WO2013136441A1 - 非水電解質二次電池 - Google Patents
非水電解質二次電池 Download PDFInfo
- Publication number
- WO2013136441A1 WO2013136441A1 PCT/JP2012/056401 JP2012056401W WO2013136441A1 WO 2013136441 A1 WO2013136441 A1 WO 2013136441A1 JP 2012056401 W JP2012056401 W JP 2012056401W WO 2013136441 A1 WO2013136441 A1 WO 2013136441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insulating layer
- electrolyte secondary
- secondary battery
- bicarbonate
- aqueous electrolyte
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a non-aqueous electrolyte secondary battery that is excellent in safety when the temperature of the battery rises.
- Non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries are widely used as power sources for portable devices such as mobile phones and notebook personal computers because of their high energy density. Along with this, improvements in various battery characteristics and safety have become important issues.
- a polyolefin-based porous film having a thickness of, for example, about 20 to 30 ⁇ m is used as a separator interposed between a positive electrode and a negative electrode.
- a polyolefin-based porous film By using a polyolefin-based porous film, the constituent resin of the separator is melted at 130 to 140 ° C., which is lower than the abnormal heating temperature of the battery, and the pores are closed, thereby increasing the internal resistance of the battery and causing a short circuit. Thus, a so-called shutdown effect that improves the safety of the battery can be ensured.
- Patent Document 1 a method of directly forming the separator on the electrode has been proposed.
- the separator formed by this method does not have a shutdown function that appears when the battery becomes hot, and a conventional polyolefin-based porous film is added between the electrodes to provide the shutdown function. As a whole, there has been a problem that the film thickness of the separator is increased.
- Patent Document 2 a compound that decomposes and generates gas when the temperature rises. That is, by adding a gas generating substance such as carbonate to the surface or inside of the electrolyte layer, the above compound decomposes to generate a gas such as carbon dioxide gas when the battery temperature rises. Is separated to increase the internal resistance and stop the battery reaction.
- a gas generating substance such as carbonate
- the present invention solves the above problems and provides a non-aqueous electrolyte secondary battery including an insulating layer containing a gas generating substance that can reliably perform a shutdown function at about 120 to 150 ° C.
- the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, and includes an insulating layer between the positive electrode and the negative electrode. And containing at least one bicarbonate selected from sodium bicarbonate and potassium bicarbonate, wherein the bicarbonate has an average particle diameter of 2 to 20 ⁇ m, and the content of the bicarbonate is the entire insulating layer. 5 to 80% by volume with respect to the product, and the insulating layer has a thickness of 4 to 40 ⁇ m.
- the nonaqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, and a nonaqueous electrolyte, and includes an insulating layer between the positive electrode and the negative electrode.
- the insulating layer contains at least one hydrogen carbonate selected from sodium hydrogen carbonate and potassium hydrogen carbonate, the hydrogen carbonate has an average particle size of 2 to 20 ⁇ m, and the content of the hydrogen carbonate However, the total volume of the insulating layer is 5 to 80% by volume, and the thickness of the insulating layer is 4 to 40 ⁇ m.
- the insulating layer contains at least one bicarbonate selected from sodium bicarbonate and potassium bicarbonate having an average particle size of 2 to 20 ⁇ m. These bicarbonates decompose when heated to generate a non-combustible gas such as carbon dioxide, and the positive electrode and negative electrode are separated by the pressure, increasing the internal resistance and stopping the battery reaction. Can do. That is, the insulating layer can exhibit a shutdown function by containing the bicarbonate.
- the bicarbonate since the bicarbonate generates the incombustible gas at a temperature lower than the temperature at which the combustible gas due to volatilization of the non-aqueous electrolyte is generated, the generation of the combustible gas can be suppressed, and further, the battery safety can be suppressed. Can be improved.
- the average particle size of the above-mentioned bicarbonate is set to 2 to 20 ⁇ m, when the battery temperature reaches about 120 to 150 ° C., it decomposes and efficiently generates non-flammable gas, ensuring a shutdown function. It can be demonstrated. That is, by setting the average particle size of the bicarbonate to 2 to 20 ⁇ m, the gas generation temperature can be set to a range of 120 to 150 ° C., more preferably 130 to 140 ° C.
- the average particle diameter of the hydrogen carbonate is more preferably 5 ⁇ m or more, and more preferably 15 ⁇ m or less.
- the average particle diameter of various particles is, for example, a number average measured by dispersing a measurement particle in a medium that does not dissolve using a laser scattering particle size distribution analyzer (for example, “LA-920” manufactured by HORIBA). Means particle size.
- the bicarbonate is preferably heat-treated at a temperature lower than the decomposition temperature of the bicarbonate.
- sucking to the said hydrogen carbonate can be removed, and it can prevent bringing a water
- the decomposition temperature of the bicarbonate can be made constant by the heat treatment, and the shutdown temperature can be set more accurately.
- the heat treatment temperature may be any temperature that is lower than the decomposition temperature of the bicarbonate, and is usually 100 ° C. or less, preferably 60 to 90 ° C.
- the content of the bicarbonate is set to 5 to 80% by volume with respect to the total volume of the insulating layer. If the content of the hydrogen carbonate is too small, the shutdown function is not exhibited. If the content is too large, the insulating property is lowered and there is a risk of short circuit.
- the content of the hydrogen carbonate is more preferably 20% by volume or more, and more preferably 60% by volume or less.
- the insulating layer also serves as a separator, if the thickness of the insulating layer is too small, the insulating property is lowered, and if it is too large, the volume energy density of the battery is lowered. Therefore, the insulating layer is set to 4 to 40 ⁇ m. .
- the thickness of the insulating layer is more preferably 10 ⁇ m or more, and more preferably 30 ⁇ m or less.
- the insulating layer further includes a resin having a crosslinked structure and inorganic particles, and further has microporosity.
- the insulating layer includes the resin having the crosslinked structure, heat resistance is improved, and when the insulating layer includes the inorganic particles, formation of micropores is facilitated.
- the porosity of the insulating layer is not particularly limited as long as the electrolyte solution to be used can permeate, and is usually about 30 to 75%.
- Resin having a crosslinked structure Resin having the above crosslinked structure [hereinafter referred to as resin (A). ] Is a resin having a crosslinked structure in a part thereof. Therefore, even when the inside of the nonaqueous electrolyte secondary battery having the insulating layer of the present invention becomes high temperature, the insulating layer hardly undergoes shrinkage or deformation due to melting of the resin (A), and the shape is maintained well. The occurrence of a short circuit between the positive electrode and the negative electrode is suppressed. Therefore, the nonaqueous electrolyte secondary battery of the present invention having the insulating layer has good safety at high temperatures.
- the resin (A) has a glass transition temperature (Tg) higher than 0 ° C., preferably 10 ° C. or higher and lower than 80 ° C., preferably 60 ° C. or lower.
- Tg glass transition temperature
- the charge / discharge cycle characteristics and load characteristics of the secondary battery can be improved. That is, if the Tg of the resin (A) is too low, the pores are easily filled, and it is difficult to adjust the lithium ion permeability of the insulating layer.
- Resin (A) can be obtained by irradiating an energy beam to an oligomer that can be polymerized by energy beam irradiation and polymerizing the oligomer.
- the resin (A) By forming the resin (A) by polymerization of the oligomer, it is possible to form an insulating layer that is highly flexible and hardly peels off when integrated with the electrode, and the Tg of the resin (A) is It becomes easy to adjust to the value of.
- the resin (A) it is preferable to use a monomer that can be polymerized by irradiation with energy rays together with the oligomer.
- the insulating layer containing the resin (A) is prepared by preparing an insulating layer forming solution containing an oligomer or the like for forming the resin (A) and a solvent, and applying the solution to an electrode to form a coating film. It is preferable to manufacture the film through a step of forming a resin (A) by irradiating the film with energy rays.
- a resin (A) by irradiating the film with energy rays.
- the Tg of the resin (A) can be adjusted more easily.
- the resin (A) include, for example, acrylic resin monomers [alkyl (meth) acrylates such as methyl methacrylate and methyl acrylate and derivatives thereof] and oligomers thereof and an acrylic resin formed from a crosslinking agent; urethane acrylate And a crosslinking resin formed from an epoxy acrylate and a crosslinking agent; a crosslinking resin formed from a polyester acrylate and a crosslinking agent; and the like.
- the crosslinking agent may be tripropylene glycol diacrylate, 1,6-hexanediol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, dioxane glycol diacrylate, tricyclodecane dimethanol dimer.
- Divalent or polyvalent acrylic monomers such as acrylate, ethylene oxide modified trimethylolpropane triacrylate, dipentaerythritol pentaacrylate, caprolactone modified dipentaerythritol hexaacrylate, ⁇ -caprolactone modified dipentaerythritol hexaacrylate (bifunctional acrylate, 3 functional acrylate, 4 functional acrylate, 5 functional acrylate, 6 functional acrylate, etc.) That.
- an oligomer of the acrylic resin monomer exemplified above can be used as an oligomer that can be polymerized by irradiation with energy rays (hereinafter simply referred to as “oligomer”).
- oligomer the monomer that can be polymerized by irradiation with energy rays
- the acrylic resin monomer exemplified above and a crosslinking agent can be used.
- the resin (A) is a cross-linked resin formed from the urethane acrylate and a cross-linking agent
- urethane acrylate can be used as the oligomer
- the cross-linking agents exemplified above can be used as the monomer.
- the resin (A) is a cross-linked resin formed from the above-mentioned epoxy acrylate and a cross-linking agent
- epoxy acrylate can be used for the oligomer
- the cross-linking agents exemplified above can be used for the monomer.
- the resin (A) is a cross-linked resin formed from the polyester acrylate and a cross-linking agent
- a polyester acrylate can be used as the oligomer, and the cross-linking agents exemplified above can be used as the monomer.
- the urethane acrylate, the epoxy acrylate, and the polyester acrylate may be used as the oligomer, and the crosslinking agent (monomer) may include the above 2
- the functional acrylate, the trifunctional acrylate, the tetrafunctional acrylate, the pentafunctional acrylate, and the hexafunctional acrylate may be used.
- the resin (A) is a crosslinked resin derived from an unsaturated polyester resin formed from a mixture of an ester composition and a styrene monomer produced by condensation polymerization of a divalent or polyvalent alcohol and a dicarboxylic acid.
- Various polyurethane resins produced by the reaction of polyisocyanate and polyol can also be used.
- the ester composition can be used as the oligomer, and the styrene monomer can be used as the monomer.
- the resin (A) is various polyurethane resins produced by reaction of polyisocyanate and polyol
- examples of the polyisocyanate include hexamethylene diisocyanate, phenylene diisocyanate, toluene diisocyanate (TDI), and 4,4′-diphenylmethane diisocyanate. (MDI), isophorone diisocyanate (IPDI), bis- (4-isocyanatocyclohexyl) methane, and the like.
- the polyol include polyether polyol, polycarbonate polyol, and polyester polyol.
- the resin (A) is various polyurethane resins produced by the reaction of polyisocyanate and polyol
- the above-exemplified polyol can be used as the oligomer
- the above-exemplified polyisocyanate can be used as the monomer.
- each of the above exemplified resins (A) a monofunctional monomer such as isobornyl acrylate, methoxy polyethylene glycol acrylate, phenoxy polyethylene glycol acrylate, or the like can be used in combination. Therefore, when the resin (A) has a structural portion derived from these monofunctional monomers, the above-exemplified monofunctional monomers can be used together with the above-exemplified oligomers and other monomers as monomers. it can.
- the monofunctional monomer tends to remain as an unreacted substance in the formed resin (A), and the unreacted substance remaining in the resin (A) is eluted into the non-aqueous electrolyte of the non-aqueous electrolyte secondary battery. May inhibit the battery reaction. Therefore, it is preferable that the oligomer and monomer used for formation of resin (A) are bifunctional or more. Moreover, it is preferable that the oligomer and monomer used for formation of resin (A) are 6 functional or less.
- the ratio of the oligomer to the monomer used is 20:80 to 95: 5 in terms of mass ratio from the viewpoint of facilitating the adjustment of Tg. And more preferably 65:35 to 90:10. That is, in the resin (A) formed using the oligomer and the monomer, the ratio of the unit derived from the oligomer and the unit derived from the monomer is preferably 20:80 to 95: 5 in terms of mass ratio. More preferably, it is 65:35 to 90:10.
- the content of the resin (A) is preferably 20 to 75% by volume.
- the content of the resin (A) is less than 20% by volume, the adhesive strength between the electrode and the insulating layer is insufficient, so that the insulating layer easily falls off.
- the content exceeds 75% by volume, pores are formed. It becomes difficult to form micropores, and the load characteristics of the battery tend to deteriorate.
- inorganic particles In the insulating layer, together with the bicarbonate, inorganic particles other than the bicarbonate [hereinafter referred to as inorganic particles (B). ] Can be further enhanced in strength and dimensional stability of the insulating layer.
- the inorganic particles (B) include inorganic oxide particles such as iron oxide, silica (SiO 2 ), alumina (Al 2 O 3 ), TiO 2 (titania), BaTiO 3 ; aluminum nitride, silicon nitride, etc.
- Inorganic nitride particles Inorganic nitride particles; poorly soluble ionic crystal particles such as calcium fluoride, barium fluoride, and barium sulfate; covalently bonded crystal particles such as silicon and diamond; clay fine particles such as montmorillonite;
- the inorganic oxide particles may be fine materials such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, mica, or other mineral resource-derived materials or artificial products thereof.
- a conductive material exemplified by a metal, SnO 2 , a conductive oxide such as tin-indium oxide (ITO), a carbonaceous material such as carbon black, graphite, or the like is formed on an electrically insulating material (
- covering with the said inorganic oxide etc. may be sufficient.
- the inorganic particles those exemplified above may be used alone or in combination of two or more.
- inorganic oxide particles are more preferable, and alumina, titania, silica, and boehmite are further preferable.
- the average particle diameter of the inorganic particles (B) is preferably 0.001 ⁇ m or more, more preferably 0.1 ⁇ m or more, and preferably 20 ⁇ m or less, and 1 ⁇ m or less. It is more preferable.
- an inorganic particle (B) may have a shape close to a sphere, and may have a plate shape or a fiber shape, but it improves the short circuit resistance of the insulating layer.
- a plate-like particle or a particle having a secondary particle structure in which primary particles are aggregated is preferable.
- a particle having a secondary particle structure in which primary particles are aggregated is more preferable.
- Typical examples of the above plate-like particles and secondary particles include plate-like alumina, plate-like boehmite, secondary particle-like alumina, and secondary particle-like boehmite.
- the content of the inorganic particles (B) may be 20 to 60% by volume.
- the insulating layer is preferably formed on the positive electrode or the negative electrode.
- the battery manufacturing process can be made more efficient. That is, the electrode / insulating layer integrated product can be formed on the electrode by a coating process using an insulating layer forming solution or the like.
- the insulating layer does not contain the resin having the crosslinked structure and the inorganic particles, it is preferable to provide a microporous film as a base of the insulating layer.
- the microporous film By providing the microporous film as a substrate, the strength of the insulating layer can be improved.
- the bicarbonate may be disposed inside or on the surface of the microporous membrane.
- microporous membrane for example, a microporous membrane made of polyolefin conventionally used for a separator of a nonaqueous electrolyte secondary battery can be used. Thereby, a shutdown function can be imparted to the microporous membrane itself. Further, if the bicarbonate and the microporous membrane are bound by a binder as necessary, the bicarbonate can be prevented from falling off the microporous membrane.
- a binder the binder used with the positive electrode or negative electrode mentioned later can be used.
- the positive electrode for example, one having a structure in which a positive electrode mixture layer containing a positive electrode active material, a conductive additive, a binder and the like is provided on one side or both sides of a current collector can be used.
- the positive electrode active material is not particularly limited as long as it is an active material capable of inserting and extracting Li ions.
- a lithium-containing transition metal oxide having a layered structure represented by Li 1 + x MO 2 ( ⁇ 0.1 ⁇ x ⁇ 0.1, M: Co, Ni, Mn, Al, Mg, etc.), LiMn 2 O 4 It is possible to use a spinel structure lithium manganese oxide in which a part of the element is substituted with another element, an olivine type compound represented by LiMPO 4 (M: Co, Ni, Mn, Fe, etc.), or the like.
- lithium-containing transition metal oxide having a layered structure examples include LiCoO 2 and LiNi 1-x Co xy Al y O 2 (0.1 ⁇ x ⁇ 0.3, 0.01 ⁇ y ⁇ 0. 2) and other oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiNi 3 / 5 Mn 1/5 Co 1/5 O 2 etc.).
- a carbon material such as carbon black
- a fluorine resin such as polyvinylidene fluoride (PVDF) is used.
- a metal foil such as aluminum, a punching metal, a net, an expanded metal, or the like can be used.
- an aluminum foil having a thickness of 10 to 30 ⁇ m is preferably used.
- a lead portion is formed on the positive electrode, and the lead portion usually leaves an exposed portion of the current collector without forming a positive electrode mixture layer on a part of the current collector when the positive electrode is manufactured. Is provided as a lead portion.
- the lead portion is not necessarily integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.
- ⁇ Negative electrode> As the negative electrode, for example, one having a structure having a negative electrode mixture layer containing a negative electrode active material, a binder and, if necessary, a conductive auxiliary agent on one side or both sides of a current collector can be used.
- the negative electrode active material is not particularly limited as long as it is a material capable of inserting and extracting lithium ions.
- carbon-based materials that can occlude and release lithium ions such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers.
- MCMB mesocarbon microbeads
- One kind or a mixture of two or more kinds is used as the negative electrode active material.
- elements such as silicon (Si), tin (Sn), germanium (Ge), bismuth (Bi), antimony (Sb), indium (In) and alloys thereof, lithium such as lithium-containing nitride or lithium-containing oxide
- silicon Si
- tin Sn
- germanium Ge
- bismuth Bi
- antimony Sb
- indium In
- alloys thereof lithium such as lithium-containing nitride or lithium-containing oxide
- a compound that can be charged and discharged at a low voltage close to that of a metal, or a lithium metal or lithium / aluminum alloy can also be used as the negative electrode active material.
- a material containing silicon (Si) as a constituent element is particularly preferable.
- Si silicon
- the material containing Si as a constituent element examples include Si alone, alloys of Si with elements other than Si such as Co, Ni, Ti, Fe, and Mn, oxides of Si, and the like.
- the material for the reaction is exemplified, inter alia, the general formula SiO p (provided that 0.5 ⁇ p ⁇ 1.5.) are materials used preferably include the constituent elements Si and O to be expressed in .
- an alloy of Si and an element other than Si is an alloy composed of a plurality of phases of a single Si phase and a Si alloy phase, even if it is a single solid solution. There may be.
- the SiO p is not limited to the Si oxide, but may contain a Si microcrystalline phase or an amorphous phase.
- the atomic ratio of Si and O is determined by the Si microcrystalline phase.
- the ratio includes amorphous phase Si.
- the material expressed by SiO p for example, a SiO 2 matrix of amorphous, Si (e.g., microcrystalline Si) is include the dispersed structure, the SiO 2 in the amorphous
- it is sufficient that the atomic ratio p satisfies 0.5 ⁇ p ⁇ 1.5 in combination with Si dispersed therein.
- Nonaqueous electrolyte a non-aqueous electrolyte solution in which a lithium salt is dissolved in an organic solvent can be used.
- the lithium salt used in the non-aqueous electrolyte is not particularly limited as long as it dissociates in a solvent to form lithium ions and does not easily cause a side reaction such as decomposition in a voltage range used as a battery.
- LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 and other inorganic lithium salts LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ⁇ n ⁇ 7), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] or the like is used. be able to.
- the concentration of this lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / L, more preferably 0.9 to 1.25 mol / L.
- the organic solvent used in the non-aqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause a side reaction such as decomposition in a voltage range used as a battery.
- cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate
- chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate
- chain esters such as methyl propionate
- cyclic esters such as ⁇ -butyrolactone
- dimethoxyethane Chain ethers such as diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme
- cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran
- nitriles such as acetonitrile, propionitrile and methoxypropionitrile
- ethylene Sulfites such as
- ⁇ Separator> In the nonaqueous electrolyte secondary battery of the present invention, since the insulating layer is formed between the positive electrode and the negative electrode, a separator is not usually required. However, a separator may be further disposed between the positive electrode and the negative electrode. Good. Thereby, the short circuit between positive and negative electrodes can be prevented more reliably.
- a microporous membrane made of polyolefin can be used as the separator. Thereby, a shutdown function can also be given to the separator.
- the polyolefin include polyethylene (PE), polypropylene (PP), copolymerized polyolefin, polyolefin derivatives (chlorinated polyethylene, etc.), polyolefin wax, and the like.
- the microporous membrane may be a commercially available polyolefin microporous film, but is preferably composed of fine particles made of the polyolefin, particularly preferably polyethylene fine particles.
- Commercially available polyolefin separators are stretched at the time of formation and shrink when the temperature rises to near the shutdown temperature. Such a problem can be prevented by constituting the porous film from polyolefin fine particles.
- the particle diameter of the polyolefin fine particles is not particularly limited, but the average particle diameter is preferably 0.1 to 20 ⁇ m.
- the particle diameter of the polyolefin fine particles is too small, the gap between the particles becomes small, the lithium ion conduction path becomes long, and the characteristics of the nonaqueous electrolyte secondary battery may be deteriorated.
- the particle diameter of the polyolefin fine particles is too large, there is a possibility that the gap increases and the effect of improving the resistance to short circuit caused by lithium dendrite or the like is reduced.
- the thickness of the microporous membrane made of polyolefin is not particularly limited, but may be 1 to 10 ⁇ m. If the thickness of the polyolefin microporous film is too large, the energy efficiency of the battery is lowered, and if the thickness is too small, handling becomes difficult.
- a laminated battery having a flexible laminate film on which a metal is deposited and having an outer package is preferable. This is because if the exterior body is flexible, the positive electrode and the negative electrode are easily separated when the gas is generated from the hydrogen carbonate.
- the present invention can also be applied to a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. This is because even if the outer can has rigidity, if the gas stays between the positive electrode and the negative electrode due to gas generation from the bicarbonate, the internal resistance increases.
- Example 1 ⁇ Preparation of insulating layer forming solution> First, sodium bicarbonate having an average particle diameter of 3 ⁇ m was heat-treated at 70 ° C. Next, the heat-treated sodium bicarbonate and the following materials were put in a container at the following ratio and stirred for 12 hours to prepare an insulating layer forming solution.
- this positive electrode is cut so that the area of the positive electrode mixture layer is 30 mm ⁇ 30 mm and includes the exposed portion of the aluminum foil, and an aluminum lead piece for taking out an electric current is further exposed to the exposed portion of the aluminum foil.
- an aluminum lead piece for taking out an electric current is further exposed to the exposed portion of the aluminum foil.
- the insulating layer forming solution is applied onto the positive electrode mixture layer of the positive electrode, and ultraviolet rays having a wavelength of 365 nm are irradiated at an illuminance of 1000 mW / cm 2 for 10 seconds, dried at 60 ° C. for 1 hour, Was formed on the negative electrode.
- a negative electrode mixture-containing paste was prepared by mixing 95 parts by mass of graphite as a negative electrode active material and 5 parts by mass of PVDF as a binder so as to be uniform using NMP as a solvent.
- the paste containing the negative electrode mixture was applied at a constant thickness to one side of a 10 ⁇ m thick current collector made of copper foil, dried at 85 ° C., and then vacuum dried at 100 ° C. Then, the negative electrode was produced by performing press processing using the roll press machine. However, when applying the negative electrode mixture-containing paste to the copper foil, an uncoated portion was formed so that a part of the copper foil was exposed.
- the negative electrode was cut so that the area of the negative electrode mixture layer was 35 mm ⁇ 35 mm and the exposed portion of the copper foil was included, and a nickel lead piece for taking out current was further exposed to the copper foil.
- the negative electrode with a lead was obtained by welding to the part.
- ⁇ Battery assembly> The positive electrode with lead and the negative electrode with lead are overlapped via a PE microporous membrane separator (thickness 18 ⁇ m) to form a laminated electrode body, and the laminated electrode body is an exterior made of an aluminum laminate film of 90 mm ⁇ 160 mm Housed in the body. Subsequently, after injecting 1 mL of a nonaqueous electrolytic solution in which LiPF 6 was dissolved at a concentration of 1.2 mol / L into a solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 2: 8, The outer package was sealed to obtain a laminated nonaqueous electrolyte secondary battery.
- a nonaqueous electrolytic solution in which LiPF 6 was dissolved at a concentration of 1.2 mol / L into a solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 2: 8
- FIG. 1 shows a plan view of the laminated nonaqueous electrolyte secondary battery obtained.
- a laminated nonaqueous electrolyte secondary battery 1 of this example a laminated electrode body and a nonaqueous electrolytic solution are accommodated in an outer package 2 made of an aluminum laminate film that is rectangular in plan view.
- the positive external terminal 3 and the negative external terminal 4 are drawn out from the same side of the exterior body 2.
- Example 2 A laminated nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the average particle size of sodium hydrogen carbonate was 17 ⁇ m.
- Example 3 A laminated nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the average particle size of sodium hydrogen carbonate was 10 ⁇ m and the thickness of the insulating layer was 7 ⁇ m.
- Example 4 A laminated nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the average particle size of sodium hydrogen carbonate was 10 ⁇ m and the thickness of the insulating layer was 35 ⁇ m.
- Example 5 Sodium bicarbonate having an average particle diameter of 10 ⁇ m, which was heat-treated in the same manner as in Example 1, and the following materials were placed in a container at the following ratio and stirred for 12 hours to prepare an insulating layer forming solution.
- Example 6 Sodium bicarbonate having an average particle diameter of 10 ⁇ m, which was heat-treated in the same manner as in Example 1, and the following materials were placed in a container at the following ratio and stirred for 12 hours to prepare an insulating layer forming solution.
- Example 2 A laminated nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the average particle size of sodium hydrogen carbonate was 1 ⁇ m.
- Example 3 A laminated nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the average particle size of sodium hydrogen carbonate was 25 ⁇ m.
- Example 4 A laminated nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the average particle diameter of sodium hydrogen carbonate was 10 ⁇ m and the thickness of the insulating layer was 3 ⁇ m.
- Example 5 A laminated nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the average particle diameter of sodium hydrogen carbonate was 10 ⁇ m and the thickness of the insulating layer was 45 ⁇ m.
- the non-aqueous electrolyte secondary batteries of Examples 1 to 6 and Comparative Examples 1 to 7 were subjected to the following temperature increase test to evaluate the shutdown characteristics of each battery.
- ⁇ Temperature test> Each battery was placed in a thermostatic bath, heated from 30 ° C. to 160 ° C. at a rate of 1 ° C. per minute, and the change in the internal resistance of the battery was measured. At that time, the temperature of the battery was measured by attaching a thermocouple thermometer to the battery surface. Moreover, the internal resistance of the battery at the time of temperature rise was measured every second using a resistance measuring device “HiTESTER” manufactured by HIOKI. Then, when the battery temperature was in the range of 100 to 150 ° C., it was determined that the shutdown occurred when the maximum value of the internal resistance of the battery increased to more than 5 times the internal resistance at the battery temperature of 30 ° C.
- Table 1 also shows the average particle diameter of sodium bicarbonate, the thickness of the insulating layer, and the content of the sodium bicarbonate relative to the total volume of the insulating layer.
- Comparative Example 1 sodium bicarbonate was not added to the insulating layer, and in Comparative Example 2, the average particle size of sodium bicarbonate was small. In Comparative Example 6, the content of sodium bicarbonate was small, so both were shut down. Did not occur.
- Comparative Example 3 the average particle diameter of sodium hydrogen carbonate was large, and in Comparative Example 4, the thickness of the insulating layer was small. In Comparative Example 7, the content of sodium hydrogen carbonate was large, and thus a short circuit occurred. Furthermore, in Comparative Example 5, since the thickness of the insulating layer was large, the initial internal resistance value was 2 ⁇ , which was larger than the initial internal resistance value of 0.8 ⁇ in Example 1, and therefore, it was determined that the battery was not suitable.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Cell Separators (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
上記絶縁層は、平均粒子径が2~20μmの炭酸水素ナトリウム及び炭酸水素カリウムから選ばれる少なくとも1種の炭酸水素塩を含んでいる。これらの炭酸水素塩は、加熱により温度上昇すると分解して炭酸ガス等の不燃性ガスを発生させ、その圧力により正極と負極とが離反して内部抵抗が上昇し、電池の反応を停止させることができる。即ち、上記絶縁層は、上記炭酸水素塩を含むことにより、シャットダウン機能を発揮できるようになる。また、上記炭酸水素塩は、非水電解液の揮発による可燃性ガスが発生する温度よりも低温で、上記不燃性ガスを発生させるため、上記可燃性ガスの発生も抑制でき、更に電池の安全性を向上できる。
上記架橋構造を有する樹脂[以下、樹脂(A)という。]は、その一部に架橋構造を有する樹脂である。そのため、本発明の絶縁層を有する非水電解質二次電池内が高温となっても、絶縁層において収縮や樹脂(A)の溶融による変形が生じ難く、その形状が良好に維持されることから、正極と負極との短絡の発生が抑制される。よって、上記絶縁層を有する本発明の非水電解質二次電池は、高温下における安全性が良好となる。
上記絶縁層に、上記炭酸水素塩とともに、上記炭酸水素塩以外の無機粒子[以下、無機粒子(B)という。]を含有させることで、絶縁層の強度や寸法安定性をより高めることができる。
上記正極には、例えば、正極活物質、導電助剤、バインダ等を含有する正極合剤層を、集電体の片面又は両面に有する構造のものが使用できる。
上記負極には、例えば、負極活物質、バインダ及び必要に応じて導電助剤等を含む負極合剤層を、集電体の片面又は両面に有する構造のものが使用できる。
上記非水電解質としては、リチウム塩を有機溶媒に溶解した非水電解液を使用できる。上記非水電解液に用いるリチウム塩としては、溶媒中で解離してリチウムイオンを形成し、電池として使用される電圧範囲で分解等の副反応を起こしにくいものであれば特に制限はない。例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6等の無機リチウム塩、LiCF3SO3、LiCF3CO2、Li2C2F4(SO3)2、LiN(CF3SO2)2、LiC(CF3SO2)3、LiCnF2n+1SO3(2≦n≦7)、LiN(RfOSO2)2〔ここで、Rfはフルオロアルキル基〕等の有機リチウム塩等を用いることができる。
本発明の非水電解質二次電池では、上記正極及び上記負極との間に上記絶縁層が形成されているため、通常セパレータは必要ないが、正極及び負極の間にセパレータを更に配置してもよい。これにより、正負極間の短絡をより確実に防止できる。
本発明の非水電解質二次電池の形態としては、金属を蒸着した柔軟なラミネートフィルムを外装体としたラミネート形電池が好ましい。外装体が柔軟であれば、前述の炭酸水素塩からのガス発生時に正極と負極とが離反しやすいからである。また、スチール缶やアルミニウム缶等を外装缶として使用した筒形(角筒形や円筒形等)等についても、本発明は適用可能である。外装缶が剛性を有していても、炭酸水素塩からのガス発生により正極と負極との間にガスが滞留すれば内部抵抗が増加するからである。
<絶縁層形成用溶液の調製>
先ず、平均粒子径が3μmの炭酸水素ナトリウムを70℃で加熱処理した。次に、上記加熱処理した炭酸水素ナトリウムと下記材料とを下記割合で容器に入れて12時間撹拌して絶縁層形成用溶液を調製した。
(1)炭酸水素ナトリウム(70℃加熱処理済、平均粒子径:3μm):18質量部
(2)ベーマイト(無機粒子、平均粒子径:0.6μm):11質量部
(3)ウレタンアクリレート(重合性オリゴマー、ダイセルサイテック社製“EBECRYL8405”:4質量部
(4)トリプロピレングリコールジアクリレート(重合性モノマー):1質量部
(5)メチルエチルケトン:58.9質量部
(6)エチレングリコール:5.7質量部
(7)ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(重合開始剤):0.2質量部
正極活物質であるLiNi0.5Co0.2Mn0.3O2:20質量部とLiCoO2:80質量部、導電助剤であるアセチレンブラック:7質量部、及びバインダであるPVDF:3質量部を、N-メチル-2-ピロリドン(NMP)を溶剤として均一になるように混合し、正極合剤含有ペーストを調製した。このペーストを集電体となる厚み15μmのアルミニウム箔の片面に、上記正極合剤含有ペーストを一定厚さで塗布し、85℃で乾燥した後、100℃で真空乾燥した。その後、ロールプレス機を用いてプレス処理を施して正極を作製した。但し、上記正極合剤含有ペーストをアルミニウム箔に塗布する際には、アルミニウム箔の一部が露出するように未塗布部分を形成した。
次に、上記正極の正極合剤層の上に上記絶縁層形成用溶液を塗布し、波長365nmの紫外線を照度1000mW/cm2で10秒間照射し、60℃で1時間乾燥して、厚さが20μmの絶縁層を上記負極の上に形成した。
負極活物質である黒鉛:95質量部と、バインダであるPVDF:5質量部とを、NMPを溶剤として均一になるように混合して負極合剤含有ペーストを調製した。このペーストを銅箔からなる厚み10μmの集電体の片面に、上記負極合剤含有ペーストを一定厚さで塗布し、85℃で乾燥した後、100℃で真空乾燥した。その後、ロールプレス機を用いてプレス処理を施して負極を作製した。但し、上記負極合剤含有ペーストを銅箔に塗布する際には、銅箔の一部が露出するように未塗布部分を形成した。
上記リード付き正極と上記リード付き負極とを、PE製微多孔膜セパレータ(厚さ18μm)を介して重ね合わせて積層電極体とし、この積層電極体を、90mm×160mmのアルミニウムラミネートフィルムからなる外装体に収容した。続いて、エチレンカーボネートとジメチルカーボネートとを2:8の体積比で混合した溶媒に、LiPF6を1.2mol/Lの濃度で溶解させた非水電解液を上記外装体内に1mL注入した後、上記外装体を封止して、ラミネート形非水電解質二次電池を得た。
炭酸水素ナトリウムの平均粒子径を17μmとしたこと以外は、実施例1と同様にしてラミネート形非水電解質二次電池を作製した。
炭酸水素ナトリウムの平均粒子径を10μmとし、絶縁層の厚さを7μmとしたこと以外は、実施例1と同様にしてラミネート形非水電解質二次電池を作製した。
炭酸水素ナトリウムの平均粒子径を10μmとし、絶縁層の厚さを35μmとしたこと以外は、実施例1と同様にしてラミネート形非水電解質二次電池を作製した。
実施例1と同様にして加熱処理した平均粒子径10μmの炭酸水素ナトリウムと下記材料とを下記割合で容器に入れて12時間撹拌して絶縁層形成用溶液を調製した。
(1)炭酸水素ナトリウム(70℃加熱処理済、平均粒子径:10μm):2.5質量部
(2)ベーマイト(無機粒子、平均粒子径:0.6μm):20質量部
(3)ウレタンアクリレート(重合性オリゴマー、ダイセルサイテック社製“EBECRYL8405”:6質量部
(4)トリプロピレングリコールジアクリレート(重合性モノマー):1.5質量部
(5)メチルエチルケトン:58.9質量部
(6)エチレングリコール:5.7質量部
(7)ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(重合開始剤):0.2質量部
上記絶縁層形成用溶液を用いたこと以外は、実施例1と同様にしてラミネート形非水電解質二次電池を作製した。
実施例1と同様にして加熱処理した平均粒子径10μmの炭酸水素ナトリウムと下記材料とを下記割合で容器に入れて12時間撹拌して絶縁層形成用溶液を調製した。
(1)炭酸水素ナトリウム(70℃加熱処理済、平均粒子径:10μm):25質量部
(2)ベーマイト(無機粒子、平均粒子径:0.6μm):4質量部
(3)ウレタンアクリレート(重合性オリゴマー、ダイセルサイテック社製“EBECRYL8405”:4質量部
(4)トリプロピレングリコールジアクリレート(重合性モノマー):1質量部
(5)メチルエチルケトン:58.9質量部
(6)エチレングリコール:5.7質量部
(7)ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(重合開始剤):0.2質量部
上記絶縁層形成用溶液を用いたこと以外は、実施例1と同様にしてラミネート形非水電解質二次電池を作製した。
炭酸水素ナトリウムを使用せず、下記材料を下記割合で容器に入れて12時間撹拌して絶縁層形成用溶液を調製した。
(1)ベーマイト(無機粒子、平均粒子径:0.6μm):25.6質量部
(2)ウレタンアクリレート(重合性オリゴマー、ダイセルサイテック社製“EBECRYL8405”:7.6質量部
(3)トリプロピレングリコールジアクリレート(重合性モノマー):1.9質量部
(4)メチルエチルケトン:58.9質量部
(5)エチレングリコール:5.7質量部
(6)ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(重合開始剤):0.3質量部
上記絶縁層形成用溶液を用いたこと以外は、実施例1と同様にしてラミネート形非水電解質二次電池を作製した。
炭酸水素ナトリウムの平均粒子径を1μmとしたこと以外は、実施例1と同様にしてラミネート形非水電解質二次電池を作製した。
炭酸水素ナトリウムの平均粒子径を25μmとしたこと以外は、実施例1と同様にしてラミネート形非水電解質二次電池を作製した。
炭酸水素ナトリウムの平均粒子径を10μmとし、絶縁層の厚さを3μmとしたこと以外は、実施例1と同様にしてラミネート形非水電解質二次電池を作製した。
炭酸水素ナトリウムの平均粒子径を10μmとし、絶縁層の厚さを45μmとしたこと以外は、実施例1と同様にしてラミネート形非水電解質二次電池を作製した。
実施例1と同様にして加熱処理した平均粒子径10μmの炭酸水素ナトリウムと下記材料とを下記割合で容器に入れて12時間撹拌して絶縁層形成用溶液を調製した。
(1)炭酸水素ナトリウム(70℃加熱処理済、平均粒子径:10μm):0.75質量部
(2)ベーマイト(無機粒子、平均粒子径:0.6μm):1質量部
(3)ウレタンアクリレート(重合性オリゴマー、ダイセルサイテック社製“EBECRYL8405”:7.6質量部
(4)トリプロピレングリコールジアクリレート(重合性モノマー):1.9質量部
(5)メチルエチルケトン:58.9質量部
(6)エチレングリコール:5.7質量部
(7)ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(重合開始剤):0.3質量部
上記絶縁層形成用溶液を用いたこと以外は、実施例1と同様にしてラミネート形非水電解質二次電池を作製した。
実施例1と同様にして加熱処理した平均粒子径10μmの炭酸水素ナトリウムと下記材料とを下記割合で容器に入れて12時間撹拌して絶縁層形成用溶液を調製した。
(1)炭酸水素ナトリウム(70℃加熱処理済、平均粒子径:10μm):28質量部
(2)ベーマイト(無機粒子、平均粒子径:0.6μm):1質量部
(3)ウレタンアクリレート(重合性オリゴマー、ダイセルサイテック社製“EBECRYL8405”:3質量部
(4)トリプロピレングリコールジアクリレート(重合性モノマー):0.8質量部
(5)メチルエチルケトン:58.9質量部
(6)エチレングリコール:5.7質量部
(7)ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(重合開始剤):0.2質量部
上記絶縁層形成用溶液を用いたこと以外は、実施例1と同様にしてラミネート形非水電解質二次電池を作製した。
各電池を恒温槽に入れ、30℃から160℃まで毎分1℃の速さで昇温し、電池の内部抵抗の変化を測定した。その際、電池の温度は、熱電対温度計を電池表面に取り付けて測定した。また、昇温時の電池の内部抵抗は、HIOKI社製の抵抗測定機“HiTESTER”を用いて、1秒ごとに測定した。そして、電池温度が100~150℃の範囲において、電池の内部抵抗の最大値が、電池温度30℃での内部抵抗の5倍以上に上昇した場合にシャットダウンが生じたと判断した。
2 外装体
3 正極外部端子
4 負極外部端子
Claims (7)
- 正極、負極及び非水電解質を含む非水電解質二次電池であって、
前記正極と前記負極との間に、絶縁層を備え、
前記絶縁層は、炭酸水素ナトリウム及び炭酸水素カリウムから選ばれる少なくとも1種の炭酸水素塩を含み、
前記炭酸水素塩の平均粒子径が、2~20μmであり、
前記炭酸水素塩の含有量が、前記絶縁層の全体積に対して、5~80体積%であり、
前記絶縁層の厚さが、4~40μmであることを特徴とする非水電解質二次電池。 - 前記絶縁層は、架橋構造を有する樹脂と、無機粒子とを更に含み、
前記絶縁層は、微多孔を有する請求項1に記載の非水電解質二次電池。 - 前記絶縁層が、前記正極又は前記負極の上に形成された請求項2に記載の非水電解質二次電池。
- 前記絶縁層は、微多孔膜を更に含み、
前記炭酸水素塩は、前記微多孔膜の内部又は表面に配置されている請求項1に記載の非水電解質二次電池。 - 前記炭酸水素塩は、前記炭酸水素塩の分解温度より低い温度で加熱処理されている請求項1~4のいずれか1項に記載の非水電解質二次電池。
- 前記正極と前記負極との間に、ポリオレフィン製の微多孔膜を更に備える請求項1~5のいずれか1項に記載の非水電解質二次電池。
- 前記微多孔膜は、ポリエチレン微粒子から構成され、
前記微多孔膜の厚さが、1~10μmである請求項6に記載の非水電解質二次電池。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012522309A JP5144837B1 (ja) | 2012-03-13 | 2012-03-13 | 非水電解質二次電池 |
KR1020137002790A KR20130126583A (ko) | 2012-03-13 | 2012-03-13 | 비수 전해질 이차 전지 |
PCT/JP2012/056401 WO2013136441A1 (ja) | 2012-03-13 | 2012-03-13 | 非水電解質二次電池 |
CN2012800023318A CN103415954A (zh) | 2012-03-13 | 2012-03-13 | 非水电解质二次电池 |
US13/813,361 US20140186682A1 (en) | 2012-03-13 | 2012-03-13 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/056401 WO2013136441A1 (ja) | 2012-03-13 | 2012-03-13 | 非水電解質二次電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013136441A1 true WO2013136441A1 (ja) | 2013-09-19 |
Family
ID=47789915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/056401 WO2013136441A1 (ja) | 2012-03-13 | 2012-03-13 | 非水電解質二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140186682A1 (ja) |
JP (1) | JP5144837B1 (ja) |
KR (1) | KR20130126583A (ja) |
CN (1) | CN103415954A (ja) |
WO (1) | WO2013136441A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017221679A1 (ja) * | 2016-06-23 | 2017-12-28 | 株式会社日立製作所 | リチウムイオン二次電池 |
WO2018181243A1 (ja) * | 2017-03-30 | 2018-10-04 | 三井化学株式会社 | リチウムイオン二次電池 |
JP2019036552A (ja) * | 2018-10-15 | 2019-03-07 | トヨタ自動車株式会社 | 電極 |
WO2021131255A1 (ja) * | 2019-12-26 | 2021-07-01 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用電極及び非水電解質二次電池 |
JP2023083041A (ja) * | 2021-12-03 | 2023-06-15 | プライムアースEvエナジー株式会社 | 二次電池の正極板の製造方法及び二次電池 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3483957A1 (en) * | 2017-11-08 | 2019-05-15 | Samsung SDI Co., Ltd. | Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery, the rechargeable battery and method for manufacturing the electrode |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11191417A (ja) * | 1997-06-06 | 1999-07-13 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池およびその製造方法 |
JP2000149922A (ja) * | 1998-11-05 | 2000-05-30 | Samsung Sdi Co Ltd | リチウムイオンポリマ―電池用電極活物質組成物、高分子電解質マトリックス組成物及びこれを用いたリチウムイオンポリマ―電池の製造方法 |
JP2006147569A (ja) | 2004-11-17 | 2006-06-08 | Samsung Sdi Co Ltd | リチウムイオン二次電池 |
JP2008204789A (ja) * | 2007-02-20 | 2008-09-04 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池 |
JP2008226807A (ja) | 2007-02-14 | 2008-09-25 | Nissan Motor Co Ltd | 非水電解質二次電池 |
JP2011175810A (ja) * | 2010-02-24 | 2011-09-08 | Hitachi Ltd | リチウム二次電池 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4529677A (en) * | 1982-02-02 | 1985-07-16 | Texon Incorporated | Battery separator material |
JP2007305421A (ja) * | 2006-05-11 | 2007-11-22 | Sony Corp | セパレータおよび非水電解質電池 |
JP2008226607A (ja) * | 2007-03-12 | 2008-09-25 | Fujikura Ltd | 可撓性フラットハーネス用保持具 |
-
2012
- 2012-03-13 JP JP2012522309A patent/JP5144837B1/ja not_active Expired - Fee Related
- 2012-03-13 KR KR1020137002790A patent/KR20130126583A/ko not_active Application Discontinuation
- 2012-03-13 WO PCT/JP2012/056401 patent/WO2013136441A1/ja active Application Filing
- 2012-03-13 CN CN2012800023318A patent/CN103415954A/zh active Pending
- 2012-03-13 US US13/813,361 patent/US20140186682A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11191417A (ja) * | 1997-06-06 | 1999-07-13 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池およびその製造方法 |
JP2000149922A (ja) * | 1998-11-05 | 2000-05-30 | Samsung Sdi Co Ltd | リチウムイオンポリマ―電池用電極活物質組成物、高分子電解質マトリックス組成物及びこれを用いたリチウムイオンポリマ―電池の製造方法 |
JP2006147569A (ja) | 2004-11-17 | 2006-06-08 | Samsung Sdi Co Ltd | リチウムイオン二次電池 |
JP2008226807A (ja) | 2007-02-14 | 2008-09-25 | Nissan Motor Co Ltd | 非水電解質二次電池 |
JP2008204789A (ja) * | 2007-02-20 | 2008-09-04 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池 |
JP2011175810A (ja) * | 2010-02-24 | 2011-09-08 | Hitachi Ltd | リチウム二次電池 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017221679A1 (ja) * | 2016-06-23 | 2017-12-28 | 株式会社日立製作所 | リチウムイオン二次電池 |
WO2018181243A1 (ja) * | 2017-03-30 | 2018-10-04 | 三井化学株式会社 | リチウムイオン二次電池 |
CN110495044A (zh) * | 2017-03-30 | 2019-11-22 | 三井化学株式会社 | 锂离子二次电池 |
JPWO2018181243A1 (ja) * | 2017-03-30 | 2020-02-06 | 三井化学株式会社 | リチウムイオン二次電池 |
JP2019036552A (ja) * | 2018-10-15 | 2019-03-07 | トヨタ自動車株式会社 | 電極 |
WO2021131255A1 (ja) * | 2019-12-26 | 2021-07-01 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用電極及び非水電解質二次電池 |
JP2023083041A (ja) * | 2021-12-03 | 2023-06-15 | プライムアースEvエナジー株式会社 | 二次電池の正極板の製造方法及び二次電池 |
JP7404327B2 (ja) | 2021-12-03 | 2023-12-25 | プライムアースEvエナジー株式会社 | 二次電池の正極板の製造方法及び二次電池 |
Also Published As
Publication number | Publication date |
---|---|
CN103415954A (zh) | 2013-11-27 |
JP5144837B1 (ja) | 2013-02-13 |
KR20130126583A (ko) | 2013-11-20 |
US20140186682A1 (en) | 2014-07-03 |
JPWO2013136441A1 (ja) | 2015-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5165158B1 (ja) | 非水電解質二次電池及びその製造方法 | |
JP5525630B2 (ja) | 非水電解質二次電池用電極、非水電解質二次電池及びその製造方法 | |
KR101768195B1 (ko) | 절연 코팅부를 포함하는 양극의 제조 방법 및 이를 사용하여 제조되는 양극 | |
JP5195499B2 (ja) | 非水電解質二次電池 | |
JP5268673B2 (ja) | 非水電解質二次電池の製造方法 | |
JP7525566B2 (ja) | 固体高分子電解質組成物及びこれを含む固体高分子電解質 | |
JP5210461B1 (ja) | 非水電解質二次電池用セパレータ、その製造方法および非水電解質二次電池 | |
KR20160075292A (ko) | 복합막, 그 제조방법, 이를 포함한 음극 구조체 및 리튬이차전지 | |
WO2013125007A1 (ja) | 非水電解質二次電池用セパレータ、その製造方法および非水電解質二次電池 | |
JP2019121610A (ja) | 複合膜、それを含んだ負極構造体及びリチウム電池、並びに複合膜製造方法 | |
JP2009176484A (ja) | 全固体リチウム二次電池用正極及び負極、並びに全固体リチウム二次電池 | |
JP6762319B2 (ja) | 全固体二次電池、全固体二次電池用粒子、全固体二次電池用固体電解質組成物および全固体二次電池用電極シートならびにこれらの製造方法 | |
JP5144837B1 (ja) | 非水電解質二次電池 | |
JP2015072758A (ja) | リチウムイオン二次電池用電極、その製造方法、およびリチウムイオン二次電池 | |
EP2573838A1 (en) | Separator for electrochemical device, method for producing the same, and electrochemical device | |
JP6764881B2 (ja) | 全固体二次電池、全固体二次電池用粒子、全固体二次電池用固体電解質組成物および全固体二次電池用電極シートならびにこれらの製造方法 | |
KR20200095188A (ko) | 고체 고분자 전해질 조성물 및 이를 포함하는 고체 고분자 전해질 | |
US7919208B2 (en) | Anode active material and battery | |
WO2012124525A1 (ja) | 非水電解質二次電池及びその製造方法 | |
JP4751502B2 (ja) | ポリマー電池 | |
JP6815381B2 (ja) | 電極アセンブリを構成する分離膜の気孔内にゲル化電解質成分を含む電池セル | |
KR20170037495A (ko) | 복합막, 그 제조방법, 이를 포함한 음극 구조체 및 리튬이차전지 | |
KR101491805B1 (ko) | 전극조립체 및 이를 구비하는 리튬 이차 전지 | |
JP5299242B2 (ja) | リチウムポリマー二次電池 | |
US20240274830A1 (en) | Articles and methods related to lithium electrode protection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012522309 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13813361 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20137002790 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012819049 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12819049 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |