2017-08-18 2019-02-27 삼성전자주식회사 발광 소자 및 발광소자 패키지
US10276794B1 (en) * 2017-10-31 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Memory device and fabrication method thereof
KR101994440B1 (ko) * 2017-11-03 2019-06-28 엘지전자 주식회사 반도체 발광 소자를 이용한 차량용 램프
US10892297B2 (en) 2017-11-27 2021-01-12 Seoul Viosys Co., Ltd. Light emitting diode (LED) stack for a display
US11527519B2 (en) 2017-11-27 2022-12-13 Seoul Viosys Co., Ltd. LED unit for display and display apparatus having the same
US11282981B2 (en) 2017-11-27 2022-03-22 Seoul Viosys Co., Ltd. Passivation covered light emitting unit stack
US10892296B2 (en) * 2017-11-27 2021-01-12 Seoul Viosys Co., Ltd. Light emitting device having commonly connected LED sub-units
CN109872986B (zh) * 2017-12-04 2023-07-04 新加坡有限公司 光学传感器的封装结构及光学传感器的封装方法
US10748881B2 (en) 2017-12-05 2020-08-18 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
US10886327B2 (en) 2017-12-14 2021-01-05 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
US11552057B2 (en) 2017-12-20 2023-01-10 Seoul Viosys Co., Ltd. LED unit for display and display apparatus having the same
US11522006B2 (en) 2017-12-21 2022-12-06 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
US11552061B2 (en) 2017-12-22 2023-01-10 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
US11114499B2 (en) 2018-01-02 2021-09-07 Seoul Viosys Co., Ltd. Display device having light emitting stacked structure
US10784240B2 (en) 2018-01-03 2020-09-22 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
US10571756B2 (en) * 2018-02-05 2020-02-25 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. LCD panel, LCD panel manufacturing method and display device
KR20190098709A (ko) * 2018-02-14 2019-08-22 에피스타 코포레이션 발광 장치, 그 제조 방법 및 디스플레이 모듈
KR20190116827A (ko) 2018-04-05 2019-10-15 엘지이노텍 주식회사 반도체 소자
TWI708104B (zh) * 2018-05-16 2020-10-21 財團法人工業技術研究院 顯示陣列
US11515299B2 (en) 2018-05-16 2022-11-29 Industrial Technology Research Institute Method for manufacturing display array
TWI770225B (zh) * 2018-07-12 2022-07-11 晶元光電股份有限公司 發光元件
EP3820558A4 (en) * 2018-07-13 2022-07-20 Bard Peripheral Vascular, Inc. IMPLANTABLE INSERT PORTS, IMPLANTABLE INSERT PORT SENSING DEVICES, AND RELATED METHODS
JP6912731B2 (ja) * 2018-07-31 2021-08-04 日亜化学工業株式会社 半導体発光素子
US11962928B2 (en) 2018-12-17 2024-04-16 Meta Platforms Technologies, Llc Programmable pixel array
US11888002B2 (en) 2018-12-17 2024-01-30 Meta Platforms Technologies, Llc Dynamically programmable image sensor
KR102030402B1 (ko) * 2018-12-26 2019-10-10 엘지디스플레이 주식회사 발광소자 및 이를 포함하는 표시장치
EP3970204A4 (en) * 2019-05-14 2023-05-24 Seoul Viosys Co., Ltd LIGHT EMITTING CHIP
US11935291B2 (en) 2019-10-30 2024-03-19 Meta Platforms Technologies, Llc Distributed sensor system
US11948089B2 (en) 2019-11-07 2024-04-02 Meta Platforms Technologies, Llc Sparse image sensing and processing
US11362251B2 (en) 2019-12-02 2022-06-14 Facebook Technologies, Llc Managing thermal resistance and planarity of a display package
WO2021108909A1 (en) * 2019-12-03 2021-06-10 Vuereal Inc. High efficient micro devices
US11276806B2 (en) * 2020-01-03 2022-03-15 Advanced Semiconductor Engineering, Inc. Semiconductor device package and method for manufacturing the same
KR20210143452A (ko) 2020-05-20 2021-11-29 삼성전자주식회사 반도체 발광소자 및 이를 구비한 발광소자 패키지
US11825228B2 (en) 2020-05-20 2023-11-21 Meta Platforms Technologies, Llc Programmable pixel array having multiple power domains
CN111653205B (zh) * 2020-07-15 2021-12-28 上海天马微电子有限公司 可拉伸显示面板和显示装置
US11209697B1 (en) * 2020-11-30 2021-12-28 Unique Materials Co., Ltd. Backlight unit with phosphors and quantum dots
CN114578613A (zh) * 2020-11-30 2022-06-03 优美特创新材料股份有限公司 含有荧光粉及量子点的背光模块
KR20220151076A (ko) * 2021-05-04 2022-11-14 삼성전자주식회사 발광장치 및 식물생장용 조명장치

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300788A (en) * 1991-01-18 1994-04-05 Kopin Corporation Light emitting diode bars and arrays and method of making same
JP2780744B2 (ja) 1992-11-06 1998-07-30 信越半導体株式会社 GaAlAs発光素子の製造方法
CN1143394C (zh) 1996-08-27 2004-03-24 精工爱普生株式会社 剥离方法、溥膜器件的转移方法和薄膜器件
USRE38466E1 (en) 1996-11-12 2004-03-16 Seiko Epson Corporation Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device
US7208725B2 (en) 1998-11-25 2007-04-24 Rohm And Haas Electronic Materials Llc Optoelectronic component with encapsulant
JP3354540B2 (ja) 1999-12-24 2002-12-09 三洋電機株式会社 半導体素子およびその製造方法
JP3906654B2 (ja) 2000-07-18 2007-04-18 ソニー株式会社 半導体発光素子及び半導体発光装置
US6794265B2 (en) * 2001-08-02 2004-09-21 Ultradots, Inc. Methods of forming quantum dots of Group IV semiconductor materials
WO2003019678A1 (fr) 2001-08-22 2003-03-06 Sony Corporation Element semiconducteur au nitrure et procede de production de cet element
JP2003218034A (ja) 2002-01-17 2003-07-31 Sony Corp 選択成長方法、半導体発光素子及びその製造方法
JP3815335B2 (ja) 2002-01-18 2006-08-30 ソニー株式会社 半導体発光素子及びその製造方法
KR100499129B1 (ko) 2002-09-02 2005-07-04 삼성전기주식회사 발광 다이오드 및 그 제조방법
US7002182B2 (en) 2002-09-06 2006-02-21 Sony Corporation Semiconductor light emitting device integral type semiconductor light emitting unit image display unit and illuminating unit
KR100714639B1 (ko) 2003-10-21 2007-05-07 삼성전기주식회사 발광 소자
KR100506740B1 (ko) 2003-12-23 2005-08-08 삼성전기주식회사 질화물 반도체 발광소자 및 그 제조방법
KR101041311B1 (ko) * 2004-04-27 2011-06-14 파나소닉 주식회사 형광체 조성물과 그 제조 방법, 및 그 형광체 조성물을 이용한 발광장치
KR100664985B1 (ko) 2004-10-26 2007-01-09 삼성전기주식회사 질화물계 반도체 소자
KR100665222B1 (ko) 2005-07-26 2007-01-09 삼성전기주식회사 확산재료를 이용한 엘이디 패키지 및 그 제조 방법
KR100661614B1 (ko) 2005-10-07 2006-12-26 삼성전기주식회사 질화물계 반도체 발광소자 및 그 제조방법
KR100723247B1 (ko) 2006-01-10 2007-05-29 삼성전기주식회사 칩코팅형 led 패키지 및 그 제조방법
US7696964B2 (en) 2006-06-09 2010-04-13 Philips Lumileds Lighting Company, Llc LED backlight for LCD with color uniformity recalibration over lifetime
KR100752717B1 (ko) * 2006-09-20 2007-08-29 삼성전기주식회사 수직구조 질화갈륨계 발광 다이오드 소자의 제조방법
KR100930171B1 (ko) 2006-12-05 2009-12-07 삼성전기주식회사 백색 발광장치 및 이를 이용한 백색 광원 모듈
US7723744B2 (en) * 2006-12-08 2010-05-25 Evident Technologies, Inc. Light-emitting device having semiconductor nanocrystal complexes
CN100573642C (zh) 2006-12-08 2009-12-23 鸿富锦精密工业(深圳)有限公司 Led控制电路
KR100818466B1 (ko) * 2007-02-13 2008-04-02 삼성전기주식회사 반도체 발광소자
KR100849826B1 (ko) * 2007-03-29 2008-07-31 삼성전기주식회사 발광소자 및 이를 포함하는 패키지
US7791285B2 (en) 2007-04-13 2010-09-07 Cree, Inc. High efficiency AC LED driver circuit
KR100855065B1 (ko) 2007-04-24 2008-08-29 삼성전기주식회사 발광 다이오드 패키지
DE102007022947B4 (de) * 2007-04-26 2022-05-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen
KR100982980B1 (ko) 2007-05-15 2010-09-17 삼성엘이디 주식회사 면 광원 장치 및 이를 구비하는 lcd 백라이트 유닛
KR101164026B1 (ko) 2007-07-12 2012-07-18 삼성전자주식회사 질화물계 반도체 발광소자 및 그 제조방법
KR100891761B1 (ko) 2007-10-19 2009-04-07 삼성전기주식회사 반도체 발광소자, 그의 제조방법 및 이를 이용한 반도체발광소자 패키지
KR101332794B1 (ko) 2008-08-05 2013-11-25 삼성전자주식회사 발광 장치, 이를 포함하는 발광 시스템, 상기 발광 장치 및발광 시스템의 제조 방법
KR20100030470A (ko) 2008-09-10 2010-03-18 삼성전자주식회사 다양한 색 온도의 백색광을 제공할 수 있는 발광 장치 및 발광 시스템
KR101530876B1 (ko) 2008-09-16 2015-06-23 삼성전자 주식회사 발광량이 증가된 발광 소자, 이를 포함하는 발광 장치, 상기 발광 소자 및 발광 장치의 제조 방법
US20100117070A1 (en) * 2008-09-18 2010-05-13 Lumenz Llc Textured semiconductor light-emitting devices
US8008683B2 (en) 2008-10-22 2011-08-30 Samsung Led Co., Ltd. Semiconductor light emitting device

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110155997A1 (en) * 2009-12-30 2011-06-30 Ung Lee Vertical Light emitting diode and manufacturing method of the same
CN102947936A (zh) * 2010-06-17 2013-02-27 奥斯兰姆奥普托半导体有限责任公司 用于制造光电子半导体芯片的方法和光电子半导体芯片
WO2011157523A1 (de) * 2010-06-17 2011-12-22 Osram Opto Semiconductors Gmbh Verfahren zur herstellung eines optoelektronischen halbleiterchips und optoelektronischer halbleiterchip
US9627588B2 (en) 2010-06-17 2017-04-18 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor chip, and optoelectronic semiconductor chip
CN102947936B (zh) * 2010-06-17 2016-04-06 奥斯兰姆奥普托半导体有限责任公司 用于制造光电子半导体芯片的方法和光电子半导体芯片
US9257612B2 (en) 2010-06-17 2016-02-09 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor chip, and optoelectronic semiconductor chip
KR101252032B1 (ko) * 2010-07-08 2013-04-10 삼성전자주식회사 반도체 발광소자 및 이의 제조방법
US8866178B2 (en) 2010-07-12 2014-10-21 Lg Innotek Co., Ltd. Light emitting device
KR20120006284A (ko) * 2010-07-12 2012-01-18 삼성엘이디 주식회사 발광 디바이스 및 그 제조방법
US8643042B2 (en) 2010-07-12 2014-02-04 Lg Innotek Co., Ltd. Light emitting device
US9252345B2 (en) 2010-07-12 2016-02-02 Lg Innotek Co., Ltd. Light emitting device and lighting system
US8698176B2 (en) 2010-07-12 2014-04-15 Lg Innotek Co., Ltd. Light emitting device and lighting system
EP2408029A3 (en) * 2010-07-12 2014-04-16 LG Innotek Co., Ltd. Light emitting device
US9159894B2 (en) 2010-07-12 2015-10-13 Lg Innotek Co., Ltd. Light emitting device and lighting system
US9117986B2 (en) 2010-07-12 2015-08-25 Lg Innotek Co., Ltd. Light emitting device
KR101114191B1 (ko) * 2010-09-17 2012-03-13 엘지이노텍 주식회사 발광소자
US8384110B2 (en) * 2010-10-06 2013-02-26 Lg Innotek Co., Ltd. Light emitting device
US20120086033A1 (en) * 2010-10-06 2012-04-12 Jae Wook Kim Light emitting device
US9640726B2 (en) 2010-10-12 2017-05-02 Lg Innotek Co., Ltd. Light emitting device and light emitting device package thereof
US8643040B2 (en) 2010-10-12 2014-02-04 Lg Innotek Co., Ltd. Light emitting device and light emitting device package thereof
KR101039610B1 (ko) * 2010-10-12 2011-06-09 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지
KR20120040855A (ko) * 2010-10-20 2012-04-30 엘지이노텍 주식회사 발광 소자
EP2469594A3 (en) * 2010-12-21 2014-10-01 Samsung Electronics Co., Ltd. Light emitting module and method of manufacturing the same
US10115867B2 (en) 2011-05-25 2018-10-30 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
KR20140060327A (ko) * 2011-08-31 2014-05-19 오스람 옵토 세미컨덕터스 게엠베하 발광 다이오드 칩
KR20130030178A (ko) * 2011-09-16 2013-03-26 서울옵토디바이스주식회사 발광 다이오드 및 그것을 제조하는 방법
KR20140039957A (ko) * 2012-09-24 2014-04-02 삼성전자주식회사 조명장치
KR20150019366A (ko) * 2013-08-13 2015-02-25 삼성전자주식회사 조명 장치, 조명 제어 시스템 및 조명 장치의 제어 방법.
KR20150142739A (ko) * 2014-06-11 2015-12-23 엘지이노텍 주식회사 발광소자 및 조명시스템
US9929312B2 (en) 2014-06-12 2018-03-27 Lg Innotek Co., Ltd. Light emitting device
WO2015190865A1 (ko) * 2014-06-12 2015-12-17 엘지이노텍(주) 발광소자 및 이를 포함하는 발광소자 패키지
KR20160075944A (ko) * 2014-12-19 2016-06-30 서울바이오시스 주식회사 질화물 반도체 발광소자 및 그 제조 방법
KR20210119345A (ko) * 2014-12-19 2021-10-05 서울바이오시스 주식회사 질화물 반도체 발광소자 및 그 제조 방법
US10143057B2 (en) 2015-01-05 2018-11-27 Hung Lin Board-mounted parallel circuit structure with efficient power utilization
KR20160093789A (ko) * 2015-01-29 2016-08-09 서울바이오시스 주식회사 반도체 발광소자
KR20220101051A (ko) * 2015-01-29 2022-07-19 서울바이오시스 주식회사 반도체 발광소자
KR20160110587A (ko) * 2015-03-09 2016-09-22 서울바이오시스 주식회사 반도체 발광소자
KR20220004611A (ko) * 2015-03-09 2022-01-11 서울바이오시스 주식회사 반도체 발광소자
KR20170117282A (ko) * 2016-04-12 2017-10-23 삼성디스플레이 주식회사 디스플레이 장치
KR20180055971A (ko) * 2016-11-16 2018-05-28 삼성전자주식회사 다층 구조의 반사막을 구비한 반도체 발광 소자
US11908977B2 (en) 2016-11-16 2024-02-20 Samsung Electronics Co., Ltd. Semiconductor light-emitting device including a reflector layer having a multi-layered structure

Also Published As

Publication number Publication date
CN102217102A (zh) 2011-10-12
US9305906B2 (en) 2016-04-05
US9312249B2 (en) 2016-04-12
EP2357679A2 (en) 2011-08-17
TW201036213A (en) 2010-10-01
CN102217102B (zh) 2015-07-15
EP2357679A4 (en) 2016-06-22
WO2010056083A2 (ko) 2010-05-20
TWI422063B (zh) 2014-01-01
US20150001463A1 (en) 2015-01-01
KR101601621B1 (ko) 2016-03-17
US8809893B2 (en) 2014-08-19
US20120018764A1 (en) 2012-01-26
WO2010056083A3 (ko) 2010-08-05
EP2357679B1 (en) 2018-08-29
US20150084537A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
KR101601621B1 (ko) 반도체 발광소자
US10333023B2 (en) Method of manufacturing semiconductor light emitting device
US11631791B2 (en) Semiconductor light-emitting device
KR101565988B1 (ko) 적색형광체, 그 제조방법, 이를 이용한 발광소자 패키지, 조명장치
KR20110078319A (ko) 발광장치, 면광원장치, 디스플레이 장치 및 조명장치
US9680074B2 (en) Optical device and light emitting device package including the same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190228

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200228

Year of fee payment: 5