KR102617867B1 - 고체 전해질, 이의 제조방법, 및 이를 포함하는 전고체 전지 - Google Patents

고체 전해질, 이의 제조방법, 및 이를 포함하는 전고체 전지 Download PDF

Info

Publication number
KR102617867B1
KR102617867B1 KR1020180079193A KR20180079193A KR102617867B1 KR 102617867 B1 KR102617867 B1 KR 102617867B1 KR 1020180079193 A KR1020180079193 A KR 1020180079193A KR 20180079193 A KR20180079193 A KR 20180079193A KR 102617867 B1 KR102617867 B1 KR 102617867B1
Authority
KR
South Korea
Prior art keywords
electrolyte
solid
solid polymer
polymer electrolyte
weight
Prior art date
Application number
KR1020180079193A
Other languages
English (en)
Other versions
KR20200005790A (ko
Inventor
김대일
채종현
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to KR1020180079193A priority Critical patent/KR102617867B1/ko
Priority to EP19833879.0A priority patent/EP3723179A4/en
Priority to PCT/KR2019/000438 priority patent/WO2020013410A1/ko
Priority to CN201980010861.9A priority patent/CN111670515B/zh
Priority to US16/958,426 priority patent/US11870033B2/en
Priority to JP2020559354A priority patent/JP7094388B2/ja
Publication of KR20200005790A publication Critical patent/KR20200005790A/ko
Application granted granted Critical
Publication of KR102617867B1 publication Critical patent/KR102617867B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/141Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/142Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/14Methyl esters, e.g. methyl (meth)acrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 고체 고분자 전해질 및 그 제조방법에 관한 것으로, 보다 상세하게는 다관능성 아크릴레이트계 고분자, C1 내지 C10 폴리알킬렌옥사이드, 리튬염 및 비수계 용매를 포함하고, 상기 다관능성 아크릴레이트계 고분자는 폴리알킬렌옥사이드와 가교되어 반상호침투 고분자 네트워크(semi-IPN: semi-Interpenetrating Polymer Networks)을 형성하여 고형분의 함량이 높고 난연 특성을 나타내는 고체 고분자 전해질 및 그 제조방법에 관한 것이다.

Description

고체 전해질, 이의 제조방법, 및 이를 포함하는 전고체 전지 {SOLID ELECTROLYTES FOR ALL SOLID STATE BATTERY, METHODS FOR MANUFACTURING THE SAME, AND ALL SOLID STATE BATTERY INCLUDING THE SAME}
본 발명은 고체 전해질, 이의 제조방법, 및 이를 포함하는 전고체 전지에 관한 것이다.
현재 노트북, 스마트폰에 주로 사용되고 있는 고 에너지 밀도의 리튬이온 이차전지는 리튬 산화물로 이루어진 양극과 탄소계의 음극, 분리막 및 전해질로 구성되어 있다. 종래에는 상기 전해질로써 액체 상태의 전해질, 특히 비수계 유기용매에 염을 용해한 이온 전도성 유기 액체 전해질이 주로 사용되어 왔다. 그러나 이와 같이 액체 상태의 전해질을 사용하면, 전극 물질이 퇴화되고 유기 용매가 휘발될 가능성이 클 뿐만 아니라, 주변 온도 및 전지 자체의 온도 상승에 의한 연소로 안전성에 문제가 있다. 특히, 리튬 이차 전지는 충방전 진행시 유기 용매의 분해 및/또는 유기 용매와 전극과의 부반응에 의해 전지 내부에 가스가 발생하여 전지 두께를 팽창시키는 문제점이 있으며, 고온 저장 시에는 이러한 반응이 가속화되어 가스 발생량이 더 증가하게 된다.
이와 같이 지속적으로 발생된 가스는 전지의 내압 증가를 유발시켜 각형 전지가 특정 방향으로 부풀어올라 폭발하거나, 또는 전지의 특정면의 중심부가 변형되는 등 안전성 저하를 초래할 뿐만 아니라, 전지 내 전극면에서 밀착성에 국부적인 차이점을 발생시켜 전극 반응이 전체 전극면에서 동일하게 일어나지 못해 전지의 성능이 저하되는 단점을 야기하게 된다.
이에 이러한 액체 전해질의 문제점을 해결하고 이를 대체하기 위한 리튬 이차 전지용 고분자 전해질에 관한 연구가 최근까지 활발하게 진행되었다.
고분자 전해질은 크게 겔형과 고체형으로 구분된다. 겔형 고분자 전해질은 고분자 필름 내에 비점이 높은 액체 전해질을 함침시키고 이를 리튬염과 같이 고정하여 전도도를 나타내는 전해질이다. 고체형 고분자 전해질은 O, N, S와 같은 헤테로 원소를 함유하고 있는 고분자에 리튬염을 첨가하여, 해리된 리튬 양이온이 고분자 내에서 이동하는 형태이다.
겔형 고분자 전해질의 경우 액체 전해질을 다량 함유하고 있어, 순수 액체 전해질과 유사한 이온전도도를 갖는다. 그러나 안정성의 문제와 전지 제조상의 공정의 어려움이 그대로 남아있는 단점을 가지고 있다.
반면에 고체 고분자 전해질의 경우에는 액체전해질이 포함되어 있지 않아 누액과 관련한 안정성 문제가 개선되었을 뿐 아니라 화학적, 전기화학적 안정성이 높다는 장점이 있다. 하지만 상온에서의 이온전도도가 매우 낮아 이를 개선하기 위한 연구가 많이 진행되고 있다.
현재 고체 고분자 전해질에 가장 많이 사용되고 있는 물질은 폴리에틸렌옥사이드(PEO)로, 고체상임에도 불구하고 이온을 전도시키는 능력을 가지고 있다. 하지만 선형의 PEO계 고분자 전해질의 경우에는 높은 결정성으로 인하여 상온에서 전도도가 10-5 S/cm로 매우 낮아 리튬 이차 전지에 적용하기 어려웠다. 또한 전해질의 가공성이 좋지 않고 기계적 강도가 충분하지 않으며, 5V 미만의 낮은 전압안정성을 보이는 등 이를 전지에 응용하여 만족할 만한 성능을 구현하기 어려운 실정이다.
이러한 문제점을 해결하기 위해 혼합 고분자 전해질, interpenetrating network 고분자 전해질, nonwoven 고체 고분자 전해질 등의 다양한 물질을 개발하여 전지에 적용하려는 시도가 있었으나, 여전히 낮은 이온전도도와 기계적 강도 및 좁은 구동 전압 범위의 문제를 가지고 있다.
따라서 고체 고분자 전해질은 필수적으로 높은 이온전도도, 적절한 기계적 강도 및 넓은 구동 전압 범위를 가짐은 물론 전지의 구동 안정성 확보를 위해 난연 특성을 가지면서도, 이를 전고체 전지에 적용하기 위해 최소한의 용매를 포함하여야 하는 필요성이 있다.
일본 공개특허 제2006-134736호(2006.05.25), "폴리머 전지용 겔 전해질 및 그것을 가진 폴리머 전지"
이에 본 발명자들은 상기 문제를 해결하고자 다각적으로 연구를 수행한 결과, 다관능성 아크릴레이트계 고분자와 C1 내지 C10 폴리알킬렌옥사이드를 가교하여 반상호침투 고분자 네트워크(semi-IPN: semi-Interpenetrating Polymer Networks)를 형성하고 이에 리튬염과 비수계 용매를 첨가하여 고체 고분자 전해질을 제조하는 경우, 전해질의 이온전도도가 향상되고 난연 효과를 나타내며, 높은 고형분의 함량을 나타냄에 따라 전고체 전지에 효과적으로 적용 가능함을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 전고체 전지에 적용 가능한 난연성 고체 고분자 전해질을 제공하고, 이를 포함하여 성능이 향상된 전고체 전지를 제공하는 것이다.
상기 목적을 달성하기 위해, 본 발명은,
다관능성 아크릴레이트계 고분자, C1 내지 C10 폴리알킬렌옥사이드, 리튬염 및 비수계 용매를 포함하고,
상기 다관능성 아크릴레이트계 고분자는 폴리알킬렌옥사이드와 가교되어 반상호침투 고분자 네트워크(semi-IPN: semi-Interpenetrating Polymer Networks)을 형성하는 것인 이차전지용 고체 고분자 전해질을 제공한다.
본 발명의 일 구체예는 상기 C1 내지 C10 폴리알킬렌옥사이드가 다관능성 아크릴레이트계 고분자 100 중량부 대비 0.1 내지 10 중량부로 포함되는 것이다.
본 발명의 일 구체예는 상기 C1 내지 C10 폴리알킬렌옥사이드의 중량 평균 분자량이 1,000 내지 1,000,000 g/mol인 것이다.
본 발명의 일 구체예는 상기 다관능성 아크릴레이트계 고분자가 트리메틸올프로판 에톡실레이트 트리아크릴레이트 (trimethylolpropane ethoxylate triacrylate), 트리메틸올프로판 프로폭시레이트 트리아크릴레이트(trimethylolpropane propoxylate triacrylate), 폴리에틸렌글리콜 디메타클레이트(polyethylene glycol dimethacrylate), 폴리에틸렌글리콜 디아크릴레이트 (polyethylene glycol diacrylate), 폴리에스테르 디메타크릴레이트, 트리메티롤프로판 트리메타크릴레이트(trimethylolpropane trimethacrylate), 에톡시레이티드 비스페놀 A 디메타크릴 레이트(ethoxylated bis phenol A dimethacrylate), 테트라에틸렌 글리콜 디아크릴레이트(tetraethylene glycol diacrylate), 1,4-부탄디올 디아크릴레이트(1,4-butanediol diacrylate), 1,6-헥산디올 디아크릴레이트(1,6-hexandiol diacrylate), 디트리메틸올프로판 테트라아크릴레이트 (ditrimethylolpropane tetraacrylate), 펜타에리트리톨 테트라아크릴레이트(pentaerythritol tetraacrylate), 펜타에리트리톨 에톡시레이트 테트라아크릴레이트(pentaerythritol ethoxylate tetraacrylate), 디펜타에리트리톨 펜타아크릴레이트(dipentaerythritol pentaacrylate), 디펜타에리트리톨 헥사아크릴레이트(dipentaerythritol hexaacrylate) 및 이들의 조합으로 이루어진 군에서 선택된 1종의 단량체 유래 중합 단위를 포함하는 것이다.
본 발명의 일 구체예는 상기 C1 내지 C10 폴리알킬렌옥사이드는가 폴리에틸렌옥사이드, 폴리프로필렌옥사이드 또는 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는 것이다.
본 발명의 일 구체예는 상기 리튬염이 LiPF6, LiBF4, LiSbF6, LiAsF6, LiOH, LiOH·H2O, LiBOB, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3, LiC4BO8, LiTFSI, LiFSI, LiClO4 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는 것이다.
본 발명의 일 구체예는 상기 리튬염이 전해질 100 중량부 대비 10 내지 50 중량부로 포함되는 것이다.
본 발명의 일 구체예는 상기 리튬염은 비수계 용매에 대하여 0.5 내지 2.5 M의 농도를 갖는 것이다.
본 발명의 일 구체예는 상기 비수계 용매가 디메틸 설폰(dimethyl sulfone), 설포란(sulforane), 트리에틸렌 글리콜 디메틸 에터(TEGDME, Triethylene glycol dimethyl ether) 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는 것이다.
본 발명의 일 구체예는 상기 전해질의 두께가 10 내지 300 ㎛ 인 것이다.
본 발명의 일 구체예는 상기 전해질의 이온 전도도가 25 ℃ 기준으로 1.0 × 10-6 내지 5.0 × 10-4 S/cm 인 것이다.
본 발명의 일 구체예는 상기 전해질이 할로겐계 난연제, 인계 난연제, 질소계 난연제 및 무기화합물 난연제로 이루어진 군에서 선택된 1종 이상인 난연성 첨가물을 더 포함하는 것이다.
본 발명의 일 구체예는 상기 전해질이 전체 중량을 기준으로 다관능성 아크릴레이트계 고분자, C1 내지 C10 폴리알킬렌옥사이드, 리튬염 및 비수계 용매를 포함하는 고형분이 70 중량% 이상인 것이다.
본 발명의 일 구체예는 상기 전해질이 전체 중량을 기준으로 다관능성 아크릴레이트계 고분자, C1 내지 C10 폴리알킬렌옥사이드, 리튬염 및 비수계 용매를 포함하는 고형분이 90 중량% 이상인 것이다.
또한 본 발명은,
상술한 전해질의 제조방법에 있어서, 상기 제조방법은
(1) 다관능성 아크릴레이트계 고분자 단량체, C1 내지 C10 폴리알킬렌옥사이드, 리튬염 및 비수계 용매를 포함하는 전해질 조성물을 혼합하는 단계;
(2) 상기 전해질 조성물을 100 내지 150 ℃에서 용융하는 단계; 및
(3) 상기 용융된 전해질 조성물을 광중합하여 전해질을 수득하는 단계;
를 포함하는 이차전지용 고체 고분자 전해질의 제조방법을 제공한다.
본 발명의 일 구체예는 상기 제조방법의 (1) 단계에서 DMPA(2,2-dimethoxy-2-phenylacetonephenone), HOMPP(2-hydroxy-2-methylpropipphenone), LAP(Lithium phenyl-2,4,6-trimethylbenzoylphosphinate), IRGACURE 2959(1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one)로 이루어진 군으로부터 선택된 1종 이상의 광개시제를 더 투입하는 것이다.
또한 본 발명은,
상술한 고체 고분자 고분자 전해질 및 전극을 포함하는 전고체 전지를 제공한다.
본 발명에 따른 고체 고분자 전해질은 전해질의 이온전도도가 향상되고 난연 효과를 나타낸다. 또한 높은 고형분의 함량에 따라 전고체 전지에 효과적으로 적용 가능하며 높은 기계적 안정성과 전압안정성을 나타낸다.
도 1은 본 발명의 실시예 및 비교예에 따른 전해질의 전압 안정성 그래프를 나타낸 것이다.
도 2는 본 발명의 실시예 및 비교예에 따른 전해질의 이온전도도를 비교한 그래프를 나타낸 것이다.
도 3은 본 발명의 실시예 및 비교예에 따른 전해질의 고형분 함량에 따른 이온전도도를 비교한 그래프를 나타낸 것이다.
도 4는 본 발명의 실시예에 따른 고분자 전해질의 이미지를 나타낸 것이다.
도 5는 본 발명의 실시예 및 비교예에 따른 전해질 구성성분의 난연 특성을 비교한 이미지이다.
도 6은 본 발명의 실시예 및 비교예에 따른 전해질의 난연 특성을 비교한 이미지이다.
도 7은 본 본 발명의 실시예 및 비교예에 따른 전해질의 안정성 측정에 관한 이미지를 나타낸 것이다.
도 8은 본 발명의 비교예에 따른 전해질의 이온전도도를 나타낸 것이다.
도 9는 본 발명의 비교예에 따른 전해질의 재조립 후의 이온전도도를 나타낸 것이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에 한정되지 않는다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함하다' 또는 '가지다'등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하여는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
고체 고분자 전해질
본 발명은 다관능성 아크릴레이트계 고분자, C1 내지 C10 폴리알킬렌옥사이드, 리튬염 및 비수계 용매를 포함하고, 상기 다관능성 아크릴레이트계 고분자는 폴리알킬렌옥사이드와 가교되어 반상호침투 고분자 네트워크(semi-IPN: semi-Interpenetrating Polymer Networks)을 형성하여 고형분의 함량이 높고 난연 효과를 나타내는 고체 고분자 전해질 및 그 제조방법을 제공한다.
기존의 폴리에틸렌 옥사이드를 적용한 고분자 전해질의 경우, 고분자 구조의 결정성이 높아 이온 전도도가 낮다는 한계를 가지고 있었다. 그러나 본 발명의 일 구현예에 따른 고분자 전해질은 C1 내지 C10 폴리알킬렌옥사이드와 다관능성 아크릴레이트계 고분자가 가교된 고분자를 적용함으로써 결정성이 낮아지고 이에 따라 고분자 사슬의 유동성이 향상될 뿐 아니라, 고분자의 유전상수가 증가되어 더 많은 리튬 이온을 해리하여 기존 폴리에틸렌옥사이드계 고분자보다 높은 이온 전도도를 나타낼 수 있다. 또한 상기 C1 내지 C10 폴리알킬렌옥사이드와 다관능성 아크릴레이트계 고분자가 가교된 고분자는 반상호침투 고분자 네트워크를 형성하여 이를 포함하는 고분자 전해질은 안정성과 기계적 강도가 개선됨과 동시에 우수한 이온 전도도를 나타낼 수 있다. 상기 반상호침투 고분자 네트워크(semi-IPN: semi-Interpenetrating Polymer Networks)는 선형 고분자와 가교 고분자가 망상 구조를 이루고 있는 것을 말하며, 이러한 반상호침투 고분자 네트워크는 두 종류의 폴리머가 사슬 형태로 묶여 있고 망목 구조(network structure)를 형성하고 있어, 일반적인 공중합체에 비하여 탄탄하고 질긴 특성을 가지며 우수한 유연성을 나타낼 수 있다.
상기 폴리알킬렌옥사이드는 구체적으로 C1 내지 C20 알킬렌, 또는 C1 내지 C10 알킬렌일 수 있고, 예를 들어 폴리에틸렌옥사이드, 폴리프로필렌옥사이드, 폴리부틸렌옥사이드 또는 이들의 조합으로 이루어진 군에서 선택된 1종일 수 있으며, 바람직하게는 폴리에틸렌옥사이드일 수 있다.
상기 다관능성 아크릴레이트계 고분자는 말단에 2개 이상의 이중 결합을 갖는 화합물일 수 있으며, 비제한적인 예로 트리메틸올프로판 에톡실레이트 트리아크릴레이트 (trimethylolpropane ethoxylate triacrylate), 트리메틸올프로판 프로폭시레이트 트리아크릴레이트(trimethylolpropane propoxylate triacrylate), 폴리에틸렌글리콜 디메타클레이트(polyethylene glycol dimethacrylate), 폴리에틸렌글리콜 디아크릴레이트 (polyethylene glycol diacrylate), 폴리에스테르 디메타크릴레이트, 트리메티롤프로판 트리메타크릴레이트(trimethylolpropane trimethacrylate), 에톡시레이티드 비스페놀 A 디메타크릴 레이트(ethoxylated bis phenol A dimethacrylate), 테트라에틸렌 글리콜 디아크릴레이트(tetraethylene glycol diacrylate), 1,4-부탄디올 디아크릴레이트(1,4-butanediol diacrylate), 1,6-헥산디올 디아크릴레이트(1,6-hexandiol diacrylate), 디트리메틸올프로판 테트라아크릴레이트 (ditrimethylolpropane tetraacrylate), 펜타에리트리톨 테트라아크릴레이트(pentaerythritol tetraacrylate), 펜타에리트리톨 에톡시레이트 테트라아크릴레이트(pentaerythritol ethoxylate tetraacrylate), 디펜타에리트리톨 펜타아크릴레이트(dipentaerythritol pentaacrylate), 디펜타에리트리톨 헥사아크릴레이트(dipentaerythritol hexaacrylate) 및 이들의 조합으로 이루어진 군에서 선택된 1종의 단량체 유래 중합 단위를 포함하는 것일 수 있다. 상기 단량체 유래 중합 단위는 중합체를 구성하는 일 부분으로서, 중합체 분자 구조 내에 특정 단량체로부터 유래된 일 부분을 의미한다. 예를 들면, 아크릴로니트릴 유래 중합 단위는 중합체 분자 구조 내에서 아크릴로니트릴로부터 유래된 일 부분을 의미한다.
상기 폴리알킬렌옥사이드의 중량 평균 분자량은 1,000 내지 1,500,000 g/mol일 수 있다. 구체적으로 1,000 내지 600,000 g/mol, 바람직하게는 1,000 내지 100,000 g/mol일 수 있으며, 이 경우 상기 범위 내에서 우수한 이온전도도를 나타낼 수 있으며, 상기 범위 내에서 중량 평균 분자량이 작아질수록 고분자 사슬의 유동성이 좋아지고 이온 전도도가 높아질 수 있다.
본 발명의 일 구현예에서 상기 폴리알킬렌옥사이드는 다관능성 아크릴레이트계 고분자 100 중량부 대비 0.1 내지 10 중량부로 포함되는 것일 수 있다. 구체적으로 1 내지 10 중량부, 바람직하게는 2 내지 10 중량부로 포함될 수 있다. 상기 범위 내에서 상기 폴리알킬렌옥사이드의 함량이 많아질수록 상기 반상호침투 고분자 네트워크의 이온 전달 능력이 향상될 수 있다.
한편 상기 고체 고분자 전해질은 리튬염을 포함할 수 있다. 상기 리튬염은 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 할 수 있다. 상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiOH, LiOH·H2O, LiBOB, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3, LiC4BO8, LiTFSI, LiFSI, LiClO4 및 이들의 조합으로 이루어진 군에서 선택된 1종일 수 있으며, 이에 제한되지 않는다.
상기 리튬염의 함량은 전해질 100 중량부 대비 10 내지 50 중량부, 구체적으로 20 내지 47 중량부로 포함될 수 있다. 만일 10 중량부 미만으로 포함할 경우 그 함량이 낮아 전해질의 이온전도도가 낮아질 수 있으며, 50 중량부 이상 포함되는 경우 고분자 전해질 내에서 모든 리튬염이 해리되지 못하고 결정 상태로 존재하여 이온전도도에 기여하지 못하고 오히려 이온전도성을 방해하는 역할을 하여 이온전도도가 줄어들 수 있고 상대적으로 고분자의 함량이 줄어들어 고체 고분자 전해질의 기계적 강도가 약해질 수 있으므로 상기 범위에서 적절히 조절한다.
상기 리튬염은 후술할 본 발명의 일 구현예에 따른 비수계 용매에 대하여 0.5 내지 2.5 M, 구체적으로 0.97 내지 2.22 M의 농도일 수 있다. 상기 리튬염은 리튬을 이온화시킬 수 있는 비수계 용매의 함량과의 상대적인 관계, 전지 구동에 필요한 리튬 이온의 정상적인 공급 측면에서 적절한 양을 첨가하면 되며, 만일 0.5 M이하일 경우 전해질의 이온전도도가 줄어들 수 있고, 2.5 M 를 초과하는 경우 리튬염이 결정화되어 전지 내부에서 저항으로 작용할 수 있다. 상기 범위 내에서 더욱 향상된 전지 특성이 얻어질 수 있다.
일 구현예에 따른 고분자 전해질의 우수한 이온 전도도를 나타낼 수 있다. 구체적으로 상기 고분자 전해질의 이온 전도도는 25 ℃ 기준으로 1.0 × 10-6 내지 5.0 × 10-4 S/cm일 수 있다.
기존의 전고체 전지의 경우 디메틸설폭사이드(DMSO) 등의 비수계 용매를 통상적으로 사용하였으나, 상기 디메틸설폭사이드 등의 용매의 경우 전지의 안정성 확보를 위한 난연 특성을 부여하기 힘든 문제점이 있었다.
따라서 본 발명의 일 구현예에 있어서 상기 비수계 용매는 디메틸 설폰(dimethyl sulfone), 설포란(sulforane), 트리에틸렌 글리콜 디메틸 에터(TEGDME, Triethylene glycol dimethyl ether) 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함할 수 있다. 비제한적인 예로 상기 디메틸 설폰(DMSO2, methylsulfonylmethane) 또는 설포란(sulforane)은 상온에서 고체형 용매로써, 상기 용매를 포함하는 고체 고분자 전해질의 경우 전해질의 고형분 함량을 증가시킴으로 인해 이를 전고체 전지에 용이하게 적용 가능하고, 난연 특성을 부여하여 전지의 안정성을 확보할 수 있는 장점이 있다. 하기 표 1은 본 발명에 따른 비수계 용매의 일종인 디메틸 설폰(DMSO2, methylsulfonylmethane) 및 설포란(sulforane)의 특성을 나타낸다.
상기에서 NFPA(National Fire Protection Association)은 난연등급 및 생물학적 안전성등을 평가하여 등급을 매긴 지표로서 난연 등급 1은 flash point 93.3 ℃이상의 물질이며, 난연 등급 0은 돌, 콘크리트, 모래 등이다. 상기 표 1을 보면 디메틸 설폰(DMSO2, methylsulfonylmethane) 및 설포란(sulforane)은 상온 (25 ℃기준)에서 고체형이므로 상기 용매가 포함된 전해질의 경우 고형분의 함량이 증가하는 장점이 있으며, 발화점이 140 ℃이상으로 전해질의 난연 특성을 부여할 수 있다.
상기 비수계 용매의 함량은 전해질 100 중량부 대비 1 내지 30 중량부, 구체적으로 5 내지 30 중량부로 포함될 수 있다. 만일 1 중량부 미만으로 포함할 경우 전해질 조성물의 균일한 혼합이 어려워지는 등 제조공정이 원활하지 않을 수 있으며, 30 중량부 이상 포함되는 경우 상대적으로 고분자의 함량이 줄어들어 고체 고분자 전해질의 기계적 강도가 약해질 수 있으므로 상기 범위에서 적절히 조절한다.
본 발명의 일 구현예에 따른 상기 전해질의 두께는 10 내지 300 ㎛ 인 것이 바람직하다. 상기 전해질의 두께가 얇을수록 에너지 밀도를 향상시킬 수 있고, 이온 전도도를 높일 수 있으나, 두께가 10 ㎛ 미만인 경우 전해질의 적절한 기계적 강도를 확보할 수 없는 문제점이 있으므로 상기 범위 내에서 적절히 조절한다.
본 발명의 일 구현예에 따르면 상기 고체 고분자 전해질은 난연 특성을 부여하기 위해 난연성 첨가물을 더 포함할 수 있다. 상기 난연성 첨가물은 전고체 전지의 온도가 급상승하여 발화되는 경우라도 전고체 전지가 잘 타지 않도록 하여 더 큰 화재가 일어나는 것을 방지하는 역할을 한다.
본 발명에서 사용할 수 있는 난연성 첨가물은 특별히 한정하지 아니하며, 공지의 난연제를 이용할 수 있다.
예를 들어 상기 난연제로는 할로겐계 난연제, 인계 난연제, 질소계 난연제 및 무기화합물 난연제 등으로 이루어진 군에서 선택된 1종 이상의 것을 사용하는 것이 가능하나, 이에 한정되는 것은 아니다.
보다 상세하게, 상기 할로겐계 난연제로는 트리브로모 페녹시에탄, 테트라브로모비스페놀-A(TBBA), 옥타브로모 디페닐에테르(OBDPE), 펜타브로모디페닐에탄(PBDE), 2,4,6-트리스(2,4,6-트리브로모페녹시)-1,3,5 트리아진, 브롬화에폭시 수지, 브롬화폴리카보네이트 올리고모, 염소화 파라핀, 염소화 폴리에틸렌 및 지환족 염소계 난연제 등으로 이루어진 군에서 선택된 1종 이상의 것을 사용할 수 있으며,
상기 인계 난연제로는 적인, 인산 암모늄, 포스핀 옥사이드(phosphine oxide), 포스핀 옥사이드 디올(phosphine oxide diols), 포스파이트(phosphites), 포스포네이트(phosphonates), 비스페놀-A 디포스페이트(BPADP), 트리아릴 포스페이스(triaryl phosphate), 알킬디아릴 포스페이트(alkyldiaryl phosphate), 트리알킬 포스페이트(trialkyl phosphate) 및 레조시놀 비스디페닐 포스페이트(resorcinaol bisdiphenyl phosphate (RDP))등으로 이루어진 군에서 선택된 1종 이상의 것을 사용할 수 있고,
상기 질소계 난연제로는 멜라민, 멜라민 포스페이트 및 멜라민 시아누레이트 등으로 이루어진 군에서 선택된 1종 이상의 것을 사용할 수 있으며,
상기 무기화합물 난연제로는 수산화알루미늄, 수산화마그네슘, 수산화바륨, 산화안티몬, 수산화주석, 산화주석, 산화몰리브덴, 지르코늄화합물, 붕산염 및 칼슘염 등으로 이루어진 군에서 선택된 1종 이상의 것을 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따른 전해질은 전해질의 전체 중량을 기준으로 상기 다관능성 아크릴레이트계 고분자, C1 내지 C10 폴리알킬렌옥사이드, 리튬염 및 비수계 용매를 포함하는 고형분이 70 중량% 이상일 수 있다.
기존의 고체 전해질의 제조시 일반적으로 사용하던 용매(예를 들어, 디메틸설폭사이드(DMSO))는 상온에서 액체상태로 존재하고 전해질 조성물의 한계 용해도가 존재하기 때문에 전해질의 고형분을 증가시키는데 한계가 있었다. 그러나, 본 발명에 따른 비수계 용매를 포함하는 경우 용매 자체가 상온에서 고체로 존재하기 때문에 용융과정을 거쳐 전해질을 제조하는 경우, 기존의 용매를 사용할 때보다 고형분의 함량을 증가시킬 수 있으며 바람직하게는 고형분이 90 중량% 이상일 수 있다.
전해질 내의 고형분의 함량이 높아지게 되면 고체 전해질에 포함된 용매(solvent)의 함량이 감소하여, 상온에서 상기 전해질을 포함하는 전고체 전지가 안정적인 구동 특성을 나타낼 수 있는 장점이 있고, 제조 과정에서 용매를 없애기 위한 건조 에너지를 적게 사용할 수 있게 되어 공정 가격이 감소하는 장점이 있다.
고체 고분자 전해질의 제조방법
본 발명의 따른 일 구현예에서는 상기 고체 고분자 전해질의 제조방법을 제공한다. 상기 전해질의 제조방법은 특별히 제한되지 않으며, 당 업계에서 공지된 방법이 사용될 수 있다.
상기 제조방법은 (1) 다관능성 아크릴레이트계 고분자 단량체, C1 내지 C10 폴리알킬렌옥사이드, 리튬염 및 비수계 용매를 포함하는 전해질 조성물을 혼합하는 단계; (2) 상기 전해질 조성물을 100 내지 150 ℃에서 용융하는 단계; 및 (3) 상기 용융된 전해질 조성물을 광중합하여 전해질을 수득하는 단계;를 포함한다. 상기 방법에 의하여 다관능성 아크릴레이트계 고분자와 C1 내지 C10 폴리알킬렌옥사이드가 가교되어 반상호침투 고분자 네트워크(semi-IPN: semi-Interpenetrating Polymer Networks)을 형성하는 고체 고분자 전해질이 제조될 수 있다.
상기 다관능성 아크릴레이트계 고분자 단량체는 말단에 2개 이상의 이중 결합을 갖는 화합물일 수 있으며, 구체적인 예로는 앞서 설명한 바와 같다. 상기 단계 (1)에서 폴리알킬렌옥사이드는 다관능성 아크릴레이트계 고분자 단량체 100 중량부 대비 0.1 내지 10 중량부로 포함되는 것일 수 있다. 구체적으로 1 내지 10 중량부, 2 내지 10 중량부로 포함될 수 있다. 상기 범위 내에서 상기 폴리알킬렌옥사이드의 함량이 많아질수록 상기 반상호침투 고분자 네트워크의 이온 전달 능력이 향상될 수 있다.
이때 추가로 광개시제를 더 포함하여 진행할 수 있으며, DMPA(2,2-dimethoxy-2-phenylacetonephenone), HOMPP(2-hydroxy-2-methylpropipphenone), LAP(Lithium phenyl-2,4,6-trimethylbenzoylphosphinate), IRGACURE 2959(1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one)로 이루어진 군으로부터 선택된 1종 이상의 광개시제를 포함할 수 있고, 바람직하게는 HOMPP(2-hydroxy-2-methylpropipphenone)를 사용할 수 있으나, 반드시 이에 제한되는 것은 아니다. 상기 광개시제는 자외선 조사에 의해 라디칼을 형성할 수 있는 것으로, 만일 광개시제의 농도가 너무 낮으면 광중합 반응이 효율적으로 진행되지 않아 고분자 전해질이 불완전하게 형성되며, 광개시제의 농도가 너무 높으면 광중합반응이 너무 급격하게 진행되어 고분자 전해질의 균일성이 떨어지고 응용성에 제한이 따를 수 있으므로, 원하는 전해질의 물성에 따라 적정량을 사용할 수 있다.
상기 다관능성 아크릴레이트계 고분자 단량체 및 C1 내지 C10 폴리알킬렌옥사이드를 혼합하는 단계에서는 리튬염이 더 투입되어 혼합될 수 있다. 이 경우 고체 고분자 전해질의 이온 전도도가 향상되고 전지의 성능이 개선할 수 있다. 리튬염에 대한 설명은 전술한 바와 같다. 상기 리튬염은 다관능성 아크릴레이트계 고분자 단량체 100 중량부 대비 10 내지 50 중량부, 구체적으로 20 내지 47 중량부 투입될 수 있다. 이 경우 상기 우수한 이온 전도도를 나타내는 고분자 전해질을 제조할 수 있다.
또한 단계 (1)에서 비수계 용매가 더 투입되어 혼합될 수 있다. 본 발명의 일 구현예에 따른 상기 비수계 용매는 상온에서 고체일 수 있으므로, 단계 (2)의 용융 과정을 거쳐 전해질 조성물과 균일하게 혼합될 수 있다. 상기 비수계 용매는 다관능성 아크릴레이트계 고분자 단량체 100 중량부 대비 1 내지 30 중량부, 구체적으로 1 내지 10 중량부 투입될 수 있다. 이 경우 상기 높은 고형분의 함량을 나타내는 고분자 전해질을 제조할 수 있다.
단계 (2)는 전해질 조성물을 균일하게 혼합하는 단계로 100 내지 150 ℃ 온도에서 용융하여 교반하는 단계일 수 있다. 만일 100 ℃ 미만으로 진행될 경우 전해질 조성물에 포함된 비수계 용매가 용융되지 않아 조성물이 균일하게 혼합되지 못할 수 있으며, 150 ℃를 초과하여 진행하는 경우 제조된 전해질이 전지에 적합한 물성을 나타낼 수 없는 문제점이 있으므로 상기 범위에서 적절히 조절한다. 상기 온도 범위에서 전해질 조성물을 용융시키고, 12 내지 24 시간동안 교반하여 균일한 혼합물을 제조할 수 있다. 상기 교반은 특별히 제한되지 않으며, 당 업계에서 공지된 방법이 사용될 수 있다.
상기 균일하게 혼합된 전해질 조성물을 광중합시켜 반상호침투 고분자 네트워크를 형성하는 단계 (3)은 단계 (2)에서 수득한 전해질 조성물에 자외선(UV)을 조사함으로써 수행될 수 있다. 이 경우 매우 빠른 시간 내에 중합이 이루어질 수 있는 장점이 있다. 상기 전해질 조성물에 조사되는 자외선의 파장이 254 내지 360 nm인 자외선일 수 있다. 자외선은 가시광선의 보라색보다 파장이 짧은 광선으로 약어로는 UV(Ultraviolet rays)이며, 파장이 긴 자외선 A(320nm∼400nm), 파장이 중간인 자외선 B(280nm∼300nm), 파장이 짧은 자외선 C(100nm∼280nm)로 나뉜다. 상기 전해질 조성물에 자외선을 조사할 때, 자외선의 조사시간은 5 내지 30 분 일 수 있다. 다만, 조사되는 자외선(UV)의 세기에 따라, 자외선(UV)의 조사시간은 달라질 수 있는 점에서, 자외선(UV)의 조사시간은 상기 범위로 한정되지는 않는다.
전고체전지
본 발명의 또 다른 일 구현예에서는 상기 고체 고분자 전해질 및 전극을 포함하는 전고체 전지를 제공한다.
본 발명에서 제시하는 전고체 전지는 상기 제시한 바와 같이 고체 고분자 전해질의 구성을 한정하고, 이를 구성하는 다른 요소, 즉 양극 및 음극은 본 발명에 특별히 한정하지 않으며 하기 설명을 따른다.
전고체 전지의 음극은 리튬 금속을 단독으로 사용하거나 음극 집전체 상에 음극 활물질이 적층된 것을 사용한다.
이때 음극 활물질은 리튬 금속, 리튬 합금, 리튬 금속 복합 산화물, 리튬 함유 티타늄 복합 산화물(LTO) 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하다. 이때 리튬 합금은 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn으로부터 선택되는 적어도 하나의 금속으로 이루어진 합금을 사용할 수 있다. 또한, 리튬 금속 복합 산화물은 리튬과 Si, Sn, Zn, Mg, Cd, Ce, Ni 및 Fe로 이루어진 군으로부터 선택된 어느 하나의 금속(Me) 산화물(MeOx)이고, 일례로 LixFe2O3(0<x≤1) 또는 LixWO2(0<x≤1)일 수 있다.
여기에 더하여, 음극 활물질은 SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO22, Bi2O3, Bi2O4 및 Bi2O5 등의 산화물 등을 사용할 수 있고, 결정질 탄소, 비정질 탄소 또는 탄소 복합체와 같은 탄소계 음극 활물질이 단독으로 또는 2종 이상이 혼용되어 사용될 수 있다.
또한, 음극 집전체는 전고체 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들면 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 상기 음극 집전체는 양극 집전체와 마찬가지로, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다.
본 발명에 따른 전고체 전지의 양극은 특별히 한정하지 않으며, 공지의 전고체 전지에 사용되는 재질일 수 있다.
전극이 양극일 경우 양극 집전체이고, 음극일 경우에는 음극 집전체이다.
양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
양극 활물질은 리튬 이차전지의 용도에 따라 달라질 수 있으며, LiNi0 .8- xCo 0.2AlxO2, LiCoxMnyO2, LiNixCoyO2, LiNixMnyO2, LiNixCoyMnzO2, LiCoO2, LiNiO2, LiMnO2, LiFePO4, LiCoPO4, LiMnPO4 및 Li4Ti5O12 등의 리튬 전이금속 산화물; Cu2Mo6S8, FeS, CoS 및 MiS 등의 칼코겐화물, 스칸듐, 루테늄, 티타늄, 바나듐, 몰리브덴, 크롬, 망간, 철, 코발트, 니켈, 구리, 아연 등의 산화물, 황화물 또는 할로겐화물이 사용될 수 있으며, 보다 구체적으로는, TiS2, ZrS2, RuO2, Co3O4, Mo6S8, V2O5 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.
양극 활물질의 형상은 특별히 한정되지 않으며, 입자형, 예컨대 구형, 타원형, 직육면체형 등일 수 있다. 양극 활물질의 평균 입경은 1 내지 50 ㎛ 범위 내일 수 있으나, 이에만 한정되는 것은 아니다. 양극 활물질의 평균 입경은 예를 들어 주사형 전자현미경에 의하여 관찰되는 활물질의 입경을 측정하고, 이의 평균값을 계산함으로써 얻을 수 있다.
양극에 포함되는 바인더는 특별히 한정되지 않으며, 폴리비닐리덴 플루오라이드(PVDF) 및 폴리테트라플루오로 에틸렌(PTFE) 등의 불소 함유 바인더가 사용될 수 있다.
바인더의 함량은 양극 활물질을 고정할 수 있는 정도면 특별히 한정되지 않으며, 양극 전체에 대하여 0 내지 10 중량% 범위 내일 수 있다.
양극에는 추가로 도전재가 포함될 수 있다. 도전재는 양극의 도전성을 향상시킬 수 있으면 특별히 한정되지 않고, 니켈 분말, 산화 코발트, 산화 티탄, 카본 등을 예시할 수 있다. 카본으로는, 케첸 블랙, 아세틸렌 블랙, 퍼니스 블랙, 흑연, 탄소 섬유 및 플러렌으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 1종 이상을 들 수 있다.
이때 도전재의 함량은 도전재의 종류 등 기타 전지의 조건을 고려하여 선택될 수 있으며, 예컨대 양극 전체에 대하여 1 내지 10 중량% 범위 내일 수 있다
전술한 바의 구성을 갖는 전고체 전지의 제조는 본 발명에서 특별히 한정하지 않으며, 공지의 방법을 통해 제조가 가능하다.
일례로, 양극 및 음극 사이에 고체 전해질을 배치시킨 후 이를 압축 성형하여 셀을 조립한다. 또한 고분자 전해질의 제1고분자 전해질층이 양극과 접하도록 배치되도록 하여 제조할 수 있다.
상기 조립된 셀은 외장재 내에 설치한 후 가열 압축 등에 의해 봉지한다. 외장재로는 알루미늄, 스테인레스 등의 라미네이트 팩, 원통형이나 각형의 금속제 용기가 매우 적합하다.
이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.
실시예 : 고체 고분자 전해질 합성
다관능성 아크릴레이트계 고분자의 단량체로 트리메틸프로판 에톡시레이트 트리아크릴레이트(ETPTA, trimethylopropane ethoxylate triacrylate), C1 내지 C10 폴리알킬렌옥사이드로 폴리에틸렌옥사이드(PEO, polyethylene oxide, Mw = 600,000 내지 1,000,000 g/mol), 리튬염으로 LiTFSI, 비수계 용매로 메틸설포닐메탄(DMSO2, methylsulfonylmethane), 설포란(sulforane) 및 트리에틸렌 글리콜 디메틸 에터(TEGDME, Triethylene glycol dimethyl ether)의 조합, 광개시제로 2-히드록시-2-메틸프로피페논(HOMPP, 2-hydroxy-2-methylpropipphenone), 난연성 첨가제로 테트라브로모비스페놀 A(TBBA, tetrabromo bisphenol A)를 하기 표 2와 같은 조건으로 투입하고 120 ℃에서 용융하면서 24시간 동안 교반하여 전해질 조성물을 제조하였다. 상기 전해질 조성물을 테프론 이형 필름에 닥터블레이드 코팅하고 자외선을 가하여 광중합을 실시하였다. 자외선 조사는 325nm 파장에서 1분, 이후 254nm 파장에서 1분, 그리고 365nm 파장에서 1분간 차례로 실시하였고, 자외선 조사를 마친 후에 상기 테프론 이형 필름에서 필름형태의 고체 고분자 전해질을 수득하였다. 도 4는 상기와 같이 제조된 실시예 5에 따른 전해질을 나타낸 것이다.
ETPTA (g) PEO (g) LiTFSI (M) 비수계용매 (g) HOMPP (g) TBBA (g)
실시예 1 4.44 0.08 1.05 D2 5.07: SL 5.07 혼합 0.05 -
실시예 2 4.5 0.1 0.97 D2 5.0: SL 5.0 혼합 0.05 2.5
실시예 3 2.1 0.1 1.31 D2 5.0: SL 5.0 혼합 0.05 4.5
실시예 4 2.5 0.3 2.15 D2 3.5: TEGDME 1.9 혼합 0.03 2.0
실시예 5 2.5 0.3 2.2 D2 3.5: SL 1.9 혼합 0.03 2.0
* 단, 상기 표에서 비수계 용매 중 메틸설포닐메탄(D2), 설포란(SL) 및 트리에틸렌 글리콜 디메틸 에터(TEGDME)로 약칭함.
비교예 1: 고체 고분자 전해질 합성
다관능성 아크릴레이트계 고분자로 트리메틸프로판 에톡시레이트 트리아크릴레이트(ETPTA, trimethylopropane ethoxylate triacrylate) 1ml, 광개시제로 2-히드록시-2-메틸프로피페논(HOMPP, 2-hydroxy-2-methylpropipphenone) 0.01ml, 리튬염으로 1M의 LiTFSI (디메틸설폭사이드(DMSO) 4ml 조건), 전해질 2.5 중량%의 폴리에틸렌옥사이드 (디메틸설폭사이드(DMSO) 조건)를 투입하고 60 ℃에서 용융하면서 24시간 동안 교반하여 전해질 조성물을 제조하였다. 상기 전해질 조성물을 테프론 이형 필름에 코팅하고 자외선을 가하여 광중합을 실시하였다. 자외선 조사는 325nm 파장에서 1분, 이후 254nm 파장에서 1분, 그리고 365nm 파장에서 1분간 차례로 실시하였고, 자외선 조사를 마친 후에 상기 테프론 이형 필름에서 필름형태의 고체 고분자 전해질을 수득하였다.
비교예 2: 고체 고분자 전해질 합성
하기 표 3의 함량으로 전해질 조성물을 제조한 것을 제외하고는 상기 실시예와 동일하게 하여 전해질을 제조하였다.
ETPTA (g) PEO (g) LiTFSI (M) 비수계용매 (g) HOMPP (g) TBBA (g)
비교예 2 4.44 0.07 0.48 D2 2.31: SL 9.84 혼합 0.05 -
실험예 1: 전압 안정성 평가
선형 주사 전압 전류법(LSV, Linear sweep voltammetry)을 이용하여 상기 실시예 1 내지 5 및 비교예 1 내지 2에서 제조된 고체 고분자 전해질의 전압안정성을 평가하였으며, BioLogic社 VMP3를 이용하였다. 상기 실시예와 비교예의 전해질의 한 면은 리튬 메탈 전극을 접촉시키고 다른 한면은 SUS 기판을 접촉시켜 코인셀 제작하였고, 주사 속도는 10mV/s로 하여 1.5V ~ 6.0V의 범위에서 측정하였다.
도 1에서 도시된 바와 같이 비교예의 전해질에 비해 실시예의 전해질의 경우 5.0 V 이상의 고전압에서 안정한 특성을 보인 것을 확인하였다.
실험예 2: 이온전도도 평가
상기 실시예 1 내지 5 및 비교예 1 내지 2에서 제조된 전해질의 이온전도도는 그 임피던스를 측정한 뒤 하기 수학식 1을 이용하여 구하였다.
측정을 위해 일정한 넓이와 두께를 가지는 상기 고분자 고체 전해질의 필름 샘플을 준비하였다. 판상의 샘플 양면에 이온 차단 전극 (ion blocking electrode)으로 전자 전도성이 우수한 서스(SUS) 기판을 접촉시킨 후 샘플 양면의 전극을 통하여 교류전압을 인가하였다. 이 때, 인가되는 조건으로 측정 주파수 1.0 MHz~0.1 Hz의 진폭 범위로 설정하고 BioLogic社 VMP3를 이용하여 임피던스를 측정하였다. 측정된 임피던스 궤적의 반원이나 직선이 실수축과 만나는 교점 (Rb) 로부터 벌크 전해질의 저항을 구하고 샘플의 넓이와 두께로부터 고분자 고체 전해질막의 이온 전도도를 계산하여, 이를 리튬염의 농도와 고형분의 함량에 따라 각각 도 2 및 3에 나타내었다.
[수학식 1]
σ: 이온전도도
Rb: 임피던스 궤적이 실수축과의 교점
A: 샘플의 넓이
t: 샘플의 두께
도 2를 보면 실시예 3의 전해질 대비 리튬염의 농도를 증가시킨 실시예 4 및 5의 경우 전해질의 이온전도도가 증가한 것을 확인할 수 있었다. 도 3을 보면 실시예의 전해질의 고형분 함량이 증가할 수록 이온전도도가 감소함을 알 수 있으나, 리튬염의 농도를 증가시킨 실시예 4 및 5의 경우 안정적인 전고체 전지의 구동을 위한 이온전도도를 나타내는 것을 확인하였다.
도 7은 상기 비교예 1에 따른 전해질의 특성에 관한 것으로, 도 7을 보면 비교예 1의 전해질은 프리스탠딩(freestanding)한 필름 형태를 유지하지만, 분해 후 크랙이 생기며 으깨지고, 용매의 누액이 관찰되는 것을 확인하였다. 상기 실험예 2의 임피던스 측정값의 나이퀴스트 플롯(Nquist plot)에서 저항치를 구하였고, 이를 이용하여 비교예 1의 이온전도도를 계산한 결과 2.51 ± 0.97Х10-3 S/cm의 값을 보이며(도 8), 같은 전해질을 분해 후 누액된 용매를 제거하고 재조립 후 측정한 결과 1.83 ± 0.75Х10-3 S/cm의 높은 이온 전도도 값을 보이는 것을 확인하였다(도 9). 다만 비교예 1에 따른 전해질의 높은 이온전도도는 74.3 wt%의 높은 용매의 함량 때문인 것으로 파악되었다.
상기 비교예 및 실시예에 따른 실험 결과를 하기 표 4에 요약하였다.
고분자 (wt.%)
ETPTA/PEO
LiTFSI(wt.%)(M) 고형분함량
(wt.%)
이온전도도
(mS/cm, 25℃)
전압안정성
(V)
비교예1 26.9 8.9(0.34 M) 35.8 1.80 4.0
비교예2 24.1 11.0(0.48 M) 47.5 0.40 4.5
실시예1 23.5 23.7(1.05 M) 73.6 0.24 >5.0
실시예2 21.3 20.8(0.97 M) 76.9 0.12 >5.0
실시예3 47.7 29.6(1.31M) 90.1 0.008 >5.0
실시예4 14.6 46.9(2.15 M) 90.1 0.09 >5.0
실시예5 14.6 46.9(2.22 M) 90.1 0.12 >5.0
상기 표 4를 보면, 본 발명의 실시예에 따른 전해질은 용매의 함량과 리튬염의 함량을 조절하여 전해질에 포함된 고형분 함량을 70 중량% 이상, 바람직하게는 90 중량% 이상을 포함하며, 이온전도도가 0.1 mS/cm 이상이고, 5V 이상의 고전압 안정성을 가지며, 이를 전고체 전지에 적용 가능하도록 프리스탠딩안 기계적 특성을 보이는 것을 알 수 있었다. 또한 난연성 첨가제를 추가하여 상기 실시예의 전해질을 포함하는 전고체 전지의 안전성을 확보할 수 있는 장점도 있다.
비교예 1 및 2의 경우, 고형분 함량이 각각 35.8 중량% 및 47.5 중량%로 실시예의 전해질에 비해 낮고, 리튬염의 농도가 0.5 M 이하임에도 불구하고 0.4mS/cm의 이온전도도를 나타내지만, 전압안정성이 5V 이하로 낮고 난연 특성을 나타내지 못하는 것을 확인하였다.
실시예 1 및 2의 경우 비교예 1 및 2에 비해 고형분의 함량이 증가함에 따라 이온전도도는 줄어들었으나, 난연성 첨가제를 포함하여 전해질의 난연 특성이 향상되었음을 확인하였다.
실시예 3에서는 고형분의 함량을 90 중량%까지 증가시켜 이온전도도가 줄어들었으나, 실시예 1 및 2와 같이 난연성 첨가제를 포함하여 전해질의 난연 특성이 향상되었음을 확인하였다.
실시예 4 및 5의 경우에는 고형분의 함량이 90 중량% 이상으로 하여 전해질의 기계적 안정성을 확보하고 전고체 전지의 적용가능성을 높임과 동시에, 높은 농도의 리튬염을 적용하여 고형분 함량 증가에 따른 이온전도도 감소의 문제를 해결한 것을 확인하였다. 또한 실온에서 고체상 용매인 메틸설포닐메탄(DMSO2, methylsulfonylmethane)의혼합 비율을 높여 전해질의 고형분 함량이 증가하였으며, 난연성 비수계 용매의 혼합비율을 달리하여 전해질의 난연 특성이 부가되었음을 확인하였다.
실험예 3: 난연 특성 실험
본 발명에 따른 전해질의 난연 특성을 확인하기 위해 각 성분들의 샘플 및 상기 비교예 및 실시예에 따라 제조된 전해질의 지름 2cm 크기의 원형 샘플을 준비하였다. 각각의 샘플을 토치를 이용하여 연소시키고 그 결과를 확인하여 난연 특성을 알아보았다. 도 5는 본 발명에 따른 전해질에 포함된 각 성분들의 난연 특성을 나타낸 결과이고, 도 6은 상기 비교예 및 실시예에 따라 제조된 전해질의 난연 특성을 나타낸 결과이다.
도 5 및 6을 보면 본 발명에 따른 비수계 용매는 시간의 차이는 있지만 증기가 발생하며 불꽃이 붙어 연소되는 특성을 보이며, ETPTA oligomer, PEO, LiTFSI는 난연 특성을 보이는 것을 알 수 있었다. 또한 난연제를 10 wt% 첨가한 모든 고분자 전해질은 불꽃에 의해 연소되지 않고 2초 이내에 불꽃이 꺼지는 자기 소화성을 나타내어 우수한 난연 특성을 보이는 것을 알 수 있었다. (O: 난연 특성 우수, x: 난연 특성 없음)

Claims (17)

  1. 다관능성 아크릴레이트계 고분자, C1 내지 C10 폴리알킬렌옥사이드, 리튬염 및 비수계 용매를 포함하는 고체 고분자 전해질로서,
    상기 다관능성 아크릴레이트계 고분자는 폴리알킬렌옥사이드와 가교되어 반상호침투 고분자 네트워크(semi-IPN: semi-Interpenetrating Polymer Networks)을 형성하고,
    상기 비수계 용매는 디메틸 설폰(dimethyl sulfone), 설포란(sulforane) 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하고,
    상기 전해질은 전체 중량을 기준으로 다관능성 아크릴레이트계 고분자, C1 내지 C10 폴리알킬렌옥사이드, 리튬염 및 비수계 용매를 포함하는 고형분이 70 중량% 내지 90.1 중량%인 것인,
    고체 고분자 전해질.
  2. 제1항에 있어서,
    상기 C1 내지 C10 폴리알킬렌옥사이드는 다관능성 아크릴레이트계 고분자 100 중량부 대비 0.1 내지 10 중량부로 포함되는 것인 고체 고분자 전해질.
  3. 제2항에 있어서,
    상기 C1 내지 C10 폴리알킬렌옥사이드의 중량 평균 분자량은 1,000 내지 1,000,000 g/mol인 것을 특징으로 하는 고체 고분자 전해질.
  4. 제1항에 있어서,
    상기 다관능성 아크릴레이트계 고분자는 트리메틸올프로판 에톡실레이트 트리아크릴레이트 (trimethylolpropane ethoxylate triacrylate), 트리메틸올프로판 프로폭시레이트 트리아크릴레이트(trimethylolpropane propoxylate triacrylate), 폴리에틸렌글리콜 디메타클레이트(polyethylene glycol dimethacrylate), 폴리에틸렌글리콜 디아크릴레이트 (polyethylene glycol diacrylate), 폴리에스테르 디메타크릴레이트, 트리메티롤프로판 트리메타크릴레이트(trimethylolpropane trimethacrylate), 에톡시레이티드 비스페놀 A 디메타크릴 레이트(ethoxylated bis phenol A dimethacrylate), 테트라에틸렌 글리콜 디아크릴레이트(tetraethylene glycol diacrylate), 1,4-부탄디올 디아크릴레이트(1,4-butanediol diacrylate), 1,6-헥산디올 디아크릴레이트(1,6-hexandiol diacrylate), 디트리메틸올프로판 테트라아크릴레이트 (ditrimethylolpropane tetraacrylate), 펜타에리트리톨 테트라아크릴레이트(pentaerythritol tetraacrylate), 펜타에리트리톨 에톡시레이트 테트라아크릴레이트(pentaerythritol ethoxylate tetraacrylate), 디펜타에리트리톨 펜타아크릴레이트(dipentaerythritol pentaacrylate), 디펜타에리트리톨 헥사아크릴레이트(dipentaerythritol hexaacrylate) 및 이들의 조합으로 이루어진 군에서 선택된 1종의 단량체 유래 중합 단위를 포함하는 고체 고분자 전해질.
  5. 제1항에 있어서,
    상기 C1 내지 C10 폴리알킬렌옥사이드는 폴리에틸렌옥사이드, 폴리프로필렌옥사이드 또는 이들의 조합으로 이루어진 군에서 선택된 1종인 고체 고분자 전해질.
  6. 제1항에 있어서,
    상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiOH, LiOH·H2O, LiBOB, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3, LiC4BO8, LiTFSI, LiFSI, LiClO4 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는 고체 고분자 전해질.
  7. 제1항에 있어서,
    상기 리튬염은 전해질 100 중량부 대비 10 내지 50 중량부로 포함되는 것인 고체 고분자 전해질.
  8. 제1항에 있어서,
    상기 리튬염은 비수계 용매에 대하여 0.5 내지 2.5 M 의 농도를 갖는 것을 특징으로 하는 고체 고분자 전해질.
  9. 삭제
  10. 제1항에 있어서,
    상기 전해질의 두께는 10 내지 300 ㎛ 인 것을 특징으로 하는 고체 고분자 전해질.
  11. 제1항에 있어서,
    상기 전해질의 이온 전도도는 25 ℃ 기준으로 1.0 × 10-6 내지 5.0 × 10-4 S/cm 인 것을 특징으로 하는 고체 고분자 전해질.
  12. 제1항에 있어서,
    상기 전해질은 할로겐계 난연제, 인계 난연제, 질소계 난연제 및 무기화합물 난연제로 이루어진 군에서 선택된 1종 이상인 난연성 첨가물을 더 포함하는 것을 특징으로 하는 고체 고분자 전해질.
  13. 삭제
  14. 삭제
  15. 제1항에 따른 전해질의 제조방법에 있어서, 상기 제조방법은
    (1) 다관능성 아크릴레이트계 고분자 단량체, C1 내지 C10 폴리알킬렌옥사이드, 리튬염 및 비수계 용매를 포함하는 전해질 조성물을 혼합하는 단계;
    (2) 상기 전해질 조성물을 100 내지 150 ℃에서 용융하는 단계; 및
    (3) 상기 용융된 전해질 조성물을 광중합하여 전해질을 수득하는 단계;
    를 포함하는 고체 고분자 전해질의 제조방법.
  16. 제15항에 있어서,
    상기 제조방법은 (1) 단계에서 DMPA(2,2-dimethoxy-2-phenylacetonephenone), HOMPP(2-hydroxy-2-methylpropipphenone), LAP(Lithium phenyl-2,4,6-trimethylbenzoylphosphinate), IRGACURE 2959(1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one)로 이루어진 군으로부터 선택된 1종 이상의 광개시제를 더 투입하는 것을 특징으로 하는 고체 고분자 전해질의 제조방법.
  17. 제1항 내지 제8항, 제10항 내지 제12항 중 어느 한 항에 따른 고체 고분자 전해질 및 전극을 포함하는 전고체 전지.
KR1020180079193A 2018-07-09 2018-07-09 고체 전해질, 이의 제조방법, 및 이를 포함하는 전고체 전지 KR102617867B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020180079193A KR102617867B1 (ko) 2018-07-09 2018-07-09 고체 전해질, 이의 제조방법, 및 이를 포함하는 전고체 전지
EP19833879.0A EP3723179A4 (en) 2018-07-09 2019-01-11 SOLID ELECTROLYTE, ASSOCIATED PREPARATION PROCESS AND ANY SOLID BATTERY INCLUDING THIS
PCT/KR2019/000438 WO2020013410A1 (ko) 2018-07-09 2019-01-11 고체 전해질, 이의 제조방법, 및 이를 포함하는 전고체 전지
CN201980010861.9A CN111670515B (zh) 2018-07-09 2019-01-11 固体电解质、其制备方法和包含所述固体电解质的全固态电池
US16/958,426 US11870033B2 (en) 2018-07-09 2019-01-11 Solid electrolyte, method for preparing same, and all-solid battery comprising same
JP2020559354A JP7094388B2 (ja) 2018-07-09 2019-01-11 固体電解質、この製造方法、及びこれを含む全固体電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180079193A KR102617867B1 (ko) 2018-07-09 2018-07-09 고체 전해질, 이의 제조방법, 및 이를 포함하는 전고체 전지

Publications (2)

Publication Number Publication Date
KR20200005790A KR20200005790A (ko) 2020-01-17
KR102617867B1 true KR102617867B1 (ko) 2023-12-22

Family

ID=69141971

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180079193A KR102617867B1 (ko) 2018-07-09 2018-07-09 고체 전해질, 이의 제조방법, 및 이를 포함하는 전고체 전지

Country Status (6)

Country Link
US (1) US11870033B2 (ko)
EP (1) EP3723179A4 (ko)
JP (1) JP7094388B2 (ko)
KR (1) KR102617867B1 (ko)
CN (1) CN111670515B (ko)
WO (1) WO2020013410A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102510295B1 (ko) * 2018-08-31 2023-03-15 주식회사 엘지에너지솔루션 고체 전해질, 이의 제조방법, 및 이를 포함하는 전고체 전지
KR20210073078A (ko) * 2019-12-10 2021-06-18 한국과학기술원 플렉서블 리튬 이차 전지용 복합 강화 폴리머 전해질 및 이의 제조 방법
CN111276739A (zh) * 2020-03-26 2020-06-12 华中科技大学 一种半互穿聚合物电解质的原位制备方法及其应用
CN111533851A (zh) * 2020-05-08 2020-08-14 上海汽车集团股份有限公司 一种聚合物电解质的制备方法及其在全固态电池中的应用
CN112290083A (zh) * 2020-10-29 2021-01-29 西安越遴新材料研究院有限公司 一种高安全性复合固态电解质及其制备方法
CN112670567B (zh) * 2021-03-17 2021-08-24 新乡华锐锂电新能源有限公司 一种阻燃型凝胶电解质锂离子电池的制备方法及锂离子电池
CN113193228B (zh) * 2021-04-27 2022-08-23 山东玉皇新能源科技有限公司 一种交联固态电解质及其制备方法和应用
CN113497271B (zh) * 2021-07-26 2022-08-05 清华大学深圳国际研究生院 改性聚偏氟乙烯系聚合物、固态电解质及制备方法和电池
CN113929834B (zh) * 2021-10-11 2022-11-29 吉林省东驰新能源科技有限公司 一种耐高压固态聚合物电解质及其制备方法和锂离子电池
KR20230055780A (ko) * 2021-10-19 2023-04-26 재단법인대구경북과학기술원 제올라이트 및 불소계 리튬염을 이용한 복합 고체 전해질
CN113903988A (zh) * 2021-10-29 2022-01-07 广东瑞科美电源技术有限公司 一种固态电解质电芯的制备方法及其制备工具

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301833A (ja) * 2008-06-12 2009-12-24 Kureha Elastomer Co Ltd 架橋高分子固体電解質およびその製造方法
KR101527560B1 (ko) 2013-11-14 2015-06-10 주식회사 포스코 리튬 이차 전지용 고분자 전해질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670363A (en) * 1986-09-22 1987-06-02 Duracell Inc. Non-aqueous electrochemical cell
JPH11176472A (ja) 1997-12-08 1999-07-02 Ricoh Co Ltd イオン伝導性高分子固体電解質及び該固体電解質を含む電気化学素子及び電池
KR100326466B1 (ko) * 2000-07-25 2002-02-28 김순택 리튬 설퍼 전지용 전해액
JP2006024440A (ja) 2004-07-08 2006-01-26 Daiso Co Ltd 架橋高分子電解質を用いた電池
JP2006134736A (ja) 2004-11-08 2006-05-25 Bridgestone Corp ポリマー電池用ゲル電解質及びそれを備えたポリマー電池
KR20060134739A (ko) 2005-06-23 2006-12-28 삼성전자주식회사 디지털 방송 시스템의 메시지 처리 방법 및 그 장치
JP5253905B2 (ja) * 2008-06-30 2013-07-31 パナソニック株式会社 非水電解液および非水電解液二次電池
KR101351897B1 (ko) 2011-01-20 2014-01-17 주식회사 엘지화학 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
CN103392255B (zh) 2011-03-03 2016-06-08 株式会社Lg化学 集成电极组件和使用其的二次电池
CN103165937B (zh) * 2011-12-17 2015-07-29 清华大学 固体电解质及使用该固体电解质的锂基电池
WO2014147648A1 (en) * 2013-03-19 2014-09-25 Council Of Scientic & Industrial Reserach High-ionic conductivity electrolyte compositions comprising semi-interpenetrating polymer networks and their composites
US20160104918A1 (en) 2013-05-24 2016-04-14 Joyce Wang Gel polymer electrolyte and lithium ion batteries employing the gel polymer electrolyte
KR101576277B1 (ko) * 2013-06-13 2015-12-09 국립대학법인 울산과학기술대학교 산학협력단 전해질-전극 합체, 이의 제조 방법, 및 이를 포함하는 전기 화학 소자
CN104919632B (zh) * 2013-06-20 2017-09-19 株式会社Lg 化学 锂二次电池用高容量电极活性材料和使用其的锂二次电池
CN104919638B (zh) 2013-10-31 2018-01-19 株式会社Lg化学 凝胶聚合物电解质和包含其的电化学元件
KR102163733B1 (ko) * 2013-11-29 2020-10-12 삼성전자주식회사 리튬 전지용 고분자 전해질 및 이를 포함하는 리튬 전지
CN105088698B (zh) * 2014-05-08 2019-01-29 青岛海尔洗衣机有限公司 一种洗衣机水循环处理控制方法及洗衣机
US10290898B2 (en) * 2014-08-29 2019-05-14 Samsung Electronics Co., Ltd. Composite, method of preparing the composite, electrolyte comprising the composite, and lithium secondary battery comprising the electrolyte
US20160351973A1 (en) * 2015-06-01 2016-12-01 Energy Power Systems LLC Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings
KR102024889B1 (ko) 2015-10-30 2019-09-24 주식회사 엘지화학 반 상호침투 고분자 네트워크 구조의 고분자 전해질 및 이를 포함하는 전고체 전지
KR102006717B1 (ko) * 2015-10-30 2019-08-02 주식회사 엘지화학 질산리튬을 포함하는 고분자 전해질 및 이를 포함하는 전고체 전지
KR102547797B1 (ko) * 2015-11-04 2023-06-26 삼성전자주식회사 고분자 전해질 및 이를 포함하는 전지
US10243206B2 (en) * 2016-05-17 2019-03-26 Battelle Memorial Institute High capacity and stable cathode materials
KR101878337B1 (ko) 2016-06-22 2018-07-13 울산과학기술원 복합 전해질, 그 제조방법, 및 이를 포함하는 이차 전지
KR102273774B1 (ko) * 2016-07-28 2021-07-06 삼성에스디아이 주식회사 리튬이차전지용 바인더 조성물, 이를 포함하는 리튬이차전지용 전극 및 리튬이차전지
KR102093965B1 (ko) 2016-11-21 2020-03-26 주식회사 엘지화학 리튬-황 전지
KR102134458B1 (ko) * 2016-12-28 2020-07-15 주식회사 엘지화학 전고체 전지 및 이를 위한 고분자 전해질
KR102324818B1 (ko) 2016-12-30 2021-11-11 코오롱인더스트리 주식회사 폴리에스테르 수지의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301833A (ja) * 2008-06-12 2009-12-24 Kureha Elastomer Co Ltd 架橋高分子固体電解質およびその製造方法
KR101527560B1 (ko) 2013-11-14 2015-06-10 주식회사 포스코 리튬 이차 전지용 고분자 전해질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지

Also Published As

Publication number Publication date
US11870033B2 (en) 2024-01-09
WO2020013410A1 (ko) 2020-01-16
EP3723179A4 (en) 2021-03-31
JP2021510916A (ja) 2021-04-30
EP3723179A1 (en) 2020-10-14
CN111670515B (zh) 2023-09-19
CN111670515A (zh) 2020-09-15
US20210066751A1 (en) 2021-03-04
JP7094388B2 (ja) 2022-07-01
KR20200005790A (ko) 2020-01-17

Similar Documents

Publication Publication Date Title
KR102617867B1 (ko) 고체 전해질, 이의 제조방법, 및 이를 포함하는 전고체 전지
KR102510295B1 (ko) 고체 전해질, 이의 제조방법, 및 이를 포함하는 전고체 전지
US10581080B2 (en) Cathode and lithium battery including the same
US10468732B2 (en) Polymer electrolyte and battery including the same
KR102510293B1 (ko) 고체 고분자 전해질 조성물 및 이를 포함하는 고체 고분자 전해질
KR20200095188A (ko) 고체 고분자 전해질 조성물 및 이를 포함하는 고체 고분자 전해질
KR20200102613A (ko) 전기화학 소자 및 이의 제조방법
WO2013136441A1 (ja) 非水電解質二次電池
JP6840946B2 (ja) 固体電解質、全固体電池、およびそれらの製造方法
KR102142627B1 (ko) 이차전지용 전극 합제 및 이를 포함하는 리튬 이차전지
KR20230145359A (ko) 난연성 전해질 조성물, 준-고체 및 고체 상태 전해질,및 리튬 전지
KR102445690B1 (ko) 용해성 중합체, 리튬 염, 및 선택된 할로겐화된 중합체를 포함하는 고체 중합체 전해질, 및 이를 포함하는 배터리
KR102027421B1 (ko) 방사선 겔형 전해질 전구체 조성물, 이차전지 및 이의 제조방법
KR102126190B1 (ko) 방사선 겔형 전해질 전구체 조성물 및 이차전지
KR20230134521A (ko) 난연성 준-고체 및 고체 상태 전해질, 리튬 전지 및제조 방법
KR20200033607A (ko) 고체 고분자 전해질 조성물 및 이를 포함하는 고체 고분자 전해질
JP2008282578A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
KR20230168593A (ko) 전극 및 전극 조립체
KR20230105114A (ko) 리튬 이차전지용 가교구조 함유 분리막의 제조 방법, 이에 따라 제조된 리튬 이차전지용 가교구조 함유 분리막, 및 이를 포함하는 리튬 이차전지
KR20230171874A (ko) 리튬 이차전지용 전극 조립체, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
JPWO2020158306A1 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
KR20230018141A (ko) 고체 전해질용 조성물 및 이를 이용한 전고체 이차 전지의 제조 방법
JPH11102727A (ja) ゲル電解質二次電池

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant