KR20110078319A - 발광장치, 면광원장치, 디스플레이 장치 및 조명장치 - Google Patents

발광장치, 면광원장치, 디스플레이 장치 및 조명장치 Download PDF

Info

Publication number
KR20110078319A
KR20110078319A KR1020090135097A KR20090135097A KR20110078319A KR 20110078319 A KR20110078319 A KR 20110078319A KR 1020090135097 A KR1020090135097 A KR 1020090135097A KR 20090135097 A KR20090135097 A KR 20090135097A KR 20110078319 A KR20110078319 A KR 20110078319A
Authority
KR
South Korea
Prior art keywords
phosphor
light
light emitting
oxynitride
emitting device
Prior art date
Application number
KR1020090135097A
Other languages
English (en)
Inventor
윤철수
박윤곤
Original Assignee
삼성엘이디 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성엘이디 주식회사 filed Critical 삼성엘이디 주식회사
Priority to KR1020090135097A priority Critical patent/KR20110078319A/ko
Publication of KR20110078319A publication Critical patent/KR20110078319A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

본 발명에 따른 제1 산질화물 형광체는, MxAyOxN(4/3)y의 조성식으로 표시되는 산질화물(M은 Be, Mg, Ca, Sr, Zn으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅱ족 원소이고, A는 C, Si, Ge, Sn, Ti, Zr, Hf으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅳ족 원소임)을 형광체 모체로서 포함한다. 상기 조성식에서, x와 y는 1.5≤x≤4 및 0.2≤x/(x+y)≤0.9를 만족한다. 상기 제1 산질화물 형광체는, 350㎚∼480㎚ 범위에 피크 파장을 갖는 여기원을 조사하여 500∼560㎚ 범위에 피크 파장을 갖는 광을 방출한다.

Description

발광장치, 면광원장치, 디스플레이 장치 및 조명장치 {LIGHT EMITTING DEVICE, SURFACE LIGHT SOURCE APPARATUS, DISPLAY APPARATUS AND ILLUMINATION APPARATUS}
본 발명은 발광장치에 관한 것으로서, 특히 높은 발광특성과 우수한 열적, 화학적 안정성을 가지는 산질화물계 형광체와 이를 이용한 발광장치, 면광원장치, 디스플레이장치 및 조명장치에 관한 것이다.
일반적으로, 파장변환용 형광체물질은 다양한 광원의 특정 파장광을 원하는 파장광으로 변환시키는 물질로 사용되고 있다. 특히, 다양한 광원 중 발광다이오드는 저전력 구동 및 우수한 광효율으로 인해 LCD 백라이트와 자동차 조명 및 가정용 조명장치로서 유익하게 적용될 수 있으므로, 최근에 형광체 물질은 백색광 LED를 제조하기 위한 핵심기술로 각광받고 있다.
상기 백색광 발광장치는 대개 청색 LED에 황색 형광체를 도포하는 방식으로 제조되고 있다. 보다 구체적으로, GaN/InGaN 활성층을 갖는 청색 LED의 광방출면에 YAG(Y3Al5O12):Ce인 황색 형광체를 도포하여 청색광의 일부를 황색으로 변환시키고, 변환된 황색과 다른 일부의 청색광이 결합되어 백색광을 제공할 수 있다.
상기한 YAG:Ce형광체(또는 TAG계 형광체)-청색LED로 구성된 종래의 백색발광장치는 낮은 연색성(color rendering)을 갖는다는 단점이 있다. 즉, 황색 형광체를 이용하여 얻어진 백색광의 파장은 청색과 황색에만 분포하고 있으므로 연색성이 낮아, 원하는 천연 백색광을 구현하는데 한계가 있다. 또한, 장시간 사용에 의해 작동온도가 증가되면, 황변현상(yellowing)이 발생되는 문제가 있다.
한편, 종래의 파장변환용 형광체물질은 특정 광원의 발광색과 특정 출력광의 색에 한정되어 제공되어 왔으며, 구현가능한 색분포도 매우 제한되므로, 사용자의 필요에 따라 다양한 광원의 발광색 및/또는 다양한 출력광의 색에 적용되는데 한계가 있다.
이러한 문제를 해결하기 위해서, 최근에 본 출원인은, 대한민국 특허출원 2004-0076300호(2004.9.23일 출원)에서 3종의 특정 청색,녹색,적색 형광체의 혼합물을 통해서 황변현상을 완화시키는 동시에 연색지수(color rendering index: CRI)가 우수하고, 나아가, 폭넓은 색분포를 구현하였다. 이러한 적색, 녹색 및 청색의 형광체의 조합을 통한 우수한 발광장치를 구현하기 위해서는, 각각의 형광체는 모 두 높은 변환효율을 가질 것이 요구된다.
또한, 종래의 실리케이트 형광체는 열에 불안정하므로, 고출력 LED 칩에 취약한 단점을 갖고 있다.
그리고, 현재까지 개발된 녹색 형광체는 단파장대역의 여기광에서 높은 발광 효율을 대체적으로 높지 않은 것으로 알려져 있다. 특히, 산질화물계 형광체 등은 발광효율이 매우 낮아 발광장치에 적용하기에 적절치 않으며, 글래스질이므로 그 가공성이 좋지 않아 재현성이 낮다는 단점이 있다.
본 발명은 상술된 종래 기술의 문제를 해결하기 위한 것으로서, 목적 중 하나는 높은 발광 효율을 가지면서 재현성이 우수하고, 열이 안정적이어서 고출력 LEd 칩에 사용가능한 녹색 발광을 위한 산질화물 형광체와 이를 이용한 발광장치를 제공하는데 있다.
또한, 본 발명의 목적 중 다른 하나는, 상기 산질화물 형광체를 이용한 발광장치를 구비한 면광원 장치, 조명장치 및 디스플레이 장치를 제공하는데 있다.
상기한 과제를 해결하기 위해서, 본 발명에 따른 제1 실시형태에 따른 산질화물 형광체는, MxAyOxN(4/3y의 조성식으로 표시되는 산질화물(M은 Be, Mg, Ca, Sr, Zn으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅱ족 원소이고, A는 C, Si, Ge, Sn, Ti, Zr, Hf으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅳ족 원소임)을 형광체 모체로서 포함한다. 상기 조성식에서, x와 y는 1.5≤x≤4 및 0.2≤x/(x+y)≤0.9를 만족한다.
상기 제1 산질화물 형광체는, 350㎚∼480㎚ 범위에 피크 파장을 갖는 여기원을 조사하여 500∼560㎚ 범위에 피크 파장을 갖는 광을 방출한다.
상기 형광체의 바람직한 방출파장피크는 535 ~ 545 nm 범위이다. 상기 광의 반치폭은 50~100 nm 범위에, 바람직하게는 60 ~ 80 nm 범위에 있다. 상기 광의 색좌표는 CIE 1941 색좌표계를 기준으로 x, y 좌표가 0.2 ≤x≤0.4, 0.5 ≤y≤0.7 범위의 영역에 있고, 바람직하게는 x, y 좌표가 (0.23, 0.58), (0.28, 0.68), (0.37, 0.62), (0.32, 0.52) 를 연결하는 영역 내에 있다.
바람직하게, 상기 형광체는 활성제로서 적어도 1종의 희토류 원소를 더 포함한다. 여기서, 상기 희토류 원소는, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm 및 Yb으로 구성된 그룹으로부터 선택된 적어도 1종일 수 있다.
바람직하게, 상기 Ⅳ족 원소는 Si일 수 있다. 이 경우에, 상기 x 및 상기 y는 각각 3, 6이며, 상기 산질화물은 M3Si6O3N8의 조성식으로 표시되는 결정일 수 있다.
바람직하게, 상기 산질화물의 조성에서 산소원소(O)에 대한 질소원소(N)의 중량비가 0.3∼0.5이다. 바람직하게, 상기 산질화물은 적어도 일부가 결정일수 있다. 상기 산질화물 결정은 삼방정계일 수 있다.
본 발명의 제2 실시형태에 따른 산질화물 형광체는, MaAbOcN((2/3)a+(4/3)b-(2/3)c)의 조성식으로 표시되는 산질화물(M은 Be, Mg, Ca, Sr, Zn으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅱ족 원소이고, A는 C, Si, Ge, Sn, Ti, Zr, Hf으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅳ족 원소임)을 형광체 모체로서 포함한다. 상기 조성식에서, a, b, c는 2≤a≤5, 3≤b≤9, 0.5≤c≤4를 만족하고, 350㎚∼480㎚ 범위에 피크 파장을 갖는 여기원을 조사하여 500∼560㎚ 범위에 피크 파장을 갖는 광을 방출한다.
바람직하게는 상기 형광체의 방출피크파장은 535 ~ 545 nm 범위일 수 있으며, 상기 광의 반치폭은 50 ~ 100 nm 범위에, 바람직하게는 60 ~ 80 nm 범위에 있다. 상기 광의 색좌표는 CIE 1941 색좌표계를 기준으로 x, y 좌표가 0.2 ≤x≤0.4, 0.5 ≤y≤0.7 범위의 영역에 있고, 바람직하게는 x, y 좌표가 (0.23, 0.58), (0.28, 0.68), (0.37, 0.62), (0.32, 0.52) 를 연결하는 영역 내에 있다.
바람직하게, 상기 형광체는 활성제로서 적어도 1종의 희토류 원소를 포함하며, 상기 희토류 원소(Re)는, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm 및 Yb으로 구성된 그룹으로부터 선택된 적어도 1종일 수 있다.
바람직하게, 상기 산질화물의 조성에서 산소원소(O)에 대한 질소원소(N)의 중량비가 0.1∼0.5일 수 있다. 바람직하게 0.3∼0.5일 수 있다. 이 경우에, 상기 산질화물은 적어도 일부가 결정구조를 가질 수 있다.
상기 Ⅳ족 원소는 Si일 수 있다. 제1 예에서, 상기 산질화물은 M2Si4ON6의 조성식으로 표시되는 결정일 수 있다. 제2 예로는, 상기 산질화물은 M3Si7ON10의 조성식으로 표시되는 결정일 수 있다. 제3 예에서, 상기 산질화물은 M3Si8ON12의 조성식으로 표시되는 결정일 수 있다. 또한, 제4 예로는, 상기 산질화물은 M4Si7O3N10의 조성식으로 표시되는 결정일 수 있다.
본 발명의 다른 측면은 새로운 산질화물 형광체 제조방법을 제공한다. 상기 제조방법은, M의 산화물 및 M의 질화물 중 적어도 하나(M은 Be, Mg, Ca, Sr, Zn으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅱ족 원소임)와, A의 산화물 및 A의 질화물 중 적어도 하나(A는 C, Si, Ge, Sn, Ti, Zr, Hf으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅳ족 원소임)을 혼합하여 형광체 원료를 마련하는 단계와, 500∼560 ㎚ 범위 내의 발광피크파장을 갖는 산질화물 형광체가 얻어지도록 상기 혼합된 형광체 원료를 1200∼1800℃ 및 분위기 가스압이 1atm ~ 20atm 범위로 제어되는 분위기에서 소성하는 단계를 포함한다.
바람직하게, 상기 소성하는 단계 후에, 상기 소성온도보다 낮은 온도와 상기 분위기 가스압보다 낮은 분위기압의 조건에서 상기 소성단계에서 얻어진 산질화물 형광체를 열처리하는 단계를 더 포함할 수 있다.
바람직하게, 상기 산질화물의 조성에서 산소원소(O)에 대한 질소원소(N)의 중량비가 0.1∼0.5일 수 있으며, 보다 바람직하게, 0.3∼0.5일 수 있다.
본 발명의 다른 측면은, 상기한 산질화물 형광체를 파장변환물질로 이용하는 다양한 형태의 백색 발광장치, 면광원장치, 디스플레이 장치 및 조명장치를 제공한다.
본 발명에 따르면, 종래의 산질화물 형광체보다 크게 향상된 효율(약 10% 정도의 향상)을 갖는 녹색 형광체를 제공할 수 있으며, 이러한 녹색 형광체는 선명한 발광색을 가질 수 있다.
특히, 본 발명에 따른 산질화물 형광체는, 다른 형광체, 예를 들어 청색 및 적색 형광체와 함께 사용되어 넓은 색 표현이 가능할 뿐만 아니라, 재현성이 우수한 발광장치를 제공할 수 있다. 나아가, 백색 발광장치로 구현될 때에, 황변현상과 같은 색변화현상이 최소화되고 연색지수가 크게 향상시킬 수 있다.
본 발명에 따른 산질화물 형광체는 파장변환물질로서 다양한 형태에 따른 백색 발광장치, 면광원장치, 디스플레이 장치 및 조명장치에 유익하게 적용될 수 있다.
이하, 본 발명에서 따른 산질화물 형광체와 그 다양한 응용형태에 대해서 첨부된 도면을 참조하여 설명하기로 한다.
<제1 산질화물 형광체>
MxAyOxN(4/3)y ------- 조성식(1)
상기 조성식(1)은 제1 산질화물 형광체의 모체의 조성식을 나타낸다. 상기 조성식(1)에서, M은 Be, Mg, Ca, Sr, Zn으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅱ족 원소이고, A는 C, Si, Ge, Sn, Ti, Zr, Hf으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅳ족 원소이다. 형광체 모체로서 포함한다.
여기서, 산질화물은 질소를 산화물과 결합한 구조를 말하며, 일반적으로 글래스질과 같은 비정질 옥시 질화물(oxynitride)로 알려져 있으나, 제1 산질화물 형광체는, 주로 격자구조에 각 원자가 규칙적으로 배열된 결정상을 포함한다.
이로써 안정적인 재현성으로 제조될 수 있으며, 단파장 대역의 여기광에서도 우수한 발광특성을 보장할 수 있다.
상기 조성식(1)에서, x와 y는 1.5≤x≤4 및 0.2≤x/(x+y)≤0.9를 만족한다. O에 대한 N의 중량비는 0.3∼0.5이다. 이러한 중량비 조건은 녹색 파장대역에서 발광효율을 효과적으로 향상시킬 수 있으며 원하는 열적 안정성을 확보할 수 있다.
바람직하게, 상기 산질화물은 적어도 일부가 결정일 수 있다. 상기 산질화물 결정은 삼방정계 단위 격자를 갖는다. 상기 형광체는 활성제로서 적어도 1종의 희 토류 원소를 더 포함할 수 있다. 여기서, 상기 희토류(Re) 원소는, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm 및 Yb으로 구성된 그룹으로부터 선택된 적어도 1종일 수 있다.
본 발명에 따른 제1 산질화물의 바람직한 예로인 M3Si6O3N8의 조성식으로 표시되는 결정을 포함한 산질화물 형광체가 있다. 상기 산질화물 결정은 삼방정계 단위 격자를 갖는다. 상기 제1 산질화물 형광체는, 350㎚∼480㎚ 범위에 피크 파장을 갖는 여기원을 조사하여 500∼560㎚ 범위에 피크 파장을 갖는 광을 방출한다.
상기 형광체의 바람직한 방출파장피크는 535 ~ 545 nm 범위이다. 상기 광의 반치폭은 50~100 nm 범위에, 바람직하게는 60 ~ 80 nm 범위에 있다. 상기 광의 색좌표는 CIE 1941 색좌표계를 기준으로 x, y 좌표가 0.2 ≤x≤0.4, 0.5 ≤y≤0.7 범위의 영역에 있고, 바람직하게는 도4의 색좌표계에 표시된 바와 같이, x, y 좌표가 (0.23, 0.58), (0.28, 0.68), (0.37, 0.62), (0.32, 0.52) 를 연결하는 영역 내에 있다.
<제2 산질화물 형광체>
MaAbOcN((2/3)a+(4/3)b-(2/3)c) ------- 조성식(2)
상기 조성식(2)은 본 발명의 제2 산질화물 형광체의 모체 조성식을 나타낸다. M는 Be, Mg, Ca, Sr, Zn으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅱ족 원 소이고, A는 C, Si, Ge, Sn, Ti, Zr, Hf으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅳ족 원소이다. 형광체 모체로서 포함한다.
상기 조성식에서, a, b, c는 2≤a≤5, 3≤b≤9, 0.5≤c≤4를 만족하고, 350㎚∼480㎚ 범위에 피크 파장을 갖는 여기원을 조사하여 500∼560㎚ 범위에 피크 파장을 갖는 광을 방출한다.
특히, 본 산질화물 형광체는 안정적인 재현성으로 제조될 수 있으며, 단파장 대역의 여기광에서도 우수한 발광특성을 보장할 수 있을 뿐만 아니라, 공정 조건에 따라 발광파장대역을 선택적으로 제어할 수 있다는 장점이 있다.
바람직하게, 상기 산질화물의 조성에서 산소원소(O)에 대한 질소원소(N)의 중량비가 0.1∼0.5일 수 있으며, 보다 바람직하게는 03∼0.5일 수 있다. 이 경우에, 상기 산질화물은 적어도 일부가 결정구조를 가질 수 있으며 삼방정계 구조일 수 있다.
바람직한 산질화물 형광체는 제1 예로서 M2Si4ON6 형광체, 제2 예로서 M3Si7ON10 형광체, 제3 예로서 M3Si8ON12 형광체 및 제4 예로서 M4Si7O3N10 형광체를 제공할 수 있다.
본 산질화물 형광체는 350∼480nm 파장 영역을 여기원으로 하고, 발광 중심 파장이 500nm 내지 560nm 영역의 녹색 형광체로서의 발광 스펙트럼을 충족한다.
바람직하게는 535 ~ 545 nm 범위에 피크파장을 갖는 광을 방출한다. 상기 광의 반치폭은 50 ~ 100 nm 범위에, 바람직하게는 60 ~ 80 nm 범위에 있다. 상기 광의 색좌표는 CIE 1941 색좌표계를 기준으로 x, y 좌표가 0.2 ≤x≤0.4, 0.5 ≤y≤0.7 범위의 영역에 있고, 바람직하게는 x, y 좌표가 (0.23, 0.58), (0.28, 0.68), (0.37, 0.62), (0.32, 0.52) 를 연결하는 영역 내에 있다.
본 산질화물 형광체 모체를 형성하기 위한 원료염으로서, 금속원소 M은 알칼리 토금속의 2가 금속이온이며, 더욱 바람직하게는 Sr, Ba 또는 Ca에서 선택되는 어느 하나이다. 이때, 금속원소 M은 각각의 수용성 금속 염 또는 이들 금속을 포함하는 산화물 또는 질화물로 이루어진 군에서 선택된 단독 또는 2종 이상의 이온을 포함할 수 있다.
더욱 구체적으로, 금속원소 M의 산화물을 생성할 수 있는 화합물은 특별히 한정되는 것은 아니지만, 고순도 화합물의 입수 용이함, 대기 중에서의 취급 용이함 및 가격측면에서 유리한 알칼리 토금속류의 탄산염, 수산염, 질산염, 황산염, 초산염, 산화물, 과산화물, 수산화물 중에서 선택되는 적어도 하나의 알칼리 토금속류 화합물이 바람직하다.
보다 바람직하게는, 알칼리 토금속류의 탄산염, 수산염, 산화물, 수산화물이다. 특히 바람직하게는 알칼리 토금속류 화합물은 탄산염(MCO3) 형태를 사용하는 것이다.
또한, 알칼리 토금속류 화합물의 성상 역시 특별히 한정되지 않으나, 고성능의 형광체를 제조하기 위해서는 분말상이 덩어리상보다 바람직하다.
알칼리 토금속류 금속화합물 이외에, 본 발명의 원료염으로 사용되는 질화규소(Si3N4), 실리콘 디이미드 (Si(NH)2) 또는 산화규소(SiO2) 원료염의 성상 역시 고성능의 형광체를 제조하기 위해서는 분말상의 성상이 바람직하다.
또한, 상기 원료염끼리의 반응성을 높이기 위해서, 가스를 첨가하여 반응시킬 수 있으며, 이러한 가스로는 알칼리 금속 화합물(Na2CO3, NaCl, LiF)또는 할로겐 화합물(SrF2, CaCl2 등) 및 인삼염, 황화물 계열에서 적절히 선택하여 적절한 유량으로 공급할 수 있다.
본 발명에 채용가능한 규소 화합물은 특별히 한정되지 않으나, 고성능의 형광체를 제조하기 위한 요건으로 바람직하게는, 질화규소(Si3N4), 실리콘 디이미드 (Si(NH)2) 또는 산화규소(SiO2)를 사용하는 것이다.
본 발명의 형광체에서, 발광 중심 이온을 첨가하기 위한 원료로는 각종 희토금속이나 전이 금속, 또는 이들 화합물도 이용한다. 이러한 원소로는 원자 번호 58~60, 또는 62~71의 란타나이드나 전이 금속, 특히 Ce, Pr, Eu, Tb, Mn이 있다.
이러한 원소를 포함하는 화합물로는 상기 란타나이드나 전이 금속의 산화물, 질화물, 수산화물, 탄산염, 수산염, 질산염, 황산염, 할로겐화물, 인산염 등이 있 다. 구체적인 일례로는 탄산세륨, 산화유로퓸, 질화유로퓸, 금속테르븀, 탄산망간 등이다. 발광 중심 이온으로서, 즉, Ce3 +, Eu2 +, Tb3 +, Mn2 + 등의 이온을 많이 생성하기 위해서는 환원 분위기가 바람직하다.
더욱 상세하게는 본 발명에서 사용되는 Eu의 첨가량은 알칼리 토금속의 2가 금속에 대비하여 0.001 내지 0.95몰을 함유하는 것이 바람직하며, 0.001몰 미만이면, 활성화가 부족하여 바람직하지 않고, 0.95몰을 초과하면, 농도 소광(concentration quenching)이 발생하여 휘도가 감소하는 문제가 있다.
이에, 본 발명의 제1 실시형태에 따른 제조방법은, M의 산화물 및 M의 질화물 중 적어도 하나(M은 Be, Mg, Ca, Sr, Zn으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅱ족 원소임)와, A의 산화물 및 A의 질화물 중 적어도 하나(A는 C, Si, Ge, Sn, Ti, Zr, Hf으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅳ족 원소임)을 혼합하여 형광체 원료를 마련하는 단계와, 510∼570 ㎚ 범위 내의 발광피크파장을 갖는 산질화물 형광체가 얻어지도록 상기 혼합된 형광체 원료를 1200∼1800℃ 및 분위기 가스압이 1atm ~ 20atm의 분위기 하에서 소성하는 단계를 포함한다.
바람직하게, 상기 소성하는 단계 후에, 상기 소성온도보다 낮은 온도와 상기 분위기가스압보다 낮은 가스압조건에서 상기 소성단계에서 얻어진 산질화물 형광체를 열처리하는 단계를 더 포함할 수 있다.
일반적인 형광체 제조공정에 있어서, 소성온도는 1200℃ 내지 1800℃에서 수행되고, 형광체의 고성능화의 목적으로, 바람직하게는 1600℃이상 1800℃이하, 보다 바람직하게는 1700℃이상 1800℃에서 수행한다. 한편, 대량 생산의 목적으로는, 1400℃이상 1800℃, 보다 바람직하게는 1600℃이상 1700℃에서 수행한다.
반면에, 본 발명은 일반적인 소성온도를 단계별로 수행하고, 환원 가스의 유량을 제어함으로써, 결정구조가 다른 형광체를 제조할 수 있으며, 특히, 녹색, 황색 및 적색의 발광을 선택적으로 제어할 수 있는 고순도의 형광체를 제조할 수 있다.
즉, 본 산질화물 형광체를 모체로 사용하되, 소성온도가 1300 내지 1400℃에서 분위기 가스압이 1atm ~ 20atm의 분위기로 제어되면, 최적의 발색효율을 가지는 녹색 및 황색형광체가 제조된다. 이때, 상기에서 소성온도 및 환원 가스의 유량 조건 미만이면, 반응이나 환원이 불충분하게 되어, 색순도가 저하되어 고품질의 형광체를 얻을 수 없다.
이어, 본 발명은 상기 동일조성 성분의 산질화물 형광체의 녹색 및 황색형광체를 상기 온도보다 낮은 온도와 상기 분위기가스압보다 낮은 분위기가스압에서 다시 열처리하면 보다 발광효율, 휘도와 같은 특성을 향상시켜 고품질의 형광체를 제공할 수 있다.
따라서, 본 발명의 제조방법은 형광체 제조공정 상, 소성온도 및 분위기 가스압을 단계별 또는 개별적으로 수행하여 원하는 발광효율의 형광체를 용이하게 제 조할 수 있다.
이때, 본 발명은 혼합 원료염을 환원 분위기 하에서 소성하되, 질소 및 수소의 혼합가스에 의해 조성된 분위기 가스압 조건에서 수행하는 것이다.
이때, 혼합가스는 질소 및 수소의 혼합비율이 95:5 내지 90:10로 이루어진 것이 바람직하며, 특히 소성온도 및 분위기 가스압에 따라, 형광체의 발광효율을 제어할 수 있다.
본 발명의 제조방법에서, 소성 시간은 생산성을 고려하면 300분 내지 12시간 범위 내에서 수행하는 것이 바람직하다. 본 발명의 제조방법에 있어서, Eu2 +을 포함하는 화합물은 0.001 내지 0.95의 몰농도로 함유된다. 본 발명의 제조방법에 의해 비교적 간단한 방법으로, 원하는 발광효율을 가진 형광체를 제조할 수 있으며, 특히, 고순도의 산질화물 형광체를 제공할 수 있다.
나아가, 본 발명은 상기 산질화물 형광체를 이용하여, 색순도가 뛰어나고 색의 연색성이 뛰어난 백색 LED 소자를 제공한다.
도1는 본 발명의 일 실시형태에 따른 백색 발광장치를 나타내는 개략도이다.
도1에 도시된 바와 같이, 본 실시형태에 따른 백색 발광 장치(10)는, 청색 LED 칩(15)과 이를 포장하며 상부로 볼록한 렌즈 형상을 갖는 수지 포장부(19)를 포함한다.
본 실시형태에 채용된 수지포장부(19)는, 넓은 지향을 확보할 수 있도록 반 구 형상의 렌즈 형상을 갖는 형태로 예시되어 있다. 상기 청색 LED 칩(15)는 별도의 회로기판에 직접 실장될 수 있다. 상기 수지 포장부(19)는 상기 실리콘 수지나 에폭시 수지 또는 그 조합으로 이루어질 수 있다. 상기 수지포장부(19)의 내부에는 녹색 형광체(12)와 적색 형광체(14)가 분산된다.
본 실시형태에 채용가능한 녹색 형광체(12)는, MxAyOxN(4/3)y의 조성식으로 표시되는 산질화물 형광체 또는 MaAbOcN((2/3)a+(4/3)b-(2/3)c)로 표시되는 산질화물을 형광체를 사용할 수 있다. 여기서, M은 Be, Mg, Ca, Sr, Zn으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅱ족 원소이고, A는 C, Si, Ge, Sn, Ti, Zr, Hf으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅳ족 원소이다.
한편, 본 실시형태에 채용가능한 적색 형광체(14)는, M1AlSiNx:Re(1≤x≤5)인 질화물계 형광체, M1D:Re인 황화물계 형광체 및 (Sr,L)2SiO4 - xNy:Eu인 실리케이트계 형광체(여기서, 0<x<4, y=2x/3) 중 선택된 적어도 하나이고,
여기서, M1는 Ba, Sr, Ca, Mg 중 선택된 적어도 1종의 원소이고, D는 S, Se 및 Te 중 선택된 적어도 1종의 원소이며, L은 Ba, Ca 및 Mg로 구성되는 그룹으로부터 선택된 적어도 하나의 제2족 원소 또는 Li, Na, K, Rb 및 Cs로 구성되는 그룹으로부터 선택된 적어도 하나의 제1 족 원소이고, D는 S, Se 및 Te 중 선택된 적어도 1종이며, Re는 Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나이다.
이와 같이, 본 발명에서 반치폭, 피크파장 및/또는 변환효율 등을 고려하여 특정한 녹색 형광체와 특정한 적색형광체를 조합한 형태로 제공함으로써 70 이상의 높은 연색지수를 갖는 백색광을 제공할 수 있다. 또한, 복수의 형광체를 통해 여러 파장대역의 광이 얻어지므로, 색재현성을 향상시킬 수 있다.
상기 적색 형광체 중 (Sr,L)2SiO4 - xNy:Eu인 실리케이트계 형광체의 경우에, 바람직하게, x범위가 0.15≤x≤3 조건일 수 있다. 상기 조성식에서 Si 중 일부는 다른 원소로 치환될 수 있다. 예를 들어, B, Al, Ga 및 In으로 구성된 그룹으로부터 선택된 적어도 1종의 원소로 치환될 수 있으며, 이와 달리, Ti, Zr, Gf, Sn 및 Pb로 구성된 그룹으로부터 선택된 적어도 1종의 원소로 치환될 수 있다.
상기 청색 LED 칩의 주파장은 430~455nm 범위일 수 있다. 이 경우에, 가시광선대역에서 넓은 스펙트럼을 확보하여 보다 큰 연색지수의 향상을 위해서, 상기 녹색 형광체(12)의 발광파장 피크는 500∼550nm범위이며, 상기 적색 형광체(14)의 발광파장 피크는 610∼660nm범위일 수 있다.
바람직하게, 상기 청색 LED 칩은 10~30nm의 반치폭을 가지며, 상기 녹색 형광체는 30~100nm의 반치폭을 갖고, 상기 적색 형광체는 50~150nm의 반치폭을 가질 수 있다.
본 발명의 다른 실시형태에서는, 상술된 적색 형광체(12)와 녹색 형광체(14) 외에 추가적으로 황색 또는 황등색 형광체를 포함할 수 있다. 이 경우에 보다 향상된 연색지수를 확보할 수 있다. 이러한 실시형태는 도3에 도시되어 있다.
도2를 참조하면, 본 실시형태에 따른 백색 발광장치(20)는, 중앙에 반사컵이 형성된 패키지 본체(21)와, 반사컵 바닥부에 실장된 청색 LED(25)와, 반사컵 내에는 청색 LED(25)를 봉지하는 투명 수지 포장부(29)를 포함한다.
상기 수지 포장부(29)는 예를 들어, 실리콘 수지나 에폭시 수지 또는 그 조합을 사용하여 형성될 수 있다. 본 실시형태에서는, 상기 수지 포장부(29)에 도1에서 설명된 녹색 형광체(22) 및 적색 형광체(24)과 함께 추가적으로 황색 형광체 또는 황등색 형광체(26)를 포함한다.
즉, 녹색 형광체(22)는, MxAyOxN(4/3)y 산질화물 형광체 또는 MaAbOcN((2/3)a+(4/3)b-(2/3)c) 산질화물 형광체를 포함하며, 적색 형광체(24)는, M1AlSiNx:Re(1≤x≤5)인 질화물계 형광체 및 M1D:Re인 황화물계 형광체 중 선택된 적어도 하나이다.
추가적으로, 본 실시형태에서는 제3 형광체(26)를 더 포함한다. 상기 제3 형광체는 녹색과 적색 파장대역의 중간에 위치한 파장대역의 광을 방출할 수 있는 황색 또는 황등색 형광체일 수 있다. 상기 황색 형광체는 실리케이트계 형광체일수 있으며, 상기 황등색 형광체는 α-SiAlON:Re인 형광체일 수 있다.
상술된 실시형태에서는, 2종 이상의 형광체 분말을 단일한 수지포장부영역에 혼합분산시킨 형태를 예시하였으나, 다른 구조를 다양하게 변경되어 실시될 수 있다. 보다 구체적으로, 상기한 2종 또는 3종의 형광체는 서로 다른 층구조로 제공될 수 있다. 일 예에서, 상기 녹색 형광체, 상기 적색 형광체 및 상기 황색 또는 황등색 형광체는 그 형광체 분말을 고압으로 분산시켜 복층 구조의 형광체막으로 제공될 수도 있다.
이와 달리, 도3에 도시된 바와 같이, 복수의 형광체 함유 수지층 구조로 이구현될 수 있다.
도3을 참조하면, 본 실시형태에 따른 백색 발광장치(30)는, 앞선 실시형태와 유사하게, 중앙에 반사컵이 형성된 패키지 본체(31)와, 반사컵 바닥부에 실장된 청색 LED(35)와, 반사컵 내에는 청색 LED(35)를 봉지하는 투명 수지 포장부(39)를 포함한다.
상기 수지 포장부(39) 상에는 각각 다른 형광체가 함유된 수지층이 제공된다. 즉, 상기 녹색 형광체가 함유된 제1 수지층(32), 상기 적색 형광체가 함유된 제2 수지층(34) 및 상기 황색 또는 황등색 형광체가 함유된 제3 수지층(36)로 파장변환부가 구성될 수 있다.
본 실시형태에서 사용되는 형광체는 도2에서 도시되어 설명된 형광체와 동일 하거나 유사한 형광체가 채택되어 사용될 수 있다.
본 발명에서 제안된 형광체의 조합을 통해 얻어지는 백색광은 높은 연색지수를 얻을 수 있다. 즉, 청색 LED 칩에 황색 형광체를 결합할 경우에, 청색 파장광과 함께 변환된 황색광을 얻을 수 있다. 전체 가시광선 스펙트럼에서 볼 때에 녹색 및 적색 대역의 파장광이 거의 없으므로, 자연광에 가까운 연색지수를 확보하기 어렵다. 특히, 변환된 황색광은 높은 변환효율을 얻기 위해서 좁은 반치폭을 갖게 되므로, 이 경우에는 연색지수를 더욱 낮아질 것이다. 또한, 단일한 황색 변환정도에 따라 발현되는 백색광의 특성이 쉽게 변경되므로, 우수한 색재현성을 보장하기 어렵다.
이에 반하여, 청색 LED칩과 녹색 형광체(G)와 적색 형광체(R)를 조합하는 발명예에는, 기존예에 비해 녹색 및 적색 대역에서 발광되므로, 가시광선 대역에서 보다 넓은 스펙트럼을 얻을 수 있으며, 결과적으로 연색지수를 크게 향상시킬 수 있다. 추가적으로, 녹색 및 적색 대역 사이에 중간파장대역을 제공할 수 있는 황색 또는 황등색 형광체를 더 포함함으로써 연색지수를 더욱 크게 향상시킬 수 있다.
도5에는 본 발명에 채용되는 녹색 형광체에 대한 방출광 스펙트럼의 일예가 도시되어 있다. 도5에 도시된 바와 같이, 본 발명에 따른 산질화물 형광체로부터 얻어진 녹색형광체의 피크파장이 약 540㎚이며, 반치폭이 76.7㎚인 방출스펙트럼을 갖는 것을 확인할 수 있다.
도6a 및 도6b에는 본 발명에 채용되는 적색 형광체에 대한 스펙트럼이 도시되어 있다.
도6a를 참조하면, MAlSiNx:Re(1≤x≤5)인 질화물계 형광체(여기서, M는 Be, Ba, Sr, Ca, Mg 중 선택된 적어도 1종의 원소이고, Re는 Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 1종의 원소임)의 스펙트럼이 도시되어 있다. 변환된 적색광은 약 640㎚의 피크파장과 약 85㎚의 반치폭을 나타낸다.
도6b를 참조하면, MD:Eu,Re인 황화물계 형광체(여기서, M은 Be, Ba, Sr, Ca, Mg 중 선택된 적어도 1종의 원소이고, D는 S, Se 및 Te 중 선택된 적어도 1종의 원소이며, Re는 Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 1종의 원소임)의 스펙트럼이 도시되어 있다. 변환된 적색광은 약 655㎚의 피크파장과 약 55㎚의 반치폭을 나타낸다.
도7a 및 도7b에는 본 발명에 선택적으로 채용될 수 있는 황색 또는 황등색 형광체에 대한 스펙트럼이 도시되어 있다.
도7a를 참조하면, 실리케이트계 형광체의 스펙트럼이 도시되어 있다. 변환된 황색광은 약 555㎚의 피크파장과 약 90㎚의 반치폭을 나타낸다.
도7b를 참조하면, α-SiAlON:Re인 형광체의 스펙트럼(여기서, Re는 Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 하나이고, Re는 1ppm 내지 50000ppm의 범위임)이 도시되어 있다. 변환된 황색광은 약 580㎚의 피크파장과 약 35㎚의 반치폭을 나타낸다.
이와 같이, 본 발명에서 반치폭, 피크파장 및/또는 변환효율 등을 고려하여 특정한 녹색 형광체와 특정한 적색형광체를 조합한 형태 또는 이 조합형태에서 황색 또는 황등색 형광체를 추가함로으로써 70 이상의 높은 연색지수를 갖는 백색광을 제공할 수 있다. 상기 광에서 적색광의 색좌표는 CIE 1941 색좌표계(도4 참조)를 기준으로, x, y좌표가 0.55≤x≤0.65, 0.25≤y≤0.35의 범위인 영역 내에 있고, 녹색광의 색좌표는 x, y좌표가 0.2≤x≤0.4, 0.5≤y≤0.7의 범위인 영역 내에 있으며, 청색광의 색좌표는 x, y좌표가 0.1≤x≤0.2, 0.02≤y≤0.15의 범위인 영역 내에 있다.
청색 LED 칩의 주파장이 430~455nm 범위일 경우에, 녹색 형광체의 발광파장 피크는 500∼550nm범위이며, 적색 형광체의 발광파장 피크는 610∼660nm범위일 수 있다. 황색 또는 황등색 형광체의 발광파장 피크는 550∼600nm범위일 수 있다.
또한, 청색 LED 칩이 10~30nm의 반치폭을 갖는 경우에, 상기 녹색 형광체는 30~100nm의 반치폭, 바람직하게 60~80nm을 갖고, 상기 적색 형광체는 50~150nm의 반치폭을 가질 수 있다. 황색 또는 황등색 형광체는 20~100nm의 반치폭을 가질 수 있다.
이러한 조건을 갖는 각 형광체의 선택과 조합을 통해서 본 발명에서는, 가시광선대역에서 넓은 스펙트럼을 확보할 수 있으며, 보다 큰 연색지수를 갖는 우수한 백색광을 제공할 수 있다.
본 발명은 LCD 백라이트 유닛의 광원으로 유익하게 사용될 수 있는 백색 광원 모듈을 제공할 수 있다. 즉, 본 발명에 따른 백색 광원 모듈은 LCD 백라이트 유닛의 광원으로서 여러가지 광학 부재(확산판, 도광판, 반사판, 프리즘 시트 등)와 결합되어 백라이트 어셈블리를 구성할 수 있다. 도8 및 도9는 이러한 백색 광원 모듈을 예시한다.
우선, 도8을 참조하면, LCD 백라이트용 광원 모듈(50)은, 회로 기판(51)과 그 위에 실장된 복수의 백색 LED 장치(10)들의 배열을 포함한다. 회로 기판(51) 상면에는 LED 장치(10)와 접속되는 도전패턴(도시 안함)이 형성될 수 있다.
각각의 백색 LED 장치(10)는, 도1에서 도시되어 설명된 백색 LED 장치로 이해할 수 있다. 즉, 청색 LED(15)가 회로 기판(51)에 COB(Chip On Board) 방식으로 직접 실장된다. 각각의 백색 LED 장치(10)의 구성은, 별도의 반사벽을 갖지 않고 렌즈 기능을 갖는 반구형상의 수지 포장부(19)를 구비함으로써, 각각의 백색 LED 장치(20)는 넓은 지향각을 나타낼 수 있다. 각 백색 광원의 넓은 지향각은, LCD 디스플레이의 사이즈(두께 또는 폭)를 감소시키는데 기여할 수 있다.
도9을 참조하면, LCD 백라이트용 광원 모듈(60)은, 회로 기판(61)과 그 위에 실장된 복수의 백색 LED 장치(20)들의 배열을 포함한다. 상기 백색 LED 장치(20)는 도3에서 설명된 바와 같이 패키지 본체(21)의 반사컵 내에 실장된 청색 LED 칩(25)과 이를 봉지하는 수지 포장부(29)를 구비하고, 수지 포장부(29) 내에는, 녹색 및 적색 형광체(22,24)와 함께 황색 또는 황등색 형광체(26)가 분산되어 포함된다.
이하, 본 발명에 따른 산질화물 형광체를 실시예를 통하여 본 더욱 상세하게 설명하고자 한다.
< 실시예 1> Sr 2 Si 4 ON 6 : Eu 제조
Sr, Si 및 Eu의 이온을 포함하고 있는 금속염을 칭량하고, 800∼1200℃의 온도에서 2시간 산화 처리한 후, 볼밀 통에 넣어 2∼24 시간 동안 아세톤을 용매로 하여 볼밀링한 후 건조하였다.
이후, 1300℃의 온도에서 4∼10시간 동안 수소/질소가스(95:5v/v)의 분위기 가스압이 1atm ~ 20atm의 분위기 하에서 소성하여, Sr2Si4ON6:Eu 형광체를 제조하였다.
이때, 상기 제조된 형광체는 380∼470nm 파장 영역을 여기 스펙트럼(도10a), 525∼545nm의 가시광을 방출하는 발광 스펙트럼(도10b) 및 XRD 스펙트럼(도11) 결과를 보이는 녹색형광체임을 확인할 수 있었다.
< 실시예 2> Sr 3 Si 7 ON 10 : Eu 제조
Sr, Si 및 Eu의 이온을 포함하고 있는 금속염에 대하여, 알칼리 금속염에 대한 정량비를 변화하여 각각 칭량한 후, 1300℃의 온도에서 4∼10시간 동안 수소/질소가스의 혼합가스(90:10v/v)를 분위기 가스압이 1atm ~ 20atm의 분위기 하에서 소성한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 Sr3Si7ON10:Eu 형광체를 제조하였다.
이때, 상기 제조된 Sr3Si7ON10:Eu의 형광체에서, 알칼리 금속염에 따른 여기 스펙트럼의 변화를 관찰하고, 발광 스펙트럼을 관찰하여 녹색형광체가 제조되었음을 확인하였다. 해당 녹색 형광체의 XRD 스펙트럼도 함께 관찰한 결과, Sr3Si7ON10:Eu 형광체에서, 동일한 결정구조 및 고순도의 녹색형광체가 제조됨을 확인하였다.
< 실시예 3> Sr 3 Si 8 ON 12 : Eu 제조
Sr, Si 및 Eu의 이온을 포함하고 있는 각각의 금속염을 칭량하여 원료조성물을 사용하고, 1300℃의 온도에서 10시간 동안 수소/질소가스의 혼합가스(90:10v/v)를 분위기 가스압이 1atm ~ 20atm의 분위기 하에서 소성한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여, Sr3Si8ON12:Eu의 형광체를 제조하였다.
상기 제조된 Sr3Si8ON12:Eu의 형광체는 395∼475nm 파장 영역에서 여기 스펙트럼이 관찰되었으며, 520~550nm의 가시광을 방출하는 발광 스펙트럼 결과를 보임으로써, 고순도의 녹색형광체가 제조되었음을 확인하였다.
< 실시예 4> Sr 4 Si 7 O 3 N 10 : Eu 제조
Sr, Si 및 Eu의 이온을 포함하고 있는 각각의 금속염을 칭량하여 원료조성물을 사용하고, 1300℃의 온도에서 10시간 동안 수소/질소가스의 혼합가스(90:10v/v)를 분위기 가스압이 1atm ~ 20atm의 분위기 하에서 소성한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 고순도의 Sr4Si7O3N10:Eu 녹색형광체를 제조하였다.
본 발명은 상술된 산질화물 형광체를 파장변화물질로 이용하는 다양한 형태의 백색 발광장치로 구현될 수 있다. 이하, 본 발명에 따른 백색 발광장치에 채용 가능한 발광소자를 첨부된 도면을 참조하여 설명하기로 한다.
우선, 도 12에 도시된 발광 소자(100)의 반도체 적층 구조는 하기와 같은 구조를 가질 수 있다. Si-Al 합금으로 이루어진 기판(이하, 'Si-Al 합금 기판'이라 함)(101) 및 Si-Al 합금 기판(101)의 상면 및 하면에 형성된 보호층(120), 보호층(120) 상에 접합금속층(102), 반사 금속층(103), p형 반도체층(104), 활성층(105) 및 n형 반도체층(106)이 순차적으로 적층되어 있다. p형 및 n형 반도체층(104, 106)과 활성층(106)은 GaN계 반도체, 즉 AlxGayIn(1-x-y)N(0≤x≤1, 0≤y≤1, 0≤x+y≤1) 반도체 재료 등으로 이루어질 수 있으며, 발광구조물을 형성한다.
상기 n형 반도체층(106) 상에는 n측 전극(107)이 형성되어 있다. 접합 금속층(102)과 p형 반도체층(104) 사이에 개재된 반사 금속층(103)은 반도체층으로부터 입사된 빛을 상방향으로 반사시킴으로써 발광소자의 휘도를 더욱 증가시킨다. 반사금속층(103)은 고반사율의 금소, 예를 들어 Au, Ag, Al, Rh 및 이들 중 둘 이상의 합금으로 구성된 그룹으로부터 선택된 금속 등으로 이루어질 수 있다. 그러나, 이러한 반사 금속층(103)은 필요에 따라 형성되지 않을 수도 있다.
접합금속층(102)은 Si-Al 합금 기판(101)을 발광 구조물에 접합시키는 역할을 하며, Au 등이 사용될 수 있다. 여기서, 본 발명의 발광소자(100)가 접합금속층(102)을 포함하고 있지만, 이러한 접합 금속층(102) 없이 Si-Al 합금(101)이 p형 반도체층(104) 상에 직접 접합될 수도 있다. 따라서, 본 발명의 발광소자(100)는 Si-Al 합금기판(101)을 도전성 기판으로 사용한다.
이러한 Si-Al 합금은 Si-Al 합금은 열팽창 계수, 열전도도, 기계적 가공성 및 가격의 측면에서 유리한 장점이다. 즉, Si-Al 합금 기판(101)의 열팽창 계수는 사파이어 기판의 열팽창 계수와 유사하다. 따라서, Si-Al 합금 기판(101)을 사용하여 발광소자(100)을 제조하는 경우, 기존의 Si로 이루어진 도전성 기판의 접합 공정과 레이저 조사에 의한 사파이어 기판의 분리 공정시 발생하였던 기판의 휨 현상과 발광구조물에서의 크랙 발생 현상을 크게 감소시켜 결함이 적은 고품질의 발광소자(100)를 얻을 수 있다.
또한, Si-Al 합금 기판(101)의 열전도도는 약 120 내지 180 W/mㆍK로서 열방출 특성이 우수하다. 뿐만 아니라, 고압에서 Si와 AL을 용융시킴으로써 Si-Al 합금기판(101)을 용이하게 제조할 수 있기 때문에, Si-Al 합금기판(101)을 용이하게 제조할 수 있기 때문에, Si-Al 합금 기판을 낮은 비용으로 손쉽게 얻을 수 있다.
특히, 본 발명의 발광소자(100)는 Si-Al 합금 기판(101)의 상하면에 Si-Al 합금 기판(101)으로의 클리닝(cleaning)공정시 케미칼 침투를 막아주는 보호층(120)이 추가로 형성되어 있다. 여기서, 보호층(120)은 금속 또는 전도성 유전체 등으로 이루어질 수 있다. 이때, 보호층(120)이 금속으로 이루어지는 경우, Ni, Au, Cu, W, Cr, Mo,Pt, Ru, Rh, Ti 및 Ta 중 어느 하나, 또는 금속군 중 적어도 둘 이상의 합금으로 이루어질 수 있다.
이 경우, 보호층(120)은 무전해 도금 방식, 금속 증착, 스퍼터(sputter) 또는 CVD 등에 의해 형성된 것일 수 있으며, 이때, Si-Al 합금 기판(101)과 금속 재 질의 보호층(120) 사이에는 보호층(120)의 도금 공정에서 씨드(seed) 역할을 하는 씨드 금속층(110)이 더 형성될 수 있다. 씨드 금속층(110)은 Ti/Au 등으로 이루어질 수 있다. 또한, 보호층(120)이 전도성 유전체로 이루어지는 경우, 상기 전도성 유전체는 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide) 또는 CIO(Copper Indium Oxide) 등으로 이루어질 수 있다. 이 경우, 보호층(120)은 증착 또는 스퍼터 방식 등에 의해 형성된 것일 수 있다. 이러한 보호층(120)은 0.01㎛ 이상 20㎛ 이하의 두께로 형성되는 것이 바람직하며, 1㎛ 이상 10㎛ 이하의 두께로 형성되는 것이 바람직하다.
이와 같이, 본 발명의 백색 발광장치에 채용가능한 발광소자는 상기 Si-Al 합금 기판(101)의 표면에 Ni과 같은 보호층(120)을 추가로 형성함으로써, 상기 사파이어 기판의 분리 후에 진행되는 클리닝 공정에서 사용되는 HCl, HF, KOH 등의 케미칼이나, n형 반도체층(106)의 표면 텍스처링(texturing) 공정에서 사용되는 KOH 등에 의해, 상기 Si-Al 합금 기판(101)의 Al 금속이 에칭되는 것을 방지할 수 있는 효과가 있다.
따라서, 본 발명에 채용가능한 발광소자는 상기 Si-Al 합금 기판(101)의 표면에 요철이 형성되는 것을 막아, 상기 Si-Al 합금 기판(101) 상에 접합되는 발광 구조물이 벗겨지는 불량 발생을 방지할 수 있는 효과가 있다.
또한, 상기 보호층(120)으로서 Ni 등과 같은 금속을 사용하는 경우, Si-Al 합금 기판(101)의 표면 조도를 개선하여 상기 Si-Al 합금 기판(101)과 발광 구조물간의 접합을 견고하게 할 수 있는 이점이 있다. 즉, 종래에는 Si-Al 합금 기판(101)이 접합 금속층(102) 형성 전에 자연산화막 제거를 위한 산(acid) 등의 화학물질을 이용한 클리닝 공정을 거치면서, Si-Al 합금 기판(101) 표면의 Al 금속이 에칭되면서 평균 200 내지 500 ㎚의 표면 요철이 형성되었으나, 본 발명의 제1 실시예에서와 같이 Si-Al 합금 기판(101)의 표면에 보호층(120)으로서 Ni 등의 금속을 형성한 후, Ni CMP(Chemical Mechanical Polishing) 처리를 하면 표면 요철이 5 ㎚ 이하로 줄어들어 거울면과 같이 표면 조도가 개선될 수가 있다.
이와 같이, Si-Al 합금 기판(101)의 표면 조도가 개선됨으로써, 상기 Si-Al 합금 기판과 발광 구조물 간의 접합을 견고하게 하고, 접합 수율을 향상시킬 수 있는 효과가 있다.
본 발명에 따른 백색 발광장치에 채용가능한 발광소자의 다른 예로서, 도13에 도시된 발광소자가 제공될 수 있다.
도13에 도시된 발광소자는 도12에 도시된 발광소자와 유사하지만, 보호층(120)이 Si-Al 합금 기판(101)의 상면 및 하면 전체에 형성되지 않고, Si-Al 합금 기판(101)의 상면에 Si-Al 합금 기판(101)의 일부를 드러내도록 형성되어 있으며, 보호층(120) 및 보호층에 의해 드러난 Si-Al 합금 기판(101)의 상면에는 도전층(122)이 더 형성되어 있고, Si-Al 합금 기판(101)의 하면에는 콘택 금속층(123)이 형성되어 있는 점에서 상이하다.
특히, 상기 보호층(120)은 금속이나 전도성 유전체가 아닌 절연재로 이루어지는 것이 바람직하다. 즉, 본 발명의 제2 실시예에 따른 발광 소자는, 상기 보호층(120)이 금속이나 전도성 유전체가 아닌 절연재로 이루어지는 대신에, 상기 보호층(120)이 형성된 Si-Al 합금 기판(101)과 상기 보호층(120) 상부의 발광 구조물간의 통전을 위하여, 상기 보호층(120)이 상기 Si-Al 합금 기판(101)의 상면 일부를 드러내도록 형성되고, 상기 보호층(120)을 포함한 상기 Si-Al 합금 기판(101)의 상면에 도전층(122)이 추가로 형성되는 것이다. 여기서, 상기 도전층(122)은 금속 등으로 이루어질 수 있다.
한편, 본 발명에 따른 백색 발광장치는, 앞서 예시된 형태의 발광소자와 달리, 고전류 동작이 가능하도록 전극의 배치구조가 변경된 발광소자를 채용할 수 있다. 도14 및 도15는 본 발명에 채용가능한 발광소자의 다른 예로서 발광소자를 도시한 평면도 및 단면도이다. 이때, 도16은 상기 도 19의 I-I'선을 따라 절취한 단면도이다.
도14 및 도15를 참조하면, 본 반도체 발광소자(200)는 도전성 기판(210), 제1 전극층(220), 절연층(230), 제2 전극층(240), 제2 도전형 반도체층(250), 활성층(260) 및 제1 도전형 반도체층(270)을 포함하며, 상기 각 층들은 순차적으로 적층되어 구비되어 있다.
상기 도전성 기판(210)은 전기가 흐를 수 있는 물질로 구성될 수 있다. 예를 들면, 상기 도전성 기판(210)은 Au, Ni, Cu 및 W 중 어느 하나의 금속을 포함하는 금속성 기판 또는 Si, Ge 및 GaAs 중 어느 하나를 포함하는 반도체 기판인 것이 바람직하다. 상기 도전성 기판(210) 상에는 상기 제1 전극층(220)이 적층되어 구비되어 있는데, 상기 제1 전극층(220)은 상기 도전성 기판(210) 및 활성층(260)과 전기적으로 연결됨으로써 상기 도전성 기판(210) 및 활성층(260)과 접촉 저항이 최소화되는 물질로 구성되는 것이 바람직하다.
상기 제1 전극층(220)은 상기 도전성 기판(210) 상에 적층되어 구비되어 있을 뿐만 아니라, 도15에 도시하고 있는 바와 같이, 그 일부 영역이 상기 절연층(230), 제2 전극층(240), 제2 도전형 반도체층(250) 및 활성층(260)을 관통하고, 상기 제1 도전형 반도체층(270)의 일정 영역까지 관통한 콘택홀(280)을 통해 연장되어 상기 제1 도전형 반도체층(270)과 접촉하여 상기 도전성 기판(210)과 제1 도전형 반도체층(270)은 전기적으로 연결되도록 구비되어 있다. 즉, 상기 제1 전극층(220)은 상기 도전성 기판(210)과 제1 도전형 반도체층(270)을 전기적으로 연결하되, 상기 콘택홀(280)을 통해 전기적으로 연결함으로써, 상기 콘택홀(280)의 크기, 더 정확하게는 상기 콘택홀(280)을 통해 상기 제1 전극층(220)과 제1 도전형 반도체층(270)이 접촉하는 면적인 접촉 영역(290)을 통해 전기적으로 연결된다.
한편, 상기 제1 전극층(220) 상에는 상기 제1 전극층(220)이 상기 도전성 기판(210) 및 제1 도전형 반도체층(270)을 제외한 다른 층과는 전기적으로 절연시키기 위한 절연층(220)이 구비된다. 즉, 상기 절연층(220)은 상기 제1 전극층(220)과 제2 전극층(240)의 사이뿐만 아니라 상기 콘택홀(280)에 의해 노출되는 상기 제2 전극층(240), 제2 도전형 반도체층(250) 및 활성층(260)의 측면들과 상기 제1 전극 층(220) 사이에도 구비된다. 또한, 상기 콘택홀(280)이 관통한 상기 제1 도전형 반도체층(280)의 일정 영역의 측면에도 상기 절연층(220)을 구비하여 절연하는 것이 바람직하다.
상기 제2 전극층(240)은 상기 절연층(220)상에 구비된다. 물론, 상기에서도 상술하고 있는 바와 같이 상기 콘택홀(280)이 관통하는 일정 영역들에는 상기 제2 전극층(240)이 존재하지 않는다. 이때, 상기 제2 전극층(240)은 도15에서 도시하고 있는 바와 같이 상기 제2 도전형 반도체층(250)과 접촉하는 계면 중 일부가 노출된 영역, 즉 노출 영역(245)을 적어도 하나 이상 구비하고 있다. 상기 노출 영역(245) 상에는 외부 전원을 상기 제2 전극층(240)에 연결하기 위한 전극패드부(247)를 구비할 수 있다. 한편, 상기 노출 영역(245) 상에는 이후 설명될 상기 제2반도체층(250), 활성층(260) 및 제1 도전형 반도체층(270)이 구비되어 있지 않다. 또한, 상기 노출 영역(245)은 도14에 도시하고 있는 바와 같이 상기 반도체 발광 소자(200)의 모서리에 형성하는 것이 바람직한데, 이는 상기 반도체 발광 소자(200)의 발광 면적을 최대화하기 위해서이다. 한편, 상기 제2 전극층(240)은 Ag, Al 및 Pt 중 어느 하나의 금속을 포함하여 이루어지는 것이 바람직한데, 이는 상기 제2 전극층(240)이 상기 제2 도전형 반도체층(250)과 전기적으로 접촉하기 때문에 상기 제2 도전형 반도체층(250)의 접촉 저항을 최소화하는 특성을 가지는 동시에 상기 활성층(260)에서 생성된 빛을 반사시켜 외부로 향하게 하여 발광 효율을 높일 수 있는 기능을 갖는 층으로 구비되는 것이 바람직하기 때문이다.
상기 제2 도전형 반도체층(250)은 상기 제2 전극층(240) 상에 구비되고, 상 기 활성층(260)은 상기 제2 도전형 반도체층(250) 상에 구비되고, 상기 제1 도전형 반도체층(270)은 상기 활성층(260) 상에 구비된다. 이때, 상기 제1 도전형 반도체층(270)은 n형 질화물 반도체이고, 상기 제2 도전형 반도체층(250)은 p형 질화물 반도체인 것이 바람직하다. 한편, 상기 활성층(260)은 상기 제1 도전형 반도체층(270) 및 제2 도전형 반도체층(250)을 이루는 물질에 따라 다른 물질을 선택하여 형성할 수 있다. 즉, 상기 활성층(260)은 전자/전공의 재결합에 따른 에너지를 빛으로 변화하여 방출하는 층이므로 상기 제1 도전형 반도체층(270) 및 제2 도전형 반도체층(250)의 에너지 밴드 갭보다 적은 에너지 밴드 갭을 갖는 물질로 형성하는 것이 바람직하다.
한편, 본 발명에 채용가능한 다른 발광소자는 도15에 도시된 발광소자와 달리, 콘택홀과 연결된 제1전극층이 외부로 노출될 수도 있다.
도16에 도시된 발광소자(300)는 도전성 기판(310) 상에 제2 도전형 반도체층(350), 활성층(360) 및 제1 도전형 반도체층(360)이 형성된다. 이 경우, 제2 도전형 반도체층(350)과 도전성 기판(310) 사이에는 제2 전극층(340)이 배치될 수 있으며, 앞선 실시 형태와 달리 제2 전극층(340)은 반드시 요구되는 것은 아니다.
본 실시 형태의 경우, 제1 도전형 반도체층(370)과 접촉되는 접촉 영역(390)을 갖는 콘택홀(380)은 제1 전극층(320)과 연결되며, 제1 전극층(320)은 외부로 노출되어 전기연결부(345)를 갖는다. 전기연결부(345)에는 전극패드부(347)가 형성될 수 있다. 제1 전극층(320)은 절연층(330)에 의하여 활성층(360), 제2 도전형 반도 체층(350), 제2 전극층(340), 도전성 기판(310)과 전기적으로 분리될 수 있다.
앞선 제3 실시형태에서, 콘택홀이 도전성 기판과 연결되었던 것과 달리 본 제4 실시형태의 경우, 콘택홀(380)은 도전성 기판(310)과 전기적으로 분리되며, 콘택홀(380)과 연결된 제1 전극층(320)이 외부로 노출된다. 이에 따라, 도전성 기판(310)은 제2 도전형 반도체층(340)과 전기적으로 연결되어 앞선 실시형태에서와 극성이 달라진다.
따라서, 이러한 발광소자는 제1 전극을 발광면 상에 일부 형성하고, 나머지 일부는 활성층 하부에 배치시킴으로써, 발광면적을 최대로 확보할 수 있고, 발광면상에 배치된 전극을 균일하게 배치함으로써 높은 동작 전류를 인가하여도 전류의 균일한 분포가 가능하여 고전류 동작에서 전류집중 현상을 완화할 수 있다.
이와 같이, 도15 및 도16에 도시된 발광소자는, 서로 대향하는 제1 및 제2 주면을 가지며, 각각 상기 제1 및 제2 주면을 제공하는 제1 및 제2 도전형 반도체층과 그 사이에 형성된 활성층을 갖는 반도체 적층체와, 상기 제1 주면으로부터 상기 활성층을 지나 상기 제2 도전형 반도체층의 일 영역에 연결된 콘택홀와, 상기 반도체 적층체의 제2 주면 상에 형성되며 상기 제1 도전형 반도체층의 일 영역에 상기 콘택홀을 통해 연결된 제1 전극과, 상기 반도체 적층체의 제2 주면 상에 형성되며 상기 제2 도전형 반도체층에 연결된 제2 전극을 포함하며, 상기 제1 및 제2 전극 중 어느 하나가 상기 반도체 적층체의 측방향으로 인출된 구조를 갖는다.
한편, 상술한 반도체 발광소자에는 본 발명에 따른 산질화물 형광체가 파장변환물질로 채용되는 파장변환부가 형성될 수 있다.
이러한 파장변환부는 도17 및 도18에 도시된 칩코팅형 백색발광장치에서와 같이 제공될 수도 있다.
우선, 도17a에 도시된 발광장치(410)의 칩다이(401)의 상부면에는 와이어(425)와 전기적으로 연결되는 본딩패드(402)를 구비하며, 이러한 본딩패드(402)는 다양한 전극배열구조에 따라 단독 또는 2개로 구비될 수 있다.
즉, 상기 본딩패드(402)는 상기 칩다이(401)의 구조에 따라 그 형성 개수가 변경되는데, 상기 칩다이(401)가 P극과 N극이 상,하부면에 각각 형성된 구조 또는 도15 및 도16에 예시된 구조의 경우에, 상기 본딩패드(402)는 상기 칩다이(401)의 상부면에 형성된 P극과 전기적으로 연결되도록 단독으로 구비된다.
또한, 상기 칩다이(401)가 P극과 N극이 상부면에 모두 형성되는 구조 또는 도15 및 도16에 예시된 구조인 경우, 상기 본딩패드(402)는 상기 칩다이(401)의 상부면에 형성된 P극과 N극과 각각 전기적으로 연결되도록 2개로 구비되어야 하는 것이다.
본 실시형태에서, 상기 파장변환부(403)는 상기 서브 마운트(404)상에 다이 어태칭된 칩다이(401)의 외부면을 일정하게 덮도록 에폭시, 실리콘 수지, 에폭시 수지와 같은 투명한 수지재에 형광체가 혼합되어 이루어진다. 이때, 파장변환부(403)는 형광체가 혼합된 실리콘, 에폭시 등과 같은 투명성 수지를 일정 두께로 프린팅하는 방식으로 형성되며, 칩다이(401) 전체를 덮도록 형성될 수도 있으며, 인위적으로 제공되는 열이나 UV광에 의해서 경화된다. 여기서, 상기 파장변환부(403)에는 상기 칩다이에서 발생된 빛을 백색광으로 변환시킬 수 있는 형광체로서 본 발명에 따른 산질화물 형광체를 채용할 수 있다.
도17b에 도시된 바와 같이, 상기 백색 발광장치는(410)는 상기 리드프레임(421) 상에 실장되며 상기 파장변환부(403)의 상부면을 통해 외부로 노출되는 적어도 하나의 본딩패드(402)와 본딩와이어(425)를 매개로 하여 상기 리드프레임(421)과 전기적으로 연결된 발광모듈 구조를 제공할 수 있다.
로, 도18a에 도시된 바와 같이, 본 방법에 따른 백색 발광장치(410)는 수지물로서 사출성형되는 수지구조물인 패키지 본체(미도시)의 내부에 일체로 구비되는 리드프레임(121)과, 발광소자(410)의 본딩패드(402)와 일단이 와이어 본딩되고, 상기 리드프레임(421)과 타단이 와이어 본딩되는 금속와이어(425)로 구비될 수 있다.
또한, 도18b에 도시된 바와 같이, 본 방법에 따른 백색 발광 장치는, 발광소자(410')가 음극 리드와 양극리드를 갖는 리드 프레임(421)의 상부면에 탑재되고, 상기 리드 프레임(421)은 상부로 개방된 캐비티를 형성하도록 수지재로 사출성형되는 패키지 본체(미도시)에 일체로 구비되고, 상기 패키지 본체의 캐비티를 통해 외부로 노출되는 발광칩(410')은 본딩패드(402')에 일단이 본딩된 금속 와이어(425)를 매개로 리드 프레임(421)과 전기적으로 연결되어 백색 발광 장치를 구성하게 된 다.
도19는 본 발명에 따른 발광소자를 개략적으로 나타낸 단면도이다.
도19를 참조하면, 본 발명의 일 예에 따른 발광소자(500)는 발광다이오드 칩(501)과 그 표면을 덮도록 형성되며 발광다이오드 칩(501)으로부터 방출된 빛의 파장을 변환하는 파장변환부(502)를 갖추어 구성된다.
이를 위하여, 파장변환부(502)는 투명 수지부 내에 형광체(P)가 분산된 구조로 채용될 수 있다. 파장변환부(502)에 의하여 변환된 빛과 발광다이오드 칩(501)으로부터 방출된 빛이 혼합되어 발광소자(500)는 백색 광을 방출할 수 있다. 발광다이오드 칩(501)은 n형 반도체층, 발광층 및 p형 반도체층이 적층된 구조일 수 있으며, 일면에는 제1 및 제2 전극(503a, 503b)이 형성되어 있다.
도19에 도시된 바와 같이, 파장변환부(502)는 발광다이오드 칩(501)에서 제1 및 제2 전극(503a, 503b)이 형성된 면을 제1 면이라 하고, 이에 대향하는 면을 제2 면이라 하며, 상기 제1 및 제2 면의 사이에 위치한 면을 측면으로 정의할 때, 발광다이오드 칩(501)의 제1 면(전극 형성 면) 및 측면을 덮도록 형성될 수 있다. 이는 발광다이오드 칩(501)의 빛이 도19에 도시된 실시형태의 경우에는 상부 방향과 측면 방향으로 방출되는 것을 의도한 것이다.
본 예에서는, 파장변환부(502)가 발광다이오드 칩(501)의 표면을 따라 얇게 코팅되는 형상으로 제공되며, 패키지 본체의 컵 내부에 형광체를 주입하는 방식과 비교하여 전체적으로 균일한 빛을 얻을 수 있다. 또한, 발광다이오드 칩(501)의 표 면에 직접 파장변환부(502)를 적용하며 패키지 본체를 따로 구비하지 않는 점에서 소자의 사이즈를 줄일 수 있다.
발광다이오드 칩(501)의 전기 연결을 위한 구조로서, 본 실시 형태에서는 리드 프레임 대신 도금층을 구비하는 제1 및 제2 전기연결부(504a, 504b)를 사용한다. 구체적으로, 제1 및 제2 전극(503a, 503b)과 접속되도록 제1 및 제2 전기연결부(504a, 504b)가 형성되며, 제1 및 제2 전기연결부(504a, 504b)는 각각 도금층을 구비한다.
제1 및 제2 전기연결부(504a, 504b)는 파장변환부(502)를 통하여 외부로 노출되며 와이어 본딩 등을 위한 영역으로 제공된다. 이와 같이, 발광소자(500)는 종래의 통상적인 패키지에 비하여 간소화된 구조를 가지며, COB (Chip On Board)나 패키지 형태 등의 발광장치에서 다양하게 이용될 수 있다.
도20은 도19에 도시된 발광소자를 사용한 LED 광원 모듈을 나타내는 개략적인 단면도이다. 도20에 도시된 LED 광원 모듈은 기판(505) 상에 앞서 설명한 발광소자(500)가 실장되어 구현될 수 있다.
이 경우, 도20에서는 발광소자를 나타내는 도면 번호는 기재를 생략하였다. 기판(505)은 절연 기재상에 회로 패턴이 형성된 회로 기판을 사용할 수 있으며, 발광소자와 상기 회로 패턴을 연결하도록 와이어(W)가 형성된다. 앞서 설명한 바와 같이, 발광소자는 상기 제1 면 및 측면을 통하여 빛이 방출되는 점에서, 발광소자의 실장 방향은 발광다이오드 칩의 제2 면이 기판(505)을 향하는 방향이 된다.
기판(505)에 발광소자가 실장되는 방식 외에 따로 도시하지는 아니하였으나, 발광소자는 리드 프레임 위에 실장되어 통상적인 패키지에 이용될 수 있다. 이렇게 발광소자를 패키징하여 사용할 경우 패키지 본체의 컵에 형광체를 따로 주입할 필요가 없으며 전체적인 광 방출 방향에 대하여 균일한 색 온도를 얻을 수 있다.
도21 및 도22는 각각 본 발명의 다른 실시예에 따른 발광소자를 개략적으로 나타낸 단면도이다.
우선, 도21을 참조하면, 발광소자(600)는 제1 및 제2 전극(603a, 603b)을 갖는 발광다이오드 칩(601), 파장변환부(602), 제1 및 제2 전기연결부(604a, 604b)를 갖추어 구성된다. 도24에 도시된 구조와 다른 점은 발광다이오드 칩(601)의 측면에 형성된 수지부(607)는 형광체가 제외된 투명 수지로 이루어져 있다는 것이다. 이는 발광다이오드 칩(601)의 측면으로 방출되는 빛은 제1 면으로 방출되는 빛에 비해 강도가 낮은 것을 고려한 것이다.
도22에 도시된 발광소자(700)는 제1 및 제2 전극(703a, 703b)을 갖는 발광다이오드 칩(701), 파장변환부(702), 제1 및 제2 전기연결부(704a, 704b)를 갖추어 구성된다. 도22에 도시된 구조와 다른 점은 발광다이오드 칩(701)의 제1 면에 위치하여 제1 및 제2 전극(703a, 703b)의 측면을 감싸는 영역에 형성된 언더필 수지부(706)는 형광체가 제외된 투명 수지로 이루어져 있다는 것이다.
한편, 도23 내지 도26을 참조하여 UV 발광다이오드 칩 또는 청색 발광다이오 드 칩 상에 형광체층이 다층 형태로 적층되는 파장변환부의 구조에 대해 다양한 실시예를 통해 설명한다.
먼저, 도23 및 도24는 각각 램프형과 표면실장형으로 구현된 발광소자 패키지의 구조를 도시한 단면도이다.
도23에 도시된 바와 같이, 램프형 발광소자 패키지의 일 예는, 대략 410㎚ 이하의 파장을 가진 UV 발광다이오드 칩(810)은 자외선에 의해 여기되어 서로 다른 색상의 광을 방출하는 세 종류의 형광체가 각각 함유된 제1, 제2 및 제3 형광층(821, 822, 823))으로 이루어진 다층 형광층(820)에 의해 덮여질 수 있다.
도24에 도시된 바와 같이, 표면실장형 발광소자 패키지의 일 예는, UV 발광다이오드 칩(1010)이 기판(1005) 상에 케이싱(1006)의 홈 내부에 설치된다. 상기 케이싱(1006)의 홈 내부에는 세 종류의 형광물질이 각각 함유된 제1, 제2 및 제3 형광층(1021, 1022, 1023)이 형성되며, 이들은 상기 UV 발광다이오드 칩(1010)을 덮는 다층 형광층(1020)을 이루게 된다. UV 발광다이오드 칩(1010)의 n전극과 p전극은 와이어(1003)에 의해 기판(1005)에 형성된 금속도선(1007)에 전기적으로 연결된다.
구체적으로, 상술된 형광체 중 적어도 하나, 특히 녹색 형광체는 상술된 산질화물 형광체를 이용하여 형성될 수 있다. 즉, 상기 제1 형광체 상에 형성된 제2 형광층은 본 발명에 따른 산질화물 형광체로 이루어진 녹색 형광체와 수지가 혼합되어 형성될 수 있다. 상기 녹색광을 방출하는 형광체로는 자외선에 의해 여기되어 500㎚ ~ 550㎚ 범위의 파장을 가진 광을 방출하는 형광물질이 사용될 수 있다. 상 기 제3 형광층은 상기 제2 형광층 위에 적층되며, 청색광(B)을 방출하는 형광체와 수지가 혼합되어 이루어질 수 있다. 상기 청색광을 방출하는 형광체로는 자외선에 의해 여기되어 420㎚ ~ 480㎚ 범위의 파장을 가진 광을 방출하는 형광물질이 사용될 수 있다.
상기한 구성을 통해 UV 발광다이오드 칩에서 방출된 자외선은 제1, 제2 및 제3 형광층 내에 함유된 서로 다른 종류의 형광체들을 여기시키게 된다. 이에 따라 제1, 제2 및 제3 형광층으로부터 적색광(R), 녹색광(G) 및 청색광(B)이 각각 방출되고, 이러한 세 가지 색상의 광이 조합되어 백색광(W)을 형성하게 되는 것이다.
특히, 자외선을 형광 전환하기 위한 형광층을 다층, 즉 3층으로 형성하되, 가장 긴 파장의 광, 즉 적색광(R)을 방출하는 제1 형광층을 UV 발광다이오드 칩 위에 먼저 적층하고, 그 위에 보다 짧은 파장의 광, 즉 녹색광(G)과 청색광(B)을 방출하는 제2 및 제3 형광층들을 순차적으로 적층한다. 이와 같이 광전환 효율이 가장 낮은 적색광(R)을 방출하는 형광체가 함유된 제1 형광층이 UV 발광다이오드 칩에 가장 가까이 위치함으로써, 제1 형광층에서의 광전환 효율이 상대적으로 높아지게 되고, 이에 따라 발광다이오드 칩의 전체적인 광전환 효율이 향상될 수 있다.
다음으로, 도25 및 도26에는 본 발명에 따른 발광장치로서 다양한 파장변환부 구조가 도시되어 있다. 이 도면들에는 발광다이오드 칩과 다층 형광층의 구조만 도시되어 있으며, 다른 부분의 구성은 도23 또는 도24에 도시된 형태와 동일 또는 유사할 수 있다. 즉, 본 실시형태에 따른 발광소자 패키지도 램프형 또는 표면실장형으로 구현될 수 있다.
도25에 도시된 발광소자 패키지는 410㎚ 이하의 파장을 가진 UV 발광다이오드 칩(1110)을 덮도록 형성되는 다층 형광층(1120)을 구비하며, 이 경우 상기 다층 형광층(1120)은 2층의 형광층으로 구성된다. 구체적으로, 상기 UV 발광다이오드 칩(1110) 위에 형성되는 제1 형광층(1121)은 적색광(R)을 방출하는 형광체와 수지가 혼합되어 이루어진다. 이때, 상기 적색광(R)을 방출하는 형광체로는 자외선에 의해 여기되어 600㎚ ~ 700㎚ 범위의 발광피크를 가진 광을 방출하는 형광물질을 사용한다. 그리고, 상기 제1 형광층(1121) 위에 적층되는 제2 형광층(1122)은 수지에 녹색광(G)을 방출하는 형광체와 청색광(B)을 방출하는 형광체가 함께 혼합되어 이루어진다.
이와 같은 구성을 통해 상기 UV 발광다이오드 칩에서 방출된 자외선은 제1 형광층(1121) 내에 함유된 형광체를 여기시켜 적색광(R)을 방출시키고, 제2 형광층(1122) 내에 혼합된 두 종류의 형광체들을 여기시켜 녹색광(G) 및 청색광(B)을 방출시킨다. 이러한 세 가지 색상의 광이 조합됨으로써 인간의 눈에는 백색광(W)으로 보이게 되는 것이다.
상기한 바와 같이, 자외선을 형광 전환하기 위한 형광층을 2층으로 형성하되, 가장 긴 파장의 적색광(R)을 방출하는 제1 형광층(1121)을 UV 발광다이오드 칩(1110) 위에 먼저 적층하고, 그 위에 보다 짧은 파장의 녹색광(G)과 청색광(B)을 함께 방출하는 제2 형광층(1122)을 적층한다. 이와 같은 다층 형광층의 적층 구조에 의해서도 전술한 실시예에서와 같이 광전환 효율이 높아지는 효과를 얻을 수 있다.
도26에 도시된 발광소자 패키지는 여기광으로서 420㎚ ~ 480㎚ 범위의 파장을 가진 청색광(B)을 방출하는 발광다이오드 칩(1210)을 덮도록 형성되는 다층 형광층(1220)이 2층으로 구성되며, 이 경우 발광다이오드 칩(1210) 위에 형성되는 제1 형광층(1221)은 적색광(R)을 방출하는 형광체와 수지가 혼합되어 이루어진다. 이때, 상기 적색광(R)을 방출하는 형광체로는 청색광에 의해 여기되어 600㎚ ~ 700㎚ 범위의 발광피크를 가진 광을 방출하는 형광물질을 사용한다. 그리고, 상기 제1 형광층(1221) 위에 적층되는 제2 형광층(1222)은 수지에 녹색광(G) 또는 황색광(Y)을 방출하는 형광체가 혼합되어 이루어진다.
이와 같은 구성을 통해 상기 발광다이오드 칩에서 방출된 청색광(B)은 제1 형광층 내에 함유된 형광체를 여기시켜 적색광(R)을 방출시키고, 제2 형광층 내에 함유된 형광체를 여기시켜 녹색광(G) 또는 황색광(Y)을 방출시킨다. 이와 같이 다층 형광층으로부터 방출되는 적색광(R)과 녹색광(G)(또는 황색광(Y))와 발광다이오드 칩에서 발생되는 청색광(B)이 조합되어 백색광(W)이 형성되는 것이다.
여기서, 도27에 개시된 발광소자 패키지의 백색 발광원리에 대해 더욱 상세하게 설명한다.
도27은 도26에 도시된 발광소자 패키지를 개략적으로 나타낸 개념도이다.
도 27을 참조하면, 청색 광원으로부터 청색광이 방출된다. 상기 청색 광원은 420 내지 480nm의 피크 방출 파장을 가진다. 특히 상기 청색 광원으로는, 420 내지 480nm의 피크 방출 파장을 갖는 청색 LED를 사용할 수 있다. 녹색 및 적색 형광체는 청색 광원으로부터 방출된 청색광에 의해 여기되어 각각 녹색 및 적색의 가시광을 방출한다. 방출된 녹색 및 적색의 가시광선은 상기 형광체를 투과한 청색광(상기 청색 광원의 방출광)과 혼색되어 백색광을 출력하게 된다.
녹색 형광체는 500 내지 560nm의 피크 방출 파장(peak emission wavelength)을 가지며, 적색 형광체는 청색광에 의해 여기되어 600㎚ ~ 700㎚ 범위의 발광피크를 가진 광을 방출하는 형광물질를 사용한다. 바람직하게는, 상기 형광체들은 청색 광원의 특정 방출 파장에서 높은 광자 효율을 갖는다. 또한, 바람직하게는, 각 형광체들은 다른 형광체에 의해 방출된 가시광에 대해 상당한 투광성을 갖는다. 적색 형광체는 청색 광원에 의해 방출되는 청색광에 의해 여기될 뿐만 아니라 녹색 형광체의 방출광(녹색광)에 의해서도 여기되어 적색광을 방출한다. 바람직하게는, 청색광 및 녹색광에 의해 충분히 효율적으로 여기될 수 있도록 상기 적색 형광체는 420 내지 500nm의 범위에서 피크 여기 파장(peak excitation wavelength)을 갖는다. 또한, 적색 형광체는 청색 광원뿐만 아니라 녹색 형광체에 의해서도 여기되므로(즉, 적색 형광체는 2중 여기됨), 적색 형광체의 양자 수율이 향상된다. 이러한 적색 형광체의 양자 수율 향상에 의해 전체적인 발광 효율, 휘도 및 연색 지수도 개선된다. 더욱이, 종래에 쓸데없이 버려지는 녹색광(예컨대, 출사면의 후방으로 빠져 나 가는 녹색 방출광)이 적색 형광체를 여기시키는 데에 사용된다면, 전체적인 발광 효율은 더욱더 커지게 된다. 이러한 양자 수율의 증가에 의하여, 백색 발광 장치의 전체 휘도 및 연색 지수가 향상될 수 있다.
도28은 파장변환원리를 더욱 상세하게 설명하기 위한 모식도이다.
도28을 참조하면, 청색 LED와 같은 청색 광원(1301)에 의해 청색광(1302)이 방출되어 형광체들(1330), 즉 제2 형광체(1331)와 제1 형광체(1332)에 입사된다. 이 형광체들(1330)은 서로 분리된 층 구조를 형성하는 것이 바람직하다. 이는, 형광체들의 혼합물을 이용하는 것보다 각각 분리된 층구조의 형광체를 이용하는 것이, 출사면 후방으로 방출되는 방출광을 효율적으로 이용하기에 더 적합하기 때문이다.
청색 광원(1301)에서 방출되는 청색광(1302)은 육안으로 감지되며, 예를 들어 420 내지 480nm의 파장을 갖질 수 있다. 바람직하게는, 상기 청색 광원(1301)은 420 내지 480nm의 피크 방출 파장을 갖는 청색 LED이다. 제2 형광체(1331)는 상기 청색광(1302)을 흡수한 후, 490 내지 550nm의 피크 방출 파장을 갖는 녹색광(1304, 1305)을 방출한다. 제1 형광체(1332)는 상기 청색광(1302)과 제2 형광체(1331)의 방출광(녹색광(1305))을 흡수한 후, 600 내지 700nm의 발광 피크를 갖는 적색광(1306, 1307)을 방출한다. 특히 제1 형광체(1332)는 420 내지 500nm의 범위에서 피크 여기 파장을 가질 경우, 상기 청색광(1302)과 녹색광(1305)을 효과적으로 흡수할 수 있다(즉, 상기 청색광(1302)과 녹색광(1305)에 의해 효과적으로 여기될 수 있음). 적색광(1306)은 제2 형광체(1331)의 방출광(1305)의 흡수로 인해 제1 형광체(1332)에 의해 방출되는 적색광이다. 적색광(1307)은 청색 광원(1301)의 방출광(1302)의 흡수로 인해 제1 형광체(1332)에 의해 방출되는 적색광이다. 관찰자(1309)는 녹색광(1304), 청색광(1302) 및 적색광(1306, 1307)의 조합을 백색광(1308)으로 감지하게 된다.
이상 설명한 바와 같이, 제1 형광체(1332)는 청색 광원(1301) 및 제2 형광체(1331)에 의해 2중 여기되어 적색광을 방출한다. 따라서, 적색 형광체(제1 형광체(1332))의 광자 수율이 향상된다. 이에 따라, 발광 장치의 전체적인 휘도가 증가하고 연색 지수가 개선된다. 상기 제2 형광체(1331)는, 청색 광원(1301)의 방출광(1302)에 응하여 500 내지 560nm의 피크 방출 파장을 갖는 녹색광을 방출하는 어떠한 형광체도 가능하다. 청색 광원(1301)으로서, 420 내지 480nm의 피크 방출 파장을 갖는 청색 LED를 사용할 경우, 상기 제2 형광체(1331)로는, 500 내지 560의 피크 방출 파장을 가지면서 상기 청색 LED의 방출광(420 내지 480nm의 피크 방출 파장을 갖는 청색광)에 대한 높은 양자 효율(quantum efficiency)을 갖는 형광체를 사용할 수 있다.
상기 제1 형광체(1332)는, 청색 광원(1301)의 방출광(1302) 및 제2 형광체(1331)의 방출광(1305)에 응하여 600㎚ ~ 700㎚ 범위의 발광피크를 가진 광을 방출하는 형광물질을 사용한다. 바람직하게는, 상기 제1 형광체(1332)는 420 내지 480nm의 청색 LED광 뿐만 아니라 500 내지 560nm의 제2 형광체(31)의 방출광도 함께 흡수하여 600 내지 700nm의 발광피크를 갖는 적색광을 방출할 수 있다. 이들 형 광체는 청색광(2)과 녹색광(5)에 의해 2중 여기될 수 있다. 이에 따라, 적색 형광체(제1 형광체(32))의 양자 수율이 높아지고 전체적인 발광 효율, 휘도 및 연색 지수가 개선된다.
도29는 본 발명에 따른 발광소자 패키지에 사용되는 녹색 형광체(제2 형광체)와 적색 형광체(제1 형광체) 간의 에너지 전이를 개략적으로 나타낸 모식도이다. 도34를 참조하면, 제2 형광체는 460nm 정도의 청색광에 의해 여기되어 530nm 정도의 녹색광을 방출한다. 또한, 제1 형광체는 460nm 정도의 청색광뿐만 아니라 제1 형광체의 방출광(녹색광) 일부를 흡수하여 620nm 정도의 적색광을 방출한다. 이와 같이 제1 형광체는 2중 여기에 의해 적색광을 방출한다. 즉, 제1 형광체(1332)는 청색 LED 등의 청색 광원(1301) 위에 배치되고, 제2 형광체(1331)는 제1 형광체(1332) 위에 배치된다.
이로써, 제2 형광체(1331)로부터 후방으로 방출된 빛(1305)은 제1 형광체(1332)에 의해 용이하게 흡수되어 적색광(1306)을 방출한다. 이에 따라, 제1 형광체(1332)의 추가적인 방출광(1306)은 발광 장치의 전체 휘도를 더욱 높이고 연색 지수도 더욱 향상시키게 된다. 또한, 후방으로 방출되어 버려질 빛(1305)은 제1 형광체(1332)에 의해 효과적으로 이용된다. 이러한 층 구조의 형광체 배치는, 각각의 형광체가 분산되어 있는 몰딩 수지의 층을 형성함으로써 용이하게 구현될 수 있다.
도23 내지 도26에 도시된 실시형태는 백색광을 조합하기 위한 복수의 가시광 원을 다층구조의 파장변환부를 도입한 형태로 예시하였으나, 본 발명에 따른 백색 발광장치은 이에 한정되지 않는다.
예를 들어, 청색 LED 칩 및 상술된 산질화물 형광체인 녹색 형광체와 함께 다른 파장광의 발광요소로서 형광체 또는 양자점과 같은 파장변환물질이 아니라, 다른 파장광을 방출하는 LED 칩으로서 적색 LED 칩을 추가적으로 채용할 수 있다.
도30은 본 발명에 따른 발광소자 패키지를 나타내는 단면도이다.
도30을 참조하면, 상기 발광소자 패키지(1430)는 패키지기판(1431)과 상기 패키지기판(1431)에 실장된 발광다이오드 칩(1435)을 포함한다. 상기 패키지기판(1431)은 2개의 리드프레임(1432a,1432b)이 형성된 하부 패키지기판(1431a)과 상기 캐비티가 마련된 상부 패키지 기판(1431b)으로 이루어질 수 있다. 상기 캐비티영역 내에는 발광다이오드 칩(1435)이 실장된다. 상기 발광다이오드 칩(1435)의 양전극(미도시)은 각각 상기 리드프레임(1432a,1432b)의 상단에 와이어로 연결된다.
상기 발광다이오드 칩(1435)을 둘러싸도록 저굴절률영역(1436)이 제공된다. 상기 저굴절률영역(1436)은 빈공간일 수 있으나, 비교적 낮은 굴절률을 갖는 투명수지로 충전된 영역일 수 있다. 저굴절률영역(1436)이 빈공간일 경우에는 대기와 유사한 굴절률(n=1)을 갖는다. 또한, 투명수지로 저굴절률영역(1436)을 형성할 경우에는 통상의 에폭시, 실리콘 또는 그 혼합수지를 사용할 수 있다. 이 경우에, 저굴절률영역(1436)의 굴절률은 대략 1.7정도일 수 있다.
상기 저굴절률영역(1436) 상에는 고굴절률층(1437)이 형성된다. 상기 고굴절 률층(1437)은 적어도 상기 저굴절률영역(1436)보다 높은 굴절률을 가지며, 상면에는 요철패턴(1437a)이 형성된다. 또한, 상기 고굴절률층(1437) 상에는 상기 발광다이오드(1435)로부터 방출되는 광의 파장을 변환시키기 위한 형광체(1439)가 함유된 파장변환층(1438)이 형성된다. 상기 파장변환층(1438)은 형광체가 함유된 수지층으로, 적어도 상기 고굴절률층(1437)의 굴절률보다 낮은 굴절률을 갖는다.
상기 파장변환층(1438)은 본 발명에 따른 산질화물 형광체를 채용될 수 있으며, 특히, 제1 산질화물 형광체는 녹색 형광체로 유익하게 사용될 수 있다.
본 발명에서 채용된 고굴절률층(1437)은 자체가 높은 굴절률을 갖는 수지로 형성되거나, 높은 굴절률 입자가 함유된 통상의 투명수지층으로 구현될 수도 있다. 이 경우에, 상기 고굴절률 입자는 GaP, Si, TiO2, SrTiO3, SiC, 큐빅 또는 비정질 카본, 카본나노튜브, AlGaInP, AlGaAs, SiN, SiON, ITO, SiGe, AlN 및 GaN로 구성된 그룹으로부터 선택될 수 있다.
상기 고굴절률층(1437)은 형광체 입자(1439)에서 산란된 광자가 상기 저굴절률영역(1436)과의 계면에서 전반사될 수 있도록 높은 굴절률을 갖는다. 상기 고굴절률층(1437)은 1.8이상의 굴절률을 갖도록 형성하는 것이 바람직하지만, 저굴절률영역(1436)을 특정 굴절률을 갖는 수지로 형성할 경우에는, 상기 특정 수지와의 충분한 굴절률 차이를 갖도록 더욱 높은 굴절률을 갖는 물질로 고굴절률층(1437)을 형성할 수도 있다.
상기 파장변환층(1438)과의 계면에서 비교적 높은 광추출임계각을 갖더라도 상기 고굴절률층(1437) 상에 형성된 요철패턴(1437a)에 의해 파장변환층(1438)으로의 광추출이 보다 용이하게 실현한다. 바람직하게 상기 요철(1437a)의 형성주기는 약 0.001∼500㎛범위일 수 있다. 또한, 고굴절률층(1437)과 파장변환층(1438)의 굴절률 차이가 지나치게 클 경우에, 요철(1437a)에 의해서도 충분한 광추출을 기대하기 어려우므로, 상기 고굴절률층(1437)의 굴절률은 10이하인 것이 바람직하다.
도31은 도30에 도시된 발광소자 패키지에서 광추출메카니즘을 설명하기 위한 개략도이다. 도30과 함께 도31을 참조하면, 발광다이오드 칩(1435)으로부터 방출되는 광(①)은 저굴절률영역(1436)과 고굴절률층(1437)를 지나 파장변환층(1438)으로 진행된다. 통상적으로, 저굴절률영역(1436)은 발광다이오드 칩(1435)을 구성하는 질화물보다 낮은 굴절률을 갖지만, LED 표면에 요철패턴(미도시)이 형성되므로, LED(1435)로부터 발생된 광은 저굴절률영역(1436)으로 효과적으로 추출될 수 있다. 또한, 저굴절률영역(1436)에서 고굴절률층(1437)으로 향하는 광은 높은 굴절률 물질로 진행되므로, 효과적으로 추출될 수 있다. 파장변환층(38)은 고굴절률층보다 낮은 굴절률이 가지므로, 제한된 광추출임계각을 갖지만, 고굴절률층의 상면에 형성된 요철에 의해 효과적으로 추출될 수 있다.
이어, LED의 방출광(①)은 형광체 입자(1439)에서 여기되고, 그 여기된 일부 광(②)은 원하는 방향, 즉 패키지 상부를 향해 추출될 수 있다. 반면에, 다른 일부의 여기광(③)은 패키지 내부로 향하여 파장변환층(1438)에서 고굴절률층(1437)으로 진행될 수 있다. 상기 파장변환층(1438)은 고굴절률층(1437)보다 낮은 굴절률을 가지므로, 패키지 내부로 향하는 광(③)은 거의 소실되지 않고 고굴절률층(1437)으로 진입될 수 있다. 고굴절률층에 진입된 광(③)은 저굴절영역(1436)과의 계면에서는 높은 굴절률차이에 의해 대부분 전반사된다. 전반사된 광(④)은 고굴절률층(1437)의 상부로 진행되며, 고굴절률층(1437)과 파장변환층(1438)의 계면을 통과하여 원하는 방향으로 추출될 수 있다. 앞서 설명한 바와 같이, 고굴절률층(1437)과 파장변환층(1438)은 굴절률차이에 의해 그 계면에서 제한된 광추출임계각을 갖지만, 고굴절률층(1437)의 상면에 형성된 요철(1437a)에 의해 용이하게 추출될 수 있다.
이와 같이, 형광체 입자(1439)에 의해 산란되어 패키지 내부로 진행되는 광(③)은 상면에 요철(1437a)이 형성된 고굴절률층(1437)과 저굴절률영역(1436)에 의해 원하는 상부 방향으로 효과적으로 전반사시킬 수 있다.
본 발명은 형광체 입자를 함유한 파장변환층을 상부에 배치하고, 그 하부에 요철면을 갖는 고굴절률층과 저굴절률영역으로 이루어진 광학적 구조를 도입함으로써 형광체 입자에서 전반위로 산란된 광의 진행방향을 광추출효율이 개선되도록 상부 방향으로 재조정할 수 있다.
한편, 도32 내지 도33는 본 발명에 따른 백색 발광장치를 나타내는 단면도이 다. 도32은 도30에 도시된 발광소자 패키지에서, 파장변환층을 개선한 구조이며, 도33은 패키지기판의 구조를 개선한 구조이며, 도34는 고굴절률층을 개선한 구조로 구체적으로 요철패턴을 형성하는 방식을 통상의 몰딩공정이나 에칭공정을 이용하지 않고, 고굴절률입자 자체의 형상만을 이용하여 형성한 구조이다.
우선, 도32에 도시된 발광소자 패키지(1540)는 도30에 도시된 실시형태와 유사하게 패키지기판(1541)과 상기 패키지기판(1541)에 실장된 발광다이오드(1545)를 포함한다. 상기 패키지기판(1541)은 2개의 리드프레임(1542a,1542b)이 형성된 하부 패키지기판(1541a)과 상기 캐비티가 마련된 상부 패키지 기판(1541b)로 이루어질 수 있다. 상기 발광다이오드 칩(1545)의 양전극(미도시)은 각각 상기 리드프레임(1542a,1542b)의 상단에 와이어로 연결된다.
저굴절률영역(1546)은 상기 발광다이오드(1545)를 둘러싸도록 제공된다. 상기 저굴절률영역(1546)은 빈공간 또는 에폭시 또는 실리콘 수지와 같은 비교적 낮은 굴절률을 갖는 투명수지로 충전된 영역일 수 있다. 또한, 저굴절률영역(1546)을 빈공간영역으로 형성하되, 그 빈공간영역에 낮은 굴절률을 갖는 수지로 형성된 렌즈(미도시)를 발광다이오드 칩(1545)을 둘러싸도록 배치하는 방식으로 저굴절률영역(1546)을 제공할 수도 있다.
상기 저굴절률영역(1546) 상에는 고굴절률층(1547)이 형성된다. 상기 고굴절률층(1547)은 적어도 상기 저굴절률영역(1546)보다 높은 굴절률을 가지며, 상면에는 요철패턴(1547a)이 형성된다. 상기 고굴절률층(1547) 상에 형성된 요철패 턴(1547a)은 비교적 낮은 파장변환층(1548)으로의 광추출을 보다 용이하게 할 수 있다. 바람직하게 상기 요철(1547a)의 형성주기는 약 0.001∼500㎛범위일 수 있다.
또한, 본 실시형태와 같이, 고굴절률층(1547)의 하면, 즉 고굴절률층(1547)과 저굴절률영역(1546) 계면에 무반사층(1547b)이 추가로 형성될 수 있다. 상기 무반사층(1547b)은 발광다이오드칩(1545)의 광파장대역에서 무반사성을 갖는 물질로 이루어지며, 발광다이오드칩(1545)으로부터 생성된 광이 고굴절률층(1547)으로 보다 효과적으로 진행되는 것을 도모할 수 있다.
상기 고굴절률층(1547) 상에는 상기 발광다이오드칩(1545)으로부터 방출되는 광의 파장을 변환시키기 위한 형광체(1549)가 함유된 파장변환층(1548)이 형성된다. 상기 파장변환층(1548)은 적어도 상기 고굴절률층(1547)의 굴절률보다 낮은 굴절률을 갖는다.
본 실시형태에서 파장변환층(1548)은 통상적인 투명수지영역을 형성한 후에 그 상면에 형광체(1549)를 도포하는 방식으로 형성된 예이다. 이러한 구조에서도 형광체 입자(1549)로 이루어진 층이 고굴절률층(1547) 및 저굴절률영역(1546)으로 이루어진 광학구조 상에 위치하므로, 본 발명에 따른 광추출효율의 개선효과를 충분히 기대할 수 있다.
또한, 상기 고굴절률층(1547)은 자체가 높은 굴절률을 갖는 수지로 형성되거나, 높은 굴절률 입자가 함유된 통상의 투명수지로 형성될 수도 있다. 상기 고굴절률층(1547)은 형광체 입자(1549)에서 산란된 광자가 상기 저굴절률영역(1546)과의 계면에서 전반사될 수 있도록 적어도 1.8이상의 굴절률을 가지며, 파장변환 층(1548)으로의 광추출이 용이하도록 10이하의 굴절률을 갖는 것이 바람직하다.
본 실시형태에 따른 패키지의 제조공정은 이에 한정되지는 않으나, 저굴절률영역(1546)을 에폭시 또는 실리콘 수지와 같은 투명수지로 형성할 경우에는 고굴절률층(1547)과 파장변환층(1548)을 연속적인 도포 및 경화공정을 통해 형성될 수 있다. 다만, 상기 고굴절률층(1547) 상에 형성된 요철(1547a)은, 경화공정 후에 기계적 또는 화학적 식각을 적용하거나, 경화 전에 몰딩프레임을 이용하여 형성될 수 있다.
다음으로, 도33에 도시된 발광소자 패키지(1650)는 패키지기판(1651)과 상기 패키지기판(1651) 상에 실장된 발광다이오드(1655)를 포함한다. 상기 패키지기판(1651)은 이에 한정되지는 않으나, 그 상면에 형성된 2개의 리드프레임(1652a,1652b)과, 그 하면에 형성된 2개의 접속패드(1654a,1654b)와, 각각을 연결하는 도전성 비아홀(1653a,1653b)을 포함한다.
상기 발광소자 패키지(1650)는 다른 실시형태와 유사하게, 상기 발광다이오드(1655)를 둘러싸는 반구형 저굴절률영역(1656)과, 상기 저굴절률영역(1656) 상에 형성된 고굴절률층(1657)과, 상기 고굴절률층(1657) 상에 형성된 파장변환층(1658)을 포함한다. 상기 고굴절률층(1657)은 적어도 상기 저굴절률영역(1656)보다 높은 굴절률을 가지며, 상면에는 요철패턴(1657a)이 형성된다. 상기 파장변환층(1658)은 적어도 상기 고굴절률층(1657)의 굴절률보다 낮은 굴절률을 갖는다.
본 실시형태에서, 반구형인 저굴절영역(1656)을 투명수지층으로 형성할 경우 에는 트랜스퍼 몰딩공정과 같은 종래의 몰딩공정을 이용하여 용이하게 형성될 수 있다. 이 경우에, 다른 층(1657,1658)의 공정도 유사한 몰딩공정을 통해 형성될 수 있다. 또한, 상기 저굴절영역(1656)은 빈공간으로 제공할 경우에는, 고굴절률층(1657) 및/또는 파장변환층(1658)을 별도의 몰딩공정을 통해 원하는 형상으로 제조한 후에, 패키지기판(1651) 상에 부착시키는 방식으로 구현될 수도 있다. 고굴절률층(1657) 및 파장변환층(1658)은 반구형이 예시되어 있으나, 단면이 사각형 또는 삼각형 등 다양한 형상으로 제조될 수 있다.
이러한 형상의 다양성은 도30의 구조에서도 유사하게 적용될 수 있다. 예를 들어, 도30의 실시형태에서는 고굴절률층(1447)이 평탄한 형상을 갖는 것으로 도시되어 있으나, 도33과 유사하게 반구형 또는 다른 형상을 갖도록 변형될 수 있다.
한편, 도34를 참조하면, 상기 발광소자 패키지(1760)는 도30에 도시된 실시형태와 유사하게, 패키지기판(1761)과 상기 패키지기판(1761)에 실장된 발광다이오드칩(1765)을 포함하며, 상기 패키지기판(1761)은 2개의 리드프레임(1762a,1762b)이 형성된 하부 패키지기판(1761a)과 상기 캐비티가 마련된 상부 패키지 기판(1761b)로 이루어질 수 있다.
상기 캐비티영역 내에는 발광다이오드 칩(1765)이 실장된다. 상기 발광다이오드칩(1765)의 양전극(미도시)은 각각 상기 리드프레임(1762a,1762b)의 상단에 와이어로 연결된다. 상기 발광다이오드(1765)를 둘러싸도록 저굴절률영역(1766)이 제공된다.
상기 저굴절률영역(1766)은 빈공간일 수 있거나, 비교적 낮은 굴절률을 갖는 투명수지로 충전된 영역일 수 있다. 저굴절률영역(1766)이 빈공간일 경우에는 대기와 유사한 굴절률(n=1)을 갖는다. 또한, 투명수지로 저굴절률영역(1766)을 형성할 경우에는 통상의 에폭시, 실리콘 또는 그 혼합수지를 사용할 수 있다. 이 경우에, 저굴절률영역(1766)의 굴절률은 대략 1.7정도일 수 있다.
상기 저굴절률영역(1766) 상에는 고굴절률층(1767)이 형성된다. 상기 고굴절률층(1767)은 적어도 상기 저굴절률영역(1766)보다 높은 굴절률을 갖는 고굴절률 입자로 형성되며, 그 상면의 요철패턴(1767a)은 상기 입자의 형상에 의해 형성된다. 따라서, 본 실시형태에서 요철패턴(1767a)의 형상이나 주기는 상기 고굴절률 입자의 입경이나 형상에 의해 결정된다. 상기 고굴절률 입자는 GaP, Si, TiO2, SrTiO3, SiC, 큐빅 또는 비정질 카본, 카본나노튜브, AlGaInP, AlGaAs, SiN, SiON, ITO, SiGe, AlN 및 GaN로 구성된 그룹으로부터 선택될 수 있다.
본 실시형태에 채용된 고굴절률층(1767)은 별도의 공정에서 적어도 상부표면이 상기한 고굴절률입자로 배열된 막구조로 형성하여 상기 캐비티영역에 배치하는 방식으로 형성할 수 있다. 이와 달리, 저굴절률영역(1766)을 특정 수지로 형성하는 경우에는 그 수지 상부면에 상기한 고굴절률입자는 조밀하게 도포하여 형성할 수도 있다.
상기 고굴절률층(1767) 상에는 상기 발광다이오드(1765)로부터 방출되는 광의 파장을 변환시키기 위한 형광체(1769)가 함유된 파장변환층(1768)이 형성된다. 상기 파장변환층(1768)은 적어도 상기 고굴절률층(1767)의 굴절률보다 낮은 굴절률을 갖는다.
상기 고굴절률층(1767) 상에 형성된 요철패턴(1767a)은 비교적 낮은 굴절률을 갖는 파장변환층으로 광추출을 보다 용이하게 한다. 또한, 고굴절률층(1767)과 파장변환층(1768)의 굴절률 차이가 지나치게 클 경우에, 요철(1767a)에 의해서도 충분한 광추출을 기대하기 어려우므로, 상기 고굴절률층(1767)의 굴절률은 10이하인 것이 바람직하다.
도35는 본 발명에 따른 발광소자 패키지를 개략적으로 나타내는 단면도이고, 도36은 도35에 도시한 발광소자 패키지에서 파장변환부 및 제어부를 개략적으로 나타내는 사시도이다.
우선, 도35 및 도36을 참조하면, 본 발명에 따른 발광소자 패키지(1801)는 본체(1810), 발광소자(1820), 파장변환부(1830), 제어부(1840)를 포함하여 구성된다. 상기 본체(1810)는 플라스틱이나 수지 또는 세라믹 재질로 형성될 수 있으며, 전면이 개방된 캐비티(1811)를 구비하여 추후 설명하는 발광소자(1820)를 그 내부에 수용하여 구비한다. 상기 캐비티(1811)는 발광소자(1820)로부터 발생되는 광의 확산을 위해 내주면이 전방을 향해 경사진 구조를 형성하며, 내측보다 전면 외측으로 갈수록 내주면의 크기가 확장되도록 구성된다.
따라서, 도면과 같이 상기 캐비티(1811)가 원통형 구조로 형성되어 원형 또는 타원형의 수평단면을 가지는 경우, 상기 캐비티(1811)는 내측의 내경보다 외측 의 내경이 더 넓은 원추 형상을 가진다. 하지만, 이에 한정하지 않고, 상기 캐비티(1811)가 사각형의 수평단면을 가지도록 하는 것도 가능하며, 이 경우 상기 캐비티(1811)는 내측의 단면보다 외측의 단면이 더 넓은 피라미드 형상의 구조로 형성될 수 있다.
상기 본체(1810)는 상기 캐비티(1811)가 개방되는 전면(상단)에 추후 설명하는 파장변환부(1830)를 장착하기 위한 단차구조를 가지는 장착부(1812)를 구비한다. 상기 장착부(1812)는 상기 본체(1810)의 전면인 상단으로부터 아래쪽으로 단차를 이루며 형성되어 상기 파장변환부(1830)가 안착될 수 있도록 마련된다. 상기 장착부(1812)는 상기 캐비티(1811)의 외측 둘레를 따라 형성되는 것이 바람직하다.
그리고, 상기 본체(1810)는 일단이 상기 캐비티(1811) 저면으로 노출되어 상기 본체(1810)상에 실장되는 발광소자(1820)와 전기적으로 연결되고, 타단이 상기 본체의 외부로 노출되는 한 쌍의 메인 단자(1814, 1815)를 구비한다. 상기 발광소자(1820)는 외부에서 인가되는 전원에 의해 소정 파장의 광을 방사하는 반도체소자의 일종이며, 본 실시형태에 따른 발광소자 패키지는 색온도를 가변하는데 있어 복수개의 발광소자가 사용되는 종래와 달리 단일의 발광소자가 구비되는데 구조적 특징이 있다. 상기 발광소자(1820)는 상기 캐비티(1811) 내에 수용되어 상기 본체(1810)의 내부에 구비되는 상기 한 쌍의 메인 단자(1814, 1815)와 전기적으로 연결되도록 상기 본체(1810)상에 실장된다.
한편, 상기 파장변환부(1830)는 상기 캐비티(1811)를 덮도록 상기 본체(1810)의 장착부(1812)에 장착되어 상기 발광소자(1820)에서 방출되는 광의 파장 을 변환시킨다. 상기 파장변환부(1830)는 상기 발광소자(1820)에서 방출되는 광의 경로 상에 배치되는 유체 수용부(1831)와, 상기 유체 수용부(1831) 내에 유입된 투명 유체(1832)와, 상기 투명 유체(1832) 내에 분산된 형광물질(1833)을 구비한다. 그리고, 상기 파장변환부(1830)는 형광물질(1833)을 함유하여 상기 유체 수용부(1831) 내에 유입된 투명 유체(1832)의 용량을 변화시킴으로써 상기 유체 수용부(1831)의 용적을 조절하여 색온도를 제어한다.
상기 유체 수용부(1831)는 수축 및 팽창 등의 변형과 이에 따른 복원력이 우수한 탄성을 가지는 실리콘이나 러버 재질로 형성될 수 있으며, 색온도에 대한 영향을 미치지 않도록 광 투과성을 가지는 것이 바람직하다. 또한, 상기 유체 수용부(1831)는 내부로 유입되는 상기 투명 유체(1832)를 수용하도록 소정 크기의 용적을 가지는 중공형 튜브구조로 형성될 수 있다. 도면에서는 상기 유체 수용부(1831)가 원반 형상의 구조를 가지는 것으로 도시하고 있으나 이에 한정하지 않고 상기 캐비티(1811)의 외측 단면 형상에 따라서 사각형 등의 다각형 구조를 가지는 것도 가능하다. 상기 탄성 튜브(1831) 내에 유입되는 상기 투명 유체(1832)는 유동성을 가지도록 물, 오일 또는 수지 등이 포함될 수 있으며, 균일하게 분산된 형광물질(1833)을 내부에 함유한다.
한편, 상기 제어부(1840)는 상기 파장변환부(1830)와 연결되며, 상기 투명 유체의 용량을 변화시켜 상기 유체 수용부(1831)의 용적을 조절함으로써 상기 광의 색온도를 제어한다. 상기 제어부(1840)는 상기 유체 수용부(1831)와 연통하여 상기 투명 유체(1832)를 수용하는 리저버(1841)와, 상기 리저버(1841)와 연결되어 상기 유체 수용부(1831) 내의 상기 투명 유체(1832)의 용량을 조절하는 액추에이터(1842)를 구비한다. 상기 리저버(1841)는 상기 유체 수용부(1831)와 연결되어 상기 유체 수용부(1831) 내에 채워지는 상기 투명 유체(1832)를 일부 수용한다. 따라서, 유동성을 가지는 상기 투명 유체(1832)는 상기 유체 수용부(1831) 내에 채워진 상태로 고정되는 것이 아니라 상기 유체 수용부(1831)와 상기 리저버(1841) 사이를 이동할 수 있으며, 이를 통해 상기 유체 수용부(1831) 내의 상기 투명 유체(1832)의 용량을 가변시킬 수 있는 것이다. 상기 리저버(1841)는 상기 유체 수용부(1831)와 동일한 재질로 이루어지며, 상기 유체 수용부(1831)와 일체로 형성되는 것이 바람직하다.
상기 액추에이터(1842)는 상기 리저버(1841)와 연결되어 상기 유체 수용부(1831) 내에 채워지는 상기 투명 유체(1832)의 용량을 조절한다. 즉, 상기 액추에이터(1842)의 팽창 또는 수축 작용을 통해 상기 액추에이터(1842)와 연결되는 상기 리저버(1841) 내의 투명 유체(1832)를 상기 유체 수용부(1831)측으로 이동시키거나 상기 유체 수용부(1831)로부터 상기 리저버(1841)측으로 이동시킴으로써 상기 유체 수용부(1831)내의 투명 유체(1832)의 용량을 조절하는 것이다. 상기 액추에이터(1842)로는 피에조 액추에이터(PZT), MEMS 소자 등이 포함될 수 있으나 이에 한정하는 것은 아니다. 상기 액추에이터(1842)는 외부로부터 인가되는 전원을 통해 구동하는데, 이를 위해 일단이 상기 액추에이터(1842)와 전기적으로 연결되고 타단이 상기 본체(10)의 외부로 노출되는 한 쌍의 보조 단자(1844, 1845)를 구비한다.
그리고, 상기 액추에이터(1842)의 작동을 제어하는 전자장치(미도시)를 더 구비할 수 있다. 상기 액추에이터(1842)와 상기 보조 단자(1844,1845)와의 구체적인 연결구조는 생략하며, 도면에서는 상기 보조 단자(1844,1845)가 상기 본체(1810)의 하단으로 노출되는 것으로 도시하고 있으나 이에 한정하지 않고 상기 본체(1810)의 측면으로 노출되는 것도 가능하다. 상기 리저버(1841)와 상기 액추에이터(1842)는 상기 캐비티(1811)와 인접하여 상기 본체(1810)의 내부에 매립되어 구비될 수 있다. 이때, 상기 본체(1810)에는 상기 리저버(1841)와 상기 액추에이터(1842)를 내부에 수용할 수 있는 수용홈(미도시)을 함몰형성하여 구비하는 것이 바람직하다. 따라서 상기 리저버(1841)와 상기 액추에이터(1842)가 상기 수용홈에 삽입되어 장착될 수 있도록 한다.
그리고, 본 실시형태에 따른 발광소자 패키지에서는 상기 리저버(1841)와 상기 액추에이터(1842)가 상기 본체(1810)의 단축방향을 따라서 광축과 나란히 배치되는 것으로 도시하고 있다. 그러나 상기 본체(1810)의 장축방향을 따라서 광축과 수직을 이루도록 배치되는 것도 가능하며, 이 경우 상기 본체(1810)의 두께를 줄일 수 있을 뿐만 아니라 상기 리저버(1841)와 액추에이터(1842)를 보다 효율적으로 장착할 수 있다.
상기 유체 수용부(1831)는 상기 장착부(1812)의 단차면상에 안착되어 상기 캐비티(1811)를 덮도록 장착되는데, 이때 상기 본체(1810)의 상기 캐비티(1811)에는 투명 수지가 채워져 상기 캐비티(1811) 내에 배치되는 상기 발광소자(1820)를 밀봉하도록 할 수 있다. 또한, 상기 캐비티(1811)는 공기로 채워져 상기 캐비 티(1811) 내에 배치되는 상기 발광소자(20)를 에워싸도록 하는 것도 가능하며, 이 경우 상기 발광소자는 상기 캐비티(1811)를 덮도록 장착되는 상기 유체 수용부(1831)에 의해 밀봉되게 된다.
한편, 도37 및 도38을 참조하여 파장변환부(1830)와 제어부(1840)의 작동을 통한 색온도를 가변시키는 방법에 대해 설명한다.
먼저, 도37에 도시된 바와 같이, 한 쌍의 보조 단자(1844,1845)를 통해 외부전원이 인가되어 상기 액추에이터(1842)가 팽창 작용을 하게 되면, 상기 액추에이터(1842)와 연결되는 상기 리저버(1841)는 상기 액추에이터(1842)에 의해 수축되어 상기 리저버(1841)의 용적은 작아지게 된다. 이때, 상기 리저버(1841) 내에 저장되어 있던 투명 유체(1832)는 상기 유체 수용부(1831)로 이동하여 상기 유체 수용부(1831)를 채우는 상기 투명 유체(1832)의 유량은 증가하게 된다.
따라서, 상기 유체 수용부(1831)는 유입된 투명 유체(1832)에 의해 팽창하여 용적이 증가하게 되며, 광축상에 배치되는 형광 유체층은 그만큼 두께가 증가하게 된다. 이 결과 상기 발광소자(1820)에서 발생되는 광은 두께가 두꺼워진 형광 유체층을 통과하게 되어 방출되는 광의 색온도는 낮아지게 된다.
다음으로, 도38에 도시된 바와 같이 상기 액추에이터(1842)가 반대로 수축 작용을 하게 되면, 상기 액추에이터(1842)와 연결되는 상기 리저버(1841)는 상기 액추에이터(1842)에 의해 팽창되어 상기 리저버(1841)의 용적은 증가하게 된다. 이 때, 상기 유체 수용부(1831) 내에 저장되어 있던 상기 투명 유체(1832)는 상기 리저버(1841)로 이동하여 상기 유체 수용부(1831)를 채우는 상기 투명 유체(1832)의 유량은 감소하게 된다. 따라서, 상기 유체 수용부(1831)는 상기 리저버(1841)로 이동된 투명 유체(1832)에 의해 수축하여 용적이 감소하게 되며, 광축상에 배치되는 형광 유체층은 그만큼 두께가 감소하게 된다. 이 결과 상기 발광소자(1820)에서 발생되는 광은 두께가 얇아진 형광 유체층을 통과하게 되어 방출되는 광의 색온도는 높아지게 된다.
도면에서는 상기 유체 수용부(1831)의 전면(상면)이 평평한 상태로 팽창 및 수축하는 것으로 도시하고 있으나 이에 한정하지 않고 볼록한 돔 형상으로 중심부가 돌출된 상태로 변화할 수도 있다. 이러한 색온도의 가변은 상기 액추에이터(1842)를 제어하는 미도시된 전자장치를 통해 더욱 정밀하게 조절하는 것이 가능하다. 따라서, 기존과 달리 단일의 발광소자만으로도 효과적으로 용이하게 색온도를 조절할 수 있으며, 색 혼합을 위한 거리 확보가 필요 없어 광원의 소형화가 가능하다.
이하에서는 다양한 실시형태를 통해 본 발명에 따른 발광소자 패키지(백색 발광장치)를 구비하는 면광원장치에 대해 설명한다. 본 발명에 따른 면광원장치는 상술된 발광소자 패키지를 구비한다. 그리고, 본 발명에 따른 반도체 발광소자를 실장하는 발광소자 패키지는 백라이트장치와 같은 면광원장치 이외에 조명장치, 차량용 헤드라이트 등과 같은 다양한 형태의 조명광원으로도 응용될 수 있다.
도39은 본 실시형태에 따른 면광원장치에서 LED 광원모듈들의 배열 구조를 개략적으로 나타낸 평면도이며, 도40는 도39에서 LED 광원모듈들의 회전 배치 방식을 나타낸 것이다.
우선, 도39를 참조하면, 본 실시형태에 따른 면광원장치(1900)는 LED 광모듈(1901a ~ 1901d)을 구비한다. 상기 제1 내지 제4 LED 광원모듈(1901a ~ 1901d)은 각각 복수의 발광소자(1903) 및 커넥터(1904a ~ 1904d)를 갖추어 구성된다. 상기 복수의 발광소자(1903)는 행과 열로 2차원 배열됨으로써 발광 영역을 이룰 수 있으며, 특히, 백색광을 발광할 수 있는 LED를 사용하는 경우, 상기 면광원장치(1900)는 백라이트 유닛, 조명 장치 등에 사용될 수 있다. 상기 제1 내지 제4 광원모듈(1901a ~ 1901d)은 정사각형 구조로서 서로 동일한 형상을 가질 수 있으며, 각각은 절연성 기판 상에 복수의 발광소자(1903) 및 커넥터(1904a ~ 1904d)가 배치된 구조에 해당한다.
상기 제1 LED 광원모듈(1901a)에 포함된 커넥터(1904a)는 상기 제1 LED 광원모듈(1901a)의 일 꼭지점에 인접하여 배치된다. 이 경우, 상기 제1 LED 광원모듈(1901a)의 상기 꼭지점은 도44에서 제1 내지 제4 광원 모듈이 이루는 정사각형, 즉, 전체 면 광원 장치(1900)의 중심점(이하, 중심점이라 함)에 해당한다.
또한, '인접'이라 함은 상기 커넥터(1904a)가 상기 제1 LED 광원모듈(1901a)을 이루는 4개의 꼭지점 중에서 특정 꼭지점에 가장 가깝게 배치되었음을 나타내는 것으로 이해할 수 있으며, 후술할 바와 같이, 상기 특정 꼭지점은 발광모듈의 회전 중심점이 된다.
제2 내지 제4 LED 광원모듈(1901b ~ 1901d)은 상기 제1 LED 광원모듈(1901a)이 회전 중심점을 축으로 하여 90°의 각도로 순차적으로 회전된 구조이다. 즉, 상기 제2 LED 광원모듈(1901b)에 포함된 복수의 발광소자(1903) 및 커넥터(1904b)는 상기 제1 LED 광원모듈(1901a)에 포함된 복수의 발광소자(1903) 및 커넥터(1904a)가 시계 방향으로 90° 회전된 배열 구조를 갖는다.
마찬가지로, 상기 제3 LED 광원모듈(1901c)에 포함된 복수의 발광소자(1903) 및 커넥터(1904c)는 상기 제2 LED 광원모듈(301b)에 포함된 복수의 발광소자(1903) 및 커넥터(1904b)가 시계 방향으로 90° 회전된 배열 구조를 가지며, 상기 제4 LED 광원모듈(1901d)도 같은 방식으로 배열될 수 있다. 이러한 회전 배치 방식은 도 55(a)에 도시된 것과 같다. 다만, 회전 방향은 시계 방향이 아닌 도 55(b)와 같이 반시계 방향일 수도 있다.
상기 제1 내지 제4 LED 광원모듈(1901a ~ 1901d) 각각에 포함된 커넥터들(1904a ~ 1904d)은 도44에 도시된 바와 같이, 상기 중심점에 인접하여 배치되며 서로 간의 거리도 매우 가깝게 된다. 이에 따라, 전원 연결을 위한 배선 구조가 간결해질 수 있다. 또한, 상기 제1 내지 제4 LED 광원 모듈(1901a ~ 1901d)이 순차적 90° 회전 배치 구조를 가짐에 따라, 본 실시 형태에 따른 면광원 장치(1900)는 한 종류의 광원모듈만 가지고도 구성될 수 있다.
회전 배치 구조를 이용하지 않을 경우, 상기 커넥터들(1904a ~ 1904d)이 중심점에 인접하게 배치되도록 하기 위해서는 상기 제1 내지 제4 LED 광원모듈 (1901a ~ 1901d)은 서로 다른 구조를 가져야 한다. 즉, 본 실시형태와 달리, 4종류의 광원 모듈이 요구된다. 이와 같이, 본 실시형태에 따른 면광원장치의 경우, 커넥터들(1904a ~ 1904d) 간의 거리가 짧아져 전기 배선 구조가 간결하게 되면서도 하나의 광원 모듈만이 요구되어 발광모듈의 규격화 및 생산성 향상에 따른 비용 절감 효과를 가져올 수 있다.
도41은 본 실시형태에 따른 면광원장치에서 LED 광원모듈들의 배열 구조를 개략적으로 나타낸 평면도이다.
도41을 참조하면, 본 실시형태에 따른 면광원장치(2000)는 이전 실시 형태와 마찬가지로, 제1 내지 제4 LED 광원모듈(2001a ~ 2001d)을 구비하며, 상기 제1 내지 제4 LED 광원모듈(2001a ~ 2001d)은 각각 복수의 발광소자(2003) 및 커넥터(2004a ~ 2004d)를 갖추어 구성된다.
본 실시형태에 따른 면광원장치의 경우, 도44에 도시된 실시 형태와 달리, 상기 커넥터(2004a ~ 2004d)가 상기 발광소자(2003)와 별개의 영역에 형성된다.
즉, 도41은 면광원장치(2000)를 커넥터(2004a ~ 2004d)가 배치된 방향에서 바라본 것으로서, 상기 커넥터(2004a ~ 2004d)는 상기 제1 내지 제4 LED 광원모듈(2001a ~ 2001d)에서 상기 발광소자(2003)의 반대 편에 형성될 수 있으며, 이에 따라, 상기 발광소자(2003)를 커넥터(2004a ~ 2004d)에 제약을 받지 않고 배치할 수 있다.
도42는 본 실시형태에 따른 면광원장치에서 LED 광원모듈들의 배열 구조를 개략적으로 나타낸 평면도이다.
도42를 참조하면, 본 실시형태에 따른 면광원장치(2100)는 제1 내지 제3 LED광원 모듈(2101a ~ 2101c)을 구비하며, 상기 제1 내지 제3 LED 광원모듈(2101a ~ 2101c)의 외부 경계 선이 이루는 형상, 즉, 발광영역은 원형을 이룬다.
도42에 도시된 실시형태와 유사하게, 상기 제1 내지 제3 LED 광원모듈(2101a ~ 2101c)은 서로 동일한 형상을 가지며, 서로 공유하는 꼭지점, 즉, 회전 중심점과 이루는 각도가 120°(즉, 360°/3)인 부채꼴 형상을 갖는다. 상기 제1 LED 광원모듈(2101a)에 포함된 복수의 발광소자(2103)는 제1 및 제2 방향으로 2차원 배열되며, 상기 제1 및 제2 방향은 120°를 이룬다.
이 경우, 상기 제1 방향은 상기 제1 LED 광원모듈(2101a)과 상기 제2 LED 광원 모듈(2101b)의 경계 선과 같은 방향이며, 상기 제2 방향은 상기 제1 LED 광원모듈(2101a)과 상기 제3 LED 광원모듈(2101c)의 경계 선과 같은 방향에 해당한다.
상기 제2 LED 광원모듈(2101b)에 포함된 복수의 발광소자(2103) 및 커넥터(2104b)는 상기 제1 광원 모듈(501a)에 포함된 복수의 발광소자(2103) 및 커넥터(2104a)가 상기 중심점을 축으로 시계 방향으로 120° 회전된 구조를 가지며, 상기 제3 광원모듈(2101c)에 포함된 복수의 발광소자(2103) 및 커넥터(2104c)는 상기 제2 광원모듈(2101b)에 포함된 복수의 발광소자(2103) 및 커넥터(2104b)가 상기 중심점을 축으로 시계 방향으로 120° 회전된 구조를 갖는다.
본 실시형태에서는 원형의 면광원장치(2100)의 3등분 된 구조를 설명하였으 나, 실시 형태에 따라, 면 광원 장치의 형상은 정삼각형, 정오각형 등과 같은 정n각형(n은 3 이상의 자연수)일 수 있으며, 이 경우, n개의 발광모듈은 1/n×360°의 회전 각도로 배열될 수 있다.
도43은 본 실시형태에 따른 면광원장치에서 발광모듈들의 배열 구조를 개략적으로 나타낸 평면도이다.
도43을 참조하면, 본 실시형태에 따른 면광원장치(2200)는 도44에서 설명한 면광원장치(1900)와 유사한 구조로서, 제1 내지 제4 광원모듈(2201a ~ 2201d)을 구비한다. 상기 제1 내지 제4 광원모듈(2201a ~ 2201d)은 각각 복수의 발광소자(2203) 및 커넥터(2204a ~ 2204d)를 갖추어 구성되며, 상기 제2 내지 제4 광원모듈(2201b ~ 2201d)은 상기 제1 광원모듈(2201a)을 90°씩 순차적으로 회전하여 얻어질 수 있다.
본 실시형태의 경우, 상기 제1 LED 광원 모듈(2201a)에 포함된 복수의 발광소자(2203)는 행과 열, 즉, x 및 y 방향으로 배열되되, x방향의 피치(x)와 y방향의 피치(y)는 서로 상이하다. 본 실시 형태에서는 y방향의 피치(y)를 일반적으로 채용될 수 있는 크기에 해당하는 x방향의 피치(x)보다 크게 하였으며, 이에 따라, 전체 사용되는 발광소자(2203)의 수를 줄일 수 있다. 구체적으로, 상기 x방향의 피치(x)는 약 26 ~ 27㎜ 정도가 되며, 상기 y방향의 피치(y)는 약 29 ~ 37㎜ 정도가 된다.
다만, 본 실시 형태에서는 y방향의 피치(y)를 x방향의 피치(x)보다 크도록 하였으나, 실시 형태에 따라서는, x방향의 피치(x)가 y방향의 피치(y)보다 더 클 수도 있다. 즉, x방향의 피치(x)와 y방향의 피치(y)가 서로 다르기만 하면 되는 것이다. 한편, 본 명세서에서 사용되는 피치는 일 방향으로 이격된 인접한 발광소자(2203)의 중심 간 거리에 해당한다.
본 실시 형태와 같이, x 및 y 방향 피치가 서로 상이한 발광소자 배열 구조의 경우, y 방향 피치가 커짐에 따라 휘도 불균일을 최소화할 수 있다. 제1 광원모듈(2201a)에서는 y방향의 피치(y)가 x방향의 피치(x)보다 크지만, 제2 광원모듈(2201b)은 이와 반대가 되며, 제3 광원모듈(2201c)은 제2 광원모듈(2201b)과 반대가 된다. 또한, 제3 광원모듈(2201c)이 시계 방향으로 90° 회전되어 형성된 제4 발광모듈(2201d)은 제2 광원모듈(2201b)과 동일한 피치 구조를 갖는다.
이와 같이, 인접한 LED 광원모듈과 반대되는 배열 구조를 가짐에 따라 x방향 및 y방향 피치가 상이함으로써 야기되는 휘도 불균일을 최소화할 수 있으며, 결국, 상기 면 광원 장치(2200)는 휘도 분포의 균일성을 유지하면서도 발광소자(2202)의 개수가 줄일 수 있다.
이 경우, 발광소자(2202)의 개수가 줄어들면서 생기는 휘도의 저하의 문제는 주입 전류를 증가시킴으로써 해결할 수 있을 것이다. 이와 같이, 제1 광원모듈(2201a)의 배치 방식과 전체 발광 영역에서 차지하는 영역이 결정된다면, 상기 제1 발광모듈(2201a)을 시계 또는 반시계 방향으로 회전하여 나머지 발광모듈들의 배치 방식을 결정할 수 있으며, 어느 방향으로 회전하더라도 휘도 균일도 및 발광소자 개수의 감소를 얻을 수 있을 것이다.
상술된 실시형태에서는 면광원장치의 전체 형상이 정사각형, 원형인 경우를 설명하였으나, 도44에 도시된 바와 같이, 직사각형 면 광원 장치에도 응용이 가능하다.
도44는 본 실시형태에 따른 면광원장치를 나타내는 평면도이다. 본 실시형태의 경우, 면광원장치(2300)는 직사각형의 형상을 가지며, 도44에 도시된 면광원장치(1900)를 옆으로 4개 이어 붙여서 만들 수 있다. 이와 같이, 본 발명에 의해 제공되는 면 광원 장치는 300*300, 600*600의 사이즈 외에도 300*1200, 600*1200 등의 사이즈에도 적용할 수 있다. 나아가, 상술한 구조를 갖는 면 광원 장치는 LCD 패널의 후면에서 광을 조사하는 백라이트 유닛 등에 채용될 수 있다.
상술한 실시형태에 따른 면광원장치는 본 발명에 따른 백색 발광장치를 채용하고 있으며, 각 발광장치(발광소자 패키지)는 상술된 산질화물 형광체를 파장변화물질로서 포함하는 파장변환부를 구비한다.
도45는 상술한 발광장치를 채용한 조명장치를 나타내는 단면도이다.
도45를 참조하면, 본 실시형태에 따른 조명장치(2400)는 회로기판(2401) 상에 배치된 복수의 발광소자(2402)를 구비한 광원모듈을 구비한다. 상기 발광소자(2402)는 서로 다른 피치(P1, P2)로 배열되어 있다.
상기 조명장치의 상부에는 입사된 광을 균일하게 확산시키는 확산시트 또는 확산판과 상기 확산시트 또는 확산판 상부에 배치되어 입사된 광을 수직 방향으로 집광하는 집광 시트 등을 포함하는 광학 시트(2414)가 배치된다. 상기 광학 시트(2414)는 상기 집광 시트 상부에 배치되어 하부의 광학구조물을 보호하기 위한 보호 시트를 추가 포함할 수 있다. 상기 기판(2401) 상면의 가장자리에는 상기 발광소자(2402)를 둘러싸도록 형성되며, 상기 발광소자(2402)가 배치된 방향으로 경사면을 갖는 측벽(2413)이 형성된다. 또한, 상기 기판(2401) 상면에는 상기 발광소자(2402)에서 방출된 빛을 상부로 반사시킬 수 있는 반사층(2411)이 구비될 수 있다. 한편, 상기 발광소자(2402)들의 배열 간격인 피치(P1, P2)는 광학 거리(ℓ)보다 작은 것이 바람직하다. 본 조건을 충족하지 않는 경우, 면광원장치의 휘도 균일도가 저하될 수 있으며, 핫 스팟(hot spot)이 보일 수도 있다. 여기서, 상기 광학 거리(ℓ)는 발광소자(801)의 광 방출 면으로부터 상기 광학 시트(2414)까지의 거리, 즉, 수직방향으로 광이 진행한 거리로 이해할 수 있다.
도46은 본 발명의 다른 실시형태에 따른 면광원장치를 설명하기 위한 개략적인 단면도이다.
도46a에 도시된 바와 같이, 본 발명에 따른 면광원장치는 탠덤형 면광원장치이며, n개의 LED 광원과, n개의 평판형 도광판을 갖는다. LED 광원은 기판(2630)위에 복수개의 LED 패키지(2631)가 일렬로 배열되고, 이렇게 구성된 n개의 LED 광원이 서로 평행하게 배열된다. 이들 n개의 LED 광원을 따라 한 측에 각각 배열 설치되는 평판형 도광판(2632, 2635)을 구비한다.
또한, 면광원장치는 LED 패키지(2631, 2634)의 하부 및 평판형 도광판(2632, 2635)의 하부에 배치되어 LED 광원에서 출광된 광을 반사시키는 반사부재(미도시)를 갖추어 구성된다. 또한, 상기 평판형 도광판의 상부에는 반사부재에서 반사되고, 평판형 도광판에서 굴절되어 액정패널측으로 출사되는 광을 여러 방향으로 확산시키는 확산시트나 확산시트를 통과한 광을 정면 시야각 안으로 모아주는 역할을 하는 프리즘 시트와 같은 광학시트를 구비한다.
구체적으로, LED 광원은 탑 뷰(Top View) LED가 각각 실장된 복수개의 LED 패키지로 이루어진다. 그리고, 평판형 도광판(2632, 2635)은 평판형(plate-type)으로, LED 광원에서 광이 방출되는 방향으로 배치되며 광을 통과시킬 수 있도록 투명한 소재로 이루어진다. 평판형 도광판은 웨지형 도광판과 비교하여 그 형상이 간단하여 양산이 용이하며, LED 광원위에 도광판의 위치를 맞추는 것 또한 용이하다.
또한, 평판형 도광판(2632, 2635)은 LED 광원으로부터 나온 광이 입사되는 입광부, 균일한 두께를 갖는 평판형으로 형성되고, LED 광원으로부터 입사된 광을 조명광으로 액정패널측에 출사하는 출사면을 갖는 출사부 및 상기 출사부를 기준으로 입광부의 맞은 편에 형성되고, 입광부의 두께보다 작은 두께의 선단부을 구비하며, 평판형 도광판(2632)의 선단부가 LED 패키지(2634)의 위를 덮도록 배치된다. 즉, n번째 평판형 도광판의 선단부의 하부에 n+1번째 LED 광원이 위치한다. 그리고 평판형 도광판(2632)의 선단부는 하면에 프리즘 형상을 갖는다.
도46b에 도시된 바와 같이, LED 패키지(2634)로부터 나온 광은 도광판(2632) 에 직접 출사되지 않고, 평판형 도광판(2632)의 선단부의 하면에 구비된 프리즘 형상에 의해 산란되어 분산된다. 이에 의해 LED 광원 위의 도광판에 생기는 핫 스팟을 제거할 수 있다.
도47은 도46에 도시된 면광원장치에 채용가능한 평판형 도광판을 설명하기 위한 개략적인 사시도이다.
도53에 도시된 바와 같이, 평판형 도광판(2700)은 복수개의 LED 패키지로 이루어진 LED 광원으로부터 나온 광이 입사되는 입광부(2701), 균일한 두께의 평판형으로 형성되고, 입광부(2701)로 입사된 광을 조명광으로 액정패널측에 출사하는 출사면(2704)을 갖는 출사부 및 출사부를 기준으로 입광부(2701)의 맞은 편에 형성되고, 입광부(2701)의 입사단면보다 좁은 두께의 단면을 갖는 선단부(2702)를 구비한다.
선단부(2702)는 자신의 하부에 배열되는 LED 패키지로부터 나온 광의 일부를 분산하기 위해 프리즘 형상(2703)을 구비한다. 이러한 프리즘 형상(2703)은 입사된 광을 분산 및 산란시킬 수 있는 삼각형 프리즘, 원뿔형 프리즘 및 반구형 프리즘 중 적어도 어느 하나일 수 있다. 또한, 선단부(2702)의 프리즘 형상은 선단부(2702) 전체에 형성될 수 있으며, 또는 LED 패키지 상부에만 일부 형성될 수도 있다. 이러한 프리즘 형상에 의해 LED 패키지 위의 도광판에 발생 되는 핫 스팟의 제거가 가능하다.
따라서, 본 발명은 평판형 도광판에 있어서, 선단부의 하면에 프리즘 형상을 가공함으로써 LED 패키지로부터 나온 광의 일부에 의해 LED 패키지 상의 도광판에 발생되는 핫 스팟을 분산시키기 위해, LED 패키지와 도광판 사이에 별도의 확산시트 및 프리즘시트를 가공하는 공정이 불필요하여 제조공정이 간단해지는 효과가 있다.
도48는 백라이트장치의 절단면을 나타내는다. 여기서, 백라이트장치는 다수의 도광판들을 구비할 수 있으나, 설명의 편의상 2개의 도광판만을 도시하였다.
도48을 참조하면, 백라이트장치는 하부커버(2810), 도광판(2820), 광원장치(2830) 및 고정수단(2840)을 포함한다. 상기 하부커버(2810)는 수납공간을 가진다. 예컨대, 상기 수납공간은 상기 하부커버(2810)의 바닥면을 이루는 플레이트(plate) 및 상기 플레이트의 가장자리에서 절곡된 측벽에 의해 형성될 수 있다. 상기 하부커버(2810)는 후술 될 고정수단(2840)이 체결되는 체결구 혹은 체결부(2811)를 구비할 수 있다. 여기서, 상기 체결구 혹은 체결부(2811)는 후술될 고정수단(2840)이 관통되는 관통홀부 또는 상기 고정수단이 삽입되기 위한 홈부일 수 있다.
상기 도광판(2820)은 다수개로 분할되어 있다. 다수개로 분할된 상기 도광판(2820)은 상기 하부커버(2810)의 수납공간에 병렬적으로 배치되어 있다. 상기 각 도광판(2820)은 몸체를 관통하는 관통홀(2821)을 구비한다. 상기 관통홀(2821)은 상기 도광판(2820)의 에지에 배치되어 있다. 그러나, 본 발명의 실시예에서 상기 관통홀(2821)의 위치 및 개수에 대해 한정하는 것은 아니다. 상기 관통홀(2821)은 상기 체결부(2811)와 대응되도록 배치된다. 상기 도광판(2820)의 형태는 사각형 형상으로 도시하였으나, 이에 한정되지 않고 삼각형, 육각형등 여러 형태를 가질 수 있다.
상기 각 도광판(2820)의 일측에는 상기 도광판(120)으로 광을 제공하는 복수의 광원장치(2830)가 배치되어 있다. 상기 각 광원장치(2830)는 광을 형성하는 광원, 즉 LED 패키지(2831) 및 상기 LED 패키지(2831)의 구동전압을 인가하기 위한 다수의 회로패턴을 구비하는 기판(2832)을 포함할 수 있다. 예컨대, 상기 LED 패키지(2831)는 청색, 녹색 및 적색을 각각 구현하는 서브 발광다이오드를 포함할 수 있다. 이때, 상기 서브 발광다이오드는 청색 발광다이오드 및 상기 청색발광다이오드에서 방출된 청색광의 일부를 적색 및 녹색으로 변환시키는 형광체를 포함할 수 있다. 이때, 상기 청색과 상기 적색 및 녹색이 혼색되어 백색광을 구현할 수 있다.
상기 광원장치(2830)에서 형성된 광은 상기 도광판(120)의 측면에 입사되고, 상기 도광판(2820)의 내부 전반사에 의해 상부로 출사된다. 상기 고정수단(2840)은 상기 도광판(2820)의 유동을 방지하기 위하여 상기 도광판(120)을 상기 하부커버(2810)에 고정하는 역할을 한다. 상기 고정수단(2840)은 상기 도광판(2820)의 관통홀(2821)에 삽입되어 상기 도광판(2820)을 상기 하부커버(110)상에 고정시킨다. 이에 더하여, 상기 고정수단(2840)은 상기 도광판(2820)의 관통홀(2821)을 경유하여 상기 도광판(2820)의 체결부(2811), 예컨대 상기 관통홀부를 관통하거나 상기 삽입홈에 삽입될 수 있다. 상기 고정수단(2840)은 몸통부(2842) 및 상기 몸통 부(2842)로부터 연장된 머리부(2841)를 포함한다.
상기 몸통부(2842)는 상기 도광판(2820)의 관통홀을 관통하며 상기 체결부(2811)에 체결된다. 즉, 상기 몸통부(2842)는, 상기 도광판(2820)과 상기 하부커버(2810)를 서로 결합시켜, 상기 도광판(2820)을 상기 하부커버(2810)상에 고정시키는 역할을 한다. 상기 머리부(2841)는 상기 몸통부(2842)보다 넓은 너비를 가짐에 따라, 상기 고정수단(2840)이 상기 도광판(2820)의 관통홀(2821)을 통해 완전히 빠져나가는 것을 방지한다. 상기 머리부(2841)는 여러 형태, 예컨대 반원형, 반타원형, 사각형 및 삼각형 중 어느 하나의 단면 형태를 가질 수 있다. 여기서, 상기 머리부(2841)가 삼각형의 단면 형태를 가질 경우, 상기 고정수단(2840)과 후술 될 광학부재(2860)간의 접촉을 최소화할 수 있어, 상기 고정수단(2840)으로 인한 흑점이 발생하는 것을 최소화할 수 있다.
상기 도광판(2820)과 상기 광학부재(2860)는 일정한 간격을 가짐에 따라, 상기 도광판(2820)으로부터 출사된 광은 상기 광학부재(2860)상에 균일하게 제공될 수 있다. 여기서, 상기 머리부(2841)는 상기 광학부재(2860)를 지지함에 따라, 상기 도광판(2820)과 후술 될 광학부재(2860)간의 간격을 유지하는 역할을 하게 된다. 여기서, 상기 도광판(2820)과 상기 광학부재(2860)의 간격은 상기 머리부(2841)의 높이를 조절함에 따라 조정될 수 있다. 상기 고정부재(2840)는 화질에 미치는 영향을 최소화하기 위해, 광을 투과하는 재질, 예컨대 투명한 플라스틱으로 이루어질 수 있다.
이에 더하여, 상기 각 도광판(2820)의 하부에 반사부재(2850)가 배치될 수 있다. 상기 반사부재(2850)는 상기 도광판(120)의 하부로 출사되는 광을 반사하여 상기 도광판(2820)으로 재입사시킴으로써, 백라이트장치의 광효율을 향상시킨다. 상기 반사부재(2850)는 상기 관통홀(2821) 및 상기 체결부(2811)와 대응되는 관통부(2851)를 구비할 수 있다. 상기 고정수단(2840)은 상기 관통홀(2821) 및 상기 관통부(2851)를 경유하여 상기 체결부(2811)에 체결될 수 있다. 이로써, 상기 반사부재(2850)가 상기 도광판(2820)과 같이 다수개로 분할될 경우, 상기 고정수단(2840)에 의해 상기 하부커버(2810)상에 고정될 수 있다.
이에 더하여, 상기 백라이트장치는 상기 도광판(2820)상에 배치된 광학부재(2860)를 더 포함할 수 있다. 상기 광학부재(2860)의 예로서는 상기 도광판(2840)에 배치된 확산판, 확산시트, 프리즘시트 및 보호시트를 포함할 수 있다. 따라서, 본 발명의 실시예에서, 백라이트장치는 다수개로 분할된 도광판을 구비함에 따라, 부분 구동에 의한 로컬 디밍 효과를 더욱 향상시킬 수 있다. 또한, 다수개로 분할된 상기 도광판들은 고정수단을 이용하여 하부커버상에 고정시킴으로써, 상기 도광판의 유동에 의한 불량을 방지할 수 있다. 또한, 상기 고정수단에 의해 상기 도광판과 상기 광학부재간의 간격을 일정하게 유지할 수 있어, 균일한 광을 액정패널에 제공할 수 있다.
도49는 본 발명에 따른 LED 백라이트장치를 나타내는 평면도이고, 도50은 도49에 나타낸 A영역의 기판 체결전의 단면사시도이며, 도51은 도49에 나타낸 A영역의 기판 체결후의 단면사시도이다. 또한, 도52는 도51의 절단선(II-II')을 따라 본 절단면도이다.
도49 내지 도52에 도시된 바와 같이, 본 실시형태에 따른 LED 백라이트장치는 제1 관통홀(2910a) 혹은 홈 등으로 이루어진 체결구 혹은 체결부를 갖는 갖는 하부커버(2910)와, 상기 하부커버(2910)상에 배치되는 복수개의 도광판(2920)과, 상기 각 도광판(2920)의 일측에서 하부커버(2910)의 바닥면에 수평하게 구비되고 외부로부터 전압이 인가되는 배선이 형성되며 상기 하부커버(2910)의 제1관통홀(2910a)에 대응(혹은 대면)하는 제2 관통홀(2931a)을 갖는 기판(2931)과, 상기 도광판(2920)의 일측에 구비되는 기판(2931)상에 실장되어 빛을 제공하는 다수의 LED 패키지(2932), 및 상기 기판(2931)의 제2 관통홀(2931a) 및/혹은 상기 하부커버(2910)의 제1관통홀(2910a)에 체결되어 인접하는 도광판(2920)의 일측 가장자리영역을 압박하는 고정수단(2940)을 포함하고 있다.
여기서, 수납공간을 형성하여 바닥면을 이루는 플레이트를 관통하여 원형, 직사각형 혹은 타원형 등의 형태를 이루는 제1 관통홀(2910a)(혹은 플레이트상에 오목하게 형성된 (체결) 홈)을 갖는 하부커버(2910)는 철(Fe) 혹은 전기아연도금강판(EGI) 등을 재질로 하여 하부 프레임을 이루며, 더 나아가서 하부커버(2910)는 바닥면을 이루는 플레이트의 가장자리영역에서 상측방향으로 수직하게 연장되어 형성된 측벽, 즉 측면 프레임을 가질 수 있다. 이때, 하부 프레임의 바닥면은 분할형 백라이트장치의 구성을 위하여 일렬로 형성되는 복수의 영역으로 구분될 수 있는데, 이때 그 복수의 영역은 예를 들어 일측영역에 형성된 오목한 홈에 의해 경계를 이룰 수 있다. 물론, 여기서 복수의 영역을 구분하는 오목한 홈은 이후 기술되는 기판(2931)의 수납 홈에 해당된다.
또한, 하부커버(2910)상의 제1 관통홀(2910a)은 원형, 타원형 혹은 직사각형 이외에도 다양한 형태를 이룰 수 있지만, 긴 방향의 폭을 갖는 관통홀, 더 정확하게는 서로 나란한 두개의 장변과 그 두 장변의 양끝에서 소정의 곡률을 갖고 서로 연결되도록 형성된 두개의 단변을 가지는 관통홀의 형태를 띨 수 있으며, 이때 그 제1관통홀(2910a)의 장축방향(Y축)이 빛의 진행방향과 동일한 방향을 이루도록 하부커버(2910)상에 형성되는 것이 더욱 바람직하다. (체결) 홈의 경우에도 위와 같은 동일한 구조적 특징을 갖는다.
그리고, 하부커버(2910)의 전체 바닥면, 혹은 기판(2931)이 수납되는 오목한 수납 홈이 형성되는 경우에는 그 오목한 홈을 제외한 복수의 바닥면상에 반사판(미도시)이 부착되어 있다. 이러한 반사판은 보통 백색 폴리에스테르 필름이나 금속(Ag, Al) 등이 코팅된 필름을 사용하게 되는데, 반사판에서의 가시광의 광 반사율은 90∼97%정도이며 코팅된 필름이 두꺼울수록 반사율이 높게 된다.
이때, 하부커버(2910)의 바닥면에서 복수개 구비되는 반사판은 각각 빛이 제공되는 LED 패키지(2932)와, 그 LED 패키지(232)의 배면에 인접하여 위치하는 도광판(2920) 사이에 위치하도록 연장되어 형성될 수도 있다. 이와 같은 경우, 도광판(2920) 일측으로부터 제공되어 유도된 빛이 도광판(220) 타측에 배치된 LED 패키지(2932)의 간섭을 받지 않고 반사판에 의해 다시 반사된 후 상측에 구비되는 광학부재(미도시)의 방향으로 제공될 수 있어 광의 반사효율이 증대될 수 있을 것이다.
상기 하부커버(2910)의 오목한 수납 홈 혹은 도광판(220)의 일측에는 LED 광 원(2930)이 구비되어 있다. 이때, LED 광원(2930)은 예컨대 오목한 수납 홈에 구비되어 하부커버(2910)의 바닥면에 수평을 이루어 구비되고 외부로부터 전압이 인가될 수 있도록 배선이 형성되며 상기 하부커버(2910)의 제1 관통홀(210a)에 대응하는 제2 관통홀(2931a)을 갖는 기판(2931), 즉 PCB와, 그 기판(2931)상에 실장된 LED 패키지(2932)로 구성되어 있다
여기서, 기판(2931)은 LED 패키지(2932)와 LED 패키지(2932) 사이에 형성된 제2 관통홀(2931a)을 가지게 되는데, 이와 같이 제2 관통홀(2931a)을 갖는 기판(2931)은 하부커버(2910)의 제1 관통홀(2910a)에 대응(혹은 대면)되도록 하여 그 하부커버(2910)의 바닥면에 구비되어 있고, 또 그 기판(2931)상에 형성된 제2 관통홀(2931a)은 하부커버(2910)의 제1 관통홀(2910a)과 마찬가지로 원형 혹은 타원형 등을 이룰 수 있지만, 본 발명에서는 긴 방향의 폭을 갖는 관통홀, 즉 서로 나란한 두개의 장변과, 그 두 장변의 양끝에서 소정의 곡률을 갖고 서로 연결되도록 형성된 두개의 단변을 갖는 관통홀의 형태를 띠되, 그 제2 관통홀(2931a)의 장축방향(X축)이 빛의 진행방향과 수직을 이루도록 형성됨으로써 결국 기판(2931)의 제2 관통홀(2931a)은 그 장축방향(X축)이 하부커버(2910)의 제1 관통홀(2910a)의 장축방향(Y축)과 서로 교차되도록 형성되어 있다.
이때 기판(2931)상에 형성된 제2 관통홀(2931a)의 크기, 더 정확히 말해서 두 장변간 간격(혹은 거리)은 나사산이 형성된 고정수단(2940)의 몸체의 지름에 관계될 수 있는데, 그 제2 관통홀(2931a)의 크기는 빛을 제공하는 LED 패키지(2932)와 그 LED 패키지(2932)로부터 제공된 빛이 입사되어 유도되는 도광판(2920)과의 간격에 영향을 미칠 수 있기 때문이다. 이와 관련해서는 이후에 좀더 살펴보기로 한다.
또한, LED 패키지(2932)는 다시 상기 기판(2931)상에 고정되어 외부 프레임을 형성하고 수납 홈을 갖는 패키지 본체(2933)과, 패키지 본체(2933)의 수납 홈에 실장되어 빛을 제공하는 LED 칩(2935), 및 상기 수납 홈에 노출되도록 형성되어 LED 칩(2935)이 탑재되고 기판(2931)상의 배선과 전기적으로 접속되는 한쌍의 제1 및 제2전극구조(미도시)로 이루어져 있다.
이때, LED 패키지(2932)는 LED 칩(2935)이 청색의 발광다이오드 칩인 경우 백색광을 제공하기 위해 수납 홈에 형성된 수지포장부(2936)를 추가적으로 구비할 수 있는데, 이때 수지포장부(2936)는 적색 및 녹색 형광체를 포함할 수 있다. 예컨대 그 수지포장부(2936)는 적색 및 녹색 형광체를 함유하는 젤 형태의 에폭시 수지 혹은 실리콘 수지를 패키지 본체(2933)의 수납 홈에 주입 한 후, UV(ultraviolet) 경화나 열경화를 통해 형성될 수 있다.
물론 여기에서도 본 발명은 청색 발광다이오드 칩과 황색 형광체로 이루어지는 LED 패키지(2932)에 대하여 한정하려는 것은 아니며, 가령 근자외선 칩과 그 근자외선 칩상에 구비되는 적색, 녹색, 청색의 형광체가 혼합된 수지포장부 혹은 적색, 녹색, 청색의 형광체가 각각 포함되어 순차적으로 적층하여 형성된 수지포장부로 이루어질 수도 있을 것이다. 본 실시형태에서 사용되는 형광체 중 적어도 1종은 상술된 산질화물 형광체이며, 특히 녹색형광체로서 상기 제1 산질화물 형광체는 매우 유익하게 사용될 수 있다.
복수의 영역으로 구분되는 하부커버(2910)의 바닥면에는 복수개의 도광판(2920)이 각각 구비되어 있다. 이때 도광판(2920)의 측면은 패키지 본체(2933)의 수납 홈 내에 실장된 LED 칩(2935)으로부터 제공된 빛이 손실없이 도광판(2920)으로 유입될 수 있도록 하기 위하여 패키지 본체(2933)와 밀착되도록 구비되는 것이 바람직할 수 있다. 이러한 도광판(2920)은 PMMA를 재질로 하여 형성되며, 가시광선영역에서 광에 대한 흡수성이 고분자 재료 중 가장 적어 투명성 및 광택이 매우 크다. 이는 기계적 강도가 높아 깨지거나 변형되지 않으며, 가볍고 내화학성이 강하다. 또한 가시광선의 투과율이 90∼91% 정도로 높고, 내부 손실이 대단히 적으며 인장 강도, 휨강도, 신장 강도 등의 기계적 성질과 화학성, 내성 등에도 강하다.
그리고, 도광판(2920)과 도광판(2920) 사이의 기판(2931)에는 고정수단(2940)이 체결되어 있다. 이러한 고정수단(2940)은 투명한 재질로 이루어진 나사와 같은 형태로서 LED 패키지(2932)의 양측, 즉 광이 출사되는 전면(前面)과 그 전면의 반대쪽에 위치하는 후면(後面)에 각각 구비되는 도광판(2920)들의 간격을 일정하게 유지시키면서 그 인접하는 도광판(2920)을 동시에 고정하기 위하여 기판(2931)의 제2 관통홀(2931a) 및 그 제2 관통홀(2931a)에 대응하는 하부커버(2910)의 제1 관통홀(2910a)을 관통하여 체결되어 있다. 이때, 본 발명에서의 고정수단(2940)은 도광판(2920) 내에서 유도되는 빛이 간섭 없이 상측에 배치된 광학부재로 제공될 수 있도록 투명한 재질을 이루되, 도광판(2920)과 동일 재질로 이루어지는 것이 바람직해 보인다.
그리고, 본 발명의 고정수단(2940)은 실질적으로 원형 혹은 사각형상 등의 다양한 형상을 갖는 머리부와, 그 머리부에 연장되어 형성된 원통형 혹은 원기둥 형태의 몸체부로 이루어져 있으며, 그 고정수단(2940)의 몸체부 외부면에 형성된 나사산을 통해 기판(2931)의 제2관통홀(2931a) 및/혹은 하부커버(2910)의 제1관통홀(2910a)에 고정될 수 있다. 물론, 여기에서 고정수단(2940)의 몸체부는 사각기둥의 형태를 이룰 수도 있을 것이다. 이때, 머리부의 크기는 도광판(2920)과 도광판(2920) 사이의 간격과 도광판(2920)의 일측 가장자리영역을 일부 덮을 수 있도록 설계되므로 도광판(2920)과 도광판(2920) 사이의 간격에 따라 조금 변경될 수 있고, 또 몸체부의 지름은 기판(2931)의 제2 관통홀(2931a) 및/혹은 하부커버(2910)의 제1 관통홀(2910a)에서 서로 나란한 두 장변의 간격 혹은 거리와 동일하게 형성되는 것이 바람직할 것이다.
더 나아가, 고정수단(2940)은 앞서 언급한 바 있는 기판(2931)의 제2관통홀(2931a)의 크기에 관계해서도 머리부의 크기나 몸체부의 지름의 길이가 조금 변경될 수 있는데, 가령 기판(2931)의 제2관통홀(2931a)의 크기가 작다는 것은 고정수단(2940)의 몸체부의 지름이 작아지는 것이며, 이는 결국 LED 패키지(2932)와 도광판(2920)간 간격을 좁힐 수 있는 것을 의미할 수 있다. 이러한 고정수단(2940)은 기판(2931) 및/혹은 하부커버(2910)에 나사 방식으로 체결시 LED 패키지(2932)가 고정되어 있는 기판(2931)상에 인접하여 배치되어 있는 도광판(2920)의 상측 모서리 영역을 헤드 부위로 압박하게 됨으로써 외부 충격이 발생하더라도 도광판(2920)의 유동이 방지될 수 있을 것이다. 이때 더 나아가서 고정수단(2940)은 하부커 버(2910)의 제1관통홀(2910a)을 관통하여 외부로 노출된 부위에는 추가적으로 너트가 체결됨으로써 그 힘의 강도가 보강될 수 있을 것이다.
결국, 기판(2931)상에 체결되는 고정수단(2940)은 LED 패키지(2932)와 도광판(2920)간 스페이서(spacer)의 역할을 할 수 있기 때문에 LED 패키지(2932)와 도광판(2920)간 간격을 일정하게 유지시켜 도광판(2920)의 수축 및/혹은 팽창에도 대응할 수 있게 된다. 물론, 상기의 고정수단(2910)이 반드시 나사산 형태를 이루어야 하는 것은 아니다. 예를 들어 앞서 언급했듯이 도 65에 도시된 바와 같이 나사의 머리부와 대응하는 끝 부위에 형성된 갈고리부를 통해 기판(2931)의 제2관통홀(2931a)과 하부커버(2910)의 제1관통홀(2910a)을 관통하여 체결된 후 하부커버(2910)에 의해 고정될 수 있다.
그리고, 복수의 도광판(2920) 상측에는 도광판(2920)을 통해 제공된 빛의 광학적 특성을 보완하기 위한 광학부재(미도시)가 구비되어 있다. 이때, 광학부재는 예를 들어 도광판(2920)을 투과하여 나온 빛의 불균일성을 완화시키기 위한 확산패턴이 형성된 확산판과, 빛의 정면 휘도를 높이기 위한 집광패턴이 형성된 프리즘 시트 등을 포함할 수 있다. 상기의 구성을 통해, 본 발명은 도광판(2920)과 도광판(2920) 사이에 구비된 고정수단(2940)에 의해 일정한 간격을 유지시켜 도광판(2920)을 고정함으로써 외부의 충격 등에 의한 도광판(2920)의 유동을 방지할 수 있고, 빛의 진행방향과 수직한 방향(X축)으로의 도광판(2920) 수축에 대응할 수 있게 된다. 또한, 장축방향과 단축방향을 갖도록 형성된 기판(2931)의 제2관통홀(2931a)에 의해 그 제2관통홀(2931a)의 장축방향(X축)으로 기판(2931)의 수축이 발생하더라도 이에 대응할 수 있다.
더 나아가서, 빛의 진행방향을 따라 형성된 장축방향(Y축)을 갖는 하부커버(2910)의 제1 관통홀(2910a)과 그 제1 관통홀(2910a)에 체결된 고정수단(2940)을 통해서는 도광판(2920)의 팽창 및/혹은 수축 발생시 하부커버(2910)의 제1관통홀(2910a)의 장축방향(Y축)을 따라 도광판(2920)과 고정수단(2940) 및/혹은 기판(2931)이 함께 이동할 수 있기 때문에, 결국 도광판(2920)과 LED 패키지(2932)간 일정 간격이 그대로 유지될 수 있어 (종래 대비) 휘점 및 휘선 현상이 개선될 수 있을 것이다.
한편, 본 발명에 따른 액정표시장치는 상기의 제2 및 제3 실시형태에 따른 LED 백라이트장치를 구비하고, 동시에 상기의 광학부재상에 구비된 액정패널(미도시)을 추가적으로 포함하고 있다. 이때, 액정표시장치는 외부의 충격 등으로부터 표시장치의 뒤틀림을 방지하기 위하여 메인 서포트(main support)라는 몰드 구조물을 추가적으로 구비할 수 있는데, 그 메인 서포트의 하측에는 백라이트장치가 구비되고 상측에는 액정패널이 적재된다. 상기의 액정패널은 박막트랜지스터 어레이 기판 및 컬러필터기판이 합착된 것으로서, 그 두 기판 사이에 주입된 액정층을 포함하여 구성되어 있다.
이때 박막트랜지스터 어레이 기판 상에는 게이트 라인과 데이터 라인 등의 신호배선이 서로 교차하여 형성되고, 데이터 라인과 게이트 라인의 교차부에 박막트랜지스터(TFT)가 형성되어 있다. 이러한 TFT는 게이트 라인을 통해 제공된 스캔 신호에 응답하여 데이터 라인으로부터 액정층의 액정셀에 전송될 비디오 신호, 즉 적색(R), 녹색(G), 및 청색(B)의 데이터 신호를 절환하도록 하고 있다. 또한, 데이터 라인과 게이트 라인 사이의 화소영역에는 화소전극이 형성되어 있다.
상기 컬러필터 기판 상에는 박막트랜지스터 어레이 기판의 게이트 및 데이터 라인에 대응하여 형성된 블랙 매트릭스와, 블랙매트릭스에 의해 구획되는 영역에 형성되어 적색(R), 녹색(G), 청색(B)의 컬러를 제공하는 컬러필터, 그리고 상기 블랙매트릭스와 컬러필터상에 구비되어 있는 공통전극 등이 형성되어 있다.
이와 같은 컬러필터 기판이 부착되어 있는 박막트랜지스터 어레이 기판의 가장자리영역에는 데이터 라인으로부터 연장되어 형성된 데이터 패드와, 게이트 라인으로부터 연장되어 형성된 게이트 패드가 형성되어 있는데, 이러한 데이터 패드 및 게이트 패드에 각각 접속되어 신호를 인가하는 게이트 구동부 및 데이터 구동부가 구비되어 있다. 또 액정패널 상에는 그 액정패널의 4면 가장자리영역을 덮는 동시에 하부커버(2910) 혹은 메인 서포트의 측벽에 고정되는 상부커버가 구비될 것이다. 물론 상부커버 또한 하부커버(2910)와 동일 재질로 이루어지게 된다.
도53은 본 발명에 따른 백라이트 유닛의 일 예를 개략적으로 나타내는 평면도이고, 도54는 도53에 도시된 LED의 조합을 실시예별로 나타내는 사시도이며, 도 55는 순방향 전압에 따른 LED의 분포를 나타내는 그래프이다.
도53 내지 도55를 참조하면, 본 실시형태에 따른 백라이트 유닛(3000)은 복수의 LED(3020)를 구비하는 복수의 LED 모듈(3010)과, 상기 복수의 LED 모듈(3010) 에 구비되는 복수의 LED(3020)의 밝기를 조절하는 하나 이상의 구동 드라이버(3030)로 구성된다. 도면에서와 같이 본 실시예에서는 프레임(3040)의 내측면을 따라서 도광판(3050)의 일 측면 또는 복수의 측면과 마주하는 선광원으로 채용되는 LED 모듈(3010)을 배치시키는 에지(edge) 방식을 기준으로 설명한다. 그러나, 이에 한정하는 것은 아니며 직하(direct) 방식도 가능하지만 LED 모듈의 배치위치에서 차이가 있을 뿐이므로 이에 대한 구체적인 설명은 생략한다.
상기 LED 모듈(3010)은 복수의 LED(3020)를 포함하여 백색광을 방출함으로써 그 자체로서 일정면적을 갖는 면광원 또는 선광원으로 채용될 수 있는 단위가 되는 것으로, 기판과 같은 서브마운트와 그 위에 실장되는 복수의 LED(3020)를 포함할 수 있다. 여기서, 상기 복수의 LED(3020)는 백색 LED인 것이 바람직하나 반드시 이에 한정하는 것은 아니다.
도54에 도시된 바와 같이, 상기 LED 모듈(3010) 각각에 포함되는 상기 복수의 LED(3020)는 기판상에 실장되어 서로 전기적으로 연결되며, 이때 각 LED 모듈(3010)에 구비되는 상기 복수의 LED(3020)는 서로 직렬연결된 LED 어레이(array)를 형성한다. 본 발명은 각 LED 모듈(3010)에 구비되는 LED 어레이를 형성하는데 있어 LED의 특성을 소정의 구간으로 세분화하여 이를 조합하는 방식을 통해 상기 LED 어레이를 형성하는데 특징이 있다. 일반적으로 LED 칩을 패키징하여 제조되는 LED 단품들은 특정 범위의 구간에 해당하는 색좌표, 휘도, 순방향 전압(Vf: Forward Voltage), 파장 등의 특성을 가지며, 각 특성이 가지는 값은 모든 LED 단품에 있어 일치하지 않고 약간의 차이를 가져 산포를 나타낸다. 즉, 각각의 LED 단품이 가지는 색좌표의 범위 구간과 순방향 전압의 범위 구간은 모든 LED 단품들에 있어 모두 일치하는 것이 아니라 상한 값 또는 하한 값에서 차이를 가질 수 있다. 따라서, LED(3020)를 복수개 실장하여 LED 어레이를 형성하는데 있어 특정 범위 구간에만 해당하는 특성을 갖는 LED 만을 실장하는 경우, 예를 들어 순방향 전압(Vf)이 높은 LED 만을 실장한 LED 모듈과 반대로 낮은 LED 만을 실장한 LED 모듈과의 사이에는 전압 차이(ΔV)가 크게 발생하여 휘도 균일도에 불량이 발생하여 화면상에 얼룩이 발생하는 문제를 일으킨다.
이에, 본 발명은 LED의 특성 중에서 복수의 LED가 가지는 순방향 전압(Vf)을 LED 분포에 따라 복수의 구간으로 세분화하여 각 구간에 해당하는 순방향 전압을 가진 LED를 구간별로 교대로 실장하여 LED 어레이를 형성한다. 여기서 순방향 전압(Vf)은 순방향으로 연결된 LED 단자 양단에 걸리는 전압을 지칭한다.
이에 대해 도55를 참조하여 보다 상세히 설명한다. 도55a 및 도55b는 순방향 전압에 따른 LED의 분포를 나타내는 그래프이다.
도55a에 도시된 바와 같이, LED(3020)가 가지는 순방향 전압(Vf)의 범위가 좁은 경우에는 분포도의 중심을 기준으로 2개의 구간(A구간, B구간)으로 범위 구간을 세분화할 수 있다. 이 경우, 실장되는 LED(3020)의 종류는 A구간에 해당하는 순방향 전압을 갖는 종류와 B구간에 해당하는 순방향 전압을 갖는 종류인 2가지 종류 로 분류되며, 각각 교대로 실장되어 LED 어레이를 형성한다.
도55a에서는 ABAB...순서로 조합되는 어레이에 대해 도시하고 있으나 이에 한정하는 것은 아니며 AABB, ABBA 등 다양한 조합방법으로 실장되어 어레이를 형성할 수 있다.
한편, 도55b에 도시된 바와 같이 LED가 가지는 순방향 전압(Vf)의 범위가 넓은 경우에는 3개의 구간(A구간, B구간, C구간)으로 범위 구간을 세분화할 수 있다. 이 경우, 실장되는 LED(3020)의 종류는 A구간에 해당하는 순방향 전압을 갖는 종류와 B구간에 해당하는 순방향 전압을 갖는 종류 그리고 C구간에 해당하는 순방향 전압을 갖는 종류인 3가지 종류로 분류되며, 각각 교대로 실장되어 LED 어레이를 형성한다. 도62b에서는 ABCABC...순서로 조합되는 어레이에 대해 도시하고 있으나 이에 한정하는 것은 아니며 ABAC, ABBC 등의 다양한 조합으로 실장되어 어레이를 형성할 수도 있다.
도56 및 도57에서는 순방향 전압(Vf)을 2개 또는 3개의 범위 구간으로 세분화하여 설명하고 있으나 이에 한정하는 것은 아니며 다양한 범위 구간으로 세분화하는 것도 가능하다.
이와 같이, 각 구간에 해당하는 순방향 전압(Vf)을 갖는 LED(3020)를 교대로 실장함으로써 이들을 포함하는 LED 모듈(3010)의 순방향 전압의 평균값을 예측할 수 있음은 물론 특정한 범위의 값을 가지도록 산포를 줄여 설정하는 것도 가능하다. 그리고, 모듈 내에서 직렬로 연결되는 LED(3020) 간의 순방향 전압(Vf)의 편차 를 줄임으로써 각 LED 모듈(3010) 사이의 전압차(ΔV)가 줄어들게 되어 휘도가 전체적으로 균일해지도록 할 수 있다.
상기 구동 드라이버(3030)는 상기 복수의 LED 모듈(3010)에 각각 구비되는 복수의 LED(3020)의 밝기를 조절하기 위해 적어도 하나 이상 구비되며, 상기 복수의 LED 모듈(3010)과 전기적으로 연결된다. 그리고, 도면에는 도시되지 않았으나 LED로부터 발광된 빛을 감지하는 센서를 구비하여 미리 정해진 휘도 및 색감과 감지된 휘도 및 색감을 비교하여 보상을 해주도록 LED의 밝기를 조절한다. 또한, 상기 구동 드라이버(3030)와 연결되어 상기 구동 드라이버(3030)를 제어하는 제어부를 더 포함할 수 있다. 도면에서와 같이, 상기 구동 드라이버(3030)와 연결되는 상기 LED 모듈(3010)은 각각 하나의 구동 드라이버(3030)와 연결되고, 상기 구동 드라이버 각각은 적어도 2개 이상의 LED 모듈(3010)과 연결된다. 이때, 동일한 구동 드라이버(3030)와 연결되는 LED 모듈(3010)들은 서로간의 전압차가 작거나 실질적으로 동일한 범위의 순방향 전압을 갖도록 한다. 이는 앞서 설명한 각 LED 모듈(3010)에 실장되는 복수의 LED(3020)에 대한 순방향 전압의 세분화에 따른 LED(3020)의 조합을 통해 조절할 수 있다. 따라서, 상기 각 LED 모듈(3010)은 동일한 구동 드라이버(3030)와 연결되는 다른 LED 모듈(3010)과의 사이에 병렬연결을 이루는 연결구조를 갖는다.
도53을 참조하면, 전압차가 작은 제1 LED 모듈(3010a)과 제2 LED 모듈(3010b)은 제1 구동 드라이버(3030a)와 연결되어 하나의 연결구조를 이루고, 제3 LED 모듈(3010c)과 제4 LED 모듈(3010d)은 제3 구동 드라이버(3030c)와 연결되어 하나의 연결구조를 이루며, 제5 LED 모듈(3010e)과 제6 LED 모듈(3010f)은 제2 구동 드라이버(3030b)와 연결되어 하나의 연결구조를 이룬다. 즉, 서로간의 전압차가 작은 적어도 2개 이상의 LED 모듈(3010)은 공통으로 하나의 구동 드라이버(3030)에 의해 일체로 구동될 수 있는 것이다. 이와 같이, 본 실시예에 따르면 각 LED 모듈별로 각각 구동 드라이버를 구비하여 LED를 구동하는 종래의 백라이트 유닛에 비하여 구동 드라이버의 전체 개수를 감소시킬 수 있어 전체적인 백라이트 유닛의 소형화 및 슬림화가 가능할 뿐만 아니라 백라이트 유닛에 소요되는 전기전자 부품수를 감소시키는 것이 가능하다. 아울러, 구동 드라이버의 개수가 감소됨에 따라 백라이트 유닛의 광특성을 보상하기 위한 전체 구동 드라이버의 제어가 보다 용이해져 화질이 개선되는 효과를 가진다.
한편, 도56 및 도57에서는 LED 모듈(3010)과 구동 드라이버(3030)의 다양한 연결구조에 대한 실시예를 도시하고 있다. 도56에 도시된 바와 같이 제1 구동 드라이버(3030a)는 제1 LED 모듈(3010a) 및 제5 LED 모듈(3010e)과 연결되어 하나의 연결구조를 이루고, 제2 구동 드라이버(3030b)는 제2 LED 모듈(3010b) 및 제6 LED 모듈(3010f)과 연결되어 하나의 연결구조를 이루며, 제3 구동 드라이버(3030c)는 제3 LED 모듈(3010c) 및 제4 LED 모듈(3010d)과 연결되어 하나의 연결구조를 이룬다.
도57에 도시된 실시예에서는 제1 LED 모듈(3010a)과 제4 LED 모듈(3010d)이 제1 구동 드라이버(3030a)와 연결되어 하나의 연결구조를 이루고, 제5 LED 모듈(3010e)과 제6 LED 모듈(3010f)이 제2 구동 드라이버(3030b)와 연결되어 하나의 연결구조를 이루며, 제2 LED 모듈(3010b)과 제3 LED 모듈(3010c)이 제3 구동 드라이버(3030c)와 연결되어 하나의 연결구조를 이룬다. 각 구동 드라이버(3030)와 전기적으로 연결되는 LED 모듈(3010)은 이외에도 다양한 조합의 연결구조를 가질 수 있으며 반드시 이에 한정하는 것은 아니다. 그리고, 복수의 LED 모듈(3010)들은 구동 드라이버(3030)를 공통으로 하는 LED 모듈(3010) 사이에서만 전기적인 연결을 이루고, 다른 구동 드라이버(3030)와 연결되는 LED 모듈(3010)과는 전기적으로 연결을 이루지 않는다.
본 발명의 다양한 실시형태에 따른 발광소자 패키지가 채용된 면광원장치 및 백라이트유닛에서 LED의 밝기를 주변 밝기에 따라 자동적으로 조절함으로써, 소비전력을 낮출 수 있는 LED 자동 조광 장치에 대해 설명하도록 한다.
도58은 본 발명에 따른 LED 자동 조광 장치의 구성도이다.
도58을 참조하면, 본 발명에 따른 LED 자동 조광 장치는, 주변 밝기를 검출하는 주변밝기 검출부(3200)와, 상기 주변밝기 검출부(3200)의 검출에 의해 발생되는 검출전압(Vd)의 크기에 따라 구동을 제어하는 조광 제어부(3300)와, 상기 조광 제어부(3300)의 구동 제어에 따른 LED 구동전류를 생성하는 조광 구동부(3400)를 포함한다. 또한, 상기 LED 자동 조광 장치는, 복수의 LED를 포함하며, 상기 조광 구동부(3400)로부터의 구동전류에 따라 구동되는 LED부(3500)를 포함할 수 있다.
상기 주변밝기 검출부(3200)는, 주변 밝기 검출용 검출감도를 설정하기 위한 감도 설정부(3210)와, 상기 감도 설정부(3210)에 의해 설정된 검출감도로, 외부광을 수광하여 주변 밝기를 검출하는 포토 센서부(3220)를 포함할 수 있다. 상기 포토 센서부(3220)는, 상기 동작전원(Vcc)을 공급받는 전원단에 연결된 컬렉터와, 외부광을 수광받는 베이스와, 상기 감도 설정부(3210)에 연결된 에미터를 갖는 포토 트랜지스터(PT)를 포함할 수 있다. 상기 감도 설정부(3210)는, 상기 포토 트랜지스터(PT)의 에미터에 연결되고, 사용자가 조절 가능한 가변저항과, 가변저항과 직렬로 연결되는 저항을 포함할 수 있다.
구체적인 동작을 설명하면, 주변밝기 검출부(3200)는 주변 밝기를 검출하여 검출전압(Vd)을 조광 제어부(3300)로 출력한다. 예를 들어, 상기 주변밝기 검출부(3200)는, 감도 설정부(3210)와 포토 센서부(3220)를 포함하는 경우, 상기 감도 설정부(3210)는, 상기 포토 센서부(3220)에 대해 주변 밝기 검출용 검출감도를 설정할 수 있다. 상기 포토 센서부(3220)는, 상기 감도 설정부(3210)에 의해 설정된 검출감도로, 외부광을 수광하여 주변 밝기를 검출할 수 있다. 이때, 상기 포토 센서부(3220)는, 상기 동작전원(Vcc)을 공급받는 전원단에 연결된 컬렉터와, 외부광을 수광받는 베이스와, 상기 감도 설정부(3210)에 연결된 에미터를 갖는 포토 트랜지스터(PT)로 이루어질 수 있으며, 이 경우, 상기 포토 트랜지스터(PT)가 외부광을 받으면 도통되어 상기 동작전원(Vcc)에서 전류(I)가 상기 포토 트랜지스터(PT) 및 감도 설정부(3210)를 통해 흐르게 된다. 즉, 상기 감도 설정부(3210)에 의해 상기 전류(I)가 검출전압(Vd)으로 검출되는데, 이때, 상기 감도 설정부(3210)가 상기 포토 트랜지스터(PT)의 에미터에 연결되고, 사용자가 조절 가능한 가변저항 및 저항 으로 이루어지는 경우, 가변저항의 저항값에 따라 흐르는 전류(I)에 의한 검출전압(Vd)의 기울기가 달라질 수 있다.
상기 조광 제어부(3300)는, 상기 주변밝기 검출부(3200)의 검출에 의해 발생되는 아날로그 형태의 검출전압(Vd)을 디지털 형태의 검출전압으로 변환하는 A/D 컨버터(3310)와, 상기 A/D 컨버터(3310)로부터의 디지털형태의 검출전압(Vd)의 크기에 따라 구동을 제어하는 마이컴(3320)을 포함할 수 있다. 상기 마이컴(3320)은, 상기 A/D 컨버터(3310)로부터의 디지털형태의 검출전압(Vd)이 기설정된 제1 기준전압보다 작을 경우에는 상기 제1 기준전압과 상기 디지털형태의 검출전압(Vd)의 차전압의 크기에 기설정된 구동전류를 생성하고, 상기 디지털형태의 검출전압(Vd)이 기설정된 제1 기준전압보다 작지 않을 경우에는 조명 구동을 정지시킬 수 있다.
구체적인 조광 제어부(3300)의 동작을 설명하면, 상기 조광 제어부(3300)는, 상기 주변밝기 검출부(3200)의 검출에 의해 발생되는 검출전압(Vd)의 크기에 따라 조광 구동부(3400)에 구동을 제어한다. 예를 들어, 상기 조광 제어부(3300)는, A/D 컨버터(3310)와 마이컴(3320)을 포함하는 경우, 상기 A/D 컨버터(3310)는, 상기 주변밝기 검출부(3200)의 검출에 의해 발생되는 아날로그 형태의 검출전압(Vd)을 디지털 형태의 검출전압으로 변환하여 마이컴(3320)으로 출력한다. 상기 마이컴(3320)은, 상기 A/D 컨버터(3310)로부터의 디지털형태의 검출전압(Vd)의 크기에 따라 구동을 제어할 수 있다.
상기 조광 구동부(3400)는, 상기 조광 제어부(200)의 구동 제어에 따른 LED 구동전류를 생성하여 LED부(3500)에 공급한다. 결국, 상기 조광 구동부(3400)로부 터의 구동전류는, 외부광량이 많을 경우에는 작은 구동전류가 생성되고, 이와 달리, 외부광량이 작을 경우에는 큰 구동전류가 생성된다. 이에 따라, 상기 LED부(3500)는, 복수의 LED를 포함할 수 있으며, 이 복수의 LED는 상기 조광 구동부(3400)로부터의 구동전류에 따라 구동된다. 전술한 바와 같은 본 발명에서, 외부광량에 따라 LED의 밝기를 자동적으로 조절할 수 있으며, 전력소비를 최소한으로 줄일 수 있다는 장점이 있다.
상술한 본 발명에 따른 발광소자 및 이를 구비한 발광소자 패키지를 광원으로 구비하는 차량용 헤드라이트를 도 59 내지 도 64를 참조하여 설명하도록 한다.
도59는 본 발명의 일 실시형태에 따른 차량용 헤드라이트를 나타내는 분해사시도이며, 도60는 도 59에 도시된 차량용 헤드라이트를 조립한 구조의 단면도이다.
도59에 도시된 바와 같이 본 발명의 일 실시예에 따른 차량용 헤드라이트(3600)는 발광소자 패키지(3610,3610-1,3610-2,3610-3), 반사부(3620), 렌즈부(3630), 방열부(3640)를 포함하여 구성된다. 상기 발광소자 패키지(3610,3610-1,3610-2,3610-3)는 방열부(3640)의 상부에 장착되며, 외부전원(미도시)과 전기적으로 연결되어 전원공급시 빛을 발광하는 광원기능을 수행한다.
도61 내지 도64를 참조하여 상기 발광소자 패키지(3610,3610-1,3610-2,3610-3)의 다양한 구조에 대해 보다 자세히 설명한다. 우선, 도 61 및 도 62를 참조하여 수지층이 형광체를 함유하는 구조에 관한 발광소자 패키지에 대하여 설명한다.
도61a는 발광소자 패키지의 일실시예를 나타내는 평면도이고, 도61b는 도 61a의 발광소자 패키지를 나타내는 단면도이며, 도61c과 도61d는 도61a의 발광소자 패키지에서 발광소자 칩이 실장된 상태의 변형예들을 나타내는 평면도이다.
도62a는 상기 발광소자 패키지의 다른 실시예를 나타내는 평면도이고, 도62(b)는 도62(a)의 발광소자 패키지를 나타내는 단면도이며, 도62(c)와 도62(d)는 도62(a)의 발광소자 패키지에서 발광소자 칩이 실장된 상태의 변형예들을 나타내는 평면도이다.
도61 및 도62에서와 같이, 상기 발광소자 패키지(3610,3610-1)는 적어도 하나의 발광소자 칩(3612)과, 상기 발광소자 칩(3612)을 실장하며 전기적으로 연결되는 하나 이상의 연결단자(3613)를 구비하는 기판(3611)과, 형광체가 함유되어 있으며 상기 발광소자 칩(3612)과 상기 연결단자(3613)를 덮어 밀봉하는 수지층(3614)으로 이루어진다.
상기 발광소자 칩(3612)은 상기 기판(3611)의 상부면에 실장되어 외부에서 인가되는 전원에 의해 소정 파장의 빛을 출사하는 반도체소자의 일종이며, 도61(a)와 도61(b) 및 도62(a)와 도62(b)에서와 같이 복수개의 발광소자 칩(3612)이 상기 기판(3611)의 중심부에 구비될 수 있다. 이 경우, 상기 발광소자 칩(3612)들은 청색 LED, 적색 LED 및 녹색 LED의 조합으로 이루어져 어레이됨으로써 백색광을 출사하도록 하는 것이 바람직하다.
그러나, 이에 한정하지 않고 도61(c) 및 도62(c)에서와 같이 단일의 발광소 자 칩(3612')이 상기 기판(3610)의 중심부에 구비되는 것 또한 가능하다. 이때, 상기 발광소자 칩(3612')은 청색 LED 또는 UV LED인 것이 바람직하며, 추후 설명하는 수지층(3614)의 형광체를 통해 백색광을 출사하도록 한다.
또한, 도61(d) 및 도62(d)에서와 같이 상기 기판(3611)의 중심부에 구비되는 긴 길이의 발광소자 칩(3612'')을 중심으로 그 양측에 보다 짧은 길이의 발광소자 칩(3612)들이 대칭구조로 구비되는 것도 가능하다. 이 경우 상기 중심부에 구비되는 발광소자 칩(3612'')은 그 양측에 구비되는 발광소자 칩(3612) 보다 1.5배 내지 2배 긴 길이를 가질 수 있으며, 녹색 LED인 것이 바람직하나 이에 한정하는 것은 아니다.
상기 발광소자 칩(3612)은 금속 와이어(3619)를 통해 와이어 본딩 방식으로 상기 기판(3611)의 상부면에 패터닝되는 상기 연결단자(3613)와 전기적으로 연결된다.
본 발명의 일 실시예에 따른 발광소자 패키지(3600)를 도시하는 도61(a) 및 도61(b)에서와 같이, 상기 기판(3610)은 그 상부면에 상기 발광소자 칩(3612) 및 연결단자(3613)가 내부에 실장되며, 상기 발광소자 칩(3612) 및 연결단자(3613)를 향해 하향경사지는 내주면을 따라 반사면(3616)을 이루는 캐비티(3618)를 구비한다. 상기 캐비티(3618)는 레이저 혹은 에칭(etching)을 통해 상기 기판(3611)의 상부면을 소정 크기로 함몰형성하여 구비되거나, 상기 기판(3611)의 상부면 테두리를 따라서 수지(3617)를 소정 높이로 몰딩함으로써 상기 반사면(3616)을 돌출형성하여 구비될 수 있다. 바람직하게, 상기 반사면(3616)의 보다 효율적인 구현을 위해 상기 반사면(3616)의 표면에는 고반사율을 갖는 반사막이 더 구비될 수 있다.
그리고, 상기 캐비티(3618)는 형광체를 함유하는 수지층(3614)에 의해 충진되어 상기 발광소자 칩(3612), 금속 와이어(3619), 연결단자(3613)와 함께 상기 기판(3611)의 상부면을 일체로 덮어 밀봉함으로써 상기 캐비티(3618) 내에 배치되는 상기 발광소자 칩(3612) 등을 보호한다. 이때, 상기 발광소자 패키지(3600)는 상기 발광소자 칩(3612) 사이의 간격을 포함하여 상기 발광소자 칩(3612)의 상부면과 측면이 상기 수지층(3614)에 의해 밀봉되도록 한다.
따라서, 종래의 발광소자 패키지에서 연속적으로 배치되는 발광소자 칩의 상부면에만 형광체를 도포함으로써 칩들 사이의 간격에 의해 조사되는 광이 연속적이지 않고 불연속적으로 분리되어 보이는 문제를 해결할 수 있다.
한편, 본 발명의 다른 실시예에 따른 발광소자 패키지(3600-1)를 도시하는 도77(a) 및 도77(b)에서와 같이, 상기 기판(3611)의 평탄한 상부면에는 상기 수지층(3614)이 소정 크기 및 높이로 몰딩되어 상기 발광소자 칩(3612)과 상기 연결단자(3613)를 일체로 덮어 밀봉한다. 이 경우에도 마찬가지로 상기 발광소자 패키지(3600-1)는 상기 발광소자 칩(3612) 사이의 간격을 포함하여 상기 발광소자 칩(3612)의 상부면과 측면이 상기 수지층(3614)에 의해 밀봉되도록 한다.
다음으로, 도63 및 도64를 참조하여 수지층 상부에 형성되며, 형광체를 함유하여 상기 발광소자 칩에서 방출된 빛의 파장을 변환하는 형광층을 구비하는 구조 에 관한 발광소자 패키지에 대해 설명한다.도63(a)는 도61(a)에서 도시하는 발광소자 패키지의 다른 실시예를 나타내는 평면도이고, 도 63(b)는 도 63(a)의 발광소자 패키지를 나타내는 단면도이며, 도63(c)는 도63(b)의 변형예를 나타내는 단면도이다.
도63에서 도시하는 발광소자 패키지(3600-2)는 그 구성이 도63의 실시예와 실질적으로 동일하다. 다만, 형광체를 함유하는 형광층이 상기 수지층의 상부에 구비되는 점에서 차이가 있으므로, 도61의 실시예와 동일한 부분에 대한 설명은 생략하고 도63의 실시예에서 달라지는 구성에 대해서만 상술하기로 한다.
도63에 도시된 바와 같이, 상기 캐비티(3618)에 충진되어 상기 발광소자 칩(3612), 금속 와이어(3619), 연결단자(3613)와 함께 상기 기판(3611)의 상부면을 일체로 덮어 밀봉하는 상기 수지층(3614)은 형광체를 함유하지 않는다.
다만, 상기 수지층(3614)은 도61의 실시예에서와 마찬가지로 상기 발광소자 칩(3612) 사이의 간격을 포함하여 상기 발광소자 칩(3612)의 상부면과 측면을 상기 연결단자(3613)와 함께 일체로 밀봉하는 점에서는 동일하다. 상기 수지층(3614)은 상부에 형광체를 함유하여 상기 발광소자 칩(3612)에서 방출된 빛의 파장을 변환하는 형광층(3615)을 구비한다. 상기 형광층(3615)은 상기 수지층(3614)의 상부에 구비되는데, 상기 수지층(3614)의 외측면에 도포되어 구비될 수 있으며, 상기 수지층(3614)의 외측면에 레이어 형태로 부착되어 구비될 수도 있다. 이 경우 상기 형광층(3615)은 하나 이상이 레이어가 적층되어 구비는 것이 바람직하다.
도63(b)에서와 같이, 상기 형광층(3615) 내에는 빛의 파장을 변환하기 위해 형광체가 분산되어 함유되는데, 상기 형광체는 청색, 녹색, 적색 및 황색 형광체 중 적어도 하나 이상의 형광체가 혼합되어 함유될 수 있다. 또한, 도63(c)에서와 같이 다층 구조(도면에서는 3개의 층으로 적층되는 구조를 도시하고 있으나 이에 한정하는 것은 아님)로 적층되는 경우 상기 적층되는 형광층(3615)은 모두 동일한 형광체를 함유하거나 각 층별로 상이한 형광체를 함유할 수 있다. 그리고, 상기 적층되는 형광층(3615)은 짧은 파장의 형광층이 상부에 위치하고, 긴 파장의 형광층이 하부에 위치하도록 파장의 길이에 따라 순차적으로 적층되는 것이 바람직하다.
예를 들어, 상기 발광소자 칩(3612)이 UV 발광소자 칩인 경우 상기 발광소자 칩(3612)위에 형성되는 제1 형광층(3615'-1)은 적색광(R)을 방출하는 형광체와 수지가 혼합되어 이루어질 수 있다. 상기 적색광(R)을 방출하는 형광체로는 자외선에 의해 여기되어 600㎚ ~ 700㎚ 범위의 발광피크를 갖는 광을 방출하는 형광물질이 사용될 수 있다. 상기 제2 형광층(3615'-2)은 상기 제1 형광층(3615'-1) 위에 적층되며, 녹색광(G)을 방출하는 형광체와 수지가 혼합되어 이루어질 수 있다. 상기 녹색광을 방출하는 형광체로는 자외선에 의해 여기되어 500㎚ ~ 550㎚ 범위의 파장을 가진 광을 방출하는 형광물질이 사용될 수 있다. 상기 제3 형광층(3615'-3)은 상기 제2 형광층(3615'-2) 위에 적층되며, 청색광(B)을 방출하는 형광체와 수지가 혼합되어 이루어질 수 있다. 상기 청색광을 방출하는 형광체로는 자외선에 의해 여기되어 420㎚ ~ 480㎚ 범위의 파장을 가진 광을 방출하는 형광물질이 사용될 수 있다.
상기한 구성을 통해 UV 발광다이오드 칩에서 방출된 자외선은 제1 형광층(3615'-1), 제2 형광층(3615'-2) 및 제3 형광층(3615'-3) 내에 함유된 서로 다른 종류의 형광체들을 여기시키게 된다. 이에 따라 각 형광층으로부터 적색광(R), 녹색광(G) 및 청색광(B)이 각각 방출되고, 이러한 세 가지 색상의 광이 조합되어 백색광(W)을 형성하게 되는 것이다. 특히, 자외선을 형광 전환하기 위한 형광층을 다층, 즉 3층으로 형성하되, 가장 긴 파장의 광, 즉 적색광(R)을 방출하는 제1 형광층(3615'-1)을 UV 발광다이오드 칩(3612)위에 먼저 적층하고, 그 위에 보다 짧은 파장의 광, 즉 녹색광(G)과 청색광(B)을 방출하는 제2 형광층(3615'-2) 및 제3 형광층(3615'-3)들을 순차적으로 적층한다.
이와 같이 광전환 효율이 가장 낮은 적색광(R)을 방출하는 형광체가 함유된 제1 형광층(3615'-1)이 UV 발광다이오드 칩(3612)에 가장 가까이 위치함으로써, 제1 형광층에서의 광전환 효율이 상대적으로 높아지게 되고, 이에 따라 발광다이오드 칩(3612)의 전체적인 광전환 효율이 향상될 수 있다.
만일, 상기 발광소자 칩(3612)이 여기광으로서 420㎚ ~ 480㎚ 범위의 파장을 가진 청색광(B)을 방출하는 발광소자 칩인 경우, 상기 발광소자 칩(3612) 위에 형성되는 제1 형광층(3615'-1)은 적색광(R)을 방출하는 형광체와 수지가 혼합되어 이루어고, 상기 제1 형광층(3615'-1) 위에 적층되는 제2 형광층(3615'-2) 및 제3 형광층(3615'-3)은 수지에 녹색광(G) 또는 황색광(Y)을 방출하는 형광체가 혼합되어 이루어진다.
이와 같은 구성을 통해 상기 발광소자 칩(3612)에서 방출된 청색광(B)은 제1 형광층(3615'-1) 내에 함유된 형광체를 여기시켜 적색광(R)을 방출시키고, 제2 형광층(3615'-2)과 제3 형광층(3615'-3) 내에 함유된 형광체를 여기시켜 녹색광(G) 또는 황색광(Y)을 방출시킨다. 이와 같이 다층 형광층으로부터 방출되는 적색광(R)과 녹색광(G)(또는 황색광(Y))과 발광소자 칩(3612)에서 발생되는 청색광(B)이 조합되어 백색광(W)이 형성되는 것이다.
한편, 도64(a)는 도62(a)에서 도시하는 발광소자 패키지의 다른 실시예를 나타내는 평면도이고, 도64(b)는 도64(a)의 발광소자 패키지를 나타내는 단면도이며, 도64(c)는 도64(b)의 변형예를 나타내는 단면도이다.
도64에서 도시하는 발광소자 패키지(3600-3)는 그 구성이 도62의 실시예와 실질적으로 동일하다. 다만, 형광체를 함유하는 형광층이 상기 수지층의 외측면에 구비되는 점에서 차이가 있으므로, 도62의 실시예와 동일한 부분에 대한 설명은 생략하고 도64의 실시예에서 달라지는 구성에 대해서만 상술하기로 한다.
도64에 도시된 바와 같이, 상기 기판(3610)의 편평한 상부면에 구비되어 상기 발광소자 칩(3612), 금속 와이어(3619), 연결단자(3613)와 함께 상기 기판(3611)의 상부면을 일체로 덮어 밀봉하는 상기 수지층(3614)은 형광체를 함유하지 않는다. 그리고, 이러한 수지층(3614)은 형광체를 함유하지 않고 상기 수지층(3614)의 상부에 구비되는 형광층(3615) 내에 상기 형광체가 함유되는 점에서 도 65의 실시예와 동일하다.
즉, 도64(b)에서와 같이, 상기 형광층(3615) 내에 함유되는 형광체는 청색, 녹색, 적색 및 황색 형광체 중 적어도 하나 이상의 형광체가 혼합되어 함유될 수 있다. 또한, 도64(c)에서와 같이 다층 구조(도면에서는 3개의 층으로 적층되는 구 조를 도시하고 있으나 이에 한정하는 것은 아님)로 적층되는 경우 상기 적층되는 형광층(3615)은 모두 동일한 형광체를 함유하거나 각 층별로 상이한 형광체를 함유할 수 있다.
그리고, 상기 적층되는 형광층(3615)은 짧은 파장의 형광층이 상부에 위치하고, 긴 파장의 형광층이 하부에 위치하도록 파장의 길이에 따라 순차적으로 적층될 수 있다. 상기 형광층(3615)의 구체적인 구조는 도78(b) 및 도 78(c)의 형광층(3615)과 실질적으로 동일하므로 이에 대한 구체적인 설명은 생략한다.
상기 방열부(3640)는 히트싱크(3641)와 냉각팬(3642)을 포함하며, 상기 발광소자 패키지(3610,3610-1,3610-2,3610-3)가 상부측에 구비되어 상기 발광소자 패키지(3610,3610-1,3610-2,3610-3)에서 발생되는 열을 외부로 방출한다.
구체적으로, 상기 히트싱크(3641)는 상기 발광소자 패키지(3610,3610-1,3610-2,3610-3)를 상부면에 실장하며, 상기 발광소자 패키지(3610,3610-1,3610-2,3610-3)에서 발생하는 고온의 열을 외부로 방출한다. 이때, 넓은 표면적을 가지도록 하부면에 복수개의 홈을 형성할 수 있다. 그리고, 상기 냉각팬(3642)은 상기 히트싱크(3641)의 하부측에 장착되어 상기 히트싱크(3641)의 열 방출 효율을 증가시킬 수 있다.
상기 반사부(3620)는 상기 발광소자 패키지(3610,3610-1,3610-2,3610-3) 및 방열부(3640)의 상부측에 구비되어 상기 발광소자 패키지(3610,3610-1,3610-2,3610-3)에서 출사되는 빛을 유도하여 반사시킨다. 도59 및 도60에 도시된 바와 같이 상기 반사부(3620)는 단면이 돔 형상으로 형성되어 상기 발광소자 칩(3612)에 서 발광되는 빛을 자동차의 전방을 향하도록 안내하며, 전방이 개방된 형상으로 형성되어 상기 반사된 빛이 외부로 출사되도록 한다.
본 발명의 실시예에 따른 차량용 헤드라이트(3600)는 상기 방열부(3640) 및 상기 반사부(3620)를 고정시켜 지지하는 하우징(3650)을 더 포함한다. 구체적으로 상기 하우징(3650)은 일면에 상기 방열부(3640)가 결합하여 장착되기 위한 중앙홀(3653)을 관통형성하며, 상기 면과 일체로 연결되어 직각방향으로 절곡되는 타면에 상기 반사부(3620)가 상기 발광소자 패키지(3610,3610-1,3610-2,3610-3)의 상부측에 위치하도록 고정시키는 전방홀(3652)을 관통형성한다.
따라서, 상기 반사부(3620)의 개방된 전방이 상기 전방홀(3652)과 대응되도록 상기 반사부(3620)가 상기 하우징(3650)에 고정되어 상기 반사부(3620)를 통해 반사된 빛이 상기 전방홀(3652)을 통과하여 외부로 출사되도록 한다.
상기 렌즈부(3630)는 상기 반사부(3620)를 통해 반사되어 출사되는 빛을 외부로 발산시키며, 중공형의 가이드(3632) 및 렌즈(3361)를 포함한다. 구체적으로 상기 가이드(3632)는 상기 하우징(3650)의 전방홀(3652)을 따라 장착되며, 상기 반사부(3620)를 통해 반사되어 상기 전방홀(3652)을 통과하는 빛을 전방으로 안내한다. 상기 가이드(3632)는 상기 렌즈(3631)를 내부에 수용하도록 중공형의 원통구조를 가지며 사출성형을 통해 형성되는 플라스틱 사출물이다.
그리고, 상기 렌즈(3631)는 상기 가이드(3632)의 전방에 장착되어 빛을 자동차의 전방을 향하도록 굴절시켜 분산시키며, 투명한 재질로 형성되는 것이 바람직하다.
상술한 본 발명의 다양한 실시형태의 백라이트 유닛, 차량용 헤드라이트와 같은 조명장치는 본 발명에 따른 발광소자 패키지(백색 발광장치)를 채용하거나, 상술된 산질화물 형광체를 파장변환물질로 채용할 수 있다.
본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니며, 첨부된 청구범위에 의해 한정하고자 한다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다.
도1은 본 발명의 일 실시형태에 따른 백색 발광장치를 나타내는 개략도이다.
도2는 본 발명의 다른 실시형태에 따른 백색 발광장치를 나타내는 개략도이다.
도3은 본 발명의 또 다른 실시형태에 따른 백색 발광장치를 나타내는 개략도이다.
도4는 본 발명에 따른 산질화물 형광체의 바람직한 색좌표 범위를 나타낸 CIE 색좌표계이다.
도5에는 본 발명에 채용되는 녹색 형광체에 대한 스펙트럼이 도시되어 있다.
도6a 및 도6b는 본 발명에 채용되는 적색 형광체에 대한 스펙트럼이 도시되어 있다.
도7a 및 도7b에는 본 발명에 채용되는 황색 또는 황등색 형광체에 대한 스펙트럼이 도시되어 있다.
도8은 본 발명의 일 실시형태에 따른 LED 광원모듈을 개략적으로 나타내는 측단면도이다.
도9는 본 발명의 다른 실시형태에 따른 LED 광원모듈을 개략적으로 나타내는 측단면도이다.
도10a 및 도10b는 각각 본 발명의 실시예1에 따른 Sr2Si4ON6:Eu 형광체로 구현되는 녹색형광체의 여기 스펙트럼 및 발광 스펙트럼이다.
도11은 본 발명의 실시예1에 따른 Sr2Si4ON6:Eu 형광체로 구현되는 녹색형광체의 XRD 스펙트럼을 나타낸 결과이다.
도12는 본 발명에 따른 백색 발광장치에 채용가능한 발광소자의 일 예를 나타낸 측단면도이다.
도13은 본 발명에 따른 백색 발광장치에 채용가능한 발광소자의 다른 예를 나타낸 측단면도이다.
도14 및 도15는 각각 본 발명에 따른 백색 발광장치에 채용가능한 발광소자의 일 예를 나타낸 평면도 및 측단면도이다.
도16은 본 발명에 따른 백색 발광장치에 채용가능한 발광소자의 다른 예를 나타내는 측단면도이다.
도17a 및 도17b는 각각 본 발명의 다른 실시형태에 따른 백색 발광장치의 일 예를 나타내는 사시도 및 단면도이다.
도18a 및 도18b는 각각 본 발명의 다른 실시형태에 따른 백색 발광장치의 다른 예를 나타내는 사시도 및 단면도이다.
도19는 본 발명에 따른 백색 발광장치의 일 예를 나타내는 측단면도이다.
도20은 도19에 도시된 백색 발광장치를 포함하는 LED 광원 모듈을 나타내는 측단면도이다.
도21 및 도22은 각각 본 발명에 따른 백색 발광장치의 다른 예를 나타내는 측단면도이다.
도23는 본 발명에 따른 백색 발광장치 중 다층 구조의 일 예(램프형 구조)를 나타내는 측단면도이다.
도24는 본 발명에 따른 백색 발광장치 중 다층 구조의 다른 예(표면실장형 구조)를 나타내는 측단면도이다.
도25 및 도26는 각각 본 발명에 따른 백색 발광장치에 채용가능한 다층구조의 파장변환부를 설명하기 위한 측단면도이다.
도27 및 도28은 각각 도31에 도시된 파장변환부에서 색변환원리를 설명하기 위한 모식도이다.
도29는 도31에 도시된 백색 밸광장치에 사용될 수 있는 녹색 형광체(제2 형광체)와 적색 형광체(제1 형광체) 간의 에너지 전이를 개략적으로 나타낸 모식도이다.
도30은 본 발명에 따른 백색 발광장치의 일 예를 나타내는 측단면도이다.
도31은 도20에 도시된 백색 발광장치에서 광추출메카니즘을 설명하기 위한 개략도이다.
도32 내지 도34는 본 발명의 다양한 실시형태에 따른 백색 발광장치를 나타내는 측단면도이다.
도35 및 도36은 각각 본 발명의 다른 실시형태에 따른 백색 발광장치의 예를 나타내는 측단면도 및 개략 사시도이다.
도37 및 도39은 도35에 도시된 파장변환부와 제어부의 작동을 통한 색온도를 가변시키는 방법을 설명하기 위한 단면도이다.
도39는 본 발명의 일 실시형태에 따른 면광원장치에서 LED 광원모듈의 배열 구조를 나타내는 개략 평면도이며, 도40a 및 도40b는 도41에서 LED 광원 모듈의 회전 배치 방식을 설명하기 위한 평면도이다.
도42 내지 도44는 각각 본 발명의 다른 실시형태에 따른 면광원장치에서 LED 광원모듈의 배열 구조에 대한 다양한 예를 나타내는 개략 평면도이다.
도45는 본 발명의 일 실시형태에 따른 조명장치를 나타내는 단면도이다.
도46a 및 도46b는 본 발명의 다양한 실시형태에 따른 면광원장치를 나타내는 단면도이다.
도47은 본 발명에 채용가능한 평판형 도광판을 설명하기 위한 개략적인 사시도이다.
도48은 본 발명의 일 실시형태에 따른 백라이트장치를 나타내는 단면도이다.
도49는 본 발명의 다른 실시형태에 따른 백라이트장치(면광원장치)를 나타내는 평면도이다.
도50은 도49에 나타낸 A영역의 기판 체결 전의 단면사시도이며, 도51은 도 49에 나타낸 A영역의 기판 체결후의 단면사시도이다. 도52는 도51의 절단선(II-II')을 따라 본 절단면도이다.
도53은 본 발명의 또 다른 실시형태에 따른 백라이트장치(면광원장치)를 개략적으로 나타내는 평면도이다.
도54은 도3에 도시된 LED 광원 모듈에 실장되는 LED의 조합을 실시예별로 나타내는 사시도이며, 도55는 순방향 전압에 따른 LED의 분포를 나타내는 그래프이 다.
도56 및 도57는 백라이트장치의 LED 광원모듈과 구동 드라이버의 다양한 연결구조에 대한 실시예를 나타낸 평면도이다.
도58는 본 발명에 따른 LED 자동 조광 장치의 구성도이다.
도59는 본 발명의 일 실시형태에 따른 차량용 헤드라이트를 나타내는 분해 사시도이며, 도60는 도59에 도시된 차량용 헤드라이트를 조립한 구조의 단면도이다.
도61 내지 도63은 도59에 도시된 차량용 헤드라이트에 채용될 수 있는 파장변환층을 갖는 관한 발광장치에 대한 다양한 예이다.
도64a는 본 발명에 따른 발광장치의 다른 실시예를 나타내는 평면도이고, 도64b는 도64a의 발광장치를 나타내는 단면도이며, 도64c는 도64a에 도시된 발광장치의 또 다른 변형예를 나타내는 단면도이다.

Claims (44)

  1. MxAyOxN(4/3)y의 조성식으로 표시되는 산질화물(M은 Be, Mg, Ca, Sr, Zn으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅱ족 원소이고, A는 C, Si, Ge, Sn, Ti, Zr, Hf으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅳ족 원소임)을 형광체 모체로서 포함하며,
    상기 조성식에서, x와 y는 1.5≤x≤4 및 0.2≤x/(x+y)≤0.9를 만족하고,
    350㎚∼480㎚ 범위에 피크 파장을 갖는 여기원을 조사하여 500∼560㎚ 범위에 피크 파장을 갖는 광을 방출하는 산질화물 형광체.
  2. 제1항에 있어서,
    상기 형광체는 활성제로서 적어도 1종의 희토류 원소를 포함하며,
    상기 희토류 원소(Re)는, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm 및 Yb으로 구성된 그룹으로부터 선택된 적어도 1종인 것을 특징으로 하는 산질화물 형광체.
  3. 제1항에 있어서,
    상기 산질화물의 조성에서 산소원소(O)에 대한 질소원소(N)의 중량비가 0.3∼0.5인 것을 특징으로 하는 산질화물 형광체.
  4. 제3항에 있어서,
    상기 산질화물은 적어도 일부가 결정구조를 갖는 것을 특징으로 하는 산질화물 형광체.
  5. 제4항에 있어서,
    상기 산질화물의 결정구조는 삼방정계인 것을 특징으로 하는 산질화물 형광체.
  6. 제1항에 있어서,
    상기 Ⅳ족 원소가 Si인 것을 특징으로 하는 산질화물 형광체.
  7. 제6항에 있어서,
    상기 x 및 상기 y는 각각 3, 6이며, 상기 산질화물은 M3Si6O3N8의 조성식으로 표시되는 결정인 것을 특징으로 하는 산질화물 형광체.
  8. MO인 산화물(M은 Be, Mg, Ca, Sr, Zn으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅱ족 원소임)과, A3N4인 질화물(A는 C, Si, Ge, Sn, Ti, Zr, Hf으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅳ족 원소임)을 각 몰비(a,b)의 조건이 1.5≤a≤4, 1.5≤b≤8, 0.2≤a/(a+b)≤0.9를 만족하도록 칭량한 후에 상기 산화물과 상기 질화물을 혼합하여 형광체 원료를 마련하는 단계; 및
    상기 혼합된 형광체 원료를 소성하는 단계를 포함하는 산질화물 형광체 제조방법.
  9. MaAbOcN((2/3)a+(4/3)b-(2/3)c)의 조성식으로 표시되는 산질화물(M은 Be, Mg, Ca, Sr, Zn으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅱ족 원소이고, A는 C, Si, Ge, Sn, Ti, Zr, Hf으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅳ족 원소임)을 형광체 모체로서 포함하며,
    상기 조성식에서, a, b, c는 2≤a≤5, 3≤b≤9, 0.5≤c≤4를 만족하고,
    350㎚∼480㎚ 범위에 피크 파장을 갖는 여기원을 조사하여 500∼560㎚ 범위 에 피크 파장을 갖는 광을 방출하는 산질화물 형광체.
  10. 제9항에 있어서,
    상기 형광체는 활성제로서 적어도 1종의 희토류 원소를 포함하며,
    상기 희토류 원소(Re)는, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm 및 Yb으로 구성된 그룹으로부터 선택된 적어도 1종인 것을 특징으로 하는 산질화물 형광체.
  11. 제9항에 있어서,
    상기 산질화물의 조성에서 산소원소(O)에 대한 질소원소(N)의 중량비가 0.1∼0.5인 것을 특징으로 하는 산질화물 형광체.
  12. 제11항에 있어서,
    상기 산질화물은 적어도 일부가 결정구조를 갖는 것을 특징으로 하는 산질화물 형광체.
  13. 제12항에 있어서,
    상기 산질화물은 삼방정계인 것을 특징으로 하는 산질화물 형광체.
  14. 제9항에 있어서,
    상기 Ⅳ족 원소가 Si인 것을 특징으로 하는 산질화물 형광체.
  15. 제1항 내지 제7항과 제9항 내지 제14항 중 어느 한 항에 있어서,
    상기 산질화물 형광체로부터 방출되는 광의 피크 파장이 535∼545㎚의 범위이고, 상기 광의 반치폭이 60∼80㎚ 범위인 것을 특징으로 하는 산질화물 형광체.
  16. 제1항 내지 제7항과 제9항 내지 제14항 중 어느 한 항에 있어서,
    상기 산질화물 형광체로부터 방출되는 광의 색좌표가 CIE 1941 색좌표계에서 0.2≤x≤0.4, 0.5≤x≤0.7 범위인 것을 특징으로 하는 산질화물 형광체.
  17. 제16항에 있어서,
    상기 산질화물 형광체로부터 방출되는 광의 색좌표가 CIE 1941 색좌표계에서 (0.23,0.58), (0.28, 0.68), (0.37.0.62), (0.32,0.52)를 연결하는 영역 내에 있는 것을 특징으로 하는 산질화물 형광체.
  18. M의 산화물 및 M의 질화물 중 적어도 하나(M은 Be, Mg, Ca, Sr, Zn으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅱ족 원소임)와, A의 산화물 및 A의 질화물 중 적어도 하나(A는 C, Si, Ge, Sn, Ti, Zr, Hf으로 구성된 그룹에서 선택되는 적어도 1종의 Ⅳ족 원소임)을 혼합하여 형광체 원료를 마련하는 단계; 및
    500∼560 ㎚ 범위 내의 발광피크파장을 갖는 산질화물 형광체가 얻어지도록 상기 혼합된 형광체 원료를 1200∼1800℃ 및 분위기 가스압이 1atm∼20atm 범위인 분위기 하에서 소성하는 단계를 포함하는 산질화물 형광체 제조방법.
  19. 제18항에 있어서,
    상기 소성하는 단계 후에, 상기 소성온도보다 낮은 온도와 상기 분위기 가스압보다 낮은 조건에서 상기 소성단계에서 얻어진 산질화물 형광체를 열처리 단계를 더 포함하는 것을 특징으로 하는 산질화물 형광체 제조방법.
  20. 제18항에 있어서,
    상기 형광체는 활성제로서 적어도 1종의 희토류 원소를 포함하며,
    상기 희토류 원소(Re)는, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm 및 Yb으로 구성된 그룹으로부터 선택된 적어도 1종인 것을 특징으로 하는 산질화물 형광체 제조방법.
  21. 제17항 내지 제20항 중 어느 한 항에 있어서,
    상기 산질화물의 조성에서 산소원소(O)에 대한 질소원소(N)의 중량비가 0.1∼0.5인 것을 특징으로 하는 산질화물 형광체.
  22. 350㎚∼480㎚ 범위에 피크 파장을 갖는 여기광을 방출하는 청색 LED 칩;
    상기 청색 LED 칩 주위에 배치되어 상기 여기광의 적어도 일부를 파장변환하며, 제1항 내지 제7항과 제9항 내지 제14항 중 어느 한 항에 따른 산질화물 형광체인 녹색 형광체;
    상기 청색 LED 칩 및 상기 녹색 형광체와 다른 파장의 광을 방출하며, 추가적인 LED 칩 및 다른 종의 형광체 중 적어도 하나에 의해 제공되는 적어도 하나의 발광요소를 포함하는 백색 발광장치.
  23. 제22항에 있어서,
    상기 청색 LED 칩은 430~455nm 범위에 피크파장을 가지며,
    상기 적어도 하나의 발광요소는 적색 형광체를 포함하는 것을 특징으로 하는 백색 발광장치.
  24. 제23항에 있어서,
    상기 적색 형광체의 발광파장 피크는 610∼660nm이고, 상기 녹색 형광체의 발광파장 피크는 500∼560nm인 것을 특징으로 하는 백색 발광장치.
  25. 제24항에 있어서,
    상기 청색 LED 칩은 10~30nm의 반치폭을 갖고, 상기 녹색 형광체는 30~100nm의 반치폭을 갖고, 상기 적색 형광체는 50~150nm의 반치폭을 갖는 것을 특징으로 하는 백색 발광장치.
  26. 제25항에 있어서,
    상기 녹색 형광체의 발광파장피크는 535∼545nm이고, 그 발광파장의 반치폭은 60∼80nm인 것을 특징으로 하는 백색 발광장치.
  27. 제26항에 있어서,
    CIE 1941 색좌표계에서, 상기 적색형광체로부터 방출되는 광의 색좌표는 0.55≤x≤0.65, 0.25≤y≤0.35 범위 내에 있고, 상기 녹색 형광체로부터 방출되는 광의 색좌표는 0.2≤x≤0.4, 0.5≤y≤0.7 범위 내에 있고, 청색 LED 칩으로부터 방출되는 광의 색좌표는 0.1≤x≤0.2, 0.02≤y≤0.15 범위 내에 있는 것을 특징으로 하는 백색 발광장치.
  28. 제24항에 있어서,
    상기 적색 형광체는, M1AlSiNx:Re(1≤x≤5)인 질화물계 형광체, M1D:Re인 황화물계 형광체 및 (Sr,L)2SiO4 - xNy:Eu인 실리케이트계 형광체(여기서, 0<x<4, y=2x/3) 중 선택된 적어도 하나이고,
    여기서, M1는 Ba, Sr, Ca, Mg 중 선택된 적어도 1종의 원소이고, D는 S, Se 및 Te 중 선택된 적어도 1종의 원소이며, L은 Ba, Ca 및 Mg로 구성되는 그룹으로부터 선택된 적어도 하나의 제2족 원소 또는 Li, Na, K, Rb 및 Cs로 구성되는 그룹으로부터 선택된 적어도 하나의 제1 족 원소이고, Re는 Y, La, Ce, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, F, Cl, Br 및 I 중 선택된 적어도 1종인 것을 특징으 로 하는 백색 발광장치.
  29. 제23항에 있어서,
    상기 적어도 하나의 발광요소는 황색 또는 황등색 형광체를 더 포함하는 것을 특징으로 하는 백색 발광장치.
  30. 제28항에 있어서,
    상기 황색 형광체는 실리케이트계 형광체이며, 상기 황등색 형광체는 α-SiAlON:Re인 형광체인 것을 특징으로 하는 백색 발광장치.
  31. 제22항에 있어서,
    상기 적어도 하나의 발광요소는 적색 LED 칩인 것을 특징으로 하는 백색 발광장치.
  32. 제22항에 있어서,
    상기 LED 칩은, 제1 및 제2 전극이 동일한 면을 향하도록 배치된 구조를 갖 는 것을 특징으로 하는 백색 발광장치.
  33. 제22항에 있어서,
    상기 LED 칩은, 제1 및 제2 전극이 각각 서로 반대되는 다른 면을 향하도록 배치된 구조를 갖는 것을 특징으로 하는 백색 발광장치.
  34. 제22항에 있어서, 상기 LED 칩은,
    서로 대향하는 제1 및 제2 주면을 가지며, 각각 상기 제1 및 제2 주면을 제공하는 제1 및 제2 도전형 반도체층과 그 사이에 형성된 활성층을 갖는 반도체 적층체와,
    상기 제1 주면으로부터 상기 활성층을 지나 상기 제2 도전형 반도체층의 일 영역에 연결된 콘택홀과,
    상기 반도체 적층체의 제2 주면 상에 형성되며 상기 제1 도전형 반도체층의 일 영역에 상기 콘택홀을 통해 연결된 제1 전극과,
    상기 반도체 적층체의 제2 주면 상에 형성되며 상기 제2 도전형 반도체층에 연결된 제2 전극을 포함하며,
    상기 제1 및 제2 전극 중 어느 하나가 상기 반도체 적층체의 측방향으로 인출된 구조를 갖는 것을 특징으로 하는 백색 발광장치.
  35. 제22항에 있어서,
    상기 LED 칩이 탑재된 홈부를 갖는 패키지 본체를 더 포함하는 것을 특징으로 하는 백색 발광장치.
  36. 제22항에 있어서,
    상기 LED 칩을 봉지하는 수지 포장부를 더 포함하며,
    상기 복수의 형광체 중 적어도 하나는 상기 수지 포장부 내에 분산되는 것을 특징으로 하는 백색 발광장치.
  37. 제22항에 있어서,
    상기 복수의 형광체는 각각 서로 다른 복수의 형광체 함유 수지층을 형성하며, 상기 복수의 형광체 함유 수지층은 적층된 구조를 갖는 것을 특징으로 하는 백색 발광장치.
  38. 제24항에 있어서,
    상기 백색 발광장치에서 방출되는 백색광의 연색지수(CRI)는 70 이상인 것을 특징으로 하는 발광장치.
  39. 제1항 내지 제7항과 제9항 내지 제14항 중 어느 한 항에 따른 산질화물 형광체를 파장변환물질로 이용하는 면광원 장치.
  40. 도광판; 및
    상기 도광판의 적어도 일 측면에 배치되어 상기 도광판 내부에 광을 제공하는 LED 광원 모듈;을 포함하며,
    상기 LED 광원 모듈은, 회로 기판과, 상기 회로기판에 실장되며 제1항 내지 제7항과 제9항 내지 제14항 중 어느 한 항에 따른 산질화물 형광체를 파장변환물질로 이용하는 복수의 백색 발광장치를 포함하는 것을 특징으로 하는 면광원장치.
  41. 제1항 내지 제7항과 제9항 내지 제14항 중 어느 한 항에 따른 산질화물 형광체를 파장변환물질로 이용하는 디스플레이 장치.
  42. 화상을 표시하기 위한 화상표시패널; 및
    상기 화상표시패널에 광을 제공하는 제38항에 따른 면광원 장치를 갖는 백라이트 유닛을 포함하는 디스플레이 장치.
  43. 제1항 내지 제7항과 제9항 내지 제14항 중 어느 한 항에 따른 산질화물 형광체를 파장변환물질로 이용하는 조명장치.
  44. LED 광원 모듈; 및
    상기 LED 광원 모듈의 상부에 배치되며, 상기 LED 광원 모듈으로부터 입사된 광을 균일하게 확산시키는 확산시트;를 포함하며,
    상기 LED 광원 모듈은, 회로 기판과, 상기 회로기판에 실장되며 제1항 내지 제7항과 제9항 내지 제14항 중 어느 한 항에 따른 산질화물 형광체를 파장변환물질로 이용하는 복수의 백색 발광장치를 포함하는 것을 특징으로 하는 조명장치.
KR1020090135097A 2009-12-31 2009-12-31 발광장치, 면광원장치, 디스플레이 장치 및 조명장치 KR20110078319A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090135097A KR20110078319A (ko) 2009-12-31 2009-12-31 발광장치, 면광원장치, 디스플레이 장치 및 조명장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090135097A KR20110078319A (ko) 2009-12-31 2009-12-31 발광장치, 면광원장치, 디스플레이 장치 및 조명장치

Publications (1)

Publication Number Publication Date
KR20110078319A true KR20110078319A (ko) 2011-07-07

Family

ID=44917794

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090135097A KR20110078319A (ko) 2009-12-31 2009-12-31 발광장치, 면광원장치, 디스플레이 장치 및 조명장치

Country Status (1)

Country Link
KR (1) KR20110078319A (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013032293A2 (ko) * 2011-09-03 2013-03-07 (주)엔티뱅크 엘이디 조명기구
KR20130062773A (ko) * 2011-12-05 2013-06-13 엘지이노텍 주식회사 산질화물 형광체 및 그를 포함한 발광소자 패키지
KR20130066992A (ko) * 2011-12-13 2013-06-21 엘지이노텍 주식회사 산질화물 형광체 및 그를 포함한 발광소자 패키지
KR20130126152A (ko) * 2012-05-11 2013-11-20 엘지이노텍 주식회사 산화질화물계 형광체 조성물 및 그 제조방법
WO2015026033A1 (en) 2013-08-20 2015-02-26 Lg Electronics Inc. Display device using semiconductor light emitting device
KR101877423B1 (ko) * 2011-11-28 2018-07-11 엘지이노텍 주식회사 산질화물 형광체 및 그를 포함한 발광소자 패키지
US10228584B2 (en) 2014-12-29 2019-03-12 Samsung Electronics Co., Ltd. Light source, and back light unit and liquid crystal display including the light source

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013032293A3 (ko) * 2011-09-03 2013-04-25 (주)엔티뱅크 엘이디 조명기구
US8858028B2 (en) 2011-09-03 2014-10-14 New Technology Bank Co., Ltd. LED lighting apparatus
WO2013032293A2 (ko) * 2011-09-03 2013-03-07 (주)엔티뱅크 엘이디 조명기구
KR101877423B1 (ko) * 2011-11-28 2018-07-11 엘지이노텍 주식회사 산질화물 형광체 및 그를 포함한 발광소자 패키지
KR20130062773A (ko) * 2011-12-05 2013-06-13 엘지이노텍 주식회사 산질화물 형광체 및 그를 포함한 발광소자 패키지
KR20130066992A (ko) * 2011-12-13 2013-06-21 엘지이노텍 주식회사 산질화물 형광체 및 그를 포함한 발광소자 패키지
KR20130126152A (ko) * 2012-05-11 2013-11-20 엘지이노텍 주식회사 산화질화물계 형광체 조성물 및 그 제조방법
WO2015026033A1 (en) 2013-08-20 2015-02-26 Lg Electronics Inc. Display device using semiconductor light emitting device
CN105474747A (zh) * 2013-08-20 2016-04-06 Lg电子株式会社 使用半导体发光器件的显示装置
EP3036969A1 (en) * 2013-08-20 2016-06-29 LG Electronics Inc. Display device using semiconductor light emitting device
EP3036969A4 (en) * 2013-08-20 2017-05-03 LG Electronics Inc. Display device using semiconductor light emitting device
US9837388B2 (en) 2013-08-20 2017-12-05 Lg Electronics Inc. Display device using semiconductor light emitting device
KR20150021235A (ko) * 2013-08-20 2015-03-02 엘지전자 주식회사 표시장치
US10228584B2 (en) 2014-12-29 2019-03-12 Samsung Electronics Co., Ltd. Light source, and back light unit and liquid crystal display including the light source
US11226447B2 (en) 2014-12-29 2022-01-18 Samsung Electronics Co., Ltd. Light source, and back light unit and liquid crystal display including the light source

Similar Documents

Publication Publication Date Title
JP5678303B2 (ja) 赤色蛍光体、赤色蛍光体の製造方法、発光素子パッケージ及び照明装置
US11631791B2 (en) Semiconductor light-emitting device
KR101601621B1 (ko) 반도체 발광소자
JP4583348B2 (ja) 発光装置
TWI488339B (zh) 半導體發光裝置
JP5140082B2 (ja) 発光装置
KR20110078319A (ko) 발광장치, 면광원장치, 디스플레이 장치 및 조명장치
US20140104874A1 (en) Phosphor, light emitting device, surface light source device, display device and illumination device
KR20070088848A (ko) 발광장치 및 이를 구비하는 영상표시장치

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid