KR20070048650A - 위치 맞춤 방법, 처리 시스템, 기판의 투입 재현성 계측방법, 위치 계측 방법, 노광 방법, 기판 처리 장치, 계측방법 및 계측 장치 - Google Patents

위치 맞춤 방법, 처리 시스템, 기판의 투입 재현성 계측방법, 위치 계측 방법, 노광 방법, 기판 처리 장치, 계측방법 및 계측 장치 Download PDF

Info

Publication number
KR20070048650A
KR20070048650A KR1020067023753A KR20067023753A KR20070048650A KR 20070048650 A KR20070048650 A KR 20070048650A KR 1020067023753 A KR1020067023753 A KR 1020067023753A KR 20067023753 A KR20067023753 A KR 20067023753A KR 20070048650 A KR20070048650 A KR 20070048650A
Authority
KR
South Korea
Prior art keywords
wafer
measurement
measuring
mark
substrate
Prior art date
Application number
KR1020067023753A
Other languages
English (en)
Inventor
유우키 이시이
신이치 오키타
Original Assignee
가부시키가이샤 니콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 니콘 filed Critical 가부시키가이샤 니콘
Publication of KR20070048650A publication Critical patent/KR20070048650A/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7007Alignment other than original with workpiece
    • G03F9/7011Pre-exposure scan; original with original holder alignment; Prealignment, i.e. workpiece with workpiece holder
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7019Calibration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/682Mask-wafer alignment

Abstract

노광 장치와는 독립적으로 동작하는 인라인 계측기 등에 의해 웨이퍼 (W) 의 피계측면의 에지 및 각 서치 얼라인먼트 마크 (SYM, SθM) 를 검출하고, 그 피계측면에 대략 평행한 2 차원 좌표계로서 웨이퍼 (W) 의 노치 위치에 의해 규정되는 X'Y' 좌표계에서의 서치 마크 (SYM, SθM) 의 위치 좌표를 계측한다. 그리고, 노광 장치에 웨이퍼 (W) 를 투입할 때의 프리얼라인먼트에 있어서, 웨이퍼 (W) 의 에지를 검출하고 그 검출 결과로부터 X'Y' 좌표계에서의 상기 물체의 위치 정보를 계측한다. 또, 프리얼라인먼트의 계측 결과에 기초하여 노광 장치에 로드되는 웨이퍼 (W) 와, 웨이퍼 (W) 상의 서치 마크의 위치를 계측하는 얼라인먼트의 계측 시야에 의한 X'Y' 좌표계에 있어서의 상대 위치를 인라인 계측기 등의 계측 결과에 기초하여 조정한다.
노광 장치, 기판의 투입 재현성, 위치 계측 방법, 포토리소그래피

Description

위치 맞춤 방법, 처리 시스템, 기판의 투입 재현성 계측 방법, 위치 계측 방법, 노광 방법, 기판 처리 장치, 계측 방법 및 계측 장치{ALIGNING METHOD, PROCESSING SYSTEM, SUBSTRATE LOADING REPEATABILITY MEASURING METHOD, POSITION MEASURING METHOD, EXPOSURE METHOD, SUBSTRATE PROCESSING APPARATUS, MEASURING METHOD AND MEASURING APPARATUS}
본 발명은, 위치 맞춤 방법, 처리 시스템, 기판의 투입 재현성 계측 방법, 위치 계측 방법, 노광 방법, 기판 처리 장치, 계측 방법 및 계측 장치에 관한 것으로서, 더욱 상세하게는, 예를 들어, 반도체 소자, 액정 표시 소자, 촬상 소자, 박막 자기 헤드 등을 제조하기 위한 포토리소그래피 공정에 있어서, 회로 패턴을 고정밀도 및 고스루풋으로 형성하기 위한 위치 맞춤 방법 및 처리 시스템, 소정의 기준 위치로 위치 결정되는 기판의 투입 재현성을 계측하는 기판의 투입 재현성 계측 방법, 당해 기판의 투입 재현성 계측 방법을 사용하여 기판의 위치 정보를 계측하는 위치 계측 방법, 당해 위치 계측 방법에 의해 계측된 위치 정보를 사용하여 기판의 위치를 제어하면서 처리를 실시하는 노광 방법 및 기판 처리 장치, 물체 상의 마크의 위치 정보를 계측하는 계측 방법 및 계측 장치에 관한 것이다.
반도체 소자, 액정 표시 소자 등을 제조하기 위한 리소그래피 공정에서는, 마스크 또는 레티클 (이하 「레티클」이라고 총칭한다) 에 형성된 패턴을 투영 광학계를 통하여 레지스트 등이 도포된 웨이퍼 또는 유리 플레이트 등의 기판 (이하, 「웨이퍼」라고 총칭한다) 상에 전사하는 노광 장치, 예를 들면 스텝 앤드 리피트 방식의 축소 투영 노광 장치 (이른바 스테퍼) 나, 이 스테퍼를 개량한 스텝 앤드 스캔 방식의 주사형 투영 노광 장치 (이른바 스캐닝 스테퍼) 등의 축차 (逐次) 이동형 투영 노광 장치 (이하, 「노광 장치」라고 약기한다) 가 주로 사용되고 있다.
반도체 소자 등을 제조하는 경우에는, 상이한 회로 패턴을 웨이퍼 상에 몇 층이고 겹쳐 쌓아서 형성하지만, 각 층간에서의 중첩 정밀도가 나쁘면, 회로 상의 특성에 문제가 생기는 경우가 있다. 이러한 경우, 칩이 소기의 특성을 만족하지 못하고, 최악의 경우에는 그 칩이 불량품이 되어 수율을 저하시킨다. 따라서, 노광 공정에서는, 회로 패턴이 형성된 레티클과, 웨이퍼 상의 각 쇼트 영역에 이미 형성된 패턴을 정확히 중첩시켜 전사하는 것이 중요하다.
이 때문에, 노광 공정에서는, 회로 패턴이 형성된 웨이퍼 상의 복수의 쇼트 영역 각각에 미리 얼라인먼트 마크를 부가 형성해 두고, 재차 노광 공정 (중첩 노광 공정) 을 수행하는 경우에는, 각 얼라인먼트 마크를 임의의 관찰 장치로 관찰하여, 그 얼라인먼트 마크의 위치 (웨이퍼가 탑재되는 웨이퍼 스테이지의 스테이지 좌표계 (그 웨이퍼 스테이지의 이동을 규정하는 좌표계, 통상은 레이저 간섭계의 측장축 (側長軸) 에 의해서 규정되는 좌표계) 상의 좌표값) 를, 그 관찰 결과에 기초하여 계측한다. 이런 다음, 이 계측 결과, 즉 마크의 위치 정보와 미리 알고 있는 레티클 패턴의 투영 위치의 위치 정보 (이것은 사전 측정된다) 에 기초하여, 스테이지 좌표계와, 웨이퍼 상의 복수의 쇼트 영역에 의해서 규정되는 배열 좌표계와의 어긋남이 구해지고, 그 어긋남을 고려하여 각 쇼트 영역과 레티클 패턴의 투영 위치와의 위치 관계를 구하는, 이른바 웨이퍼 얼라인먼트 (파인 얼라인먼트; Fine Alignment) 가 실시된다 (예를 들어, 특허문헌 1∼3 등).
또, 이러한 얼라인먼트 마크 (이하, 「파인 얼라인먼트 마크」라고 부른다) 는, 검출 정밀도를 고도화하는 관점에서 고배율로 관찰되기 때문에, 파인 얼라인먼트 마크를 관찰할 때의 관찰 장치의 관찰 시야는 필연적으로 좁아지게 된다. 그래서, 좁은 관찰 시야에서 그 마크를 확실하게 파악하기 위해, 파인 얼라인먼트 마크의 관찰에 앞서 스테이지 좌표계와 배열 좌표계의 어긋남을 아래와 같이 검출하고 있다.
우선, 적어도 노치 (또는 오리엔테이션 플랫; Orientation Flat) 를 포함하는 웨이퍼의 외연부 (外緣部) 를 검출함으로써, 웨이퍼 스테이지 상에 있어서의 웨이퍼의 방향이나 중심 위치의 어긋남을 러프하게 검출하고, 그 어긋남에 따라서 웨이퍼 위치를 조정한다. 이 검출 동작을, 일반적으로 프리얼라인먼트라고 한다. 즉, 프리얼라인먼트에서는 웨이퍼의 검출 외형에 기초하여 웨이퍼 (W) 의 위치 맞춤을 실시한다.
또한, 웨이퍼 상의 적어도 2군데에는, 관찰 장치에 의해서 저배율로 관찰 가능한 마크, 이른바 서치 얼라인먼트 마크가 쇼트 영역, 파인 얼라인먼트 마크에 부수하여 형성되어 있다. 그래서, 프리얼라인먼트에 의해서 위치 맞춤된 웨이퍼에 대하여 그 프리얼라인먼트의 결과를 기준으로 하여, 즉, 웨이퍼의 외형 기준으 로, 소정의 관찰 장치에 의해 각 서치 얼라인먼트 마크를 관찰한다. 그리고, 그 관찰 결과에 기초하여 각 서치 얼라인먼트 마크의 위치를 검출하고, 각 서치 얼라인먼트 마크의 위치에 기초하여, 웨이퍼의 회전 성분, 오프셋을 산출한다. 이 검출 동작을 일반적으로 서치 얼라인먼트라고 한다. 그리고, 상기 파인 얼라인먼트에서는, 이 서치 얼라인먼트의 결과를 기준으로 하여 파인 얼라인먼트 마크의 계측이 이루어진다.
이와 같이, 종래부터 노광 장치에서는, 고정밀도의 중첩 노광을 실현하기 위해서, 노광전에 프리얼라인먼트, 서치 얼라인먼트, 및 파인 얼라인먼트라는 일련의 얼라인먼트 처리가 실시되고 있다. 각 얼라인먼트 처리는 선행하는 얼라인먼트 처리의 결과를 받아 실시되기 때문에, 선행 얼라인먼트 처리가 양호하게 실시되고 있는 것이 그 얼라인먼트 처리를 높은 정밀도로 실시하기 위한 필수 조건이 된다.
그런데, 복수의 노광 장치를 갖는 기판 처리 공장에서는, 그 프로세스의 스케줄링 형편 상, 중첩 노광을 상이한 노광 장치 사이에서 실시하는 경우도 많다. 이러한 경우에는 이하에 나타내는 항목이, 예를 들어 서치 얼라인먼트 마크의 위치 오차의 요인이 된다. 즉, 전(前)층의 노광을 실시한 노광 장치 (이하, 「전층 노광 장치」로 부른다) 에 있어서의
A. 오프셋 (예를 들어, 약 40㎛)
B. 프리얼라인먼트 및 노광 장치로의 웨이퍼 투입의 재현성 (예를 들어, 3σ = 약 15㎛)
다음 층의 노광을 실시하는 노광 장치 (이하, 「차층 (次層) 노광 장치」라 고 부른다) 에 있어서의
C. 오프셋 (예를 들어, 약 40㎛)
D. 프리얼라인먼트 및 웨이퍼 투입의 재현성 (예를 들어, 3σ = 약 15㎛)
E. 마크 계측을 실시하는 계측 장치의 제조 오차, 마크를 검출하는 광학계의 배율 공차 등 (예를 들어, 약 10㎛) 이다. 이러한 점을 고려하여, 예를 들어 서치 얼라인먼트 마크의 계측을 실시하는 계측 장치의 계측 범위는, 예를 들어 다음과 같이 설정된다.
A+C+√(B2+D2) +E = 133㎛ (±66.5㎛)
그러나, 웨이퍼의 외형에 있어서 웨이퍼의 휨 등에 의해 웨이퍼에 따라서는 약간 편차가 있는 경우도 있어, 프리얼라인먼트에 있어서 웨이퍼의 외형을 검출하고, 외형 기준으로 웨이퍼를 투입하더라도, 웨이퍼마다 서치 마크의 위치에 편차가 있는 경우가 있다. 또한, 웨이퍼 투입시에 웨이퍼를 노광 장치 내에 투입하는 기구의 조정 부족 또는 경시 (經時) 변화 등에 의해서 웨이퍼 투입 재현성이 저하되는 일도 있다. 이러한 점에서, 상기 A.∼E. 의 변동 요인의 영향을 되도록이면 적게 하여, 서치 얼라인먼트 마크 등이 확실하게 계측 장치의 계측 범위내에 위치할 수 있게 하는 것이 요구되고 있다.
또한, 프리얼라인먼트에 의해 위치 맞춤되어, 노광 장치에 투입된 웨이퍼의 투입 재현성의 계측은, 그 노광 장치에 있어서의 프로세스를 일단 정지하고, 정기적인 유지관리에 있어서, 프로세스의 웨이퍼가 아닌 장치 조정용 기준 웨이퍼를 그 노광 장치에 복수회 (예를 들어 60회) 투입함으로써 실시되고 있었다 (예를 들어, 특허문헌 4 참조). 그러나, 이러한 기준 웨이퍼에 의한 투입 재현성의 계측을 실시하기 위해서 프로세스를 중단하는 것은, 스루풋 (throughput) 의 관점에서 보아 반드시 바람직한 것은 아니다. 또한, 상기 유지관리시에만 웨이퍼 투입 재현성의 계측을 실시되고 있는 경우, 그 계측이 실시될 때까지는 웨이퍼 투입 재현성에 이상이 발생한 것을 인지할 수 없기 때문에, 그 사이의 수율이 저하될 우려가 있다.
특허문헌 1: 일본 공개특허공보 소61-44429호
특허문헌 2: 미국 특허 제4,780,617호 명세서
특허문헌 3: 일본 공개특허공보 소62-84516호
특허문헌 4: 일본 공개특허공보 평5-283315호
발명의 개시
과제를 해결하기 위한 수단
상기 사정하에 이루어진 본 발명은, 제 1 관점에서 보아, 물체에 대하여 소정 처리를 실시하는 처리 장치에 적어도 2 개의 마크가 그 피계측면에 형성된 물체를 투입하기 전에, 상기 물체의 피계측면 외연의 적어도 일부 및 상기 각 마크를 검출하고, 그 검출 결과에 기초하여, 상기 피계측면에 대략 평행한 2 차원 좌표계로서 상기 외연 상의 적어도 1 개의 기준점에 의해 규정되는 외형 기준 좌표계에서의 상기 각 마크의 위치 좌표의 계측을 실시하는 사전 계측 공정; 상기 처리 장치에 대하여 상기 물체를 투입할 때에 상기 물체의 위치 맞춤을 실시하기 위해서, 상기 물체의 피계측면 외연의 적어도 일부를 검출하고, 그 검출 결과에 기초하여 상기 외형 기준 좌표계에서의 상기 물체의 위치 정보를 계측하는 본 계측 공정; 및 상기 본 계측 공정의 계측 결과에 기초하여 상기 처리 장치에 투입되는 상기 물체의, 상기 처리 장치 내에 형성되어 상기 물체 상의 상기 각 마크의 위치를 계측하는 마크 계측 장치의 계측 시야에 대한 상기 2 차원 좌표계에 있어서의 상대 위치 관계를, 상기 사전 계측 공정에서의 계측 결과에 기초하여 조정하는 조정 공정을 포함하는 위치 맞춤 방법이다.
여기서, 「외형 기준 좌표계」이란, 물체의 외형을 기준으로 하는 좌표계이다. 예를 들어, 물체의 피계측면에 대략 평행한 2 차원 좌표계로서, 그 물체의 피계측면의 외연 상의 적어도 1 개의 기준점에 의해 규정되는 좌표계이면, 이 외형 기준 좌표계에 포함되는 것으로 한다.
이것에 의하면, 처리 장치로 물체를 투입할 때에, 본 계측 공정에 있어서, 물체의 피계측면 외연의 적어도 일부를 검출하고, 그 검출 결과에 기초하여, 물체의 피계측면에 대략 평행한 2 차원 좌표계로서 상기 물체의 외연 상의 적어도 1 개의 기준점에 의해 규정되는 외형 기준 좌표계에서의 물체의 위치 정보를 계측하고, 그 계측 결과에 기초하여 물체의 위치 맞춤을 실시하는 경우에, 본 계측 공정에 앞서, 사전 계측 공정에 있어서, 물체의 피계측면 외연의 적어도 일부와, 물체의 피계측면 상에 형성된 적어도 2 개의 마크를 검출하고, 그 검출 결과에 기초하여, 외형 기준 좌표계에서의 각 마크의 위치 좌표의 계측을 사전에 실시한다. 또한, 조정 공정에 있어서, 본 계측 공정의 계측 결과에 기초하는 위치 맞춤에 의해 처리 장치에 투입되는 물체와, 물체 상의 상기 각 마크의 위치를 계측하는 마크 계측 장치의 계측 시야의 2 차원 좌표계에 있어서의 상대 위치 관계를 사전 계측 공정에서의 계측 결과에 기초하여 조정한다.
이와 같이 하면, 전층 처리 장치에 있어서의, A. 오프셋 및 B. 프리얼라인먼트 및 처리 장치로의 웨이퍼 투입의 재현성 등에 기인하는 물체의 외형 편차나 외형 기준 좌표계의 상이 등으로 인한 마크 위치의 편차를 사전에 계측하고, 그 계측 결과에 기초하여 마크 계측을 조정할 수 있다. 이 조정에 의해, 처리 장치에 투입된 물체 상의 마크 위치를 마크 계측 장치를 사용하여 계측할 때에는, 그 마크 계측 장치의 계측 시야내에 마크를 반드시 위치시키는 것이 가능하게 되어, 마크 위치를 확실하게 계측할 수 있게 된다. 이 결과, 그 마크 위치의 계측 결과에 기초하여 고정밀도 및 고스루풋의 처리를 실현할 수 있다.
또한, 본 발명은, 제 2 관점에서 보아, 물체에 대하여 소정 처리를 실시하는 처리 장치; 상기 처리 장치에 투입된 상기 물체 상에 형성된 적어도 2 개의 마크의 위치 계측을 실시하는 마크 계측 장치; 상기 처리 장치에, 적어도 2 개의 마크가 그 피계측면에 형성된 물체를 투입하기 전에, 상기 물체의 피계측면 외연의 적어도 일부 및 상기 각 마크를 검출하고, 그 검출 결과에 기초하여, 상기 피계측면에 대략 평행한 2 차원 좌표계로서 상기 물체의 외연 상의 적어도 1 개의 기준점에 의해 규정되는 외형 기준 좌표계에서의 상기 각 마크의 위치 좌표의 계측을 실시하는 사전 계측 장치; 상기 처리 장치에 대하여 상기 물체를 투입할 때의 상기 물체의 위치 맞춤을 실시하기 위해서, 상기 물체의 피계측면 외연의 적어도 일부를 검출하고, 그 검출 결과에 기초하여 상기 외형 기준 좌표계에서의 상기 물체의 위치 정보를 계측하는 외연 계측 장치; 및 상기 외연 계측 장치의 계측 결과에 기초하여 처리 장치에 투입되는 상기 물체의, 상기 마크 계측 장치의 계측 시야에 대한 상기 2 차원 좌표계에 있어서의 상대 위치 관계를, 상기 사전 계측 장치의 계측 결과에 기초하여 조정하는 조정 장치를 구비하는 처리 시스템이다.
이것에 의하면, 물체가 처리 장치에 투입되기 전에, 사전 계측 장치에 의해서 외형 기준 좌표계에서의 물체 상의 마크의 위치 좌표를 계측해 두고, 조정 장치에 의해서, 그 계측 결과에 기초하여 마크 계측 장치의 계측 시야의 위치를 조정하기 때문에, 마크를 그 계측 시야내에 확실하게 위치시킬 수 있다.
본 발명은, 제 3 관점에서 보아, 기판 처리 장치 내에 형성된 기준 위치에 투입되는 기판의 투입 위치의 재현성을 계측하는 기판의 투입 재현성 계측 방법으로서, 디바이스 패턴이 순차적으로 전사되어야 할 복수장의 상기 기판을 상기 기준 위치에 순차적으로 위치 결정하는 위치 결정 공정; 상기 기준 위치에 투입된 상기 기판 상에 형성되어 있는 마크의 위치 정보를, 상기 기판 처리 장치 내에 설치된 계측기로 순차적으로 계측하는 계측 공정; 및 상기 계측 공정의 계측 결과에 기초하여 상기 투입 재현성을 산출하는 산출 공정을 갖는 것을 특징으로 하는 기판의 투입 재현성 계측 방법이다.
이것에 의하면, 기판 처리 (예를 들어, 노광 처리) 중에 통상적으로 실시되는, 기판 (디바이스 패턴이 전사되어야 할 기판) 에 형성된 마크의 위치 정보의 계측 결과를 사용하여 투입 재현성을 계측하도록 하였기 때문에, 종래 기술과 같은 전용의 기준 웨이퍼를 사용할 필요가 없을 뿐만 아니라, 처리를 중단할 필요도 없다. 따라서, 처리 효율을 저하시키지 않고 기판의 투입 재현성을 계측할 수 있게 된다.
본 발명은, 제 4 관점에서 보아, 소정의 기준 위치로 위치 결정된 기판의 위치를 나타내는 위치 정보를 계측하는 위치 계측 방법에 있어서, 본 발명의 기판의 투입 재현성 계측 방법을 사용하여 상기 기준 위치에 배치되는 상기 기판의 투입 재현성을 계측하는 공정과; 상기 투입 재현성의 경향에 따라서 상기 기판의 위치를 조정하면서, 상기 기판에 형성된 마크의 위치 정보를 계측하는 공정을 포함하는 것을 특징으로 하는 위치 계측 방법이다. 이러한 경우에는, 본 발명의 기판의 투입 재현성 계측 방법을 사용하여 기판의 투입 재현성을 계측할 수 있기 때문에, 마크 계측의 처리 효율이 향상된다.
본 발명은, 제 5 관점에서 보아, 기판에 소정의 패턴을 전사하는 노광 방법으로서, 본 발명의 위치 계측 방법을 사용하여 상기 기판의 위치를 나타내는 위치 정보를 구하는 기판 계측 공정과; 상기 기판 계측 공정에서 구한 상기 기판의 위치 정보에 기초하여, 상기 기판의 위치를 제어하면서, 상기 기판에 상기 패턴을 전사하는 전사 공정을 포함하는 노광 방법이다. 이러한 경우에는, 본 발명의 위치 계측 방법을 사용하여 구한 기판의 위치 정보에 의해 그 기판의 위치를 제어하면서 전사를 실시하기 때문에, 고스루풋이면서 고정밀도인 노광을 실현할 수 있다.
본 발명은, 제 6 관점에서 보아, 복수의 기판을 순차적으로 처리하는 기판 처리 장치에 있어서, 상기 기판을 소정의 기준 위치로 순차적으로 위치 결정하는 위치 결정 수단; 상기 기준 위치로 위치 결정된 상기 기판에 형성되어 있는 마크의 위치 정보를 계측하는 계측 수단; 및 상기 계측 수단의 계측 결과에 기초하여, 상기 기판의 투입 재현성을 산출하는 산출 수단을 갖는 것을 특징으로 하는 기판 처리 장치이다. 이것에 의하면, 기판의 투입 재현성을, 실제로 위치 결정된 기판에 형성된 마크의 위치 정보의 계측 결과로부터 실제로 구할 수 있다.
본 발명은, 제 7 관점에서 보아, 그 피계측면에 마크가 형성되어 있는 물체의, 그 피계측면 외연의 적어도 일부를 계측하는 제 1 공정; 상기 마크를 계측하는 제 2 공정; 및 상기 제 1, 제 2 공정에서의 계측 결과에 기초하여, 상기 피계측면에 평행한 2 차원 좌표계로서 상기 외연 상의 적어도 1 개의 기준점에 의해 규정되는 외형 기준 좌표계에서의 상기 마크의 위치 정보를 구하는 제 3 공정을 포함하는 계측 방법이다.
이것에 의하면, 물체의 피계측면 외연의 적어도 일부의 계측 결과와, 마크의 계측 결과에 기초하여, 외연 상의 적어도 1 개의 기준점에 의해 규정되는 외형 기준 좌표계에서의 마크의 위치 정보를 구할 수 있다.
본 발명은, 제 8 관점에서 보아, 물체에 대하여 소정의 처리를 실시하는 처리 장치 내에 그 물체가 투입되기 이전에, 그 물체의 외연의 적어도 일부를 계측하는 제 1 공정과; 상기 제 1 공정의 계측 결과, 및/또는, 그 제 1 공정에서의 계측 결과를 소정의 평가 방법으로 평가한 평가 결과를, 상기 처리 장치에 송신하는 제 2 공정을 포함하는 계측 방법이다.
이것에 의하면, 물체를 처리 장치에 투입하기 전에 그 외연의 적어도 위치를 계측하여, 그 계측 결과 등을 처리 장치에 송신해 둔다. 이와 같이 하면, 처리 장치에서는 그 계측 결과를 고려하여 물체가 투입된 후의 처리를 실시할 수 있다.
본 발명은, 제 9 관점에서 보아, 그 피계측면에 마크가 형성되어 있는 물체의, 그 피계측면 외연의 적어도 일부를 계측하는 제 1 계측 센서; 상기 마크를 계측하는 제 2 계측 센서; 및 상기 제 1, 제 2 계측 센서의 계측 결과에 기초하여, 상기 피계측면에 평행한 2 차원 좌표계로서 상기 외연 상의 적어도 1 개의 기준점에 의해 규정되는 외형 기준 좌표계에서의 상기 마크의 위치 정보를 구하는 연산 유닛을 구비하는 계측 장치이다.
이것에 의하면, 제 1 계측 센서에 있어서의 물체의 피계측면 외연의 적어도 일부의 계측 결과와, 제 2 계측 센서에 있어서의 마크의 계측 결과에 기초하여, 외연 상의 적어도 1 개의 기준점에 의해 규정되는 외형 기준 좌표계에서의 마크의 위치 정보를 구할 수 있다.
본 발명은, 제 10 관점에서 보아, 물체에 대하여 소정의 처리를 실시하는 처리 장치의 외부에 배치되고, 그 물체가 그 처리 장치에 투입되기 이전에, 그 물체의 외연의 적어도 일부를 계측하는 센서와; 상기 센서의 계측 결과, 및/또는, 그 센서의 계측 결과를 소정의 평가 방법으로 평가한 평가 결과를 상기 처리 장치에 송신하는 송신 유닛을 구비하는 것을 특징으로 하는 계측 장치이다.
이것에 의하면, 물체를 처리 장치에 투입하기 전에, 센서에 의해서 그 외연의 적어도 위치를 계측하고, 그 계측 결과나 평가 결과 등을 송신 유닛에 의해서 처리 장치에 송신해 둔다. 이와 같이 하면, 처리 장치에서는 그 계측 결과를 고려하여 물체가 투입된 후의 처리를 실시할 수 있다.
도 1 은 본 발명의 일 실시형태에 관련된 처리 시스템의 개략적인 구성을 나타내는 블록도이다.
도 2 는 본 발명의 일 실시형태에 관련된 노광 장치의 개략적인 구성을 나타내는 도이다.
도 3(a) 는 웨이퍼 스테이지 및 웨이퍼 홀더를 나타내는 사시도이다.
도 3(b) 는 웨이퍼 스테이지 및 웨이퍼 홀더를 나타내는 평면도이다.
도 3(c) 는 웨이퍼 스테이지 및 웨이퍼 홀더를 -Y 측에서 보았을 때의 도 (일부 단면) 이다.
도 4 는 웨이퍼 반송계와 프리얼라인먼트계를 나타내는 사시도이다.
도 5 는 계측 유닛의 내부 구성을 간략화하여 나타내는 도이다.
도 6(a) 는 노치 웨이퍼에 있어서의 계측 유닛에 의한 계측 위치를 나타내는 도이다.
도 6(b) 는 오리엔테이션 플랫이 형성되어 있는 웨이퍼에 있어서의 계측 유닛에 의한 계측 위치를 나타내는 도이다.
도 7 은 기판 처리 장치의 전체 구성을 개략적으로 나타내는 도이다.
도 8(a) 는 인라인 계측기의 구성을 개략적으로 나타내는 사시도이다.
도 8(b) 는 인라인 계측기의 구성을 나타내는 블록도이다.
도 9 는 본 발명의 일 실시형태의 웨이퍼 프로세스의 흐름을 나타내는 플로우차트이다.
도 10 은 웨이퍼의 중심 위치와 회전량의 산출 방법을 나타내는 도이다.
도 11 은 웨이퍼의 중심 위치와 회전량의 산출 처리를 나타내는 플로우차트이다.
도 12(a) 는 투입 아암의 하강 동작의 속도 분포를 나타내는 도이다.
도 12(b) 는 센터 테이블의 하강 동작의 속도 분포를 나타내는 도이다.
도 13 은 웨이퍼 상의 서치 얼라인먼트 마크 등의 형성 위치를 나타내는 도이다.
도 14 는 본 발명의 일 실시형태에 있어서의 파이프라인 처리를 설명하기 위한 도이다.
도 15(a) 는 본 발명의 일 실시형태에 있어서의 사전 계측 처리 및 프리얼라인먼트 최적화의 시퀀스를 나타내는 (제 1) 플로우차트이다.
도 15(b) 는 프리얼라인먼트 최적화 시퀀스의 (제 2) 플로우차트이다.
도 16 은 본 발명의 일 실시형태에 있어서의 사전 계측 처리 및 프리얼라인먼트 최적화의 시퀀스를 나타내는 (제 3) 플로우차트이다.
도 17(a) 는 인라인 계측기에 있어서의 웨이퍼의 에지 계측의 모습을 나타내는 (제 1) 도이다.
도 17(b) 는 인라인 계측기에 있어서의 웨이퍼의 에지 계측의 모습을 나타내는 (제 2) 도이다.
도 17(c) 는 인라인 계측기에 있어서의 웨이퍼의 에지 계측의 모습을 나타내는 (제 3) 도이다.
도 18(a) 는 서치 마크의 위치 어긋남량을 모식적으로 나타내는 도이다.
도 18(b) 는 서치 마크 계측 시야의 보정의 상태를 나타내는 도이다.
도 19 는 웨이퍼 투입 재현성 계측의 조건 설정 시퀀스를 나타내는 플로우차트이다.
도 20 은 투과 조명 방식 센서의 구성의 일례를 나타내는 도이다.
도 21 은 다른 재현성 계측 방법에 적합한 노광 장치의 개략 구성을 나타내는 도이다.
도 22 는 웨이퍼를 수수 (授受) 기구의 구성의 개략을 나타내는 사시도이다.
도 23(a) 는 제 1 프리얼라인먼트 장치의 개략 구성을 나타내는 도이다.
도 23(b) 는 웨이퍼 위치 조정을 설명하기 위한 도이다.
도 24(a) 는 제 2 프리얼라인먼트 장치가 구비하는 화상 처리 장치의 배치를 나타내는 (제 1) 도이다.
도 24(b) 는 제 2 프리얼라인먼트 장치가 구비하는 화상 처리 장치의 배치를 나타내는 (제 2) 도이다.
도 25 는 화상 처리 장치의 개략 구성을 나타내는 (제 1) 측면도이다.
도 26 은 화상 처리 장치의 개략 구성을 나타내는 (제 2) 측면도이다.
도 27 은 이 노광 장치의 처리를 나타내는 플로우차트이다.
도 28 은 웨이퍼의 위치 결정 재현성 계측에 관한 조건 설정의 상세한 내용 을 나타내는 플로우차트이다.
도 29 는 조정 아암으로부터 센터 테이블에 웨이퍼를 건네줄 때의 조정 아암의 하강 동작의 일례를 나타내는 도이다.
도 30 은 센터 테이블로부터 웨이퍼 홀더에 웨이퍼를 건네줄 때의 센터 테이블의 하강 동작의 일례를 나타내는 도이다.
도 31(a) 는 제 2 프리얼라인먼트 장치가 구비하는 화상 처리 장치의 다른 배치를 나타내는 (제 1) 도이다.
도 31(b) 는 제 2 프리얼라인먼트 장치가 구비하는 화상 처리 장치의 다른 배치를 나타내는 (제 2) 도이다.
도 32 는 화상 처리 장치의 다른 개략 구성을 나타내는 측면도이다.
도 33 은 화상 처리 장치의 다른 개략 구성을 나타내는 측면도이다.
발명을 실시하기 위한 최선의 형태
이하, 본 발명의 일 실시형태를 도 1∼도 19 에 기초하여 설명한다. 도 1 에는, 본 발명에 관련된 위치 맞춤 방법이 실시되는 일 실시형태의 처리 시스템 (100) 의 전체 구성이 개략적으로 나타나 있다.
이 처리 시스템 (100) 은, 물체로서의 반도체 웨이퍼나 유리 플레이트 등의 기판 (이하, 총칭하여 「웨이퍼 (W) 」라고 한다.) 을 처리하여, 마이크로 디바이스 등의 장치를 제조하는 「기판 처리 공장」에 설치되어 있다. 도 1 에 나타내는 바와 같이, 처리 시스템 (100) 은, 레이저 광원 등의 광원을 구비한 노광 장 치 (200), 그 노광 장치 (200) 에 인접하여 배치된 도포 현상 장치 (300; 이하, 「트랙」이라고 부르기로 한다) 를 구비하고 있다. 트랙 (300) 내에는 인라인 계측기 (400) 가 설치되어 있다.
이 노광 장치 (200) 및 트랙 (300) 의 조합에 관해서는, 이것을 일체로서 기판 처리 장치라고 간주할 수 있다. 기판 처리 장치에서는, 웨이퍼 상에 포토레지스트 등의 감광제를 도포하는 도포 공정, 감광제가 도포된 웨이퍼 상에 마스크 또는 레티클의 패턴을 전사하는 노광 공정, 및 노광 공정이 종료된 웨이퍼를 현상하는 현상 공정 등을 실시한다. 이 중, 도포 공정 및 현상 공정은 트랙 (300) 에 의해 실시되고, 노광 공정은 노광 장치 (200) 에 의해 실시된다.
기판 처리 장치에 있어서, 노광 장치 (200) 및 트랙 (300) 은 서로 인라인 접속되어 있다. 여기서의 인라인 접속이란, 장치간 및 각 장치 내의 처리 유닛 사이를, 로봇 아암이나 슬라이더 등의 웨이퍼를 자동 반송 (搬送) 하는 반송 장치를 통하여 접속하는 것을 의미한다.
또, 도 1 에서는, 지면 관계 상, 기판 처리 장치를 1 개밖에 도시하고 있지 않지만, 실제로는, 처리 시스템 (100) 에는 복수대의 기판 처리 장치가 설치되어 있다. 즉, 처리 시스템 (100) 에서는, 노광 장치 (200) 와 트랙 (300) 이 복수대 설치되어 있다.
또한, 처리 시스템 (100) 은, 각 노광 장치 (200) 에 의해 실시되는 노광 공정을 집중적으로 관리하는 노광 공정 관리 컨트롤러 (500), 각종 연산 처리나 해석 처리를 실시하는 해석 시스템 (600), 기판 처리 공장내의 각 장치를 전체적으로 관 리하는 공장내 생산 관리 호스트 시스템 (700), 및 오프라인 계측기 (800) 를 구비하고 있다.
이 처리 시스템 (100) 을 구성하고 있는 각 장치 중, 적어도 각 기판 처리 장치 (200, 300) 및 오프라인 계측기 (800) 는 온도 및 습도가 관리된 클린룸내에 설치되어 있다. 또한, 각 장치는, 기판 처리 공장내에 부설된 LAN (Local Area Network) 등의 네트워크 또는 전용 회선 (유선 또는 무선) 을 통하여 접속되어 있고, 이들 사이에서 적절히 데이터 통신을 할 수 있도록 되어 있다.
인라인 계측기 (400) 는 노광 장치 (200) 와는 독립적으로 동작하는 장치로서, 나중에 상세히 서술하지만, 트랙 (300) 내에 배치되는 복수의 처리 유닛 중의 하나로서 설치되어 있고, 노광 장치 (200) 에 웨이퍼를 투입하기 전에, 미리 웨이퍼에 관한 각종 정보를 계측하는 장치이다. 오프라인 계측기 (800) 는 다른 장치와는 독립적으로 설치된 계측 장치로서, 이 처리 시스템 (100) 에 관해서 단일 또는 복수 설치되어 있다. 이 오프라인 계측기 (800) 도 인라인 계측기 (400) 에서의 계측 결과를 받아들일 수 있도록, 상기 서술한 네트워크 또는 전용 회선을 통하여 접속되어 있다. 또, 본 도 1 에서는, 웨이퍼에 대하여 오프라인으로 소정 처리를 실시하는 장치로서 오프라인 계측기 (800) 를 예시하고 있다. 이 오프라인 계측기의 일례로서, 노광 장치에서 노광 형성된 중첩 마크를 계측하여 중첩 상태를 계측하는 중첩 계측기나, 패턴의 선폭을 계측하는 선폭 계측기 등을 들 수 있으나, 소정 처리를 실시하는 장치로서 이들 계측 장치에 한정되는 것은 아니다. 예를 들어, 이 오프라인 계측기 (800) 대신에, 또는 이것에 추가하여, 기판 상을 촬상하여 얻어진 화상 데이터에 기초하여 기판 상의 결함의 유무를 검사하는 검사 장치나, 기판 상에 노광 형성된 회로 패턴의 전기적 (동작적) 인 이상 (異常) 판별을 위해 실제로 통전 시험해 보는 시험 장치나, 또는 기판 상에 노광 형성된 회로 패턴을 레이저를 사용하여 수복 (修復) 처리하는 레이저 리페어 (repair) 장치 등을 본 리소그래피 시스템의 일부로서 구성하도록 해도 된다.
[노광 장치]
노광 장치 (200) 는, 본 실시형태에서는 스텝 앤드 스캔 방식의 투영 노광 장치 (주사형 노광 장치) 인 것으로 한다. 도 2 에는, 노광 장치 (200) 의 개략 구성이 모식적으로 나타나 있다. 도 2 에 나타내는 바와 같이, 이 노광 장치 (200) 는, 조명계 (12), 레티클 (R) 를 홀딩 (holding) 하는 레티클 스테이지 (RST), 투영 광학계 (PL), 투입되는 대략 원형인 웨이퍼 (W) 가 탑재되는 스테이지로서의 웨이퍼 스테이지 (WST) 및 이들의 제어계 등을 구비하고 있다.
조명계 (12) 는, 예를 들어, 일본 공개특허공보 2001-313250호 (대응 미국 특허출원공개 제2003/0025890호 명세서) 등에 개시된 것과 같이, 도 1 에도 나타내는 레이저 광원과, 옵티컬 인터그레이터 (플라이아이 렌즈, 내면 반사형 인터그레이터, 또는 회절 광학 소자 등) 등을 포함하는 조도 균일화 광학계, 릴레이 렌즈, 가변 ND 필터, 레티클 블라인드 및 다이크로익 미러 등 (모두 도시 생략) 으로 이루어지는 조명 광학계를 포함하여 구성되어 있다. 이 조명계 (12) 에서는, 회로 패턴 등이 그려진 레티클 (R) 상의 레티클 블라인드에 의해 규정된 슬릿형상의 조명 영역 (IAR) 을 조명광 (IL) 에 의해 대략 균일한 조도로 조명한다. 여기 서, 조명광 (IL) 으로는, KrF 엑시머 레이저광 (파장 248㎚) 등의 원자외광, ArF 엑시머 레이저광 (파장 193㎚), 또는 F2 레이저광 (파장 157㎚) 등의 진공 자외광 등이 사용된다. 조명광 (IL) 으로서, 초고압 수은 램프로부터의 자외역의 휘선 (g 선, i 선 등) 을 사용하는 것도 가능하다. 또, 조명계 (12) 내의 각 구동부, 즉, 가변 ND 필터, 레티클 블라인드 등은 주제어 장치 (20) 에 의해서 제어된다. 또한, 본 국제 출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내 법령이 허용하는 한도 내에서, 상기 공보 및 대응하는 미국 특허출원공개 명세서 또는 미국 특허에 있어서의 개시를 원용하여 본 명세서 기재의 일부로 한다.
상기 레티클 스테이지 (RST) 는 레티클 베이스반 (13) 상에 배치되고, 그 상면에는 마스크로서의 레티클 (R) 이, 예를 들어, 진공 흡착에 의해 고정되어 있다. 레티클 스테이지 (RST) 는, 예를 들어, 리니어 모터, 보이스 코일 모터 등을 포함하는 도시하지 않은 레티클 스테이지 구동부에 의해서 조명계 (12) 의 광축 (후술하는 투영 광학계 (PL) 의 광축 (AX) 에 일치) 에 수직인 평면내 (XY 평면내) 에서 2 차원적으로 (X 축 방향, 이것과 직교하는 Y 축 방향 및 XY 평면에 직교하는 Z 축 둘레의 회전 방향 (θz 방향) 으로) 미소 구동이 가능함과 함께, 소정의 주사 방향 (여기서는 Y 축 방향으로 한다) 으로 지정된 주사 속도에 의해 구동 가능하게 되어 있다. 이 레티클 스테이지 (RST) 는, 레티클 (R) 의 전체면이 적어도 조명계 (12) 의 광축을 횡단할 수 있을 만큼의 Y 축 방향의 이동 스트로크를 가지고 있다.
레티클 스테이지 (RST) 의 측면에는 경면 (鏡面) 가공이 실시되고, 레티클 레이저 간섭계 (16; 이하, 「레티클 간섭계」라고 한다) 로부터의 간섭계 빔을 반사하는 반사면이 형성되어 있다. 레티클 간섭계 (16) 에서는, 그 반사면으로부터의 복귀광과 도시하지 않은 레퍼런스부로부터의 복귀광을 간섭시켜 그 간섭광의 광전 변환 신호에 기초하여, 레티클 스테이지 (RST) 의 스테이지 이동면 (XY 평면) 내의 위치 (θz 회전을 포함) 를, 예를 들어, 0.5∼1㎚ 정도의 분해능으로 상시 검출하고 있다. 이 레티클 간섭계 (16) 의 측장축은, 실제로는 주사 방향으로 적어도 2축, 비주사 방향으로 적어도 1축 형성되어 있다.
레티클 간섭계 (16) 로부터의 레티클 스테이지 (RST) 의 위치 정보는, 스테이지 제어 장치 (19) 및 이것을 통하여 주제어 장치 (20) 로 보내지고, 스테이지 제어 장치 (19) 에서는, 주제어 장치 (20) 로부터의 지시에 따라서, 레티클 스테이지 (RST) 의 위치 정보에 기초하여 레티클 스테이지 구동부 (도시 생략) 를 통해 레티클 스테이지 (RST) 를 구동한다.
투영 광학계 (PL) 는 레티클 스테이지 (RST) 의 도 1 에 있어서의 하방에 배치되고, 그 광축 (AX) (조명 광학계의 광축에 일치) 의 방향이 Z 축 방향으로 되어 있다. 이 투영 광학계 (PL) 로는, 예를 들어 양측 텔레센트릭이고, 광축 (AX) 방향을 따라서 소정 간격으로 배치된 복수 장의 렌즈 엘리먼트로 이루어지는 굴절 광학계가 사용되고 있다. 이 투영 광학계 (PL) 의 투영 배율은 예를 들어 1/5 (또는 1/4) 등이다.
이 때문에, 조명계 (12) 로부터의 조명광 (IL) 에 의해 레티클 (R) 의 조명 영역 (IAR) 이 조명되면, 이 레티클 (R) 을 통과한 조명광 (IL) 에 의해, 투영 광 학계 (PL) 를 통하여 조명 영역 (IAR) 의 레티클 (R) 의 회로 패턴의 축소 이미지 (부분 도립 이미지) 가 표면에 레지스트 (감광제) 가 도포된 웨이퍼 (W) 상에 형성된다.
웨이퍼 스테이지 (WST) 는, 투영 광학계 (PL) 의 도 1 에 있어서의 하방에 배치된 웨이퍼 베이스반 (17) 상에 배치되고, 이 웨이퍼 스테이지 (WST) 상에는 웨이퍼 홀더 (18) 가 탑재되어 있다. 이 웨이퍼 홀더 (18) 상에는 웨이퍼 (W) 가 진공 흡착 홀딩되어 있다. 웨이퍼 홀더 (18) 는 도시하지 않은 구동부에 의해, 투영 광학계 (PL) 의 최량 (最良) 결상면에 대하여 임의 방향으로 경사 가능하고, 또한 투영 광학계 (PL) 의 광축 (AX) 방향 (Z 축 방향) 으로 미동 (微動) 할 수 있도록 구성되어 있다. 또한, 이 웨이퍼 홀더 (18) 는 Z 축 둘레의 회전 동작도 가능하게 되어 있다.
웨이퍼 스테이지 (WST) 는 주사 방향 (Y 축 방향) 의 이동뿐만 아니라, 웨이퍼 (W) 상의 복수의 쇼트 영역 (구획 영역) 각각을 노광 영역 (IA) 에 대하여 상대 이동하여 주사 노광을 실시할 수 있도록 주사 방향에 직교하는 비주사 방향 (X 축 방향) 으로도 이동 가능하게 구성되어 있고, 웨이퍼 (W) 상의 각 쇼트 영역을 주사 (스캔) 노광하는 동작과, 다음 쇼트의 노광을 위한 가속 개시 위치까지 이동하는 동작을 반복하는 스텝 앤드 스캔 동작을 실시한다. 이 스텝 앤드 스캔 동작에 관해서는 후술한다.
웨이퍼 스테이지 (WST) 는, 웨이퍼 구동 장치 (15) 에 의해 X 축 및 Y 축의 2 차원 방향으로 구동된다. 웨이퍼 구동 장치 (15) 는, 웨이퍼 스테이지 (WST) 를 X 축 방향으로 구동하는 X 축 리니어 모터와, 그 X 축 리니어 모터의 고정자인 X 축 리니어 가이드와 일체적으로 웨이퍼 스테이지 (WST) 를 Y 축 방향으로 구동하는 한 쌍의 Y 축 리니어 모터의 합계 3 개의 리니어 모터를 포함하여 구성되지만, 도 2 에 있어서는, 도시의 편의상 블록으로 나타내고 있다.
웨이퍼 스테이지 (WST) 의 위치는, 웨이퍼 레이저 간섭계 (24) 에 의해서 계측되어 있다. 즉, 웨이퍼 스테이지 (WST) 의 X 축 방향 일측 (-X 측) 의 측면, 및 Y 축 방향 일측 (+Y 측) 의 측면에는 각각 경면 가공이 실시되어 반사면이 형성되어 있다. 이들 반사면에, 웨이퍼 레이저 간섭계 (24) 로부터 간섭계 빔이 각각 조사되고, 각각의 반사면으로부터의 복귀광과 도시하지 않은 레퍼런스부로부터의 복귀광을 간섭시켜 그 간섭광의 광전 변환 신호에 기초하여, 웨이퍼 스테이지 (WST) 의 위치가 웨이퍼 레이저 간섭계 (24) 에 의해서 예를 들어 0.5∼1㎚ 정도의 분해능으로 상시 검출되어 있다. 또, 웨이퍼 레이저 간섭계 (24) 는, 실제로는, 웨이퍼 스테이지 (WST) 의 X 축 방향 일측 (-X 측) 의 측면에 간섭계 빔을 조사하는 X 축 간섭계와, Y 축 방향 일측 (+Y 측) 의 측면에 간섭계 빔을 조사하는 Y 축 간섭계가 형성되어 있다. 이들 X 축 간섭계, Y 축 간섭계는, 각각 복수의 측장축을 갖는 다축 간섭계이고, 웨이퍼 스테이지 (WST) 의 X 위치, Y 위치 이외에, 회전 (θz 회전 (요잉; yawing), X 축 둘레의 회전인 θx 회전 (피칭), 및 Y 축 둘레의 회전인 θy 회전 (롤링) 을 포함한다) 의 계측도 가능하게 되어 있다. 또한, X 축 방향의 복수의 측장축 중에는, 투영 광학계 (PL) 의 광축 (AX) 을 지나는 측장축과, 후술하는 얼라인먼트계 (ALG) 의 검출 중심을 지나는 측장축이 포함 되고, Y 축 방향의 복수의 측장축 중 적어도 하나는, 투영 광학계 (PL) 의 광축 (AX) 과 얼라인먼트계 (ALG) 의 검출 중심을 지난다. 이것에 의해, 본 실시형태의 웨이퍼 레이저 간섭계 (24) 에서는, 노광시 및 얼라인먼트시의 어떠한 때에 있어서도 이른바 아베 (Abbe) 오차 없이 웨이퍼 스테이지 (WST) 의 X, Y 위치를 계측할 수 있도록 되어 있다.
웨이퍼 레이저 간섭계 (24) 의 각 측장축에 있어서의 계측치는, 도 2 의 스테이지 제어 장치 (19) 및 이것을 통하여 주제어 장치 (20) 에 보내지고, 스테이지 제어 장치 (19) 에서는, 주제어 장치 (20) 로부터의 지시에 따라서 웨이퍼 스테이지 (WST) 의 위치를 제어한다. 또, 웨이퍼 스테이지 (WST) 의 위치를 계측하는 간섭계로는 상기한 바와 같이 복수의 간섭계가 형성되어 있지만, 도 2 에서는 이들이 웨이퍼 레이저 간섭계 (24) 로서 대표적으로 도시되어 있다.
상기 웨이퍼 스테이지 (WST) 상에는, 도 2 에 나타내는 바와 같이, 기준 마크판 (FM) 의 표면이 웨이퍼 (W) 의 표면과 대략 동일한 높이가 되도록 고정되어 있다. 이 기준 마크판 (FM) 의 표면에는, 예를 들어 후술하는 얼라인먼트계 (ALG) 의 검출 중심의 위치와 레티클 패턴의 투영 이미지의 위치와의 상대 위치 관계를 계측하기 위한 베이스라인 계측용 기준 마크, 기타 기준 마크가 형성되어 있다.
또한, 본 실시형태의 노광 장치 (200) 에서는, 도 2 에 나타내는 바와 같이, 투영 광학계 (PL) 의 측면, 보다 구체적으로는, 투영 광학계 (PL) 의 -Y 측 측면에, 웨이퍼 (W) 상의 각 쇼트 영역에 부가 형성된 얼라인먼트 마크 (웨이퍼 마크) 의 위치를 검출하기 위한 오프액시스 (Off Axis) 방식의 얼라인먼트계 (ALG) 가 형성되어 있다. 얼라인먼트계 (ALG) 로는, 예를 들어 일본 공개특허공보 평2-54103호 및 대응하는 미국 특허 제4,962,318호 명세서에 개시되어 있는 FIA (Field Image Alignment) 계의 얼라인먼트 센서가 사용되고 있다. 이 얼라인먼트계 (ALG) 는 웨이퍼 (W) 상에 도포된 포토레지스트를 감광하지 않는 파장역 내의 광으로서, 소정의 파장폭 (예를 들어, 500∼800㎚ 정도) 을 갖는 조명광 (예를 들어, 백색광) 을 광섬유를 통하여 웨이퍼에 조사하여, 웨이퍼 (W) 상의 얼라인먼트 마크의 이미지와, 웨이퍼 (W) 와 공액인 면내에 배치된 지표판 상의 지표 마크의 이미지를, 대물 렌즈 등에 의해서 촬상 소자 (CCD 카메라 등) 의 수광면 상에 결상하여 검출하는 것이다. 즉, 얼라인먼트계 (ALG) 는 낙사 (落射) 조명식의 계측 장치이다. 얼라인먼트계 (ALG) 는 얼라인먼트 마크 (또는 기준 마크판 (FM) 상의 기준 마크) 의 촬상 결과를 주제어 장치 (20) 를 향하여 출력한다. 본 국제 출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내 법령이 허용하는 한도 내에서, 상기 공보 및 대응하는 미국 특허출원공개 명세서 또는 미국 특허에 있어서의 개시를 원용하여 본 명세서 기재의 일부로 한다.
또한, 이 노광 장치 (200) 에서는, 투영 광학계 (PL) 의 최량 결상면을 향하여 복수의 슬릿형상을 형성하기 위한 결상 광속 (검출빔 (FB)) 을 광축 (AX) 방향에 대하여 경사 방향으로부터 공급하는 조사 광학계 (AF1) 와, 그 결상 광속의 웨이퍼 (W) 의 표면에서의 각 반사 광속을, 각각 슬릿을 통하여 수광하는 수광 광학계 (AF2) 로 이루어지는 사입사 (斜入射) 방식의 다점 초점 위치 검출계 (AF) 가, 투영 광학계 (PL) 를 지지 (支持) 하는 도시하지 않은 홀딩 부재에 고정되어 있다. 이 다점 초점 위치 검출계 (AF (AF1, AF2)) 로는, 예를 들어 일본 공개특허공보 평6-283403호 및 대응하는 미국 특허 제5,448,332호 명세서 등에 개시된 것과 동일한 구성인 것이 사용되고, 웨이퍼 표면의 복수점의 결상면에 대한 Z 방향의 위치 편차를 검출하여, 웨이퍼 (W) 와 투영 광학계 (PL) 가 소정의 간격을 유지하도록 웨이퍼 홀더 (18) 를 Z 축 방향 및 경사 방향으로 구동하기 위해서 사용된다. 다점 초점 위치 검출계 (AF) 로부터의 웨이퍼 위치 정보는, 주제어 장치 (20) 를 통하여 스테이지 제어 장치 (19) 에 보내진다. 스테이지 제어 장치 (19) 는 이 웨이퍼 위치 정보에 기초하여 웨이퍼 홀더 (18) 를 Z 방향 및 경사 방향으로 구동한다. 또한, 본 국제 출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내 법령이 허용하는 한도 내에서, 상기 공보 및 대응하는 미국 특허출원공개 명세서 또는 미국 특허에 있어서의 개시를 원용하여 본 명세서 기재의 일부로 한다.
상기 웨이퍼 스테이지 (WST) 상에 탑재된 웨이퍼 홀더 (18) 의 중심부 근방에는, 도 3(a)∼도 3(c) 를 종합하면 알 수 있듯이, 센터 테이블 (30) 이 형성되어 있다. 센터 테이블 (30) 은, 예를 들어 도시하지 않은 링크 기구 등에 접속되어 있고, 그 링크 기구가 예를 들어 도시하지 않은 캠의 회전에 의해서 구동됨으로써 상하로 이동하여, 웨이퍼 홀더 (18) 의 상면에 대하여 출몰 가능하게 되어 있다. 이 캠의 회전 제어는, 스테이지 제어 장치 (19) 를 통하여 주제어 장치 (20) 에 의해서 실시된다. 이러한 센터 테이블 (30) 이 형성되어 있는 것은, 웨이퍼 (W) 를 웨이퍼 홀더 (18) 로부터 부상시킨 상태에서 웨이퍼 (W) 를 수수 (授受) 하기 위해서이다. 웨이퍼의 수수는, 센터 테이블 (30) 이 Z 축 방향에 관해서, 전술한 캠-링크 기구에 있어서의 상사점 (上死點, 어퍼 리미트; upper limit) 으로부터 약간 벗어난 위치로서, 센터 테이블 (30) 의 자세가 가장 안정적인 위치에 있을 때에 실시된다. 이 안정적인 위치 (이것을 「웨이퍼의 수수 위치」라고 한다) 는 소정의 계측 장치에 의해서 조정 가능한 조정값으로, 장치의 기동시나 유지관리시에 그 계측 장치에 의해서 계측되어, 그 위치가 센터 테이블 (30) 의 웨이퍼를 수수하는 위치로서 장치에 설정된다.
센터 테이블 (30) 에 있어서 웨이퍼 (W) 와 접촉하는 부분의 대략 중앙부에는 개구 (30a) 가 형성되어 있고, 이 개구 (30a) 는, 도시하지 않은 급배기 기구와 연통하여 있다. 또한, 도시하지 않고 있지만, 센터 테이블 (30) 상부에는, 그 외주에 걸쳐 둘레벽이 형성되어 있다. 센터 테이블 (30) 상에 웨이퍼 (W) 를 탑재한 상태에서 급배기 기구에 의해 배기를 실시하면, 웨이퍼 (W) 와 센터 테이블 (30) 의 상부와, 그 둘레벽에 의해 둘러싸여 있는 영역이 감압되어, 웨이퍼 (W) 가 대기압에 밀려 센터 테이블 (30) 에 진공 흡착되게 된다. 즉, 웨이퍼 (W) 를 지지하여 이 급배기 기구에 의해 배기를 실시하면, 센터 테이블 (30) 은 웨이퍼 (W) 를 진공 흡착 홀딩할 수 있다.
또한, 도시하지 않고 있지만, 센터 테이블 (30) 의 웨이퍼 (W) 를 지지하는 지지면에는 다수의 핀이 소정 간격으로 이간하여 배치되어 있고, 웨이퍼 (W) 는, 그 다수의 핀의 선단부 (先端部) 에 의해서 지지되게 된다. 따라서, 전술한 급배기 기구에 의해 배기가 실시되어, 웨이퍼 (W) 가 외부의 기압에 의해서 센터 테이블 (30) 의 방향으로 눌려 밀린다고 해도, 웨이퍼 (W) 는 균일한 힘으로 지지되어 변형되지 않는다. 또, 이러한 핀은 웨이퍼 홀더 (18) 상에도 다수 배치되어 있어, 웨이퍼 홀더 (18) 에 탑재되었을 때에 웨이퍼 (W) 는 이들 핀에 의해서 지지되게 된다.
도 2 로 되돌아가, 노광 장치 (200) 는, 또 웨이퍼 로드 위치에 배치된 웨이퍼 프리얼라인먼트 장치 (32) 를 구비하고 있다. 이 웨이퍼 프리얼라인먼트 장치 (32) 는, 프리얼라인먼트 장치 본체 (34) 와, 이 프리얼라인먼트 장치 본체 (34) 의 하방에 설치되며, 웨이퍼 투입 아암 (36; 이하, 「투입 아암」이라고 한다) 을 매달고 지지하여 상하 이동 (上下動) 및 회전 구동 가능한 상하 이동ㆍ회전 기구 (38) 와, 투입 아암 (36) 의 상방에 배치된 3 개의 계측 유닛 (40a, 40b, 40c) 을 구비하고 있다. 이 웨이퍼 프리얼라인먼트 장치 (32) 는 또한 도 4 에 나타내는 바와 같이, 3 개의 계측 유닛 (40a, 40b, 40c) 에 개별적으로 대응하여 형성된 3 개의 반사 부재로서의 배경판 (41a, 41b, 41c) 과, 이들 배경판 (41a∼41c) 을 개별적으로 구동하는 3 개의 배경판 구동 기구 (43a, 43b, 43c) 를 구비하고 있다.
각각의 배경판 구동 기구 (43a∼43c) 는 모터를 가지고, 지지 부재 (45a, 45b, 45c) 각각을 통하여 노광 장치 (200) 의 바디 (도시 생략) 의 일부에 매달려 지지되어 있다. 상기 배경판 (41a∼41c) 의 각각은 L 자형상의 지지 부재 (47a ∼47c) 각각을 통하여 배경판 구동 기구 (43a∼43c) 의 구동축 (회전축) 에 장착되어 있다. 이 경우, 배경판 구동 기구 (43a∼43c) 는, 도 4 에 있어서 배경판 (41b) 에 대해서 대표적으로 나타내는 바와 같이, 배경판 (41a∼41c) 을 계측 유닛 (40a, 40b, 40c) 으로부터 후술하는 바와 같이 조사되는 검출용 광이 조사되는 위치 (실선으로 나타내는 위치) 와, 계측 유닛 (40a∼40c) 으로부터의 검출용 광이 조사되지 않는 위치 (2점 쇄선으로 나타내는 위치) 사이에서 왕복하여 회전 구동하게 되어 있다. 배경판 구동 기구 (43a∼43c) 는, 주제어 장치 (20) 로부터의 지시에 기초하여 스테이지 제어 장치 (19) 에 의해서 제어된다.
상기 계측 유닛 (40a∼40c) 은, 도 5 에 있어서 계측 유닛 (40b) 에 관해서 대표적으로 나타내는 바와 같이, 광원 (51), 콜리메이터 렌즈 (52), 확산판 (53), 하프 미러 (54), 미러 (55), 결상 광학계 (56) 및 촬상 소자 (57) 를 포함하여 구성되어 있다. 여기서, 계측 유닛 (40b) 의 구성 각 부에 관해서 그 작용과 함께 설명한다.
광원 (51) 으로부터 사출된 관찰용 조명광은, 콜리메이터 렌즈 (52) 를 거침으로써 평행광화된다. 평행광은, 확산판 (53) 에 의해 그 조도가 균일화된다. 또, 확산판 (53) 은, 광로 상에 퇴피/삽입 가능하게 되어 있기 때문에 사용하지 않을 수도 있다. 이 평행광의 일부는, 하프 미러 (54) 에 의해서 하방으로 구부러지고, 웨이퍼 (W) 의 상면 (패턴 형성면) 및 배경판 (41b) (흑세라믹 등과 같은 저반사율 등의 것이 사용된다) 의 상면 (패턴 형성면) 에 조사된다.
이러한 관찰용 조명광은 웨이퍼 (W) 의 상면 및 배경판 (41b) 의 상면에서 반사된다. 그 반사광의 일부는, 하프 미러 (54) 를 투과하여, 미러 (55) 에서 반사된 후, 결상 광학계 (56) 를 통함으로써 촬상 소자 (57) 의 수광면에 웨이퍼 (W) 의 상면 이미지 및 배경판 (41b) 의 상면 이미지를 형성한다. 촬상 소자 (57) 는, 이렇게 해서 그 수광면에 형성된 이미지를 촬상하고, 그 촬상 결과를 프리얼라인먼트 장치 본체 (34) 로 보낸다.
또, 결상 광학계 (56) 에는, 물체측에 텔레센트릭한 광학계가 사용되어 있다. 이것은, 일반적인 결상계에서는 물점 (物点) 이 광축 방향으로 이동하면 이미지의 높이 (광축으로부터 이미지점까지의 거리) 가 변화하지만, 물체측에 텔레센트릭한 광학계의 경우에는, 관찰면 상의 이미지는 흐려지지만 이미지의 높이에 변화는 없기 때문이다.
그런데, 주광선이 기울면, 「(웨이퍼 (W) 와 배경판 (41b) 의 거리) ×(주광선의 기울기분) 」에 따라서 웨이퍼 (W) 의 외연 위치의 검출 결과가 시프트한다 (예를 들어, 웨이퍼 (W) 와 배경판 (41b) 의 거리가 2㎜ 이고, 주광선의 기울기가 2.5mrad 인 경우, 웨이퍼 (W) 의 외연 위치의 검출 결과는 약 5㎛ 만큼 시프트한다). 이 때문에, 웨이퍼 (W) 의 외연 위치 검출에 요구되는 검출 정밀도에 따라서 결상 광학계 (56) 의 텔레센트릭도를 조정할 필요가 있다. 또, 배경판의 기울기에 관해서도 동일한 고려가 필요하다. 또, 각 가동자 (47a∼47c) 에, 배경판 (41a∼41c) 을 경사시키기 위한 경사 구동부를 형성해도 된다.
또한, 결상 광학계 (56) 의 초점 심도는, 웨이퍼 (W) 의 표면과 배경판 (41b) 의 표면과의 간격을 포함할 정도로 깊은 초점 심도로 되어 있다. 또한, 초점 심도와 요구되는 검출 정밀도에 따라서, 초점 위치 및 웨이퍼 (W) 의 상면과 배경판 (41b) 의 간격을 임의로 설정 가능하게 하는 것이 바람직하다. 통상, 초점 위치는 웨이퍼 (W) 의 상면에 맞춰진다.
상기 프리얼라인먼트 장치 본체 (34) 의 내부에는, 계측 유닛 (40a, 40b, 40c) 으로부터 보내지는 신호를 처리하는 신호 처리계나 상하 이동ㆍ회전 기구 (38) 의 제어계 등을 포함하는 제어 장치가 내장되어 있다.
웨이퍼 프리얼라인먼트 장치 (32) 는, 도 1 의 주제어 장치 (20) 로부터의 지시에 기초하여 스테이지 제어 장치 (19) 에 의해서 제어되고, 3 개의 계측 유닛 (40a, 40b, 40c) 에 의해서 외연의 적어도 일부로서의 웨이퍼 (W) 의 1 시 반 방향, 6 시 방향, 10 시 반 방향의 외연 (외형) 을 검출한다 (도 6(a) 의 촬상 시야 VA, VB, VC 에 상당하는 외연). 그리고, 3 개의 계측 유닛 (40a, 40b, 40c) 으로부터의 촬상 신호가 프리얼라인먼트 장치 본체 (34) 에 내장된 제어 장치에 의해서 처리되고, 이 제어 장치로부터의 신호에 기초하여 스테이지 제어 장치 (19) 에 의해서 웨이퍼 (W) 의 X, Y, θz 오차가 구해진다. 그리고, 스테이지 제어 장치 (19) 는, 이 중에서 θz 오차를 보정하기 위해 상하 이동ㆍ회전 기구 (38) 를 제어하도록 되어 있다.
또한, 도 6(a) 에 나타내는 바와 같이, 웨이퍼 (W) 의 노치의 위치는 계측 유닛 (40b) 의 위치, 따라서, 그 방향은 웨이퍼 (W) 의 중심에서 보아 -Y 방향 (6 시 방향) 이지만, 이 상태로부터 90°회전시킨 상태, 즉 웨이퍼 (W) 의 중심에서 보아 +X 방향 (3 시 방향) 에 노치가 오는 상태에서 웨이퍼 (W) 가 웨이퍼 홀더 (18) 상에 탑재되는 경우도 있다. 이러한 경우에는, 예를 들어 일본 공개특허공보 평9-36202호 및 대응하는 미국 특허 제6,225,012호 명세서 또는 미국 특허 제6,400,445 에 기재되어 있는 것과 같이, 3 시 방향, 6 시 방향의 양 방향에 대응하는 위치에 계측 유닛 (CCD 카메라를 내장한다) 을 배치해도 되고 (영역 VA∼VE 를 각각 촬상하는 5 개의 계측 유닛), 또는 계측 유닛 (40a, 40b, 40c) 을 사용하여 외형을 검출한 후에 웨이퍼 프리얼라인먼트 장치 (32) 의 상하 이동ㆍ회전 기구 (38) 를 사용하여 웨이퍼 (W) 를 90°회전하도록 해도 된다. 또, 3 시 방향의 위치에 대응하는 계측 유닛에 의해 계측하는 경우에는, 통상, 도 7 에 나타낸 테이블 (61) 에서 사전에 웨이퍼를 90°회전시켜 둔다. 본 국제 출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내 법령이 허용하는 한도 내에서, 상기 공보 및 대응하는 미국 특허출원공개 명세서 또는 미국 특허에 있어서의 개시를 원용하여 본 명세서 기재의 일부로 한다.
또한, 오리엔테이션 플랫 (이하, 「OF」라고 약기한다) 이 형성되어 있는 웨이퍼에 관해서도, 도 6(b) 에 나타내는 바와 같이, -Y 방향 (6 시 방향) 또는 +X 방향 (3 시 방향) 에 OF 가 오는 상태로 웨이퍼 (W) 가 웨이퍼 홀더 (18) 상에 탑재되는 경우가 있기 때문에, 3 시 방향, 6 시 방향의 양 방향에 대응한 위치에 계측 유닛 (CCD 카메라를 내장한다) 을 배치해도 된다 (영역 (VA∼VF) 을 각각 촬상하는 6 개의 계측 유닛). 또, 이 처리 방법 및 광학 배치는, 예를 들어, 일본 공개특허공보 평9-36202호에 개시되어 있는 방법과 거의 동일하므로, 여기서는 상세한 설명을 생략한다. 한편, 본 국제 출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내 법령이 허용하는 한도 내에서, 상기 공보에 있어서의 개시를 원용하여 본 명세서 기재의 일부로 한다.
또, 웨이퍼 프리얼라인먼트 장치 (32) 에 의한 웨이퍼 (W) 의 외형 계측에 기초하여 구해진 X, Y 오차는, 스테이지 제어 장치 (19) 를 통하여 주제어 장치 (20) 로 보내진다. 그리고, 스테이지 제어 장치 (19) 에 의해 주제어 장치 (20) 로부터의 지시에 기초하여, 예를 들어 후술하는 웨이퍼 (W) 의 웨이퍼 홀더 (18) 로의 투입시 (로드시) 에 그 X, Y 오차분만큼 웨이퍼 스테이지 (WST) 를 미소구동함으로써 보정된다. 또는, 그 X, Y 오차분만큼의 오프셋을 후술하는 서치 얼라인먼트시의 웨이퍼 스테이지 (WST) 의 이동량에 더함으로써 보정하는 것도 가능하다. 또, 웨이퍼 프리얼라인먼트 장치 (32) 에 의한 웨이퍼 (W) 의 외형 계측에 기초하여 구해진 회전 오차에 관해서는, 투입 아암 (36) 의 회전 기구 (38) 에 의해 웨이퍼를 회전 구동시킴으로써 보정된다.
투입 아암 (36) 은, 상하 이동ㆍ회전 기구 (38) 에 의해서 구동되는 구동축의 하단에 수평으로 장착된 수평 부재와, 이 수평 부재의 길이 방향 (X 축 방향) 의 일 측 (+X 측) 에 고정되고 길이 방향에 직교하는 방향 (Y 축 방향) 으로 소정 길이로 연장되는 연장부와, 이 연장부의 양단으로부터 하방으로 돌출된 한 쌍의 L 자형의 훅부와, 수평 부재의 길이 방향의 타단부로부터 하방으로 돌출된 훅부를 가지고 있다. 도 4 에 나타내는 바와 같이, 이 투입 아암 (36) 에는, 웨이퍼 반송 아암 (64) 에 의해서 -Y 방향으로부터 웨이퍼를 이 공간부 안으로 투입할 수 있도록 구성되어 있다. 또한, 이 투입 아암 (36) 은, 상하 이동ㆍ회전 기구 (38) 의 구동에 의해, 훅부의 흡기 구멍을 통하여 웨이퍼 (W) 의 이면을 흡착 홀딩한 상태로 웨이퍼 (W) 를 상하로 반송할 수 있도록 되어 있다.
도 4 에 나타내는 바와 같이, 웨이퍼 반송 아암 (64) 에는 로드 아암 (64a) 과 언로드 아암 (64b) 이 개별적으로 형성되어 있고, 각각 아암 구동 기구 (60) 에 의해서 Y 축 방향을 따라서 소정 스트로크로 구동되도록 되어 있다. 아암 구동 기구 (60) 는, Y 축 방향으로 연장되는 리니어 가이드와, 이 리니어 가이드를 따라서 Y 축 방향으로 왕복 이동하는 슬라이드 기구를 구비하고 있다. 웨이퍼 반송 아암 (64) 의 로드 아암 (64a) 으로부터 웨이퍼 (W) 를 투입 아암 (36) 에 건내줄 때에는, 투입 아암 (36) 이 상하 이동함으로써 웨이퍼 (W) 를 건내줄 수 있다. 또한, 웨이퍼 스테이지 (WST) 상의 노광이 끝난 웨이퍼 (W) 를 반출할 때에는, 웨이퍼 스테이지 (WST) 상의 센터 테이블 (30) 의 상하 이동에 의해, 센터 테이블로부터 반송 아암 (64) 의 언로드 아암 (64b) 으로 웨이퍼 (W) 를 건네주게 되어 있다. 이들 구동 기구는, 도 2 의 스테이지 제어 장치 (19) 에 의해서 제어된다.
제어계는, 도 2 중, 주제어 장치 (20) 및 이 배하 (配下) 에 있는 스테이지 제어 장치 (19) 등에 의해서 주로 구성된다. 주제어 장치 (20) 는, CPU (중앙 연산 처리 장치), ROM (읽기 전용 메모리), RAM (랜덤 액세스 메모리) 등으로 이루어지는 이른바 마이크로 컴퓨터 (또는 워크 스테이션) 을 포함하여 구성되고, 노광 장치 (200) 전체를 통괄적으로 제어한다.
주제어 장치 (20) 에는, 예를 들어 도시하지 않은 키보드 등의 입력 장치, 및 CRT 디스플레이 (또는 액정 디스플레이) 등의 표시 장치 (모두 도시 생략) 가 접속되어 있다. 또한, 주제어 장치 (20) 에는, 후술하는 바와 같이 장치 파라미터 등을 저장하기 위한 기억 장치 (21) 가 접속되어 있다. 주제어 장치 (20) 의 CPU 가 실행하는 프로그램 등은 기억 장치 (21) 에 인스톨되어 있는 것으로 한다.
[도포 현상 장치]
다음으로, 각 기판 처리 장치가 구비하는 트랙 (300) 에 관해서 도 7 을 참조하여 설명한다. 트랙 (300) 은, 노광 장치 (200) 를 둘러싸는 챔버 내에, 노광 장치 (200) 에 인라인 방식으로 접속 가능해지도록 설치되어 있다. 트랙 (300) 에는, 그 중앙부를 가로지르도록 웨이퍼 (W) 를 반송하는 반송 라인 (301) 이 배치되어 있다. 이 반송 라인 (301) 의 일단에 미노광 또는 전(前)공정의 기판 처리 장치에서 처리가 이루어진 다수의 웨이퍼 (W) 를 수납하는 웨이퍼 캐리어 (302) 와, 본 기판 처리 장치에서 노광 공정 및 현상 공정을 마친 다수의 웨이퍼 (W) 를 수납하는 웨이퍼 캐리어 (303) 가 배치되어 있고, 반송 라인 (301) 의 타단에 노광 장치 (200) 의 챔버 측면의 셔터가 부착된 반송구 (도시 생략) 가 설치되어 있다.
또한, 트랙 (300) 에 형성된 반송 라인 (301) 의 일측을 따라서 코터부 (도포부; 310) 가 형성되어 있고, 타측을 따라서 디벨롭퍼부 (현상부; 320) 가 형성되어 있다. 코터부 (310) 는, 웨이퍼 (W) 에 포토레지스트를 도포하는 레지스트 코터 (311), 그 웨이퍼 (W) 상의 포토레지스트를 프리베이크하기 위한 핫플레이트로 이루어지는 프리베이크 장치 (312), 및 프리베이크된 웨이퍼 (W) 를 냉각하기 위한 쿨링 장치 (313) 를 포함하여 구성되어 있다.
디벨롭퍼부 (320) 는, 노광 처리후의 웨이퍼 (W) 상의 포토레지스트를 베이킹하는, 이른바 PEB (Post-Exeposure Bake) 를 하기 위한 포스트베이크 장치 (321), PEB 가 실시된 웨이퍼 (W) 를 냉각하기 위한 쿨링 장치 (322) 및 웨이퍼 (W) 의 포토레지스트의 현상을 하기 위한 현상 장치 (323) 를 구비하여 구성되어 있다.
또한, 본 실시형태에서는, 웨이퍼 (W) 를 노광 장치 (200) 에 반송하기 전에, 당해 웨이퍼 (W) 에 관한 정보를 사전 계측하는 인라인 계측기 (400) 가 인라인 설치되어 있다.
또한, 트랙 (300) 에 있어서는, 현상 장치 (323) 에서 현상된 웨이퍼 (W) 에 형성된 포토레지스트의 패턴 (레지스트 패턴) 의 형상을 측정하는 측정 장치가 인라인 설치되어 있어도 된다. 이 측정 장치는, 웨이퍼 (W) 상에 형성되어 있는 레지스트 패턴의 형상 (예를 들어, 패턴의 선폭, 패턴의 중첩 오차 등) 을 측정하기 위한 것이다. 단, 본 실시형태에서는 장치 비용 저감의 관점에서, 이러한 패턴 형상의 오차도 인라인 계측기 (400) 에서 계측하는 것으로 한다.
또, 도 7 에 나타낸, 코터부 (310) 를 구성하는 각 유닛 (레지스트 코터 (311), 프리베이크 장치 (312), 쿨링 장치 (313)), 디벨롭퍼부 (320) 를 구성하는 각 유닛 (포스트베이크 장치 (321), 쿨링 장치 (322), 현상 장치 (323)), 및 인라인 계측기 (400) 의 구성 및 배치는 어디까지나 일례로, 실제로는 복수의 다른 처리 유닛이나 버퍼 유닛 등이 추가로 형성됨과 함께 각 유닛은 공간적으로 배치되 고, 각 유닛 사이에서 웨이퍼 (W) 를 반송하는 로봇 아암이나 승강기 등도 형성되어 있다. 또한, 처리의 순서도 항상 동일한 것은 아니고, 웨이퍼 (W) 가 각 유닛 사이를 어떠한 경로로 통과하여 처리될지는, 처리 유닛의 처리 내용이나 전체로서의 처리 시간의 고속화 등의 관점에서 최적화되어 변경되는 경우가 있다.
노광 장치 (200) 가 구비하는 주제어 장치 (20), 코터부 (310) 및 디벨롭퍼부 (320), 인라인 계측기 (400) 및 해석 시스템 (600) 은, 전술한 바와 같이, 유선 또는 무선으로 접속되어 있고, 각각의 처리 개시 또는 처리종료를 나타내는 신호가 송수신된다. 또한, 인라인 계측기 (400) 로 검출된 검출 결과 (생(生)신호 파형 데이터, 후술하는 사전 계측 센서 (410) 로부터의 1 차 출력 또는 이것을 신호 처리한 데이터로서 원래의 촬상 데이터와 동등한 내용을 갖고 또는 원래의 화상을 복원 가능한 정보를 원래 포함하는 데이터), 이것을 소정의 알고리즘에 의해 처리한 계측 결과, 또는, 그 계측 결과에 기초하여 평가한 평가 결과가 노광 장치 (200) 의 주제어 장치 (20) 에 직접적으로, 또는 해석 시스템 (600) 을 통하여 노광 장치 (200) 의 주제어 장치 (20) 에 보내진다 (통지된다). 주제어 장치 (20) 는, 기억 장치 (21) 에 보낸 정보를 기억한다.
여기서, 「생신호 파형 데이터」란, 계측 대상을 계측하는 계측 장치가 구비하는 예를 들어 CCD 등의 검출 센서로부터 출력되는 계측 신호, 또는 그 계측 신호에 어떠한 처리 (예를 들어 전기적 필터링 처리 등) 를 실시한 신호로서 그 신호와 실질적으로 동일한 내용을 갖는 신호를 말한다.
노광 장치 (200) 내에는, 대략 트랙 (300) 에 형성된 반송 라인 (301) 의 중 심축의 연장선에 따르도록 테이블 (61) 이 배치되고, 또 그 +Y 측에, 투입 아암 (36) 에 웨이퍼 (W) 를 반송하는 웨이퍼 반송 아암 (64) 등이 배치되어 있다. 또한, 테이블 (61) 의 -X 측에는, 그 선단부에 웨이퍼 (W) 를 홀딩하여 반송 가능한 반송 로봇 (70) 이 설치되어 있다.
또한, 노광 장치 (200) 의 챔버 내부의 온도, 습도, 기압, 기판 처리 장치 외부의 온도, 습도, 기압을 계측하기 위한 센서가 설치되어 있고, 이들 센서의 검출 신호는 주제어 장치 (20) 에 공급되어, 기억 장치 (21) 에 일정 기간 기록된다.
[인라인 계측기]
다음으로 인라인 계측기 (400) 의 구성에 관해서 설명한다. 사전 계측 센서 (410) 는, 웨이퍼에 관한 정보의 종류, 즉 계측 항목에 대응하여 적어도 하나가 형성된다. 예를 들어 웨이퍼 상에 형성된 얼라인먼트 마크나 기타 마크, 패턴의 선폭ㆍ형상ㆍ결함을 계측하는 센서, 웨이퍼의 표면 형상 (플랫니스; flatness) 을 계측하는 센서, 포커스 센서 등을 예로 들 수 있다. 센서는 계측 항목, 웨이퍼의 상태, 해상도, 기타에 따라서 유연하게 대응하기 위해 복수 종류 설치하고, 상황에 따라 선택하여 사용할 수 있도록 하는 것이 바람직하다. 또, 오프라인 계측기 (800) 의 계측 센서에 관해서도 이것과 동등한 것을 사용할 수 있기 때문에, 그 설명에 관해서는 생략한다. 단, 인라인 계측기 (400) 와 오프라인 계측기 (800) 는 그 계측 방식 (계측 원리도 포함하여) 이나 계측 항목이 상이한 것을 채용해도 물론 상관없다.
이하, 일례로서, 웨이퍼 (W) 의 에지 및 웨이퍼 (W) 상에 형성된 서치 얼라 인먼트 마크 위치의 계측을 실시하는 사전 계측 센서를 사용한 인라인 계측기 (400) 에 대해 설명한다.
도 8(a), 도 8(b) 에는 인라인 계측기 (400) 의 개략적 구성의 일례가 나타나 있다. 도 8(a), 도 8(b) 에 나타내는 바와 같이, 인라인 계측기 (400) 는 XY 평면 내를 이동 가능한 스테이지 장치 (IST), 사전 계측 센서 (410), 스테이지 구동 장치 (415), 배경판 (420), 레이저 간섭계 시스템 (424), 및 사전 계측 제어 장치 (450) 를 포함하여 구성되어 있다.
스테이지 장치 (IST) 는 XY 스테이지, Z 스테이지를 포함하여 구성되어 있고, 도 8(b) 에 나타내는 바와 같이, 스테이지 구동 장치 (415) 에 의해 XY 면내 방향, Z 축 방향, XY 면에 대한 경사 방향으로 그 위치 및 자세를 조정할 수 있다. 그리고, 도 8(b) 에 나타내는 바와 같이, 스테이지 장치 (IST) 의 각 방향에 관한 위치를 계측하기 위한 레이저 간섭계 시스템 (424) 이 구비되어 있다. 이 레이저 간섭계 시스템 (424) 은 노광 장치 (200) 의 웨이퍼 레이저 간섭계 (24) 와 동일한 구성을 가지고 있고, 적어도 스테이지 장치 (IST) 의 XY 면 위치를 계측 가능하게 되어 있다. 스테이지 장치 (IST) 의 중앙부에는, 그 회전축을 중심으로 회전 가능한 턴테이블 (TT) 이 설치되어 있고, 이 턴테이블 (TT) 상에 웨이퍼 (W) 를 흡착 홀딩하는 것이 가능하게 되어 있다. 즉, 이 턴테이블 (TT) 상에 웨이퍼 (W) 를 홀딩하면, 턴테이블 (TT) 의 축회전에 의해 웨이퍼 (W) 를 회전시킬 수 있다. 또한, 스테이지 장치 (IST) 의 상면에는, 직경이 웨이퍼 (W) 보다 큰 원판형상의 배경판 (420) 이 설치되어 있다. 턴테이블 (TT) 에 탑재된 웨이퍼 (W) 를 상방에서 보면, 그 웨이퍼 (W) 의 에지 전체를 배경판 (420) 이 커버하도록 되어 있다. 또, 스테이지 장치 (IST) 의 위치 계측 시스템으로는, 레이저 간섭계 시스템 (424) 대신에 리니어 인코더 시스템을 사용해도 된다.
사전 계측 센서 (410) 는, 웨이퍼 (W) 에지의 적어도 일부 및 웨이퍼 (W) 상에 형성된 얼라인먼트 마크의 위치를 양쪽 검출 가능한 센서로, 노광 장치 (200) 가 구비하는 얼라인먼트계 (ALG) 등과 기본적으로 같은 구성의 센서를 사용할 수 있다. 즉, 사전 계측 센서 (410) 는 낙사 조명 방식에 의해 검출 대상을 조명하고, 그 조명의 반사광에 의해 검출 대상을 촬상하는 촬상식의 센서이다.
또, 이 사전 계측 센서 (410) 는 광학 변배계를 채용하고 있어, 웨이퍼 (W) 의 에지를 검출하는 경우와 웨이퍼 (W) 상의 마크를 검출하는 경우에서, 그 검출 대상에 맞춰 촬상 배율을 변경할 수 있게 되어 있다.
사전 계측 제어 장치 (450) 는, 사전 계측에 있어서의 스테이지 장치 (IST) 및 사전 계측 센서 (410) 의 제어를 통괄적으로 실시하고 있다. 또한, 사전 계측 제어 장치 (450) 는, 사전 계측 센서 (410) 의 검출 결과와, 그 검출시의 레이저 간섭계 시스템 (424) 에 의해서 검출되는 스테이지 장치 (IST) 의 위치 정보를 수신하고, 그들의 검출 결과에 기초하여, 웨이퍼의 외형 기준 좌표계에서의 웨이퍼 (W) 상의 마크의 위치 좌표를 계측한다. 또, 이러한 스테이지 장치 (IST) 의 위치 제어 정밀도는, 웨이퍼 (W) 의 외형 기준 좌표계를 결정하기 위한 정보인 웨이퍼 (W) 의 에지나 마크의 검출 결과 등의 요구 정밀도에 대하여 충분히 높은 정밀도가 요구되는 것은 말할 필요도 없다.
인라인 계측기 (400) 는, 전술한 바와 같은 구성에 의해, 노광 장치 (200) 에 투입되기 전의 웨이퍼 (W) 에 대한 사전 계측 (노광 장치 (200) 에서의 계측 조건의 최적화에 필요한 계측을 포함한다) 을 실시한다. 인라인 계측기 (400) 에 있어서의 사전 계측 결과는, 노광 장치 (200) 의 주제어 장치 (20) 로 직접 송신되거나, 또는 해석 시스템 (600), 또는 공장내 생산 관리 시스템 (700), 노광 공정 관리 컨트롤러 (500) 등을 경유하여 노광 장치 (200) 의 주제어 장치 (20) 에 송신된다.
또, 인라인 계측기 (400) 에 의한 사전 계측 공정은 웨이퍼 (W) 의 전(前) 층의 마크 형성이 완료된 후이면 실시할 수 있지만, 웨이퍼 (W) 가 트랙 (300) 에 투입된 후, 바람직하게는 레지스트 도포 후이면서 또한 노광 장치 (200) 로 투입하기 전, 즉 노광 장치 (200) 내에서의 프리얼라인먼트 처리전까지 실시된다. 또, 인라인 계측기 (400) 의 설치 장소로는 본 실시형태의 경우에 한정되지 않고, 예를 들어 트랙 (300) 내 이외에 노광 장치 (200) 의 챔버 내이어도 되고, 또는 이들 장치와는 독립된 계측 전용 장치를 설치하여 반송 장치에서 접속하도록 해도 된다. 그러나, 인라인 계측기 (400) 를 트랙 (300) 내에 설치한 경우에는, 노광 레지스트 패턴의 치수 형상을 바로 측정할 수 있다는 이점이 있다.
[웨이퍼 프로세스]
다음으로, 도 1 에 나타내는 처리 시스템 (100) 에 있어서, 1 로트 (소정 매수의 웨이퍼 그룹 (물체군)) 에 포함되는 1 장의 웨이퍼 (W) 에 대한 처리를 실시하는 경우의 동작에 관해서 도 9 의 플로우차트를 참조하여 설명한다. 우선, 공장내 생산 관리 호스트 시스템 (700) 으로부터 LAN 및 노광 공정 관리 컨트롤러 (500) 를 통하여 노광 장치 (200) 의 주제어 장치 (20) 에 대하여 웨이퍼 (W) 에 대한 처리 개시 명령이 송신되면, 주제어 장치 (20) 는, 이 처리 개시 명령에 기초하여, 노광 장치 (200), 코터부 (310), 디벨롭퍼부 (320) 및 인라인 계측기 (400) 에 대하여 소정 순서로 웨이퍼 (W) 에 대한 처리를 실시하기 위한 각종 제어 신호를 출력한다. 이 제어 신호가 출력되면, 웨이퍼 캐리어 (302) 로부터 꺼낸 1 장의 웨이퍼 (W) 는, 반송 라인 (301) 을 거쳐 레지스트 코터 (311) 에 반송된 포토레지스트가 도포되고, 반송 라인 (301) 을 따라서 프리베이크 장치 (312) 및 쿨링 장치 (313) 를 거쳐, 레지스트 처리가 실시된 후 (S10), 인라인 계측기 (400) 의 스테이지 장치에 투입되어, 웨이퍼 (W) 에 대한 인라인 사전 계측 처리가 실시된다 (S11). 단, 여기서는 레지스트 처리 (S10) 를 실시한 후에, 사전 계측 처리 (S11) 를 실시하는 것으로 했지만, 이 순서가 반대여도 된다. 그러나, 레지스트 도포후에 사전 계측 처리를 하는 쪽이, 실제로 노광 장치에 투입될 때의 상태 (즉 레지스트가 도포된 상태) 의 웨이퍼 (W) 에 대한 계측 (레지스트의 영향을 받은 계측) 을 실시할 수 있기 때문에, 계측 정밀도의 면에서는 유리하다.
인라인 계측기 (400) 에 있어서의 사전 계측 처리 (S11) 에서는, 웨이퍼 (W) 에지의 검출 및 웨이퍼 (W) 상에 형성된 서치 얼라인먼트 마크 위치의 계측이 실시된다. 이 계측에 관해서 후술한다. 이 사전 계측 처리에 있어서의 계측 결과 (예를 들어, 웨이퍼 (W) 의 중심 위치 및 회전량이나 마크의 좌표 위치 정보 등은, 예를 들어, 사전 계측 센서 (410) 의 촬상 소자의 출력인 생(生)파형 신호 데 이터 (촬상 데이터) 와 함께, 노광 장치 (200) 의 주제어 장치 (20) 에 통신 회선을 통하여 직접적으로 또는 해석 시스템 (600) 을 통하여 통지된다. 주제어 장치 (20) 는, 이들 통지된 데이터에 기초하여 노광 장치 (200) 에서 얼라인먼트를 실시할 때의 웨이퍼 (W) 의 에지 또는 마크를 계측할 때의 계측 조건을 최적화하는 처리를 실시한다 (S12). 또, 주제어 장치 (20) 의 처리 부담을 경감시키기 위해, 이러한 최적화 처리의 일부 또는 전부를 해석 시스템 (600) 에 실시시키고, 그 해석 결과를 주제어 장치 (20) 에 보내도록 해도 된다.
이 처리 (S12) 의 후 또는 이 처리와 병행하여 사전 계측 처리가 종료된 웨이퍼 (W) 는, 반송 라인 (301) 상을 노광 장치 (200) 근방까지 반송되어, 반송 로봇 (70) 에 건네진다. 반송 로봇 (70) 은 수취한 웨이퍼 (W) 를 테이블 (61) 상에 건네 주고, 테이블 (61) 은 웨이퍼 (W) 를 흡착 홀딩한다. 이 시점에서 웨이퍼 (W) 는, 도시하지 않은 위치 맞춤 장치에 의해 그 X 축 방향, Y 축 방향의 위치나 노치 (또는 OF) 의 방향이 러프하게 조정되어 있는 것으로 한다. 웨이퍼 반송 아암 (64) 은, 아암 구동 기구 (60) 의 구동에 의해 턴테이블 (61) 의 -Y 측에 돌아 들어가, 테이블 (61) 상에 홀딩된 웨이퍼 (W) 를 수취한다. 그리고, 웨이퍼 (W) 를 홀딩한 웨이퍼 반송 아암 (64) 이, 웨이퍼 로드 위치의 상방에 대기하고 있는 투입 아암 (36) 의 공간부 내의 소정 위치 (웨이퍼 (W) 를 수수하는 것이 가능한 위치) 까지 구동되어, 웨이퍼 반송 아암 (64) 에 홀딩된 웨이퍼 (W) 가 전술한 투입 아암 (36) 의 공간부에 투입된다.
이 상태에서, 스테이지 제어 장치 (19) 는 상하 이동ㆍ회전 기구 (38) 를 구 동함으로써 투입 아암 (36) 을 소정량 상승시켜 투입 아암 (36) 이 소정 위치에 도달한 시점에서, 웨이퍼 반송 아암 (64) 에 의한 웨이퍼 (W) 의 흡착을 적절한 타이밍에서 해제하고, 투입 아암 (36) 에 의한 웨이퍼 (W) 의 진공 흡인을 적절한 타이밍에 시작시킨다 (진공을 온으로 한다). 웨이퍼 (W) 가 투입 아암 (36) 에 의해서 완전히 지지된 상태로 될 때까지 투입 아암 (36) 이 상승하면, 스테이지 제어 장치 (19) 는 웨이퍼 반송 아암 (64) 을 -Y 측으로 퇴피시킨다. 이것에 의해, 웨이퍼 (W) 를 웨이퍼 반송 아암 (64) 으로부터 투입 아암 (36) 으로 건네주는 것이 완료된다.
주제어 장치 (20) 는, 이 웨이퍼 (W) 수수의 완료를, 예를 들어 투입 아암 (36) 에 접속된 진공 흡인로 내의 압력의 변화를 검지하는 도시하지 않은 센서의 출력에 기초하여 확인하면, 스테이지 제어 장치 (19) 에 대하여, 배경판 (41a∼41c) 을 웨이퍼 (W) 의 하방으로 이동 (삽입) 시키도록 지시한다.
주제어 장치 (20) 는, 도시하지 않은 센서의 출력에 기초하여, 배경판 (41a∼41c) 의 웨이퍼 하방으로의 삽입이 완료된 것을 확인하고, 스테이지 제어 장치 (19) 에 대하여 웨이퍼 (W) 의 프리얼라인먼트 계측을 지시한다. 이 지시에 기초하여 스테이지 제어 장치 (19) 는, 프리얼라인먼트 장치 (32) 를 구성하는 계측 유닛 (40a∼40c) 을 사용한 상기 서술한 웨이퍼 (W) 의 외형 에지 계측을 시작한다. 즉, 이렇게 해서 웨이퍼 프리얼라인먼트 장치 (32) 를 사용한 웨이퍼 (W) 의 프리얼라인먼트가 시작된다 (S13).
이 프리얼라인먼트에서는 계측 유닛 (40a∼40c) 에 의해, 도 6(a) 에 나타내 는 웨이퍼 (W) 의 외연 근방의 3 개의 영역 (VA, VB, VC) 이 각각 촬상된다. 그 촬상 결과는 프리얼라인먼트 장치 본체 (34) 로 보내지고, 프리얼라인먼트 장치 본체 (34) 는, 그 촬상 데이터에 기초하여, 투입 아암 (36) 에 홀딩된 웨이퍼 (W) 의 중심 위치 및 회전량을 산출하고 스테이지 제어 장치 (19) 를 통하여 주제어 장치 (20) 에 보낸다.
여기서, 프리얼라인먼트 장치 본체 (34) 에 있어서 실시되는 웨이퍼 (W) 의 중심 위치 및 회전량의 산출 방법에 관해서 설명한다.
도 10 에는 이 촬상의 상태가 모식적으로 나타나 있다. 도 10 에서는, 투입 아암 (36) 에 설계치대로 홀딩된 웨이퍼 (W) 가 점선으로 나타나 있고, 투입 아암 (36) 에 홀딩된 실제 웨이퍼 (W) 의 위치가 실선으로 나타나 있다. 계측 유닛 (40a, 40b, 40c) 에서는, 웨이퍼 (W) 가 설계상의 위치 (점선 위치) 에 있을 때의, 1 시 반, 6 시, 10 시 반의 에지를 촬상하도록 설정되어 있고, 각각의 촬상 시야를 VA, VB, VC 로 한다. 본 실시형태에서는, 촬상 시야 (VA∼VC) 의 촬상 결과에 기초하여, 웨이퍼 (W) 의 노치의 위치 (PN) 를 구하고, 노치 기준으로, 다른 웨이퍼 (W) 의 에지의 2 점 (에지점: P1(X1, Y1), P2(X2, Y2)) 을 결정하여, 그들 3 점으로부터 웨이퍼 (W) 의 중심 위치 (PC) 및 회전량 (θ) 을 산출한다. 또, 전제로서 점 P1 과 점 P2 는, 그들의 거리 (2d0 으로 한다) 가 웨이퍼 (W) 반경의 설계치를 R0 (8 인치 웨이퍼에서는 100㎜) 로 하면, 2d0=(√2)ㆍR0 가 되는 점인 것으 로 한다. 또한, 중심 위치 (PC) 는, 에지 P1 와 P2 로부터 함께 거리 R0=(√2)ㆍd0 의 점인 것으로 한다.
도 11 에는, 웨이퍼 (W) 의 중심 위치 오프셋 (PC) 및 회전량 (θ) 산출 처리의 플로우차트가 나타나 있다. 도 11 에 나타내는 바와 같이, 우선, 단계 520 에 있어서, 웨이퍼 (W) 의 회전량 (θ) 을 0 으로 초기화하고, 후술하는 노치 중심 위치 (PN 와 PC) 의 거리의 추정치 (R) 를 그 설계치 R0(=100㎜) 로 초기화한다. 다음 단계 522 에서는, 촬상 결과 (VB) 에 소정의 화상 처리를 실시하여, 노치 중심 위치 (PN(XN, YN)) 를 검출한다. 다음 단계 524 에서는 다음 식을 사용하여, 에지점 (P1, P2) 의 중점 (PM(XM, YM)) 의 추정치 (P M (X M , Y M ) 를 구한다.
[수학식 1]
Figure 112006082844455-PCT00001
다음 단계 526 에서는, 중점 (P M ) 을 통과하여 선분 P M PN 에 수직인 다음 식으로 나타내는 직선 (L) 을 구한다.
[수학식 2]
Figure 112006082844455-PCT00002
다음 단계 528 에서는, 촬상 결과 (VA, VC) 에 기초하여, 직선 (L) 과 웨이퍼 (W) 에지와의 교점의 위치를 소정의 화상 처리를 사용하여 구하고, 각 교점을 에지점 (P1, P2) 으로서 임시 결정한다. 다음 단계 530 에서는, 다음 식을 사용하여 에지점 (P1, P2) 의 중점 (PM '(XM ', YM ')) 을 산출한다.
[수학식 3]
Figure 112006082844455-PCT00003
다음 단계 532 에서는, 추정 중점 (P M ) 과 중점 (PM') 의 차로부터, 다음 식을 사용하여 웨이퍼 (W) 의 회전량 (θ) 을 수정한다.
[수학식 4]
Figure 112006082844455-PCT00004
다음 단계 534 에서는, 에지점 (P1 과 P2) 의 거리 D 를 산출한다. 다음 단계 536 에서는, 거리 (D) 와, 거리 (D) 의 설계치 (D0=2d0) 의 차에 기초하여, 다음 식을 사용하여 R 을 수정한다.
[수학식 5]
Figure 112006082844455-PCT00005
다음 단계 538 에서는, 다음 식을 사용하여 가상 중심 (Pc(Xc, Yc)) 을 구한다.
[수학식 6]
Figure 112006082844455-PCT00006
다음 단계 540 에서는, 가상 중심 (Pc) 의 산출 횟수가 1 회째인지 여부를 판단한다. 이 판단이 긍정되면 단계 524 로 되돌아가고, 부정되면 단계 542 로 진행한다. 여기서는 아직 1 회째이기 때문에 판단이 긍정되어, 단계 524 로 되돌아간다. 그리고, 다시 단계 524∼단계 538 의 처리가 실시된 후, 단계 540 에서는 판단이 부정되어, 단계 542 로 진행한다.
단계 542 에서는, 구해진 웨이퍼 (W) 의 회전량 (θ) 이 0 이 되도록 투입 아암 (36) 을 -θ 만큼 회전시킨다. 다음 단계 544 에서는, 웨이퍼 (W) 의 가상 중심의 최종적인 위치 (Xc', Yc') 를 다음 식을 사용하여 산출한다.
[수학식 7]
Figure 112006082844455-PCT00007
여기서, (X0, Y0) 는 투입 아암 (36) 의 회전 중심 위치이다.
이상 서술한 바와 같이, 프리얼라인먼트 장치 (32) 에 의해서 실시되는 프리얼라인먼트에서는 계측 유닛 (40b) 에 의한 웨이퍼 (W) 외연의 촬상 결과에 기초하여, 웨이퍼 (W) 의 노치 위치 (PN) 를 우선 검출한다. 이 노치의 위치 (PN) 가, 물체의 피계측면 외연 상의 기준점이 된다. 그리고, 이 노치 위치 (PN) 를 기준으로 하고, 상기 서술한 계산 방법을 사용하여, 다른 계측 유닛 (40a, 40c) 의 계측 결과에 기초하여 웨이퍼 (W) 의 다른 외연 상의 2 개의 에지점 (P1, P2) 을 검출한다. 그리고, 노치 위치 (PN) 와 에지점 (P1, P2) 에 기초하여, 웨이퍼 (W) 의 중심 위치 및 회전량을 산출하고 있다. 이와 같이, 프리얼라인먼트에서는 웨이퍼의 외형을 우선 검출하고, 외형을 기준으로 하는 좌표계 (외형 기준 좌표계) 에서의 웨이퍼 (W) 의 중심 위치 및 회전량을 산출한다. 도 10 에서는, X' 축 및 Y' 축에 의해 규정되는 좌표계가 외형 기준 좌표계가 된다. 또, 단계 524∼단계 540 의 루프는 수 회 반복해도 된다.
이 프리얼라인먼트 처리 종료후, 스테이지 제어 장치 (19) 는, 상기 프리얼라인먼트 장치 본체 (34) 에 의해서 산출된 웨이퍼 (W) 의 중심 위치, 노치의 위 치, 및 반경에 관한 정보를 주제어 장치 (20) 에 통지함과 함께, 주제어 장치 (20) 로부터의 지시에 기초하여 배경판 (41a∼41c) 을 퇴피시킨다.
한편, 주제어 장치 (20) 는, 스테이지 제어 장치 (19) 에 대하여 웨이퍼 스테이지 (WST) 의 웨이퍼 로드 위치로의 이동을 지시한다. 이것에 의해, 스테이지 제어 장치 (19) 는, 웨이퍼 레이저 간섭계 (24) 의 계측치를 모니터하면서, 웨이퍼 구동 장치 (15) 를 통하여 웨이퍼 스테이지 (WST) 를 웨이퍼 로드 위치로 이동시킨다. 이상의 동작에 의해, 투입 아암 (36) 및 웨이퍼 스테이지 (WST) 는, 웨이퍼 로드 위치 및 그 상방에서 상하 방향으로 포개진 상태가 된다. 또, 이 때, 스테이지 제어 장치 (19) 는, 전술한 웨이퍼 (W) 의 X, Y, θz 오차의 정보 중 X, Y 의 오차 정보에 기초하여, 이들 오차가 캔슬되는 위치로 웨이퍼 스테이지 (WST) 를 위치 결정하고 있는 것으로 해도 된다. 또, 이 시점에서 프리얼라인먼트의 결과 (오프셋) 를 고려하지 않고, 웨이퍼 스테이지 (WST) 의 위치를 설계치대로 하는 경우에는, 후술하는 서치 얼라인먼트 마크 계측시의 웨이퍼 스테이지 (WST) 의 위치를, 상기 X, Y 의 오차 정보에 기초하여 조정하도록 해도 된다. 또, 이 때 여기서, 후술하는 바와 같이, 인라인 계측기 (400) (또는 오프라인 계측기 (800)) 에서 계측된, 웨이퍼 (W) 의 외형 기준 좌표계에서의 서치 얼라인먼트 마크의 위치 어긋남량이 캔슬되도록 웨이퍼 스테이지 (WST) 의 위치를 더욱 보정하도록 해도 된다.
웨이퍼 스테이지 (WST) 가 웨이퍼 로드 위치에 도달하면, 주제어 장치 (20) 는 센터 테이블 (30) 을 상승시킴과 함께, 센터 테이블 (30) 에 웨이퍼 (W) 가 탑 재되는 위치까지 투입 아암 (36) 을 하강시킨다. 이 때, 스테이지 제어 장치 (19) 는, 투입 아암 (36) 이 소정 위치까지 도달하였을 때에 투입 아암 (36) 에 대하여 웨이퍼 (W) 에 대한 진공 흡착을 해제시키고, 그 직후 적절한 타이밍에서 센터 테이블 (30) 에 의하여 웨이퍼 (W) 에 대한 진공 흡착을 시작시킨다.
투입 아암 (36) 은, 웨이퍼 (W) 가 센터 테이블 (30) 에만 지지되게 될 때까지, 즉 투입 아암 (36) 의 훅부가 웨이퍼 (W) 로부터 완전히 떨어질 때까지 계속해서 하강한다. 그 후, 스테이지 제어 장치 (19) 는, 센터 테이블 (30) 의 진공 흡착력에 의해 웨이퍼 (W) 가 완전히 홀딩된 상태가 되었을 때에 웨이퍼 스테이지 (WST) 를 +Y 방향으로 이동시킨다.
그리고, 스테이지 제어 장치 (19) 는, 센터 테이블 (30) 을 웨이퍼 홀더 (18) 내에 파묻히게 될 때까지 하강시켜, 웨이퍼 홀더 (18) 에 웨이퍼 (W) 를 탑재시킨다. 이 때, 스테이지 제어 장치 (19) 는, 센터 테이블 (30) 이 소정 위치에 도달하였을 때에 센터 테이블 (30) 의 진공 흡착을 해제시키고, 적당한 타이밍에서 웨이퍼 홀더 (18) 에 의한 진공 흡착을 시작시킴으로써, 웨이퍼 홀더 (18) 에 의해 웨이퍼 (W) 를 흡착 홀딩하도록 한다. 또, 전술한 바와 같이, 프리얼라인먼트 장치 (32) 에 의해서 계측된 웨이퍼 (W) 의 X, Y, θz 의 오차는, 전술한 투입 아암 (36) 의 회전이나 웨이퍼 스테이지 (WST) 의 위치의 보정에 의해서 캔슬되기 때문에, 웨이퍼 (W) 는 웨이퍼 스테이지 (WST) 상의 원하는 위치에 홀딩된다. 한편, 투입 아암 (36) 에 관해서는 원래의 위치까지 상승시켜 둔다.
도 12(a) 에는, 투입 아암 (36) 의 하강 동작에 있어서의 속도 분포가 나타 나 있다. 도 12(a) 에서는, 가로축은 하강시의 투입 아암 (36) 의 Z 축 방향에 관한 위치 (이것을「투입 아암 하강 Z 위치」라고 한다) 를 나타내고 있다. 또, 가로축의 오른쪽 방향이 -Z 방향으로 되어 있다. 도 12(a) 에 나타내는 바와 같이, 투입 아암 (36) 의 하강 동작에 있어서 그 하강 동작의 개시 위치로부터의 어느 한 구간, 즉 구간 L1 에 관해서는, 투입 아암 (36) 의 하강 속도를 크게 하기 위해서 투입 아암 (36) 을 가감속시킨다. 또한, 웨이퍼 (W) 를 센터 테이블 (30) 에 건네준 위치를 포함하는 구간, 즉 구간 L2 에 관해서는, 웨이퍼 (W) 의 위치가 어긋나지 않게 하면서 수수하기 위해, 투입 아암 (36) 을 일정한 저속도로 하강시킨다. 그리고, 웨이퍼 (W) 가 투입 아암 (36) 의 훅부로부터 충분히 떨어져, 웨이퍼 (W) 를 센터 테이블 (30) 에 완전히 건네 준 후, 웨이퍼 (W) 와의 사이에 소정 간극이 형성되기까지의 구간, 즉 구간 L3 에 관해서는, 다시 투입 아암 (36) 을 가감속시키면서 하강시키고 있다. 투입 아암 (36) 의 하강 동작을 이와 같이 상세히 규정함으로써, 투입 아암 (36) 으로부터 센터 테이블 (30) 로의 웨이퍼 (W) 수수를 정밀하게 실행할 수 있음과 함께, 그 수수 시간을 짧게 할 수 있다.
또, 상기 서술한 가감속을 규정하는 가속도, 속도 등은 웨이퍼 투입 파라미터로서 조정 가능하게 되어 있다. 도 12(a) 에 나타내는 바와 같이, 투입 아암 (36) 의 하강 동작을 규정하는 웨이퍼 투입 파라미터로는, 구간 L1 에 있어서의 투입 아암 (36) 의 가속도 P1, 최고 속도 P2, 감속도 P3 와, 구간 L2 에 있어서의 투 입 아암 (36) 의 하강 속도 P4 와, 구간 L3 에 있어서의 투입 아암 (36) 의 가속도 P5, 최고 속도 P6, 감속도 P7 과, 투입 아암 (36) 의 진공 흡착을 해제 (Vac 를 OFF) 하는 투입 아암의 위치에 그 투입 아암 하강 Z 위치의 오프셋을 더한 것 (이하, 「투입 아암 진공 오프 위치+투입 아암 진공 오프 위치 오프셋」이라고 한다: P8) 과, 구간 L1 에 있어서의 감속이 종료된 위치로부터 투입 아암 진공 오프 위치까지의 거리 P9 와, 투입 아암 진공 오프 위치로부터 구간 L3 에 있어서 다시 가속을 시작하는 위치까지의 거리 P10 등이 있다. 구간 L1∼L3 의 길이는, 파라미터 P1∼P10 의 설정치에 의해서 결정되게 된다. 이하의 표 1 에, 투입 아암 (36) 의 하강 동작에 관한 장치 파라미터를 나타낸다. 또, 투입 아암 (36) 을 하강시키는 상하 이동ㆍ회전 기구 (38) 의 실체는 모터의 회전에 의해 구동하는 기구이기 때문에, 표 1 에 나타내는 바와 같이, 투입 아암 (36) 의 하강 동작에 있어서의 가속도, 속도, 감속도에 관한 파라미터의 명칭이 「∼모터 회전 가속도」, 「∼모터 회전 속도」, 「∼모터 회전 감속도」로 되어 있다. 또한, 투입 아암 진공 오프 위치에 대해서는, 종래부터 그 위치를 계측하기 위한 계측 툴이 제공되어 있고, 그 계측 툴을 사용함으로써 최적 투입 아암 진공 오프 위치를 계측 가능하게 되어 있다. 이하의 표 1 에 있어서, 파라미터 P8 의 파라미터 명칭을 「투입 아암 진공 오프 위치+투입 아암 진공 오프 위치 오프셋」이라고 하는 것은, 투입 아암 (36) 의 진공 오프 위치를 센터 테이블 (30) 의 진공이 온이 되었을 때 (웨이퍼 (W) 가 센터 테이블 (30) 에 흡착되어, 센터 테이블 (30) 의 진공압이 소정값 이상이 되었을 때) 의 투입 아암 (36) 의 Z 위치에 소정의 오프셋값을 더한 위치로서 관리하고 있어, 이 오프셋값을 파라미터로 하고 있기 때문이다.
Figure 112006082844455-PCT00008
또, 상기 서술한 표 1 에서는 「∼회전 속도」의 단위를 「rps」로 하고, 「∼회전 가속도」 또는 「∼회전 감속도」의 단위를 「rpss」로 하고 있는데, 「rps」는 1 초당 모터의 회전수를 의미하고, 「rpss」는 「1 초당 모터의 회전수의 변화량」을 의미한다.
또한, 도 12(b) 에는, 웨이퍼 (W) 를 수취하고 나서 웨이퍼 홀더 (18) 에 웨이퍼 (W) 를 건네 주기까지의 센터 테이블 (30) 의 하강 동작의 속도 분포가 나타나 있다. 도 12(b) 에서는, 가로축은 하강시의 센터 테이블 (30) 의 Z 축 방향에 관한 위치 (이것을, 「센터 테이블 하강 Z 위치」라고 한다) 를 나타내고 있고, 가로축의 오른쪽 방향이 -Z 방향으로 되어 있다. 도 12(b) 에 나타내는 바와 같이, 센터 테이블 (30) 의 하강 동작에 있어서, 그 동작의 개시 위치로부터 어느 정도의 구간, 즉 구간 L4 에 관해서는, 센터 테이블 (30) 의 하강 속도를 크게 하기 위해서 센터 테이블 (30) 을 가감속시키고 있다. 또한, 센터 테이블 (30) 로부터 웨이퍼 홀더 (18) 에 웨이퍼를 수수하는 위치를 포함하는 구간, 즉 구간 L5 에 관해서는, 웨이퍼 (W) 의 위치가 어긋나지 않게 하면서 수수하기 위해, 일정한 저속도로 센터 테이블 (30) 을 하강시키고 있다. 센터 테이블 (30) 의 하강 동작을 이와 같이 규정하면, 센터 테이블 (30) 로부터 웨이퍼 홀더 (18) 로의 웨이퍼 (W) 수수를 정밀하게 실행할 수 있음과 함께, 그 수수 시간을 짧게 할 수 있다.
또한, 센터 테이블 (30) 의 하강 동작을 규정하는 파라미터로는, 도 12(b) 에 나타내는 바와 같이, 구간 L4 에 있어서의 센터 테이블 (30) 의 가속도 P1, 최고 속도 P2, 감속도 P3 와, 구간 L5 에 있어서의 센터 테이블 (30) 의 하강 속도 P4, 감속도 P5 와, 구간 L4 에 있어서의 감속이 종료된 위치로부터 센터 테이블 (30) 의 진공 홀딩를 해제하는 센터 테이블 하강 Z 위치 (이하, 「센터 테이블 진공 오프 위치」라고 한다) 까지의 거리 P6 과, 「센터 테이블 진공 오프 위치+센터 테이블 진공 오프 위치 오프셋」 P7 이 있다. 구간 L4, L5 의 길이는 파라미터 P1∼P7 의 설정치에 의해서 결정되는 것이다. 이하의 표 2 에, 센터 테이블 (30) 의 하강 동작에 관한 장치 파라미터를 나타낸다. 또, 센터 테이블 (30) 을 하강시키는 구동 기구의 실체는 모터의 회전에 의해 구동하는 캠 기구 및 링크 기구이기 때문에, 표 2 에 있어서는, 센터 테이블 (30) 의 가속도, 속도, 감속도에 관해서의 파라미터 명칭은 「∼모터 회전 가속도」, 「∼모터 회전 속도」, 「∼모터 회전 감속도」와 같이 표현되어 있다.
또, 파라미터 P7 의 파라미터 명칭이 「CT 진공 오프 위치+CT 진공 오프 위치 오프셋」로 되어 있는 이유는, 투입 아암 (36) 의 파라미터 P8 가 「투입 아암 진공 오프 위치+투입 아암 진공 오프 위치 오프셋」로 되어 있는 상기 서술한 이유와 마찬지로, 단순히 「투입 아암 (36) 」과 「센터 테이블 (30)」의 관계가 「센터 테이블 (30)」과 「웨이퍼 홀더 (18)」의 관계로 바뀐 것뿐이다.
Figure 112006082844455-PCT00009
이들 웨이퍼의 로드 동작을 규정하는 각 파라미터 P1∼P10 은, 노광 장치 (100) 를 실제로 운용하기 전, 즉 웨이퍼의 반송 동작 및 노광 동작에 의해 노광 공정을 실행하기 전에 적당한 값으로 조정되어 있다. 만약에 이들 파라미터가 적절히 조정되어 있지 않으면, 예를 들어, 투입 아암 (36) 과 센터 테이블 (30) 사이의 진공 해제 등의 타이밍이 맞지 않아, 웨이퍼 (W) 에 진동이 발생하여 웨이퍼 (W) 의 투입 재현성이 악화될 가능성이 있다. 이와 같이, 상기 웨이퍼 투입 파라미터는 웨이퍼 (W) 의 투입 재현성에 영향을 미친다. 만약에 후술하는 본 실시형태의 웨이퍼의 투입 재현성 계측 처리에 있어서 웨이퍼의 투입 재현성이 악화되었다고 판단된 경우에는, 그 후의 유지관리에 있어서 상기 웨이퍼 투입 파라미터를 조정하도록 해도 된다.
또, 상기 웨이퍼 투입 파라미터 중, 투입 아암 (36) 의 파라미터 P8 「투입 아암 진공 오프 위치+투입 아암 진공 오프 위치 오프셋」과, 센터 테이블 (30) 의 파라미터 P7 「CT 진공 오프 위치+CT 진공 오프 위치 오프셋」이 가장 중요한 파라미터이다. 따라서, 이 2 가지 파라미터만을 장치마다 각각의 값으로 설정하도록 하고, 다른 파라미터는 장치간 공통된 값을 설정하도록 해도 된다.
이상으로부터, 웨이퍼 로드 (S14) 가 종료되고, 스테이지 제어 장치 (19) 로부터 「노광 준비 종료 코맨드」가 주제어 장치 (20) 에 보내진다. 주제어 장치 (20) 는 이 「노광 준비 종료 코맨드」를 받아, 상기 웨이퍼 교환의 종료를 확인한 시점에서, 스테이지 제어 장치 (19) 에 대하여 웨이퍼 얼라인먼트 개시 위치로의 웨이퍼 스테이지 (WST) 의 이동을 지시한다. 그 후, 처리는 웨이퍼 (W) 의 얼라인먼트 시퀀스로 이행한다.
스테이지 제어 장치 (19) 는, 상기 지시에 기초하여 웨이퍼 레이저 간섭계 (24) 의 계측치를 모니터하면서, 웨이퍼 구동 장치 (15) 를 통하여 웨이퍼 스테이지 (WST) 를 소정의 경로를 따라서 웨이퍼 얼라인먼트 개시 위치로 이동시킨다. 이 때, 웨이퍼 스테이지 (WST) 는 대기 위치로부터 소정 거리만큼 -X 방향으로, 즉 웨이퍼 로드 위치로의 이동시와 같은 경로를 역방향으로 하여 이동한다.
상기 웨이퍼 얼라인먼트 개시 위치로의 웨이퍼 스테이지 (WST) 의 이동 종료후, 서치 얼라인먼트가 실시된다 (S15). 또, 여기서 웨이퍼 (W) 는, 이미 첫 번째 층의 노광이 종료되어 있고, 2 번째 층 이후의 노광을 실시하는 것으로서 설명한다. 웨이퍼 (W) 상에는, 도 13 에 나타내는 바와 같이 각 쇼트 영역의 회로 패턴이나, 각 쇼트 영역 (SA) 사이의 스트리트 라인 상에 쇼트 영역 (SA) 마다 형성된 그 쇼트 영역 (SA) 의 XY 위치 정보를 검출하기 위한 도시하지 않은 파인 얼라인먼트 마크로서의 X 마크 및 Y 마크 외에, 쇼트 영역이 아닌 부분의 소정 위치에 적어도 2 개의 서치 얼라인먼트 마크 (SYM, SθM) 가 형성되어 있는 것으로 한다. 서치 얼라인먼트 마크 (SYM, SθM) 는 X 축 방향의 간격이 길고 또한 웨이퍼 (W) 의 중심 위치로부터의 Y 축 방향의 거리가 길어지는 위치에 각각 형성되어 있고, 서치 얼라인먼트 마크 (SYM, SθM) 는 만일 그 형성 위치를 구할 수 있으면, 복수의 쇼트 영역 (SA) 의 배열 좌표계를 러프하게 파악할 수 있도록 웨이퍼 (W) 상에 형성되어 있다.
주제어 장치 (20) 는, 우선 서치 얼라인먼트 마크 (SYM) 가 얼라인먼트계 (ALG) 의 촬상 시야 내로 위치하도록 스테이지 제어 장치 (19) 에 웨이퍼 스테이지 (WST) 의 이동을 지시한다. 이 지시를 받은 스테이지 제어 장치 (19) 는, 웨이퍼 구동 장치 (15) 를 통하여 웨이퍼 스테이지 (WST) 를 이동시킨다. 또, 웨이퍼 (W) 가 로드될 때에, 웨이퍼 스테이지 (WST) 의 위치가 프리얼라인먼트의 결과 (X, Y의 오차의 정보) 에 기초하여 보정되어 있지 않았던 경우에는, 이 시점에서 웨이퍼 스테이지 (WST) 의 위치를 보정하도록 해도 된다. 또, 여기서 후술하는 바와 같이, 인라인 계측기 (400) (또는 오프라인 계측기 (800)) 에서 계측된 웨이퍼 (W) 의 외형 기준 좌표계에서의 서치 마크의 위치 어긋남량이 캔슬되도록 웨이퍼 스테이지 (WST) 의 위치를 더욱 보정해도 된다.
또, 웨이퍼 스테이지 (WST) 의 이동 종료후, 주제어 장치 (20) 는 얼라인먼트계 (ALG) 에 촬상을 지시한다. 이 지시에 의해, 얼라인먼트계 (ALG) 는 서치 얼라인먼트 마크 (SYM) 를 포함하는 영역을 촬상한다. 이 촬상 결과는 주제어 장치 (20) 로 송신되고, 주제어 장치 (20) 는, 이 촬상 결과에 기초한 스테이지 좌표계 (XY 좌표계) 상의 서치 얼라인먼트 마크 (SYM) 의 위치 (X1, Y1) 를 구한다. 프리얼라인먼트의 결과나 인라인 계측기 (400) 의 사전 계측 결과에 의한 웨이퍼 스테이지 (WST) 의 위치 보정 (얼라인먼트계 (ALG) 와 웨이퍼 (W) 의 상대 위치 조정) 이 아직 실시되어 있지 않은 경우에는, 여기서 그 보정을 실시할 수 있다. 또, 이 서치 얼라인먼트 마크의 위치는 통계적 수법을 사용한 화상 처리, 예를 들어 템플레이트 매칭 등의 상관 알고리즘, 또는 파형을 소정의 슬라이스 레벨로 슬라이싱하거나, 파형을 미분하여 에지를 추출하는 등의 파형 처리 알고리즘에 기초하여 고정밀하게 구해지도록 하는 것이 바람직하다.
또, 이 서치 얼라인먼트에 있어서, 본 실시형태에서는, 서치 얼라인먼트 마크 (SYM) 의 위치 (X1, Y1) 가 예정된 범위 밖에 있는 경우에는, 주제어 장치 (20) 는 어떠한 요인에 의해, 웨이퍼 (W) 가 정상적인 상태로 로드되지 않고 프리얼라인먼트 (웨이퍼 투입) 이상이 발생하여 웨이퍼 (W) 에 대한 노광 처리를 정상적으로 실시할 수 있는 상태에 있지 않은 것으로 판단하고, 서치 오검출 에러 표시를 실시하고, 처리를 중단 (노광 장치 (200) 의 동작을 정지) 한다 (투입 후 판단 공정). 이 경우, 오퍼레이터는 그 에러 표시를 참조하여, 노광 장치 (200) 에 대한 유지관리를 실행하여 에러의 원인을 구명한다. 이 때, 예를 들어, 프리얼라인먼트 장치 (32) 에 있어서의, 배경판의 기울기, 결상 광학계 텔레센트릭도 등의 조정, 투입 아암 (36) 의 위치 조정 등이 실시되도록 해도 된다.
특히 상기 이상이 검출되지 않은 경우에는, 주제어 장치 (20) 는 우선 서치 얼라인먼트 마크 (SθM) 가 얼라인먼트계 (ALG) 의 촬상 시야 내로 위치하도록 스테이지 제어 장치 (19) 에 지시한다. 이 지시를 받은 스테이지 제어 장치 (19) 는, 서치 얼라인먼트 마크 (SθM) 가 얼라인먼트계 (ALG) 의 촬상 시야 내로 들어가는 위치로, 웨이퍼 구동 장치 (15) 를 구동하여 웨이퍼 스테이지 (WST) 를 이동시킨다.
다음으로, 주제어 장치 (20) 는 얼라인먼트계 (ALG) 에 촬상을 지시한다. 이 지시에 의해 얼라인먼트계 (ALG) 는, 서치 얼라인먼트 마크 (SθM) 를 포함하는 영역을 촬상한다. 여기서도, 프리얼라인먼트의 결과나 후술하는 인라인 계측기 (400) 의 사전 계측 결과에 의한 웨이퍼 스테이지 (WST) 의 위치 보정 (얼라인먼트계 (ALG) 와 웨이퍼 (W) 의 상대 위치 조정) 을 실시할 수 있다. 이 촬상 결과는 주제어 장치 (20) 로 보내진다. 주제어 장치 (20) 는, 이 촬상 결과에 의해서 스테이지 좌표계 상의 서치 얼라인먼트 마크 (SθM) 의 위치 (X2, Y2) 를 서치 얼라인먼트 마크 (SYM) 의 위치를 구하였을 때와 동일하게 산출한다.
여기서도, 서치 얼라인먼트 마크 (SYM) 의 검출시와 동일하게 본 실시형태에서는, 서치 얼라인먼트 마크 (SθM) 의 위치 (X2, Y2) 가 미리 설정되는 범위 밖에 있는 경우에는 프리얼라인먼트 (웨이퍼 투입) 이상이 발생한 것으로 판단하여, 도시하지 않은 표시 장치에 서치 오검출 에러 등의 에러 표시를 하고, 처리를 중단하도록 해도 된다 (투입후 판단 공정).
주제어 장치 (20) 는, 구한 서치 얼라인먼트 마크 (SYM) 의 위치 (X1, Y1) 및 서치 얼라인먼트 마크 (SθM) 의 위치 (X2, Y2) 에 기초하여 스테이지 좌표계에 대한 웨이퍼 (W) 의 중심 위치의 위치 어긋남량 (이것을 (ΔX, ΔY) 로 한다)) 및 회전 어긋남량 (이것을 Δθ 로 한다) 을 산출한다. 예를 들어, 설계상의 양 마크간 거리나 Y 축 방향의 위치 어긋남 (Y1-Y2) 으로부터 Δθ 가 구해지고, 그 Δθ 가 캔슬되었을 때의 웨이퍼 (W) 의 중심 위치와, 원래의 웨이퍼 (W) 의 중심 위치와의 위치 어긋남이 위치 어긋남량 (ΔX, ΔY,Δθ) 이 된다.
그리고 주제어 장치 (20) 는, 스테이지 제어 장치 (19) 를 통하여 웨이퍼 스테이지 (WST) 를 순차적으로 이동시켜서, 웨이퍼 (W) 상의 미리 정해진 특정한 쇼트 영역 (샘플 쇼트) 에 부설된 얼라인먼트 마크 (웨이퍼 마크) 를 얼라인먼트계 (ALG) 를 사용하여 순차적으로 검출시키고, 이 검출 결과 (각 마크와 얼라인먼트계 (ALG) 의 검출 중심과의 상대 위치) 와 각각의 마크 검출시의 웨이퍼 레이저 간섭계 (24) 의 계측치를 사용하여 상기 샘플 쇼트의 웨이퍼 마크 (파인 얼라인먼트 마크) 의 위치를 구하고, 이 구한 웨이퍼 마크의 위치에 기초하여 예를 들어 일본 공개특허공보 소61-44429호 및 이것에 대응하는 미국 특허 제4,780,617호 명세서 등에 개시된 통계 연산에 의해, 웨이퍼 전체의 로테이션, 직교도, X, Y 방향의 스케일링 (배율 오차), X, Y 방향의 오프셋으로 대표되는 선형 오차를 산출하여 도 13 에 나타내는 배열 좌표계 αβ 를 구한 후, 이 산출 결과에 기초하여 웨이퍼 (W) 상의 쇼트 영역의 배열 좌표를 산출하는 EGA (Enhanced Global Alignment (파인 얼라인먼트)) 를 실시한다 (S16; 검출 공정). 여기서, 웨이퍼 얼라인먼트시의 웨이퍼 스테이지 (WST) 의 X 위치 및 Y 위치는, 투영 광학계 (PL) 의 광축 (AX) 및 얼라인먼트계 (ALG) 의 검출 중심을 통과하는 Y 축 방향의 측장축에 있어서의 계측치와, 얼라인먼트계 (ALG) 의 검출 중심을 통과하는 X 축 방향의 측장축에 있어서의 계측치에 기초하여 관리된다. 또, 본 국제 출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내 법령이 허용하는 한도 내에서, 상기 공보 및 대응하는 미국 특허출원 공개 명세서 또는 미국 특허에 있어서의 개시를 원용하여 본 명세서 기재의 일부로 한다.
또, 이 때, 파인 얼라인먼트 마크의 검출시의 웨이퍼 스테이지의 이동 위치에는 서치 얼라인먼트의 결과, 즉 웨이퍼 (W) 의 위치 어긋남량 (ΔX, ΔY) 및 회전 어긋남량 (Δθ) 이 가미되어 있기 때문에, 파인 얼라인먼트 마크가 얼라인먼트계 (ALG) 의 촬상 시야 내에서 벗어나는 일이 없다.
여기서, 상기 서술한 바와 같이, 웨이퍼 스테이지 (WST) 의 X 위치, Y 위치의 계측에 사용되는 웨이퍼 레이저 간섭계 (24) 의 측장축은, 얼라인먼트계 (ALG) 에 대하여 아베 오차가 생기지 않는 위치 관계로 되어 있기 때문에, 웨이퍼 스테이지 (WST) 의 요잉 (θz 회전) 에 의한 오차는 발생하지 않는다. 단, 웨이퍼 (W) 의 표면의 높이와 웨이퍼 레이저 간섭계 (24) 의 각 측장축의 높이는 서로 다르기 때문에, 스테이지 제어 장치 (19) 에서는 전술한 바와 같이 복수의 측장축의 계측치를 사용하여 피칭량, 롤링량을 구하고, 이들에 기초하여 웨이퍼 홀더 (18) 가 기울어졌을 때에 발생하는 상하 방향의 아베 오차를 보정하도록 되어 있다.
상기 EGA 의 종료후, 주제어 장치 (20) 는 EGA 에서 구한 위치로부터 베이스라인만큼 웨이퍼 스테이지 (WST) 를 이동시킴으로써, 웨이퍼 (W) 상의 각 쇼트 영역을 정확하게 레티클 패턴의 투영 위치에 중첩시키고 노광을 실시한다 (S17). 단, 노광 장치 (200) 에서는 주사 노광이 실시되기 때문에, 후술하는 실제의 노광시에 있어서는, 웨이퍼 스테이지 (WST) 의 이동은 EGA 에서 구한 위치로부터 베이스라인만큼 웨이퍼 스테이지 (WST) 를 이동시킨 쇼트 중심의 위치로부터 소정 거리만큼 주사 방향으로 이동된 각 쇼트의 노광을 위한 주사 개시 위치 (가속 개시 위치) 로의 이동이 된다.
노광 종료후, 웨이퍼 (W) 는 도시하지 않은 웨이퍼 언로더를 사용하여 웨이퍼 스테이지 (WST) 로부터 언로드된다 (S18).
전술한 바와 같이, 웨이퍼 (W) 는, 노광 장치 (200) 에 투입되기 전에 인라인 계측기 (400) 에서 사전 계측이 이루어져, 웨이퍼 (W) 의 외형에 기초하는 외형 기준 좌표계 (X'Y' 좌표계) 에서의 서치 얼라인먼트 마크 (SYM, SθM) 의 위치 좌표가 구해진다 (S11). 그리고, 그 때의 검출 결과 등에 의해 프리얼라인먼트 장치 (32) 에 있어서의 웨이퍼 (W) 의 에지의 계측 조건 및 얼라인먼트계 (ALG) 에서의 서치 얼라인먼트 마크의 계측 조건의 최적화가 이루어진다 (S12). 또, 노광 장치 (200) 에서는, 주제어 장치 (20) 의 지시에 의한 스테이지 제어 장치 (19) 의 제어하에, 웨이퍼 반송 아암 (64) 으로부터 프리얼라인먼트 장치 (34) 의 투입 아암 (36) 에 건네지고, 최적화된 계측 조건에서 웨이퍼 (W) 의 에지가 계측 유닛 (40a, 40b, 40c) 에 의해 계측되어, 그 계측 결과에 기초한 웨이퍼 외형 기준 좌표계에서의 웨이퍼 (W) 의 중심 위치 및 회전량이 산출되는, 이른바 프리얼라인먼트가 실시된다 (S13). 그리고, 그 산출 결과에 기초하여, 웨이퍼 스테이지 (WST) 및 그 센터 테이블 (30) 등의 협조 동작에 의해 웨이퍼 스테이지 (WST) 의 웨이퍼 홀더 (18) 상에 웨이퍼 (W) 가 로드된다 (S14). 그리고, 최적화된 계측 조건에서 마크 계측을 포함하는 서치 얼라인먼트 처리 (S15), 파인 얼라인먼트 처리 (S16) 등이 실시된 후, 당해 웨이퍼 (W) 상의 각 쇼트 영역에 대하여 레티클의 패턴이 전사된다 (S17).
또, 서치 얼라인먼트 처리에서는, 서치 얼라인먼트 마크 (SYM, SYθ) 가 얼라인먼트계 (ALG) 의 촬상 시야 내로 위치하도록, 웨이퍼 스테이지 (WST) 와 얼라인먼트계 (ALG) 의 상대 위치를 조정할 필요가 있다. 본 실시형태에서는, 이 때의 웨이퍼 스테이지 (WST) 의 목표 위치를, 프리얼라인먼트에 있어서 검출된 웨이퍼 (W) 의 중심 위치 및 회전량에 기초한 외형 기준 좌표계를 기준으로 하였을 때의 서치 얼라인먼트 마크의 설계상의 위치만으로 결정하는 것이 아니고, 후술하는 바와 같이, 인라인 계측기 (400) 에 있어서 사전 계측된, 웨이퍼 (W) 의 외형 기준 좌표계에서의 서치 얼라인먼트 마크의 실측 위치 좌표를 고려하여 결정할 수 있다.
이러한 웨이퍼 스테이지 (WST) 와 얼라인먼트계 (ALG) 와의 상대 위치 조정은 S14 의 웨이퍼 로드시에 실시해도 된다. 즉, 얼라인먼트계 (ALG) 는 고정되어 있기 때문에, 웨이퍼 (W) 를 로드할 때의 웨이퍼 스테이지 (WST) 의 위치를 인라인 계측기 (400) 에 있어서 사전 계측된 상기 위치 어긋남량만큼 어긋나게 해 두면 된다.
그런데, 웨이퍼 스테이지 (WST) 로부터 언로드된 웨이퍼 (W) 는, 도시하지 않은 웨이퍼 로더, 언로드 로봇에 의해 트랙 (300) 의 반송 라인 (301) 까지 반송된 후, 반송 라인 (301) 을 따라서 순차적으로 포스트베이크 장치 (321) 및 쿨링 장치 (322) 를 거쳐 현상 장치 (323) 로 보내진다. 그리고, 현상 장치 (323) 에 있어서, 웨이퍼 (W) 의 각 쇼트 영역 상에 레티클의 디바이스 패턴에 대응한 레지스트 패턴 이미지가 현상된다 (S19). 현상이 완료된 웨이퍼 (W) 는, 필요에 따라서 형성된 패턴의 선폭, 중첩 오차 등의 인라인 계측기 (400) 또는 별도 측정 장치를 형성한 경우에는 그 측정 장치에서 검사되고, 반송 라인 (301) 에 의해서 웨이퍼 캐리어 (303) 내에 수납된다.
이 후, 웨이퍼 캐리어 (303) 에 수납된 웨이퍼 (W) 는 다른 처리 장치로 반송되고, 에칭 (S20, 레지스트에 의해 보호되어 있지 않은 부분을 깎아낸다), 레지스트 박리 (S21, 불필요해진 레지스트를 제거한다) 등이 실행된다. 상기 서술한 S10∼S21 의 처리를 반복하여 실시함으로써, 웨이퍼 캐리어 (302) 에 수납된 예를 들어 1 로트의 웨이퍼에 대하여 다중으로 회로 패턴이 형성된다.
또, 상기 설명에서는 웨이퍼 (W) 에 대한 사전 계측을 트랙 (300) 내에 형성된 인라인 계측기 (400) 에서 실시하도록 하였지만, 오프라인 계측기 (800) 에서 실시하도록 해도 된다. 그러나, 트랙 (300) 내의 인라인 계측기 (400) 를 사전 계측에 사용한 쪽이 레지스트 처리 후 바로 사전 계측할 수 있기 때문에, 스루풋의 면에서 유리하다고 할 수 있다.
상기 서술한 웨이퍼 프로세스 처리는 각 기판 처리 장치에서 각각 실시되고 있고, 각 기판 처리 장치는, 노광 공정 관리 컨트롤러 (500) 에 의해 통괄적으로 제어ㆍ관리된다. 노광 공정 관리 컨트롤러 (500) 는, 이것에 부속된 기억 장치에, 처리 시스템 (100) 에서 처리하는 각 로트 또는 각 웨이퍼에 관한 프로세스를 제어하기 위한 각종 정보, 이를 위한 각종 파라미터 또는 노광 이력 데이터 등의 각종 정보를 축적한다. 그리고, 이들 정보에 따라서 각 로트에 적절한 처리가 실시되도록 각 노광 장치 (200) 를 제어ㆍ관리한다. 또한, 노광 공정 관리 컨트롤러 (500) 는, 각 노광 장치 (200) 에서의 얼라인먼트 처리에 사용되는 얼라인먼트 조건 (얼라인먼트 계측시에 사용되는 여러 가지 조건 (샘플 쇼트수와 배치, 쇼트내 다점 방식인지 1 점 방식인지, 신호 처리시에 사용되는 알고리즘 등)) 을 구하고, 이것을 각 노광 장치 (200) 에 등록한다. 노광 공정 관리 컨트롤러 (500) 는, 노광 장치 (200) 에서 계측된 EGA 로그 데이터 등의 각종 데이터도 축적되어 있어, 이들에 기초하여 각 노광 장치 (200) 를 적절히 제어ㆍ관리한다.
또한, 해석 시스템 (600) 은, 노광 장치 (200), 트랙 (300), 노광 장치 (200) 의 광원, 인라인 계측기 (400), 오프라인 계측기 (800) 등과는 독립적으로 동작하는 장치로서, 이들 각종 장치로부터 네트워크를 경유하여 각종 데이터를 수집하고, 해석한다.
[파이프라인 처리]
상기 서술한 인라인 계측기 (400) 에 의한 인라인 사전 계측 공정을 추가함으로써 웨이퍼 프로세스 처리에 지연이 생기는 것은 부정할 수 없지만, 이하와 같은 파이프라인 처리를 적용함으로써 지연을 억제하는 것이 가능하다. 이것을 도 14 를 참조하여 설명한다.
인라인 사전 계측 공정을 추가한 것에 의해, 웨이퍼 프로세스 처리는, 레지스트막을 형성하는 레지스트 처리 공정 A, 인라인 계측기 (400) 에 의한 사전 계측 공정 B, 얼라인먼트 및 노광을 실시하는 노광 공정 C, 노광후의 열 처리나 현상을 실시하는 현상 공정 D, 레지스트 패턴의 측정을 실시하는 경우에는 패턴 치수 계측 공정 E 의 5 개 공정으로 구성되게 된다. 이들 5 개의 공정에서, 복수의 웨이퍼 (W) (도 14 에서는 3 장) 에 관해서 병행적으로 처리하는 파이프라인 처리를 실시한다. 구체적으로는, 또한, 웨이퍼 (W) 의 사전 계측 공정 B 를 선행하는 웨이퍼의 노광 공정 C 를 병행하여 실시함으로써, 전체의 스루풋에 미치는 영향을 매우 작게 억제할 수 있다.
또한, 현상 공정 D 의 실시후에 레지스트 치수 측정 공정 E 를 실시하는 경우에는, 사전 계측 공정 B 와 레지스트 치수 측정 공정 E 를 서로 겹치지 않는 타이밍으로 이들을 인라인 계측기 (400) 에 의해 파이프라인적으로 계측함으로써, 레지스트 치수 측정 장치를 별도로 형성할 필요가 없기 때문에 장치 비용을 삭감할 수 있을 뿐 아니라, 또 스루풋에도 그다지 악영향을 미치는 일이 없다.
또, 도 14 에 나타내는 파이프라인 처리는 어디까지나 일례로서, 선행하는 웨이퍼에 대한 노광을 실시하고 있는 동안에 웨이퍼 (W) 의 프리얼라인먼트를 실시하도록 공정을 스케쥴링해도 됨은 물론이다.
[인라인 사전 계측 처리 및 최적화 처리]
다음으로, 상기 웨이퍼 프로세스 처리에 있어서, 웨이퍼 (W) 가 노광 장치 (200) 에 투입되기 전에 실시되는, 인라인 계측기 (400) 에 있어서의 사전 계측 처리 (S11) 와, 그 인라인 사전 계측에 의한 얼라인먼트 최적화 처리 (S12) 를 포함하는 일련의 처리에 관해서 더욱 상세히 설명한다. 도 15(a), 도 15(b) 및 도 16 에는 이 일련의 동작을 나타내는 플로우차트가 나타나 있다. 우선, 도 15(a) 에 나타내는 바와 같이, 단계 620 에 있어서, 도시하지 않은 반송 로봇에 의해 스테이지 장치 (IST) 의 턴테이블 (TT) 상에 웨이퍼 (W) 를 로드한다. 그리고, 다음 단계 622 에 있어서, 인라인 계측기 (400) 는, 노광 장치 (200), 해석 시스템 (600) 또는 공장내 생산 관리 호스트 시스템 (700) 과의 통신에 의해 노광 대상인 웨이퍼 (W) 의 웨이퍼 사이즈 (12 인치/8 인치/6 인치), 웨이퍼 타입 (노치/OF), 웨이퍼 로딩 방향 (6 시/3 시) 등의 웨이퍼 외형 계측 파라미터와, 노광 장치 (200) 내 (얼라인먼트계 (ALG)) 에서 계측해야 할 서치 얼라인먼트 마크의 설계 위치 정보와, 마크 검출 파라미터 (마크를 계측하기 위한 알고리즘 종별이나, 선택된 신호 파형의 처리 알고리즘에 관한 파라미터로서, 예를 들어 슬라이스 레벨 등) 를 취득한다. 이어서, 단계 624 에 있어서, 인라인 계측기 (400) 의 사전 계측 제어 장치 (450) 는, 취득한 웨이퍼 외형 계측 파라미터에 기초하여 턴테이블 (TT) 상에 홀딩된 웨이퍼 (W) 의 외형 에지 (통상, 노치/0F 부를 포함하는 3 군데) 의 계측을 실시한다. 예를 들어, 웨이퍼 외형 계측 파라미터의 설정이 8 인치/노치/6 시의 웨이퍼 (W) 였던 경우에는, 도 17(a), 도 17(b), 도 17(c) 에 나타내는 바와 같이, 스테이지 구동 장치 (415) 를 통하여 스테이지 장치 (IST) 를 이동시켜서, 웨이퍼 (W) 의 10 시 반, 6 시, 1 시 반의 에지를 사전 계측 센서 (410) 의 계측 시야에 순차적으로 위치 결정하면서, 웨이퍼 (W) 의 에지 부근의 촬상을 실시한다. 이것에 의해, 도 6(a) 에 나타내는 촬상 영역 (VA∼VC) 에 대응하는 촬상 데이터 (이것을 촬상 데이터 (VA∼VC) 로 한다) 가 얻어진다 (N 은 노치 위치).
다음 단계 626 에서는, 사전 계측 제어 장치 (450) 는, 촬상 결과로서의 촬상 데이터 (VA, VB, VC) 또는 이것을 신호 처리한 데이터에 기초하여 웨이퍼 (W) 의 중심 위치와 회전량을 산출한다. 이 산출 방법은, 도 10 의 플로우차트에서 나타내는 프리얼라인먼트 장치 (32) 에서의 웨이퍼 (W) 의 중심 위치와 회전량의 산출 방법과 동일하기 때문에, 설명을 생략한다. 여기서, 구해진 웨이퍼 (W) 의 중심 위치와 회전량에 기초하여 웨이퍼 (W) 의 외형 기준 좌표계가 결정된다.
다음 단계 628 에 있어서, 인라인 계측기 (400) 의 사전 계측 제어 장치 (450) 는, 웨이퍼 (W) 의 일부 에지의 검출 결과, 즉 촬상 데이터 (VA, VB, VC) 또는 이것을 신호 처리한 데이터를 소정의 평가 기준에 기초하여 평가한다. 여기서는 그 평가를 득점 형식으로 실시한다. 즉 그 평가의 레벨을 나타내는 검출 결과의 득점 (이하, 「에지 검출 결과 스코어」라고 한다) 을 산출하여, 그 득점에 의해 검출 결과를 평가한다 (평가 공정). 또, 이 에지 검출 결과 스코어의 설명에 관해서는 후술한다.
다음 단계 630 에서는, 인라인 계측기 (400) 의 사전 계측 제어 장치 (450) 는, 웨이퍼 외형 에지 검출 결과 (OK/NG) 와 에지 검출 결과 스코어 등을 노광 장치 (200) 의 주제어 장치 (20) 또는 해석 시스템 (600) 에 송신한다. 즉, 여기서는, 에지 검출 결과 스코어가 미리 정해진 역치보다 양호한 경우에는, 그 에지가 노광 장치 (200) 에서 계측하는 마크로서 적정한 것임을 나타내는 정보 (OK) 를 노광 장치 (200) (또는 해석 시스템 (600)) 에 송신하고, 에지 검출 결과 스코어가 미리 정해진 역치보다 불량한 경우에는, 그 에지가 노광 장치 (200) 에서 계측하는 에지로서 부적당함을 나타내는 정보 (NG) 를 노광 장치 (200) (또는 해석 시스템 (600)) 에 송신한다.
또, 불량으로 판단된 경우에는, 당해 스코어 및 NG 의 정보와 함께, NG 가 된 생신호 파형 데이터 (촬상 데이터) 를 노광 장치 (200) (또는 해석 시스템 (600)) 에 송신하도록 해도 된다. 또, 원칙적으로는 인라인 계측기 (400) 에서 계측한 모든 에지의 촬상 데이터를 노광 장치 (200) 에 송신하는 것이 바람직하지만, 촬상 데이터를 모든 에지에 관해서 송신하는 것으로 하면, 통신 시간이 길어져 스루풋의 저하를 초래할 우려가 있고, 또한, 촬상 데이터의 수신측으로서도 기억이 큰 기억 매체를 준비해 두지 않으면 안된다는 부담이 생긴다. 이 때문에, 본 실시형태에서는, 부적당하다고 판단된 에지에 관해서만 촬상 데이터를 송신하는 것이 바람직하다.
이어서, 상기 단계 630 에서의 정보 송신을 받아, 도 16 의 단계 640 에 있어서, 상기 단계 630 에 있어서 송신된 정보를 수신한 노광 장치 (200) 의 주제어 장치 (20) 에 있어서는, 에지 검출 에러 (NG) 가 된 웨이퍼 (W) 의 에지가 있는지 여부를 판단한다. 이것에 의해, 인라인 계측기 (400) 등에 있어서 에지 검출 결과 스코어에 기초하여 정상적으로 웨이퍼 (W) 의 에지의 검출이 실시되었는지 여부를 판단할 수 있다. 이 단계 640 은 적어도 프리얼라인먼트전에 실시될 필요가 있다. 이 판단이 긍정되면 단계 642 로 진행하여, 웨이퍼 (W) 의 에지의 검출 결과 (생신호 파형 데이터) 가 송신되어 있는 경우에는 당해 데이터, 송신되어 있지 않은 경우에는 인라인 계측기 (400) 로부터 보내온, 평가 결과로서의 에지 검출 스코어와의 적어도 일방에 기초하여 웨이퍼 외형 계측 파라미터의 최적화 처리를 실행한다. 또, 에지의 생신호 파형 데이터가 송신되어 있지 않은 경우에는, 인라인 계측기 (400) 로부터 다시 당해 데이터를 취득하고, 그 데이터에 기초하여 최적화 처리를 실행하도록 해도 된다.
이 최적화 처리에서는, 프리얼라인먼트 장치 (32) 에 있어서 프리얼라인먼트 계측에서의 계측 재현성 (웨이퍼 중심 (XY) 의 3σ, 웨이퍼 회전량 (θ) 의 3σ) 을 평가 척도로 하여, 예를 들어 취득한 웨이퍼 (W) 에지의 검출 결과와 지금까지 기억 장치 (21) 에 로깅된 웨이퍼 (W) 에지의 검출 결과를 대조하고, 웨이퍼 외형 계측 파라미터, 즉 웨이퍼 외형의 계측 조건 (사전 계측 센서 (410) 의 조명 조건 (예를 들어, 광원으로서의 LED 전압 조정치 (조명 강도), 사전 계측 센서 (410) 에서 사용하는 계측용 조명광의 조명 파장, 입사 각도 (조명 각도), 암시야, 명시야 등), 동일 에지의 반복 계측 화면수, 사전 계측 센서 (410) 의 촬상 배율, 에지의 계측 알고리즘 등) 의 최적치를 유도해 내는 것에 의해 실시하면 된다.
또, 웨이퍼 외형 계측 파라미터의 최적화 처리는, 인라인 계측기 (400) 의 사전 계측 제어 장치 (450) 에서 실시하도록 해도 된다. 단계 640 에 있어서의 판단이 부정된 경우, 즉, 에지 검출 에러가 없는 경우에는 단계 632 (도 15(b)) 로 진행한다.
단계 642 에 있어서의 웨이퍼 외형 계측 파라미터의 최적화 처리 실행후, 재차 에지 검출을 실시한 결과, 단계 644 에 있어서, 에지 검출 에러가 있는지 여부를 판단하여, 판단이 부정되면 단계 632 (도 15(b)) 로 진행한다. 이 단계 644 는, 최적화 결과, 웨이퍼 에지의 검출 결과를 재차 평가하고, 그 평가 결과에 기초하여 웨이퍼에 대한 노광을 정상적으로 실시할 수 있는지 여부를 판단하는 공정이라고 할 수 있다 (최적화후 판단 공정).
한편, 단계 644 에 있어서의 판단이 긍정되면, 단계 646 에 있어서, 노치 (또는 OF) 위치를 제외하고, 다른 웨이퍼 외형 에지 위치를 탐색하는지 여부를, 설정된 우선 순위에 따라서 판단한다.
단계 646 에 있어서, 웨이퍼 (W) 의 다른 에지를 탐색한다고 판단한 경우에는, 단계 648 에 있어서, 주제어 장치 (20) 는 추가하여 계측해야 할 다른 에지의 위치와 웨이퍼 외형 계측 파라미터를 지정하여, 인라인 계측기 (400) 에 통지하고, 도 15(a) 의 단계 624 로 되돌아가 웨이퍼 에지 계측을 다시 실시한다.
한편, 다른 에지를 탐색하지 않고, 단계 646 에 있어서의 판단이 부정된 경우에는 단계 650 으로 진행하여, 그 웨이퍼 (W) 를 노광 장치 (200) 내로 반송하지 않고, 당해 웨이퍼 (W) 를 리젝트 (처리 공정에서 배제) 한다. 또, 단계 650 에 있어서, 리젝트된 웨이퍼 (W) 의 매수가 미리 설정된 매수 (소정수) 를 초과한 경우에는, 당해 웨이퍼 (W) 를 포함한 로트의 모든 웨이퍼 (W) 를 리젝트한다.
한편, 단계 640 또는 단계 644 에서 판단이 부정되면 도 15(b) 의 단계 632 로 진행한다. 단계 632 에서는, 인라인 계측기 (400) (사전 계측 제어 장치 (450)) 는 그 스테이지 구동 장치 (415) 를 통하여 스테이지 장치 (IST) 를 이동시켜, 상기 단계 626 에서 구한 웨이퍼의 외형으로부터 구해진 웨이퍼 (W) 의 중심 위치 및 회전량에 의해 규정되는 좌표계와, 서치 얼라인먼트 마크 (SYM, SθM) 의 설계상의 위치 좌표로부터 서치 얼라인먼트 마크의 개략 위치를 추정하여, 웨이퍼 (W) 의 서치 얼라인먼트 마크가 사전 계측 센서 (410) 의 검출 시야 내로 들어가도록 스테이지 장치 (IST) 를 순차적으로 위치 결정하면서, 그 서치 얼라인먼트 마크 (SYM, SθM) 을 검출하고, 단계 634 에 있어서, 그 검출 결과로부터 상기 외형 기준 좌표계에서의 서치 얼라인먼트 마크의 위치 좌표를 계측하고, 그 계측 결과로부터, 상기 외형 기준 좌표계에서의 서치 얼라인먼트 마크 설계상의 위치 좌표로부터의 위치 어긋남량을 산출한다. 또, 서치 얼라인먼트 마크 (SYM, SθM) 의 위치를 정확하게 계측하기 위해서는 검출 결과로서 고배율에서의 촬상 데이터가 필요해지기 때문에, 서치 얼라인먼트 마크 (SYM, SθM) 의 검출에 앞서, 사전 계측 제어 장치 (450) 는 사전 계측 센서 (410) 에 구비된 변배 광학계를 조정하여, 에지 검출시보다도 촬상 배율을 높게 조정해 두어야 한다.
다음 단계 636 에서는, 인라인 계측기 (400) 의 사전 계측 제어 장치 (450) 는, 사전 계측 센서 (410) 로부터 출력되는 서치 얼라인먼트 마크 (SYM, SθM) 의 촬상 데이터 또는 이것을 신호 처리한 데이터에 기초하여, 당해 마크가 노광 장치 (200) 에서 검출하는 마크로서의 적성을 소정의 평가 기준에 따라서 평가하고, 그 평가의 레벨을 득점 형식으로 나타내는 스코어 (이하, 「마크 검출 스코어」라고 한다) 를 산출한다. 본 실시형태에서는 이 평가 및 스코어의 산출을 사전 계측 제어 장치 (450) 에서 실시하는 것으로 하지만, 사전 계측 결과를 모두 해석 시스템 (600) 이나 노광 장치 (200) (주제어 장치 (20)) 에 송신하도록 한 경우에는, 수신측 (주제어 장치 (20) 또는 해석 시스템 (600)) 에서 이들 평가 및 스코어 산출을 실시하도록 해도 된다. 또, 이 마크 검출 스코어에 관해서는 후술한다.
다음 단계 638 에서는, 인라인 계측기 (400) 는, 서치 얼라인먼트 마크 (SYM, SθM) 의 위치 어긋남량, 서치 얼라인먼트 마크 (SYM, SθM) 의 검출 결과 (OK/NG) 와, 마크 검출 결과 스코어를 노광 장치 (200) 또는 해석 시스템 (600) 에 송신한다. 즉, 당해 마크 검출 결과 스코어가 미리 정해진 역치보다 양호한 경우에는, 당해 스코어 및 당해 마크가 노광 장치 (200) 에서 계측하는 마크로서 적정한 것임을 나타내는 정보 (OK) 를 송신하고, 당해 스코어가 미리 정해진 역치보다 불량한 경우에는, 당해 스코어 및 당해 마크가 노광 장치 (200) 에서 계측하는 마크로서 부적당함을 나타내는 정보 (NG) 를 송신한다. 또, 불량이라고 판단된 경우에는, 당해 스코어 및 NG 의 정보와 함께 마크 신호의 생신호 파형 데이터 (촬상 데이터) 를 송신하도록 해도 된다. 본 실시형태에서는, 부적당하다고 판단된 마크 또는 계측 불능으로 판단된 마크 (계측 에러 마크) 에 관해서만 계측한 마크 생파형 신호 데이터를 송신하도록 하고 있다.
또, 본 실시형태에서는, 상기 정보를 송신하는지 여부를 판단하는 제어 동작도 사전 계측 제어 장치 (450) 에서 실시하도록 구성되어 있어도 된다. 이들의 정보 및 후술하는 인라인 계측기 (400) 로부터 노광 장치 (200) 에 통지되는 정보는, 해석 시스템 (600) 을 통하여 노광 장치 (200) 에 통지하도록 해도 되지만, 설명을 간략하게 하기 위해, 이하에서는 단순히 노광 장치 (200) 에 직접 통지하는 것으로서 설명한다. 또, 해석 시스템 (600) 을 통하여 노광 장치 (200) 에 정보를 보내는 경우에는, 노광 장치 (200) 에서 실시하는 처리의 일부 또는 전부를 해석 시스템 (600) 에 실행시키고, 그 결과를 노광 장치 (200) 에 보내도록 해도 된다.
또, 해석 시스템 (600) 의 정보는, 공장내 생산 관리 호스트 시스템 (700), 노광 공정 관리 컨트롤러 (500) 를 통하여 노광 장치 (200) 에 보내도록 구성해 두어도 된다.
다음으로, 단계 660 에서는 상기 단계 638 에서의 정보 송신을 받고, 이들 정보를 수신한 노광 장치 (200) 의 주제어 장치 (20) 에 있어서는, 마크 검출 에러 (NG) 가 설정 허용수 이상인지 여부를 판단하여, 마크 검출 에러가 설정 허용수 이상인 경우로서, 마크의 생신호 파형 데이터가 송신되어 있는 경우에는 당해 데이터에 기초하여, 송신되어 있지 않은 경우에는 단계 662 에 있어서 인라인 계측기 (400) 로부터 해당하는 모든 또는 일부에 관한 마크의 촬상 데이터 (생신호 파형 데이터) 를 취득하여, 마크 검출 파라미터의 최적화 처리를 실행한다. 또, 마크 검출 파라미터의 최적화 처리는, 인라인 계측기 (400) 의 사전 계측 제어 장치 (450) 에서 실시하도록 해도 된다. 단계 660 에 있어서 마크 검출 에러가 설정 허용수에 도달되지 않아, 판단이 부정된 경우에는, 단계 652 의 웨이퍼 처리로 진행한다.
단계 662 에 있어서, 마크 검출 파라미터의 최적화 처리 실행후, 단계 664 에 있어서 재차 마크를 검출한 결과, 마크 검출 에러가 설정 허용수에 도달되어 있지 않고, 판단이 부정된 경우에는 단계 652 의 웨이퍼 처리로 진행하고, 판단이 긍정된 경우에는, 마크 검출 파라미터의 최적화 실행후에 실시되는 단계 666 으로 진행하여, 미리 등록된 정보에 따라서 다른 마크를 탐색하는지 여부를, 미리 지정된 탐색 영역 내의 다른 마크의 설계상의 좌표 위치에 미리 설정된 우선 순위에 따라서 판단한다. 또, 본 실시형태에서는 서치 얼라인먼트 마크가 SYM, SθM 의 2 개로만 되어 있지만, 실제로는 서치 얼라인먼트 마크의 후보가 되는 마크가 웨이퍼 (W) 상에 다수 형성되어 있고, 여기서는 그 후보 중에서 다른 마크를 선택한다.
단계 666 에서 다른 마크 위치를 탐색한다고 판단한 경우에는, 단계 668 에 있어서, 노광 장치 (200) 는 계측해야 할 다른 얼라인먼트 마크 위치와 마크 검출 파라미터를 추가로 지정하고, 인라인 계측기 (400) 에 통지하여, 도 15(b) 의 단계 632 로 되돌아가 마크의 사전 계측 처리를 반복한다.
한편, 단계 666 에 있어서, 미리 설정된 영역 내의 마크 (계측 대상의 후보로 되어 있던 마크) 를 모두 계측하였음에도 불구하고 미리 설정된 허용치 이상의 마크 검출 에러가 있는 경우에는, 단계 650 으로 진행하여, 그 웨이퍼 (W) 를 노광 장치 (200) 내로 반송하지 않고, 당해 웨이퍼 (W) 를 리젝트 (처리 공정에서 배제) 한다. 또한 단계 650 에 있어서, 리젝트된 웨이퍼 (W) 의 매수가 미리 설정된 매수를 초과한 경우에는, 당해 웨이퍼 (W) 를 포함한 로트의 모든 웨이퍼 (W) 를 리젝트한다.
또, 이 웨이퍼 (W) 의 리젝트 처리가 실시되는 조건은 상기 서술한 것에 한정되는 것은 아니다. 인라인 계측기 (400) 등에서 실시되는 모든 사전 계측의 결과 (웨이퍼 (W) 의 에지, 웨이퍼 (W) 상의 마크의 위치 정보뿐만 아니라, 포커스 오차나, 패턴 선폭이나, 패턴 결함이나, 장치 내의 온도차에 기초하는 예측 웨이퍼 변형량 등) 에 기초하여, 그 이상 그 웨이퍼에 대한 패턴 노광 처리를 진행시키는 것이 바람직하지 않다 (양호한 디바이스를 얻을 수 없다) 고 판단된 경우에는, 본 실시형태와 마찬가지로 웨이퍼의 리젝트 처리가 실시되도록 해도 된다.
단계 660 또는 단계 664 에 있어서의 판단이 부정된 후에 실시되는 단계 652 로 진행하면, 도 9 에 있어서의 S11 (인라인 사전 계측) 및 S12 (최적 조건의 도출) 가 종료된 것이 된다. 이 단계 652 의 웨이퍼 처리는, 도 9 에 있어서의 웨이퍼 프로세스의 단계 S13 (프리얼라인먼트)∼S17 (노광) 의 처리에 상당한다.
이 단계 652 에 있어서는, 우선 노광 장치 내에 웨이퍼를 로드하여 프리얼라인먼트 (S13) 를 실시하고, 전술한 바와 같이, 웨이퍼 (W) 의 에지를 검출하고, 그 검출 결과에 기초하여 웨이퍼 (W) 의 중심 위치 및 회전량을 산출한다. 그리고, 웨이퍼 로드 (S14) 또는 서치 얼라인먼트 (S15) 에 있어서, 인라인 계측기 (400) 에 있어서 사전 계측된 그 웨이퍼 (W) 의 외형 기준 좌표계에서의 서치 얼라인먼트 마크의 위치 어긋남량분만큼 웨이퍼 스테이지 (WST) 의 위치를 조정한다. 이와 같이 하면, 그 위치 어긋남량분만큼 웨이퍼 스테이지 (WST) 와 얼라인먼트계 (ALG) 의 상대 위치가 조정되기 때문에, 전(前)층 노광 장치에 있어서의 A. 오프셋이나 B. 프리얼라인먼트에 의한 투입 재현성 등에 의한 외형 기준 좌표계에서의 서치 얼라인먼트 마크의 위치 어긋남에 기인하는 서치 계측 에러 등이 발생하는 것을 회피할 수 있다. 도 18(a) 에는, 전층 노광 장치에서의 노광에 의해 형성되고, 그 노광 장치의 오프셋이나 프리얼라인먼트 투입 위치의 어긋남으로 인해, 웨이퍼 (W) 의 외형 기준 좌표계에 대하여 형성 위치가 설계치로부터 어긋난 서치 얼라인먼트 마크의 일례가 나타나 있다. 도 18(a) 에서는, 설계상의 서치 얼라인먼트 마크의 설계상 위치가 점선으로 표시되고, 실제 위치가 실선으로 표시되어 있다. 도 18(a) 에서는, 인라인 계측기 (200) 의 사전 계측에 의해 계측된 서치 얼라인먼트 마크의 위치 어긋남량이 화살표로 표시되어 있다.
도 18(b) 에는, 서치 얼라인먼트 마크 (SθM) 부근의 확대도가 나타나 있다. 도 18(b) 에 있어서는, 전술한 바와 같이 하여 서치 얼라인먼트 마크의 위치 어긋남량분만큼 웨이퍼 스테이지 (WST) 의 위치가 조정되었을 때의 얼라인먼트계 (ALG) 의 계측 시야 (MA) 가 나타나 있다. 도 18(b) 에 나타내는 바와 같이, 상기 위치 어긋남량분만큼 웨이퍼 스테이지 (WST) 의 위치가 조정되어 있기 때문에, 계측 시야 (MA) 가 화살표 V1 만큼 이동하여, 얼라인먼트계 (ALG) 의 계측 시야 내에 서치 얼라인먼트 마크 (SθM) 가 위치하게 된다. 또, 이와 같이 서치 얼라인먼트 마크를 확실히 계측 시야 내로 억제하는 확실성이 높아지는 것이라면, 얼라인먼트계 (ALG) 의 촬상 배율을 더욱 높게 설정할 수도 있다. 이와 같이 하면, 서치 얼라인먼트 마크의 검출 정밀도를 더욱 높일 수 있다.
[센서간 차 보정]
그런데, 인라인 계측기 (400) 에 있어서의 사전 계측은 어디까지나 노광 장치 (200) 에서 실시되는 각종 얼라인먼트에 있어서의 계측 대상을 사전에 계측하고자 하는 것이다. 따라서, 예를 들어 노광 장치 (200) 에 있어서는 문제없이 계측할 수 있는 웨이퍼 (W) 라도, 인라인 계측기 (400) 에서는 정상적으로 계측할 수 없는 등의 상태는 피해야만 한다. 그래서, 인라인 계측기 (400) 에 있어서의 사전 계측과, 노광 장치 (200) 에서의 본 계측과의 정합성을 취할 필요가 있다. 본 실시형태에서는, 인라인 계측기 (400) 에 의한 사전 계측 공정에서의 사전 계측 센서 (410) 에 의한 검출 결과에 대한 평가 결과로서의 각종 검출 스코어와, 노광 장치 (200) 에 있어서 계측 공정에서의 웨이퍼 (W) 의 에지의 검출 결과에 대한 평가 결과로서의 각종 검출 스코어를 비교하여, 동일 웨이퍼 (예를 들어 기준 웨이퍼일 수도 있다) 에 대한 양 스코어를 정합시킨다 (정합 공정).
우선, 웨이퍼 (W) 의 에지를 검출하는 인라인 계측기 (400) 와 노광 장치 (200) 의 프리얼라인먼트 장치 (32) 사이에서의 센서간 차 (사전 계측 센서 (410) 와 계측 유닛 (40a∼40c) 사이의 특성차로서, 신호 처리 알고리즘의 상이를 포함) 를 보정한다. 우선, 노광 장치 (200) 의 주제어 장치 (20) 에서는, S13 의 프리얼라인먼트에 있어서, 에지 검출 에러가 발생한 웨이퍼 외형 에지 (노치/OF 포함한다) 에 관한 촬상 데이터를 기억 장치 (21) 에 로깅해 둔다. 그리고, 이 촬상 데이터와 웨이퍼 외형 계측 파라미터와 검출 에러 정보를 해석 시스템 (100) 또는 인라인 계측기 (400) 로 송신하고, 인라인 계측기 (400) 에서 계측된 에지의 촬상 데이터 (생신호 파형 데이터) 와 노광 장치 (200) 의 프리얼라인먼트 장치 (32) (계측 유닛 (40a∼40c)) 에 의한 동일 에지에 대한 에지 생신호 파형 데이터를 대조하여, 인라인 계측기 (400) 의 계측 결과에 기초하는 스코어와 일치하도록 스코어 보정치를 최적화한다. 이와 같이 하면, 동일 웨이퍼 (W) 에 대한 사전 계측 공정에서의 웨이퍼 에지의 적어도 일부의 촬상 데이터에 대한 스코어와, 프리얼라인먼트에 있어서의 동일 에지의 촬상 데이터에 대한 스코어를 대략 일치시킬 수 있어, 유효한 사전 계측이 가능해진다.
또한, 인라인 계측기 (400) 와 노광 장치 (200) 의 얼라인먼트계 (ALG) 사이에서의 센서간 차 (사전 계측 센서 (410) 와 얼라인먼트계 (ALG) 사이의 특성차로서, 신호 처리 알고리즘의 상이를 포함) 를 보정한다. 인라인 계측기 (400) 로부터 송신된 마크 생신호 파형 데이터와 노광 장치 (200) (얼라인먼트계 (ALG)) 에 의한 동일 마크에 대한 검출 결과 (마크 생신호 파형 데이터) 를 대조하여, 인라인 계측기 (400) 의 계측 결과에 기초하는 스코어가 일치하도록 스코어 보정치를 최적화한다. 또한 통상적으로 노광 장치 (200) 의 주제어 장치 (20) 는, 얼라인먼트 처리에 있어서, 적어도 검출 에러가 발생한 마크에 관한 검출 결과 (마크 생신호 파형 데이터) 를 기억 장치 (21) 에 로깅하고 있기 때문에, 이 마크 생신호 파형 데이터와 검출 파라미터와 검출 에러 정보를 해석 시스템 (600) 또는 인라인 계측기 (400) 로 송신하고, 인라인 계측기 (400) 에서 계측된 마크 생신호 파형 데이터와 대조하여, 동일 마크에 대한 검출 스코어가 일치하도록 스코어 보정치를 최적화해도 된다.
또, 상기 서술한 센서간 특성차의 보정 처리에 관해서는, 인라인 계측기 (400) 와 노광 장치 (200) 사이에서의 경우에 관해서 설명하였지만, 오프라인 계측기 (800) 와 노광 장치 (200) 사이의 센서간 특성차에 관해서도 동일하게 실시할 수 있다.
[에지 검출 결과 스코어]
다음으로 상기 서술한 에지 검출 결과 스코어에 관해서 설명한다. 이 에지 검출 결과 스코어는, 상기 단계 628 (도 15(a) 참조) 에 있어서, 전술한 바와 같이 소정의 평가 기준에 의해 구한 것이다. 본 실시형태에서는, 웨이퍼 (W) 에지의 촬상 데이터에 있어서의 웨이퍼 (W) 에지 (노치부 포함) 의 검출 상태에 관한 복수의 특징량을 소정의 평가 기준으로 한다. 이 특징량이란, 웨이퍼 에지의 특징을 정확히 검출하는 것이 가능했는지 여부의 척도가 되는 양을 말한다. 웨이퍼의 에지에 관한 특징량으로는, 예를 들어 검출 결과 (촬상 데이터) 로부터 얻어지는 웨이퍼 에지 패턴의 강도 (즉 에지 부근의 명부 (明部) 와 암부 (暗部) 의 콘트라스트), 웨이퍼 에지 패턴의 강도의 편차, 촬상 데이터로부터 얻어지는 웨이퍼 에지의 곡률, 웨이퍼의 에지부를 근사 (近似) 함으로써 얻어지는 근사 곡선 (근사 직선도 가능) 과 복수의 에지 위치와의 편차 등을 들 수 있다. 본 실시형태에서는, 이들 복수의 특징량을 구한 후, 각 특징량에 최적화된 가중을 실시하여 합을 취하고 구한 토탈값을 에지 검출 결과 스코어로서 정의하여 평가 결과로서 산출하고, 미리 설정된 역치와 비교하여 웨이퍼 (W) 에지의 촬상 데이터의 "적합 (OK)/부적합 (NG)" 을 판정한다. 여기서, 「에지 촬상 데이터의 적합ㆍ부적합」을 정확하게 판정하기 위해서는, 복수의 특징량 각각의 가중치를 노광 프로세스나 로트마다 최적화하는 것이 바람직하다.
[마크 검출 결과 스코어]
다음으로, 상기 서술한 마크 검출 결과 스코어에 관해서 설명한다. 이 마크 검출 결과도 소정의 평가 기준에 의해 구한 것이다. 마크 신호 패턴에 있어서의 특징량인 마크 패턴폭 오차, 마크 패턴 에지 간격 오차, 마크 패턴 에지 강도, 마크 패턴 에지 강도의 편차 등의 복수의 특징량을 패턴마다 구한 후, 각 특징량에 최적화된 가중을 실시하여 합을 구한 토탈값을 마크 검출 결과 스코어로서 정의하여, 미리 설정된 역치와 비교하여 마크의 유무 (있음/없음) 를 판정한다. 여기서, 「마크 생신호 파형 데이터의 적합ㆍ부적합」을 바르게 정확하게 판정하기 위해서는, 에지 검출 스코어의 경우와 마찬가지로, 복수의 특징량 각각의 가중을 광 프로세스나 로트, 마크 구조마다 최적화하는 것이 바람직하다.
또, 보다 구체적인 마크의 특징량으로는, 마크의 검출 결과 (생신호 파형 데이터) 의 에지부를 검출한 경우에, 그 에지부의 검출 결과 (에지 위치) 에 따라서 마크의 패턴폭의 규칙성 (예를 들어, 마크의 특징의 하나인 균일성) 이나 패턴 간격의 규칙성 (예를 들어, 마크의 특징의 하나인 규칙성) 을 특징량으로서 구한다. 여기서의 「에지부」란, 웨이퍼 (W) 의 피계측면의 외연을 가리키는 것이 아니라, 예를 들어 라인 앤드 스페이스 마크에 있어서의 라인부와 스페이스부의 경계와 같이, 마크를 형성하는 패턴부와 비패턴부의 경계를 말한다. 이 때, 신호에 포함되는 잡음 등을 제거하는 처리를 실시하도록 해도 된다.
또, 라인 패턴폭과 라인 패턴 간격은 설계치와의 편차가 작을수록 좋고, 에지 형상 균일성도 편차가 작을수록 「마크의 파형 신호의 적정도」가 높다고 판정한다. 이 경우, 스코어는 낮을수록 좋다. 반대로, 마크의 검출에 검출 파형과 참조 파형과의 템플레이트 매칭을 실시하는 등의, 이른바 상관 알고리즘을 사용하는 경우에는 이 상관치를 스코어로 할 수도 있다. 이 경우, 스코어는 높을수록 좋다.
[웨이퍼 투입 재현성 계측]
다음으로, 웨이퍼 투입 재현성 계측에 관해서 설명한다. 본 실시형태에서는, 로트 처리 중에 노광 장치 (200) 로의 웨이퍼 (W) 의 투입 재현성을 계측한다. 즉, 본 실시형태에서는, 도 9 의 플로우차트에 따라서, 1 장의 웨이퍼 (W) 가 노광 장치 (200) 에 투입될 때마다 그 웨이퍼 (W) 의 투입 위치를 계측함으로써 노광 장치 (200) 의 투입 재현성 계측을 실시하는 것이다.
이 투입 재현성의 계측은, 투입후의 웨이퍼 (W) 상의 마크 위치를 계측함으로써 실시된다 (즉, S14 의 웨이퍼 (W) 의 로드로부터 S18 의 웨이퍼 (W) 의 언로드 사이에서 계측이 이루어진다). 그러나, 동일 로트 내의 웨이퍼 (W) 라도 웨이퍼의 외형이나 웨이퍼 (W) 상의 마크 상태 (형성되어 있는 마크의 상태, 불량 상태 (파손 정도) 나, 웨이퍼 변형 등에 의한 마크 위치의 변동 정도 등) 는 다양하여, 기준 웨이퍼를 복수회 투입하여 투입 재현성을 계측할 때에 비하여, 노광 장치 (200) 의 투입 재현성 이외의 요인이 웨이퍼 (W) 상의 마크 위치의 계측 결과에 영향을 주게 된다. 본 실시형태에서는, 마크 위치의 계측 결과로부터 노광 장치 (200) 의 투입 재현성 이외의 요인에 의한 성분을 제거함으로써, 즉 계측된 마크 위치의 이른바 규격화를 실시함으로써, 로트 처리 중에서의 노광 장치 (200) 의 투입 재현성의 계측을 실현한다.
노광 장치 (200) 의 투입 재현성 이외의 요인은 여러 가지로, 그 모든 요인을 배제하는 것은 곤란하지만, 영향이 큰 몇 가지 요인에 의한 성분을 제거하면, 정밀도적으로는 충분하다고 할 수 있다. 그러나, 이들 성분은 처리 시스템 (100) 내의 각 노광 장치 (200) 에 따라서도 다양하여, 어떤 요인에 의한 성분을 제거할지는 각 노광 장치 (200) 에 따라서 각각 설정할 수 있도록 하는 것이 바람직하다. 또한, 투입 재현성의 계측에 필요한 웨이퍼 매수 등도 노광 장치에 따라서 상이한 경우도 있다. 그래서, 계측의 유무도 포함하여, 노광 장치의 호기(號機)마다 투입 재현성의 계측 조건을 노광 장치 (200) 의 내부 파라미터로서 설정할 수 있도록 해두는 것이 바람직하다. 그래서, 우선 이 계측 조건의 설정에 관해서 설명한다.
도 19 에는, 로트 처리 중의 웨이퍼 투입 재현성 계측의 조건 설정 시퀀스의 일례를 나타내는 플로우차트가 나타나 있다. 도 19 에 나타내는 바와 같이, 우선, 단계 820 에 있어서 웨이퍼 투입 재현성 계측 동작 모드를 설정한다. 구체적으로는 웨이퍼 투입 재현성 계측을 실시할지 여부 (즉, 계측 유무), 투입 재현성 계측을 실행하는 경우에는 그 계측 실행의 종료 조건의 유무, 실행 종료 조건이 있을 때에는 웨이퍼 투입 재현성의 산출에 사용되는 웨이퍼의 로트수나 웨이퍼 매수의 설정을 여기서 실시한다. 웨이퍼 매수를 지정했을 때에는, 로트를 건너 뛰어서라도 계속해서 계측을 실시할지 여부도 지정한다. 동일 프로세스를 거친 웨이퍼라면, 로트 처리를 건너 뛰어서라도 웨이퍼 (W) 의 특성은 거의 동일하다고 생각할 수 있기 때문에 웨이퍼 투입 재현성 계측도 가능한 경우가 많다.
다음 단계 822 에 있어서, 웨이퍼 투입 재현성의 산출에 사용하는 웨이퍼 매수를 설정한다. 여기서는, 웨이퍼 투입 재현성을 산출할 때의 웨이퍼 매수를 설정한다. 통상은 투입 재현성의 3σ 의 안정성 면에서 10 장 이상, 1 로트분인 25 장 이하가 웨이퍼 매수로서 설정된다. 또, 노광 장치 (200) 에 있어서의 웨이퍼 (W) 의 처리 매수가 이 매수를 초과한 경우에는, 가장 오래된 웨이퍼의 투입 재현성 계측 데이터가 파기되고, 순차적으로 새로운 웨이퍼의 계측 데이터를 받아들여 투입 재현성을 산출해 나가면, 항상 최신의 투입 재현성을 얻을 수 있게 된다.
다음 단계 824 에서는, 웨이퍼 투입 재현성 계측에 있어서 마크 계측 결과의 규격화시에 적용되는 마크 위치의 웨이퍼간 차의 보정 조건의 설정을 실시한다. 이하, 2 가지 보정 조건에 관해서 설명한다.
<제 1 보정 조건: 웨이퍼 외형 차>
우선, 노광 장치의 투입 재현성 이외의 웨이퍼 (W) 상의 마크 위치를 어긋나게 하는 큰 요인의 하나로서 웨이퍼의 외형 차가 고려된다. 전술한 바와 같이 노광 장치 (200) 에서는, 프리얼라인먼트 장치 (32) 에 있어서 웨이퍼 (W) 의 외형이 검출되고, 그 외형으로부터 웨이퍼 (W) 의 중심 위치 및 회전량이 산출되어, 그 산출 결과에 기초해서 웨이퍼 스테이지 (WST) 상에 로드된다. 이것은 전층 노광 장치에 있어서도 동일하고, 특히 1 번째 층의 노광에서는 웨이퍼의 외형만을 기준으로 하여 서치 얼라인먼트 마크가 형성되기 때문에, 웨이퍼의 외형이 웨이퍼 사이에서 다르면 웨이퍼 사이에서 서치 얼라인먼트 마크의 형성 위치가 다르게 된다. 그래서, 이러한 웨이퍼 외형 차에 대하여 마크 위치를 규격화할 필요가 있다.
이 웨이퍼 외형 차의 영향을 제거하기 위해서는, 인라인 계측기 (400) 의 사전 계측에 의해 구해진 웨이퍼의 외형 기준 좌표계에서의 서치 얼라인먼트 마크 (SYM, SθM) 의 위치 어긋남량을 사용하면 된다. 전술한 바와 같이, 서치 얼라인먼트 마크 (SYM, SθM) 는 웨이퍼의 외형 기준으로 형성된 것으로, 도 9 의 단계 S15 의 서치 얼라인먼트에서의 서치 얼라인먼트 마크 (SYM, SθM) 의 위치 계측 결과로부터 도 18(a) 에 나타낸 것과 같은 웨이퍼 외형 기준에서의 서치 얼라인먼트 마크 (SYM, SθM) 의 형성 위치의 설계 좌표와의 위치 어긋남량을 빼면, 상이한 웨이퍼 사이에서의 웨이퍼 외형 차에 기인하는 서치 얼라인먼트 마크의 위치 어긋남 성분을 제거할 수 있다.
또, 상기 위치 어긋남량은 전술한 바와 같이 전층 노광 장치에 있어서의 오프셋 및 투입 재현성도 반영한 것이 되기 때문에, 이들에 기인하는 성분도 캔슬되게 된다.
<제 2 보정 조건: 웨이퍼 변형 성분ㆍ 마크 변형 성분>
그런데, 서치 얼라인먼트 마크의 위치 어긋남은 상기 서술한 웨이퍼 외형 차에 의한 것에 한정되지 않는다. 서치 얼라인먼트 마크의 형성 위치는 전층 노광 장치에서의 각 웨이퍼의 노광 상태에도 크게 영향을 받는다. 이 영향에 의한 서치 얼라인먼트 마크의 위치 어긋남 성분을 웨이퍼 변형 성분이라고 부른다. 또한, 서치 얼라인먼트 마크 자체도 당연히 웨이퍼 사이에서 다른 것이 된다. 이것을 마크 변형 성분이라고 부른다. 본 실시형태에서는, 웨이퍼 사이에서의 웨이퍼 변형 성분과 마크 변형 성분을 제거하도록 설정하는 것도 가능하다.
서치 얼라인먼트 마크는 전층 노광 장치의 노광에 의해 쇼트 영역의 배열이 형성되는 데에 부수하여 형성되는 것으로, 웨이퍼 (W) 상에 형성된 쇼트 영역의 배열 상태를 계측하면, 상기 웨이퍼 변형 성분 및 마크 변형 성분에 대하여 서치 얼라인먼트 마크의 계측 위치를 규격화할 수 있다.
도 9 의 단계 S16 의 웨이퍼 얼라인먼트에서는, 전층 노광 장치에서 형성된 웨이퍼 (W) 상의 쇼트 영역의 배열 좌표계 αβ (도 13 참조) 를 구하고 있다. 웨이퍼 (W) 의 외형 기준 좌표계 X'Y' 에 대한 이 배열 좌표계 αβ 의 차이 (스케일링 성분, 직교도 등의 성분) 가 상기 웨이퍼 변형 성분 및 마크 형성 성분에 대응한다 (오프셋 성분에 대해서는 제 1 보정 조건에 의해 캔슬되어 있다). 본 실시형태에서는, 도 9 의 단계 S15 에 있어서의 서치 얼라인먼트에서의 서치 얼라인먼트 마크의 위치 계측 결과를 이 웨이퍼 얼라인먼트에서 산출된 얼라인먼트 보정량 (스케일링 성분, 직교도 성분) 에 기초하여 변환함으로써, 서치 마크 계측 결과로부터 웨이퍼 변형 성분과 마크 변형 성분을 캔슬할 수 있다.
또, 웨이퍼 (W) 상에 형성된 쇼트 영역의 배열은 스케일링 등의 선형 성분뿐만 아니라 고차 성분도 갖고 있어, 그 성분을 무시할 수 없는 경우도 있다. 여기서는 그러한 성분들을 랜덤 성분으로 부르기로 한다. 이 랜덤 성분에 의해서도 서치 얼라인먼트 마크의 형성 위치가 변화하기 때문에, 도 9 의 단계 S15 에 있어서의 서치 얼라인먼트에 있어서 그러한 랜덤 성분이 산출되어 있는 경우에는 그 성분을 마크 위치로부터 빼도록 해도 된다.
또, 랜덤 성분이 미리 설정된 역치를 초과한 웨이퍼에 관해서는 이상 웨이퍼로서 웨이퍼 투입 재현성 데이터로부터 제외시키도록 해도 된다. 통상, 랜덤 성분에 관해서는 웨이퍼 투입 재현성 계측의 요구 정밀도에 비하여 충분히 작은 경우가 많기 때문에, 랜덤 성분에 의한 마크 위치의 규격화는 생략하더라도 정밀도에 대한 영향이 적고, 웨이퍼 투입 재현성 계측에 사용할 때의 계측 데이터 이상 판정에만 사용하는 쪽이 바람직하다.
다음 단계 826 에서는 웨이퍼 투입 재현성 평가 팩터를 설정한다. 여기서는, 웨이퍼 투입 재현성을 산출하고, 감시하는 평가 팩터를 지정한다. 웨이퍼 투입 재현성의 평가 팩터로는 이하의 표 3 에 나타내는 것을 들 수 있다.
Figure 112006082844455-PCT00010
즉, 웨이퍼 (W) 의 투입 재현성 팩터로는, 투입후의 웨이퍼 (W) 의 중심 위치 (X, Y) 및 회전량 (θ) 의 분포에 관한 정보로, (X(3σ), Y(3σ), θ(3σ), Y-θ(3σ)) 나, 최대값에서 최소값까지의 범위 (X(Max-Min), Y(Max-Min), (Y-θ)(Max-Min)) 등을 들 수 있다.
여기서는, 웨이퍼 투입 재현성 계측 팩터 [1]∼[8] 중 계측에 사용하는 것을 선택한다. 예를 들어, 상기 표 1 에 나타내는 웨이퍼 투입 재현성 계측 팩터 [1]∼[8] 중, [1], [2], [3], [4], [7], [8] 을 지정한다. 또한, 본 실시형태에서는, 로트 처리 중의 투입 재현성 계측 처리에 있어서, 지정된 평가 팩터의 값이 역치를 초과한 경우에는 정상적으로 노광 처리를 실시할 수 없는 것으로 판단할 수도 있다. 따라서 여기서는, 지정한 평가 팩터에 대한 이상 판정 역치도 설정한다. 통상 역치는, 서치 얼라인먼트 영역, 서치 마크의 크기, 전층의 노광에 사용된 처리 시스템 (100) 에 있어서의 노광 장치와, 노광 장치 (200) 와의 장치간 오프셋에 기초하여 규정되고, Y, θ, X 의 3σ 의 역치는 예를 들어 15[㎛] 정도, Y, θ, X 의 (Max-Min) 의 역치는 예를 들어 30[㎛] 정도가 설정된다.
다음 단계 828 에서는, 웨이퍼 투입 재현성의 평가 팩터에 관해서 계측 결과가 역치는 초과한 경우의 동작을 설정한다. 즉, 상기 단계 820 에서 지정한 웨이퍼 투입 재현성 평가 팩터 중 어느 하나가 역치를 초과한 경우에, 노광 장치 (200) 의 도시하지 않은 표시 장치에 있어서 에러 메세지를 표시할지, 어느 평가 팩터에 있어서 이상이 발생하였는지, 그 이상값은 몇인지 등, 구체적인 정보가 기록된 상세 리포트를 예를 들어 노광 공정 관리 컨트롤러 (500) 에 통지할지 여부, 이상이 발생한 경우라도 그대로 로트 처리를 계속할지 여부, 유지관리 모드로 전환해야하는지 여부 등의 동작을 지정할 수 있도록 한다.
다음 단계 830 에서는, 서치 계측 위치 자동 조정 기능의 설정에서는 웨이퍼 투입 재현성의 3σ, Max-Min, 평균값에 따라서 서치 얼라인먼트 마크의 계측 위치를 자동으로 조정할지 여부를 지정한다.
다음 단계 832 에서는, 서치 얼라인먼트 마크의 검출 에러 (서치 오검출 에러) 가 발생한 경우의 동작을 설정한다. 여기서는 예를 들어, 서치 오검출 에러 발생시에 도시하지 않은 표시 장치에 에러 메세지를 표시할지 여부, 웨이퍼 (W) 의 중심 위치 및 회전량 등의 상세 정보를 구체적으로 기록한 상세 리포트를 노광 공정 관리 컨트롤러 (500) 에 통지할지 여부, 서치 오검출 에러가 발생한 경우라도 그대로 로트 처리를 계속할지 여부, 유지관리 모드로 전환할지 여부, 웨이퍼 (W) 의 프리얼라인먼트 및 로드를 자동적으로 재시도할지 여부, 서치 얼라인먼트 마크의 계측 위치의 자동 조정을 실시하고 있지 않았던 경우에는 재시도시에 이것을 실시할지 여부, 서치 얼라인먼트 마크의 계측 위치의 자동 조정을 이미 실시한 경우에는 서치 얼라인먼트 마크의 계측 위치의 자동 조정을 규정하는 각종 파라미터의 자동 수정을 실시할지 여부 등의 각종 동작을 지정한다.
여기서, 서치 얼라인먼트 마크의 계측 위치의 자동 조정에 관해서 설명한다. 어느 정도 매수의 웨이퍼 (W) 에 대하여 웨이퍼 투입 재현성을 계측한 경우에, 그러한 평가 팩터와 서치 얼라인먼트 마크의 위치에 어떠한 종류의 인과관계를 발견할 수 있는 경우에는, 웨이퍼 투입 재현성의 계측 결과로부터 서치 얼라인먼트 마크의 위치를 어느 정도까지 예측할 수 있다. 이것에 의해, 서치 얼라인먼트 마크를 계측할 때의 서치 계측 위치나 범위를 자동 수정할 수 있다. 예를 들어, 지금까지 투입된 웨이퍼 (W) 에서의 웨이퍼 투입 재현성 계측 결과인 평균치, 3σ, 최대값-최소값 등과, 서치 얼라인먼트 마크의 위치와의 관계로부터, 최소 제곱법 등의 소정의 통계적 수법을 사용하여 이번에 투입된 웨이퍼 (W) 에서의 각 마크의 서치 계측 위치의 변동을 예측하기 위한 변동 예측식을 작성하여, 그 변동 예측식으로부터 이번의 웨이퍼 (W) 에서의 각 서치 얼라인먼트 마크의 위치를 예측하고, 그 위치를 고려하여 서치 마크의 계측 범위를 결정하도록 해도 된다. 이 서치 얼라인먼트 마크의 자동 조정은, 차층 노광 장치 (즉 본 실시형태에서는 노광 장치 (200)) 의 C. 오프셋, D. 투입 재현성 등을 저감하는 것이 분명하다.
이상의 설계 시퀀스의 완료 후, 상기 단계 820 에 있어서 투입 재현성 계측을 실시하도록 설정되어 있던 경우에는, 실제로 웨이퍼 프로세스에 있어서, 노광 장치 (200) 에 웨이퍼가 투입될 때마다 상기 제 1, 제 2 보정 조건에 기초하여 서치 얼라인먼트 마크의 위치 계측 결과를 규격화하고 (규격화 공정), 규격화된 위치 계측 결과에 기초하여 노광 장치 (200) 에 투입된 웨이퍼의 투입 재현성을 계측한다 (재현성 계측 공정). 이들 처리는, 서치 얼라인먼트가 실시된 후 또는 파인 얼라인먼트의 결과를 사용하여 마크 위치의 규격화를 실시하는 경우에는 파인 얼라인먼트가 실시된 후에 실행된다.
또한, 이 투입 재현성 계측 처리에 있어서, 지정된 평가 팩터가 역치를 초과하여 웨이퍼 투입 재현성의 이상을 검지한 경우에는, 상기 조건 설정 시퀀스에서의 설정에 기초를 둔 처리를 실시한다. 예를 들어, 로트 처리의 정지, 유지관리의 실행이 설정되어 있던 경우에는 프로세스를 정지하고, 장치를 유지관리한다. 이 유지관리에서는, 투입 아암 (36) 및 센터 테이블 (30) 의 안정성, 투입 아암 (36) 과 센터 테이블 (30) 의 평행도, 센터 테이블 (30) 과 웨이퍼 홀더 (18) 의 평행도, 프리얼라인먼트 화상 계측 장치의 조정 (프리얼라인먼트의 광학계의 조정도 포함), 배경판의 경사 조정, 웨이퍼의 휨 등을 검사한다. 이들 검사에서 이상이 발견되지 않은 경우에는, 상기 표 1 및 표 2 에 나타내는 웨이퍼 투입 파라미터를 조정 (예를 들어, 센터 테이블 (30) 과 투입 아암 (36) 의 진공 상태의 변동 조정) 하도록 해도 된다.
또, 웨이퍼 방향이 6 시인 경우와, 3 시인 경에서는, 웨이퍼 (W) 의 투입 재현성에 차이가 있는 것이 일반적이기 때문에, 각각의 경우에서의 투입 재현성을 따로따로 평가하는 것이 바람직하다.
지금까지의 설명으로부터도 분명한 바와 같이, 단계 624, 단계 626, 단계 632, 단계 634 (도 15) 가 사전 계측 공정에 대응하고, 단계 S13 (도 9참조) 이 본 계측 공정에 대응하고, 단계 S14 의 웨이퍼 로드 또는 단계 S15 의 서치 얼라인먼트 (도 9 참조) 에 있어서 실시된, 사전 계측된 서치 얼라인먼트 마크의 위치 어긋남량에 따른 웨이퍼 스테이지 (WST) 의 위치의 조정이 조정 공정에 대응한다. 또한, 단계 S15 의 서치 얼라인먼트 (도 9참조) 가 마크 계측 공정 및 투입후 판단 공정에 대응한다. 또한, 단계 628, 630, 636, 638 (도 15) 가 평가 공정에 대응하고, 단계 642 (도 16참조) 가 최적화 공정에 대응하고, 단계 640 (도 16참조) 이 최적화전 판단 공정에 대응하고, 단계 644 (도 16 참조) 가 최적화후 판단 공정에 대응하고, 단계 650 (도 16참조) 이 제외 공정에 대응한다.
또한, 본 실시형태에서는, 도 1 의 해석 시스템 (600) 이 해석 장치에 대응하고, 도 2 의 얼라인먼트계 (ALG) 가 마크 계측 장치에 대응하고, 도 1 의 인라인 계측기 (400) 또는 오프라인 계측기 (800) 가 사전 계측 장치, 평가 장치에 대응하고, 도 2 의 프리얼라인먼트 장치 (32) 가 외연 계측 장치에 대응하고, 도 2 의 주제어 장치 (20) 가 조정 장치, 규격화 장치, 재현성 계측 장치, 도출 장치 등에 대응한다.
이상 상세히 설명한 바와 같이, 본 실시형태에 의하면, 노광 장치 (200) 로 웨이퍼 (W) 를 투입할 때에, 프리얼라인먼트 장치 (32) 에 있어서의 프리얼라인먼트 계측 공정에서 웨이퍼 (W) 의 피계측면의 외연 (에지) 의 적어도 일부를 검출한다. 그리고, 그 검출 결과에 기초하여, 웨이퍼 (W) 의 피계측면 (예를 들어, 쇼트 영역이 형성되는 웨이퍼 (W) 의 표면) 에 대략 평행한 2 차원 좌표계로서 웨이퍼 (W) 의 에지 상의 적어도 1 개의 기준점 (예를 들어 노치 중심 위치) 에 의해 규정되는 외형 기준 좌표계 (X'Y' 좌표계) 에서의 웨이퍼 (W) 의 위치 정보를 계측한다. 그리고, 그 계측 결과에 기초하여 웨이퍼 (W) 의 프리얼라인먼트를 실시하는 경우에, 웨이퍼 (W) 를 노광 장치 (200) 에 투입하기 전에, 프리얼라인먼트에 앞서 인라인 계측기 (400) 또는 오프라인 계측기 (800) 에 있어서의 사전 계측 공정에서, 노광 장치 (200) 와는 독립적으로 웨이퍼 (W) 에지의 적어도 일부와 웨이퍼 (W) 의 피계측면 상에 형성된 적어도 2 개의 서치 얼라인먼트 마크 (SYM, SYθ) 를 검출하고, 그 검출 결과에 기초하여 외형 기준 좌표계 (X'Y' 좌표계) 에서의 각 서치 얼라인먼트 마크 (SYM, SYθ) 의 위치 좌표의 계측을 사전에 실시한다.
또, 프리얼라인먼트에 의해 노광 장치 (200) 에 투입되는 웨이퍼 (W) 와, 웨이퍼 (W) 상의 각 서치 얼라인먼트 마크 (SYM, SθM) 의 위치를 계측하는 얼라인먼트계 (ALG) 의 계측 시야와의 XY 좌표계에서의 상대 위치를, 인라인 계측기 (400) 등의 사전 계측 결과에 기초하여 조정한다. 이렇게 하면, 노광 장치 (200) 에 투입된 웨이퍼 (W) 상의 서치 얼라인먼트 마크를 얼라인먼트계 (ALG) 의 계측 시야 내에 반드시 위치시킬 수 있게 되기 때문에, 서치 얼라인먼트 마크의 위치를 확실히 계측할 수 있게 되고, 그 마크 위치의 계측 결과에 기초하여 고정밀도의 노광을 실현할 수 있다.
또, 본 실시형태에서는, 노광 장치 (200) 에 있어서의 프리얼라인먼트 장치 (32) 에서는, 상기 물체의 에지 상의 외형적 특징부 (본 실시형태에서는 노치) 에 대응하는 적어도 1 개의 특정점을 기준점으로 하였을 때에 얻어지는 웨이퍼 (W) 의 중심 위치 및 회전량에 의해 규정되는 X'Y' 좌표계를 외형 기준 좌표계로 하여, 웨이퍼 (W) 의 프리얼라인먼트를 실시하였지만, 본 실시형태와 같은 처리 시스템 (100) 에 있어서 설치되어 있는 모든 노광 장치가, 프리얼라인먼트시의 기준이 되는 외형 기준 좌표계로서 노치 기준의 좌표계를 채용하고 있는 것으로 한정되지는 않는다. 예를 들어, 노광 장치 중에는, 프리얼라인먼트시에 웨이퍼 (W) 의 에지 상의 적어도 4 개의 점 (3 개의 촬상 시야 (VA∼VC) 중에서 얻어지는 것으로, 그 중 적어도 3 개의 점은 각 시야 (VA∼VC) 에서 각각 얻어지는 점) 을 검출하고, 각 검출점을 기준점으로 하여 통계적 수법에 의해 구해지는 웨이퍼의 중심 위치 및 회전량에 의해 규정되는 좌표계를 외형 기준 좌표계로 하는 장치가 존재하는 경우도 있다. 이와 같이, 처리 시스템 (100) 내에 외형 기준 좌표계의 규정이 상이한 노광 장치를 포함하는 경우에는, 동일 웨이퍼라도 각 층에 따라서 외형 기준 좌표계 자체가 다른 것이 되어, 웨이퍼 (W) 상에 형성되는 서치 얼라인먼트 마크의 위치도 어긋나게 된다. 따라서, 전층 노광 장치와 차층 노광 장치에서 웨이퍼 외형의 검출 방법이 다르고, 외형 기준 좌표계가 다른 것이 되는 경우에는, 그만큼 서치 오검출 에러를 발생시킬 가능성이 높아진다. 예를 들어 전층 노광 장치와 차층 노광 장치 중 일방이 본 실시형태에서 설명한 프리얼라인먼트계에 의한 웨이퍼 외형의 검출 방식이고, 타방이 예를 들어 일본 공개특허공보 소60-218853호 및 대응하는 미국 특허 제4,907,035호 명세서에 개시되어 있는, 웨이퍼 에지에 대향하여 설치된 라인 센서를 사용하여 웨이퍼를 회전시키면서 그 라인 센서에 의해 웨이퍼 외형을 검출하는 방식인 경우 등이다. 본 실시형태와 같은 인라인 계측기 (400) 등에 의한 외형 기준 좌표계에서의 서치 얼라인먼트 마크의 위치 좌표의 사전 계측은 이러한 경우에 특히 유효하다. 또, 본 국제 출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내 법령이 허용하는 한도 내에서, 상기 공보 및 대응하는 미국 특허출원공개 명세서 또는 미국 특허에 있어서의 개시를 원용하여 본 명세서 기재의 일부로 한다.
즉, 인라인 계측기 (100) 에서는, 전층의 외형 기준 좌표계 하에서 형성된 서치 얼라인먼트 마크에 대하여, 금회의 층을 노광하는 노광 장치에서 적용되는 외형 기준 좌표계에서의 그 마크의 설계상 위치로부터의 위치 어긋남량을 계측하게 된다. 따라서, 금회의 층을 노광하는 노광 장치에서는 그 어긋남량에 기초하여 얼라인먼트계 (ALG) 의 촬상 시야를 보정하면 된다. 단 이 경우, 인라인 계측기 (400) 에서는, 차층 노광 장치에서 적용되는 외형 기준 좌표계에서의 서치 얼라인먼트 마크의 위치 좌표의 계측을 실시할 필요가 있다. 예를 들어, 그 노광 장치가 적어도 4 점 이상 웨이퍼 (W) 의 에지의 검출점을 기준점으로 하여 통계적 수법에 의해 구해지는 웨이퍼의 중심 위치 및 회전량에 의해 규정되는 좌표계를 외형 기준 좌표계로서 채용하고 있는 경우에는, 상기 실시형태와는 다른 방법에 의해 (즉, 이제부터 웨이퍼 (W) 를 노광하는 노광 장치에서의 외형 기준 좌표계에서의) 마크의 어긋남량 계측을 실시하지 않으면 안된다. 또, 상기 서술한 본 실시형태에서는 프리얼라인먼트시에 웨이퍼 (W) 의 에지 상의 적어도 4 개의 점을 검출하는 것으로서 설명하였지만, 본 발명은 이것에 한정되지 않고, 적어도 3 개의 점을 검출하여 웨이퍼의 중심 위치, 회전량을 구하도록 해도 된다.
인라인 계측기 (400) 에서는, 이 경우의 계측을 위해 턴테이블 (TT) 을 구비하고 있다. 즉, 인라인 계측기 (400) 에서는, 도 8(a) 에 나타내는 상태로부터 스테이지 장치 (IST) 는 정지시킨 채로 턴테이블 (TT) 을 소정 피치로 회전시키고, 그 때마다 사전 계측 센서 (410) 에 의해 웨이퍼 (W) 의 에지를 검출한다. 즉, 각 회전량에서의 검출 결과로부터 웨이퍼 (W) 의 원주 방향을 따라서 각 회전량에 대응하는 에지 위치를 계측하고, 그것을 XY 좌표계로 전개하면, XY 좌표계에서의 웨이퍼 (W) 의 원주에 따른 다수의 에지점이 구해진다. 그래서, 이 최소 제곱법 등과 같은 소정의 통계적 수법을 사용하여 원형인 웨이퍼 (W) 의 외형을 결정하고, 결정된 웨이퍼 (W) 의 외형 (노치 위치를 포함한다) 으로부터 웨이퍼 (W) 의 중심 위치 및 회전량을 산출하여, 그 산출 결과에 기초해서 외형 기준 좌표계를 결정하면 된다.
또, 이와 같이, 노광 장치 사이에서의 외형 기준 좌표계 규정의 차이로 인한 서치 얼라인먼트 마크의 위치 어긋남에만 착안하는 경우에는, 그 위치 어긋남량은 로트 내에서 대략 동일하다고 간주할 수 있기 때문에, 로트 내의 모든 웨이퍼 (W) 가 아니라 로트 선두의 웨이퍼 (W) 만 인라인 계측기 (400) 에 의한 사전 계측을 실시하도록 해도 된다. 이와 같이 하면, 사전 계측에 시간적 제한이 있는 경우에는 스루풋의 관점에서 특히 유효하다.
또한, 본 실시형태에서는, 서치 얼라인먼트에 있어서, 노광 장치 (200) 에 투입된 웨이퍼 (W) 상의 각 서치 얼라인먼트 마크의 위치 계측을 실시한 후, 그 서치 얼라인먼트 마크 위치의 계측 위치가 소정 범위를 벗어나 있는 경우에는, 웨이퍼 투입 이상으로 하였다. 이와 같이, 사전 계측에 의해 외형 기준 좌표계에서의 서치 얼라인먼트 마크의 설계 위치로부터의 위치 어긋남량을 고려하여 서치 얼라인먼트 마크 계측을 실시하더라도, 더우기 서치 마크의 위치가 크게 어긋나 있는 경우에는 웨이퍼 투입에 이상이 발생한 것으로 간주할 수 있는 개연성이 높아진다.
또한, 본 실시형태에서는 노광 장치에서의 프리얼라인먼트에 앞서, 사전에 인라인 계측기 (400) 또는 오프라인 계측기 (800) 를 사용하여 웨이퍼 (W) 의 에지의 계측을 실시하여, 그 웨이퍼 (W) 의 에지의 최적 계측 조건을 구하고 있다. 이와 같이 하면, 노광 장치에 있어서 항상 최적의 계측 조건 하에서 프리얼라인먼트 계측을 실시할 수 있기 때문에, 에지 검출 에러의 발생 저감 및 얼라인먼트 정밀도의 향상을 꾀할 수 있다.
그리고 본 실시형태에서는, 웨이퍼 (W) 의 외형 기준 좌표계에서의 서치 얼라인먼트 마크의 설계 위치로부터의 위치 어긋남량을 서치 얼라인먼트 마크 계측 결과로부터 뺌으로써, 통상적인 로트 처리 중에 다른 웨이퍼 사이에서의 웨이퍼 투입 재현성 계측을 가능하게 하고 있다.
또한, 그 웨이퍼 (W) 의 투입 재현성과 서치 얼라인먼트 마크의 위치 계측 결과를 기억 장치 (21) 에 로깅함으로써, 그 투입 재현성의 평가 팩터와 서치 얼라인먼트 마크의 위치와의 사이에 인과관계가 인정되는 경우에는, 그 관계에 기초한 서치 얼라인먼트 마크의 위치의 변동 예측식을 소정의 통계적 수법을 사용하거나 하여 작성하고, 작성된 변동 예측식을 사용하여 다음에 투입되는 웨이퍼 (W) 상의 서치 얼라인먼트 마크의 위치를 예측함으로써, 로트 처리 중의 서치 얼라인먼트 마크의 계측 위치의 자동 조정 등을 실시할 수 있다. 이 때문에, 서치 오검출 에러의 발생 저감 및 얼라인먼트 정밀도의 향상을 실현할 수 있다. 또한, 상기 변동 예측식은 서치 얼라인먼트 마크의 계측 위치의 조정뿐만 아니라, 웨이퍼 (W) 의 반송계 (상기 실시형태에서는 투입 아암 (36) 이나 센터 테이블 (30)) 의 조정 시기의 최적화에 사용하는 것도 가능하다.
또한, 처리 시스템 (100) 에 형성되어 있는 노광 장치에 따라서는, 웨이퍼 (W) 를 투입한 후에 서치 얼라인먼트를 실시하지 않고, 그대로 웨이퍼 얼라인먼트 처리를 실시하는 경우도 있다. 이러한 노광 장치를 사용하여 웨이퍼 (W) 의 노광을 실시하는 경우, 인라인 계측기 (400) 에 있어서의 사전 계측 처리에서는, 서치 얼라인먼트 마크 (SYM, SYθ) 가 아니라 파인 얼라인먼트 마크의 위치 좌표를 계측해 두고, 웨이퍼 (W) 를 그 노광 장치에 투입한 후에는, 파인 얼라인먼트에 있어서 파인 얼라인먼트 마크를 계측할 때에 얼라인먼트계 (ALG) 의 계측 시야를 인라인 계측기 (400) 의 사전 계측 결과에 기초하여 보정하도록 해도 된다.
[인라인 계측기 등의 촬상 방식]
또한, 상기 실시형태에서는 인라인 계측기 (400) 나 프리얼라인먼트 장치 (32) 에 있어서는 낙사 조명 방식을 채용하였지만, 이것에는 한정되지 않는다. 예를 들어, 도 20 에 나타낸 것과 같은, 수광계와 조명계를 웨이퍼 (W) 를 사이에 두고 반대 방향에 배치하는 투과 조명 방식을 채용하더라도 상관없다 (조명계는 미러 (54') 를 구비한다). 이 투과 조명 방식을 채용하면, 촬상 결과에 미치는 웨이퍼 (W) 단면 형상의 영향을 저감하는 것이 가능해진다. 그러나, 배치 스페이스의 상황이나, 웨이퍼 (W) 의 에지를 검출하는 광학계와 서치 얼라인먼트 마크를 검출하는 광학계의 공통화 등의 관점에서 보면, 상기 실시형태와 같은 낙사 조명 방식의 쪽이 바람직하다.
또한, 상기 실시형태에서는, 인라인 계측기 (400) 에서는 광학 변배계를 구비한 1 개의 사전 계측 센서와 XY 평면 내를 이동 가능한 스테이지 장치 (IST) 의 구성에 의해, 웨이퍼 (W) 의 3 군데 에지와, 웨이퍼 (W) 상의 서치 얼라인먼트 마크를 1 개의 센서에 의해 계측하는 계측기이지만, 이것에는 한정되지 않는다. 예를 들어, 프리얼라인먼트 장치 (32) 와 동등한 구성을 갖는 계측 장치와 얼라인먼트계 (ALG) 와 동등한 구성을 갖는 계측 장치를 구비하고, 웨이퍼 (W) 의 에지 3 군데를 동시에 계측하는 계측 장치여도 되고, 웨이퍼 (W) 의 에지와, 웨이퍼 (W) 상의 서치 얼라인먼트 마크는 각각 별도의 센서로 계측하는 계측 장치여도 상관없다. 이 경우, 각각의 센서에 광학 변배계를 구비할 필요는 없다. 요컨대, 노광 장치가 채용하는 외형 기준 좌표계에서의 서치 얼라인먼트 마크의 위치를 계측 가능한 계측 장치이면 된다. 또한, 프리얼라인먼트 장치 (32) 를 대신하여, 전술한 바와 같은 일본 공개특허공보 소60-218853호 및 대응하는 미국 특허 제4,907,035호 명세서에 개시된 구성의 프리얼라인먼트 장치 (웨이퍼를 회전시키면서 1 차원 라인 센서에 의해 웨이퍼 에지를 계측하는 타입의 장치) 를 웨이퍼 에지 계측 장치로서 사용하도록 해도 된다. 또, 웨이퍼 (W) 의 에지를 계측할 때에는 그 웨이퍼 에지의 2 차원 화상 데이터를 사용하고, 웨이퍼 (W) 상의 서치 얼라인먼트 마크를 계측할 때에는 X/Y 각 축 1 차원의 파형 데이터를 사용하는 것에 한정되지 않고, 웨이퍼 에지 계측, 서치 얼라인먼트 마크 계측 (웨이퍼 내의 마크 계측) 의 어떠한 것도 2 차원 데이터, 1 차원 데이터 중 어느 한쪽을 사용하여 계측해도 된다. 본 국제 출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내 법령이 허용하는 한도 내에서, 상기 공보 및 대응하는 미국 특허출원공개 명세서 또는 미국 특허에 있어서의 개시를 원용하여 본 명세서 기재의 일부로 한다.
또한, 웨이퍼 (W) 의 에지를 검출하는 광학계와 서치 얼라인먼트 마크를 검출하는 광학계를 공통화하지 않은 경우에는, 마크의 위치를 계측하는 센서는 화상 처리 방식에 기초한 것에 한정할 수 없다. 예를 들어, LSA (Laser Step Alignment) 계, LIA (Laser Interferometric Alignment) 계의 센서여도 된다. 여기서, LSA 계는 레이저광을 마크에 조사하고, 회절ㆍ산란된 광을 이용해서 마크 위치를 계측하는 가장 범용성이 있는 센서이고, 종래부터 폭넓은 프로세스 웨이퍼에 사용되고 있다. 또한, LIA 계는 회절 격자모양의 마크에 주파수를 미소하게 변경한 레이저광을 2 방향으로부터 조사하여 발생된 2 개의 회절광을 간섭시키고, 그 위상으로부터 마크의 위치 정보를 검출하는 센서로, 낮은 단차나 표면이 거친 웨이퍼에 유효하게 사용된다. 인라인 계측기 (400) 는, 노광 장치 (200) 의 경우와 마찬가지로, 이들 3 가지 방식의 센서 중 2 개 이상의 센서를 설치하고 각각의 특징 및 상황에 따라서 구별하여 사용할 수 있도록 하는 것이 바람직하다. 또한, 일본 공개특허공보 2003-224057호 및 대응하는 미국 특허 제6,762,111호 명세서 또는 미국 특허 제6,833,309호 명세서에 개시된, 피계측 마크의 비대칭성을 측정하는 센서를 구비하도록 해도 된다. 본 국제 출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내 법령이 허용하는 한도 내에서, 상기 공보 및 대응하는 미국 특허출원공개 명세서 또는 미국 특허에 있어서의 개시를 원용하여 본 명세서 기재의 일부로 한다.
또한, 상기 실시형태에서는 서치 얼라인먼트 마크의 계측 결과를 사용하여 노광 장치에서의 웨이퍼의 투입 재현성을 계측하였지만, 본 발명은 이것에 한정되지 않고, 예를 들어, 웨이퍼 얼라인먼트를 실시하기 위해서 쇼트 영역에 부설된 파인 얼라인먼트 마크의 계측 결과를 사용하여 웨이퍼의 투입 재현성을 계측해도 된다.
또한, 상기 실시형태에서는 본 발명을 웨이퍼의 프리얼라인먼트 및 서치 얼라인먼트, 즉 웨이퍼의 얼라인먼트에 적용하는 경우에 관해서 서술하였지만, 레티클의 반송 동작 또는 얼라인먼트 동작에 관해서도 본 발명을 적용할 수 있음은 물론이다.
또, 웨이퍼의 프리얼라인먼트 장치는 상기 실시형태에서 설명한 것에 한정되지 않고, 여러 가지 형태의 것을 사용할 수 있다. 예를 들어, 일본 공개특허공보 평9-36202호와 같이, 웨이퍼 스테이지 (WST) 상에 조명계를 탑재하고, 웨이퍼 스테이지 (WST) 가 투입 아암 (36) 의 밑으로 온 다음, 웨이퍼 스테이지 (WST) 상에 탑재한 조명계를 사용하여 프리얼라인먼트를 실시하는 구성으로 해도 된다. 또한, 센터 테이블 (30) 상, 웨이퍼 홀더 (18) 상 또는 투입 아암 (36) 이외의 반송계에 홀딩된 웨이퍼 (W) 에 대하여 프리얼라인먼트 계측을 실시할 수 있도록 되어 있어도 된다. 이와 같이, 프리얼라인먼트 검출로는 여러 가지 수법을 채용할 수 있지만, 어떻든 간에 노광 동작이 종료하고, 웨이퍼 교환을 위해 웨이퍼 스테이지 (WST) 를 웨이퍼 로드 위치로 이동시켜서, 언로드 작업을 실시하는 것과 병행하여 프리얼라인먼트 계측을 실시할 수 있다. 본 국제 출원에서 지정한 지정국 (또는 선택한 선택국) 의 국내 법령이 허용하는 한도 내에서, 상기 공보에 있어서의 개시를 원용하여 본 명세서 기재의 일부로 한다.
이와 같이, 웨이퍼의 프리얼라인먼트 장치 등에 의해서 구성되는 프리얼라인먼트 기구에는 여러 가지 형태의 것이 있다. 예를 들어 도 3(c) 등에 나타낸 것과 같이 웨이퍼 홀더 (18) 에 대하여 출몰 가능한 센터 테이블 (30) 을 설치하지 않고, 웨이퍼 스테이지 (WST) 나 웨이퍼 홀더 (18) 에 투입 아암 (36) 에 있어서의 훅부가 통과 가능한 한 쌍의 오목홈 및 노치부를 형성하고, 투입 아암 (36) 과 웨이퍼 스테이지 (WST) 의 협조 동작에 의해 투입 아암 (36) 과 웨이퍼 스테이지 (WST) 를 간섭시키지 않고서, 웨이퍼를 수수하도록 해도 된다.
또, 본 명세서에 있어서 「아암」이란, 물체 (상기 실시형태에서는 웨이퍼) 의 반송시에 그 홀딩에 사용되는 부재를 포함하는 넓은 개념이다. 또한, 상기 실시형태에서는 웨이퍼 (W) 의 쇼트 영역이 형성되는 측의 면, 즉 노광면이 「물체의 피계측면」이지만, 이것은 웨이퍼 (W) 의 이면이어도 상관없다. 또한, 본 명세서에 있어서 「에지」란 웨이퍼 (W) 외연의 적어도 일부를 의미한다.
또, 인라인 계측기 (400) 또는 오프라인 계측기 (800) 에 있어서도, 웨이퍼 외형 에지의 계측을 실시할 때의 웨이퍼 (W) 의 홀딩 방법은 상기 실시형태와 같은 것에 한정되지 않는다. 예를 들어, 스테이지 장치 (IST) 의 구성은 적절히 설계 변경이 가능하여, 스테이지 장치 (IST) 상에 턴테이블 (TT) 은 없어도 되고, 웨이퍼 스테이지 (WST) 와 동일한 구성이어도 좋고, 센터 테이블 또는 웨이퍼 홀더 상에 홀딩된 웨이퍼 (W) 에 대하여 그 에지를 계측하는 구성이어도 된다. 또, 스테이지 장치 (IST) 에 웨이퍼 (W) 를 로드하는 반송계에 웨이퍼 (W) 가 홀딩된 상태에서 그 웨이퍼의 에지를 계측하도록 하더라도 상관없다.
그런데, 통상적으로 장치의 운용 중 (프로세스 웨이퍼의 노광 처리 시퀀스 중) 에 있어서 웨이퍼의 투입 재현성 계측의 수법으로는, 전술한 바와 같은 인라인 계측기 (400) 의 사전 계측 공정에서 얻어진 정보를 사용하는 수법 이외에도 인라인 계측기를 사용하지 않고 (노광 장치 단독으로) 실시하는 수법도 있다. 이 수법에 관해서 이하에 상세히 서술한다.
도 21 에는, 노광 장치 단체 (單體) 로 웨이퍼의 투입 재현성 계측을 실시하기에 바람직한 노광 장치의 개략 구성이 나타나 있다. 여기서는, 스텝 앤드 리피트 방식의 노광 장치를 예로 들어 설명한다. 또, 이하의 설명에 있어서는, 도 21 중에 XYZ 직교 좌표계를 설정하고, 이 XYZ 직교 좌표계를 참조하면서 각 부재의 위치 관계에 관해서 설명한다. XYZ 직교 좌표계는, X 축 및 Y 축이 웨이퍼 스테이지에 대하여 평행해지도록 설정되고, Z 축이 웨이퍼 스테이지에 대하여 직교하는 방향 (투영 광학계 (PL) 의 광축 (AX) 에 평행한 방향) 으로 설정되어 있다. 도면 중의 XYZ 직교 좌표계는, 실제로는 XY 평면이 수평면에 평행한 면으로 설정되고, Z 축이 연직 상방향으로 설정된다.
도 21 에 있어서, 조명 광학계 (1) 는, 수은 램프나 엑시머 레이저 등으로 이루어지는 광원, 플라이아이 렌즈, 및 콘덴서 렌즈 등을 구비하여 구성되어 있다. 조명 광학계 (1) 로부터 사출되는 조명광 (IL) 은 마스크로서의 레티클 (R) 에 조사되어, 레티클 (R) 에 형성되어 있는 패턴이 투영 광학계 (PL) 를 통하여 예를 들어 1/4 또는 1/5 로 축소되어서, 포토레지스트가 도포된 웨이퍼 (W) 의 각 쇼트 영역 (구획 영역) 에 투영 노광된다. 조명광 (IL) 으로는, 예를 들어 g 선 (파장 436㎚), i 선 (파장 365㎚), KrF 엑시머 레이저광 (파장 248㎚), ArF 엑시머 레이저광 (파장 193㎚), F2 레이저광 (파장 157㎚) 이 사용된다. 또한, 투영 광학계 (PL) 는 복수의 렌즈 등의 광학 소자를 갖고, 그 광학 소자의 초재로는 조명광 (IL) 의 파장에 따라서 석영, 형석 등의 광학 재료로부터 선택되며, 그 잔존 수차가 조명광 (IL) 의 파장에서 최대한 작아지도록 설계되어 있다.
레티클 (R) 은 레티클 가대 (2) 상에 탑재된 레티클 스테이지 (3) 상에 홀딩되어 있다. 레티클 스테이지 (3) 는, 도시하지 않은 레티클 구동계에 의해 XY 평면 내에서의 병진 이동 및 θ 방향 (회전 방향) 으로의 회전이 가능하도록 구성되어 있다. 레티클 스테이지 (3) 의 상단부에는 X 방향, Y 방향 모두 이동경 (4) 이 설치되어 있고, 이동경 (4) 과 레티클 가대 (2) 상에 고정된 레이저 간섭계 (5) 에 의하여 레티클 스테이지 (3) 의 X 방향 및 Y 방향의 위치가 소정의 분해능으로 상시 검출되고, 동시에 레티클 스테이지 (3) 의 XY 면내에서의 회전각도 검출되고 있다. 레이저 간섭계 (5) 의 측정치는 스테이지 제어 장치 (19) 로 보내지고, 스테이지 제어 장치 (19) 는 그 정보에 기초하여 레티클 가대 (2) 상의 도시하지 않은 레티클 구동계를 제어한다. 또한, 스테이지 제어 장치 (19) 로부터 주제어 장치 (20) 에 레이저 간섭계 (5) 의 측정치 정보가 공급되고 있고, 주제어 장치 (20) 는 그 정보에 기초하여 스테이지 제어 장치 (19) 를 제어하는 구성으로 되어 있다.
웨이퍼 (W) 는, X 스테이지 (6) 상의 시료대 (7) 에 설치된 웨이퍼 홀더 (8) 상에 진공 흡착에 의해 홀딩된다. 시료대 (7) 는 웨이퍼 (W) 의, 투영 광학계 (PL) 의 광축 (AX) 방향 (Z 방향) 의 위치 및 틸트 (기울기) 를 보정하는 Z 틸트 구동부 (9) 에 지지되고, Z 틸트 구동부 (9) 는 X 스테이지 (6) 상에 고정되어 있다. Z 틸트 구동부 (9) 는, 각각 Z 방향으로 변위하는 3 개의 액츄에이터에 의해 구성되어 있다. 또한 X 스테이지 (6) 는 Y 스테이지 (10) 상에 탑재되고, Y 스테이지 (10) 는 웨이퍼 베이스 (11) 상에 탑재되어, 각각 도시하지 않은 웨이퍼 스테이지 구동계를 통하여 X 방향 및 Y 방향으로 이동할 수 있도록 되어 있다. 또, 도시는 생략되어 있지만, 시료대 (7) 를 Z 축을 중심으로 하여 회전시키기 위한 회전 테이블도 설치되어 있다. 단, 회전 테이블은 웨이퍼 스테이지 전체적인 구성의 간략화 및 저중량화 등에 의해, 웨이퍼 (W) 이동의 고속화, 고정밀도화 등을 꾀하기 위해서 생략되는 경우가 있다.
또한, 시료대 (7) 의 상단부에는 L 자형의 이동경 (12') 이 고정되고, 이 이동경 (12') 과 이동경 (12') 에 대향하여 배치된 레이저 간섭계 (13') 에 의해 시료대 (7) 의 X 방향 및 Y 방향의 좌표 및 회전각이 검출된다. 또, 도 21 에 있어서는 도시를 간략하게 하고 있지만, 이동경 (12') 은 X 축에 수직인 경면을 갖는 평면경 및 Y 축에 수직인 경면을 갖는 평면경으로 구성되어 있다. 또한, 레이저 간섭계 (13') 는, X 축을 따라서 이동경 (12') 에 레이저 빔을 조사하는 2 개의 X 축용의 레이저 간섭계 및 Y 축을 따라 이동경 (12') 에 레이저 빔을 조사하는 Y 축용의 레이저 간섭계로 구성되고, X 축용의 1 개의 레이저 간섭계 및 Y 축용의 1 개의 레이저 간섭계에 의해 시료대 (7) 의 X 방향 및 Y 방향의 좌표가 계측되고, X 축용의 2 개의 레이저 간섭계에 의한 계측치의 차에 의해 시료대 (7) 의 XY 평면 내에서의 회전각이 계측된다.
레이저 간섭계 (13') 의 측정치는 스테이지 제어 장치 (19) 로 보내지고, 스테이지 제어 장치 (19) 는 그 정보에 기초하여 도시하지 않은 웨이퍼 스테이지 구동계를 제어한다. 또한, 스테이지 제어 장치 (19) 로부터 주제어 장치 (20) 에 레이저 간섭계 (13') 의 측정치 정보가 공급되고 있고, 주제어 장치 (20) 는 그 정보에 기초하여 스테이지 제어 장치 (19) 를 제어하는 구성으로 되어 있다. 웨이퍼 스테이지 근방에는 웨이퍼 (W) 의 대략적인 위치 조정을 실시하는 제 1 프리얼라인먼트 장치 (30'), 웨이퍼 반송 장치 (31') 및 제 2 프리얼라인먼트 장치 (32') 가 배치되어 있다 (도 22 참조).
또한, 이 노광 장치는 레티클 (R) 과 웨이퍼 (W) 의 위치 맞춤을 실시하기 위한 얼라인먼트 센서를 구비하고 있다. 이 얼라인먼트 센서로서, 예를 들어 TTL (Through The Lense) 방식의 얼라인먼트 센서 (14'), 오프액시스 방식의 얼라인먼트 센서 (15'') 등이 구비되어 있다. 얼라인먼트시에는, 이들 얼라인먼트 센서 (14, 15') 중 어느 하나에 의해 웨이퍼 (W) 상에 형성된 위치 계측용 마크 (얼라인먼트 마크) 의 위치 또는 소정의 패턴 위치를 계측하고, 그 계측 결과에 기초하여 주제어 장치 (20) 가 스테이지 제어 장치 (19) 를 제어하여, 전(前)공정에서 형성된 패턴과 레티클 (R) 의 패턴을 정확히 위치 맞춤한다.
또, 웨이퍼 (W) 상에는 웨이퍼 (W) 의 대략적인 위치 정보를 계측하기 위해서 사용되는 얼라인먼트 마크 (서치 얼라인먼트 마크) 와 웨이퍼 (W) 의 정확한 위치 정보를 계측하기 위해서 사용되는 얼라인먼트 마크 (파인 얼라인먼트 마크) 가 형성되어 있고, 얼라인먼트 센서 (15') 에 의한 위치 계측시에는, 서치 얼라인먼트 마크의 위치 정보를 계측하는 서치 계측을 끝낸 후, 파인 얼라인먼트 마크의 위치 정보를 계측하는 파인 계측이 실시된다.
이들 얼라인먼트 센서 (14' 또는 15') 로부터의 계측 결과는, 주제어 장치 (20) 에 의해 제어되는 얼라인먼트 제어계 (22) 에 의해서 처리된다. 얼라인먼트 제어계 (22) 는, 얼라인먼트 센서 (14' 또는 15') 로부터 출력되는 계측 결과를 사용하여 EGA (Enhanced Global Alignment) 연산을 실시해서, 웨이퍼 (W) 상의 쇼트 영역의 배열을 구한다. 여기서, EGA 연산이란, 웨이퍼 (W) 상에 설정된 대표적인 몇 개 (3∼9 개) 의 쇼트 영역 각각에 부수하여 형성된 얼라인먼트 마크를 얼라인먼트 센서 (14' 또는 15') 에 의해 계측하여 얻어진 계측 결과를 사용해서 통계 연산을 실시하여 웨이퍼 (W) 상에 설정된 모든 쇼트 영역의 배열을 고정밀도로 구하는 것이다.
또한, 시료대 (7) 상에는 웨이퍼 (W) 의 표면과 같은 높이의 표면을 갖는 기준 마크 부재 (16') 가 고정되고, 기준 마크 부재 (16') 의 표면에는 얼라인먼트의 기준이 되는 마크 (피듀셜 마크; Fiducial Mark) 가 형성되어 있다. 이상과 같이, 이 노광 장치는, 스테이지 제어 장치 (19) 및 얼라인먼트 제어계 (22) 가 주제어 장치 (20) 에 의해 제어되고, 주제어 장치 (20) 가 노광 장치의 각 부를 통괄적으로 제어하여 소정의 시퀀스에 의해 노광 동작을 실시하는 구성으로 되어 있다.
또한, 투영 광학계 (PL) 의 웨이퍼 (W) 측 단부 부근에는 5 개의 오프액시스 방식의 2 차원 화상 처리 장치 (17a∼17e) 가 배치되어 있다. 이들 화상 처리 장치 (17a∼17e) 는, 각각 웨이퍼 (W) 가 후술하는 것과 같이 웨이퍼 홀더 (8) 의 상방의 로딩 포지션으로 반송될 때에, 웨이퍼 (W) 의 외주부분의 에지부 및 웨이퍼 (W) 표면의 특징 부분을 촬상하는 것이다. 화상 처리 장치 (17a∼17e) 중, 웨이퍼 (W) 의 외주부분의 에지부를 촬상하는 것은 화상 처리 장치 (17a∼17c) 이고, 웨이퍼 (W) 표면의 특징 부분을 촬상하는 것은 화상 처리 장치 (17d, 17e) 이다.
여기서, 웨이퍼 (W) 표면의 특징 부분이란, 예를 들어 웨이퍼 (W) 표면에 형성된 패턴 또는 마크 중의 다른 패턴 또는 마크와 구별할 수 있는 것을 말한다. 따라서, 예를 들어 화상 처리 장치 (17d, 17e) 의 계측 시야 내에 특징적인 형상을 갖는 쇼트 영역 내의 일부 패턴이 배치되어 있고, 다른 쇼트 영역 내에 형성된 그 패턴이 화상 처리 장치 (17d, 17e) 의 계측 시야 내에 배치될 가능성이 낮은 경우에는, 그 패턴은 특징 부분이 될 수 있다. 또한, 특징 부분은 쇼트 영역 사이에 형성되는 스크라이브 라인 (스트리트 라인) 에 형성된 패턴이어도 된다. 화상 처리 장치 (17d, 17e) 에서 웨이퍼 (W) 상의 상이한 2 군데의 특징 부분을 촬상하는 것은, 웨이퍼 (W) 에 대한 패턴의 회전을 구하기 위해서이다. 또, 웨이퍼 (W) 상에는 2 군데 이상의 특징 부분을 형성해도 된다.
화상 처리 장치 (17a∼17e) 로부터의 촬상 신호는 얼라인먼트 제어계 (22) 에 공급된다. 얼라인먼트 제어계 (22) 에서는 공급된 촬상 신호로부터, 그 수수 위치에 있는 웨이퍼 (W) 의 위치 오차 및 회전 오차, 그리고 웨이퍼 (W) 에 형성된 패턴의 형성 오차를 산출한다. 이들 산출 결과는 제 2 프리얼라인먼트 장치 (32') 에서의 웨이퍼 (W) 의 조정에 사용됨과 함께, 주제어 장치 (20) 로 출력되어 웨이퍼 홀더 (8) 상으로의 웨이퍼 (W) 의 위치 결정 재현성을 계측할 때에 사용된다.
다음으로, 웨이퍼 반송계 및 웨이퍼 스테이지 상의 웨이퍼 수수 기구에 관해서 도 22 를 참조하여 설명한다. 도 22 는, 웨이퍼 수수 기구의 개략적인 구성을 나타내는 사시도이다. 여기서, 웨이퍼 스테이지란, 도 21 에 나타내는 웨이퍼 홀더 (8), 시료대 (7), Z 틸트 구동부 (9), X 스테이지 (6), Y 스테이지 (10), 및 웨이퍼 베이스 (11) 를 총칭하는 것이다. 도 22 에 나타내는 바와 같이 웨이퍼 스테이지의 Y 방향 상방에는, 웨이퍼 (W) 의 대략적인 위치 조정을 실시하기 위한 제 1 프리얼라인먼트 장치 (30'), 웨이퍼 (W) 를 반송 및 수수하기 위한 웨이퍼 반송 장치 (31'), 및 웨이퍼 반송 장치 (31') 에 의해서 반송된 웨이퍼 (W) 를 웨이퍼 홀더 (8) 상에 탑재할 때에 위치 조정을 실시하기 위한 제 2 프리얼라인먼트 장치 (32') 가 형성되어 있다. 도시하지 않은 웨이퍼 반송 장치로부터 반송된 웨이퍼 (W) 는 우선 제 1 프리얼라인먼트 장치 (30') 로 반송되어 대략적인 위치 조정이 실시되고, 다음으로 웨이퍼 반송 장치 (31') 에 의해서 반송되어 제 2 프리얼라인먼트 장치 (32') 로 건네지고, 이어서 제 2 프리얼라인먼트 장치 (32') 에 의해서 위치 조정이 실시되어 웨이퍼 홀더 (8) 상에 탑재된다.
도 23(a) 는 제 1 프리얼라인먼트 장치 (30') 의 개략 구성을 나타내는 측면도이고, 도 23(b) 는 제 1 프리얼라인먼트 장치 (30') 에서 검출되는 검출 신호의 일례를 나타내는 도이다. 도 23(a) 에 나타내는 바와 같이, 제 1 프리얼라인먼트 장치 (30') 는 턴테이블 (35) 및 편심ㆍ방위 센서 (36') 를 포함하여 구성된다. 편심ㆍ방위 센서 (36') 는 턴테이블 (35) 근방에 설치되어 있고, 슬릿형상의 광빔 (LB1) 을 웨이퍼 (W) 의 외주부에 조사하는 투광부 (36a) 와, 웨이퍼 (W) 의 외주부를 통과한 광빔 (LB1) 을 수광하여 광전 변환하는 수광부 (36b) 를 구비하고 있다. 이 수광부 (36b) 에서 검출된 검출 신호 (S1) 는 주제어 장치 (20) 에 공급된다.
주제어 장치 (20) 는, 이 검출 신호 (S1) 의 변화량에 기초하여 턴테이블 (35) 상의 웨이퍼 (W) 의 회전량 (방향) 및 편심량을 구한다. 즉, 턴테이블 (35) 이 웨이퍼 (W) 를 흡착 홀딩한 상태에서 회전하면, 웨이퍼 (W) 의 편심 및 기판의 외형적인 특징 부위로서의 절결부 (오리엔테이션 플랫 또는 노치) 의 존재에 의해서 편심 센서 (36') 안을 통과하는 웨이퍼 (W) 의 폭이 변화하고, 수광부 (36b) 에서 수광되는 광빔 (LB1) 의 광량이 도 23(b) 와 같이 변화한다.
검출 신호 (S1) 는, 턴테이블 (35) 의 회전각 (φ) 에 대하여, 정현파형상이고, 절결부에 대응하는 부분 (도 23(b) 에 있어서 부호 P1 을 부가한 부분) 에서 고(高)레벨이 되도록 변화한다. 주제어 장치 (20) 는, 이 검출 신호 (S1) 의 진폭의 변화량 (Δ) 으로부터 턴테이블 (35) 상에 있어서의 웨이퍼 (W) 의 편심량을 구함과 함께, 턴테이블 (35) 의 회전각 (φ) 으로부터 편심 센서 (36') 의 중심에 절결부가 위치하고 있을 때의 회전각 (φO) 을 구한다. 그리고, 절결부가 소정 방향이 되도록 회전시켜 턴테이블 (35) 을 정지시킨다. 또한, 주제어 장치 (20) 는, 그 편심량의 정보에 기초하여 웨이퍼 반송 장치 (31') 에 건네줄 때의 위치를 조정한다.
도 22 로 되돌아가, 웨이퍼 반송 장치 (31') 는, 로드 아암 (37'), 언로드 아암 (38'), 슬라이더 (39'), 그리고 로드 아암 (37') 및 언로드 아암 (38') 을 구동하는 도시하지 않은 아암 구동계로 구성되어 있다. 로드 아암 (37') 및 언로드 아암 (38') 은 대략 U 자형의 평판부를 갖고, 이들의 윗표면에 웨이퍼 (W) 가 탑재되도록 되어 있다. 로드 아암 (37') 은 제 1 프리얼라인먼트 장치 (30') 에 의해 위치 조정된 웨이퍼 (W) 를 슬라이더 (39') 를 따라서 제 2 프리얼라인먼트 장치 (32') 까지 반송하는 아암이고, 언로드 아암 (38') 은 노광이 끝난 웨이퍼 (W) 를 슬라이더 (39') 를 따라서 제 1 프리얼라인먼트 장치 (30') 까지 반출하는 아암이다.
제 2 프리얼라인먼트 장치 (32') 는, 조정 아암 (40) 과 전술한 화상 처리 장치 (17a∼17e) 를 포함하여 구성된다. 조정 아암 (40) 은, 상하 방향 (Z 방향) 으로 이동 가능하게 구성됨과 함께, Z 축에 평행한 축의 둘레에서 회전 가능하게 구성되어 있다. 조정 아암 (40) 은 진공 흡착용의 흡착 구멍 (도시 생략) 이 형성된 팔부 (40a', 40b') 를 구비하고 있고, 로드 아암 (37') 에 의해서 반송되어 온 웨이퍼 (W) 를 팔부 (40a', 40b') 상에 흡착 홀딩한다. 화상 처리 장치 (17a∼17e) 는, 조정 아암 (40) 의 팔부 (40a', 40b') 상에 홀딩되는 웨이퍼 (W) 에 대하여 소정의 위치 관계가 되도록 배치되어 있다. 도 21 에 나타내는 얼라인먼트 제어계 (22) 는, 화상 처리 장치 (17a∼17c) 에서 출력되는 촬상 신호로부터 조정 아암 (40) 에 홀딩된 웨이퍼 (W) 의 검출 대상의 에지 위치를 구하여 소정의 연산 처리를 실시해서 조정 아암 (40) 상에 있어서의 웨이퍼 (W) 의 회전각 및 XY 면내의 위치를 계산하고, 조정 아암 (40) 을 제어하여 웨이퍼 (W) 의 위치 및 회전을 조정한다.
웨이퍼 홀더 (8) 의 중앙부에는 센터 테이블 (41) 이 설치되어 있고, 조정 아암 (40) 에 의해 XY 면내의 위치 및 회전이 조정된 웨이퍼 (W) 는 조정 아암 (40) 이 하(下)방향 (-Z 방향) 으로 이동함으로써 센터 테이블 (41) 상에 건네진다. 또, 제 2 프리얼라인먼트 장치 (32') 에 설치된 조정 아암 (40) 으로부터 센터 테이블 (41) 로 웨이퍼 (W) 를 건네줄 때에는, 주제어 장치 (20) 는 앞서 도시하지 않은 웨이퍼 스테이지 구동계를 제어하여 센터 테이블 (41) 이 조정 아암 (40) 의 하방에 배치되도록 웨이퍼 스테이지를 이동시켜 둔다.
센터 테이블 (41) 은 X 스테이지 (6) 상에 설치된 도시하지 않은 신축 기구에 지지되고, 시료대 (7) 및 웨이퍼 홀더 (8) 의 중앙부에 형성된 관통구멍에 여유있게 끼워지는 원기둥형상 또는 원통형상의 부재이고, 신축 기구의 상하 방향 (Z 방향) 으로의 이동에 의해 웨이퍼 (W) 를 수수한다. 센터 테이블 (41) 의 선단에는 진공 흡착용 흡착 구멍 또는 흡착홈이 형성되어 있고, 그 선단은 웨이퍼 (W) 를 수수할 때에는 조정 아암 (40) 과의 사이에서 수수하는 것이 가능한 높이까지 이동하고, 웨이퍼를 웨이퍼 홀더 (8) 상에 탑재할 때에는 웨이퍼 홀더 (8) 의 표면보다 낮은 위치까지 이동한다. 또한, 센터 테이블 (41) 의 선단을 진공 흡인함으로써, 센터 테이블 (41) 을 상하시킬 때에 웨이퍼가 어긋나지 않도록 되어 있다.
다음으로, 화상 처리 장치 (17a∼17e) 의 배치에 관해서 설명한다. 도 24(a) 에는 제 2 프리얼라인먼트 장치 (32') 가 구비하는 화상 처리 장치 (17a∼17e) 의 배치가 나타나 있다. 전술한 바와 같이, 웨이퍼 (W) 는 제 1 프리얼라인먼트 장치 (30') 에서 XY 면내에서의 위치 및 회전이 구해져 웨이퍼 반송 장치 (31') 에 건네줄 때에 위치 조정이 실시되기 때문에, 조정 아암 (40) 에 건네주었을 때의 위치 어긋남은 아주 미소 (예를 들어, 위치 어긋남량은 수십 ㎛ 오더, 회전의 어긋남량은 수백 μrad 오더) 하다. 이 때문에, 웨이퍼 (W) 와 화상 처리 장치 (17a∼17e) 의 위치 관계는 대략 도 24(a) 에 나타내는 것과 같은 관계가 된다. 또, 도 24(a) 에 나타낸 화상 처리 장치 (17a∼17e) 의 배치는, 외주의 일부에 노치 (N) 가 형성된 웨이퍼 (W) 에 대한 것이다.
도 24(a) 에 나타내는 바와 같이, 노치 (N) 가 -Y 방향을 향하도록 웨이퍼 (W) 가 조정 아암 (40) 의 팔부 (40a', 40b') 상에 홀딩되는 경우에는, 화상 처리 장치 (17a) 는 웨이퍼 (W) 의 대략 중심을 통과하여 Y 축에 평행한 선 위의 노치 (N) 가 배치되는 위치의 상방 (+Z 방향) 에 배치되고, 화상 처리 장치 (17b, 17c) 는 웨이퍼 (W) 외주 (주변부) 의 서로 다른 위치 (예를 들어, 웨이퍼 (W) 의 중심에 관해서 화상 처리 장치 (17a) 와 대략 120°의 각도를 이루는 위치) 의 상방에 배치되어 있다. 또한, 화상 처리 장치 (17d, 17e) 는, 웨이퍼 (W) 의 표면에 형성된 패턴의 형상에 따라서 임의의 위치의 상방에 배치된다. 또, 도 24(a) 에 나타내는 웨이퍼 (W) 에 대한 화상 처리 장치 (17d, 17e) 의 위치는 어디까지나 일례이다. 화상 처리 장치 (17a∼17e) 에 형성되는 수광부 (도 25 참조) 의 초점은, 조정 아암 (40) 의 팔부 (40a', 40b') 상에 홀딩된 웨이퍼 (W) 상에 설정되어 있다.
또, 도 24(b) 에 나타내는 바와 같이, 노치 (N) 가 +X 방향을 향하도록 웨이퍼 (W) 가 조정 아암 (40) 의 팔부 (40a', 40b') 상에 홀딩되는 경우에는, 화상 처리 장치 (17a) 는 웨이퍼 (W) 의 대략 중심을 통과하여 X 축에 평행한 선 위의 노치 (N) 가 배치되는 위치의 상방에 배치되고, 화상 처리 장치 (17b, 17c) 는 웨이퍼 (W) 외주 (주변부) 의 서로 다른 위치 (예를 들어, 웨이퍼 (W) 의 중심에 관해서 화상 처리 장치 (17a) 와 대략 120°의 각도를 이루는 위치) 의 상방에 배치되어 있다. 도 24(b) 의 예에 경우에 있어서도, 화상 처리 장치 (17d, 17e) 는 웨이퍼 (W) 의 표면에 형성된 패턴의 형상에 따라서 임의의 위치의 상방에 배치된다. 또한, 도 24(b) 에 나타내는 예에 있어서, 화상 처리 장치 (17a∼17e) 에 형성되는 수광부의 초점도 조정 아암 (40) 의 팔부 (40a', 40b') 상에 홀딩된 웨이퍼 (W) 상에 설정된다.
다음으로, 화상 처리 장치 (17a∼17e) 의 구성 및 동작에 관해서 설명한다. 도 25 에는 화상 처리 장치 (17a∼17c) 의 개략 구성을 나타내는 측면도가 나타나 있다. 또, 화상 처리 장치 (17a∼17c) 의 기본적인 구성은 거의 동일하기 때문에, 여기서는 화상 처리 장치 (17a) 를 예로 들어 설명한다. 도 25 에 나타내는 바와 같이, 화상 처리 장치 (17a) 는 조명계 (50'), 수광계 (51') 및 확산 반사판 (52') 을 포함하여 구성된다. 조명계 (50') 는 광원 (53') 및 콜리메이트 렌즈 (54') 를 포함하여 구성되고, 수광계 (51') 는 반사 미러 (55'), 집광 렌즈 (56') 및 촬상 장치 (57') 를 포함하여 구성된다.
광원 (53') 은 램프 또는 발광 다이오드 등에 의해 구성되고, 웨이퍼 (W) 에 도포되어 있는 포토레지스트에 대한 감광성이 약한 파장대의 조명광을 사출한다. 콜리메이트 렌즈 (54') 는 광원 (53') 으로부터 사출되는 조명광을 평행광으로 변환한다. 확산 반사판 (52') 은 표면에 요철이 형성되어 있고, 입사되는 광을 확산 반사시켜 조도를 균일화하는 것이다. 이 확산 반사판 (52') 은 도시하지 않은 구동 기구에 의해 이동 가능하게 구성되어 있고, 제 2 프리얼라인먼트 장치 (32') 에 설치된 조정 아암 (40) 의 팔부 (40a', 40b') 상에 웨이퍼 (W) 가 홀딩된 경우에는 웨이퍼 (W) 와 웨이퍼 홀더 (8) 사이에 삽입 배치된다. 또, 화상 처리 장치 (17a∼17e) 에 의한 촬상을 끝내면, 확산 반사판 (52') 은 조정 아암 (40) 으로부터 센터 테이블 (41) 에 건네진 웨이퍼 (W) 를 웨이퍼 홀더 (8) 상에 탑재할 때의 동작을 방해하지 않는 위치로 퇴피된다.
광원 (53') 및 콜리메이트 렌즈 (54') 는, 광원 (53') 으로부터의 조명광이 웨이퍼 (W) 의 단부에 조사되지 않고, 또한 웨이퍼 (W) 와 웨이퍼 홀더 (8) 사이에 삽입 배치된 확산 반사판 (52') 의 표면에 조명광을 경사 방향으로부터 조사 가능한 위치에 배치되어 있다. 조명계 (50') 는, 도시하지 않은 구동계에 의해서 자세 (X 축, Y 축 및 Z 축 둘레의 회전) 의 조정이 가능하게 구성되어 있다. 조명계 (50') 의 자세를 조정함으로써, 확산 반사판 (52') 에 대한 조명광의 조사 위치를 바꿀 수 있다. 광원 (53') 으로부터 사출되어 콜리메이트 렌즈 (54') 를 통과한 조명광이 확산 반사판 (52') 에 조사되면, 그 확산 반사광에 의해서 웨이퍼 (W) 외주의 일부가 하방 (-Z 방향) 으로부터 균일한 조도로 조명된다.
반사 미러 (55') 는, 웨이퍼 (W) 와 웨이퍼 홀더 (8) 사이에 삽입 배치된 확산 반사판 (52') 및 웨이퍼 (W) 단부의 상방 (+Z 방향) 에 배치되어 있고, 확산 반사판 (52') 에서 확산 반사되어 웨이퍼 (W) 의 단부 부근을 통과한 광을 반사한다. 집광 렌즈 (56') 는 반사 미러 (55') 에서 반사된 광을 집광하여, 촬상 장치 (57') 의 촬상면에 결상시킨다. 또한, 집광 렌즈 (56') 는, 촬상 장치 (57') 의 촬상면과 조정 아암 (40) 의 팔부 (40a', 40b') 상에 홀딩된 웨이퍼 (W) 의 단부를 광학적으로 공액 관계로 하고 있다. 촬상 장치 (57') 는 촬상면에 형성되는 광학 이미지 (웨이퍼 (W) 외주부의 일부의 광학 이미지) 를 촬상하여, 그 촬상 신호를 얼라인먼트 제어계 (22) 에 출력한다. 웨이퍼 (W) 단부에는 균일한 조도를 갖는 조명광이 조사되기 때문에, 웨이퍼 (W) 의 주변부가 선명하게 촬상된다.
도 26 은 화상 처리 장치 (17d, 17e) 의 개략 구성을 나타내는 측면도이다. 또, 화상 처리 장치 (17d, 17e) 의 기본적인 구성은 대략 동일하기 때문에, 여기서는 화상 처리 장치 (17d) 를 예로 들어 설명한다. 도 26 에 나타내는 바와 같이, 화상 처리 장치 (17d) 는 조명계 (60') 및 수광계 (61') 를 포함하여 구성된다. 조명계 (60') 는 광원 (63'), 콘덴서 렌즈 (64'), 및 하프 미러 (65') 를 포함하여 구성되고, 수광계 (61') 는 반사 미러 (66'), 집광 렌즈 (67') 및 촬상 장치 (68') 를 포함하여 구성된다. 조명계 (60') 에 형성되는 광원 (63') 은 도 25 에 나타내는 광원 (53') 과 동일한 것이고, 콘덴서 렌즈 (64') 는 광원 (63') 으로부터 사출된 조명광을 평행 광속으로 하는 것이다.
하프 미러 (65') 는, 광원 (63') 으로부터 사출되어 콘덴서 렌즈 (64') 에 의해 평행 광속으로 된 조명광을 하방 (-Z 방향) 에 반사하여 웨이퍼 (W) 표면을 낙사 조명한다. 반사 미러 (66'), 집광 렌즈 (67') 및 촬상 장치 (68') 는, 도 25 에 나타내는 반사 미러 (55'), 집광 렌즈 (56') 및 촬상 장치 (57') 와 각각 동일한 것이다. 도 25 에서는 웨이퍼 (W) 의 단부를 확산 반사판 (52') 을 사용하여 투과 조명하고 있지만, 도 26 에서는 웨이퍼 (W) 의 내부를 콘덴서 렌즈 (64') 를 사용하여 낙사 조명하고 있다.
다음으로, 주제어 장치 (20) 에서 실시되는 웨이퍼 (W) 의 투입 재현성 계측 방법에 관해서 설명한다. 여기서는, 투영 광학계 (PL) 의 측방에 형성된 오프액시스 방식의 얼라인먼트 센서 (15') 를 사용하여, 제 2 프리얼라인먼트 장치 (32') 로부터 센터 테이블 (41) 을 통하여 웨이퍼 홀더 (8) 상의 소정 위치 (소정의 기준 위치) 로 위치 결정된 웨이퍼 (W) 에 형성되어 있는 마크 (서치 얼라인먼트 마크) 의 위치 정보를 계측함으로써, 웨이퍼 (W) 의 투입 재현성을 계측하고 있다.
얼라인먼트 센서 (15') 에 의한 서치 얼라인먼트 마크의 위치 계측은, 웨이퍼 홀더 (8) 상에 탑재된 웨이퍼 (W) 에 대하여 노광 처리 중 하나의 처리로서 통상적으로 실시되는 처리이고, 나아가 웨이퍼 (W) 각각에 대하여 반드시 실시되는 처리이다. 또한, 웨이퍼 (W) 의 위치 결정 재현성의 계측은 복수장의 웨이퍼 (W) 를 웨이퍼 홀더 (8) 상에 순차적으로 배치하여 그 위치 정보를 계측할 필요가 있지만, 통상적인 노광 처리는 복수장의 웨이퍼 (W) 로 이루어지는 1 로트를 단위로 하여 실시된다. 이 때문에, 본 실시형태에서는 노광 처리를 중단하지 않고, 또한 스루풋 (단위 시간에 노광 처리할 수 있는 웨이퍼 (W) 의 매수) 을 저하시키는 일 없이 웨이퍼 (W) 의 위치 결정 재현성을 계측할 수 있다.
그러나, 종래와 같은 기준 웨이퍼를 사용하지 않고서 실제로 디바이스 패턴이 전사되는 웨이퍼 (프로세스 웨이퍼) 를 사용하여 웨이퍼의 위치 결정 재현성을 계측하는 경우에는, 동일 로트 내의 웨이퍼라도 웨이퍼의 외형 형상, 웨이퍼의 변형 상태, 웨이퍼 상에 형성된 마크 (패턴) 의 일그러짐 상태 등이 균일하다고만은 할 수 없어, 웨이퍼 사이에서 상이한 경우가 많다. 따라서, 웨이퍼의 위치 결정 재현성의 계측 결과에는 이들 요인에 의한 오차 성분이 필연적으로 포함되고, 이러한 오차 성분들에 의해 위치 결정 재현성의 계측 결과에 편차가 생기게 되기 때문에, 이들을 제거할 필요가 있다. 그래서, 이 실시형태에서는 주요한 것으로서 이하의 2 종류의 오차 요인에 관해서 다음과 같은 규격화를 실시한다.
(A) 웨이퍼 외형과 웨이퍼 상에 형성된 패턴 위치와의 관계에 있어서의 웨이퍼간 차의 규격화
프로세스 웨이퍼의 외형 형상은 각 웨이퍼 (W) 마다 오차를 가지고 있기 때문에, 각 웨이퍼 (W) 간의 외형 차는 웨이퍼의 위치 결정 재현성 계측에 있어서 오차 요인이 된다. 이것을 제거하기 위해 본 실시형태에서는, 화상 처리 장치 (17a∼17e) 로부터의 촬상 신호를 사용한다. 우선, 외형 기준 좌표계를 규정한다. 「외형 기준 좌표계」란 웨이퍼 (기판) 의 외형을 기준으로 하는 좌표계로, 예를 들어, 웨이퍼 (W) 의 표면에 대략 평행한 2 차원 좌표계이고, 웨이퍼의 외연 (윤곽) 상의 적어도 1 개의 기준점 (예를 들어, 노치) 에 의해 규정되는 좌표계이다. 구체적으로는, 조정 아암 (40) 의 팔부 (40a', 40b') 상에 웨이퍼 (W) 가 홀딩되어 있을 때의 화상 처리 장치 (17a∼17c) 에 의한 촬상 신호에 기초하여 구해지는, 웨이퍼 (W) 의 중심 (XY 면내의 위치) 과 회전각에 의해 규정되는 좌표계이다.
다음으로, 화상 처리 장치 (17d, 17e) 에 의한 촬상 신호에 기초하여 웨이퍼 (W) 상에 형성되어 있는 노광 패턴의 특징 부분을 촬상한 결과로부터 웨이퍼 (W) 상에 있어서의 당해 특징 부분의 위치를 구하고, 이것에 기초하여 당해 외형 기준 좌표계에서의 노광 패턴의 위치와 기울기를 산출한다. 이어서, 얼라인먼트 센서 (15') 에 의한 서치 마크의 계측 결과 (Y, θ, X) 를 웨이퍼 (W) 마다의 노광 패턴의 위치와 기울기의 차를 가지고 보정함으로써, 웨이퍼 (W) 사이에서의 웨이퍼 외형 차에 의한 위치 결정 재현성의 계측 결과의 편차를 규격화할 수 있다.
이 보정은, 보다 구체적으로는 로트 처리 선두의 웨이퍼 (이하, 선두 웨이퍼라고 하는 경우가 있다) 에 관한 노광 패턴의 위치와 기울기를 기준으로 하였다, 로트 처리 2 번째 장 이후의 각 웨이퍼에 관한 노광 패턴의 위치와 기울기의 차분을 서치 마크의 계측 결과에 있어서의 어긋남량으로 환산하고, 각 웨이퍼에 관해서의 서치 마크의 계측 결과로부터 뺌으로써 보정을 실시할 수 있다. 또, 화상 처리 장치 (17d, 17e) 에 의해 촬상되는 노광 패턴의 특징 부분은, 제 1 축 방향 (예를 들어, Y 방향) 의 좌표가 같고, 그 제 1 축 방향에 직교하는 제 2 축 방향 (예를 들어, X 방향) 으로 어느 정도 떨어진 2 군데인 것이 바람직하다. 통상은, 스크라이브 라인 상, 또는 노광 쇼트 맵의 주변에서 선정되고, 화상 처리 장치 (17d, 17e) 의 계측 시야 내에서 유니크한 패턴을 사용한다.
(B) 웨이퍼의 변형 성분, 및 서치 계측에 사용하는 마크의 변형 성분에 의한 웨이퍼간 차의 규격화
프로세스 웨이퍼에 형성된 노광 패턴이나 마크는, 동일 로트 내의 웨이퍼라도 각 웨이퍼의 노광시의 흡착 상태나 노광 상태 등의 각종 요인에 의해 선형, 비선형으로 변형되는 경우가 있다. 이 때문에, 서치 마크의 위치나 그 형상이 각 웨이퍼 (W) 사이에서 상이한 경우가 있고, 각 웨이퍼 (W) 간의 이러한 변형 성분의 상이는 웨이퍼의 위치 결정 재현성 계측에 있어서 오차 요인이 되기 때문에, 이것을 제거할 필요가 있다. 이들 변형 성분은 전술한 외형 기준 좌표계에 대한, 얼라인먼트 처리 (도 27 의 S16', S17' 참조) 에서 구해지는 웨이퍼 (W) 상에 배열 형성되어 있는 복수의 쇼트 영역의 배열 좌표계의 각 웨이퍼 사이에서의 상이에 대응한다. 따라서, 서치 계측 (도 27 의 S15' 참조) 에 있어서 계측된 서치 얼라인먼트 마크의 위치 정보를 이 얼라인먼트 처리에서 산출된 얼라인먼트 보정량에 의해 보정함으로써, 웨이퍼 (W) 사이에서의 이들 변형 성분에 의한 위치 결정 재현성의 계측 결과의 편차를 규격화할 수 있다.
얼라인먼트 처리에 있어서, EGA 연산으로서 6 파라미터 (쇼트 배열에 대한 회전 Θ, 오프셋 Ox, Oy, 직교도 Ω, 배율 Γx, Γy) 를 사용하는 것을 전제로 하면, 이 (B) 의 규격화에 사용하는 얼라인먼트 보정량으로는, 상기 (A) 의 규격화를 실시하고 있는 경우에는 오프셋 성분 및 회전 성분에 관해서는 실질적으로 보정되어 있기 때문에 이들은 사용하지 않고, 배율 성분 및 직교도 성분의 적어도 일방을 사용한다. 또한, EGA 연산으로서 10 파라미터 (상기한 6 파라미터에 추가하여, 쇼트 영역에 대한 회전 θ, 직교도 ω, 배율 γx, γy) 를 사용하는 경우에는, 쇼트에 관한 보정량도 사용해도 되며, 쇼트에 관한 보정량을 사용할지 여부는 선택 지정할 수 있도록 하면 된다. 또, 상기 서술한 선형 성분뿐만 아니라 비선형 성분 (랜덤 성분) 도 고려하여 고차의 EGA 연산을 실시하는 경우에는, 이들을 그 선택에 맞추어 사용하도록 해도 된다. 여기서는, 얼라인먼트 보정량으로서 배율 성분, 직교도 성분 및 랜덤 성분을 사용하기로 한다.
이 보정은, 보다 구체적으로는 로트 처리 선두의 웨이퍼 (이하, 선두 웨이퍼라고 하는 경우가 있다) 에 대한 서치 마크의 위치에 있어서의 얼라인먼트 보정량 (배율 성분, 직교도 성분 및 랜덤 성분) 을 기준으로 한, 로트 처리 2 번째 장 이후의 각 웨이퍼에 대한 얼라인먼트 보정량 (배율 성분, 직교도 성분 및 랜덤 성분) 의 차분을 서치 마크의 위치에 있어서의 어긋남량으로 환산하고, 각 웨이퍼에 관한 서치 마크의 계측 결과로부터 뺌으로써 보정을 실시할 수 있다. 또, 랜덤 성분에 관해서는 웨이퍼의 위치 결정 재현성의 정밀도와 비교하여 무시 가능한 정도로 작은 경우가 많기 때문에, 이 경우에는 생략해도 된다. 단, 이 랜덤 성분은, 당해 웨이퍼의 위치 결정 재현성의 계측에 사용할 때의 계측 데이터로서의 적부 (適否) 를 판단할 때에 사용하면 좋다. 예를 들어, 미리 역치를 설정하여 랜덤 성분이 그 역치를 초과한 경우에는 이것을 이상 웨이퍼로 하고, 이상 웨이퍼에 관련된 계측 데이터는 웨이퍼의 위치 결정 재현성의 계측에는 사용하지 않도록 하면 된다.
여기서, 웨이퍼의 위치 결정 재현성의 평가 팩터에 관해서 설명한다. 주제어 장치 (20) 는, 계측된 웨이퍼 (W) 의 위치 결정 재현성의 평가를 이하의 12 개의 평가치를 사용하여 실시한다.
(1) Y(3σ) [㎛]
(2) Y(Max-Min) [㎛]
(3) Y(평균) [㎛]
(4) θ(3σ) [㎛]
(5) θ(Max-Min) [㎛]
(6) θ(평균) [㎛]
(7) Y-θ(3σ) [㎛]
(8) Y-θ(Max-Min) [㎛]
(9) Y-θ(평균) [㎛]
(10) X(3σ) [㎛]
(11) X(Max-Min) [㎛]
(12) X(평균) [㎛]
상기 (1)∼(3) 은 서치 y 마크에 있어서의 웨이퍼 (W) 위치의 편차를 평가하는 평가치이고, (4)∼(6) 는 서치 θ 마크에 있어서의 웨이퍼 (W) 위치의 편차를 평가하는 평가치이고, (7)∼(9) 는 상기 서치 y 마크와 서치 θ 마크의 y 방향 검출 위치의 차의 편차를 평가하는 평가치이고, (10)∼(12) 는 서치 x 마크에 있어서의 웨이퍼 (W) 위치의 편차를 평가하는 평가치이다. 여기서, 서치 y 마크와 서치 θ 마크의 y 방향의 설계 좌표는 동일하다. 서치 계측에서는, x 방향으로 소정 거리 떨어진 서치 y 마크와 서치 θ 마크의 검출 y 좌표로부터 웨이퍼의 회전량과 웨이퍼 중심 y 위치를 구하고, 서치 x 마크의 검출 x 좌표로부터 웨이퍼 중심 x 위치를 구하고 있다. 각각의 편차에 대해서는, 3σ (σ 는 표준편차), 최대값 (Max) 과 최소값 (Min) 의 차 및 평균치를 사용하여 평가된다.
다음으로, 이 노광 장치에 의해 실시되는 일련의 노광 처리에 관해서 도 27 에 나타내는 플로우차트를 참조하여 설명한다. 노광 처리가 시작되면, 우선 웨이퍼 (W) 의 위치 결정 재현성 계측에 관한 조건 설정이 실시된다 (단계 S11'). 이 처리에서는, 주제어 장치 (20) 가 도시하지 않은 표시 조작 패널 또는 컴퓨터의 화면에 설정 항목을 표시하고, 오퍼레이터가 필요한 설정 항목을 선택 또는 입력하는 작업이 이루어진다. 도 28 은, 웨이퍼 (W) 의 위치 결정 재현성 계측에 관한 조건 설정 처리의 플로우차트이다.
처리가 시작되면, 처음에 웨이퍼 (W) 의 위치 결정 재현성 계측 동작 모드의 설정 처리가 실시된다 (단계 S21'). 이 처리에서는, 오퍼레이터에 의해서 웨이퍼 (W) 의 위치 결정 재현성 계측 실행의 유무, 실행 종료 조건의 유무, 및 웨이퍼 (W) 의 위치 결정 재현성 계측을 실시하는 로트수 또는 웨이퍼 (W) 매수의 설정이 이루어진다. 또, 실행 종료 조건의 유무는 웨이퍼 (W) 의 위치 결정 재현성 계측 실행이 있음으로 설정된 경우에만 설정되고, 웨이퍼 (W) 의 위치 결정 재현성 계측을 실시하는 로트수 또는 웨이퍼 (W) 매수는 실행 종료 조건이 있음으로 설정된 경우에만 설정된다. 웨이퍼 (W) 의 매수 설정에 있어서는, 상이한 로트에 걸쳐져도 좋은지 여부의 설정도 이루어진다. 여기서는, 전술한 바와 같이 웨이퍼 (W) 사이의 편차를 규격화하고 있기 때문에, 동일 프로세스 처리가 실시된 웨이퍼 (W) 이면 다른 로트에 걸쳐 있어도 위치 결정 재현성의 계측이 가능하다.
다음으로, 위치 결정 재현성 계측 횟수의 설정 처리가 실시된다 (단계 S22'). 이 처리에서는, 오퍼레이터에 의해서 위치 결정 재현성 계측에 사용하는 웨이퍼 (W) 의 매수 설정이 이루어진다. 3σ 의 값을 안정시키기 위해서, 통상적으로는 10 장 이상으로서 1 로트에 포함되는 웨이퍼 (W) 의 매수 (예를 들어 25 장) 이하를 설정한다. 또, 위치 결정 재현성 계측시에, 실제로 계측된 웨이퍼 (W) 의 매수가 설정된 웨이퍼 (W) 의 매수를 초과한 경우에는, 시간적으로 오래된 계측 결과가 파기되고 순차적으로 새로운 계측 결과를 사용하여 위치 결정 재현성의 계측이 이루어진다.
이어서, 위치 결정 재현성 계측 기준 웨이퍼의 설정 처리가 실시된다 (단계 S23'). 여기서, 기준 웨이퍼란 웨이퍼 (W) 사이의 패턴의 형성 오차에 있어서의 편차를 규격화할 때에 기준으로 하는 웨이퍼로, 종래 기술에서 사용하고 있는 기준 웨이퍼와는 전혀 다른 것이다. 통상은 로트 선두의 웨이퍼 (W) 가 기준 웨이퍼로 설정되지만, 본 실시형태에서는 로트 단위뿐만 아니라 웨이퍼의 매수를 지정하여 위치 결정 재현성 계측을 할 수 있기 때문에, 기준 웨이퍼를 설정하는 처리가 마련되어 있다. 단, 기준 웨이퍼를 갱신한 경우에는 위치 결정 재현성 계측 횟수는 리셋된다.
다음으로, 위치 결정 재현성 평가치의 설정이 실시된다 (단계 S24'). 이 처리에서는, 오퍼레이터에 의해서 계측된 웨이퍼 (W) 의 위치 결정 재현성을 평가하기 위한 평가치의 설정이 이루어진다. 전술한 12 개의 평가치 중, (1), (2), (4), (5), (10), (11) 을 지정하는 것으로 한다. 또한 여기서는, 지정한 각 평가치에 대한 이상 판정 역치도 설정한다. 통상적으로 역치는 서치 계측에서 사용하는 계측 시야의 크기, 서치 마크의 크기 등에 따라서 규정되고, 예를 들어 3σ 에 대해서는 15[㎛] 정도가 설정되고, 최대값 (Max) 과 최소값 (Min) 의 차에 대해서는 30[㎛] 정도가 설정된다.
이어서, 위치 결정 재현성 역치 초과시의 설정이 이루어진다 (단계 S25'). 이 처리에서는, 오퍼레이터에 의해서 상기 단계 S24' 에서 설정된 평가치가 동 단계에서 설정된 역치를 초과하였을 때에, 노광 장치에 실행시켜야 하는 동작의 설정이 이루어진다. 예를 들어, 에러 메세지의 표시 유무, 에러 리포트 통지의 유무, 로트에 대한 노광 처리의 계속 실행의 유무, 유지관리 모드로의 전환 실행 유무 등을 설정한다.
다음으로, 서치 계측 자동 조정 기능의 설정이 이루어진다 (단계 S26'). 이 처리에서는, 계측된 웨이퍼 (W) 의 위치 결정 재현성의 평가 결과에 따라서 서치 계측 위치를 자동으로 조정할지 여부의 설정이 오퍼레이터에 의해서 이루어진다. 즉, 웨이퍼 (W) 가 소정의 재현성을 가지고 위치 결정되지 않으면 웨이퍼 (W) 에 형성된 서치 마크의 위치 정보를 계측할 때에 서치 마크가 얼라인먼트 센서의 계측 시야 밖에 배치되어 버려 계측 에러가 생긴다. 이 때문에, 웨이퍼 (W) 의 위치 결정 재현성의 경향에 따라서 미리 웨이퍼 (W) 의 위치를 조정함으로써 계측 에러의 발생을 방지하는 것이다.
마지막으로, 서치 계측 위치 에러 발생시의 설정이 이루어진다 (단계 S27'). 이 처리에서는, 오퍼레이터에 의해서 서치 계측 위치 에러 발생시에 노광 장치에 실행시킬 동작의 설정이 이루어진다. 예를 들어, 에러 메세지의 표시 유무, 에러 리포트 통지의 유무, 로트에 대한 노광 처리의 계속 실행 유무, 유지관리 모드로의 전환 실행 유무, 자동 리트라이 (retry) 기능의 실행 유무, 단계 S26' 에서 설정된 서치 계측 자동 조정 기능이 오프인 경우에는 온으로의 자동 전환 실행 유무, 서치 계측 자동 조정 기능이 온인 경우에는 서치 계측 자동 조정 파라미터의 자동 수정 유무 등을 설정한다.
여기서, 서치 계측 자동 조정 파라미터의 자동 수정이란, 위치 결정 재현성의 계측 결과로부터 서치 계측 위치 또는 서치 계측 범위를 자동적으로 수정하는 것을 말한다. 이 자동 수정에서는, 직전에 계측한 웨이퍼 (W) 의 위치 결정 재현성의 평균치 또는 각 계측 결과로부터 최소 제곱법에 기초하여 이제부터 서치 계측을 실시하는 서치 마크의 서치 계측 위치를 예측하고, 그 예측치를 사용하여 서치 계측 위치를 수정한다. 또한, 직전에 계측한 웨이퍼 (W) 의 위치 결정 재현성 계측 결과로부터 이제부터 서치 계측을 실시하는 서치 마크의 서치 계측 범위를 예측하고, 그 예측치를 사용하여 서치 계측 위치를 수정한다. 이상으로 웨이퍼 (W) 의 위치 결정 재현성 계측에 관한 조건 설정이 종료된다. 또, 본 실시형태에서는 서치 계측 자동 조정 기능이 온으로 설정되어 있는 것으로 한다.
조건 설정 처리가 종료되면, 예를 들어 1 로트분의 웨이퍼를 수용하는 도시하지 않은 웨이퍼 카세트로부터 예를 들어 로트 선두의 웨이퍼 (W) 가 반출되고, 이 웨이퍼가 도시하지 않은 웨이퍼 반송 장치에 의해 제 1 프리얼라인먼트 장치 (30') 에 반송된다. 제 1 프리얼라인먼트 장치 (30') 는, 턴테이블 (35) 을 회전시키면서 편심 센서 (36') 로부터 출력되는 검출 신호 (S1) (도 23(b) 참조) 를 주제어 장치 (20) 에 출력한다. 주제어 장치 (20) 는 검출 신호 (S1) 의 변화량에 기초하여 웨이퍼 (W) 의 편심량 및 회전량을 구한다. 그리고, 구한 편심량 및 회전량에 기초하여 웨이퍼 (W) 에 형성되어 있는 노치 (N) 가 소정의 방향이 되도록 턴테이블 (35) 을 회전시킴으로써, 웨이퍼 (W) 의 회전량을 턴테이블 (35) 상에서 보정한다.
이상의 처리를 마친 웨이퍼 (W) 는, 제 1 프리얼라인먼트 장치 (30') 로부터 웨이퍼 반송 장치 (31') 의 로드 아암 (37) 에 건네진다. 이 때, 주제어 장치 (20) 는 상기 처리에 의해서 얻어진 편심량의 정보에 기초하여 웨이퍼 (W) 의 위치 조정을 실시한 다음 웨이퍼 (W) 를 웨이퍼 반송 장치 (31') 의 로드 아암 (37) 에 건네준다. 로드 아암 (37') 이 슬라이더 (39') 를 따라서 이동함으로써 웨이퍼 (W) 는 제 2 프리얼라인먼트 장치 (32') 까지 반송된다.
제 2 프리얼라인먼트 장치 (32') 에 설치된 조정 아암 (40) 은 소정의 높이 위치로 위치 결정되어 있고, 로드 아암 (37) 은 웨이퍼 (W) 가 조정 아암 (40) 에 형성된 팔부 (40a',40b') 의 상방의 소정 위치에 배치될 때까지 웨이퍼 (W) 를 반송한다. 로드 아암 (37') 에 의한 반송이 종료된 시점에서 조정 아암 (40) 이 상방 (+Z 방향) 으로 이동하면, 웨이퍼 (W) 가 조정 아암 (40) 의 팔부 (40a', 40b') 상에 흡착 홀딩됨과 함께 로드 아암 (37') 으로부터 이간되어, 이것에 의해 웨이퍼 (W) 가 조정 아암 (40) 으로 건네진다.
조정 아암 (40) 상으로 웨이퍼 (W) 가 건네지면, 화상 처리 장치 (17a∼17c) 에 의해 도 24(a) 또는 도 24(b) 에 나타내는 웨이퍼 (W) 외주 (주변부) 의 서로 다른 3 지점이 촬상되고 그 화상 신호가 얼라인먼트 제어계 (22) 에 출력된다. 얼라인먼트 제어계 (22) 는 이들 화상 신호로부터 조정 아암 (40) 에 홀딩된 웨이퍼 (W) 의 검출 대상의 에지 위치를 구하여 소정의 연산 처리를 실시해서 조정 아암 (40) 상에 있어서의 웨이퍼 (W) 의 회전각 및 XY 면내의 위치를 계산한다. 웨이퍼 (W) 의 회전각은 얼라인먼트 제어계 (22) 가 조정 아암 (40) 을 Z 축 둘레로 회전시키는 것에 의해 조정된다.
웨이퍼 (W) 의 XY 면내의 위치를 나타내는 위치 정보는 얼라인먼트 제어계 (22) 로부터 주제어 장치 (20) 로 출력되고, 주제어 장치 (20) 가 웨이퍼 스테이지의 XY 면내의 위치를 조정함으로써 웨이퍼 (W) 에 대한 센터 테이블 (41) 의 상대 위치 관계가 미세 조정된다. 이것에 의해, 조정 아암 (40) 상에서 웨이퍼 (W) 의 XY 면에 있어서 위치 어긋남이 일어나 있어도, 웨이퍼 (W) 를 센터 테이블 (41) 에 건네줌으로써 조정 아암 (40) 상에서의 웨이퍼 (W) 의 XY 면에서의 위치 어긋남이 해소되게 된다. 또한, 화상 처리 장치 (17d, 17e) 에 의해 웨이퍼 (W) 표면의 특징 부분이 촬상되고 그 화상 신호가 얼라인먼트 제어계 (22) 에 출력되어, 웨이퍼 (W) 상에 있어서의 특징 부분의 위치가 구해진다. 이 특징 부분의 위치를 나타내는 위치 정보는 주제어 장치 (20) 에 출력된다. 이상의 처리에 의해 웨이퍼 (W) 의 프리얼라인먼트가 완료된다 (단계 S12').
웨이퍼 (W) 의 프리얼라인먼트가 종료되면, 조정 아암 (40) 으로부터 센터 테이블 (41) 에 건네진 웨이퍼 (W) 를 웨이퍼 홀더 (8) 상에 위치 결정하는 처리가 실시된다 (단계 S13'). 여기서, 조정 아암 (40) 으로부터 센터 테이블 (41) 로 웨이퍼 (W) 를 건네주는 동작, 및 센터 테이블 (41) 상의 웨이퍼 (W) 를 웨이퍼 홀더 (8) 상에 위치 결정하는 동작에 관해서 상세히 설명한다.
도 29 는, 조정 아암 (40) 으로부터 센터 테이블 (41) 에 웨이퍼 (W) 를 건네줄 때의 조정 아암 (40) 의 하강 동작의 일례를 나타내는 도이다. 또, 도 29 에 나타내는 그래프에서는 세로축에 조정 아암 (40) 의 하강 속도를 나타내고, 가로축에 조정 아암 (40) 의 하강 Z 위치를 나타내고 있다. 여기서, 하강 Z 위치란 조정 아암 (40) 을 하강시켰을 때의 Z 방향의 위치를 말하고, 가로축에서 오른쪽으로 감에 따라서 조정 아암 (40) 이 하강하고 있는 것을 의미한다.
조정 아암 (40) 으로부터 센터 테이블 (41) 에 웨이퍼 (W) 를 건네줄 때에는, 미리 센터 테이블 (41) 을 상방향 (+Z 방향) 으로 이동시켜 상사점 (센터 테이블 (41) 이 가장 높은 상방향으로 이동할 수 있는 위치) 에 배치해 둔다. 센터 테이블 (41) 을 상사점에 배치하는 것은 안정성 면을 고려하였기 때문이다. 도 29 에 있어서, 위치 Z1 가 조정 아암 (40) 으로부터 센터 테이블 (41) 로 웨이퍼 (W) 를 수수하는 위치이다. 도 29 에 나타내는 바와 같이, 웨이퍼 (W) 를 수수 전에 있어서는 하강 속도를 상승시켜 고속으로 조정 아암 (40) 을 하강시키고 있다.
조정 아암 (40) 의 하강 Z 위치가 수수 위치 (Z1) 에 가까워지면, 하강 속도를 저하시켜 저속으로 조정 아암 (40) 을 하강시킨다. 조정 아암 (40) 이 수수 위치 (Z1) 에 도달하면, 센터 테이블 (41) 에 의한 흡착을 시작함과 함께 조정 아암 (40) 의 흡착 홀딩를 해제함으로써, 조정 아암 (40) 으로부터 센터 테이블 (41) 로 웨이퍼 (W) 가 건네진다. 그 후, 최대한 수수하는데 걸리는 시간을 단축하기 위해서, 재차 조정 아암 (40) 의 하강 속도를 상승시키고 있다.
도 30 은, 센터 테이블 (41) 로부터 웨이퍼 홀더 (8) 에 웨이퍼 (W) 를 건네줄 때의 센터 테이블 (41) 의 하강 동작의 일례를 나타내는 도이다. 또, 도 30 에 나타내는 그래프에서는 세로축에 센터 테이블 (41) 의 하강 속도를 나타내고, 가로축에 센터 테이블 (41) 의 하강 Z 위치를 나타내고 있다. 또, 도 30 에 있어서 위치 Z0 은 웨이퍼 홀더 (8) 의 높이 위치이다. 센터 테이블 (41) 로부터 웨이퍼 홀더 (8) 에 웨이퍼 (W) 를 건네줄 때에는, 도 30 에 나타내는 바와 같이 하강 속도를 상승시켜 고속으로 센터 테이블 (41) 을 하강시키고 있다.
센터 테이블 (41) 의 하강 Z 위치가 웨이퍼 홀더 (8) 의 높이 위치 Z0 에 가까워지면 하강 속도를 저하시켜 저속으로 센터 테이블 (41) 을 하강시키고, 센터 테이블 (41) 이 웨이퍼 홀더 (8) 의 높이 위치 Z1 에 도달하면, 웨이퍼 홀더 (8) 에 의한 흡착을 시작함과 함께 센터 테이블 (41) 의 흡착 홀딩를 해제함으로써, 센터 테이블 (41) 로부터 웨이퍼 홀더 (8) 로 웨이퍼 (W) 가 건네진다. 웨이퍼 (W) 의 수수하기가 종료되면 웨이퍼 테이블 (41) 을 감속하여 하강을 정지시킨다. 이상의 동작에 의해서 웨이퍼 (W) 가 웨이퍼 테이블에서 위치 결정된다.
도 27 에 되돌아가, 웨이퍼 홀더 (8) 상에 있어서의 웨이퍼 (W) 의 위치 결정을 끝내면, 위치 결정 재현성 계측 결과에 기초하여 웨이퍼 (W) 의 위치를 조정하는 처리가 실시된다 (단계 S14'). 여기서는 아직 위치 결정 재현성 계측이 실시되어 있지 않기 때문에, 이 처리는 생략되고 서치 계측이 실시된다 (단계 S15'). 서치 계측에서는 웨이퍼 (W) 상에 형성된 서치 마크의 위치 정보를 얼라인먼트 센서 (15') 에서 계측한다. 이 계측 결과는, 주제어 장치 (20) 에 출력되어 웨이퍼 홀더 (8) 상에 위치 결정된 웨이퍼 (W) 의 대략적인 위치를 구하기 위해서 사용됨과 함께, 웨이퍼 홀더 (8) 상에 위치 결정된 웨이퍼 (W) 의 위치 결정 재현성 계측에 사용된다.
서치 계측이 종료되면, 다음으로 파인 계측이 실시된다 (단계 S16'). 이 파인 계측에서는, 얼라인먼트 센서 (15') 를 사용하여, 웨이퍼 (W) 상에 설정된 복수의 쇼트 영역 중 소정수 (3∼9 개) 의 쇼트 영역에 부수하여 형성된 얼라인먼트 마크 (파인 얼라인먼트 마크) 가 계측되고, 그 계측 결과가 얼라인먼트 제어계 (22) 에 출력된다. 이어서, 얼라인먼트 제어계 (22) 가 파인 계측의 계측 결과를 사용하여 EGA 연산함으로써, 웨이퍼 (W) 로 설정된 쇼트 영역의 배열을 정확하게 구한다. 이 쇼트 영역의 배열을 나타내는 정보 및 EGA 연산시에 얻어진 쇼트 영역의 배열 오차 등을 나타내는 정보는 주제어 장치 (20) 에 출력된다 (단계 S17').
이어서, 주제어 장치 (20) 는 웨이퍼 홀더 (8) 상에 위치 결정되는 웨이퍼 (W) 의 위치 결정 재현성을 산출한다 (단계 S18'). 이 처리에서는, 단계 S15' 에서 실시된 서치 계측에 의한 계측 결과를 사용하여 웨이퍼 (W) 의 위치 결정 재현성을 산출한다. 여기서, 전술한 바와 같이, 각 웨이퍼간의 차를 규격화하기 위해 (20) 는 이 서치 계측 결과로부터 전술한 (A) 및 (B) 의 규격화 처리를 실시한다.
이상의 처리를 끝내면, 단계 S17' 에서 실시된 EGA 연산의 결과에 기초하여 웨이퍼 (W) 상에 설정된 각 쇼트 영역의 하나를 노광 위치 (레티클 (R) 의 패턴이 투영되는 위치) 에 위치 결정하고, 투영 광학계 (PL) 를 통하여 레티클 (R) 의 패턴을 웨이퍼 (W) 상에 전사한다. 1 개의 쇼트 영역에 패턴을 전사하면, 다음으로 노광할 쇼트 영역을 노광 위치에 배치하고 패턴을 전사한다. 이하 동일한 방법으로, 웨이퍼 (W) 상에 설정된 쇼트 영역 모두를 순차적으로 노광한다.
웨이퍼 (W) 상의 모든 쇼트 영역에 대한 노광 처리가 종료되었으면, 웨이퍼 홀더 (8) 에 의한 웨이퍼 (W) 의 흡착 홀딩를 해제하여 센터 테이블 (41) 을 상승시키고, 처리 완료된 웨이퍼 (W) 를 언로드 아암 (38') 으로 건네 반출시킨다. 주제어 장치 (20) 는 다음에 노광 처리할 웨이퍼 (W) 가 있는지 여부를 판단하여 (단계 S20'), 있음으로 판단된 경우 (판단 결과가 「YES」인 경우) 에는 단계 S12' 이후의 처리를 반복한다. 또, 도 27 에 있어서는, 편의적으로 노광 처리를 끝낸 후에 다음에 노광 처리할 웨이퍼의 프리얼라인먼트가 실시되도록 도시하고 있지만, 실제로는 앞의 웨이퍼에 대한 노광 처리를 실시하고 있는 도중에 다음번 웨이퍼의 프리얼라인먼트가 이루어진다.
새로운 웨이퍼 (W) 의 프리얼라인먼트가 실시되고 (단계 S12'), 웨이퍼 홀더 (8) 상에 위치 결정되면 (단계 S13'), 위치 결정 재현성 계측 결과에 기초하여 웨이퍼 (W) 의 위치를 조정하는 처리가 실시된다 (단계 S14'). 이 처리에서는, 위치 결정 재현성 계측으로부터 얻어지는 웨이퍼 (W) 의 위치 결정 재현성의 경향에 따라서 웨이퍼 (W) 의 위치를 조정하고 있다. 이러한 조정을 실시하면, 얼라인먼트 센서 (15') 를 사용한 계측 에러의 발생을 저감시킬 수 있다.
이상의 처리가 종료되면, 서치 계측 (단계 S15'), 파인 계측 (단계 S16'), 및 EGA 연산 (단계 S17') 이 순차적으로 실시된 후, 웨이퍼의 위치 결정 재현성의 산출이 이루어진다 (단계 S18'). 여기서, 웨이퍼 홀더 (8) 상에 위치 결정되어 있는 웨이퍼 (W) 는 로트 선두의 웨이퍼 (W) 가 아니기 때문에, 로트 선두의 웨이퍼 (W) 를 기준으로 하여 규격화가 실시된다. 이상의 처리를 순차적으로 반복하여 다음에 노광할 웨이퍼 (W) 가 없어져서 단계 S20 의 판단 결과가 「NO」가 되면, 일련의 노광 처리가 종료된다.
이상 설명한 바와 같이, 본 실시형태에 의하면, 노광 처리 중에 통상적으로 실시되는 서치 계측의 계측 결과를 사용하여 웨이퍼 (W) 의 위치 결정 재현성을 계측하고 있기 때문에, 웨이퍼의 위치 결정 재현성 체크를 노광 처리를 정지하고 별도로 실시할 필요가 없어, 노광 처리 효율을 저하시키지 않고 웨이퍼 (W) 의 위치 결정 재현성을 계측할 수 있다. 또한, 각 웨이퍼 (W) 사이에서의 외형이나 변형의 편차에 의해 생기는 오차를 제외하도록 하였기 때문에, 높은 정밀도로 웨이퍼 (W) 의 위치 결정 재현성을 계측할 수 있다. 그리고, 노광 장치의 운전 중에 상시 웨이퍼의 위치 결정 재현성의 계측을 실시하는 것이 가능하기 때문에, 위치 결정 재현성이 저하 (악화) 되고 있는 경우에는, 웨이퍼 (W) 의 반송계 등의 유지관리 시기를 예측할 수 있어, 재현성 악화로 인한 장치의 돌연 정지를 회피할 수 있다. 이에 추가하여, 웨이퍼의 위치 결정 재현성의 경향에 따라서 서치 계측에 있어서의 서치 얼라인먼트 마크의 계측 위치를 자동 조정할 수도 있기 때문에, 계측 에러의 발생을 억제할 수 있다. 이러한 자동 조정을 실시하는 경우에 있어서, 웨이퍼 (W) 의 위치 결정 재현성을 충분히 양호하게 홀딩할 수 있는 경우에는, 서치 얼라인먼트를 생략하고 파인 얼라인먼트를 실시하도록 하는 것도 가능하다.
다음으로, 본 발명의 실시형태의 변형예에 관해서 설명한다. 도 31(a), 도 31(b) 는, 제 2 프리얼라인먼트 장치 (32') 가 구비하는 화상 처리 장치 (17a∼17e) 의 다른 배치를 나타내는 도이다. 도 31(a) 에 나타내는 배치는, 웨이퍼 (W) 에 오리엔테이션 플랫 (OF) 이 형성되어 있는 경우의 배치이다. 도 31(a) 에 나타내는 바와 같이, 오리엔테이션 플랫 (OF) 이 -Y 방향을 향하도록 웨이퍼 (W) 가 조정 아암 (40) 의 팔부 (40a', 40b') 상에 홀딩되는 경우에는, 화상 처리 장치 (17a, 17b) 는 웨이퍼 (W) 에 대하여 -Y 방향으로 배치된 오리엔테이션 플랫 (OF) 의 양단부를 촬상하는 위치에 배치되고, 화상 처리 장치 (17c) 는 오리엔테이션 플랫 (OF) 이외의 웨이퍼 (W) 의 에지부 (도 31(a) 에 나타내는 예에서는 웨이퍼 (W) 의 +X 방향에 있어서의 에지부) 를 촬상하는 위치에 배치된다.
또한, 화상 처리 장치 (17d, 17e) 는, 웨이퍼 (W) 의 표면에 형성된 패턴의 형상에 따라서 임의의 위치의 상방에 배치된다. 또, 도 31(a) 에 나타내는 웨이퍼 (W) 에 대한 화상 처리 장치 (17d, 17e) 의 위치는 어디까지나 일례이다. 화상 처리 장치 (17a∼17c) 에 설치되는 수광부 (도 25참조) 의 초점은, 조정 아암 (40) 의 팔부 (40a', 40b') 상에 홀딩된 웨이퍼 (W) 상에 설정되어 있다.
도 31(b) 에 나타내는 바와 같이, 오리엔테이션 플랫 (OF) 이 +X 방향을 향하도록 웨이퍼 (W) 가 조정 아암 (40) 의 팔부 (40a', 40b') 상에 홀딩되는 경우에는, 화상 처리 장치 (17a, 17b) 는 웨이퍼 (W) 에 대하여 +X 방향으로 배치된 오리엔테이션 플랫 (OF) 의 양단부를 촬상하는 위치에 배치되고, 화상 처리 장치 (17c) 는 오리엔테이션 플랫 (OF) 이외의 웨이퍼 (W) 의 에지부 (도 31(b) 에 나타내는 예에서는 웨이퍼 (W) 의 -Y 방향에 있어서의 에지부) 를 촬상하는 위치에 배치된다. 도 31(b) 에 나타내는 예의 경우에 있어서도, 화상 처리 장치 (17d, 17e) 는 웨이퍼 (W) 의 표면에 형성된 패턴의 형상에 따라서 임의의 위치의 상방에 배치된다. 또한, 도 31(b) 에 나타내는 예에 있어서, 화상 처리 장치 (17a∼17e) 에 설치되는 수광부의 초점도 조정 아암 (40) 의 팔부 (40a', 40b') 상에 홀딩된 웨이퍼 (W) 상에 설정된다.
또, 도 26 에 나타낸 구성을 갖는 화상 처리 장치 (17d) 는 도 32 와 같이 변형하여, 웨이퍼 (W) 의 외주부를 촬상하는 화상 처리 장치 (17a∼17c) 로서 사용할 수도 있다. 도 32 는, 화상 처리 장치 (17a∼17c) 의 다른 개략 구성을 나타내는 측면도이다. 또, 화상 처리 장치 (17a∼17c) 의 기본적인 구성은 대략 동일하기 때문에, 여기서는 화상 처리 장치 (17a) 를 예로 들어 설명한다. 도 32 에 나타내는 바와 같이 화상 처리 장치 (17a) 는, 수광계 (61') 에 관해서는 도 6 에 나타내는 화상 처리 장치 (17d) 와 동일한 구성이다. 단, 도 32 에 나타내는 화상 처리 장치 (17a) 는, 웨이퍼 (W) 의 단부로부터의 반사광을 촬상하기 위해서 조명계 (60') 의 확산판 (64') 과 구동식 미러 (65') 의 구성 및 배경판 (62') 을 구비하는 점이 다르다.
배경판 (62') 은 블랙 세라믹스 등의 반사율이 낮은 부재에 의해 형성되어 있고, 도 25 에 나타내는 확산 반사판 (52') 과 같이 도시하지 않은 구동 기구에 의해 이동 가능하게 구성되며, 제 2 프리얼라인먼트 장치 (32') 에 설치된 조정 아암 (40) 의 팔부 (40a', 40b') 상에 웨이퍼 (W) 가 홀딩된 경우에는 웨이퍼 (W) 와 웨이퍼 홀더 (8) 사이에 삽입 배치된다. 이 배경판 (62') 은, 화상 처리 장치 (17a∼17e) 에 의한 촬상을 끝내면, 조정 아암 (40) 으로부터 센터 테이블 (41) 로 건네진 웨이퍼 (W) 를 웨이퍼 홀더 (8) 상에 탑재할 때의 동작을 방해하지 않는 위치로 퇴피된다. 도 32 에 나타내는 화상 처리 장치 (17a) 는, 확산판 (64') 에 의해 광원 (63') 으로부터의 조명광을 확산시키고, 또 조명광의 입사각을 구동식 미러 (65') 에 의해 조정 가능하게 함으로써, 웨이퍼 (W) 의 단부의 넓은 영역에 걸쳐서 조명광을 조사할 수 있다. 또한, 반사율이 낮은 배경판 (62') 을 설치함으로써, 웨이퍼 (W) 단부의 콘트라스트를 향상시킬 수 있다.
도 33 은 화상 처리 장치 (17a∼17c) 의 다른 개략 구성을 나타내는 측면도이다. 또, 화상 처리 장치 (17a∼17c) 의 기본적인 구성은 대략 동일하기 때문에, 여기서는 화상 처리 장치 (17a) 를 예로 들어 설명한다. 도 33 에 나타내는 바와 같이 화상 처리 장치 (17a) 는, 조명계 (70'), 수광계 (71') 및 배경판 (72') 을 포함하여 구성된다. 조명계 (70') 는 광원 (73') 및 확산판 (74') 을 포함하여 구성되고, 수광계 (71') 는 반사 미러 (75'), 집광 렌즈 (76') 및 촬상 장치 (77') 를 포함하여 구성된다. 조명계 (70') 에 형성되는 광원 (73') 은 도 25 에 나타내는 광원 (53') 과 동일한 것이고, 확산판 (74') 은 광원 (73') 으로부터 사출된 조명광을 확산시키는 것이다. 이 확산판 (74') 은 웨이퍼 (W) 상에 있어서의 균일한 조명 영역을 넓히기 위해 형성된다.
배경판 (72') 은, 도 32 에 나타내는 배경판 (62') 과 마찬가지로 블랙 세라믹스 등의 반사율이 낮은 부재에 의해 형성되어 있고, 도 25 에 나타내는 확산 반사판 (52') 과 동일하게 도시하지 않은 구동 기구에 의해 이동 가능하게 구성되어, 제 2 프리얼라인먼트 장치 (32') 에 설치된 조정 아암 (40) 의 팔부 (40a', 40b') 상에 웨이퍼 (W) 가 홀딩된 경우에는 웨이퍼 (W) 와 웨이퍼 홀더 (8) 사이에 삽입 배치된다. 또, 도 32 에 나타내는 배경판 (62') 과 동일하게, 배경판 (72') 은 화상 처리 장치 (17a∼17e) 에 의한 촬상을 끝내면, 조정 아암 (40) 으로부터 센터 테이블 (41) 로 건네진 웨이퍼 (W) 를 웨이퍼 홀더 (8) 상에 탑재할 때의 동작을 방해하지 않는 위치로 퇴피된다.
광원 (73') 및 확산판 (74') 은, 광원 (73') 으로부터의 조명광이 웨이퍼 (W) 의 단부를 경사 방향에서부터 조사하는 위치에 배치되어 있다. 조명계 (70') 는, 도시하지 않은 구동계에 의해 자세 (X 축, Y 축, 및 Z 축 둘레의 회전) 의 조정이 가능하게 구성되어 있다. 조명계 (70') 의 자세를 조정함으로써, 웨이퍼 (W) 의 단부에 대한 조명광의 조사 위치를 바꿀 수 있다. 반사 미러 (75'), 집광 렌즈 (76') 및 촬상 장치 (77') 는, 도 25 에 나타내는 반사 미러 (55'), 집광 렌즈 (56') 및 촬상 장치 (57') 와 각각 동일한 것이다.
또, 이상 설명한 실시형태는 본 발명의 이해를 쉽게 하기 위해 기재된 것으로, 본 발명을 한정하기 위해서 기재된 것이 아니다. 따라서, 상기 실시형태에 개시된 각 요소는, 본 발명의 기술적 범위에 속하는 모든 설계 변경이나 균등물도 포함하는 취지이다. 예를 들어, 상기 실시형태에서는 제 2 프리얼라인먼트 장치 (32') 에 설치된 조정 아암 (40) 상에서 웨이퍼 (W) 의 단부 및 특징 부분을 촬상하도록 하고 있지만, 조정 아암 (40) 을 생략한 구성으로 하여, 센터 테이블 (41) 상에 홀딩된 웨이퍼 (W) 의 단부 및 웨이퍼 (W) 표면의 특징 부분을 촬상하도록 해도 된다. 이 구성의 경우에는, 웨이퍼 (W) 표면의 특징 부분을 촬상하는 화상 처리 장치를 1 개만으로 하고, 웨이퍼 스테이지를 XY 면내에서 이동시킴으로써 다른 2 군데의 특징 부분을 촬상하도록 해도 된다.
또한, 상기 실시형태에서는 제 2 프리얼라인먼트 장치 (32') 에 설치된 조정 아암 (40) 상에서 웨이퍼 (W) 의 단부 및 특징 부분을 촬상하도록 하고 있지만, 웨이퍼 홀더 (8) 상에 탑재된 웨이퍼 (W) 의 단부 및 특징 부분을 촬상하도록 해도 된다. 이 경우에는, 웨이퍼 (W) 의 외주를 촬상하는 화상 처리 장치를 1 개만으로 하고, 웨이퍼 스테이지를 XY 면내에서 이동시킴으로써 상이한 3 군데의 외주부를 촬상하도록 해도 된다. 또, 웨이퍼 (W) 표면의 특징 부분을 촬상하는 화상 처리 장치도 1 개만으로 하고, 웨이퍼 스테이지를 XY 면내에서 이동시킴으로써 다른 2 군데의 특징 부분을 촬상하도록 해도 된다. 그리고, 마찬가지로 웨이퍼의 외주부 3 군데의 촬상과, 특징 부분 2 군데의 촬상을 단일 화상 처리 장치에 의해 실시하도록 해도 된다. 웨이퍼 스테이지는 간섭계 (13) 에 의해서 고정밀도로 위치 제어되어 있기 때문에, 이러한 계측이 가능하다.
상기 실시형태에서는, 투영 광학계 (PL) 의 측방에 설치된 얼라인먼트 센서 (15') 를 사용하여 웨이퍼 (W) 에 형성된 서치 얼라인먼트 마크 및 파인 얼라인먼트 마크의 위치 정보를 계측했었지만, 얼라인먼트 센서 (14) 를 사용하여 투영 광학계 (PL) 를 통하여 이들 마크의 위치 정보를 계측해도 된다.
또한, 상기 실시형태에서는, 노광용 조명광으로서 KrF 엑시머 레이저광 (파장 248㎚), ArF 엑시머 레이저광 (파장 193㎚), g 선 (436㎚), i 선 (365㎚), F2 레이저광 (157㎚) 등을 사용하는 경우에 관해서 설명하였지만, 이것에 한정되지 않고 Ar2 엑시머 레이저 (126㎚), 구리 증기 레이저, YAG 레이저, 반도체 레이저 등의 고조파 등을 노광용 조명광으로서 사용할 수 있다. 또한, 조명광으로서 예를 들어 국제 공개 WO99/46835호에 개시되어 있는 바와 같이, DFB 반도체 레이저 또는 파이버 레이저로부터 발진되는 적외역 또는 가시역의 단일 파장 레이저광을, 예를 들어 에르븀 (또는 에르븀과 이트륨 모두) 이 도핑된 파이버 앰프에 의해 증폭하고, 비선형 광학 결정을 사용하여 자외광으로 파장 변환한 고조파를 사용해도 된다.
또한, 상기 실시형태의 노광 장치에 있어서 투영 광학계는 축소계, 등배 또는 확대계 중 어느 것도 사용 가능하며, 굴절계, 반사 굴절계 및 반사계 중 어느 것을 사용해도 된다. 또, 복수의 렌즈로 구성되는 투영 광학계를 노광 장치 본체에 조립해 넣는다. 그 후, 광학을 조정하는 것과 함께, 다수의 기계부품으로 이루어지는 레티클 스테이지나 웨이퍼 스테이지를 노광 장치 본체에 장착하고 배선이나 배관을 접속한 후, 그 위에 종합 조정 (전기 조정, 동작 확인 등) 을 함으로써 상기 각 실시형태의 노광 장치를 제조할 수 있다. 또, 노광 장치의 제조는 온도 및 클린도 등이 관리된 클린룸에서 실시하는 것이 바람직하다.
또, 상기 실시형태에서는 스텝 앤드 스캔 방식이나 스텝 앤드 리피트 방식의 투영 노광 장치에 관해서 설명하였지만, 본 발명은, 이들 투영 노광 장치 외에, 프록시미티 방식의 노광 장치 등 다른 노광 장치에도 적용할 수 있음은 물론이다. 또한, 쇼트 영역과 쇼트 영역을 합성하는 스텝 앤드 스티치 방식의 축소 투영 노광 장치에도 본 발명을 바람직하게 적용할 수 있다. 또한, 예를 들어 국제 공개 WO98/24115호, WO98/40791호에 개시된, 웨이퍼 스테이지를 2 기 구비한 트윈 스테이지형 노광 장치에도 적용할 수 있다. 또한, 예를 들어 국제 공개 WO99/49504호에 개시되는 액침법을 사용하는 노광 장치에도 본 발명을 적용할 수 있음은 물론이다.
또한, 본 발명은 반도체 제조용 노광 장치에 한정되지 않고, 액정 표시 소자 등을 포함하는 디스플레이의 제조에 사용되는, 디바이스 패턴을 유리 플레이트 상에 전사하는 노광 장치, 박막 자기 헤드의 제조에 사용되는 디바이스 패턴을 세라믹 웨이퍼 상에 전사하는 노광 장치, 및 촬상 소자 (CCD 등), 마이크로 머신, 유기 EL, DNA 칩 등의 제조에 사용되는 노광 장치 등에도 적용할 수 있다. 또한, EUV 광 (발진 스펙트럼이 5∼15㎚ (연(軟) X 선 영역)), X 선, 또는, 전자총으로서 열전자 방사형의 란탄헥사보라이트 (LaB6), 탄탈 (Ta) 을 사용한 전자선 및 이온 빔 등의 하전 입자선을 노광 빔으로서 사용하는 노광 장치에 본 발명을 적용해도 된다.
또한, 반도체 소자 등의 마이크로 디바이스 뿐만 아니라, 광노광 장치, EUV 노광 장치, X 선 노광 장치, 및 전자선 노광 장치 등에서 사용되는 레티클 또는 마스크를 제조하기 위해서, 유리 기판 또는 실리콘 웨이퍼 등에 회로 패턴을 전사하는 노광 장치에도 본 발명을 적용할 수 있다. 여기서, DUV (원자외) 광이나 VUV (진공 자외) 광 등을 사용하는 노광 장치에서는 일반적으로 투과형 레티클이 사용되고, 레티클 기판으로는 석영 유리, 불소가 도핑된 석영 유리, 형석, 불화마그네슘, 또는 수정 등이 사용된다. 또한, 프록시미티 방식의 X 선 노광 장치, 또는 전자선 노광 장치 등에서는 투과형 마스크 (스텐실 마스크, 멤브레인 마스크) 가 사용되고, 마스크 기판으로는 실리콘 웨이퍼 등이 사용된다.
그리고 상기 실시형태에서는, 본 발명을 처리 시스템에 적용한 경우에 관해서 설명하였지만, 본 발명은, 반송 장치, 계측 장치, 검사 장치, 시험 장치, 그 밖의 물체의 위치 맞춤을 실시하는 장치 전반에 걸쳐서 적용이 가능하다. 예를 들어, 앞서 기술한 계측 장치 (오프라인 계측기 (800)) 나, 검사 장치, 시험 장치, 레이저 리페어 장치 등은, 그러한 장치들 (이하에서는 처리 장치라고 한다) 안에 투입된 웨이퍼 (노광 장치에서 노광 처리가 이루어져 패턴 형성된 웨이퍼, 노광을 마친 웨이퍼) 를, 그 각 처리 장치 내에 설치되어 있는 위치 맞춤 장치에 의해 위치 맞춤하면서 각종 처리 (계측 처리, 검사 처리, 시험 처리, 리페어 처리) 를 실시하는 것이다.
이들 처리 장치에서는, 통상은 웨이퍼를 외형 계측한 결과에 기초하여 처리 장치 내에 투입될 때의 웨이퍼의 방향 (회전) 및 투입 위치를 제어하도록 되어 있다. 그리고 처리 장치측에서는, 처리 장치 내에 투입된 웨이퍼를 설계치 (웨이퍼 상에서의 마크 배치나 패턴 배치 등의 설계상 위치 정보) 에 기초하여 이동시킴으로써, 처리 장치 내의 소정의 처리 위치 (장치 내에서 상기 처리를 실시하는 경우) 에 웨이퍼 상의 원하는 위치를 위치 결정하도록 하고 있다. 그래서 이들 처리 장치에 있어서 웨이퍼 위치 결정을 실시하는 경우, 상기 실시형태 상에서 설명한 것과 같은 처리를 실시하면, 처리 장치 내의 소정 처리 위치에 웨이퍼 상의 원하는 위치를 위치 결정할 때의 위치 결정 정밀도를 향상시킬 수 있다.
구체적으로는, 노광 장치에 투입되기 전에 사전 계측기 (400) 에서 계측한 사전 계측 결과 (웨이퍼 상에서 형성되어 있는 마크에 있어서, 설계상의 마크 위치와 웨이퍼 외형 정보를 감안한 실제 마크 위치 사이의 오프셋 정보 등) 를 상기 각 처리 장치 (오프라인 계측기 (800) 등) 에도 전달해 주고, 처리 장치측에서는 상기 설계치에 이 전달된 오프셋 정보를 가미한 뒤에 위치 결정 처리를 실시하면, 보다 정확하고 고속으로 위치 결정을 실시하는 것이 가능해진다. 이 경우에는, 처리 장치용을 위해 새로운 사전 계측기를 설치하는 것이 아니라, 상기 서술한 사전 계측기 (400) 에서의 사전 계측 결과를 재이용 (노광 장치에서 이용한 후에, 다른 처리 장치에서도 이용) 하게 되기 때문에, 비용적으로도 스루풋적으로도 효율적인 시스템으로서 실현이 가능하다.
또한 이들 처리 장치에 있어서도, 상기 서술한 실시예에서 서술한 것과 동일한 수법으로 투입 재현성 계측을 실시하도록 구성하면, 경시 변화 등에 수반되는 웨이퍼 투입 재현성의 저하로 인한 영향을 받지 않는 처리 장치 (처리 시스템) 를 실현할 수 있다.
또 상기 서술한 사전 계측 결과의 재이용으로서, 다음과 같은 재이용 방법도 있다. 상기 실시예에서 설명한 처리 시스템을 예로 설명한다.
제 N 레이어 (layer) 를 노광하기 위한 레지스트가 도포된 웨이퍼를 사전 계측기 (400) 에서 사전 계측한 사전 계측 정보를, 그 사전 계측된 웨이퍼 (이하, 사전 계측을 마친 웨이퍼라고 한다) 의 ID (식별) 정보와 함께 기억 장치 (예를 들어 노광 장치 (200) 나 해석 시스템 (600) 의 내부에 설치된 도시하지 않은 메모리 등) 에 기억시켜 놓는다. 사전 계측을 마친 웨이퍼는, 그 후, 노광 장치에서 제 N 레이어에 대한 노광 처리를 거친 후에 노광 장치로부터 반출되어, 각종 처리 장치 (C/D 장치나 오프라인 계측기 등) 에서의 처리가 실시된다. 통상, 1 장의 웨이퍼에 대하여 복수의 레이어를 중첩시키는 것에 의해 (C/D 처리 → 노광 처리 → C/D 처리 → 노광 처리 → … 가 반복됨으로써) 디바이스 형성이 이루어지기 때문에, 이 사전 계측을 마친 웨이퍼도 제 N+1 레이어를 위한 레지스트가 도포된 후에 재차 노광 장치에서의 노광 처리를 거치게 된다. 이 제 N+1 레이어를 노광하기 위해 노광 장치에 사전 계측을 마친 웨이퍼를 투입할 때에는, 상기 서술한 사전 계측기 (400) 에 의해 사전 계측 동작은 실시하지 않고서 (패스하고), 그 대신 제 N 레이어의 노광시에 사전 계측되어 상기 서술한 기억 장치에 기억되어 있는 사전 계측 정보 (제 N 레이어에 있어서의 사전 계측 정보) 를 판독한다. 그리고 이 판독한 정보를 사용하여 웨이퍼의 위치 결정을 실시하면서, 제 N+1 레이어를 노광한다.
보다 구체적으로 설명하면, 제 1 레이어의 노광시에, 제 1 레이어 상에 형성되어 있는 서치 얼라인먼트 마크의 웨이퍼 외형 기준에서의 위치 정보 (외형 기준 좌표계에서의 서치 얼라인먼트 마크의 위치 좌표) 를 사전 계측해 두어, 상기 기억 장치에 기억시켜 놓는다. 그리고 다음에 재차 그 웨이퍼가 제 2 레이어의 노광을 위해 노광 장치에 투입되는 것이 레시피 등의 정보로부터 판단된 경우에는, 제 2 레이어에 형성되어 있는 서치 얼라인먼트 마크의 사전 계측은 실시하지 않고서, 제 1 레이어의 서치 얼라인먼트 마크의 사전 계측 결과 (상기 기억 장치에 기억되어 있는 것) 를 사용하여, 사전 계측 완료된 웨이퍼의 투입 위치를 결정하도록 (계측 장치의 계측 시야 내에, 제 2 레이어의 서치 얼라인먼트 마크를 위치 결정하도록) 하고 있다. 이와 같이 사전 계측 정보를 재이용함으로써 사전 계측에 필요한 시간을 단축할 수 있어, 디바이스 제조 공정 전체로서의 스루풋을 향상시킬 수 있다. 또, 이 방식을 실제로 실시할 때에는, 제 N+1 레이어의 파인 얼라인먼트 마크와 제 N 레이어의 서치 얼라인먼트 마크 사이의 위치 어긋남 오차가 정밀도상 요구되는 허용 오차 범위 내인 것이 전제가 된다. 이러한 레이어 (공정) 사이의 위치 어긋남 오차가 허용 범위 내인지 여부의 정보는, 미리 실험 (실측) 이나 시뮬레이션 등에서 각 레이어 (공정) 사이에 있어서의 위치 어긋남 오차를 구하여 데이터 테이블로서 구비해 두는 것이 바람직하다. 그리고 데이터 테이블 상에서 허용 범위 내의 오차를 갖는 레이어인 경우에만 상기한 바와 같은 사전 계측 정보의 재이용 방법을 채용하면 된다.
복수의 렌즈로 구성되는 조명 광학계, 투영 광학계를 노광 장치 본체에 조립해 넣고 광학 조정을 함과 함께, 다수의 기계부품으로 이루어지는 레티클 스테이지나 기판 스테이지를 노광 장치 본체에 장착시켜 배선이나 배관을 접속하고, 그 위에 종합 조정 (전기 조정, 동작 확인 등) 을 함으로써 본 실시형태의 노광 장치를 제조할 수 있다. 또, 노광 장치의 제조는 온도 및 클린도 등이 관리된 클린룸 내에서 실시하는 것이 바람직하다.
반도체 디바이스는, 디바이스의 기능ㆍ성능을 설계하는 단계, 이 설계 단계에 기초한 레티클을 제작하는 단계, 실리콘 재료로 웨이퍼를 제작하는 단계, 전술한 실시형태의 노광 장치에 의해 레티클의 패턴을 기판에 전사하는 단계, 디바이스 조립 단계 (다이싱 공정, 본딩 공정, 패키지 공정을 포함), 검사 단계 등을 거쳐 제조된다.
본 발명의 위치 맞춤 방법, 처리 시스템, 위치 결정 재현성 계측 방법, 위치 계측 방법, 노광 방법, 기판 처리 장치, 계측 방법 및 계측 장치는, 반도체 소자, 액정 표시 소자, 촬상 소자, 박막 자기 헤드 등을 제조하기 위한 포토리소그래피 공정에 적합하다.

Claims (52)

  1. 물체에 대하여 소정 처리를 실시하는 처리 장치에 2 개 이상의 마크가 그 피계측면에 형성된 물체를 투입하기 전에, 상기 물체의 피계측면 외연의 적어도 일부 및 상기 각 마크를 검출하고, 그 검출 결과에 기초하여, 상기 피계측면에 대략 평행한 2 차원 좌표계로서 상기 외연 상의 1 개 이상의 기준점에 의해 규정되는 외형 기준 좌표계에서의 상기 각 마크의 위치 좌표의 계측을 실시하는 사전 계측 공정;
    상기 처리 장치에 대하여 상기 물체를 투입할 때에 상기 물체의 위치 맞춤을 실시하기 위해서, 상기 물체의 피계측면 외연의 적어도 일부를 검출하고, 그 검출 결과에 기초하여 상기 외형 기준 좌표계에서의 상기 물체의 위치 정보를 계측하는 본 계측 공정; 및
    상기 본 계측 공정의 계측 결과에 기초하여 상기 처리 장치에 투입되는 상기 물체의, 상기 처리 장치 내에 형성되어 상기 물체 상의 상기 각 마크의 위치를 계측하는 마크 계측 장치의 계측 시야에 대한 상기 2 차원 좌표계에 있어서의 상대 위치 관계를, 상기 사전 계측 공정에서의 계측 결과에 기초하여 조정하는 조정 공정을 포함하는, 위치 맞춤 방법.
  2. 제 1 항에 있어서,
    상기 물체의 피계측면의 외연의 형상이 대략 원형이고,
    상기 외형 기준 좌표계는, 상기 물체의 외연 상의 외형적 특징부에 대응하는 1 개 이상의 특정점을 기준점으로 하였을 때에 얻어지는 상기 물체의 중심 위치 및 회전량에 의해 규정되는 좌표계와, 상기 물체의 외연 상의 3 개 이상의 점을 기준점으로 하여 구해지는 상기 물체의 중심 위치 및 회전량에 의해 규정되는 좌표계 중 어느 일방이고,
    상기 사전 계측 공정에서는,
    상기 본 계측 공정에서 적용되는 상기 외형 기준 좌표계에서의 상기 각 마크의 위치 좌표의 계측을 실시하는 것을 특징으로 하는 위치 맞춤 방법.
  3. 제 1 항에 있어서,
    상기 처리 장치에 투입된 상기 물체 상의 각 마크의 위치 계측을 실시하는 마크 계측 공정과;
    상기 마크 계측 공정의 계측 결과에 기초하여, 상기 물체에 대한 소정 처리를 정상적으로 실시할 수 있는지 여부를 판단하는 투입후 판단 공정을 추가로 포함하는 것을 특징으로 하는 위치 맞춤 방법.
  4. 제 1 항에 있어서,
    상기 본 계측 공정에 앞서, 상기 사전 계측 공정에 있어서의 상기 물체의 피계측면 외연의 적어도 일부의 검출 결과를 평가하는 평가 공정과;
    상기 사전 계측 공정에서의 상기 물체의 피계측면 외연의 적어도 일부의 검출 결과와, 상기 평가 공정에서의 평가 결과의 적어도 일방에 기초하여, 상기 본 계측 공정에서의 계측 조건을 최적화하는 최적화 공정을 추가로 포함하는 것을 특징으로 하는 위치 맞춤 방법.
  5. 제 4 항에 있어서,
    상기 평가 공정에서는,
    상기 소정의 평가 기준에 따라서, 득점 형식으로 상기 검출 결과를 평가하는 것을 특징으로 하는 위치 맞춤 방법.
  6. 제 5 항에 있어서,
    상기 평가 공정에서는,
    상기 검출 결과에 있어서의 상기 물체의 외연의 검출 상태에 관한 복수의 특징량을 상기 소정의 평가 기준으로 하고, 상기 복수의 특징량의 가중 (加重) 합을 평가 결과로서 산출하는 것을 특징으로 하는 위치 맞춤 방법.
  7. 제 6 항에 있어서,
    상기 복수의 특징량에는, 상기 검출 결과로부터 얻어지는 상기 물체의 피계측면 외연 (外緣) 부근의 명부와 암부의 콘트라스트, 그 콘트라스트의 편차, 상기 검출 결과로부터 얻어지는 상기 물체의 외연의 곡률, 및 상기 검출 결과로부터 얻어지는 상기 외연과 그 외연의 근사곡선과의 편차 중 1 개 이상이 포함되는 것을 특징으로 하는 위치 맞춤 방법.
  8. 제 4 항에 있어서,
    상기 본 계측 공정에 앞서, 상기 검출 결과의 득점에 기초하여 정상적으로 상기 물체의 외연의 검출이 실시되었는지 여부를 판단하는 최적화 전(前)판단 공정을 추가로 포함하고,
    상기 최적화 공정에서는,
    상기 판단이 부정된 경우에는, 상기 사전 계측 공정에서의 상기 물체의 피계측면 외연의 적어도 일부의 검출 결과에 기초하여, 상기 계측 조건의 최적화를 실시하는 것을 특징으로 하는 위치 맞춤 방법.
  9. 제 8 항에 있어서,
    상기 최적화 공정을 수행한 후,
    상기 처리 장치에 투입되는 상기 물체의 피계측면 외연의 적어도 일부의 검출 결과를 재차 평가하고, 그 평가 결과에 기초하여, 상기 물체에 대한 소정 처리를 정상적으로 실시할 수 있는지 여부를 판단하는 최적화후 판단 공정을 추가로 포함하는 것을 특징으로 하는 위치 맞춤 방법.
  10. 제 9 항에 있어서,
    복수의 물체로 이루어지는 물체군에 포함되는 각 물체에 대하여 순차적으로 상기 각 공정을 실시하고,
    상기 최적화후 판단 공정에 있어서 정상적으로 소정 처리를 실시할 수 없다고 판단된 물체의 수가 소정수를 초과한 경우에는, 상기 물체군에 포함되는 물체를 모두 제외하는 제외 공정을 추가로 포함하는 것을 특징으로 하는 위치 맞춤 방법.
  11. 제 4 항에 있어서,
    동일한 상기 물체에 대한, 상기 사전 계측 공정에서의 상기 물체의 피계측면 외연의 적어도 일부의 검출 결과에 대한 평가 결과와, 상기 본 계측 공정에서의 상기 물체의 피계측면 외연의 적어도 일부의 검출 결과에 대한 평가 결과를 정합시키는 정합 공정을 추가로 포함하는 것을 특징으로 하는 위치 맞춤 방법.
  12. 제 4 항에 있어서,
    상기 처리 장치 및 상기 처리 장치와는 독립적으로 동작하는 해석 장치의 적어도 일방에서 상기 최적화 공정을 실시하는 것을 특징으로 하는 위치 맞춤 방법.
  13. 제 4 항에 있어서,
    상기 계측 조건에는, 계측시의 조명 조건, 계측 반복수, 계측에 사용되는 촬상 장치에 있어서의 촬상 배율 및 위치 계측 알고리즘 중 하나 이상을 포함하는 것을 특징으로 하는 위치 맞춤 방법.
  14. 제 1 항에 있어서,
    복수의 상이한 물체 각각에 대하여 순차적으로 상기 각 공정을 실시하고,
    상기 사전 계측 공정에서의 상기 외형 기준 좌표계에서의 상기 각 마크의 위치 좌표에 기초하여, 상기 마크 계측 공정의 위치 계측 결과를 규격화하는 규격화 공정과;
    상기 규격화된 위치 계측 결과에 기초하여, 상기 처리 장치에 투입된 상기 물체의, 상기 마크 계측 장치의 계측 시야에 대한 상대적인 위치 관계의 재현성을 계측하는 재현성 계측 공정을 추가로 포함하는 것을 특징으로 하는 위치 맞춤 방법.
  15. 제 14 항에 있어서,
    상기 물체 상에는, 매트릭스 형상으로 형성된 복수의 구획 영역과, 각 구획 영역에 부설된 파인 얼라인먼트 마크와, 그 파인 얼라인먼트 마크를 탐색하기 위한 서치 얼라인먼트 마크가 형성되어 있고,
    상기 사전 계측 공정에 의해 계측되는 각 마크를 서치 얼라인먼트 마크로 하고,
    상기 처리 장치에 투입된 상기 물체 상에 형성된 동일 직선 상에 없는 3 개이상의 파인 얼라인먼트 마크의 위치 계측 결과에 기초하여, 소정의 통계적 수법을 사용하여, 상기 물체 상의 상기 복수의 구획 영역의 배열에 의해 규정되는 배열 좌표계를 검출하는 검출 공정을 추가로 포함하고,
    상기 규격화 공정에서는,
    상기 외형 기준 좌표계에 대한 상기 배열 좌표계의 배율 성분 또는 직교 성분의 어느 일방 또는 양방에 기초하여, 상기 마크 계측 공정의 계측 결과를 한층 더 규격화하는 것을 특징으로 하는 위치 맞춤 방법.
  16. 제 15 항에 있어서,
    상기 검출 공정에서는,
    상기 배열 좌표계에 대한 상기 각 서치 얼라인먼트 마크의 위치 계측 결과의 랜덤 성분을 구하고,
    상기 규격화 공정에서는,
    상기 랜덤 성분에 기초하여, 상기 마크 계측 공정의 계측 결과를 한층 더 규격화하는 것을 특징으로 하는 위치 맞춤 방법.
  17. 제 16 항에 있어서,
    상기 랜덤 성분의 크기에 기초하여, 상기 각 마크의 위치 계측 결과를 재현성 계측에 사용하는지 여부를 판단하는 재현성 계측 판단 공정을 추가로 포함하는 것을 특징으로 하는 위치 맞춤 방법.
  18. 제 14 항에 있어서,
    상기 규격화된 상기 마크 계측 공정의 위치 계측 결과의 편차에 기초하여 상기 물체의 중심 위치 및 회전량의 변동을 예측하기 위한 변동 예측식을 도출하는 도출 공정을 추가로 포함하고,
    상기 조정 공정에서는,
    상기 변동 예측식의 계산 결과에 기초하여, 상기 처리 장치에 투입되는 상기 물체와, 상기 물체 상의 각 마크의 위치를 계측하는 마크 계측 장치의 계측 시야와의 상대 위치 관계를 조정하는 것을 특징으로 하는 위치 맞춤 방법.
  19. 제 14 항에 있어서,
    상기 재현성 계측 공정에서는,
    그 재현성의 평가 팩터로서, 투입후의 상기 물체의 중심 위치 및 회전량의 표준편차, 범위 및 평균에 관한 정보를 사용하는 것을 특징으로 하는 위치 맞춤 방법.
  20. 제 19 항에 있어서,
    상기 평가 팩터의 값에 기초하여, 그 물체에 대한 소정 처리를 정상적으로 실시할 수 있는지 여부를 판단하는 공정을 추가로 포함하는 것을 특징으로 하는 위치 맞춤 방법.
  21. 제 1 항에 있어서,
    상기 물체에 감광제를 도포한 후에, 상기 사전 계측 공정을 수행하는 것을 특징으로 하는 위치 맞춤 방법.
  22. 제 21 항에 있어서,
    상기 사전 계측 공정을 수행하는 타이밍을, 소정 처리 및 현상이 완료된 상기 물체 상의 패턴의 계측을 실시하는 타이밍과 겹치지 않게 하는 것을 특징으로 하는 위치 맞춤 방법.
  23. 제 1 항에 있어서,
    상기 처리 장치는, 상기 물체로서의 감광 기판을 노광하는 노광 장치이고,
    상기 사전 계측 공정을 실시하는 계측 장치는, 상기 노광 장치와 인라인 접속되어 있는 것을 특징으로 하는 위치 맞춤 방법.
  24. 제 23 항에 있어서,
    상기 처리 장치는, 상기 노광 장치에서의 노광 처리를 거친 후의 노광을 마친 감광 기판에 대하여 계측 처리를 실시하는 계측 장치, 그 노광을 마친 기판을 촬상하여 화상 상에서 검사 처리를 실시하는 검사 장치, 그 노광을 마친 감광 기판에 대하여 시험 처리를 실시하는 시험 장치, 및 그 노광을 마친 감광 기판에 대하여 수복 (修復) 처리를 실시하는 레이저 리페어 장치 중 1 개 이상을 추가로 포함하는 것을 특징으로 하는 위치 맞춤 방법.
  25. 물체에 대하여 소정 처리를 실시하는 처리 장치;
    상기 처리 장치에 투입된 상기 물체 상에 형성된 2 개 이상의 마크의 위치 계측을 실시하는 마크 계측 장치;
    상기 처리 장치에, 2 개 이상의 마크가 그 피계측면에 형성된 물체를 투입하기 전에, 상기 물체의 피계측면 외연의 적어도 일부 및 상기 각 마크를 검출하고, 그 검출 결과에 기초하여, 상기 피계측면에 대략 평행한 2 차원 좌표계로서 상기 물체의 외연 상의 1 개 이상의 기준점에 의해 규정되는 외형 기준 좌표계에서의 상기 각 마크의 위치 좌표의 계측을 실시하는 사전 계측 장치;
    상기 처리 장치에 대하여 상기 물체를 투입할 때의 상기 물체의 위치 맞춤을 실시하기 위해서, 상기 물체의 피계측면 외연의 적어도 일부를 검출하고, 그 검출 결과에 기초하여 상기 외형 기준 좌표계에서의 상기 물체의 위치 정보를 계측하는 외연 계측 장치; 및
    상기 외연 계측 장치의 계측 결과에 기초하여 처리 장치에 투입되는 상기 물체의, 상기 마크 계측 장치의 계측 시야에 대한 상기 2 차원 좌표계에 있어서의 상대 위치 관계를, 상기 사전 계측 장치의 계측 결과에 기초하여 조정하는 조정 장치를 구비하는, 처리 시스템.
  26. 제 25 항에 있어서,
    상기 사전 계측 장치에 의한 상기 물체의 피계측면 외연의 적어도 일부의 검출 결과를 평가하는 평가 장치와;
    상기 사전 계측 장치에 의한 상기 물체의 피계측면 외연의 적어도 일부의 검 출 결과와, 상기 평가 장치 및 평가 결과의 적어도 일방에 기초하여, 상기 외연 계측 장치에서의 계측 조건을 최적화하는 최적화 장치를 추가로 구비하는 것을 특징으로 하는 처리 시스템.
  27. 제 26 항에 있어서,
    상기 사전 계측 장치에 있어서의 상기 외형 기준 좌표계에서의 상기 각 마크의 위치 좌표에 기초하여, 상기 마크 계측 장치의 위치 계측 결과를 규격화하는 규격화 장치와;
    상기 규격화된 위치 계측 결과에 기초하여, 상기 처리 장치에 투입된 상기 물체의 위치 맞춤의 재현성을 계측하는 재현성 계측 장치를 추가로 구비하는 것을 특징으로 하는 처리 시스템.
  28. 제 25 항에 있어서,
    상기 규격화된 상기 마크 계측 장치의 위치 계측 결과의 편차에 기초하여 상기 물체의 중심 위치 및 회전량의 변동을 예측하기 위한 변동 예측식을 도출하는 도출 장치를 추가로 구비하고,
    상기 조정 장치는,
    상기 변동 예측식의 계산 결과에 기초하여, 상기 처리 장치에 투입되는 상기 물체의, 상기 물체 상의 각 마크의 위치를 계측하는 계측 장치의 계측 시야에 대한 상대 위치 관계를 조정하는 것을 특징으로 하는 처리 시스템.
  29. 제 25 항에 있어서,
    상기 처리 장치는, 상기 물체로서의 감광 기판을 노광하는 노광 장치이고,
    상기 사전 계측 장치는, 상기 노광 장치와 인라인 접속되어 있는 것을 특징으로 하는 처리 시스템.
  30. 제 29 항에 있어서,
    상기 처리 장치는, 상기 노광 장치에서의 노광 처리를 거친 후의 노광을 마친 감광 기판에 대하여 계측 처리를 실시하는 계측 장치, 그 노광을 마친 기판을 촬상하여 화상 상에서 검사 처리를 실시하는 검사 장치, 그 노광을 마친 감광 기판에 대하여 시험 처리를 실시하는 시험 장치, 및 그 노광을 마친 감광 기판에 대하여 수복 처리를 실시하는 레이저 리페어 장치 중 1 개 이상을 추가로 포함하는 것을 특징으로 하는 처리 시스템.
  31. 기판 처리 장치 내에 형성된 기준 위치에 투입되는 기판의 투입 위치의 재현성을 계측하는 기판의 투입 재현성 계측 방법으로서,
    디바이스 패턴이 순차적으로 전사되어야 할 복수장의 상기 기판을 상기 기준 위치에 순차적으로 위치 결정하는 위치 결정 공정;
    상기 기준 위치에 투입된 상기 기판 상에 형성되어 있는 마크의 위치 정보를, 상기 기판 처리 장치 내에 설치된 계측기로 순차적으로 계측하는 계측 공정; 및
    상기 계측 공정의 계측 결과에 기초하여 상기 투입 재현성을 산출하는 산출 공정을 갖는 것을 특징으로 하는 기판의 투입 재현성 계측 방법.
  32. 제 31 항에 있어서,
    상기 복수의 기판 사이에서의 각 기판의 외형 형상의 상이에 기초하는 상기 계측 공정의 계측 결과의 편차를 규격화하는 규격화 공정을 추가로 갖고,
    상기 규격화 공정에서의 규격화 결과에 기초하여, 상기 투입 재현성을 산출하는 것을 특징으로 하는 기판의 투입 재현성 계측 방법.
  33. 제 32 항에 있어서,
    상기 기판 상에는 상기 마크가 복수 형성되어 있고,
    상기 규격화 공정은,
    상기 기판의 윤곽을 계측하고, 그 계측 결과에 기초하여, 상기 기판 표면에 대략 평행한 이차원 좌표계로서, 상기 윤곽 상의 1 개 이상의 기준점에 의해 규정되는 외형 기준 좌표계를 규정하는 공정과,
    상기 외형 기준 좌표계에서의 상기 복수의 마크의 위치 정보의 계측을 실시하는 공정을 포함하고,
    상기 규격화 공정에서는, 상기 외형 기준 좌표계에서의 상기 각 마크의 위치 정보에 기초하여, 상기 각 마크의 계측 결과의 편차를 규격화하고,
    상기 산출 공정에서는, 상기 규격화된 위치 정보에 기초하여, 상기 투입 재현성을 산출하는 것을 특징으로 하는 기판의 투입 재현성 계측 방법.
  34. 제 31 항에 있어서,
    상기 복수의 기판 사이에서의 각 기판 자체의 변형 성분의 상이에 기초하는 상기 계측 공정의 계측 결과의 편차를 규격화하는 규격화 공정을 추가로 갖고,
    상기 규격화 공정에서의 규격화 결과에 기초하여, 상기 투입 재현성을 산출하는 것을 특징으로 하는 기판의 투입 재현성 계측 방법.
  35. 제 34 항에 있어서,
    상기 기판 상에는, 매트릭스 형상으로 형성된 복수의 구획 영역, 각 구획 영역에 부설된 파인 얼라인먼트 마크, 및 그 파인 얼라인먼트 마크를 탐색하기 위한 서치 얼라인먼트 마크가 형성되어 있고,
    상기 기판 처리 장치에 투입된 상기 기판 상에 형성되어 있는 상이한 2점 이상 또는 동일 직선 상에 없는 적어도 3점 이상의 파인 얼라인먼트 마크의 위치 계측 결과에 기초하여, 소정의 통계적 수법을 사용해서, 상기 기판 상의 상기 복수의 구획 영역의 배열에 의해 규정되는 배열 좌표계를 검출하는 검출 공정을 추가로 갖고,
    상기 규격화 공정은,
    상기 기판의 윤곽을 계측하고, 그 계측 결과에 기초하여, 상기 기판 표면에 대략 평행한 이차원 좌표계로서, 상기 윤곽 상의 1 개 이상의 기준점에 의해 규정되는 외형 기준 좌표계를 규정하는 공정과,
    상기 외형 기준 좌표계에서의 상기 복수의 서치 얼라인먼트 마크의 위치 정보의 계측을 실시하는 공정을 포함하고,
    상기 규격화 공정에서는, 상기 외형 기준 좌표계에 대한 상기 배열 좌표계의 배율 성분 또는 직교 성분의 적어도 일방에 기초하여, 상기 계측 공정의 계측 결과의 편차를 한층 더 규격화하는 것을 특징으로 하는 기판의 투입 재현성 계측 방법.
  36. 제 35 항에 있어서,
    상기 검출 공정에서는, 상기 배열 좌표계에 대한 상기 각 마크의 위치 계측 결과의 랜덤 성분을 구하고,
    상기 규격화 공정에서는,
    상기 랜덤 성분의 크기에 기초하여, 상기 계측 공정의 계측 결과를 한층 더 규격화하는 것을 특징으로 하는 기판의 투입 재현성 계측 방법.
  37. 소정의 기준 위치로 위치 결정된 기판의 위치를 나타내는 위치 정보를 계측하는 위치 계측 방법으로서,
    제 31 항 내지 제 36 항 중 어느 한 항에 기재된 기판의 투입 재현성 계측 방법을 사용하여 상기 기준 위치에 배치되는 상기 기판의 투입 재현성을 계측하는 공정과;
    상기 투입 재현성의 경향에 따라서 상기 기판의 위치를 조정하면서, 상기 기판에 형성된 마크의 위치 정보를 계측하는 공정을 포함하는 것을 특징으로 하는 위치 계측 방법.
  38. 기판에 소정의 패턴을 전사하는 노광 방법으로서,
    제 37 항에 기재된 위치 계측 방법을 사용하여 상기 기판의 위치를 나타내는 위치 정보를 구하는 기판 계측 공정과;
    상기 기판 계측 공정에서 구한 상기 기판의 위치 정보에 기초하여, 상기 기판의 위치를 제어하면서, 상기 기판에 상기 패턴을 전사하는 전사 공정을 포함하는, 노광 방법.
  39. 복수의 기판을 순차적으로 처리하는 기판 처리 장치로서,
    상기 기판을 소정의 기준 위치로 순차적으로 위치 결정하는 위치 결정 수단;
    상기 기준 위치로 위치 결정된 상기 기판에 형성되어 있는 마크의 위치 정보를 계측하는 계측 수단; 및
    상기 계측 수단의 계측 결과에 기초하여, 상기 기판의 투입 재현성을 산출하는 산출 수단; 을 갖는 것을 특징으로 하는 기판 처리 장치.
  40. 제 39 항에 있어서,
    상기 복수의 기판 사이에서의 각 기판의 외형 형상 또는 각 기판 자체의 변 형 성분의 상이에 기초하는 상기 계측 공정의 계측 결과의 편차를 규격화하는 규격화 수단을 추가로 갖고,
    상기 규격화 수단에서의 규격화 결과에 기초하여, 상기 투입 재현성을 산출하는 것을 특징으로 하는 기판 처리 장치.
  41. 그 피계측면에 마크가 형성되어 있는 물체의, 그 피계측면 외연의 적어도 일부를 계측하는 제 1 공정;
    상기 마크를 계측하는 제 2 공정; 및
    상기 제 1, 제 2 공정에서의 계측 결과에 기초하여, 상기 피계측면에 평행한 2 차원 좌표계로서 상기 외연 상의 1 개 이상의 기준점에 의해 규정되는 외형 기준 좌표계에서의 상기 마크의 위치 정보를 구하는 제 3 공정을 포함하는, 계측 방법.
  42. 제 41 항에 있어서,
    상기 물체에 대하여 소정의 처리를 실시하는 처리 장치 내에 상기 물체가 투입되기 이전에, 적어도 상기 제 1 공정 및 상기 제 2 공정을 실시하는 것을 특징으로 하는 계측 방법.
  43. 제 42 항에 있어서,
    상기 제 3 공정에서 산출된 상기 마크의 위치 정보, 상기 제 1 공정의 계측 결과, 및 그 제 1 공정에서의 계측 결과를 소정의 평가 방법으로 평가한 평가 결과 중의 1 개 이상의 정보를, 상기 처리 장치에 송신하는 것을 특징으로 하는 계측 방법.
  44. 제 41 항 내지 제 43 항 중 어느 한 항에 있어서,
    상기 제 1 공정과 상기 제 2 공정은 거의 동시에 실시되는 것을 특징으로 하는 계측 방법.
  45. 물체에 대하여 소정의 처리를 실시하는 처리 장치 내에 그 물체가 투입되기 이전에, 그 물체의 외연의 적어도 일부를 계측하는 제 1 공정과;
    상기 제 1 공정의 계측 결과, 및/또는, 그 제 1 공정에서의 계측 결과를 소정의 평가 방법으로 평가한 평가 결과를, 상기 처리 장치에 송신하는 제 2 공정을 포함하는, 계측 방법.
  46. 그 피계측면에 마크가 형성되어 있는 물체의, 그 피계측면 외연의 적어도 일부를 계측하는 제 1 계측 센서;
    상기 마크를 계측하는 제 2 계측 센서; 및
    상기 제 1, 제 2 계측 센서의 계측 결과에 기초하여, 상기 피계측면에 평행한 2 차원 좌표계로서 상기 외연 상의 1 개 이상의 기준점에 의해 규정되는 외형 기준 좌표계에서의 상기 마크의 위치 정보를 구하는 연산 유닛을 구비하는, 계측 장치.
  47. 제 46 항에 있어서,
    상기 계측 장치는, 상기 물체에 대하여 소정의 처리를 실시하는 처리 장치의 외부에 설치되어 있고, 그 계측 장치는, 상기 마크의 위치 정보, 상기 제 1 계측 센서의 계측 결과, 그 제 1 계측 센서에서의 계측 결과를 소정의 평가 방법으로 평가한 평가 결과 중 1 개 이상을, 상기 처리 장치에 송신하는 송신 유닛을 추가로 구비하는 것을 특징으로 하는 계측 장치.
  48. 물체에 대하여 소정의 처리를 실시하는 처리 장치의 외부에 배치되고, 그 물체가 그 처리 장치에 투입되기 이전에, 그 물체의 외연의 적어도 일부를 계측하는 센서와;
    상기 센서의 계측 결과, 및/또는, 그 센서의 계측 결과를 소정의 평가 방법으로 평가한 평가 결과를, 상기 처리 장치에 송신하는 송신 유닛을 구비하는 것을 특징으로 하는 계측 장치.
  49. 제 45 항에 있어서,
    상기 처리 장치는 상기 물체로서의 감광 기판을 노광하는 노광 장치를 포함하는 것을 특징으로 하는 계측 방법.
  50. 제 49 항에 있어서,
    상기 처리 장치는, 상기 노광 장치에서의 노광 처리를 거친 후의 노광을 마친 감광 기판에 대하여 계측 처리를 실시하는 계측 장치, 그 노광을 마친 기판을 촬상하여 화상 상에서 검사 처리를 실시하는 검사 장치, 그 노광을 마친 감광 기판에 대하여 시험 처리를 실시하는 시험 장치, 및 그 노광을 마친 감광 기판에 대하여 수복 처리를 실시하는 레이저 리페어 장치 중 1 개 이상을 추가로 포함하는 것을 특징으로 하는 계측 방법.
  51. 제 47 항에 있어서,
    상기 처리 장치는 상기 물체로서의 감광 기판을 노광하는 노광 장치를 포함하는 것을 특징으로 하는 계측 장치.
  52. 제 51 항에 있어서,
    상기 처리 장치는 상기 노광 장치에서의 노광 처리를 거친 후의 노광을 마친 감광 기판에 대하여 계측 처리를 실시하는 계측 장치, 그 노광을 마친 기판을 촬상하여 화상 상에서 검사 처리를 실시하는 검사 장치, 그 노광을 마친 감광 기판에 대하여 시험 처리를 실시하는 시험 장치, 및 그 노광을 마친 감광 기판에 대하여 수복 처리를 실시하는 레이저 리페어 장치 중 1 개 이상을 추가로 포함하는 것을 특징으로 하는 계측 장치.
KR1020067023753A 2004-08-31 2005-08-30 위치 맞춤 방법, 처리 시스템, 기판의 투입 재현성 계측방법, 위치 계측 방법, 노광 방법, 기판 처리 장치, 계측방법 및 계측 장치 KR20070048650A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004251244 2004-08-31
JPJP-P-2004-00251244 2004-08-31
JPJP-P-2005-00045660 2005-02-22
JP2005045660 2005-02-22

Publications (1)

Publication Number Publication Date
KR20070048650A true KR20070048650A (ko) 2007-05-09

Family

ID=36000036

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067023753A KR20070048650A (ko) 2004-08-31 2005-08-30 위치 맞춤 방법, 처리 시스템, 기판의 투입 재현성 계측방법, 위치 계측 방법, 노광 방법, 기판 처리 장치, 계측방법 및 계측 장치

Country Status (7)

Country Link
US (1) US20080013089A1 (ko)
EP (1) EP1791169A4 (ko)
JP (1) JPWO2006025386A1 (ko)
KR (1) KR20070048650A (ko)
IL (1) IL181123A0 (ko)
TW (1) TW200620407A (ko)
WO (1) WO2006025386A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110122200A (ko) * 2009-02-23 2011-11-09 어플라이드 머티어리얼스, 인코포레이티드 자동조정 스크린 인쇄 프로세스
KR101412417B1 (ko) * 2012-07-16 2014-06-25 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 리소그래피 방법
KR20140130094A (ko) * 2010-08-20 2014-11-07 도쿄엘렉트론가부시키가이샤 기판 반송 장치, 기판 반송 방법 및 그 기판 반송 방법을 실행시키기 위한 프로그램을 기록한 기록 매체
KR20160038790A (ko) * 2014-09-30 2016-04-07 가부시키가이샤 스크린 홀딩스 패턴 형성 장치 및 패턴 형성 방법
KR20170121255A (ko) * 2015-02-28 2017-11-01 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 기판 사전 정렬 방법
WO2018004032A1 (ko) * 2016-06-29 2018-01-04 주식회사 코윈디에스티 레이저 웨이퍼 가공방법
KR102240649B1 (ko) * 2019-12-11 2021-04-15 (주)유아이엠디 표본 세포 관찰을 위한 정밀 광학기기의 촬상 방법
KR20220019370A (ko) * 2020-08-10 2022-02-17 세메스 주식회사 본딩 장치 및 본딩 방법
US11715811B2 (en) 2019-12-26 2023-08-01 Samsung Electronics Co., Ltd. Light emitting diode transfer system and control method thereof

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7619752B2 (en) * 2000-03-21 2009-11-17 J. A. Woollam Co., Inc. Sample orientation system and method
JP2006216852A (ja) * 2005-02-04 2006-08-17 Fujitsu Ltd 位置決め装置および位置決め装置の制御方法
US20070152064A1 (en) * 2005-12-30 2007-07-05 Laurens Nunnink Diffuse light ring for reading encoded symbols
JP4789194B2 (ja) 2006-05-01 2011-10-12 国立大学法人東京農工大学 露光装置および方法ならびにデバイス製造方法
SG174102A1 (en) * 2006-09-01 2011-09-29 Nikon Corp Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
JP5132904B2 (ja) * 2006-09-05 2013-01-30 東京エレクトロン株式会社 基板位置決め方法,基板位置検出方法,基板回収方法及び基板位置ずれ補正装置
GB2441594B (en) * 2006-09-08 2011-09-07 Thermo Shandon Ltd Hopper for storing coverslips
JPWO2008072502A1 (ja) * 2006-12-08 2010-03-25 株式会社ニコン 露光方法及び装置、並びにデバイス製造方法
JP5058836B2 (ja) * 2007-05-08 2012-10-24 東京エレクトロン株式会社 処理装置、処理方法、被処理体の認識方法および記憶媒体
JP5101940B2 (ja) * 2007-07-18 2012-12-19 日本インター株式会社 半導体ウェハの印刷方法
US7907289B2 (en) * 2007-09-13 2011-03-15 Horiba, Ltd. Substrate measuring stage
TWI396948B (zh) * 2008-04-02 2013-05-21 Republican Unitary Scient & Production Entpr Kbtem Omo Projection exposure system and optimal imaging plane position and projection magnification detection method
EP2196857A3 (en) * 2008-12-09 2010-07-21 ASML Netherlands BV Lithographic apparatus and device manufacturing method
US8120304B2 (en) * 2008-12-12 2012-02-21 Formfactor, Inc. Method for improving motion times of a stage
JP5093162B2 (ja) * 2009-03-12 2012-12-05 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
US8970820B2 (en) * 2009-05-20 2015-03-03 Nikon Corporation Object exchange method, exposure method, carrier system, exposure apparatus, and device manufacturing method
DE102009044294A1 (de) * 2009-10-20 2011-05-05 Kla-Tencor Mie Gmbh Koordinatenmessmaschine zur Bestimmung der Lage von Strukturen auf einer Maske
CN102074452B (zh) * 2009-11-24 2016-08-10 无锡华润上华半导体有限公司 曝光菜单建立方法
JP5183659B2 (ja) * 2010-03-23 2013-04-17 東京エレクトロン株式会社 基板処理装置、基板処理方法、プログラム及びコンピュータ記憶媒体
JP5577158B2 (ja) * 2010-06-02 2014-08-20 株式会社ディスコ 補正値取得方法
JP5588748B2 (ja) * 2010-06-02 2014-09-10 株式会社ディスコ 研削装置
FR2971082A1 (fr) * 2011-01-31 2012-08-03 Soitec Silicon On Insulator Dispositif pour la mesure de la largeur de couronne d'une structure multicouche
JP5516482B2 (ja) * 2011-04-11 2014-06-11 東京エレクトロン株式会社 基板搬送方法、基板搬送装置、及び塗布現像装置
JPWO2012169374A1 (ja) * 2011-06-08 2015-02-23 村田機械株式会社 ワーク処理システム
KR101354742B1 (ko) 2011-06-30 2014-01-22 가부시끼가이샤 도시바 템플릿 기판 및 그 제조 방법
NL2009533A (en) 2011-10-27 2013-05-07 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
JP5774968B2 (ja) * 2011-11-15 2015-09-09 ヤマハ発動機株式会社 部品移載装置および部品移載装置における吸着位置調整方法
JP6219320B2 (ja) * 2012-03-08 2017-10-25 マッパー・リソグラフィー・アイピー・ビー.ブイ. ウェーハなどのターゲットを処理するためのリソグラフィシステム及び方法
JP5989525B2 (ja) * 2012-11-30 2016-09-07 東京エレクトロン株式会社 基板処理装置、基板処理装置の基板保持状態の把握方法および記憶媒体
US11274998B2 (en) * 2012-12-26 2022-03-15 Ventana Medical Systems, Inc. Specimen processing systems and methods for holding slides
CN104076611B (zh) * 2013-03-27 2016-07-06 上海微电子装备有限公司 用于光刻设备的拼接物镜成像测校方法
JP2015025759A (ja) * 2013-07-26 2015-02-05 Hoya株式会社 基板検査方法、基板製造方法および基板検査装置
CN104637781B (zh) * 2013-11-06 2018-08-21 睿励科学仪器(上海)有限公司 一种在处理机台上生成用于定位晶圆的制程的方法
KR101540569B1 (ko) * 2013-12-24 2015-07-31 주식회사 엘지실트론 웨이퍼의 형상 분석 방법 및 장치
CN106104382B (zh) 2014-03-12 2018-06-26 Asml荷兰有限公司 传感器系统、衬底输送系统和光刻设备
JP6401501B2 (ja) * 2014-06-02 2018-10-10 キヤノン株式会社 インプリント装置、および物品の製造方法
US9885671B2 (en) 2014-06-09 2018-02-06 Kla-Tencor Corporation Miniaturized imaging apparatus for wafer edge
US9645097B2 (en) * 2014-06-20 2017-05-09 Kla-Tencor Corporation In-line wafer edge inspection, wafer pre-alignment, and wafer cleaning
WO2016036790A2 (en) * 2014-09-02 2016-03-10 Nikon Corporation Pattern edge placement predictor and monitor for lithographic exposure tool
JP6405819B2 (ja) * 2014-09-17 2018-10-17 東京エレクトロン株式会社 アライメント装置
US9841299B2 (en) * 2014-11-28 2017-12-12 Canon Kabushiki Kaisha Position determining device, position determining method, lithographic apparatus, and method for manufacturing object
JP6590599B2 (ja) * 2014-11-28 2019-10-16 キヤノン株式会社 位置決定装置、位置決定方法、リソグラフィ装置、および物品の製造方法
JP6209546B2 (ja) * 2015-02-06 2017-10-04 東京エレクトロン株式会社 基板処理システム、欠陥検査方法、プログラム及びコンピュータ記憶媒体
TWI696042B (zh) 2015-02-23 2020-06-11 日商尼康股份有限公司 測量裝置、微影系統及曝光裝置、以及管理方法、重疊測量方法及元件製造方法
KR20230107706A (ko) 2015-02-23 2023-07-17 가부시키가이샤 니콘 계측 장치, 리소그래피 시스템 및 노광 장치, 그리고디바이스 제조 방법
JP6719729B2 (ja) 2015-02-23 2020-07-08 株式会社ニコン 基板処理システム及び基板処理方法、並びにデバイス製造方法
CN106353177B (zh) * 2015-07-21 2019-02-26 中国矿业大学(北京) 一种工业ct扫描试验系统及同步旋转装置
CN106353347A (zh) * 2015-07-21 2017-01-25 中国矿业大学(北京) 一种工业ct扫描试验系统及流体压力加载装置
CN106370675B (zh) * 2015-07-21 2019-02-19 中国矿业大学(北京) 一种工业ct扫描试验系统
KR20170015209A (ko) * 2015-07-30 2017-02-08 램 리써치 코포레이션 영상 기반 웨이퍼 노치 위치 측정
JP6880364B2 (ja) * 2015-08-18 2021-06-02 株式会社Screenホールディングス 基板処理装置および基板処理方法
US9617074B2 (en) * 2015-09-08 2017-04-11 Carefusion Germany 326 Gmbh Method and picking device for storing a plurality of identical piece goods
KR101757815B1 (ko) * 2015-09-25 2017-07-14 세메스 주식회사 기판 중심 검출 방법, 기판 반송 방법, 반송 유닛 및 이를 포함하는 기판 처리 장치.
SG10201906641WA (en) * 2015-10-01 2019-09-27 Intevac Inc Wafer plate and mask arrangement for substrate fabrication
JP2017087357A (ja) * 2015-11-11 2017-05-25 ファナック株式会社 設置対象物の自動位置調整システム
US10527957B2 (en) 2015-11-30 2020-01-07 Asml Netherlands B.V. Method and apparatus for processing a substrate in a lithographic apparatus
CN105627922A (zh) * 2015-12-30 2016-06-01 南京协辰电子科技有限公司 一种偏移量测量方法、装置及部件对准方法、装置
JP6719246B2 (ja) * 2016-03-25 2020-07-08 キヤノン株式会社 計測方法、計測装置、リソグラフィ装置及び物品の製造方法
US10607873B2 (en) 2016-03-30 2020-03-31 Asml Netherlands B.V. Substrate edge detection
JP6925783B2 (ja) * 2016-05-26 2021-08-25 株式会社アドテックエンジニアリング パターン描画装置及びパターン描画方法
JP6207671B1 (ja) * 2016-06-01 2017-10-04 キヤノン株式会社 パターン形成装置、基板配置方法及び物品の製造方法
JPWO2018038071A1 (ja) 2016-08-24 2019-07-18 株式会社ニコン 計測システム及び基板処理システム、並びにデバイス製造方法
CN107883884B (zh) * 2016-09-30 2019-10-25 上海微电子装备(集团)股份有限公司 一种光学测量装置和方法
US10133186B2 (en) 2016-10-20 2018-11-20 Mapper Lithography Ip B.V. Method and apparatus for aligning substrates on a substrate support unit
JP6819224B2 (ja) * 2016-10-31 2021-01-27 株式会社ダイフク 搬送車
JP6794880B2 (ja) * 2017-03-14 2020-12-02 東京エレクトロン株式会社 縦型熱処理装置及び縦型熱処理装置の運転方法
WO2018182683A1 (en) * 2017-03-31 2018-10-04 Intel Corporation Lithographic registration using a ferromagnetic marker
US10354373B2 (en) 2017-04-26 2019-07-16 Kla-Tencor Corporation System and method for photomask alignment and orientation characterization based on notch detection
JP2019021747A (ja) * 2017-07-14 2019-02-07 東京エレクトロン株式会社 基板位置調整方法、記憶媒体及び基板処理システム
JP6889631B2 (ja) * 2017-08-04 2021-06-18 川崎重工業株式会社 状態監視システム及び状態監視方法
TWI667530B (zh) * 2017-09-28 2019-08-01 日商紐富來科技股份有限公司 Inspection method and inspection device
KR102426485B1 (ko) 2017-09-29 2022-07-27 온투 이노베이션 아이엔씨. 리소그래피 노광 공정의 최적화를 위한 시스템 및 방법
JP6688273B2 (ja) 2017-11-13 2020-04-28 キヤノン株式会社 リソグラフィ装置、リソグラフィ方法、決定方法及び物品の製造方法
WO2019206579A1 (en) 2018-04-26 2019-10-31 Asml Netherlands B.V. Alignment method and apparatus
JP7061012B2 (ja) * 2018-05-01 2022-04-27 株式会社ディスコ 加工装置
US10790237B2 (en) * 2018-09-14 2020-09-29 Lam Research Corporation Fiducial-filtering automatic wafer centering process and associated system
JP7202828B2 (ja) * 2018-09-26 2023-01-12 東京エレクトロン株式会社 基板検査方法、基板検査装置および記録媒体
JP7008609B2 (ja) * 2018-10-18 2022-01-25 東京エレクトロン株式会社 基板処理装置、及び搬送位置補正方法
CN111146102A (zh) * 2018-11-02 2020-05-12 睿励科学仪器(上海)有限公司 用于测量晶片的设备和方法
CN111258598B (zh) * 2018-11-30 2023-05-02 阿里巴巴集团控股有限公司 度量更新方法、装置、系统、存储介质及计算机设备
CN111610699A (zh) * 2019-02-22 2020-09-01 上海微电子装备(集团)股份有限公司 一种掩模对准传感器和光刻机
JP2022522467A (ja) * 2019-03-04 2022-04-19 ラム リサーチ コーポレーション 基板搬送ロボットの自動較正用治具
JP7333710B2 (ja) 2019-05-28 2023-08-25 東京エレクトロン株式会社 接合装置及び接合方法
US11626305B2 (en) * 2019-06-25 2023-04-11 Applied Materials, Inc. Sensor-based correction of robot-held object
CN110503040B (zh) * 2019-08-23 2022-05-27 斯坦德机器人(深圳)有限公司 障碍物检测方法及装置
JP7421340B2 (ja) * 2020-01-06 2024-01-24 株式会社荏原製作所 基板処理装置、および基板処理方法
US11687010B2 (en) 2020-02-21 2023-06-27 Onto Innovation Inc. System and method for correcting overlay errors in a lithographic process
JP7360978B2 (ja) * 2020-03-18 2023-10-13 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置
TWI779293B (zh) * 2020-05-29 2022-10-01 大量科技股份有限公司 一種檢測治具及檢測方法
US11688616B2 (en) 2020-07-22 2023-06-27 Applied Materials, Inc. Integrated substrate measurement system to improve manufacturing process performance
US11854853B2 (en) * 2021-03-12 2023-12-26 Taiwan Semiconductor Manufacturing Co., Ltd. Wafer positioning method and apparatus
CN113611650B (zh) * 2021-03-19 2024-02-27 联芯集成电路制造(厦门)有限公司 对准晶片图案的方法
CN113793826B (zh) * 2021-11-16 2022-03-08 西安奕斯伟材料科技有限公司 硅片方位调准装置及硅片缺陷检测设备
CN116380148B (zh) * 2023-04-06 2023-11-10 中国人民解放军93209部队 多传感器目标跟踪系统的两级时空误差标校方法及装置
CN116107179B (zh) * 2023-04-11 2023-06-13 深圳市龙图光罩股份有限公司 掩模版的对位校准方法、装置、设备及存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2808996B2 (ja) * 1992-07-24 1998-10-08 富士通株式会社 半導体装置の製造方法
JP3372633B2 (ja) * 1994-02-04 2003-02-04 キヤノン株式会社 位置合わせ方法及びそれを用いた位置合わせ装置
JP2000228347A (ja) * 1999-02-08 2000-08-15 Nikon Corp 位置決め方法及び露光装置
JP3218984B2 (ja) * 1995-10-02 2001-10-15 ウシオ電機株式会社 半導体ウエハ上の不要レジストを除去するためのウエハ周辺露光方法および装置
JP3624065B2 (ja) * 1996-11-29 2005-02-23 キヤノン株式会社 基板搬送装置、半導体製造装置および露光装置
US6188467B1 (en) * 1997-06-13 2001-02-13 Canon Kabushiki Kaisha Method and apparatus for fabricating semiconductor devices
JP3356047B2 (ja) * 1997-11-26 2002-12-09 ウシオ電機株式会社 ウエハ周辺露光装置
AU4165599A (en) * 1998-06-15 2000-01-05 Nikon Corporation Position sensing method, position sensor, exposure method, exposure apparatus, and production process thereof, and device and device manufacturing method
KR100512006B1 (ko) * 2001-03-06 2005-09-02 삼성전자주식회사 웨이퍼 주연 부위의 노광 방법 및 이를 수행하기 위한 장치
JP4258828B2 (ja) * 2002-06-06 2009-04-30 株式会社安川電機 ウエハプリアライメント装置および方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110122200A (ko) * 2009-02-23 2011-11-09 어플라이드 머티어리얼스, 인코포레이티드 자동조정 스크린 인쇄 프로세스
KR20140130094A (ko) * 2010-08-20 2014-11-07 도쿄엘렉트론가부시키가이샤 기판 반송 장치, 기판 반송 방법 및 그 기판 반송 방법을 실행시키기 위한 프로그램을 기록한 기록 매체
KR101524335B1 (ko) * 2010-08-20 2015-05-29 도쿄엘렉트론가부시키가이샤 기판 반송 장치, 기판 반송 방법 및 그 기판 반송 방법을 실행시키기 위한 프로그램을 기록한 기록 매체
KR101412417B1 (ko) * 2012-07-16 2014-06-25 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 리소그래피 방법
KR20160038790A (ko) * 2014-09-30 2016-04-07 가부시키가이샤 스크린 홀딩스 패턴 형성 장치 및 패턴 형성 방법
KR20170121255A (ko) * 2015-02-28 2017-11-01 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 기판 사전 정렬 방법
WO2018004032A1 (ko) * 2016-06-29 2018-01-04 주식회사 코윈디에스티 레이저 웨이퍼 가공방법
KR102240649B1 (ko) * 2019-12-11 2021-04-15 (주)유아이엠디 표본 세포 관찰을 위한 정밀 광학기기의 촬상 방법
US11715811B2 (en) 2019-12-26 2023-08-01 Samsung Electronics Co., Ltd. Light emitting diode transfer system and control method thereof
KR20220019370A (ko) * 2020-08-10 2022-02-17 세메스 주식회사 본딩 장치 및 본딩 방법

Also Published As

Publication number Publication date
WO2006025386A1 (ja) 2006-03-09
US20080013089A1 (en) 2008-01-17
TW200620407A (en) 2006-06-16
EP1791169A1 (en) 2007-05-30
EP1791169A4 (en) 2011-03-02
JPWO2006025386A1 (ja) 2008-05-08
IL181123A0 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
KR20070048650A (ko) 위치 맞춤 방법, 처리 시스템, 기판의 투입 재현성 계측방법, 위치 계측 방법, 노광 방법, 기판 처리 장치, 계측방법 및 계측 장치
CN111290221B (zh) 测量装置、光刻系统、曝光装置、测量方法、曝光方法以及元件制造方法
JP5464155B2 (ja) 露光装置、及び露光方法
CN113608418B (zh) 测量系统及基板处理系统、及元件制造方法
TWI749514B (zh) 測量裝置、微影系統、以及元件製造方法
TWI390595B (zh) Management methods, management systems, and recording media
JP4264676B2 (ja) 露光装置及び露光方法
TWI702474B (zh) 基板處理系統及基板處理方法、以及元件製造方法
KR100588129B1 (ko) 리소그래피 투영장치용 기판 핸들러
JP4760705B2 (ja) 事前計測処理方法、露光システム及び基板処理装置
US20070252966A1 (en) Exposure Apparatus, Operation Decision Method, Substrate Processing System, Maintenance Management Method, and Device Manufacuring Method
JP5278719B2 (ja) 計測方法及び露光方法
JPWO2007102484A1 (ja) デバイス製造方法、デバイス製造システム及び測定検査装置
TW201433886A (zh) 移動體系統及移動體驅動方法、圖案形成裝置及圖案形成方法、曝光裝置及曝光方法、以及元件製造方法
JP2004072076A (ja) 露光装置及びステージ装置、並びにデバイス製造方法
JP2002280287A (ja) 位置検出方法、位置検出装置、露光方法、露光装置、及びデバイス製造方法
JP2007115784A (ja) 露光システム、露光方法、及びデバイス製造工場
EP1372041A2 (en) Control of an apparatus for exposing a semiconductor device
JP2003059807A (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2007005617A (ja) 進捗状況表示方法、表示プログラム、及び表示装置、並びにデバイス製造方法
JP2003156322A (ja) 位置計測方法及び装置、位置決め方法、露光装置、並びにマイクロデバイスの製造方法
JP2002328007A (ja) ステージ位置計測方法、露光方法及びその装置、並びにデバイス製造方法
JP2007256577A (ja) 異物検査装置及び露光装置並びに光露光用マスク
JP2003060000A (ja) 基板搬送装置及び露光装置、並びにデバイス製造方法
JP2005136326A (ja) 装置状態予測装置及び方法、並びに露光装置管理システム

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid